1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include "compat.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "ioctl.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 59 /* Mask out flags that are inappropriate for the given type of inode. */ 60 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 61 { 62 if (S_ISDIR(mode)) 63 return flags; 64 else if (S_ISREG(mode)) 65 return flags & ~FS_DIRSYNC_FL; 66 else 67 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 68 } 69 70 /* 71 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 72 */ 73 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 74 { 75 unsigned int iflags = 0; 76 77 if (flags & BTRFS_INODE_SYNC) 78 iflags |= FS_SYNC_FL; 79 if (flags & BTRFS_INODE_IMMUTABLE) 80 iflags |= FS_IMMUTABLE_FL; 81 if (flags & BTRFS_INODE_APPEND) 82 iflags |= FS_APPEND_FL; 83 if (flags & BTRFS_INODE_NODUMP) 84 iflags |= FS_NODUMP_FL; 85 if (flags & BTRFS_INODE_NOATIME) 86 iflags |= FS_NOATIME_FL; 87 if (flags & BTRFS_INODE_DIRSYNC) 88 iflags |= FS_DIRSYNC_FL; 89 if (flags & BTRFS_INODE_NODATACOW) 90 iflags |= FS_NOCOW_FL; 91 92 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 93 iflags |= FS_COMPR_FL; 94 else if (flags & BTRFS_INODE_NOCOMPRESS) 95 iflags |= FS_NOCOMP_FL; 96 97 return iflags; 98 } 99 100 /* 101 * Update inode->i_flags based on the btrfs internal flags. 102 */ 103 void btrfs_update_iflags(struct inode *inode) 104 { 105 struct btrfs_inode *ip = BTRFS_I(inode); 106 107 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 108 109 if (ip->flags & BTRFS_INODE_SYNC) 110 inode->i_flags |= S_SYNC; 111 if (ip->flags & BTRFS_INODE_IMMUTABLE) 112 inode->i_flags |= S_IMMUTABLE; 113 if (ip->flags & BTRFS_INODE_APPEND) 114 inode->i_flags |= S_APPEND; 115 if (ip->flags & BTRFS_INODE_NOATIME) 116 inode->i_flags |= S_NOATIME; 117 if (ip->flags & BTRFS_INODE_DIRSYNC) 118 inode->i_flags |= S_DIRSYNC; 119 } 120 121 /* 122 * Inherit flags from the parent inode. 123 * 124 * Currently only the compression flags and the cow flags are inherited. 125 */ 126 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 127 { 128 unsigned int flags; 129 130 if (!dir) 131 return; 132 133 flags = BTRFS_I(dir)->flags; 134 135 if (flags & BTRFS_INODE_NOCOMPRESS) { 136 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 137 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 138 } else if (flags & BTRFS_INODE_COMPRESS) { 139 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 140 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 141 } 142 143 if (flags & BTRFS_INODE_NODATACOW) 144 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 145 146 btrfs_update_iflags(inode); 147 } 148 149 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 150 { 151 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode); 152 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 153 154 if (copy_to_user(arg, &flags, sizeof(flags))) 155 return -EFAULT; 156 return 0; 157 } 158 159 static int check_flags(unsigned int flags) 160 { 161 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 162 FS_NOATIME_FL | FS_NODUMP_FL | \ 163 FS_SYNC_FL | FS_DIRSYNC_FL | \ 164 FS_NOCOMP_FL | FS_COMPR_FL | 165 FS_NOCOW_FL)) 166 return -EOPNOTSUPP; 167 168 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 169 return -EINVAL; 170 171 return 0; 172 } 173 174 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 175 { 176 struct inode *inode = file->f_path.dentry->d_inode; 177 struct btrfs_inode *ip = BTRFS_I(inode); 178 struct btrfs_root *root = ip->root; 179 struct btrfs_trans_handle *trans; 180 unsigned int flags, oldflags; 181 int ret; 182 u64 ip_oldflags; 183 unsigned int i_oldflags; 184 umode_t mode; 185 186 if (btrfs_root_readonly(root)) 187 return -EROFS; 188 189 if (copy_from_user(&flags, arg, sizeof(flags))) 190 return -EFAULT; 191 192 ret = check_flags(flags); 193 if (ret) 194 return ret; 195 196 if (!inode_owner_or_capable(inode)) 197 return -EACCES; 198 199 ret = mnt_want_write_file(file); 200 if (ret) 201 return ret; 202 203 mutex_lock(&inode->i_mutex); 204 205 ip_oldflags = ip->flags; 206 i_oldflags = inode->i_flags; 207 mode = inode->i_mode; 208 209 flags = btrfs_mask_flags(inode->i_mode, flags); 210 oldflags = btrfs_flags_to_ioctl(ip->flags); 211 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 212 if (!capable(CAP_LINUX_IMMUTABLE)) { 213 ret = -EPERM; 214 goto out_unlock; 215 } 216 } 217 218 if (flags & FS_SYNC_FL) 219 ip->flags |= BTRFS_INODE_SYNC; 220 else 221 ip->flags &= ~BTRFS_INODE_SYNC; 222 if (flags & FS_IMMUTABLE_FL) 223 ip->flags |= BTRFS_INODE_IMMUTABLE; 224 else 225 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 226 if (flags & FS_APPEND_FL) 227 ip->flags |= BTRFS_INODE_APPEND; 228 else 229 ip->flags &= ~BTRFS_INODE_APPEND; 230 if (flags & FS_NODUMP_FL) 231 ip->flags |= BTRFS_INODE_NODUMP; 232 else 233 ip->flags &= ~BTRFS_INODE_NODUMP; 234 if (flags & FS_NOATIME_FL) 235 ip->flags |= BTRFS_INODE_NOATIME; 236 else 237 ip->flags &= ~BTRFS_INODE_NOATIME; 238 if (flags & FS_DIRSYNC_FL) 239 ip->flags |= BTRFS_INODE_DIRSYNC; 240 else 241 ip->flags &= ~BTRFS_INODE_DIRSYNC; 242 if (flags & FS_NOCOW_FL) { 243 if (S_ISREG(mode)) { 244 /* 245 * It's safe to turn csums off here, no extents exist. 246 * Otherwise we want the flag to reflect the real COW 247 * status of the file and will not set it. 248 */ 249 if (inode->i_size == 0) 250 ip->flags |= BTRFS_INODE_NODATACOW 251 | BTRFS_INODE_NODATASUM; 252 } else { 253 ip->flags |= BTRFS_INODE_NODATACOW; 254 } 255 } else { 256 /* 257 * Revert back under same assuptions as above 258 */ 259 if (S_ISREG(mode)) { 260 if (inode->i_size == 0) 261 ip->flags &= ~(BTRFS_INODE_NODATACOW 262 | BTRFS_INODE_NODATASUM); 263 } else { 264 ip->flags &= ~BTRFS_INODE_NODATACOW; 265 } 266 } 267 268 /* 269 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 270 * flag may be changed automatically if compression code won't make 271 * things smaller. 272 */ 273 if (flags & FS_NOCOMP_FL) { 274 ip->flags &= ~BTRFS_INODE_COMPRESS; 275 ip->flags |= BTRFS_INODE_NOCOMPRESS; 276 } else if (flags & FS_COMPR_FL) { 277 ip->flags |= BTRFS_INODE_COMPRESS; 278 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 279 } else { 280 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 281 } 282 283 trans = btrfs_start_transaction(root, 1); 284 if (IS_ERR(trans)) { 285 ret = PTR_ERR(trans); 286 goto out_drop; 287 } 288 289 btrfs_update_iflags(inode); 290 inode_inc_iversion(inode); 291 inode->i_ctime = CURRENT_TIME; 292 ret = btrfs_update_inode(trans, root, inode); 293 294 btrfs_end_transaction(trans, root); 295 out_drop: 296 if (ret) { 297 ip->flags = ip_oldflags; 298 inode->i_flags = i_oldflags; 299 } 300 301 out_unlock: 302 mutex_unlock(&inode->i_mutex); 303 mnt_drop_write_file(file); 304 return ret; 305 } 306 307 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 308 { 309 struct inode *inode = file->f_path.dentry->d_inode; 310 311 return put_user(inode->i_generation, arg); 312 } 313 314 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 315 { 316 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb); 317 struct btrfs_device *device; 318 struct request_queue *q; 319 struct fstrim_range range; 320 u64 minlen = ULLONG_MAX; 321 u64 num_devices = 0; 322 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 323 int ret; 324 325 if (!capable(CAP_SYS_ADMIN)) 326 return -EPERM; 327 328 rcu_read_lock(); 329 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 330 dev_list) { 331 if (!device->bdev) 332 continue; 333 q = bdev_get_queue(device->bdev); 334 if (blk_queue_discard(q)) { 335 num_devices++; 336 minlen = min((u64)q->limits.discard_granularity, 337 minlen); 338 } 339 } 340 rcu_read_unlock(); 341 342 if (!num_devices) 343 return -EOPNOTSUPP; 344 if (copy_from_user(&range, arg, sizeof(range))) 345 return -EFAULT; 346 if (range.start > total_bytes) 347 return -EINVAL; 348 349 range.len = min(range.len, total_bytes - range.start); 350 range.minlen = max(range.minlen, minlen); 351 ret = btrfs_trim_fs(fs_info->tree_root, &range); 352 if (ret < 0) 353 return ret; 354 355 if (copy_to_user(arg, &range, sizeof(range))) 356 return -EFAULT; 357 358 return 0; 359 } 360 361 static noinline int create_subvol(struct btrfs_root *root, 362 struct dentry *dentry, 363 char *name, int namelen, 364 u64 *async_transid, 365 struct btrfs_qgroup_inherit **inherit) 366 { 367 struct btrfs_trans_handle *trans; 368 struct btrfs_key key; 369 struct btrfs_root_item root_item; 370 struct btrfs_inode_item *inode_item; 371 struct extent_buffer *leaf; 372 struct btrfs_root *new_root; 373 struct dentry *parent = dentry->d_parent; 374 struct inode *dir; 375 struct timespec cur_time = CURRENT_TIME; 376 int ret; 377 int err; 378 u64 objectid; 379 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 380 u64 index = 0; 381 uuid_le new_uuid; 382 383 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 384 if (ret) 385 return ret; 386 387 dir = parent->d_inode; 388 389 /* 390 * 1 - inode item 391 * 2 - refs 392 * 1 - root item 393 * 2 - dir items 394 */ 395 trans = btrfs_start_transaction(root, 6); 396 if (IS_ERR(trans)) 397 return PTR_ERR(trans); 398 399 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, 400 inherit ? *inherit : NULL); 401 if (ret) 402 goto fail; 403 404 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 405 0, objectid, NULL, 0, 0, 0); 406 if (IS_ERR(leaf)) { 407 ret = PTR_ERR(leaf); 408 goto fail; 409 } 410 411 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 412 btrfs_set_header_bytenr(leaf, leaf->start); 413 btrfs_set_header_generation(leaf, trans->transid); 414 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 415 btrfs_set_header_owner(leaf, objectid); 416 417 write_extent_buffer(leaf, root->fs_info->fsid, 418 (unsigned long)btrfs_header_fsid(leaf), 419 BTRFS_FSID_SIZE); 420 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 421 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 422 BTRFS_UUID_SIZE); 423 btrfs_mark_buffer_dirty(leaf); 424 425 memset(&root_item, 0, sizeof(root_item)); 426 427 inode_item = &root_item.inode; 428 inode_item->generation = cpu_to_le64(1); 429 inode_item->size = cpu_to_le64(3); 430 inode_item->nlink = cpu_to_le32(1); 431 inode_item->nbytes = cpu_to_le64(root->leafsize); 432 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 433 434 root_item.flags = 0; 435 root_item.byte_limit = 0; 436 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT); 437 438 btrfs_set_root_bytenr(&root_item, leaf->start); 439 btrfs_set_root_generation(&root_item, trans->transid); 440 btrfs_set_root_level(&root_item, 0); 441 btrfs_set_root_refs(&root_item, 1); 442 btrfs_set_root_used(&root_item, leaf->len); 443 btrfs_set_root_last_snapshot(&root_item, 0); 444 445 btrfs_set_root_generation_v2(&root_item, 446 btrfs_root_generation(&root_item)); 447 uuid_le_gen(&new_uuid); 448 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE); 449 root_item.otime.sec = cpu_to_le64(cur_time.tv_sec); 450 root_item.otime.nsec = cpu_to_le32(cur_time.tv_nsec); 451 root_item.ctime = root_item.otime; 452 btrfs_set_root_ctransid(&root_item, trans->transid); 453 btrfs_set_root_otransid(&root_item, trans->transid); 454 455 btrfs_tree_unlock(leaf); 456 free_extent_buffer(leaf); 457 leaf = NULL; 458 459 btrfs_set_root_dirid(&root_item, new_dirid); 460 461 key.objectid = objectid; 462 key.offset = 0; 463 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 464 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 465 &root_item); 466 if (ret) 467 goto fail; 468 469 key.offset = (u64)-1; 470 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 471 if (IS_ERR(new_root)) { 472 btrfs_abort_transaction(trans, root, PTR_ERR(new_root)); 473 ret = PTR_ERR(new_root); 474 goto fail; 475 } 476 477 btrfs_record_root_in_trans(trans, new_root); 478 479 ret = btrfs_create_subvol_root(trans, new_root, new_dirid); 480 if (ret) { 481 /* We potentially lose an unused inode item here */ 482 btrfs_abort_transaction(trans, root, ret); 483 goto fail; 484 } 485 486 /* 487 * insert the directory item 488 */ 489 ret = btrfs_set_inode_index(dir, &index); 490 if (ret) { 491 btrfs_abort_transaction(trans, root, ret); 492 goto fail; 493 } 494 495 ret = btrfs_insert_dir_item(trans, root, 496 name, namelen, dir, &key, 497 BTRFS_FT_DIR, index); 498 if (ret) { 499 btrfs_abort_transaction(trans, root, ret); 500 goto fail; 501 } 502 503 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 504 ret = btrfs_update_inode(trans, root, dir); 505 BUG_ON(ret); 506 507 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 508 objectid, root->root_key.objectid, 509 btrfs_ino(dir), index, name, namelen); 510 511 BUG_ON(ret); 512 513 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry)); 514 fail: 515 if (async_transid) { 516 *async_transid = trans->transid; 517 err = btrfs_commit_transaction_async(trans, root, 1); 518 } else { 519 err = btrfs_commit_transaction(trans, root); 520 } 521 if (err && !ret) 522 ret = err; 523 return ret; 524 } 525 526 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry, 527 char *name, int namelen, u64 *async_transid, 528 bool readonly, struct btrfs_qgroup_inherit **inherit) 529 { 530 struct inode *inode; 531 struct btrfs_pending_snapshot *pending_snapshot; 532 struct btrfs_trans_handle *trans; 533 int ret; 534 535 if (!root->ref_cows) 536 return -EINVAL; 537 538 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 539 if (!pending_snapshot) 540 return -ENOMEM; 541 542 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 543 BTRFS_BLOCK_RSV_TEMP); 544 pending_snapshot->dentry = dentry; 545 pending_snapshot->root = root; 546 pending_snapshot->readonly = readonly; 547 if (inherit) { 548 pending_snapshot->inherit = *inherit; 549 *inherit = NULL; /* take responsibility to free it */ 550 } 551 552 trans = btrfs_start_transaction(root->fs_info->extent_root, 6); 553 if (IS_ERR(trans)) { 554 ret = PTR_ERR(trans); 555 goto fail; 556 } 557 558 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot); 559 BUG_ON(ret); 560 561 spin_lock(&root->fs_info->trans_lock); 562 list_add(&pending_snapshot->list, 563 &trans->transaction->pending_snapshots); 564 spin_unlock(&root->fs_info->trans_lock); 565 if (async_transid) { 566 *async_transid = trans->transid; 567 ret = btrfs_commit_transaction_async(trans, 568 root->fs_info->extent_root, 1); 569 } else { 570 ret = btrfs_commit_transaction(trans, 571 root->fs_info->extent_root); 572 } 573 BUG_ON(ret); 574 575 ret = pending_snapshot->error; 576 if (ret) 577 goto fail; 578 579 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 580 if (ret) 581 goto fail; 582 583 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry); 584 if (IS_ERR(inode)) { 585 ret = PTR_ERR(inode); 586 goto fail; 587 } 588 BUG_ON(!inode); 589 d_instantiate(dentry, inode); 590 ret = 0; 591 fail: 592 kfree(pending_snapshot); 593 return ret; 594 } 595 596 /* copy of check_sticky in fs/namei.c() 597 * It's inline, so penalty for filesystems that don't use sticky bit is 598 * minimal. 599 */ 600 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode) 601 { 602 kuid_t fsuid = current_fsuid(); 603 604 if (!(dir->i_mode & S_ISVTX)) 605 return 0; 606 if (uid_eq(inode->i_uid, fsuid)) 607 return 0; 608 if (uid_eq(dir->i_uid, fsuid)) 609 return 0; 610 return !capable(CAP_FOWNER); 611 } 612 613 /* copy of may_delete in fs/namei.c() 614 * Check whether we can remove a link victim from directory dir, check 615 * whether the type of victim is right. 616 * 1. We can't do it if dir is read-only (done in permission()) 617 * 2. We should have write and exec permissions on dir 618 * 3. We can't remove anything from append-only dir 619 * 4. We can't do anything with immutable dir (done in permission()) 620 * 5. If the sticky bit on dir is set we should either 621 * a. be owner of dir, or 622 * b. be owner of victim, or 623 * c. have CAP_FOWNER capability 624 * 6. If the victim is append-only or immutable we can't do antyhing with 625 * links pointing to it. 626 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 627 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 628 * 9. We can't remove a root or mountpoint. 629 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 630 * nfs_async_unlink(). 631 */ 632 633 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir) 634 { 635 int error; 636 637 if (!victim->d_inode) 638 return -ENOENT; 639 640 BUG_ON(victim->d_parent->d_inode != dir); 641 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 642 643 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 644 if (error) 645 return error; 646 if (IS_APPEND(dir)) 647 return -EPERM; 648 if (btrfs_check_sticky(dir, victim->d_inode)|| 649 IS_APPEND(victim->d_inode)|| 650 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 651 return -EPERM; 652 if (isdir) { 653 if (!S_ISDIR(victim->d_inode->i_mode)) 654 return -ENOTDIR; 655 if (IS_ROOT(victim)) 656 return -EBUSY; 657 } else if (S_ISDIR(victim->d_inode->i_mode)) 658 return -EISDIR; 659 if (IS_DEADDIR(dir)) 660 return -ENOENT; 661 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 662 return -EBUSY; 663 return 0; 664 } 665 666 /* copy of may_create in fs/namei.c() */ 667 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 668 { 669 if (child->d_inode) 670 return -EEXIST; 671 if (IS_DEADDIR(dir)) 672 return -ENOENT; 673 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 674 } 675 676 /* 677 * Create a new subvolume below @parent. This is largely modeled after 678 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 679 * inside this filesystem so it's quite a bit simpler. 680 */ 681 static noinline int btrfs_mksubvol(struct path *parent, 682 char *name, int namelen, 683 struct btrfs_root *snap_src, 684 u64 *async_transid, bool readonly, 685 struct btrfs_qgroup_inherit **inherit) 686 { 687 struct inode *dir = parent->dentry->d_inode; 688 struct dentry *dentry; 689 int error; 690 691 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 692 693 dentry = lookup_one_len(name, parent->dentry, namelen); 694 error = PTR_ERR(dentry); 695 if (IS_ERR(dentry)) 696 goto out_unlock; 697 698 error = -EEXIST; 699 if (dentry->d_inode) 700 goto out_dput; 701 702 error = btrfs_may_create(dir, dentry); 703 if (error) 704 goto out_dput; 705 706 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 707 708 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 709 goto out_up_read; 710 711 if (snap_src) { 712 error = create_snapshot(snap_src, dentry, name, namelen, 713 async_transid, readonly, inherit); 714 } else { 715 error = create_subvol(BTRFS_I(dir)->root, dentry, 716 name, namelen, async_transid, inherit); 717 } 718 if (!error) 719 fsnotify_mkdir(dir, dentry); 720 out_up_read: 721 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 722 out_dput: 723 dput(dentry); 724 out_unlock: 725 mutex_unlock(&dir->i_mutex); 726 return error; 727 } 728 729 /* 730 * When we're defragging a range, we don't want to kick it off again 731 * if it is really just waiting for delalloc to send it down. 732 * If we find a nice big extent or delalloc range for the bytes in the 733 * file you want to defrag, we return 0 to let you know to skip this 734 * part of the file 735 */ 736 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh) 737 { 738 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 739 struct extent_map *em = NULL; 740 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 741 u64 end; 742 743 read_lock(&em_tree->lock); 744 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 745 read_unlock(&em_tree->lock); 746 747 if (em) { 748 end = extent_map_end(em); 749 free_extent_map(em); 750 if (end - offset > thresh) 751 return 0; 752 } 753 /* if we already have a nice delalloc here, just stop */ 754 thresh /= 2; 755 end = count_range_bits(io_tree, &offset, offset + thresh, 756 thresh, EXTENT_DELALLOC, 1); 757 if (end >= thresh) 758 return 0; 759 return 1; 760 } 761 762 /* 763 * helper function to walk through a file and find extents 764 * newer than a specific transid, and smaller than thresh. 765 * 766 * This is used by the defragging code to find new and small 767 * extents 768 */ 769 static int find_new_extents(struct btrfs_root *root, 770 struct inode *inode, u64 newer_than, 771 u64 *off, int thresh) 772 { 773 struct btrfs_path *path; 774 struct btrfs_key min_key; 775 struct btrfs_key max_key; 776 struct extent_buffer *leaf; 777 struct btrfs_file_extent_item *extent; 778 int type; 779 int ret; 780 u64 ino = btrfs_ino(inode); 781 782 path = btrfs_alloc_path(); 783 if (!path) 784 return -ENOMEM; 785 786 min_key.objectid = ino; 787 min_key.type = BTRFS_EXTENT_DATA_KEY; 788 min_key.offset = *off; 789 790 max_key.objectid = ino; 791 max_key.type = (u8)-1; 792 max_key.offset = (u64)-1; 793 794 path->keep_locks = 1; 795 796 while(1) { 797 ret = btrfs_search_forward(root, &min_key, &max_key, 798 path, 0, newer_than); 799 if (ret != 0) 800 goto none; 801 if (min_key.objectid != ino) 802 goto none; 803 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 804 goto none; 805 806 leaf = path->nodes[0]; 807 extent = btrfs_item_ptr(leaf, path->slots[0], 808 struct btrfs_file_extent_item); 809 810 type = btrfs_file_extent_type(leaf, extent); 811 if (type == BTRFS_FILE_EXTENT_REG && 812 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 813 check_defrag_in_cache(inode, min_key.offset, thresh)) { 814 *off = min_key.offset; 815 btrfs_free_path(path); 816 return 0; 817 } 818 819 if (min_key.offset == (u64)-1) 820 goto none; 821 822 min_key.offset++; 823 btrfs_release_path(path); 824 } 825 none: 826 btrfs_free_path(path); 827 return -ENOENT; 828 } 829 830 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 831 { 832 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 833 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 834 struct extent_map *em; 835 u64 len = PAGE_CACHE_SIZE; 836 837 /* 838 * hopefully we have this extent in the tree already, try without 839 * the full extent lock 840 */ 841 read_lock(&em_tree->lock); 842 em = lookup_extent_mapping(em_tree, start, len); 843 read_unlock(&em_tree->lock); 844 845 if (!em) { 846 /* get the big lock and read metadata off disk */ 847 lock_extent(io_tree, start, start + len - 1); 848 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 849 unlock_extent(io_tree, start, start + len - 1); 850 851 if (IS_ERR(em)) 852 return NULL; 853 } 854 855 return em; 856 } 857 858 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 859 { 860 struct extent_map *next; 861 bool ret = true; 862 863 /* this is the last extent */ 864 if (em->start + em->len >= i_size_read(inode)) 865 return false; 866 867 next = defrag_lookup_extent(inode, em->start + em->len); 868 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 869 ret = false; 870 871 free_extent_map(next); 872 return ret; 873 } 874 875 static int should_defrag_range(struct inode *inode, u64 start, int thresh, 876 u64 *last_len, u64 *skip, u64 *defrag_end, 877 int compress) 878 { 879 struct extent_map *em; 880 int ret = 1; 881 bool next_mergeable = true; 882 883 /* 884 * make sure that once we start defragging an extent, we keep on 885 * defragging it 886 */ 887 if (start < *defrag_end) 888 return 1; 889 890 *skip = 0; 891 892 em = defrag_lookup_extent(inode, start); 893 if (!em) 894 return 0; 895 896 /* this will cover holes, and inline extents */ 897 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 898 ret = 0; 899 goto out; 900 } 901 902 next_mergeable = defrag_check_next_extent(inode, em); 903 904 /* 905 * we hit a real extent, if it is big or the next extent is not a 906 * real extent, don't bother defragging it 907 */ 908 if (!compress && (*last_len == 0 || *last_len >= thresh) && 909 (em->len >= thresh || !next_mergeable)) 910 ret = 0; 911 out: 912 /* 913 * last_len ends up being a counter of how many bytes we've defragged. 914 * every time we choose not to defrag an extent, we reset *last_len 915 * so that the next tiny extent will force a defrag. 916 * 917 * The end result of this is that tiny extents before a single big 918 * extent will force at least part of that big extent to be defragged. 919 */ 920 if (ret) { 921 *defrag_end = extent_map_end(em); 922 } else { 923 *last_len = 0; 924 *skip = extent_map_end(em); 925 *defrag_end = 0; 926 } 927 928 free_extent_map(em); 929 return ret; 930 } 931 932 /* 933 * it doesn't do much good to defrag one or two pages 934 * at a time. This pulls in a nice chunk of pages 935 * to COW and defrag. 936 * 937 * It also makes sure the delalloc code has enough 938 * dirty data to avoid making new small extents as part 939 * of the defrag 940 * 941 * It's a good idea to start RA on this range 942 * before calling this. 943 */ 944 static int cluster_pages_for_defrag(struct inode *inode, 945 struct page **pages, 946 unsigned long start_index, 947 int num_pages) 948 { 949 unsigned long file_end; 950 u64 isize = i_size_read(inode); 951 u64 page_start; 952 u64 page_end; 953 u64 page_cnt; 954 int ret; 955 int i; 956 int i_done; 957 struct btrfs_ordered_extent *ordered; 958 struct extent_state *cached_state = NULL; 959 struct extent_io_tree *tree; 960 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 961 962 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 963 if (!isize || start_index > file_end) 964 return 0; 965 966 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 967 968 ret = btrfs_delalloc_reserve_space(inode, 969 page_cnt << PAGE_CACHE_SHIFT); 970 if (ret) 971 return ret; 972 i_done = 0; 973 tree = &BTRFS_I(inode)->io_tree; 974 975 /* step one, lock all the pages */ 976 for (i = 0; i < page_cnt; i++) { 977 struct page *page; 978 again: 979 page = find_or_create_page(inode->i_mapping, 980 start_index + i, mask); 981 if (!page) 982 break; 983 984 page_start = page_offset(page); 985 page_end = page_start + PAGE_CACHE_SIZE - 1; 986 while (1) { 987 lock_extent(tree, page_start, page_end); 988 ordered = btrfs_lookup_ordered_extent(inode, 989 page_start); 990 unlock_extent(tree, page_start, page_end); 991 if (!ordered) 992 break; 993 994 unlock_page(page); 995 btrfs_start_ordered_extent(inode, ordered, 1); 996 btrfs_put_ordered_extent(ordered); 997 lock_page(page); 998 /* 999 * we unlocked the page above, so we need check if 1000 * it was released or not. 1001 */ 1002 if (page->mapping != inode->i_mapping) { 1003 unlock_page(page); 1004 page_cache_release(page); 1005 goto again; 1006 } 1007 } 1008 1009 if (!PageUptodate(page)) { 1010 btrfs_readpage(NULL, page); 1011 lock_page(page); 1012 if (!PageUptodate(page)) { 1013 unlock_page(page); 1014 page_cache_release(page); 1015 ret = -EIO; 1016 break; 1017 } 1018 } 1019 1020 if (page->mapping != inode->i_mapping) { 1021 unlock_page(page); 1022 page_cache_release(page); 1023 goto again; 1024 } 1025 1026 pages[i] = page; 1027 i_done++; 1028 } 1029 if (!i_done || ret) 1030 goto out; 1031 1032 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1033 goto out; 1034 1035 /* 1036 * so now we have a nice long stream of locked 1037 * and up to date pages, lets wait on them 1038 */ 1039 for (i = 0; i < i_done; i++) 1040 wait_on_page_writeback(pages[i]); 1041 1042 page_start = page_offset(pages[0]); 1043 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 1044 1045 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1046 page_start, page_end - 1, 0, &cached_state); 1047 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1048 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1049 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1050 &cached_state, GFP_NOFS); 1051 1052 if (i_done != page_cnt) { 1053 spin_lock(&BTRFS_I(inode)->lock); 1054 BTRFS_I(inode)->outstanding_extents++; 1055 spin_unlock(&BTRFS_I(inode)->lock); 1056 btrfs_delalloc_release_space(inode, 1057 (page_cnt - i_done) << PAGE_CACHE_SHIFT); 1058 } 1059 1060 1061 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1062 &cached_state, GFP_NOFS); 1063 1064 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1065 page_start, page_end - 1, &cached_state, 1066 GFP_NOFS); 1067 1068 for (i = 0; i < i_done; i++) { 1069 clear_page_dirty_for_io(pages[i]); 1070 ClearPageChecked(pages[i]); 1071 set_page_extent_mapped(pages[i]); 1072 set_page_dirty(pages[i]); 1073 unlock_page(pages[i]); 1074 page_cache_release(pages[i]); 1075 } 1076 return i_done; 1077 out: 1078 for (i = 0; i < i_done; i++) { 1079 unlock_page(pages[i]); 1080 page_cache_release(pages[i]); 1081 } 1082 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT); 1083 return ret; 1084 1085 } 1086 1087 int btrfs_defrag_file(struct inode *inode, struct file *file, 1088 struct btrfs_ioctl_defrag_range_args *range, 1089 u64 newer_than, unsigned long max_to_defrag) 1090 { 1091 struct btrfs_root *root = BTRFS_I(inode)->root; 1092 struct file_ra_state *ra = NULL; 1093 unsigned long last_index; 1094 u64 isize = i_size_read(inode); 1095 u64 last_len = 0; 1096 u64 skip = 0; 1097 u64 defrag_end = 0; 1098 u64 newer_off = range->start; 1099 unsigned long i; 1100 unsigned long ra_index = 0; 1101 int ret; 1102 int defrag_count = 0; 1103 int compress_type = BTRFS_COMPRESS_ZLIB; 1104 int extent_thresh = range->extent_thresh; 1105 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 1106 int cluster = max_cluster; 1107 u64 new_align = ~((u64)128 * 1024 - 1); 1108 struct page **pages = NULL; 1109 1110 if (extent_thresh == 0) 1111 extent_thresh = 256 * 1024; 1112 1113 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1114 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1115 return -EINVAL; 1116 if (range->compress_type) 1117 compress_type = range->compress_type; 1118 } 1119 1120 if (isize == 0) 1121 return 0; 1122 1123 /* 1124 * if we were not given a file, allocate a readahead 1125 * context 1126 */ 1127 if (!file) { 1128 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1129 if (!ra) 1130 return -ENOMEM; 1131 file_ra_state_init(ra, inode->i_mapping); 1132 } else { 1133 ra = &file->f_ra; 1134 } 1135 1136 pages = kmalloc(sizeof(struct page *) * max_cluster, 1137 GFP_NOFS); 1138 if (!pages) { 1139 ret = -ENOMEM; 1140 goto out_ra; 1141 } 1142 1143 /* find the last page to defrag */ 1144 if (range->start + range->len > range->start) { 1145 last_index = min_t(u64, isize - 1, 1146 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1147 } else { 1148 last_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1149 } 1150 1151 if (newer_than) { 1152 ret = find_new_extents(root, inode, newer_than, 1153 &newer_off, 64 * 1024); 1154 if (!ret) { 1155 range->start = newer_off; 1156 /* 1157 * we always align our defrag to help keep 1158 * the extents in the file evenly spaced 1159 */ 1160 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1161 } else 1162 goto out_ra; 1163 } else { 1164 i = range->start >> PAGE_CACHE_SHIFT; 1165 } 1166 if (!max_to_defrag) 1167 max_to_defrag = last_index + 1; 1168 1169 /* 1170 * make writeback starts from i, so the defrag range can be 1171 * written sequentially. 1172 */ 1173 if (i < inode->i_mapping->writeback_index) 1174 inode->i_mapping->writeback_index = i; 1175 1176 while (i <= last_index && defrag_count < max_to_defrag && 1177 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> 1178 PAGE_CACHE_SHIFT)) { 1179 /* 1180 * make sure we stop running if someone unmounts 1181 * the FS 1182 */ 1183 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1184 break; 1185 1186 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1187 extent_thresh, &last_len, &skip, 1188 &defrag_end, range->flags & 1189 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1190 unsigned long next; 1191 /* 1192 * the should_defrag function tells us how much to skip 1193 * bump our counter by the suggested amount 1194 */ 1195 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1196 i = max(i + 1, next); 1197 continue; 1198 } 1199 1200 if (!newer_than) { 1201 cluster = (PAGE_CACHE_ALIGN(defrag_end) >> 1202 PAGE_CACHE_SHIFT) - i; 1203 cluster = min(cluster, max_cluster); 1204 } else { 1205 cluster = max_cluster; 1206 } 1207 1208 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1209 BTRFS_I(inode)->force_compress = compress_type; 1210 1211 if (i + cluster > ra_index) { 1212 ra_index = max(i, ra_index); 1213 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1214 cluster); 1215 ra_index += max_cluster; 1216 } 1217 1218 mutex_lock(&inode->i_mutex); 1219 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1220 if (ret < 0) { 1221 mutex_unlock(&inode->i_mutex); 1222 goto out_ra; 1223 } 1224 1225 defrag_count += ret; 1226 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret); 1227 mutex_unlock(&inode->i_mutex); 1228 1229 if (newer_than) { 1230 if (newer_off == (u64)-1) 1231 break; 1232 1233 if (ret > 0) 1234 i += ret; 1235 1236 newer_off = max(newer_off + 1, 1237 (u64)i << PAGE_CACHE_SHIFT); 1238 1239 ret = find_new_extents(root, inode, 1240 newer_than, &newer_off, 1241 64 * 1024); 1242 if (!ret) { 1243 range->start = newer_off; 1244 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1245 } else { 1246 break; 1247 } 1248 } else { 1249 if (ret > 0) { 1250 i += ret; 1251 last_len += ret << PAGE_CACHE_SHIFT; 1252 } else { 1253 i++; 1254 last_len = 0; 1255 } 1256 } 1257 } 1258 1259 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) 1260 filemap_flush(inode->i_mapping); 1261 1262 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1263 /* the filemap_flush will queue IO into the worker threads, but 1264 * we have to make sure the IO is actually started and that 1265 * ordered extents get created before we return 1266 */ 1267 atomic_inc(&root->fs_info->async_submit_draining); 1268 while (atomic_read(&root->fs_info->nr_async_submits) || 1269 atomic_read(&root->fs_info->async_delalloc_pages)) { 1270 wait_event(root->fs_info->async_submit_wait, 1271 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1272 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1273 } 1274 atomic_dec(&root->fs_info->async_submit_draining); 1275 1276 mutex_lock(&inode->i_mutex); 1277 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1278 mutex_unlock(&inode->i_mutex); 1279 } 1280 1281 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1282 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1283 } 1284 1285 ret = defrag_count; 1286 1287 out_ra: 1288 if (!file) 1289 kfree(ra); 1290 kfree(pages); 1291 return ret; 1292 } 1293 1294 static noinline int btrfs_ioctl_resize(struct btrfs_root *root, 1295 void __user *arg) 1296 { 1297 u64 new_size; 1298 u64 old_size; 1299 u64 devid = 1; 1300 struct btrfs_ioctl_vol_args *vol_args; 1301 struct btrfs_trans_handle *trans; 1302 struct btrfs_device *device = NULL; 1303 char *sizestr; 1304 char *devstr = NULL; 1305 int ret = 0; 1306 int mod = 0; 1307 1308 if (root->fs_info->sb->s_flags & MS_RDONLY) 1309 return -EROFS; 1310 1311 if (!capable(CAP_SYS_ADMIN)) 1312 return -EPERM; 1313 1314 mutex_lock(&root->fs_info->volume_mutex); 1315 if (root->fs_info->balance_ctl) { 1316 printk(KERN_INFO "btrfs: balance in progress\n"); 1317 ret = -EINVAL; 1318 goto out; 1319 } 1320 1321 vol_args = memdup_user(arg, sizeof(*vol_args)); 1322 if (IS_ERR(vol_args)) { 1323 ret = PTR_ERR(vol_args); 1324 goto out; 1325 } 1326 1327 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1328 1329 sizestr = vol_args->name; 1330 devstr = strchr(sizestr, ':'); 1331 if (devstr) { 1332 char *end; 1333 sizestr = devstr + 1; 1334 *devstr = '\0'; 1335 devstr = vol_args->name; 1336 devid = simple_strtoull(devstr, &end, 10); 1337 printk(KERN_INFO "btrfs: resizing devid %llu\n", 1338 (unsigned long long)devid); 1339 } 1340 device = btrfs_find_device(root, devid, NULL, NULL); 1341 if (!device) { 1342 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n", 1343 (unsigned long long)devid); 1344 ret = -EINVAL; 1345 goto out_free; 1346 } 1347 if (device->fs_devices && device->fs_devices->seeding) { 1348 printk(KERN_INFO "btrfs: resizer unable to apply on " 1349 "seeding device %llu\n", 1350 (unsigned long long)devid); 1351 ret = -EINVAL; 1352 goto out_free; 1353 } 1354 1355 if (!strcmp(sizestr, "max")) 1356 new_size = device->bdev->bd_inode->i_size; 1357 else { 1358 if (sizestr[0] == '-') { 1359 mod = -1; 1360 sizestr++; 1361 } else if (sizestr[0] == '+') { 1362 mod = 1; 1363 sizestr++; 1364 } 1365 new_size = memparse(sizestr, NULL); 1366 if (new_size == 0) { 1367 ret = -EINVAL; 1368 goto out_free; 1369 } 1370 } 1371 1372 old_size = device->total_bytes; 1373 1374 if (mod < 0) { 1375 if (new_size > old_size) { 1376 ret = -EINVAL; 1377 goto out_free; 1378 } 1379 new_size = old_size - new_size; 1380 } else if (mod > 0) { 1381 new_size = old_size + new_size; 1382 } 1383 1384 if (new_size < 256 * 1024 * 1024) { 1385 ret = -EINVAL; 1386 goto out_free; 1387 } 1388 if (new_size > device->bdev->bd_inode->i_size) { 1389 ret = -EFBIG; 1390 goto out_free; 1391 } 1392 1393 do_div(new_size, root->sectorsize); 1394 new_size *= root->sectorsize; 1395 1396 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n", 1397 rcu_str_deref(device->name), 1398 (unsigned long long)new_size); 1399 1400 if (new_size > old_size) { 1401 trans = btrfs_start_transaction(root, 0); 1402 if (IS_ERR(trans)) { 1403 ret = PTR_ERR(trans); 1404 goto out_free; 1405 } 1406 ret = btrfs_grow_device(trans, device, new_size); 1407 btrfs_commit_transaction(trans, root); 1408 } else if (new_size < old_size) { 1409 ret = btrfs_shrink_device(device, new_size); 1410 } 1411 1412 out_free: 1413 kfree(vol_args); 1414 out: 1415 mutex_unlock(&root->fs_info->volume_mutex); 1416 return ret; 1417 } 1418 1419 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1420 char *name, unsigned long fd, int subvol, 1421 u64 *transid, bool readonly, 1422 struct btrfs_qgroup_inherit **inherit) 1423 { 1424 int namelen; 1425 int ret = 0; 1426 1427 ret = mnt_want_write_file(file); 1428 if (ret) 1429 goto out; 1430 1431 namelen = strlen(name); 1432 if (strchr(name, '/')) { 1433 ret = -EINVAL; 1434 goto out_drop_write; 1435 } 1436 1437 if (name[0] == '.' && 1438 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1439 ret = -EEXIST; 1440 goto out_drop_write; 1441 } 1442 1443 if (subvol) { 1444 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1445 NULL, transid, readonly, inherit); 1446 } else { 1447 struct fd src = fdget(fd); 1448 struct inode *src_inode; 1449 if (!src.file) { 1450 ret = -EINVAL; 1451 goto out_drop_write; 1452 } 1453 1454 src_inode = src.file->f_path.dentry->d_inode; 1455 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) { 1456 printk(KERN_INFO "btrfs: Snapshot src from " 1457 "another FS\n"); 1458 ret = -EINVAL; 1459 } else { 1460 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1461 BTRFS_I(src_inode)->root, 1462 transid, readonly, inherit); 1463 } 1464 fdput(src); 1465 } 1466 out_drop_write: 1467 mnt_drop_write_file(file); 1468 out: 1469 return ret; 1470 } 1471 1472 static noinline int btrfs_ioctl_snap_create(struct file *file, 1473 void __user *arg, int subvol) 1474 { 1475 struct btrfs_ioctl_vol_args *vol_args; 1476 int ret; 1477 1478 vol_args = memdup_user(arg, sizeof(*vol_args)); 1479 if (IS_ERR(vol_args)) 1480 return PTR_ERR(vol_args); 1481 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1482 1483 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1484 vol_args->fd, subvol, 1485 NULL, false, NULL); 1486 1487 kfree(vol_args); 1488 return ret; 1489 } 1490 1491 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1492 void __user *arg, int subvol) 1493 { 1494 struct btrfs_ioctl_vol_args_v2 *vol_args; 1495 int ret; 1496 u64 transid = 0; 1497 u64 *ptr = NULL; 1498 bool readonly = false; 1499 struct btrfs_qgroup_inherit *inherit = NULL; 1500 1501 vol_args = memdup_user(arg, sizeof(*vol_args)); 1502 if (IS_ERR(vol_args)) 1503 return PTR_ERR(vol_args); 1504 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1505 1506 if (vol_args->flags & 1507 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1508 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1509 ret = -EOPNOTSUPP; 1510 goto out; 1511 } 1512 1513 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1514 ptr = &transid; 1515 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1516 readonly = true; 1517 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1518 if (vol_args->size > PAGE_CACHE_SIZE) { 1519 ret = -EINVAL; 1520 goto out; 1521 } 1522 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1523 if (IS_ERR(inherit)) { 1524 ret = PTR_ERR(inherit); 1525 goto out; 1526 } 1527 } 1528 1529 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1530 vol_args->fd, subvol, ptr, 1531 readonly, &inherit); 1532 1533 if (ret == 0 && ptr && 1534 copy_to_user(arg + 1535 offsetof(struct btrfs_ioctl_vol_args_v2, 1536 transid), ptr, sizeof(*ptr))) 1537 ret = -EFAULT; 1538 out: 1539 kfree(vol_args); 1540 kfree(inherit); 1541 return ret; 1542 } 1543 1544 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1545 void __user *arg) 1546 { 1547 struct inode *inode = fdentry(file)->d_inode; 1548 struct btrfs_root *root = BTRFS_I(inode)->root; 1549 int ret = 0; 1550 u64 flags = 0; 1551 1552 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1553 return -EINVAL; 1554 1555 down_read(&root->fs_info->subvol_sem); 1556 if (btrfs_root_readonly(root)) 1557 flags |= BTRFS_SUBVOL_RDONLY; 1558 up_read(&root->fs_info->subvol_sem); 1559 1560 if (copy_to_user(arg, &flags, sizeof(flags))) 1561 ret = -EFAULT; 1562 1563 return ret; 1564 } 1565 1566 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1567 void __user *arg) 1568 { 1569 struct inode *inode = fdentry(file)->d_inode; 1570 struct btrfs_root *root = BTRFS_I(inode)->root; 1571 struct btrfs_trans_handle *trans; 1572 u64 root_flags; 1573 u64 flags; 1574 int ret = 0; 1575 1576 ret = mnt_want_write_file(file); 1577 if (ret) 1578 goto out; 1579 1580 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1581 ret = -EINVAL; 1582 goto out_drop_write; 1583 } 1584 1585 if (copy_from_user(&flags, arg, sizeof(flags))) { 1586 ret = -EFAULT; 1587 goto out_drop_write; 1588 } 1589 1590 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1591 ret = -EINVAL; 1592 goto out_drop_write; 1593 } 1594 1595 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1596 ret = -EOPNOTSUPP; 1597 goto out_drop_write; 1598 } 1599 1600 if (!inode_owner_or_capable(inode)) { 1601 ret = -EACCES; 1602 goto out_drop_write; 1603 } 1604 1605 down_write(&root->fs_info->subvol_sem); 1606 1607 /* nothing to do */ 1608 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1609 goto out_drop_sem; 1610 1611 root_flags = btrfs_root_flags(&root->root_item); 1612 if (flags & BTRFS_SUBVOL_RDONLY) 1613 btrfs_set_root_flags(&root->root_item, 1614 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1615 else 1616 btrfs_set_root_flags(&root->root_item, 1617 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1618 1619 trans = btrfs_start_transaction(root, 1); 1620 if (IS_ERR(trans)) { 1621 ret = PTR_ERR(trans); 1622 goto out_reset; 1623 } 1624 1625 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1626 &root->root_key, &root->root_item); 1627 1628 btrfs_commit_transaction(trans, root); 1629 out_reset: 1630 if (ret) 1631 btrfs_set_root_flags(&root->root_item, root_flags); 1632 out_drop_sem: 1633 up_write(&root->fs_info->subvol_sem); 1634 out_drop_write: 1635 mnt_drop_write_file(file); 1636 out: 1637 return ret; 1638 } 1639 1640 /* 1641 * helper to check if the subvolume references other subvolumes 1642 */ 1643 static noinline int may_destroy_subvol(struct btrfs_root *root) 1644 { 1645 struct btrfs_path *path; 1646 struct btrfs_key key; 1647 int ret; 1648 1649 path = btrfs_alloc_path(); 1650 if (!path) 1651 return -ENOMEM; 1652 1653 key.objectid = root->root_key.objectid; 1654 key.type = BTRFS_ROOT_REF_KEY; 1655 key.offset = (u64)-1; 1656 1657 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1658 &key, path, 0, 0); 1659 if (ret < 0) 1660 goto out; 1661 BUG_ON(ret == 0); 1662 1663 ret = 0; 1664 if (path->slots[0] > 0) { 1665 path->slots[0]--; 1666 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1667 if (key.objectid == root->root_key.objectid && 1668 key.type == BTRFS_ROOT_REF_KEY) 1669 ret = -ENOTEMPTY; 1670 } 1671 out: 1672 btrfs_free_path(path); 1673 return ret; 1674 } 1675 1676 static noinline int key_in_sk(struct btrfs_key *key, 1677 struct btrfs_ioctl_search_key *sk) 1678 { 1679 struct btrfs_key test; 1680 int ret; 1681 1682 test.objectid = sk->min_objectid; 1683 test.type = sk->min_type; 1684 test.offset = sk->min_offset; 1685 1686 ret = btrfs_comp_cpu_keys(key, &test); 1687 if (ret < 0) 1688 return 0; 1689 1690 test.objectid = sk->max_objectid; 1691 test.type = sk->max_type; 1692 test.offset = sk->max_offset; 1693 1694 ret = btrfs_comp_cpu_keys(key, &test); 1695 if (ret > 0) 1696 return 0; 1697 return 1; 1698 } 1699 1700 static noinline int copy_to_sk(struct btrfs_root *root, 1701 struct btrfs_path *path, 1702 struct btrfs_key *key, 1703 struct btrfs_ioctl_search_key *sk, 1704 char *buf, 1705 unsigned long *sk_offset, 1706 int *num_found) 1707 { 1708 u64 found_transid; 1709 struct extent_buffer *leaf; 1710 struct btrfs_ioctl_search_header sh; 1711 unsigned long item_off; 1712 unsigned long item_len; 1713 int nritems; 1714 int i; 1715 int slot; 1716 int ret = 0; 1717 1718 leaf = path->nodes[0]; 1719 slot = path->slots[0]; 1720 nritems = btrfs_header_nritems(leaf); 1721 1722 if (btrfs_header_generation(leaf) > sk->max_transid) { 1723 i = nritems; 1724 goto advance_key; 1725 } 1726 found_transid = btrfs_header_generation(leaf); 1727 1728 for (i = slot; i < nritems; i++) { 1729 item_off = btrfs_item_ptr_offset(leaf, i); 1730 item_len = btrfs_item_size_nr(leaf, i); 1731 1732 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE) 1733 item_len = 0; 1734 1735 if (sizeof(sh) + item_len + *sk_offset > 1736 BTRFS_SEARCH_ARGS_BUFSIZE) { 1737 ret = 1; 1738 goto overflow; 1739 } 1740 1741 btrfs_item_key_to_cpu(leaf, key, i); 1742 if (!key_in_sk(key, sk)) 1743 continue; 1744 1745 sh.objectid = key->objectid; 1746 sh.offset = key->offset; 1747 sh.type = key->type; 1748 sh.len = item_len; 1749 sh.transid = found_transid; 1750 1751 /* copy search result header */ 1752 memcpy(buf + *sk_offset, &sh, sizeof(sh)); 1753 *sk_offset += sizeof(sh); 1754 1755 if (item_len) { 1756 char *p = buf + *sk_offset; 1757 /* copy the item */ 1758 read_extent_buffer(leaf, p, 1759 item_off, item_len); 1760 *sk_offset += item_len; 1761 } 1762 (*num_found)++; 1763 1764 if (*num_found >= sk->nr_items) 1765 break; 1766 } 1767 advance_key: 1768 ret = 0; 1769 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 1770 key->offset++; 1771 else if (key->type < (u8)-1 && key->type < sk->max_type) { 1772 key->offset = 0; 1773 key->type++; 1774 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 1775 key->offset = 0; 1776 key->type = 0; 1777 key->objectid++; 1778 } else 1779 ret = 1; 1780 overflow: 1781 return ret; 1782 } 1783 1784 static noinline int search_ioctl(struct inode *inode, 1785 struct btrfs_ioctl_search_args *args) 1786 { 1787 struct btrfs_root *root; 1788 struct btrfs_key key; 1789 struct btrfs_key max_key; 1790 struct btrfs_path *path; 1791 struct btrfs_ioctl_search_key *sk = &args->key; 1792 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 1793 int ret; 1794 int num_found = 0; 1795 unsigned long sk_offset = 0; 1796 1797 path = btrfs_alloc_path(); 1798 if (!path) 1799 return -ENOMEM; 1800 1801 if (sk->tree_id == 0) { 1802 /* search the root of the inode that was passed */ 1803 root = BTRFS_I(inode)->root; 1804 } else { 1805 key.objectid = sk->tree_id; 1806 key.type = BTRFS_ROOT_ITEM_KEY; 1807 key.offset = (u64)-1; 1808 root = btrfs_read_fs_root_no_name(info, &key); 1809 if (IS_ERR(root)) { 1810 printk(KERN_ERR "could not find root %llu\n", 1811 sk->tree_id); 1812 btrfs_free_path(path); 1813 return -ENOENT; 1814 } 1815 } 1816 1817 key.objectid = sk->min_objectid; 1818 key.type = sk->min_type; 1819 key.offset = sk->min_offset; 1820 1821 max_key.objectid = sk->max_objectid; 1822 max_key.type = sk->max_type; 1823 max_key.offset = sk->max_offset; 1824 1825 path->keep_locks = 1; 1826 1827 while(1) { 1828 ret = btrfs_search_forward(root, &key, &max_key, path, 0, 1829 sk->min_transid); 1830 if (ret != 0) { 1831 if (ret > 0) 1832 ret = 0; 1833 goto err; 1834 } 1835 ret = copy_to_sk(root, path, &key, sk, args->buf, 1836 &sk_offset, &num_found); 1837 btrfs_release_path(path); 1838 if (ret || num_found >= sk->nr_items) 1839 break; 1840 1841 } 1842 ret = 0; 1843 err: 1844 sk->nr_items = num_found; 1845 btrfs_free_path(path); 1846 return ret; 1847 } 1848 1849 static noinline int btrfs_ioctl_tree_search(struct file *file, 1850 void __user *argp) 1851 { 1852 struct btrfs_ioctl_search_args *args; 1853 struct inode *inode; 1854 int ret; 1855 1856 if (!capable(CAP_SYS_ADMIN)) 1857 return -EPERM; 1858 1859 args = memdup_user(argp, sizeof(*args)); 1860 if (IS_ERR(args)) 1861 return PTR_ERR(args); 1862 1863 inode = fdentry(file)->d_inode; 1864 ret = search_ioctl(inode, args); 1865 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1866 ret = -EFAULT; 1867 kfree(args); 1868 return ret; 1869 } 1870 1871 /* 1872 * Search INODE_REFs to identify path name of 'dirid' directory 1873 * in a 'tree_id' tree. and sets path name to 'name'. 1874 */ 1875 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1876 u64 tree_id, u64 dirid, char *name) 1877 { 1878 struct btrfs_root *root; 1879 struct btrfs_key key; 1880 char *ptr; 1881 int ret = -1; 1882 int slot; 1883 int len; 1884 int total_len = 0; 1885 struct btrfs_inode_ref *iref; 1886 struct extent_buffer *l; 1887 struct btrfs_path *path; 1888 1889 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1890 name[0]='\0'; 1891 return 0; 1892 } 1893 1894 path = btrfs_alloc_path(); 1895 if (!path) 1896 return -ENOMEM; 1897 1898 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 1899 1900 key.objectid = tree_id; 1901 key.type = BTRFS_ROOT_ITEM_KEY; 1902 key.offset = (u64)-1; 1903 root = btrfs_read_fs_root_no_name(info, &key); 1904 if (IS_ERR(root)) { 1905 printk(KERN_ERR "could not find root %llu\n", tree_id); 1906 ret = -ENOENT; 1907 goto out; 1908 } 1909 1910 key.objectid = dirid; 1911 key.type = BTRFS_INODE_REF_KEY; 1912 key.offset = (u64)-1; 1913 1914 while(1) { 1915 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1916 if (ret < 0) 1917 goto out; 1918 1919 l = path->nodes[0]; 1920 slot = path->slots[0]; 1921 if (ret > 0 && slot > 0) 1922 slot--; 1923 btrfs_item_key_to_cpu(l, &key, slot); 1924 1925 if (ret > 0 && (key.objectid != dirid || 1926 key.type != BTRFS_INODE_REF_KEY)) { 1927 ret = -ENOENT; 1928 goto out; 1929 } 1930 1931 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1932 len = btrfs_inode_ref_name_len(l, iref); 1933 ptr -= len + 1; 1934 total_len += len + 1; 1935 if (ptr < name) 1936 goto out; 1937 1938 *(ptr + len) = '/'; 1939 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len); 1940 1941 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1942 break; 1943 1944 btrfs_release_path(path); 1945 key.objectid = key.offset; 1946 key.offset = (u64)-1; 1947 dirid = key.objectid; 1948 } 1949 if (ptr < name) 1950 goto out; 1951 memmove(name, ptr, total_len); 1952 name[total_len]='\0'; 1953 ret = 0; 1954 out: 1955 btrfs_free_path(path); 1956 return ret; 1957 } 1958 1959 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 1960 void __user *argp) 1961 { 1962 struct btrfs_ioctl_ino_lookup_args *args; 1963 struct inode *inode; 1964 int ret; 1965 1966 if (!capable(CAP_SYS_ADMIN)) 1967 return -EPERM; 1968 1969 args = memdup_user(argp, sizeof(*args)); 1970 if (IS_ERR(args)) 1971 return PTR_ERR(args); 1972 1973 inode = fdentry(file)->d_inode; 1974 1975 if (args->treeid == 0) 1976 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 1977 1978 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 1979 args->treeid, args->objectid, 1980 args->name); 1981 1982 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1983 ret = -EFAULT; 1984 1985 kfree(args); 1986 return ret; 1987 } 1988 1989 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 1990 void __user *arg) 1991 { 1992 struct dentry *parent = fdentry(file); 1993 struct dentry *dentry; 1994 struct inode *dir = parent->d_inode; 1995 struct inode *inode; 1996 struct btrfs_root *root = BTRFS_I(dir)->root; 1997 struct btrfs_root *dest = NULL; 1998 struct btrfs_ioctl_vol_args *vol_args; 1999 struct btrfs_trans_handle *trans; 2000 int namelen; 2001 int ret; 2002 int err = 0; 2003 2004 vol_args = memdup_user(arg, sizeof(*vol_args)); 2005 if (IS_ERR(vol_args)) 2006 return PTR_ERR(vol_args); 2007 2008 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2009 namelen = strlen(vol_args->name); 2010 if (strchr(vol_args->name, '/') || 2011 strncmp(vol_args->name, "..", namelen) == 0) { 2012 err = -EINVAL; 2013 goto out; 2014 } 2015 2016 err = mnt_want_write_file(file); 2017 if (err) 2018 goto out; 2019 2020 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 2021 dentry = lookup_one_len(vol_args->name, parent, namelen); 2022 if (IS_ERR(dentry)) { 2023 err = PTR_ERR(dentry); 2024 goto out_unlock_dir; 2025 } 2026 2027 if (!dentry->d_inode) { 2028 err = -ENOENT; 2029 goto out_dput; 2030 } 2031 2032 inode = dentry->d_inode; 2033 dest = BTRFS_I(inode)->root; 2034 if (!capable(CAP_SYS_ADMIN)){ 2035 /* 2036 * Regular user. Only allow this with a special mount 2037 * option, when the user has write+exec access to the 2038 * subvol root, and when rmdir(2) would have been 2039 * allowed. 2040 * 2041 * Note that this is _not_ check that the subvol is 2042 * empty or doesn't contain data that we wouldn't 2043 * otherwise be able to delete. 2044 * 2045 * Users who want to delete empty subvols should try 2046 * rmdir(2). 2047 */ 2048 err = -EPERM; 2049 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2050 goto out_dput; 2051 2052 /* 2053 * Do not allow deletion if the parent dir is the same 2054 * as the dir to be deleted. That means the ioctl 2055 * must be called on the dentry referencing the root 2056 * of the subvol, not a random directory contained 2057 * within it. 2058 */ 2059 err = -EINVAL; 2060 if (root == dest) 2061 goto out_dput; 2062 2063 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2064 if (err) 2065 goto out_dput; 2066 2067 /* check if subvolume may be deleted by a non-root user */ 2068 err = btrfs_may_delete(dir, dentry, 1); 2069 if (err) 2070 goto out_dput; 2071 } 2072 2073 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2074 err = -EINVAL; 2075 goto out_dput; 2076 } 2077 2078 mutex_lock(&inode->i_mutex); 2079 err = d_invalidate(dentry); 2080 if (err) 2081 goto out_unlock; 2082 2083 down_write(&root->fs_info->subvol_sem); 2084 2085 err = may_destroy_subvol(dest); 2086 if (err) 2087 goto out_up_write; 2088 2089 trans = btrfs_start_transaction(root, 0); 2090 if (IS_ERR(trans)) { 2091 err = PTR_ERR(trans); 2092 goto out_up_write; 2093 } 2094 trans->block_rsv = &root->fs_info->global_block_rsv; 2095 2096 ret = btrfs_unlink_subvol(trans, root, dir, 2097 dest->root_key.objectid, 2098 dentry->d_name.name, 2099 dentry->d_name.len); 2100 if (ret) { 2101 err = ret; 2102 btrfs_abort_transaction(trans, root, ret); 2103 goto out_end_trans; 2104 } 2105 2106 btrfs_record_root_in_trans(trans, dest); 2107 2108 memset(&dest->root_item.drop_progress, 0, 2109 sizeof(dest->root_item.drop_progress)); 2110 dest->root_item.drop_level = 0; 2111 btrfs_set_root_refs(&dest->root_item, 0); 2112 2113 if (!xchg(&dest->orphan_item_inserted, 1)) { 2114 ret = btrfs_insert_orphan_item(trans, 2115 root->fs_info->tree_root, 2116 dest->root_key.objectid); 2117 if (ret) { 2118 btrfs_abort_transaction(trans, root, ret); 2119 err = ret; 2120 goto out_end_trans; 2121 } 2122 } 2123 out_end_trans: 2124 ret = btrfs_end_transaction(trans, root); 2125 if (ret && !err) 2126 err = ret; 2127 inode->i_flags |= S_DEAD; 2128 out_up_write: 2129 up_write(&root->fs_info->subvol_sem); 2130 out_unlock: 2131 mutex_unlock(&inode->i_mutex); 2132 if (!err) { 2133 shrink_dcache_sb(root->fs_info->sb); 2134 btrfs_invalidate_inodes(dest); 2135 d_delete(dentry); 2136 } 2137 out_dput: 2138 dput(dentry); 2139 out_unlock_dir: 2140 mutex_unlock(&dir->i_mutex); 2141 mnt_drop_write_file(file); 2142 out: 2143 kfree(vol_args); 2144 return err; 2145 } 2146 2147 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2148 { 2149 struct inode *inode = fdentry(file)->d_inode; 2150 struct btrfs_root *root = BTRFS_I(inode)->root; 2151 struct btrfs_ioctl_defrag_range_args *range; 2152 int ret; 2153 2154 if (btrfs_root_readonly(root)) 2155 return -EROFS; 2156 2157 ret = mnt_want_write_file(file); 2158 if (ret) 2159 return ret; 2160 2161 switch (inode->i_mode & S_IFMT) { 2162 case S_IFDIR: 2163 if (!capable(CAP_SYS_ADMIN)) { 2164 ret = -EPERM; 2165 goto out; 2166 } 2167 ret = btrfs_defrag_root(root, 0); 2168 if (ret) 2169 goto out; 2170 ret = btrfs_defrag_root(root->fs_info->extent_root, 0); 2171 break; 2172 case S_IFREG: 2173 if (!(file->f_mode & FMODE_WRITE)) { 2174 ret = -EINVAL; 2175 goto out; 2176 } 2177 2178 range = kzalloc(sizeof(*range), GFP_KERNEL); 2179 if (!range) { 2180 ret = -ENOMEM; 2181 goto out; 2182 } 2183 2184 if (argp) { 2185 if (copy_from_user(range, argp, 2186 sizeof(*range))) { 2187 ret = -EFAULT; 2188 kfree(range); 2189 goto out; 2190 } 2191 /* compression requires us to start the IO */ 2192 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2193 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2194 range->extent_thresh = (u32)-1; 2195 } 2196 } else { 2197 /* the rest are all set to zero by kzalloc */ 2198 range->len = (u64)-1; 2199 } 2200 ret = btrfs_defrag_file(fdentry(file)->d_inode, file, 2201 range, 0, 0); 2202 if (ret > 0) 2203 ret = 0; 2204 kfree(range); 2205 break; 2206 default: 2207 ret = -EINVAL; 2208 } 2209 out: 2210 mnt_drop_write_file(file); 2211 return ret; 2212 } 2213 2214 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2215 { 2216 struct btrfs_ioctl_vol_args *vol_args; 2217 int ret; 2218 2219 if (!capable(CAP_SYS_ADMIN)) 2220 return -EPERM; 2221 2222 mutex_lock(&root->fs_info->volume_mutex); 2223 if (root->fs_info->balance_ctl) { 2224 printk(KERN_INFO "btrfs: balance in progress\n"); 2225 ret = -EINVAL; 2226 goto out; 2227 } 2228 2229 vol_args = memdup_user(arg, sizeof(*vol_args)); 2230 if (IS_ERR(vol_args)) { 2231 ret = PTR_ERR(vol_args); 2232 goto out; 2233 } 2234 2235 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2236 ret = btrfs_init_new_device(root, vol_args->name); 2237 2238 kfree(vol_args); 2239 out: 2240 mutex_unlock(&root->fs_info->volume_mutex); 2241 return ret; 2242 } 2243 2244 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg) 2245 { 2246 struct btrfs_ioctl_vol_args *vol_args; 2247 int ret; 2248 2249 if (!capable(CAP_SYS_ADMIN)) 2250 return -EPERM; 2251 2252 if (root->fs_info->sb->s_flags & MS_RDONLY) 2253 return -EROFS; 2254 2255 mutex_lock(&root->fs_info->volume_mutex); 2256 if (root->fs_info->balance_ctl) { 2257 printk(KERN_INFO "btrfs: balance in progress\n"); 2258 ret = -EINVAL; 2259 goto out; 2260 } 2261 2262 vol_args = memdup_user(arg, sizeof(*vol_args)); 2263 if (IS_ERR(vol_args)) { 2264 ret = PTR_ERR(vol_args); 2265 goto out; 2266 } 2267 2268 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2269 ret = btrfs_rm_device(root, vol_args->name); 2270 2271 kfree(vol_args); 2272 out: 2273 mutex_unlock(&root->fs_info->volume_mutex); 2274 return ret; 2275 } 2276 2277 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2278 { 2279 struct btrfs_ioctl_fs_info_args *fi_args; 2280 struct btrfs_device *device; 2281 struct btrfs_device *next; 2282 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2283 int ret = 0; 2284 2285 if (!capable(CAP_SYS_ADMIN)) 2286 return -EPERM; 2287 2288 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2289 if (!fi_args) 2290 return -ENOMEM; 2291 2292 fi_args->num_devices = fs_devices->num_devices; 2293 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2294 2295 mutex_lock(&fs_devices->device_list_mutex); 2296 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2297 if (device->devid > fi_args->max_id) 2298 fi_args->max_id = device->devid; 2299 } 2300 mutex_unlock(&fs_devices->device_list_mutex); 2301 2302 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2303 ret = -EFAULT; 2304 2305 kfree(fi_args); 2306 return ret; 2307 } 2308 2309 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2310 { 2311 struct btrfs_ioctl_dev_info_args *di_args; 2312 struct btrfs_device *dev; 2313 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2314 int ret = 0; 2315 char *s_uuid = NULL; 2316 char empty_uuid[BTRFS_UUID_SIZE] = {0}; 2317 2318 if (!capable(CAP_SYS_ADMIN)) 2319 return -EPERM; 2320 2321 di_args = memdup_user(arg, sizeof(*di_args)); 2322 if (IS_ERR(di_args)) 2323 return PTR_ERR(di_args); 2324 2325 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0) 2326 s_uuid = di_args->uuid; 2327 2328 mutex_lock(&fs_devices->device_list_mutex); 2329 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL); 2330 mutex_unlock(&fs_devices->device_list_mutex); 2331 2332 if (!dev) { 2333 ret = -ENODEV; 2334 goto out; 2335 } 2336 2337 di_args->devid = dev->devid; 2338 di_args->bytes_used = dev->bytes_used; 2339 di_args->total_bytes = dev->total_bytes; 2340 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2341 if (dev->name) { 2342 struct rcu_string *name; 2343 2344 rcu_read_lock(); 2345 name = rcu_dereference(dev->name); 2346 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2347 rcu_read_unlock(); 2348 di_args->path[sizeof(di_args->path) - 1] = 0; 2349 } else { 2350 di_args->path[0] = '\0'; 2351 } 2352 2353 out: 2354 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2355 ret = -EFAULT; 2356 2357 kfree(di_args); 2358 return ret; 2359 } 2360 2361 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 2362 u64 off, u64 olen, u64 destoff) 2363 { 2364 struct inode *inode = fdentry(file)->d_inode; 2365 struct btrfs_root *root = BTRFS_I(inode)->root; 2366 struct fd src_file; 2367 struct inode *src; 2368 struct btrfs_trans_handle *trans; 2369 struct btrfs_path *path; 2370 struct extent_buffer *leaf; 2371 char *buf; 2372 struct btrfs_key key; 2373 u32 nritems; 2374 int slot; 2375 int ret; 2376 u64 len = olen; 2377 u64 bs = root->fs_info->sb->s_blocksize; 2378 2379 /* 2380 * TODO: 2381 * - split compressed inline extents. annoying: we need to 2382 * decompress into destination's address_space (the file offset 2383 * may change, so source mapping won't do), then recompress (or 2384 * otherwise reinsert) a subrange. 2385 * - allow ranges within the same file to be cloned (provided 2386 * they don't overlap)? 2387 */ 2388 2389 /* the destination must be opened for writing */ 2390 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 2391 return -EINVAL; 2392 2393 if (btrfs_root_readonly(root)) 2394 return -EROFS; 2395 2396 ret = mnt_want_write_file(file); 2397 if (ret) 2398 return ret; 2399 2400 src_file = fdget(srcfd); 2401 if (!src_file.file) { 2402 ret = -EBADF; 2403 goto out_drop_write; 2404 } 2405 2406 ret = -EXDEV; 2407 if (src_file.file->f_path.mnt != file->f_path.mnt) 2408 goto out_fput; 2409 2410 src = src_file.file->f_dentry->d_inode; 2411 2412 ret = -EINVAL; 2413 if (src == inode) 2414 goto out_fput; 2415 2416 /* the src must be open for reading */ 2417 if (!(src_file.file->f_mode & FMODE_READ)) 2418 goto out_fput; 2419 2420 /* don't make the dst file partly checksummed */ 2421 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 2422 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 2423 goto out_fput; 2424 2425 ret = -EISDIR; 2426 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 2427 goto out_fput; 2428 2429 ret = -EXDEV; 2430 if (src->i_sb != inode->i_sb) 2431 goto out_fput; 2432 2433 ret = -ENOMEM; 2434 buf = vmalloc(btrfs_level_size(root, 0)); 2435 if (!buf) 2436 goto out_fput; 2437 2438 path = btrfs_alloc_path(); 2439 if (!path) { 2440 vfree(buf); 2441 goto out_fput; 2442 } 2443 path->reada = 2; 2444 2445 if (inode < src) { 2446 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 2447 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 2448 } else { 2449 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 2450 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 2451 } 2452 2453 /* determine range to clone */ 2454 ret = -EINVAL; 2455 if (off + len > src->i_size || off + len < off) 2456 goto out_unlock; 2457 if (len == 0) 2458 olen = len = src->i_size - off; 2459 /* if we extend to eof, continue to block boundary */ 2460 if (off + len == src->i_size) 2461 len = ALIGN(src->i_size, bs) - off; 2462 2463 /* verify the end result is block aligned */ 2464 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 2465 !IS_ALIGNED(destoff, bs)) 2466 goto out_unlock; 2467 2468 if (destoff > inode->i_size) { 2469 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 2470 if (ret) 2471 goto out_unlock; 2472 } 2473 2474 /* truncate page cache pages from target inode range */ 2475 truncate_inode_pages_range(&inode->i_data, destoff, 2476 PAGE_CACHE_ALIGN(destoff + len) - 1); 2477 2478 /* do any pending delalloc/csum calc on src, one way or 2479 another, and lock file content */ 2480 while (1) { 2481 struct btrfs_ordered_extent *ordered; 2482 lock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 2483 ordered = btrfs_lookup_first_ordered_extent(src, off + len - 1); 2484 if (!ordered && 2485 !test_range_bit(&BTRFS_I(src)->io_tree, off, off + len - 1, 2486 EXTENT_DELALLOC, 0, NULL)) 2487 break; 2488 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 2489 if (ordered) 2490 btrfs_put_ordered_extent(ordered); 2491 btrfs_wait_ordered_range(src, off, len); 2492 } 2493 2494 /* clone data */ 2495 key.objectid = btrfs_ino(src); 2496 key.type = BTRFS_EXTENT_DATA_KEY; 2497 key.offset = 0; 2498 2499 while (1) { 2500 /* 2501 * note the key will change type as we walk through the 2502 * tree. 2503 */ 2504 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 2505 0, 0); 2506 if (ret < 0) 2507 goto out; 2508 2509 nritems = btrfs_header_nritems(path->nodes[0]); 2510 if (path->slots[0] >= nritems) { 2511 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 2512 if (ret < 0) 2513 goto out; 2514 if (ret > 0) 2515 break; 2516 nritems = btrfs_header_nritems(path->nodes[0]); 2517 } 2518 leaf = path->nodes[0]; 2519 slot = path->slots[0]; 2520 2521 btrfs_item_key_to_cpu(leaf, &key, slot); 2522 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || 2523 key.objectid != btrfs_ino(src)) 2524 break; 2525 2526 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { 2527 struct btrfs_file_extent_item *extent; 2528 int type; 2529 u32 size; 2530 struct btrfs_key new_key; 2531 u64 disko = 0, diskl = 0; 2532 u64 datao = 0, datal = 0; 2533 u8 comp; 2534 u64 endoff; 2535 2536 size = btrfs_item_size_nr(leaf, slot); 2537 read_extent_buffer(leaf, buf, 2538 btrfs_item_ptr_offset(leaf, slot), 2539 size); 2540 2541 extent = btrfs_item_ptr(leaf, slot, 2542 struct btrfs_file_extent_item); 2543 comp = btrfs_file_extent_compression(leaf, extent); 2544 type = btrfs_file_extent_type(leaf, extent); 2545 if (type == BTRFS_FILE_EXTENT_REG || 2546 type == BTRFS_FILE_EXTENT_PREALLOC) { 2547 disko = btrfs_file_extent_disk_bytenr(leaf, 2548 extent); 2549 diskl = btrfs_file_extent_disk_num_bytes(leaf, 2550 extent); 2551 datao = btrfs_file_extent_offset(leaf, extent); 2552 datal = btrfs_file_extent_num_bytes(leaf, 2553 extent); 2554 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2555 /* take upper bound, may be compressed */ 2556 datal = btrfs_file_extent_ram_bytes(leaf, 2557 extent); 2558 } 2559 btrfs_release_path(path); 2560 2561 if (key.offset + datal <= off || 2562 key.offset >= off + len - 1) 2563 goto next; 2564 2565 memcpy(&new_key, &key, sizeof(new_key)); 2566 new_key.objectid = btrfs_ino(inode); 2567 if (off <= key.offset) 2568 new_key.offset = key.offset + destoff - off; 2569 else 2570 new_key.offset = destoff; 2571 2572 /* 2573 * 1 - adjusting old extent (we may have to split it) 2574 * 1 - add new extent 2575 * 1 - inode update 2576 */ 2577 trans = btrfs_start_transaction(root, 3); 2578 if (IS_ERR(trans)) { 2579 ret = PTR_ERR(trans); 2580 goto out; 2581 } 2582 2583 if (type == BTRFS_FILE_EXTENT_REG || 2584 type == BTRFS_FILE_EXTENT_PREALLOC) { 2585 /* 2586 * a | --- range to clone ---| b 2587 * | ------------- extent ------------- | 2588 */ 2589 2590 /* substract range b */ 2591 if (key.offset + datal > off + len) 2592 datal = off + len - key.offset; 2593 2594 /* substract range a */ 2595 if (off > key.offset) { 2596 datao += off - key.offset; 2597 datal -= off - key.offset; 2598 } 2599 2600 ret = btrfs_drop_extents(trans, root, inode, 2601 new_key.offset, 2602 new_key.offset + datal, 2603 1); 2604 if (ret) { 2605 btrfs_abort_transaction(trans, root, 2606 ret); 2607 btrfs_end_transaction(trans, root); 2608 goto out; 2609 } 2610 2611 ret = btrfs_insert_empty_item(trans, root, path, 2612 &new_key, size); 2613 if (ret) { 2614 btrfs_abort_transaction(trans, root, 2615 ret); 2616 btrfs_end_transaction(trans, root); 2617 goto out; 2618 } 2619 2620 leaf = path->nodes[0]; 2621 slot = path->slots[0]; 2622 write_extent_buffer(leaf, buf, 2623 btrfs_item_ptr_offset(leaf, slot), 2624 size); 2625 2626 extent = btrfs_item_ptr(leaf, slot, 2627 struct btrfs_file_extent_item); 2628 2629 /* disko == 0 means it's a hole */ 2630 if (!disko) 2631 datao = 0; 2632 2633 btrfs_set_file_extent_offset(leaf, extent, 2634 datao); 2635 btrfs_set_file_extent_num_bytes(leaf, extent, 2636 datal); 2637 if (disko) { 2638 inode_add_bytes(inode, datal); 2639 ret = btrfs_inc_extent_ref(trans, root, 2640 disko, diskl, 0, 2641 root->root_key.objectid, 2642 btrfs_ino(inode), 2643 new_key.offset - datao, 2644 0); 2645 if (ret) { 2646 btrfs_abort_transaction(trans, 2647 root, 2648 ret); 2649 btrfs_end_transaction(trans, 2650 root); 2651 goto out; 2652 2653 } 2654 } 2655 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2656 u64 skip = 0; 2657 u64 trim = 0; 2658 if (off > key.offset) { 2659 skip = off - key.offset; 2660 new_key.offset += skip; 2661 } 2662 2663 if (key.offset + datal > off + len) 2664 trim = key.offset + datal - (off + len); 2665 2666 if (comp && (skip || trim)) { 2667 ret = -EINVAL; 2668 btrfs_end_transaction(trans, root); 2669 goto out; 2670 } 2671 size -= skip + trim; 2672 datal -= skip + trim; 2673 2674 ret = btrfs_drop_extents(trans, root, inode, 2675 new_key.offset, 2676 new_key.offset + datal, 2677 1); 2678 if (ret) { 2679 btrfs_abort_transaction(trans, root, 2680 ret); 2681 btrfs_end_transaction(trans, root); 2682 goto out; 2683 } 2684 2685 ret = btrfs_insert_empty_item(trans, root, path, 2686 &new_key, size); 2687 if (ret) { 2688 btrfs_abort_transaction(trans, root, 2689 ret); 2690 btrfs_end_transaction(trans, root); 2691 goto out; 2692 } 2693 2694 if (skip) { 2695 u32 start = 2696 btrfs_file_extent_calc_inline_size(0); 2697 memmove(buf+start, buf+start+skip, 2698 datal); 2699 } 2700 2701 leaf = path->nodes[0]; 2702 slot = path->slots[0]; 2703 write_extent_buffer(leaf, buf, 2704 btrfs_item_ptr_offset(leaf, slot), 2705 size); 2706 inode_add_bytes(inode, datal); 2707 } 2708 2709 btrfs_mark_buffer_dirty(leaf); 2710 btrfs_release_path(path); 2711 2712 inode_inc_iversion(inode); 2713 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2714 2715 /* 2716 * we round up to the block size at eof when 2717 * determining which extents to clone above, 2718 * but shouldn't round up the file size 2719 */ 2720 endoff = new_key.offset + datal; 2721 if (endoff > destoff+olen) 2722 endoff = destoff+olen; 2723 if (endoff > inode->i_size) 2724 btrfs_i_size_write(inode, endoff); 2725 2726 ret = btrfs_update_inode(trans, root, inode); 2727 if (ret) { 2728 btrfs_abort_transaction(trans, root, ret); 2729 btrfs_end_transaction(trans, root); 2730 goto out; 2731 } 2732 ret = btrfs_end_transaction(trans, root); 2733 } 2734 next: 2735 btrfs_release_path(path); 2736 key.offset++; 2737 } 2738 ret = 0; 2739 out: 2740 btrfs_release_path(path); 2741 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 2742 out_unlock: 2743 mutex_unlock(&src->i_mutex); 2744 mutex_unlock(&inode->i_mutex); 2745 vfree(buf); 2746 btrfs_free_path(path); 2747 out_fput: 2748 fdput(src_file); 2749 out_drop_write: 2750 mnt_drop_write_file(file); 2751 return ret; 2752 } 2753 2754 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 2755 { 2756 struct btrfs_ioctl_clone_range_args args; 2757 2758 if (copy_from_user(&args, argp, sizeof(args))) 2759 return -EFAULT; 2760 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 2761 args.src_length, args.dest_offset); 2762 } 2763 2764 /* 2765 * there are many ways the trans_start and trans_end ioctls can lead 2766 * to deadlocks. They should only be used by applications that 2767 * basically own the machine, and have a very in depth understanding 2768 * of all the possible deadlocks and enospc problems. 2769 */ 2770 static long btrfs_ioctl_trans_start(struct file *file) 2771 { 2772 struct inode *inode = fdentry(file)->d_inode; 2773 struct btrfs_root *root = BTRFS_I(inode)->root; 2774 struct btrfs_trans_handle *trans; 2775 int ret; 2776 2777 ret = -EPERM; 2778 if (!capable(CAP_SYS_ADMIN)) 2779 goto out; 2780 2781 ret = -EINPROGRESS; 2782 if (file->private_data) 2783 goto out; 2784 2785 ret = -EROFS; 2786 if (btrfs_root_readonly(root)) 2787 goto out; 2788 2789 ret = mnt_want_write_file(file); 2790 if (ret) 2791 goto out; 2792 2793 atomic_inc(&root->fs_info->open_ioctl_trans); 2794 2795 ret = -ENOMEM; 2796 trans = btrfs_start_ioctl_transaction(root); 2797 if (IS_ERR(trans)) 2798 goto out_drop; 2799 2800 file->private_data = trans; 2801 return 0; 2802 2803 out_drop: 2804 atomic_dec(&root->fs_info->open_ioctl_trans); 2805 mnt_drop_write_file(file); 2806 out: 2807 return ret; 2808 } 2809 2810 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2811 { 2812 struct inode *inode = fdentry(file)->d_inode; 2813 struct btrfs_root *root = BTRFS_I(inode)->root; 2814 struct btrfs_root *new_root; 2815 struct btrfs_dir_item *di; 2816 struct btrfs_trans_handle *trans; 2817 struct btrfs_path *path; 2818 struct btrfs_key location; 2819 struct btrfs_disk_key disk_key; 2820 u64 objectid = 0; 2821 u64 dir_id; 2822 2823 if (!capable(CAP_SYS_ADMIN)) 2824 return -EPERM; 2825 2826 if (copy_from_user(&objectid, argp, sizeof(objectid))) 2827 return -EFAULT; 2828 2829 if (!objectid) 2830 objectid = root->root_key.objectid; 2831 2832 location.objectid = objectid; 2833 location.type = BTRFS_ROOT_ITEM_KEY; 2834 location.offset = (u64)-1; 2835 2836 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 2837 if (IS_ERR(new_root)) 2838 return PTR_ERR(new_root); 2839 2840 if (btrfs_root_refs(&new_root->root_item) == 0) 2841 return -ENOENT; 2842 2843 path = btrfs_alloc_path(); 2844 if (!path) 2845 return -ENOMEM; 2846 path->leave_spinning = 1; 2847 2848 trans = btrfs_start_transaction(root, 1); 2849 if (IS_ERR(trans)) { 2850 btrfs_free_path(path); 2851 return PTR_ERR(trans); 2852 } 2853 2854 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 2855 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 2856 dir_id, "default", 7, 1); 2857 if (IS_ERR_OR_NULL(di)) { 2858 btrfs_free_path(path); 2859 btrfs_end_transaction(trans, root); 2860 printk(KERN_ERR "Umm, you don't have the default dir item, " 2861 "this isn't going to work\n"); 2862 return -ENOENT; 2863 } 2864 2865 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2866 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2867 btrfs_mark_buffer_dirty(path->nodes[0]); 2868 btrfs_free_path(path); 2869 2870 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 2871 btrfs_end_transaction(trans, root); 2872 2873 return 0; 2874 } 2875 2876 void btrfs_get_block_group_info(struct list_head *groups_list, 2877 struct btrfs_ioctl_space_info *space) 2878 { 2879 struct btrfs_block_group_cache *block_group; 2880 2881 space->total_bytes = 0; 2882 space->used_bytes = 0; 2883 space->flags = 0; 2884 list_for_each_entry(block_group, groups_list, list) { 2885 space->flags = block_group->flags; 2886 space->total_bytes += block_group->key.offset; 2887 space->used_bytes += 2888 btrfs_block_group_used(&block_group->item); 2889 } 2890 } 2891 2892 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 2893 { 2894 struct btrfs_ioctl_space_args space_args; 2895 struct btrfs_ioctl_space_info space; 2896 struct btrfs_ioctl_space_info *dest; 2897 struct btrfs_ioctl_space_info *dest_orig; 2898 struct btrfs_ioctl_space_info __user *user_dest; 2899 struct btrfs_space_info *info; 2900 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 2901 BTRFS_BLOCK_GROUP_SYSTEM, 2902 BTRFS_BLOCK_GROUP_METADATA, 2903 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 2904 int num_types = 4; 2905 int alloc_size; 2906 int ret = 0; 2907 u64 slot_count = 0; 2908 int i, c; 2909 2910 if (copy_from_user(&space_args, 2911 (struct btrfs_ioctl_space_args __user *)arg, 2912 sizeof(space_args))) 2913 return -EFAULT; 2914 2915 for (i = 0; i < num_types; i++) { 2916 struct btrfs_space_info *tmp; 2917 2918 info = NULL; 2919 rcu_read_lock(); 2920 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2921 list) { 2922 if (tmp->flags == types[i]) { 2923 info = tmp; 2924 break; 2925 } 2926 } 2927 rcu_read_unlock(); 2928 2929 if (!info) 2930 continue; 2931 2932 down_read(&info->groups_sem); 2933 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2934 if (!list_empty(&info->block_groups[c])) 2935 slot_count++; 2936 } 2937 up_read(&info->groups_sem); 2938 } 2939 2940 /* space_slots == 0 means they are asking for a count */ 2941 if (space_args.space_slots == 0) { 2942 space_args.total_spaces = slot_count; 2943 goto out; 2944 } 2945 2946 slot_count = min_t(u64, space_args.space_slots, slot_count); 2947 2948 alloc_size = sizeof(*dest) * slot_count; 2949 2950 /* we generally have at most 6 or so space infos, one for each raid 2951 * level. So, a whole page should be more than enough for everyone 2952 */ 2953 if (alloc_size > PAGE_CACHE_SIZE) 2954 return -ENOMEM; 2955 2956 space_args.total_spaces = 0; 2957 dest = kmalloc(alloc_size, GFP_NOFS); 2958 if (!dest) 2959 return -ENOMEM; 2960 dest_orig = dest; 2961 2962 /* now we have a buffer to copy into */ 2963 for (i = 0; i < num_types; i++) { 2964 struct btrfs_space_info *tmp; 2965 2966 if (!slot_count) 2967 break; 2968 2969 info = NULL; 2970 rcu_read_lock(); 2971 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2972 list) { 2973 if (tmp->flags == types[i]) { 2974 info = tmp; 2975 break; 2976 } 2977 } 2978 rcu_read_unlock(); 2979 2980 if (!info) 2981 continue; 2982 down_read(&info->groups_sem); 2983 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2984 if (!list_empty(&info->block_groups[c])) { 2985 btrfs_get_block_group_info( 2986 &info->block_groups[c], &space); 2987 memcpy(dest, &space, sizeof(space)); 2988 dest++; 2989 space_args.total_spaces++; 2990 slot_count--; 2991 } 2992 if (!slot_count) 2993 break; 2994 } 2995 up_read(&info->groups_sem); 2996 } 2997 2998 user_dest = (struct btrfs_ioctl_space_info __user *) 2999 (arg + sizeof(struct btrfs_ioctl_space_args)); 3000 3001 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3002 ret = -EFAULT; 3003 3004 kfree(dest_orig); 3005 out: 3006 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3007 ret = -EFAULT; 3008 3009 return ret; 3010 } 3011 3012 /* 3013 * there are many ways the trans_start and trans_end ioctls can lead 3014 * to deadlocks. They should only be used by applications that 3015 * basically own the machine, and have a very in depth understanding 3016 * of all the possible deadlocks and enospc problems. 3017 */ 3018 long btrfs_ioctl_trans_end(struct file *file) 3019 { 3020 struct inode *inode = fdentry(file)->d_inode; 3021 struct btrfs_root *root = BTRFS_I(inode)->root; 3022 struct btrfs_trans_handle *trans; 3023 3024 trans = file->private_data; 3025 if (!trans) 3026 return -EINVAL; 3027 file->private_data = NULL; 3028 3029 btrfs_end_transaction(trans, root); 3030 3031 atomic_dec(&root->fs_info->open_ioctl_trans); 3032 3033 mnt_drop_write_file(file); 3034 return 0; 3035 } 3036 3037 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp) 3038 { 3039 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 3040 struct btrfs_trans_handle *trans; 3041 u64 transid; 3042 int ret; 3043 3044 trans = btrfs_start_transaction(root, 0); 3045 if (IS_ERR(trans)) 3046 return PTR_ERR(trans); 3047 transid = trans->transid; 3048 ret = btrfs_commit_transaction_async(trans, root, 0); 3049 if (ret) { 3050 btrfs_end_transaction(trans, root); 3051 return ret; 3052 } 3053 3054 if (argp) 3055 if (copy_to_user(argp, &transid, sizeof(transid))) 3056 return -EFAULT; 3057 return 0; 3058 } 3059 3060 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp) 3061 { 3062 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 3063 u64 transid; 3064 3065 if (argp) { 3066 if (copy_from_user(&transid, argp, sizeof(transid))) 3067 return -EFAULT; 3068 } else { 3069 transid = 0; /* current trans */ 3070 } 3071 return btrfs_wait_for_commit(root, transid); 3072 } 3073 3074 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg) 3075 { 3076 int ret; 3077 struct btrfs_ioctl_scrub_args *sa; 3078 3079 if (!capable(CAP_SYS_ADMIN)) 3080 return -EPERM; 3081 3082 sa = memdup_user(arg, sizeof(*sa)); 3083 if (IS_ERR(sa)) 3084 return PTR_ERR(sa); 3085 3086 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end, 3087 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY); 3088 3089 if (copy_to_user(arg, sa, sizeof(*sa))) 3090 ret = -EFAULT; 3091 3092 kfree(sa); 3093 return ret; 3094 } 3095 3096 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 3097 { 3098 if (!capable(CAP_SYS_ADMIN)) 3099 return -EPERM; 3100 3101 return btrfs_scrub_cancel(root); 3102 } 3103 3104 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 3105 void __user *arg) 3106 { 3107 struct btrfs_ioctl_scrub_args *sa; 3108 int ret; 3109 3110 if (!capable(CAP_SYS_ADMIN)) 3111 return -EPERM; 3112 3113 sa = memdup_user(arg, sizeof(*sa)); 3114 if (IS_ERR(sa)) 3115 return PTR_ERR(sa); 3116 3117 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 3118 3119 if (copy_to_user(arg, sa, sizeof(*sa))) 3120 ret = -EFAULT; 3121 3122 kfree(sa); 3123 return ret; 3124 } 3125 3126 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 3127 void __user *arg) 3128 { 3129 struct btrfs_ioctl_get_dev_stats *sa; 3130 int ret; 3131 3132 sa = memdup_user(arg, sizeof(*sa)); 3133 if (IS_ERR(sa)) 3134 return PTR_ERR(sa); 3135 3136 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3137 kfree(sa); 3138 return -EPERM; 3139 } 3140 3141 ret = btrfs_get_dev_stats(root, sa); 3142 3143 if (copy_to_user(arg, sa, sizeof(*sa))) 3144 ret = -EFAULT; 3145 3146 kfree(sa); 3147 return ret; 3148 } 3149 3150 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3151 { 3152 int ret = 0; 3153 int i; 3154 u64 rel_ptr; 3155 int size; 3156 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3157 struct inode_fs_paths *ipath = NULL; 3158 struct btrfs_path *path; 3159 3160 if (!capable(CAP_SYS_ADMIN)) 3161 return -EPERM; 3162 3163 path = btrfs_alloc_path(); 3164 if (!path) { 3165 ret = -ENOMEM; 3166 goto out; 3167 } 3168 3169 ipa = memdup_user(arg, sizeof(*ipa)); 3170 if (IS_ERR(ipa)) { 3171 ret = PTR_ERR(ipa); 3172 ipa = NULL; 3173 goto out; 3174 } 3175 3176 size = min_t(u32, ipa->size, 4096); 3177 ipath = init_ipath(size, root, path); 3178 if (IS_ERR(ipath)) { 3179 ret = PTR_ERR(ipath); 3180 ipath = NULL; 3181 goto out; 3182 } 3183 3184 ret = paths_from_inode(ipa->inum, ipath); 3185 if (ret < 0) 3186 goto out; 3187 3188 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3189 rel_ptr = ipath->fspath->val[i] - 3190 (u64)(unsigned long)ipath->fspath->val; 3191 ipath->fspath->val[i] = rel_ptr; 3192 } 3193 3194 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 3195 (void *)(unsigned long)ipath->fspath, size); 3196 if (ret) { 3197 ret = -EFAULT; 3198 goto out; 3199 } 3200 3201 out: 3202 btrfs_free_path(path); 3203 free_ipath(ipath); 3204 kfree(ipa); 3205 3206 return ret; 3207 } 3208 3209 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3210 { 3211 struct btrfs_data_container *inodes = ctx; 3212 const size_t c = 3 * sizeof(u64); 3213 3214 if (inodes->bytes_left >= c) { 3215 inodes->bytes_left -= c; 3216 inodes->val[inodes->elem_cnt] = inum; 3217 inodes->val[inodes->elem_cnt + 1] = offset; 3218 inodes->val[inodes->elem_cnt + 2] = root; 3219 inodes->elem_cnt += 3; 3220 } else { 3221 inodes->bytes_missing += c - inodes->bytes_left; 3222 inodes->bytes_left = 0; 3223 inodes->elem_missed += 3; 3224 } 3225 3226 return 0; 3227 } 3228 3229 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 3230 void __user *arg) 3231 { 3232 int ret = 0; 3233 int size; 3234 struct btrfs_ioctl_logical_ino_args *loi; 3235 struct btrfs_data_container *inodes = NULL; 3236 struct btrfs_path *path = NULL; 3237 3238 if (!capable(CAP_SYS_ADMIN)) 3239 return -EPERM; 3240 3241 loi = memdup_user(arg, sizeof(*loi)); 3242 if (IS_ERR(loi)) { 3243 ret = PTR_ERR(loi); 3244 loi = NULL; 3245 goto out; 3246 } 3247 3248 path = btrfs_alloc_path(); 3249 if (!path) { 3250 ret = -ENOMEM; 3251 goto out; 3252 } 3253 3254 size = min_t(u32, loi->size, 64 * 1024); 3255 inodes = init_data_container(size); 3256 if (IS_ERR(inodes)) { 3257 ret = PTR_ERR(inodes); 3258 inodes = NULL; 3259 goto out; 3260 } 3261 3262 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 3263 build_ino_list, inodes); 3264 if (ret == -EINVAL) 3265 ret = -ENOENT; 3266 if (ret < 0) 3267 goto out; 3268 3269 ret = copy_to_user((void *)(unsigned long)loi->inodes, 3270 (void *)(unsigned long)inodes, size); 3271 if (ret) 3272 ret = -EFAULT; 3273 3274 out: 3275 btrfs_free_path(path); 3276 vfree(inodes); 3277 kfree(loi); 3278 3279 return ret; 3280 } 3281 3282 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 3283 struct btrfs_ioctl_balance_args *bargs) 3284 { 3285 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3286 3287 bargs->flags = bctl->flags; 3288 3289 if (atomic_read(&fs_info->balance_running)) 3290 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3291 if (atomic_read(&fs_info->balance_pause_req)) 3292 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3293 if (atomic_read(&fs_info->balance_cancel_req)) 3294 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3295 3296 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3297 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3298 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3299 3300 if (lock) { 3301 spin_lock(&fs_info->balance_lock); 3302 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3303 spin_unlock(&fs_info->balance_lock); 3304 } else { 3305 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3306 } 3307 } 3308 3309 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3310 { 3311 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3312 struct btrfs_fs_info *fs_info = root->fs_info; 3313 struct btrfs_ioctl_balance_args *bargs; 3314 struct btrfs_balance_control *bctl; 3315 int ret; 3316 3317 if (!capable(CAP_SYS_ADMIN)) 3318 return -EPERM; 3319 3320 ret = mnt_want_write_file(file); 3321 if (ret) 3322 return ret; 3323 3324 mutex_lock(&fs_info->volume_mutex); 3325 mutex_lock(&fs_info->balance_mutex); 3326 3327 if (arg) { 3328 bargs = memdup_user(arg, sizeof(*bargs)); 3329 if (IS_ERR(bargs)) { 3330 ret = PTR_ERR(bargs); 3331 goto out; 3332 } 3333 3334 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3335 if (!fs_info->balance_ctl) { 3336 ret = -ENOTCONN; 3337 goto out_bargs; 3338 } 3339 3340 bctl = fs_info->balance_ctl; 3341 spin_lock(&fs_info->balance_lock); 3342 bctl->flags |= BTRFS_BALANCE_RESUME; 3343 spin_unlock(&fs_info->balance_lock); 3344 3345 goto do_balance; 3346 } 3347 } else { 3348 bargs = NULL; 3349 } 3350 3351 if (fs_info->balance_ctl) { 3352 ret = -EINPROGRESS; 3353 goto out_bargs; 3354 } 3355 3356 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3357 if (!bctl) { 3358 ret = -ENOMEM; 3359 goto out_bargs; 3360 } 3361 3362 bctl->fs_info = fs_info; 3363 if (arg) { 3364 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3365 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3366 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3367 3368 bctl->flags = bargs->flags; 3369 } else { 3370 /* balance everything - no filters */ 3371 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 3372 } 3373 3374 do_balance: 3375 ret = btrfs_balance(bctl, bargs); 3376 /* 3377 * bctl is freed in __cancel_balance or in free_fs_info if 3378 * restriper was paused all the way until unmount 3379 */ 3380 if (arg) { 3381 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3382 ret = -EFAULT; 3383 } 3384 3385 out_bargs: 3386 kfree(bargs); 3387 out: 3388 mutex_unlock(&fs_info->balance_mutex); 3389 mutex_unlock(&fs_info->volume_mutex); 3390 mnt_drop_write_file(file); 3391 return ret; 3392 } 3393 3394 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 3395 { 3396 if (!capable(CAP_SYS_ADMIN)) 3397 return -EPERM; 3398 3399 switch (cmd) { 3400 case BTRFS_BALANCE_CTL_PAUSE: 3401 return btrfs_pause_balance(root->fs_info); 3402 case BTRFS_BALANCE_CTL_CANCEL: 3403 return btrfs_cancel_balance(root->fs_info); 3404 } 3405 3406 return -EINVAL; 3407 } 3408 3409 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 3410 void __user *arg) 3411 { 3412 struct btrfs_fs_info *fs_info = root->fs_info; 3413 struct btrfs_ioctl_balance_args *bargs; 3414 int ret = 0; 3415 3416 if (!capable(CAP_SYS_ADMIN)) 3417 return -EPERM; 3418 3419 mutex_lock(&fs_info->balance_mutex); 3420 if (!fs_info->balance_ctl) { 3421 ret = -ENOTCONN; 3422 goto out; 3423 } 3424 3425 bargs = kzalloc(sizeof(*bargs), GFP_NOFS); 3426 if (!bargs) { 3427 ret = -ENOMEM; 3428 goto out; 3429 } 3430 3431 update_ioctl_balance_args(fs_info, 1, bargs); 3432 3433 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3434 ret = -EFAULT; 3435 3436 kfree(bargs); 3437 out: 3438 mutex_unlock(&fs_info->balance_mutex); 3439 return ret; 3440 } 3441 3442 static long btrfs_ioctl_quota_ctl(struct btrfs_root *root, void __user *arg) 3443 { 3444 struct btrfs_ioctl_quota_ctl_args *sa; 3445 struct btrfs_trans_handle *trans = NULL; 3446 int ret; 3447 int err; 3448 3449 if (!capable(CAP_SYS_ADMIN)) 3450 return -EPERM; 3451 3452 if (root->fs_info->sb->s_flags & MS_RDONLY) 3453 return -EROFS; 3454 3455 sa = memdup_user(arg, sizeof(*sa)); 3456 if (IS_ERR(sa)) 3457 return PTR_ERR(sa); 3458 3459 if (sa->cmd != BTRFS_QUOTA_CTL_RESCAN) { 3460 trans = btrfs_start_transaction(root, 2); 3461 if (IS_ERR(trans)) { 3462 ret = PTR_ERR(trans); 3463 goto out; 3464 } 3465 } 3466 3467 switch (sa->cmd) { 3468 case BTRFS_QUOTA_CTL_ENABLE: 3469 ret = btrfs_quota_enable(trans, root->fs_info); 3470 break; 3471 case BTRFS_QUOTA_CTL_DISABLE: 3472 ret = btrfs_quota_disable(trans, root->fs_info); 3473 break; 3474 case BTRFS_QUOTA_CTL_RESCAN: 3475 ret = btrfs_quota_rescan(root->fs_info); 3476 break; 3477 default: 3478 ret = -EINVAL; 3479 break; 3480 } 3481 3482 if (copy_to_user(arg, sa, sizeof(*sa))) 3483 ret = -EFAULT; 3484 3485 if (trans) { 3486 err = btrfs_commit_transaction(trans, root); 3487 if (err && !ret) 3488 ret = err; 3489 } 3490 3491 out: 3492 kfree(sa); 3493 return ret; 3494 } 3495 3496 static long btrfs_ioctl_qgroup_assign(struct btrfs_root *root, void __user *arg) 3497 { 3498 struct btrfs_ioctl_qgroup_assign_args *sa; 3499 struct btrfs_trans_handle *trans; 3500 int ret; 3501 int err; 3502 3503 if (!capable(CAP_SYS_ADMIN)) 3504 return -EPERM; 3505 3506 if (root->fs_info->sb->s_flags & MS_RDONLY) 3507 return -EROFS; 3508 3509 sa = memdup_user(arg, sizeof(*sa)); 3510 if (IS_ERR(sa)) 3511 return PTR_ERR(sa); 3512 3513 trans = btrfs_join_transaction(root); 3514 if (IS_ERR(trans)) { 3515 ret = PTR_ERR(trans); 3516 goto out; 3517 } 3518 3519 /* FIXME: check if the IDs really exist */ 3520 if (sa->assign) { 3521 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 3522 sa->src, sa->dst); 3523 } else { 3524 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 3525 sa->src, sa->dst); 3526 } 3527 3528 err = btrfs_end_transaction(trans, root); 3529 if (err && !ret) 3530 ret = err; 3531 3532 out: 3533 kfree(sa); 3534 return ret; 3535 } 3536 3537 static long btrfs_ioctl_qgroup_create(struct btrfs_root *root, void __user *arg) 3538 { 3539 struct btrfs_ioctl_qgroup_create_args *sa; 3540 struct btrfs_trans_handle *trans; 3541 int ret; 3542 int err; 3543 3544 if (!capable(CAP_SYS_ADMIN)) 3545 return -EPERM; 3546 3547 if (root->fs_info->sb->s_flags & MS_RDONLY) 3548 return -EROFS; 3549 3550 sa = memdup_user(arg, sizeof(*sa)); 3551 if (IS_ERR(sa)) 3552 return PTR_ERR(sa); 3553 3554 trans = btrfs_join_transaction(root); 3555 if (IS_ERR(trans)) { 3556 ret = PTR_ERR(trans); 3557 goto out; 3558 } 3559 3560 /* FIXME: check if the IDs really exist */ 3561 if (sa->create) { 3562 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid, 3563 NULL); 3564 } else { 3565 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 3566 } 3567 3568 err = btrfs_end_transaction(trans, root); 3569 if (err && !ret) 3570 ret = err; 3571 3572 out: 3573 kfree(sa); 3574 return ret; 3575 } 3576 3577 static long btrfs_ioctl_qgroup_limit(struct btrfs_root *root, void __user *arg) 3578 { 3579 struct btrfs_ioctl_qgroup_limit_args *sa; 3580 struct btrfs_trans_handle *trans; 3581 int ret; 3582 int err; 3583 u64 qgroupid; 3584 3585 if (!capable(CAP_SYS_ADMIN)) 3586 return -EPERM; 3587 3588 if (root->fs_info->sb->s_flags & MS_RDONLY) 3589 return -EROFS; 3590 3591 sa = memdup_user(arg, sizeof(*sa)); 3592 if (IS_ERR(sa)) 3593 return PTR_ERR(sa); 3594 3595 trans = btrfs_join_transaction(root); 3596 if (IS_ERR(trans)) { 3597 ret = PTR_ERR(trans); 3598 goto out; 3599 } 3600 3601 qgroupid = sa->qgroupid; 3602 if (!qgroupid) { 3603 /* take the current subvol as qgroup */ 3604 qgroupid = root->root_key.objectid; 3605 } 3606 3607 /* FIXME: check if the IDs really exist */ 3608 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 3609 3610 err = btrfs_end_transaction(trans, root); 3611 if (err && !ret) 3612 ret = err; 3613 3614 out: 3615 kfree(sa); 3616 return ret; 3617 } 3618 3619 static long btrfs_ioctl_set_received_subvol(struct file *file, 3620 void __user *arg) 3621 { 3622 struct btrfs_ioctl_received_subvol_args *sa = NULL; 3623 struct inode *inode = fdentry(file)->d_inode; 3624 struct btrfs_root *root = BTRFS_I(inode)->root; 3625 struct btrfs_root_item *root_item = &root->root_item; 3626 struct btrfs_trans_handle *trans; 3627 struct timespec ct = CURRENT_TIME; 3628 int ret = 0; 3629 3630 ret = mnt_want_write_file(file); 3631 if (ret < 0) 3632 return ret; 3633 3634 down_write(&root->fs_info->subvol_sem); 3635 3636 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 3637 ret = -EINVAL; 3638 goto out; 3639 } 3640 3641 if (btrfs_root_readonly(root)) { 3642 ret = -EROFS; 3643 goto out; 3644 } 3645 3646 if (!inode_owner_or_capable(inode)) { 3647 ret = -EACCES; 3648 goto out; 3649 } 3650 3651 sa = memdup_user(arg, sizeof(*sa)); 3652 if (IS_ERR(sa)) { 3653 ret = PTR_ERR(sa); 3654 sa = NULL; 3655 goto out; 3656 } 3657 3658 trans = btrfs_start_transaction(root, 1); 3659 if (IS_ERR(trans)) { 3660 ret = PTR_ERR(trans); 3661 trans = NULL; 3662 goto out; 3663 } 3664 3665 sa->rtransid = trans->transid; 3666 sa->rtime.sec = ct.tv_sec; 3667 sa->rtime.nsec = ct.tv_nsec; 3668 3669 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 3670 btrfs_set_root_stransid(root_item, sa->stransid); 3671 btrfs_set_root_rtransid(root_item, sa->rtransid); 3672 root_item->stime.sec = cpu_to_le64(sa->stime.sec); 3673 root_item->stime.nsec = cpu_to_le32(sa->stime.nsec); 3674 root_item->rtime.sec = cpu_to_le64(sa->rtime.sec); 3675 root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec); 3676 3677 ret = btrfs_update_root(trans, root->fs_info->tree_root, 3678 &root->root_key, &root->root_item); 3679 if (ret < 0) { 3680 btrfs_end_transaction(trans, root); 3681 trans = NULL; 3682 goto out; 3683 } else { 3684 ret = btrfs_commit_transaction(trans, root); 3685 if (ret < 0) 3686 goto out; 3687 } 3688 3689 ret = copy_to_user(arg, sa, sizeof(*sa)); 3690 if (ret) 3691 ret = -EFAULT; 3692 3693 out: 3694 kfree(sa); 3695 up_write(&root->fs_info->subvol_sem); 3696 mnt_drop_write_file(file); 3697 return ret; 3698 } 3699 3700 long btrfs_ioctl(struct file *file, unsigned int 3701 cmd, unsigned long arg) 3702 { 3703 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3704 void __user *argp = (void __user *)arg; 3705 3706 switch (cmd) { 3707 case FS_IOC_GETFLAGS: 3708 return btrfs_ioctl_getflags(file, argp); 3709 case FS_IOC_SETFLAGS: 3710 return btrfs_ioctl_setflags(file, argp); 3711 case FS_IOC_GETVERSION: 3712 return btrfs_ioctl_getversion(file, argp); 3713 case FITRIM: 3714 return btrfs_ioctl_fitrim(file, argp); 3715 case BTRFS_IOC_SNAP_CREATE: 3716 return btrfs_ioctl_snap_create(file, argp, 0); 3717 case BTRFS_IOC_SNAP_CREATE_V2: 3718 return btrfs_ioctl_snap_create_v2(file, argp, 0); 3719 case BTRFS_IOC_SUBVOL_CREATE: 3720 return btrfs_ioctl_snap_create(file, argp, 1); 3721 case BTRFS_IOC_SUBVOL_CREATE_V2: 3722 return btrfs_ioctl_snap_create_v2(file, argp, 1); 3723 case BTRFS_IOC_SNAP_DESTROY: 3724 return btrfs_ioctl_snap_destroy(file, argp); 3725 case BTRFS_IOC_SUBVOL_GETFLAGS: 3726 return btrfs_ioctl_subvol_getflags(file, argp); 3727 case BTRFS_IOC_SUBVOL_SETFLAGS: 3728 return btrfs_ioctl_subvol_setflags(file, argp); 3729 case BTRFS_IOC_DEFAULT_SUBVOL: 3730 return btrfs_ioctl_default_subvol(file, argp); 3731 case BTRFS_IOC_DEFRAG: 3732 return btrfs_ioctl_defrag(file, NULL); 3733 case BTRFS_IOC_DEFRAG_RANGE: 3734 return btrfs_ioctl_defrag(file, argp); 3735 case BTRFS_IOC_RESIZE: 3736 return btrfs_ioctl_resize(root, argp); 3737 case BTRFS_IOC_ADD_DEV: 3738 return btrfs_ioctl_add_dev(root, argp); 3739 case BTRFS_IOC_RM_DEV: 3740 return btrfs_ioctl_rm_dev(root, argp); 3741 case BTRFS_IOC_FS_INFO: 3742 return btrfs_ioctl_fs_info(root, argp); 3743 case BTRFS_IOC_DEV_INFO: 3744 return btrfs_ioctl_dev_info(root, argp); 3745 case BTRFS_IOC_BALANCE: 3746 return btrfs_ioctl_balance(file, NULL); 3747 case BTRFS_IOC_CLONE: 3748 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 3749 case BTRFS_IOC_CLONE_RANGE: 3750 return btrfs_ioctl_clone_range(file, argp); 3751 case BTRFS_IOC_TRANS_START: 3752 return btrfs_ioctl_trans_start(file); 3753 case BTRFS_IOC_TRANS_END: 3754 return btrfs_ioctl_trans_end(file); 3755 case BTRFS_IOC_TREE_SEARCH: 3756 return btrfs_ioctl_tree_search(file, argp); 3757 case BTRFS_IOC_INO_LOOKUP: 3758 return btrfs_ioctl_ino_lookup(file, argp); 3759 case BTRFS_IOC_INO_PATHS: 3760 return btrfs_ioctl_ino_to_path(root, argp); 3761 case BTRFS_IOC_LOGICAL_INO: 3762 return btrfs_ioctl_logical_to_ino(root, argp); 3763 case BTRFS_IOC_SPACE_INFO: 3764 return btrfs_ioctl_space_info(root, argp); 3765 case BTRFS_IOC_SYNC: 3766 btrfs_sync_fs(file->f_dentry->d_sb, 1); 3767 return 0; 3768 case BTRFS_IOC_START_SYNC: 3769 return btrfs_ioctl_start_sync(file, argp); 3770 case BTRFS_IOC_WAIT_SYNC: 3771 return btrfs_ioctl_wait_sync(file, argp); 3772 case BTRFS_IOC_SCRUB: 3773 return btrfs_ioctl_scrub(root, argp); 3774 case BTRFS_IOC_SCRUB_CANCEL: 3775 return btrfs_ioctl_scrub_cancel(root, argp); 3776 case BTRFS_IOC_SCRUB_PROGRESS: 3777 return btrfs_ioctl_scrub_progress(root, argp); 3778 case BTRFS_IOC_BALANCE_V2: 3779 return btrfs_ioctl_balance(file, argp); 3780 case BTRFS_IOC_BALANCE_CTL: 3781 return btrfs_ioctl_balance_ctl(root, arg); 3782 case BTRFS_IOC_BALANCE_PROGRESS: 3783 return btrfs_ioctl_balance_progress(root, argp); 3784 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 3785 return btrfs_ioctl_set_received_subvol(file, argp); 3786 case BTRFS_IOC_SEND: 3787 return btrfs_ioctl_send(file, argp); 3788 case BTRFS_IOC_GET_DEV_STATS: 3789 return btrfs_ioctl_get_dev_stats(root, argp); 3790 case BTRFS_IOC_QUOTA_CTL: 3791 return btrfs_ioctl_quota_ctl(root, argp); 3792 case BTRFS_IOC_QGROUP_ASSIGN: 3793 return btrfs_ioctl_qgroup_assign(root, argp); 3794 case BTRFS_IOC_QGROUP_CREATE: 3795 return btrfs_ioctl_qgroup_create(root, argp); 3796 case BTRFS_IOC_QGROUP_LIMIT: 3797 return btrfs_ioctl_qgroup_limit(root, argp); 3798 } 3799 3800 return -ENOTTY; 3801 } 3802