1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/compat.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/security.h> 39 #include <linux/xattr.h> 40 #include <linux/mm.h> 41 #include <linux/slab.h> 42 #include <linux/blkdev.h> 43 #include <linux/uuid.h> 44 #include <linux/btrfs.h> 45 #include <linux/uaccess.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "volumes.h" 52 #include "locking.h" 53 #include "inode-map.h" 54 #include "backref.h" 55 #include "rcu-string.h" 56 #include "send.h" 57 #include "dev-replace.h" 58 #include "props.h" 59 #include "sysfs.h" 60 #include "qgroup.h" 61 #include "tree-log.h" 62 #include "compression.h" 63 64 #ifdef CONFIG_64BIT 65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 66 * structures are incorrect, as the timespec structure from userspace 67 * is 4 bytes too small. We define these alternatives here to teach 68 * the kernel about the 32-bit struct packing. 69 */ 70 struct btrfs_ioctl_timespec_32 { 71 __u64 sec; 72 __u32 nsec; 73 } __attribute__ ((__packed__)); 74 75 struct btrfs_ioctl_received_subvol_args_32 { 76 char uuid[BTRFS_UUID_SIZE]; /* in */ 77 __u64 stransid; /* in */ 78 __u64 rtransid; /* out */ 79 struct btrfs_ioctl_timespec_32 stime; /* in */ 80 struct btrfs_ioctl_timespec_32 rtime; /* out */ 81 __u64 flags; /* in */ 82 __u64 reserved[16]; /* in */ 83 } __attribute__ ((__packed__)); 84 85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 86 struct btrfs_ioctl_received_subvol_args_32) 87 #endif 88 89 90 static int btrfs_clone(struct inode *src, struct inode *inode, 91 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 92 int no_time_update); 93 94 /* Mask out flags that are inappropriate for the given type of inode. */ 95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 96 { 97 if (S_ISDIR(mode)) 98 return flags; 99 else if (S_ISREG(mode)) 100 return flags & ~FS_DIRSYNC_FL; 101 else 102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 103 } 104 105 /* 106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 107 */ 108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 109 { 110 unsigned int iflags = 0; 111 112 if (flags & BTRFS_INODE_SYNC) 113 iflags |= FS_SYNC_FL; 114 if (flags & BTRFS_INODE_IMMUTABLE) 115 iflags |= FS_IMMUTABLE_FL; 116 if (flags & BTRFS_INODE_APPEND) 117 iflags |= FS_APPEND_FL; 118 if (flags & BTRFS_INODE_NODUMP) 119 iflags |= FS_NODUMP_FL; 120 if (flags & BTRFS_INODE_NOATIME) 121 iflags |= FS_NOATIME_FL; 122 if (flags & BTRFS_INODE_DIRSYNC) 123 iflags |= FS_DIRSYNC_FL; 124 if (flags & BTRFS_INODE_NODATACOW) 125 iflags |= FS_NOCOW_FL; 126 127 if (flags & BTRFS_INODE_NOCOMPRESS) 128 iflags |= FS_NOCOMP_FL; 129 else if (flags & BTRFS_INODE_COMPRESS) 130 iflags |= FS_COMPR_FL; 131 132 return iflags; 133 } 134 135 /* 136 * Update inode->i_flags based on the btrfs internal flags. 137 */ 138 void btrfs_update_iflags(struct inode *inode) 139 { 140 struct btrfs_inode *ip = BTRFS_I(inode); 141 unsigned int new_fl = 0; 142 143 if (ip->flags & BTRFS_INODE_SYNC) 144 new_fl |= S_SYNC; 145 if (ip->flags & BTRFS_INODE_IMMUTABLE) 146 new_fl |= S_IMMUTABLE; 147 if (ip->flags & BTRFS_INODE_APPEND) 148 new_fl |= S_APPEND; 149 if (ip->flags & BTRFS_INODE_NOATIME) 150 new_fl |= S_NOATIME; 151 if (ip->flags & BTRFS_INODE_DIRSYNC) 152 new_fl |= S_DIRSYNC; 153 154 set_mask_bits(&inode->i_flags, 155 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 156 new_fl); 157 } 158 159 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 160 { 161 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 162 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 163 164 if (copy_to_user(arg, &flags, sizeof(flags))) 165 return -EFAULT; 166 return 0; 167 } 168 169 static int check_flags(unsigned int flags) 170 { 171 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 172 FS_NOATIME_FL | FS_NODUMP_FL | \ 173 FS_SYNC_FL | FS_DIRSYNC_FL | \ 174 FS_NOCOMP_FL | FS_COMPR_FL | 175 FS_NOCOW_FL)) 176 return -EOPNOTSUPP; 177 178 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 179 return -EINVAL; 180 181 return 0; 182 } 183 184 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 185 { 186 struct inode *inode = file_inode(file); 187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 188 struct btrfs_inode *ip = BTRFS_I(inode); 189 struct btrfs_root *root = ip->root; 190 struct btrfs_trans_handle *trans; 191 unsigned int flags, oldflags; 192 int ret; 193 u64 ip_oldflags; 194 unsigned int i_oldflags; 195 umode_t mode; 196 197 if (!inode_owner_or_capable(inode)) 198 return -EPERM; 199 200 if (btrfs_root_readonly(root)) 201 return -EROFS; 202 203 if (copy_from_user(&flags, arg, sizeof(flags))) 204 return -EFAULT; 205 206 ret = check_flags(flags); 207 if (ret) 208 return ret; 209 210 ret = mnt_want_write_file(file); 211 if (ret) 212 return ret; 213 214 inode_lock(inode); 215 216 ip_oldflags = ip->flags; 217 i_oldflags = inode->i_flags; 218 mode = inode->i_mode; 219 220 flags = btrfs_mask_flags(inode->i_mode, flags); 221 oldflags = btrfs_flags_to_ioctl(ip->flags); 222 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 223 if (!capable(CAP_LINUX_IMMUTABLE)) { 224 ret = -EPERM; 225 goto out_unlock; 226 } 227 } 228 229 if (flags & FS_SYNC_FL) 230 ip->flags |= BTRFS_INODE_SYNC; 231 else 232 ip->flags &= ~BTRFS_INODE_SYNC; 233 if (flags & FS_IMMUTABLE_FL) 234 ip->flags |= BTRFS_INODE_IMMUTABLE; 235 else 236 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 237 if (flags & FS_APPEND_FL) 238 ip->flags |= BTRFS_INODE_APPEND; 239 else 240 ip->flags &= ~BTRFS_INODE_APPEND; 241 if (flags & FS_NODUMP_FL) 242 ip->flags |= BTRFS_INODE_NODUMP; 243 else 244 ip->flags &= ~BTRFS_INODE_NODUMP; 245 if (flags & FS_NOATIME_FL) 246 ip->flags |= BTRFS_INODE_NOATIME; 247 else 248 ip->flags &= ~BTRFS_INODE_NOATIME; 249 if (flags & FS_DIRSYNC_FL) 250 ip->flags |= BTRFS_INODE_DIRSYNC; 251 else 252 ip->flags &= ~BTRFS_INODE_DIRSYNC; 253 if (flags & FS_NOCOW_FL) { 254 if (S_ISREG(mode)) { 255 /* 256 * It's safe to turn csums off here, no extents exist. 257 * Otherwise we want the flag to reflect the real COW 258 * status of the file and will not set it. 259 */ 260 if (inode->i_size == 0) 261 ip->flags |= BTRFS_INODE_NODATACOW 262 | BTRFS_INODE_NODATASUM; 263 } else { 264 ip->flags |= BTRFS_INODE_NODATACOW; 265 } 266 } else { 267 /* 268 * Revert back under same assumptions as above 269 */ 270 if (S_ISREG(mode)) { 271 if (inode->i_size == 0) 272 ip->flags &= ~(BTRFS_INODE_NODATACOW 273 | BTRFS_INODE_NODATASUM); 274 } else { 275 ip->flags &= ~BTRFS_INODE_NODATACOW; 276 } 277 } 278 279 /* 280 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 281 * flag may be changed automatically if compression code won't make 282 * things smaller. 283 */ 284 if (flags & FS_NOCOMP_FL) { 285 ip->flags &= ~BTRFS_INODE_COMPRESS; 286 ip->flags |= BTRFS_INODE_NOCOMPRESS; 287 288 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 289 if (ret && ret != -ENODATA) 290 goto out_drop; 291 } else if (flags & FS_COMPR_FL) { 292 const char *comp; 293 294 ip->flags |= BTRFS_INODE_COMPRESS; 295 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 296 297 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 298 comp = "lzo"; 299 else 300 comp = "zlib"; 301 ret = btrfs_set_prop(inode, "btrfs.compression", 302 comp, strlen(comp), 0); 303 if (ret) 304 goto out_drop; 305 306 } else { 307 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 308 if (ret && ret != -ENODATA) 309 goto out_drop; 310 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 311 } 312 313 trans = btrfs_start_transaction(root, 1); 314 if (IS_ERR(trans)) { 315 ret = PTR_ERR(trans); 316 goto out_drop; 317 } 318 319 btrfs_update_iflags(inode); 320 inode_inc_iversion(inode); 321 inode->i_ctime = current_time(inode); 322 ret = btrfs_update_inode(trans, root, inode); 323 324 btrfs_end_transaction(trans); 325 out_drop: 326 if (ret) { 327 ip->flags = ip_oldflags; 328 inode->i_flags = i_oldflags; 329 } 330 331 out_unlock: 332 inode_unlock(inode); 333 mnt_drop_write_file(file); 334 return ret; 335 } 336 337 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 338 { 339 struct inode *inode = file_inode(file); 340 341 return put_user(inode->i_generation, arg); 342 } 343 344 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 345 { 346 struct inode *inode = file_inode(file); 347 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 348 struct btrfs_device *device; 349 struct request_queue *q; 350 struct fstrim_range range; 351 u64 minlen = ULLONG_MAX; 352 u64 num_devices = 0; 353 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 354 int ret; 355 356 if (!capable(CAP_SYS_ADMIN)) 357 return -EPERM; 358 359 rcu_read_lock(); 360 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 361 dev_list) { 362 if (!device->bdev) 363 continue; 364 q = bdev_get_queue(device->bdev); 365 if (blk_queue_discard(q)) { 366 num_devices++; 367 minlen = min_t(u64, q->limits.discard_granularity, 368 minlen); 369 } 370 } 371 rcu_read_unlock(); 372 373 if (!num_devices) 374 return -EOPNOTSUPP; 375 if (copy_from_user(&range, arg, sizeof(range))) 376 return -EFAULT; 377 if (range.start > total_bytes || 378 range.len < fs_info->sb->s_blocksize) 379 return -EINVAL; 380 381 range.len = min(range.len, total_bytes - range.start); 382 range.minlen = max(range.minlen, minlen); 383 ret = btrfs_trim_fs(fs_info, &range); 384 if (ret < 0) 385 return ret; 386 387 if (copy_to_user(arg, &range, sizeof(range))) 388 return -EFAULT; 389 390 return 0; 391 } 392 393 int btrfs_is_empty_uuid(u8 *uuid) 394 { 395 int i; 396 397 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 398 if (uuid[i]) 399 return 0; 400 } 401 return 1; 402 } 403 404 static noinline int create_subvol(struct inode *dir, 405 struct dentry *dentry, 406 const char *name, int namelen, 407 u64 *async_transid, 408 struct btrfs_qgroup_inherit *inherit) 409 { 410 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 411 struct btrfs_trans_handle *trans; 412 struct btrfs_key key; 413 struct btrfs_root_item *root_item; 414 struct btrfs_inode_item *inode_item; 415 struct extent_buffer *leaf; 416 struct btrfs_root *root = BTRFS_I(dir)->root; 417 struct btrfs_root *new_root; 418 struct btrfs_block_rsv block_rsv; 419 struct timespec cur_time = current_time(dir); 420 struct inode *inode; 421 int ret; 422 int err; 423 u64 objectid; 424 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 425 u64 index = 0; 426 u64 qgroup_reserved; 427 uuid_le new_uuid; 428 429 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 430 if (!root_item) 431 return -ENOMEM; 432 433 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 434 if (ret) 435 goto fail_free; 436 437 /* 438 * Don't create subvolume whose level is not zero. Or qgroup will be 439 * screwed up since it assumes subvolume qgroup's level to be 0. 440 */ 441 if (btrfs_qgroup_level(objectid)) { 442 ret = -ENOSPC; 443 goto fail_free; 444 } 445 446 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 447 /* 448 * The same as the snapshot creation, please see the comment 449 * of create_snapshot(). 450 */ 451 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 452 8, &qgroup_reserved, false); 453 if (ret) 454 goto fail_free; 455 456 trans = btrfs_start_transaction(root, 0); 457 if (IS_ERR(trans)) { 458 ret = PTR_ERR(trans); 459 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 460 goto fail_free; 461 } 462 trans->block_rsv = &block_rsv; 463 trans->bytes_reserved = block_rsv.size; 464 465 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit); 466 if (ret) 467 goto fail; 468 469 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 470 if (IS_ERR(leaf)) { 471 ret = PTR_ERR(leaf); 472 goto fail; 473 } 474 475 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 476 btrfs_set_header_bytenr(leaf, leaf->start); 477 btrfs_set_header_generation(leaf, trans->transid); 478 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 479 btrfs_set_header_owner(leaf, objectid); 480 481 write_extent_buffer_fsid(leaf, fs_info->fsid); 482 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 483 btrfs_mark_buffer_dirty(leaf); 484 485 inode_item = &root_item->inode; 486 btrfs_set_stack_inode_generation(inode_item, 1); 487 btrfs_set_stack_inode_size(inode_item, 3); 488 btrfs_set_stack_inode_nlink(inode_item, 1); 489 btrfs_set_stack_inode_nbytes(inode_item, 490 fs_info->nodesize); 491 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 492 493 btrfs_set_root_flags(root_item, 0); 494 btrfs_set_root_limit(root_item, 0); 495 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 496 497 btrfs_set_root_bytenr(root_item, leaf->start); 498 btrfs_set_root_generation(root_item, trans->transid); 499 btrfs_set_root_level(root_item, 0); 500 btrfs_set_root_refs(root_item, 1); 501 btrfs_set_root_used(root_item, leaf->len); 502 btrfs_set_root_last_snapshot(root_item, 0); 503 504 btrfs_set_root_generation_v2(root_item, 505 btrfs_root_generation(root_item)); 506 uuid_le_gen(&new_uuid); 507 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 508 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 509 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 510 root_item->ctime = root_item->otime; 511 btrfs_set_root_ctransid(root_item, trans->transid); 512 btrfs_set_root_otransid(root_item, trans->transid); 513 514 btrfs_tree_unlock(leaf); 515 free_extent_buffer(leaf); 516 leaf = NULL; 517 518 btrfs_set_root_dirid(root_item, new_dirid); 519 520 key.objectid = objectid; 521 key.offset = 0; 522 key.type = BTRFS_ROOT_ITEM_KEY; 523 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 524 root_item); 525 if (ret) 526 goto fail; 527 528 key.offset = (u64)-1; 529 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 530 if (IS_ERR(new_root)) { 531 ret = PTR_ERR(new_root); 532 btrfs_abort_transaction(trans, ret); 533 goto fail; 534 } 535 536 btrfs_record_root_in_trans(trans, new_root); 537 538 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 539 if (ret) { 540 /* We potentially lose an unused inode item here */ 541 btrfs_abort_transaction(trans, ret); 542 goto fail; 543 } 544 545 mutex_lock(&new_root->objectid_mutex); 546 new_root->highest_objectid = new_dirid; 547 mutex_unlock(&new_root->objectid_mutex); 548 549 /* 550 * insert the directory item 551 */ 552 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 553 if (ret) { 554 btrfs_abort_transaction(trans, ret); 555 goto fail; 556 } 557 558 ret = btrfs_insert_dir_item(trans, root, 559 name, namelen, BTRFS_I(dir), &key, 560 BTRFS_FT_DIR, index); 561 if (ret) { 562 btrfs_abort_transaction(trans, ret); 563 goto fail; 564 } 565 566 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 567 ret = btrfs_update_inode(trans, root, dir); 568 BUG_ON(ret); 569 570 ret = btrfs_add_root_ref(trans, fs_info, 571 objectid, root->root_key.objectid, 572 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 573 BUG_ON(ret); 574 575 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid, 576 BTRFS_UUID_KEY_SUBVOL, objectid); 577 if (ret) 578 btrfs_abort_transaction(trans, ret); 579 580 fail: 581 kfree(root_item); 582 trans->block_rsv = NULL; 583 trans->bytes_reserved = 0; 584 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 585 586 if (async_transid) { 587 *async_transid = trans->transid; 588 err = btrfs_commit_transaction_async(trans, 1); 589 if (err) 590 err = btrfs_commit_transaction(trans); 591 } else { 592 err = btrfs_commit_transaction(trans); 593 } 594 if (err && !ret) 595 ret = err; 596 597 if (!ret) { 598 inode = btrfs_lookup_dentry(dir, dentry); 599 if (IS_ERR(inode)) 600 return PTR_ERR(inode); 601 d_instantiate(dentry, inode); 602 } 603 return ret; 604 605 fail_free: 606 kfree(root_item); 607 return ret; 608 } 609 610 static void btrfs_wait_for_no_snapshotting_writes(struct btrfs_root *root) 611 { 612 s64 writers; 613 DEFINE_WAIT(wait); 614 615 do { 616 prepare_to_wait(&root->subv_writers->wait, &wait, 617 TASK_UNINTERRUPTIBLE); 618 619 writers = percpu_counter_sum(&root->subv_writers->counter); 620 if (writers) 621 schedule(); 622 623 finish_wait(&root->subv_writers->wait, &wait); 624 } while (writers); 625 } 626 627 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 628 struct dentry *dentry, 629 u64 *async_transid, bool readonly, 630 struct btrfs_qgroup_inherit *inherit) 631 { 632 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 633 struct inode *inode; 634 struct btrfs_pending_snapshot *pending_snapshot; 635 struct btrfs_trans_handle *trans; 636 int ret; 637 638 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 639 return -EINVAL; 640 641 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 642 if (!pending_snapshot) 643 return -ENOMEM; 644 645 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 646 GFP_KERNEL); 647 pending_snapshot->path = btrfs_alloc_path(); 648 if (!pending_snapshot->root_item || !pending_snapshot->path) { 649 ret = -ENOMEM; 650 goto free_pending; 651 } 652 653 atomic_inc(&root->will_be_snapshotted); 654 smp_mb__after_atomic(); 655 btrfs_wait_for_no_snapshotting_writes(root); 656 657 ret = btrfs_start_delalloc_inodes(root, 0); 658 if (ret) 659 goto dec_and_free; 660 661 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 662 663 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 664 BTRFS_BLOCK_RSV_TEMP); 665 /* 666 * 1 - parent dir inode 667 * 2 - dir entries 668 * 1 - root item 669 * 2 - root ref/backref 670 * 1 - root of snapshot 671 * 1 - UUID item 672 */ 673 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 674 &pending_snapshot->block_rsv, 8, 675 &pending_snapshot->qgroup_reserved, 676 false); 677 if (ret) 678 goto dec_and_free; 679 680 pending_snapshot->dentry = dentry; 681 pending_snapshot->root = root; 682 pending_snapshot->readonly = readonly; 683 pending_snapshot->dir = dir; 684 pending_snapshot->inherit = inherit; 685 686 trans = btrfs_start_transaction(root, 0); 687 if (IS_ERR(trans)) { 688 ret = PTR_ERR(trans); 689 goto fail; 690 } 691 692 spin_lock(&fs_info->trans_lock); 693 list_add(&pending_snapshot->list, 694 &trans->transaction->pending_snapshots); 695 spin_unlock(&fs_info->trans_lock); 696 if (async_transid) { 697 *async_transid = trans->transid; 698 ret = btrfs_commit_transaction_async(trans, 1); 699 if (ret) 700 ret = btrfs_commit_transaction(trans); 701 } else { 702 ret = btrfs_commit_transaction(trans); 703 } 704 if (ret) 705 goto fail; 706 707 ret = pending_snapshot->error; 708 if (ret) 709 goto fail; 710 711 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 712 if (ret) 713 goto fail; 714 715 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 716 if (IS_ERR(inode)) { 717 ret = PTR_ERR(inode); 718 goto fail; 719 } 720 721 d_instantiate(dentry, inode); 722 ret = 0; 723 fail: 724 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 725 dec_and_free: 726 if (atomic_dec_and_test(&root->will_be_snapshotted)) 727 wake_up_atomic_t(&root->will_be_snapshotted); 728 free_pending: 729 kfree(pending_snapshot->root_item); 730 btrfs_free_path(pending_snapshot->path); 731 kfree(pending_snapshot); 732 733 return ret; 734 } 735 736 /* copy of may_delete in fs/namei.c() 737 * Check whether we can remove a link victim from directory dir, check 738 * whether the type of victim is right. 739 * 1. We can't do it if dir is read-only (done in permission()) 740 * 2. We should have write and exec permissions on dir 741 * 3. We can't remove anything from append-only dir 742 * 4. We can't do anything with immutable dir (done in permission()) 743 * 5. If the sticky bit on dir is set we should either 744 * a. be owner of dir, or 745 * b. be owner of victim, or 746 * c. have CAP_FOWNER capability 747 * 6. If the victim is append-only or immutable we can't do anything with 748 * links pointing to it. 749 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 750 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 751 * 9. We can't remove a root or mountpoint. 752 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 753 * nfs_async_unlink(). 754 */ 755 756 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 757 { 758 int error; 759 760 if (d_really_is_negative(victim)) 761 return -ENOENT; 762 763 BUG_ON(d_inode(victim->d_parent) != dir); 764 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 765 766 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 767 if (error) 768 return error; 769 if (IS_APPEND(dir)) 770 return -EPERM; 771 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 772 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 773 return -EPERM; 774 if (isdir) { 775 if (!d_is_dir(victim)) 776 return -ENOTDIR; 777 if (IS_ROOT(victim)) 778 return -EBUSY; 779 } else if (d_is_dir(victim)) 780 return -EISDIR; 781 if (IS_DEADDIR(dir)) 782 return -ENOENT; 783 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 784 return -EBUSY; 785 return 0; 786 } 787 788 /* copy of may_create in fs/namei.c() */ 789 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 790 { 791 if (d_really_is_positive(child)) 792 return -EEXIST; 793 if (IS_DEADDIR(dir)) 794 return -ENOENT; 795 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 796 } 797 798 /* 799 * Create a new subvolume below @parent. This is largely modeled after 800 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 801 * inside this filesystem so it's quite a bit simpler. 802 */ 803 static noinline int btrfs_mksubvol(const struct path *parent, 804 const char *name, int namelen, 805 struct btrfs_root *snap_src, 806 u64 *async_transid, bool readonly, 807 struct btrfs_qgroup_inherit *inherit) 808 { 809 struct inode *dir = d_inode(parent->dentry); 810 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 811 struct dentry *dentry; 812 int error; 813 814 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 815 if (error == -EINTR) 816 return error; 817 818 dentry = lookup_one_len(name, parent->dentry, namelen); 819 error = PTR_ERR(dentry); 820 if (IS_ERR(dentry)) 821 goto out_unlock; 822 823 error = btrfs_may_create(dir, dentry); 824 if (error) 825 goto out_dput; 826 827 /* 828 * even if this name doesn't exist, we may get hash collisions. 829 * check for them now when we can safely fail 830 */ 831 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 832 dir->i_ino, name, 833 namelen); 834 if (error) 835 goto out_dput; 836 837 down_read(&fs_info->subvol_sem); 838 839 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 840 goto out_up_read; 841 842 if (snap_src) { 843 error = create_snapshot(snap_src, dir, dentry, 844 async_transid, readonly, inherit); 845 } else { 846 error = create_subvol(dir, dentry, name, namelen, 847 async_transid, inherit); 848 } 849 if (!error) 850 fsnotify_mkdir(dir, dentry); 851 out_up_read: 852 up_read(&fs_info->subvol_sem); 853 out_dput: 854 dput(dentry); 855 out_unlock: 856 inode_unlock(dir); 857 return error; 858 } 859 860 /* 861 * When we're defragging a range, we don't want to kick it off again 862 * if it is really just waiting for delalloc to send it down. 863 * If we find a nice big extent or delalloc range for the bytes in the 864 * file you want to defrag, we return 0 to let you know to skip this 865 * part of the file 866 */ 867 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 868 { 869 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 870 struct extent_map *em = NULL; 871 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 872 u64 end; 873 874 read_lock(&em_tree->lock); 875 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 876 read_unlock(&em_tree->lock); 877 878 if (em) { 879 end = extent_map_end(em); 880 free_extent_map(em); 881 if (end - offset > thresh) 882 return 0; 883 } 884 /* if we already have a nice delalloc here, just stop */ 885 thresh /= 2; 886 end = count_range_bits(io_tree, &offset, offset + thresh, 887 thresh, EXTENT_DELALLOC, 1); 888 if (end >= thresh) 889 return 0; 890 return 1; 891 } 892 893 /* 894 * helper function to walk through a file and find extents 895 * newer than a specific transid, and smaller than thresh. 896 * 897 * This is used by the defragging code to find new and small 898 * extents 899 */ 900 static int find_new_extents(struct btrfs_root *root, 901 struct inode *inode, u64 newer_than, 902 u64 *off, u32 thresh) 903 { 904 struct btrfs_path *path; 905 struct btrfs_key min_key; 906 struct extent_buffer *leaf; 907 struct btrfs_file_extent_item *extent; 908 int type; 909 int ret; 910 u64 ino = btrfs_ino(BTRFS_I(inode)); 911 912 path = btrfs_alloc_path(); 913 if (!path) 914 return -ENOMEM; 915 916 min_key.objectid = ino; 917 min_key.type = BTRFS_EXTENT_DATA_KEY; 918 min_key.offset = *off; 919 920 while (1) { 921 ret = btrfs_search_forward(root, &min_key, path, newer_than); 922 if (ret != 0) 923 goto none; 924 process_slot: 925 if (min_key.objectid != ino) 926 goto none; 927 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 928 goto none; 929 930 leaf = path->nodes[0]; 931 extent = btrfs_item_ptr(leaf, path->slots[0], 932 struct btrfs_file_extent_item); 933 934 type = btrfs_file_extent_type(leaf, extent); 935 if (type == BTRFS_FILE_EXTENT_REG && 936 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 937 check_defrag_in_cache(inode, min_key.offset, thresh)) { 938 *off = min_key.offset; 939 btrfs_free_path(path); 940 return 0; 941 } 942 943 path->slots[0]++; 944 if (path->slots[0] < btrfs_header_nritems(leaf)) { 945 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 946 goto process_slot; 947 } 948 949 if (min_key.offset == (u64)-1) 950 goto none; 951 952 min_key.offset++; 953 btrfs_release_path(path); 954 } 955 none: 956 btrfs_free_path(path); 957 return -ENOENT; 958 } 959 960 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 961 { 962 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 963 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 964 struct extent_map *em; 965 u64 len = PAGE_SIZE; 966 967 /* 968 * hopefully we have this extent in the tree already, try without 969 * the full extent lock 970 */ 971 read_lock(&em_tree->lock); 972 em = lookup_extent_mapping(em_tree, start, len); 973 read_unlock(&em_tree->lock); 974 975 if (!em) { 976 struct extent_state *cached = NULL; 977 u64 end = start + len - 1; 978 979 /* get the big lock and read metadata off disk */ 980 lock_extent_bits(io_tree, start, end, &cached); 981 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 982 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 983 984 if (IS_ERR(em)) 985 return NULL; 986 } 987 988 return em; 989 } 990 991 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 992 { 993 struct extent_map *next; 994 bool ret = true; 995 996 /* this is the last extent */ 997 if (em->start + em->len >= i_size_read(inode)) 998 return false; 999 1000 next = defrag_lookup_extent(inode, em->start + em->len); 1001 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1002 ret = false; 1003 else if ((em->block_start + em->block_len == next->block_start) && 1004 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1005 ret = false; 1006 1007 free_extent_map(next); 1008 return ret; 1009 } 1010 1011 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1012 u64 *last_len, u64 *skip, u64 *defrag_end, 1013 int compress) 1014 { 1015 struct extent_map *em; 1016 int ret = 1; 1017 bool next_mergeable = true; 1018 bool prev_mergeable = true; 1019 1020 /* 1021 * make sure that once we start defragging an extent, we keep on 1022 * defragging it 1023 */ 1024 if (start < *defrag_end) 1025 return 1; 1026 1027 *skip = 0; 1028 1029 em = defrag_lookup_extent(inode, start); 1030 if (!em) 1031 return 0; 1032 1033 /* this will cover holes, and inline extents */ 1034 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1035 ret = 0; 1036 goto out; 1037 } 1038 1039 if (!*defrag_end) 1040 prev_mergeable = false; 1041 1042 next_mergeable = defrag_check_next_extent(inode, em); 1043 /* 1044 * we hit a real extent, if it is big or the next extent is not a 1045 * real extent, don't bother defragging it 1046 */ 1047 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1048 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1049 ret = 0; 1050 out: 1051 /* 1052 * last_len ends up being a counter of how many bytes we've defragged. 1053 * every time we choose not to defrag an extent, we reset *last_len 1054 * so that the next tiny extent will force a defrag. 1055 * 1056 * The end result of this is that tiny extents before a single big 1057 * extent will force at least part of that big extent to be defragged. 1058 */ 1059 if (ret) { 1060 *defrag_end = extent_map_end(em); 1061 } else { 1062 *last_len = 0; 1063 *skip = extent_map_end(em); 1064 *defrag_end = 0; 1065 } 1066 1067 free_extent_map(em); 1068 return ret; 1069 } 1070 1071 /* 1072 * it doesn't do much good to defrag one or two pages 1073 * at a time. This pulls in a nice chunk of pages 1074 * to COW and defrag. 1075 * 1076 * It also makes sure the delalloc code has enough 1077 * dirty data to avoid making new small extents as part 1078 * of the defrag 1079 * 1080 * It's a good idea to start RA on this range 1081 * before calling this. 1082 */ 1083 static int cluster_pages_for_defrag(struct inode *inode, 1084 struct page **pages, 1085 unsigned long start_index, 1086 unsigned long num_pages) 1087 { 1088 unsigned long file_end; 1089 u64 isize = i_size_read(inode); 1090 u64 page_start; 1091 u64 page_end; 1092 u64 page_cnt; 1093 int ret; 1094 int i; 1095 int i_done; 1096 struct btrfs_ordered_extent *ordered; 1097 struct extent_state *cached_state = NULL; 1098 struct extent_io_tree *tree; 1099 struct extent_changeset *data_reserved = NULL; 1100 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1101 1102 file_end = (isize - 1) >> PAGE_SHIFT; 1103 if (!isize || start_index > file_end) 1104 return 0; 1105 1106 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1107 1108 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1109 start_index << PAGE_SHIFT, 1110 page_cnt << PAGE_SHIFT); 1111 if (ret) 1112 return ret; 1113 i_done = 0; 1114 tree = &BTRFS_I(inode)->io_tree; 1115 1116 /* step one, lock all the pages */ 1117 for (i = 0; i < page_cnt; i++) { 1118 struct page *page; 1119 again: 1120 page = find_or_create_page(inode->i_mapping, 1121 start_index + i, mask); 1122 if (!page) 1123 break; 1124 1125 page_start = page_offset(page); 1126 page_end = page_start + PAGE_SIZE - 1; 1127 while (1) { 1128 lock_extent_bits(tree, page_start, page_end, 1129 &cached_state); 1130 ordered = btrfs_lookup_ordered_extent(inode, 1131 page_start); 1132 unlock_extent_cached(tree, page_start, page_end, 1133 &cached_state, GFP_NOFS); 1134 if (!ordered) 1135 break; 1136 1137 unlock_page(page); 1138 btrfs_start_ordered_extent(inode, ordered, 1); 1139 btrfs_put_ordered_extent(ordered); 1140 lock_page(page); 1141 /* 1142 * we unlocked the page above, so we need check if 1143 * it was released or not. 1144 */ 1145 if (page->mapping != inode->i_mapping) { 1146 unlock_page(page); 1147 put_page(page); 1148 goto again; 1149 } 1150 } 1151 1152 if (!PageUptodate(page)) { 1153 btrfs_readpage(NULL, page); 1154 lock_page(page); 1155 if (!PageUptodate(page)) { 1156 unlock_page(page); 1157 put_page(page); 1158 ret = -EIO; 1159 break; 1160 } 1161 } 1162 1163 if (page->mapping != inode->i_mapping) { 1164 unlock_page(page); 1165 put_page(page); 1166 goto again; 1167 } 1168 1169 pages[i] = page; 1170 i_done++; 1171 } 1172 if (!i_done || ret) 1173 goto out; 1174 1175 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1176 goto out; 1177 1178 /* 1179 * so now we have a nice long stream of locked 1180 * and up to date pages, lets wait on them 1181 */ 1182 for (i = 0; i < i_done; i++) 1183 wait_on_page_writeback(pages[i]); 1184 1185 page_start = page_offset(pages[0]); 1186 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1187 1188 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1189 page_start, page_end - 1, &cached_state); 1190 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1191 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1192 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1193 &cached_state, GFP_NOFS); 1194 1195 if (i_done != page_cnt) { 1196 spin_lock(&BTRFS_I(inode)->lock); 1197 BTRFS_I(inode)->outstanding_extents++; 1198 spin_unlock(&BTRFS_I(inode)->lock); 1199 btrfs_delalloc_release_space(inode, data_reserved, 1200 start_index << PAGE_SHIFT, 1201 (page_cnt - i_done) << PAGE_SHIFT); 1202 } 1203 1204 1205 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1206 &cached_state); 1207 1208 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1209 page_start, page_end - 1, &cached_state, 1210 GFP_NOFS); 1211 1212 for (i = 0; i < i_done; i++) { 1213 clear_page_dirty_for_io(pages[i]); 1214 ClearPageChecked(pages[i]); 1215 set_page_extent_mapped(pages[i]); 1216 set_page_dirty(pages[i]); 1217 unlock_page(pages[i]); 1218 put_page(pages[i]); 1219 } 1220 extent_changeset_free(data_reserved); 1221 return i_done; 1222 out: 1223 for (i = 0; i < i_done; i++) { 1224 unlock_page(pages[i]); 1225 put_page(pages[i]); 1226 } 1227 btrfs_delalloc_release_space(inode, data_reserved, 1228 start_index << PAGE_SHIFT, 1229 page_cnt << PAGE_SHIFT); 1230 extent_changeset_free(data_reserved); 1231 return ret; 1232 1233 } 1234 1235 int btrfs_defrag_file(struct inode *inode, struct file *file, 1236 struct btrfs_ioctl_defrag_range_args *range, 1237 u64 newer_than, unsigned long max_to_defrag) 1238 { 1239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1240 struct btrfs_root *root = BTRFS_I(inode)->root; 1241 struct file_ra_state *ra = NULL; 1242 unsigned long last_index; 1243 u64 isize = i_size_read(inode); 1244 u64 last_len = 0; 1245 u64 skip = 0; 1246 u64 defrag_end = 0; 1247 u64 newer_off = range->start; 1248 unsigned long i; 1249 unsigned long ra_index = 0; 1250 int ret; 1251 int defrag_count = 0; 1252 int compress_type = BTRFS_COMPRESS_ZLIB; 1253 u32 extent_thresh = range->extent_thresh; 1254 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1255 unsigned long cluster = max_cluster; 1256 u64 new_align = ~((u64)SZ_128K - 1); 1257 struct page **pages = NULL; 1258 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1259 1260 if (isize == 0) 1261 return 0; 1262 1263 if (range->start >= isize) 1264 return -EINVAL; 1265 1266 if (do_compress) { 1267 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1268 return -EINVAL; 1269 if (range->compress_type) 1270 compress_type = range->compress_type; 1271 } 1272 1273 if (extent_thresh == 0) 1274 extent_thresh = SZ_256K; 1275 1276 /* 1277 * If we were not given a file, allocate a readahead context. As 1278 * readahead is just an optimization, defrag will work without it so 1279 * we don't error out. 1280 */ 1281 if (!file) { 1282 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1283 if (ra) 1284 file_ra_state_init(ra, inode->i_mapping); 1285 } else { 1286 ra = &file->f_ra; 1287 } 1288 1289 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1290 if (!pages) { 1291 ret = -ENOMEM; 1292 goto out_ra; 1293 } 1294 1295 /* find the last page to defrag */ 1296 if (range->start + range->len > range->start) { 1297 last_index = min_t(u64, isize - 1, 1298 range->start + range->len - 1) >> PAGE_SHIFT; 1299 } else { 1300 last_index = (isize - 1) >> PAGE_SHIFT; 1301 } 1302 1303 if (newer_than) { 1304 ret = find_new_extents(root, inode, newer_than, 1305 &newer_off, SZ_64K); 1306 if (!ret) { 1307 range->start = newer_off; 1308 /* 1309 * we always align our defrag to help keep 1310 * the extents in the file evenly spaced 1311 */ 1312 i = (newer_off & new_align) >> PAGE_SHIFT; 1313 } else 1314 goto out_ra; 1315 } else { 1316 i = range->start >> PAGE_SHIFT; 1317 } 1318 if (!max_to_defrag) 1319 max_to_defrag = last_index - i + 1; 1320 1321 /* 1322 * make writeback starts from i, so the defrag range can be 1323 * written sequentially. 1324 */ 1325 if (i < inode->i_mapping->writeback_index) 1326 inode->i_mapping->writeback_index = i; 1327 1328 while (i <= last_index && defrag_count < max_to_defrag && 1329 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1330 /* 1331 * make sure we stop running if someone unmounts 1332 * the FS 1333 */ 1334 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1335 break; 1336 1337 if (btrfs_defrag_cancelled(fs_info)) { 1338 btrfs_debug(fs_info, "defrag_file cancelled"); 1339 ret = -EAGAIN; 1340 break; 1341 } 1342 1343 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1344 extent_thresh, &last_len, &skip, 1345 &defrag_end, do_compress)){ 1346 unsigned long next; 1347 /* 1348 * the should_defrag function tells us how much to skip 1349 * bump our counter by the suggested amount 1350 */ 1351 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1352 i = max(i + 1, next); 1353 continue; 1354 } 1355 1356 if (!newer_than) { 1357 cluster = (PAGE_ALIGN(defrag_end) >> 1358 PAGE_SHIFT) - i; 1359 cluster = min(cluster, max_cluster); 1360 } else { 1361 cluster = max_cluster; 1362 } 1363 1364 if (i + cluster > ra_index) { 1365 ra_index = max(i, ra_index); 1366 if (ra) 1367 page_cache_sync_readahead(inode->i_mapping, ra, 1368 file, ra_index, cluster); 1369 ra_index += cluster; 1370 } 1371 1372 inode_lock(inode); 1373 if (do_compress) 1374 BTRFS_I(inode)->defrag_compress = compress_type; 1375 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1376 if (ret < 0) { 1377 inode_unlock(inode); 1378 goto out_ra; 1379 } 1380 1381 defrag_count += ret; 1382 balance_dirty_pages_ratelimited(inode->i_mapping); 1383 inode_unlock(inode); 1384 1385 if (newer_than) { 1386 if (newer_off == (u64)-1) 1387 break; 1388 1389 if (ret > 0) 1390 i += ret; 1391 1392 newer_off = max(newer_off + 1, 1393 (u64)i << PAGE_SHIFT); 1394 1395 ret = find_new_extents(root, inode, newer_than, 1396 &newer_off, SZ_64K); 1397 if (!ret) { 1398 range->start = newer_off; 1399 i = (newer_off & new_align) >> PAGE_SHIFT; 1400 } else { 1401 break; 1402 } 1403 } else { 1404 if (ret > 0) { 1405 i += ret; 1406 last_len += ret << PAGE_SHIFT; 1407 } else { 1408 i++; 1409 last_len = 0; 1410 } 1411 } 1412 } 1413 1414 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1415 filemap_flush(inode->i_mapping); 1416 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1417 &BTRFS_I(inode)->runtime_flags)) 1418 filemap_flush(inode->i_mapping); 1419 } 1420 1421 if (do_compress) { 1422 /* the filemap_flush will queue IO into the worker threads, but 1423 * we have to make sure the IO is actually started and that 1424 * ordered extents get created before we return 1425 */ 1426 atomic_inc(&fs_info->async_submit_draining); 1427 while (atomic_read(&fs_info->nr_async_submits) || 1428 atomic_read(&fs_info->async_delalloc_pages)) { 1429 wait_event(fs_info->async_submit_wait, 1430 (atomic_read(&fs_info->nr_async_submits) == 0 && 1431 atomic_read(&fs_info->async_delalloc_pages) == 0)); 1432 } 1433 atomic_dec(&fs_info->async_submit_draining); 1434 } 1435 1436 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1437 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1438 } 1439 1440 ret = defrag_count; 1441 1442 out_ra: 1443 if (do_compress) { 1444 inode_lock(inode); 1445 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1446 inode_unlock(inode); 1447 } 1448 if (!file) 1449 kfree(ra); 1450 kfree(pages); 1451 return ret; 1452 } 1453 1454 static noinline int btrfs_ioctl_resize(struct file *file, 1455 void __user *arg) 1456 { 1457 struct inode *inode = file_inode(file); 1458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1459 u64 new_size; 1460 u64 old_size; 1461 u64 devid = 1; 1462 struct btrfs_root *root = BTRFS_I(inode)->root; 1463 struct btrfs_ioctl_vol_args *vol_args; 1464 struct btrfs_trans_handle *trans; 1465 struct btrfs_device *device = NULL; 1466 char *sizestr; 1467 char *retptr; 1468 char *devstr = NULL; 1469 int ret = 0; 1470 int mod = 0; 1471 1472 if (!capable(CAP_SYS_ADMIN)) 1473 return -EPERM; 1474 1475 ret = mnt_want_write_file(file); 1476 if (ret) 1477 return ret; 1478 1479 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1480 mnt_drop_write_file(file); 1481 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1482 } 1483 1484 mutex_lock(&fs_info->volume_mutex); 1485 vol_args = memdup_user(arg, sizeof(*vol_args)); 1486 if (IS_ERR(vol_args)) { 1487 ret = PTR_ERR(vol_args); 1488 goto out; 1489 } 1490 1491 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1492 1493 sizestr = vol_args->name; 1494 devstr = strchr(sizestr, ':'); 1495 if (devstr) { 1496 sizestr = devstr + 1; 1497 *devstr = '\0'; 1498 devstr = vol_args->name; 1499 ret = kstrtoull(devstr, 10, &devid); 1500 if (ret) 1501 goto out_free; 1502 if (!devid) { 1503 ret = -EINVAL; 1504 goto out_free; 1505 } 1506 btrfs_info(fs_info, "resizing devid %llu", devid); 1507 } 1508 1509 device = btrfs_find_device(fs_info, devid, NULL, NULL); 1510 if (!device) { 1511 btrfs_info(fs_info, "resizer unable to find device %llu", 1512 devid); 1513 ret = -ENODEV; 1514 goto out_free; 1515 } 1516 1517 if (!device->writeable) { 1518 btrfs_info(fs_info, 1519 "resizer unable to apply on readonly device %llu", 1520 devid); 1521 ret = -EPERM; 1522 goto out_free; 1523 } 1524 1525 if (!strcmp(sizestr, "max")) 1526 new_size = device->bdev->bd_inode->i_size; 1527 else { 1528 if (sizestr[0] == '-') { 1529 mod = -1; 1530 sizestr++; 1531 } else if (sizestr[0] == '+') { 1532 mod = 1; 1533 sizestr++; 1534 } 1535 new_size = memparse(sizestr, &retptr); 1536 if (*retptr != '\0' || new_size == 0) { 1537 ret = -EINVAL; 1538 goto out_free; 1539 } 1540 } 1541 1542 if (device->is_tgtdev_for_dev_replace) { 1543 ret = -EPERM; 1544 goto out_free; 1545 } 1546 1547 old_size = btrfs_device_get_total_bytes(device); 1548 1549 if (mod < 0) { 1550 if (new_size > old_size) { 1551 ret = -EINVAL; 1552 goto out_free; 1553 } 1554 new_size = old_size - new_size; 1555 } else if (mod > 0) { 1556 if (new_size > ULLONG_MAX - old_size) { 1557 ret = -ERANGE; 1558 goto out_free; 1559 } 1560 new_size = old_size + new_size; 1561 } 1562 1563 if (new_size < SZ_256M) { 1564 ret = -EINVAL; 1565 goto out_free; 1566 } 1567 if (new_size > device->bdev->bd_inode->i_size) { 1568 ret = -EFBIG; 1569 goto out_free; 1570 } 1571 1572 new_size = round_down(new_size, fs_info->sectorsize); 1573 1574 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1575 rcu_str_deref(device->name), new_size); 1576 1577 if (new_size > old_size) { 1578 trans = btrfs_start_transaction(root, 0); 1579 if (IS_ERR(trans)) { 1580 ret = PTR_ERR(trans); 1581 goto out_free; 1582 } 1583 ret = btrfs_grow_device(trans, device, new_size); 1584 btrfs_commit_transaction(trans); 1585 } else if (new_size < old_size) { 1586 ret = btrfs_shrink_device(device, new_size); 1587 } /* equal, nothing need to do */ 1588 1589 out_free: 1590 kfree(vol_args); 1591 out: 1592 mutex_unlock(&fs_info->volume_mutex); 1593 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1594 mnt_drop_write_file(file); 1595 return ret; 1596 } 1597 1598 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1599 const char *name, unsigned long fd, int subvol, 1600 u64 *transid, bool readonly, 1601 struct btrfs_qgroup_inherit *inherit) 1602 { 1603 int namelen; 1604 int ret = 0; 1605 1606 if (!S_ISDIR(file_inode(file)->i_mode)) 1607 return -ENOTDIR; 1608 1609 ret = mnt_want_write_file(file); 1610 if (ret) 1611 goto out; 1612 1613 namelen = strlen(name); 1614 if (strchr(name, '/')) { 1615 ret = -EINVAL; 1616 goto out_drop_write; 1617 } 1618 1619 if (name[0] == '.' && 1620 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1621 ret = -EEXIST; 1622 goto out_drop_write; 1623 } 1624 1625 if (subvol) { 1626 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1627 NULL, transid, readonly, inherit); 1628 } else { 1629 struct fd src = fdget(fd); 1630 struct inode *src_inode; 1631 if (!src.file) { 1632 ret = -EINVAL; 1633 goto out_drop_write; 1634 } 1635 1636 src_inode = file_inode(src.file); 1637 if (src_inode->i_sb != file_inode(file)->i_sb) { 1638 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1639 "Snapshot src from another FS"); 1640 ret = -EXDEV; 1641 } else if (!inode_owner_or_capable(src_inode)) { 1642 /* 1643 * Subvolume creation is not restricted, but snapshots 1644 * are limited to own subvolumes only 1645 */ 1646 ret = -EPERM; 1647 } else { 1648 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1649 BTRFS_I(src_inode)->root, 1650 transid, readonly, inherit); 1651 } 1652 fdput(src); 1653 } 1654 out_drop_write: 1655 mnt_drop_write_file(file); 1656 out: 1657 return ret; 1658 } 1659 1660 static noinline int btrfs_ioctl_snap_create(struct file *file, 1661 void __user *arg, int subvol) 1662 { 1663 struct btrfs_ioctl_vol_args *vol_args; 1664 int ret; 1665 1666 if (!S_ISDIR(file_inode(file)->i_mode)) 1667 return -ENOTDIR; 1668 1669 vol_args = memdup_user(arg, sizeof(*vol_args)); 1670 if (IS_ERR(vol_args)) 1671 return PTR_ERR(vol_args); 1672 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1673 1674 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1675 vol_args->fd, subvol, 1676 NULL, false, NULL); 1677 1678 kfree(vol_args); 1679 return ret; 1680 } 1681 1682 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1683 void __user *arg, int subvol) 1684 { 1685 struct btrfs_ioctl_vol_args_v2 *vol_args; 1686 int ret; 1687 u64 transid = 0; 1688 u64 *ptr = NULL; 1689 bool readonly = false; 1690 struct btrfs_qgroup_inherit *inherit = NULL; 1691 1692 if (!S_ISDIR(file_inode(file)->i_mode)) 1693 return -ENOTDIR; 1694 1695 vol_args = memdup_user(arg, sizeof(*vol_args)); 1696 if (IS_ERR(vol_args)) 1697 return PTR_ERR(vol_args); 1698 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1699 1700 if (vol_args->flags & 1701 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1702 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1703 ret = -EOPNOTSUPP; 1704 goto free_args; 1705 } 1706 1707 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1708 ptr = &transid; 1709 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1710 readonly = true; 1711 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1712 if (vol_args->size > PAGE_SIZE) { 1713 ret = -EINVAL; 1714 goto free_args; 1715 } 1716 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1717 if (IS_ERR(inherit)) { 1718 ret = PTR_ERR(inherit); 1719 goto free_args; 1720 } 1721 } 1722 1723 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1724 vol_args->fd, subvol, ptr, 1725 readonly, inherit); 1726 if (ret) 1727 goto free_inherit; 1728 1729 if (ptr && copy_to_user(arg + 1730 offsetof(struct btrfs_ioctl_vol_args_v2, 1731 transid), 1732 ptr, sizeof(*ptr))) 1733 ret = -EFAULT; 1734 1735 free_inherit: 1736 kfree(inherit); 1737 free_args: 1738 kfree(vol_args); 1739 return ret; 1740 } 1741 1742 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1743 void __user *arg) 1744 { 1745 struct inode *inode = file_inode(file); 1746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1747 struct btrfs_root *root = BTRFS_I(inode)->root; 1748 int ret = 0; 1749 u64 flags = 0; 1750 1751 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1752 return -EINVAL; 1753 1754 down_read(&fs_info->subvol_sem); 1755 if (btrfs_root_readonly(root)) 1756 flags |= BTRFS_SUBVOL_RDONLY; 1757 up_read(&fs_info->subvol_sem); 1758 1759 if (copy_to_user(arg, &flags, sizeof(flags))) 1760 ret = -EFAULT; 1761 1762 return ret; 1763 } 1764 1765 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1766 void __user *arg) 1767 { 1768 struct inode *inode = file_inode(file); 1769 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1770 struct btrfs_root *root = BTRFS_I(inode)->root; 1771 struct btrfs_trans_handle *trans; 1772 u64 root_flags; 1773 u64 flags; 1774 int ret = 0; 1775 1776 if (!inode_owner_or_capable(inode)) 1777 return -EPERM; 1778 1779 ret = mnt_want_write_file(file); 1780 if (ret) 1781 goto out; 1782 1783 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1784 ret = -EINVAL; 1785 goto out_drop_write; 1786 } 1787 1788 if (copy_from_user(&flags, arg, sizeof(flags))) { 1789 ret = -EFAULT; 1790 goto out_drop_write; 1791 } 1792 1793 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1794 ret = -EINVAL; 1795 goto out_drop_write; 1796 } 1797 1798 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1799 ret = -EOPNOTSUPP; 1800 goto out_drop_write; 1801 } 1802 1803 down_write(&fs_info->subvol_sem); 1804 1805 /* nothing to do */ 1806 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1807 goto out_drop_sem; 1808 1809 root_flags = btrfs_root_flags(&root->root_item); 1810 if (flags & BTRFS_SUBVOL_RDONLY) { 1811 btrfs_set_root_flags(&root->root_item, 1812 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1813 } else { 1814 /* 1815 * Block RO -> RW transition if this subvolume is involved in 1816 * send 1817 */ 1818 spin_lock(&root->root_item_lock); 1819 if (root->send_in_progress == 0) { 1820 btrfs_set_root_flags(&root->root_item, 1821 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1822 spin_unlock(&root->root_item_lock); 1823 } else { 1824 spin_unlock(&root->root_item_lock); 1825 btrfs_warn(fs_info, 1826 "Attempt to set subvolume %llu read-write during send", 1827 root->root_key.objectid); 1828 ret = -EPERM; 1829 goto out_drop_sem; 1830 } 1831 } 1832 1833 trans = btrfs_start_transaction(root, 1); 1834 if (IS_ERR(trans)) { 1835 ret = PTR_ERR(trans); 1836 goto out_reset; 1837 } 1838 1839 ret = btrfs_update_root(trans, fs_info->tree_root, 1840 &root->root_key, &root->root_item); 1841 1842 btrfs_commit_transaction(trans); 1843 out_reset: 1844 if (ret) 1845 btrfs_set_root_flags(&root->root_item, root_flags); 1846 out_drop_sem: 1847 up_write(&fs_info->subvol_sem); 1848 out_drop_write: 1849 mnt_drop_write_file(file); 1850 out: 1851 return ret; 1852 } 1853 1854 /* 1855 * helper to check if the subvolume references other subvolumes 1856 */ 1857 static noinline int may_destroy_subvol(struct btrfs_root *root) 1858 { 1859 struct btrfs_fs_info *fs_info = root->fs_info; 1860 struct btrfs_path *path; 1861 struct btrfs_dir_item *di; 1862 struct btrfs_key key; 1863 u64 dir_id; 1864 int ret; 1865 1866 path = btrfs_alloc_path(); 1867 if (!path) 1868 return -ENOMEM; 1869 1870 /* Make sure this root isn't set as the default subvol */ 1871 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1872 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 1873 dir_id, "default", 7, 0); 1874 if (di && !IS_ERR(di)) { 1875 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1876 if (key.objectid == root->root_key.objectid) { 1877 ret = -EPERM; 1878 btrfs_err(fs_info, 1879 "deleting default subvolume %llu is not allowed", 1880 key.objectid); 1881 goto out; 1882 } 1883 btrfs_release_path(path); 1884 } 1885 1886 key.objectid = root->root_key.objectid; 1887 key.type = BTRFS_ROOT_REF_KEY; 1888 key.offset = (u64)-1; 1889 1890 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1891 if (ret < 0) 1892 goto out; 1893 BUG_ON(ret == 0); 1894 1895 ret = 0; 1896 if (path->slots[0] > 0) { 1897 path->slots[0]--; 1898 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1899 if (key.objectid == root->root_key.objectid && 1900 key.type == BTRFS_ROOT_REF_KEY) 1901 ret = -ENOTEMPTY; 1902 } 1903 out: 1904 btrfs_free_path(path); 1905 return ret; 1906 } 1907 1908 static noinline int key_in_sk(struct btrfs_key *key, 1909 struct btrfs_ioctl_search_key *sk) 1910 { 1911 struct btrfs_key test; 1912 int ret; 1913 1914 test.objectid = sk->min_objectid; 1915 test.type = sk->min_type; 1916 test.offset = sk->min_offset; 1917 1918 ret = btrfs_comp_cpu_keys(key, &test); 1919 if (ret < 0) 1920 return 0; 1921 1922 test.objectid = sk->max_objectid; 1923 test.type = sk->max_type; 1924 test.offset = sk->max_offset; 1925 1926 ret = btrfs_comp_cpu_keys(key, &test); 1927 if (ret > 0) 1928 return 0; 1929 return 1; 1930 } 1931 1932 static noinline int copy_to_sk(struct btrfs_path *path, 1933 struct btrfs_key *key, 1934 struct btrfs_ioctl_search_key *sk, 1935 size_t *buf_size, 1936 char __user *ubuf, 1937 unsigned long *sk_offset, 1938 int *num_found) 1939 { 1940 u64 found_transid; 1941 struct extent_buffer *leaf; 1942 struct btrfs_ioctl_search_header sh; 1943 struct btrfs_key test; 1944 unsigned long item_off; 1945 unsigned long item_len; 1946 int nritems; 1947 int i; 1948 int slot; 1949 int ret = 0; 1950 1951 leaf = path->nodes[0]; 1952 slot = path->slots[0]; 1953 nritems = btrfs_header_nritems(leaf); 1954 1955 if (btrfs_header_generation(leaf) > sk->max_transid) { 1956 i = nritems; 1957 goto advance_key; 1958 } 1959 found_transid = btrfs_header_generation(leaf); 1960 1961 for (i = slot; i < nritems; i++) { 1962 item_off = btrfs_item_ptr_offset(leaf, i); 1963 item_len = btrfs_item_size_nr(leaf, i); 1964 1965 btrfs_item_key_to_cpu(leaf, key, i); 1966 if (!key_in_sk(key, sk)) 1967 continue; 1968 1969 if (sizeof(sh) + item_len > *buf_size) { 1970 if (*num_found) { 1971 ret = 1; 1972 goto out; 1973 } 1974 1975 /* 1976 * return one empty item back for v1, which does not 1977 * handle -EOVERFLOW 1978 */ 1979 1980 *buf_size = sizeof(sh) + item_len; 1981 item_len = 0; 1982 ret = -EOVERFLOW; 1983 } 1984 1985 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1986 ret = 1; 1987 goto out; 1988 } 1989 1990 sh.objectid = key->objectid; 1991 sh.offset = key->offset; 1992 sh.type = key->type; 1993 sh.len = item_len; 1994 sh.transid = found_transid; 1995 1996 /* copy search result header */ 1997 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 1998 ret = -EFAULT; 1999 goto out; 2000 } 2001 2002 *sk_offset += sizeof(sh); 2003 2004 if (item_len) { 2005 char __user *up = ubuf + *sk_offset; 2006 /* copy the item */ 2007 if (read_extent_buffer_to_user(leaf, up, 2008 item_off, item_len)) { 2009 ret = -EFAULT; 2010 goto out; 2011 } 2012 2013 *sk_offset += item_len; 2014 } 2015 (*num_found)++; 2016 2017 if (ret) /* -EOVERFLOW from above */ 2018 goto out; 2019 2020 if (*num_found >= sk->nr_items) { 2021 ret = 1; 2022 goto out; 2023 } 2024 } 2025 advance_key: 2026 ret = 0; 2027 test.objectid = sk->max_objectid; 2028 test.type = sk->max_type; 2029 test.offset = sk->max_offset; 2030 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2031 ret = 1; 2032 else if (key->offset < (u64)-1) 2033 key->offset++; 2034 else if (key->type < (u8)-1) { 2035 key->offset = 0; 2036 key->type++; 2037 } else if (key->objectid < (u64)-1) { 2038 key->offset = 0; 2039 key->type = 0; 2040 key->objectid++; 2041 } else 2042 ret = 1; 2043 out: 2044 /* 2045 * 0: all items from this leaf copied, continue with next 2046 * 1: * more items can be copied, but unused buffer is too small 2047 * * all items were found 2048 * Either way, it will stops the loop which iterates to the next 2049 * leaf 2050 * -EOVERFLOW: item was to large for buffer 2051 * -EFAULT: could not copy extent buffer back to userspace 2052 */ 2053 return ret; 2054 } 2055 2056 static noinline int search_ioctl(struct inode *inode, 2057 struct btrfs_ioctl_search_key *sk, 2058 size_t *buf_size, 2059 char __user *ubuf) 2060 { 2061 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2062 struct btrfs_root *root; 2063 struct btrfs_key key; 2064 struct btrfs_path *path; 2065 int ret; 2066 int num_found = 0; 2067 unsigned long sk_offset = 0; 2068 2069 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2070 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2071 return -EOVERFLOW; 2072 } 2073 2074 path = btrfs_alloc_path(); 2075 if (!path) 2076 return -ENOMEM; 2077 2078 if (sk->tree_id == 0) { 2079 /* search the root of the inode that was passed */ 2080 root = BTRFS_I(inode)->root; 2081 } else { 2082 key.objectid = sk->tree_id; 2083 key.type = BTRFS_ROOT_ITEM_KEY; 2084 key.offset = (u64)-1; 2085 root = btrfs_read_fs_root_no_name(info, &key); 2086 if (IS_ERR(root)) { 2087 btrfs_free_path(path); 2088 return -ENOENT; 2089 } 2090 } 2091 2092 key.objectid = sk->min_objectid; 2093 key.type = sk->min_type; 2094 key.offset = sk->min_offset; 2095 2096 while (1) { 2097 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2098 if (ret != 0) { 2099 if (ret > 0) 2100 ret = 0; 2101 goto err; 2102 } 2103 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2104 &sk_offset, &num_found); 2105 btrfs_release_path(path); 2106 if (ret) 2107 break; 2108 2109 } 2110 if (ret > 0) 2111 ret = 0; 2112 err: 2113 sk->nr_items = num_found; 2114 btrfs_free_path(path); 2115 return ret; 2116 } 2117 2118 static noinline int btrfs_ioctl_tree_search(struct file *file, 2119 void __user *argp) 2120 { 2121 struct btrfs_ioctl_search_args __user *uargs; 2122 struct btrfs_ioctl_search_key sk; 2123 struct inode *inode; 2124 int ret; 2125 size_t buf_size; 2126 2127 if (!capable(CAP_SYS_ADMIN)) 2128 return -EPERM; 2129 2130 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2131 2132 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2133 return -EFAULT; 2134 2135 buf_size = sizeof(uargs->buf); 2136 2137 inode = file_inode(file); 2138 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2139 2140 /* 2141 * In the origin implementation an overflow is handled by returning a 2142 * search header with a len of zero, so reset ret. 2143 */ 2144 if (ret == -EOVERFLOW) 2145 ret = 0; 2146 2147 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2148 ret = -EFAULT; 2149 return ret; 2150 } 2151 2152 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2153 void __user *argp) 2154 { 2155 struct btrfs_ioctl_search_args_v2 __user *uarg; 2156 struct btrfs_ioctl_search_args_v2 args; 2157 struct inode *inode; 2158 int ret; 2159 size_t buf_size; 2160 const size_t buf_limit = SZ_16M; 2161 2162 if (!capable(CAP_SYS_ADMIN)) 2163 return -EPERM; 2164 2165 /* copy search header and buffer size */ 2166 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2167 if (copy_from_user(&args, uarg, sizeof(args))) 2168 return -EFAULT; 2169 2170 buf_size = args.buf_size; 2171 2172 /* limit result size to 16MB */ 2173 if (buf_size > buf_limit) 2174 buf_size = buf_limit; 2175 2176 inode = file_inode(file); 2177 ret = search_ioctl(inode, &args.key, &buf_size, 2178 (char *)(&uarg->buf[0])); 2179 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2180 ret = -EFAULT; 2181 else if (ret == -EOVERFLOW && 2182 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2183 ret = -EFAULT; 2184 2185 return ret; 2186 } 2187 2188 /* 2189 * Search INODE_REFs to identify path name of 'dirid' directory 2190 * in a 'tree_id' tree. and sets path name to 'name'. 2191 */ 2192 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2193 u64 tree_id, u64 dirid, char *name) 2194 { 2195 struct btrfs_root *root; 2196 struct btrfs_key key; 2197 char *ptr; 2198 int ret = -1; 2199 int slot; 2200 int len; 2201 int total_len = 0; 2202 struct btrfs_inode_ref *iref; 2203 struct extent_buffer *l; 2204 struct btrfs_path *path; 2205 2206 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2207 name[0]='\0'; 2208 return 0; 2209 } 2210 2211 path = btrfs_alloc_path(); 2212 if (!path) 2213 return -ENOMEM; 2214 2215 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2216 2217 key.objectid = tree_id; 2218 key.type = BTRFS_ROOT_ITEM_KEY; 2219 key.offset = (u64)-1; 2220 root = btrfs_read_fs_root_no_name(info, &key); 2221 if (IS_ERR(root)) { 2222 btrfs_err(info, "could not find root %llu", tree_id); 2223 ret = -ENOENT; 2224 goto out; 2225 } 2226 2227 key.objectid = dirid; 2228 key.type = BTRFS_INODE_REF_KEY; 2229 key.offset = (u64)-1; 2230 2231 while (1) { 2232 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2233 if (ret < 0) 2234 goto out; 2235 else if (ret > 0) { 2236 ret = btrfs_previous_item(root, path, dirid, 2237 BTRFS_INODE_REF_KEY); 2238 if (ret < 0) 2239 goto out; 2240 else if (ret > 0) { 2241 ret = -ENOENT; 2242 goto out; 2243 } 2244 } 2245 2246 l = path->nodes[0]; 2247 slot = path->slots[0]; 2248 btrfs_item_key_to_cpu(l, &key, slot); 2249 2250 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2251 len = btrfs_inode_ref_name_len(l, iref); 2252 ptr -= len + 1; 2253 total_len += len + 1; 2254 if (ptr < name) { 2255 ret = -ENAMETOOLONG; 2256 goto out; 2257 } 2258 2259 *(ptr + len) = '/'; 2260 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2261 2262 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2263 break; 2264 2265 btrfs_release_path(path); 2266 key.objectid = key.offset; 2267 key.offset = (u64)-1; 2268 dirid = key.objectid; 2269 } 2270 memmove(name, ptr, total_len); 2271 name[total_len] = '\0'; 2272 ret = 0; 2273 out: 2274 btrfs_free_path(path); 2275 return ret; 2276 } 2277 2278 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2279 void __user *argp) 2280 { 2281 struct btrfs_ioctl_ino_lookup_args *args; 2282 struct inode *inode; 2283 int ret = 0; 2284 2285 args = memdup_user(argp, sizeof(*args)); 2286 if (IS_ERR(args)) 2287 return PTR_ERR(args); 2288 2289 inode = file_inode(file); 2290 2291 /* 2292 * Unprivileged query to obtain the containing subvolume root id. The 2293 * path is reset so it's consistent with btrfs_search_path_in_tree. 2294 */ 2295 if (args->treeid == 0) 2296 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2297 2298 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2299 args->name[0] = 0; 2300 goto out; 2301 } 2302 2303 if (!capable(CAP_SYS_ADMIN)) { 2304 ret = -EPERM; 2305 goto out; 2306 } 2307 2308 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2309 args->treeid, args->objectid, 2310 args->name); 2311 2312 out: 2313 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2314 ret = -EFAULT; 2315 2316 kfree(args); 2317 return ret; 2318 } 2319 2320 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2321 void __user *arg) 2322 { 2323 struct dentry *parent = file->f_path.dentry; 2324 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2325 struct dentry *dentry; 2326 struct inode *dir = d_inode(parent); 2327 struct inode *inode; 2328 struct btrfs_root *root = BTRFS_I(dir)->root; 2329 struct btrfs_root *dest = NULL; 2330 struct btrfs_ioctl_vol_args *vol_args; 2331 struct btrfs_trans_handle *trans; 2332 struct btrfs_block_rsv block_rsv; 2333 u64 root_flags; 2334 u64 qgroup_reserved; 2335 int namelen; 2336 int ret; 2337 int err = 0; 2338 2339 if (!S_ISDIR(dir->i_mode)) 2340 return -ENOTDIR; 2341 2342 vol_args = memdup_user(arg, sizeof(*vol_args)); 2343 if (IS_ERR(vol_args)) 2344 return PTR_ERR(vol_args); 2345 2346 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2347 namelen = strlen(vol_args->name); 2348 if (strchr(vol_args->name, '/') || 2349 strncmp(vol_args->name, "..", namelen) == 0) { 2350 err = -EINVAL; 2351 goto out; 2352 } 2353 2354 err = mnt_want_write_file(file); 2355 if (err) 2356 goto out; 2357 2358 2359 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2360 if (err == -EINTR) 2361 goto out_drop_write; 2362 dentry = lookup_one_len(vol_args->name, parent, namelen); 2363 if (IS_ERR(dentry)) { 2364 err = PTR_ERR(dentry); 2365 goto out_unlock_dir; 2366 } 2367 2368 if (d_really_is_negative(dentry)) { 2369 err = -ENOENT; 2370 goto out_dput; 2371 } 2372 2373 inode = d_inode(dentry); 2374 dest = BTRFS_I(inode)->root; 2375 if (!capable(CAP_SYS_ADMIN)) { 2376 /* 2377 * Regular user. Only allow this with a special mount 2378 * option, when the user has write+exec access to the 2379 * subvol root, and when rmdir(2) would have been 2380 * allowed. 2381 * 2382 * Note that this is _not_ check that the subvol is 2383 * empty or doesn't contain data that we wouldn't 2384 * otherwise be able to delete. 2385 * 2386 * Users who want to delete empty subvols should try 2387 * rmdir(2). 2388 */ 2389 err = -EPERM; 2390 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2391 goto out_dput; 2392 2393 /* 2394 * Do not allow deletion if the parent dir is the same 2395 * as the dir to be deleted. That means the ioctl 2396 * must be called on the dentry referencing the root 2397 * of the subvol, not a random directory contained 2398 * within it. 2399 */ 2400 err = -EINVAL; 2401 if (root == dest) 2402 goto out_dput; 2403 2404 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2405 if (err) 2406 goto out_dput; 2407 } 2408 2409 /* check if subvolume may be deleted by a user */ 2410 err = btrfs_may_delete(dir, dentry, 1); 2411 if (err) 2412 goto out_dput; 2413 2414 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2415 err = -EINVAL; 2416 goto out_dput; 2417 } 2418 2419 inode_lock(inode); 2420 2421 /* 2422 * Don't allow to delete a subvolume with send in progress. This is 2423 * inside the i_mutex so the error handling that has to drop the bit 2424 * again is not run concurrently. 2425 */ 2426 spin_lock(&dest->root_item_lock); 2427 root_flags = btrfs_root_flags(&dest->root_item); 2428 if (dest->send_in_progress == 0) { 2429 btrfs_set_root_flags(&dest->root_item, 2430 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2431 spin_unlock(&dest->root_item_lock); 2432 } else { 2433 spin_unlock(&dest->root_item_lock); 2434 btrfs_warn(fs_info, 2435 "Attempt to delete subvolume %llu during send", 2436 dest->root_key.objectid); 2437 err = -EPERM; 2438 goto out_unlock_inode; 2439 } 2440 2441 down_write(&fs_info->subvol_sem); 2442 2443 err = may_destroy_subvol(dest); 2444 if (err) 2445 goto out_up_write; 2446 2447 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2448 /* 2449 * One for dir inode, two for dir entries, two for root 2450 * ref/backref. 2451 */ 2452 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2453 5, &qgroup_reserved, true); 2454 if (err) 2455 goto out_up_write; 2456 2457 trans = btrfs_start_transaction(root, 0); 2458 if (IS_ERR(trans)) { 2459 err = PTR_ERR(trans); 2460 goto out_release; 2461 } 2462 trans->block_rsv = &block_rsv; 2463 trans->bytes_reserved = block_rsv.size; 2464 2465 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 2466 2467 ret = btrfs_unlink_subvol(trans, root, dir, 2468 dest->root_key.objectid, 2469 dentry->d_name.name, 2470 dentry->d_name.len); 2471 if (ret) { 2472 err = ret; 2473 btrfs_abort_transaction(trans, ret); 2474 goto out_end_trans; 2475 } 2476 2477 btrfs_record_root_in_trans(trans, dest); 2478 2479 memset(&dest->root_item.drop_progress, 0, 2480 sizeof(dest->root_item.drop_progress)); 2481 dest->root_item.drop_level = 0; 2482 btrfs_set_root_refs(&dest->root_item, 0); 2483 2484 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2485 ret = btrfs_insert_orphan_item(trans, 2486 fs_info->tree_root, 2487 dest->root_key.objectid); 2488 if (ret) { 2489 btrfs_abort_transaction(trans, ret); 2490 err = ret; 2491 goto out_end_trans; 2492 } 2493 } 2494 2495 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid, 2496 BTRFS_UUID_KEY_SUBVOL, 2497 dest->root_key.objectid); 2498 if (ret && ret != -ENOENT) { 2499 btrfs_abort_transaction(trans, ret); 2500 err = ret; 2501 goto out_end_trans; 2502 } 2503 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2504 ret = btrfs_uuid_tree_rem(trans, fs_info, 2505 dest->root_item.received_uuid, 2506 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2507 dest->root_key.objectid); 2508 if (ret && ret != -ENOENT) { 2509 btrfs_abort_transaction(trans, ret); 2510 err = ret; 2511 goto out_end_trans; 2512 } 2513 } 2514 2515 out_end_trans: 2516 trans->block_rsv = NULL; 2517 trans->bytes_reserved = 0; 2518 ret = btrfs_end_transaction(trans); 2519 if (ret && !err) 2520 err = ret; 2521 inode->i_flags |= S_DEAD; 2522 out_release: 2523 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 2524 out_up_write: 2525 up_write(&fs_info->subvol_sem); 2526 if (err) { 2527 spin_lock(&dest->root_item_lock); 2528 root_flags = btrfs_root_flags(&dest->root_item); 2529 btrfs_set_root_flags(&dest->root_item, 2530 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2531 spin_unlock(&dest->root_item_lock); 2532 } 2533 out_unlock_inode: 2534 inode_unlock(inode); 2535 if (!err) { 2536 d_invalidate(dentry); 2537 btrfs_invalidate_inodes(dest); 2538 d_delete(dentry); 2539 ASSERT(dest->send_in_progress == 0); 2540 2541 /* the last ref */ 2542 if (dest->ino_cache_inode) { 2543 iput(dest->ino_cache_inode); 2544 dest->ino_cache_inode = NULL; 2545 } 2546 } 2547 out_dput: 2548 dput(dentry); 2549 out_unlock_dir: 2550 inode_unlock(dir); 2551 out_drop_write: 2552 mnt_drop_write_file(file); 2553 out: 2554 kfree(vol_args); 2555 return err; 2556 } 2557 2558 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2559 { 2560 struct inode *inode = file_inode(file); 2561 struct btrfs_root *root = BTRFS_I(inode)->root; 2562 struct btrfs_ioctl_defrag_range_args *range; 2563 int ret; 2564 2565 ret = mnt_want_write_file(file); 2566 if (ret) 2567 return ret; 2568 2569 if (btrfs_root_readonly(root)) { 2570 ret = -EROFS; 2571 goto out; 2572 } 2573 2574 switch (inode->i_mode & S_IFMT) { 2575 case S_IFDIR: 2576 if (!capable(CAP_SYS_ADMIN)) { 2577 ret = -EPERM; 2578 goto out; 2579 } 2580 ret = btrfs_defrag_root(root); 2581 break; 2582 case S_IFREG: 2583 if (!(file->f_mode & FMODE_WRITE)) { 2584 ret = -EINVAL; 2585 goto out; 2586 } 2587 2588 range = kzalloc(sizeof(*range), GFP_KERNEL); 2589 if (!range) { 2590 ret = -ENOMEM; 2591 goto out; 2592 } 2593 2594 if (argp) { 2595 if (copy_from_user(range, argp, 2596 sizeof(*range))) { 2597 ret = -EFAULT; 2598 kfree(range); 2599 goto out; 2600 } 2601 /* compression requires us to start the IO */ 2602 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2603 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2604 range->extent_thresh = (u32)-1; 2605 } 2606 } else { 2607 /* the rest are all set to zero by kzalloc */ 2608 range->len = (u64)-1; 2609 } 2610 ret = btrfs_defrag_file(file_inode(file), file, 2611 range, 0, 0); 2612 if (ret > 0) 2613 ret = 0; 2614 kfree(range); 2615 break; 2616 default: 2617 ret = -EINVAL; 2618 } 2619 out: 2620 mnt_drop_write_file(file); 2621 return ret; 2622 } 2623 2624 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2625 { 2626 struct btrfs_ioctl_vol_args *vol_args; 2627 int ret; 2628 2629 if (!capable(CAP_SYS_ADMIN)) 2630 return -EPERM; 2631 2632 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 2633 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2634 2635 mutex_lock(&fs_info->volume_mutex); 2636 vol_args = memdup_user(arg, sizeof(*vol_args)); 2637 if (IS_ERR(vol_args)) { 2638 ret = PTR_ERR(vol_args); 2639 goto out; 2640 } 2641 2642 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2643 ret = btrfs_init_new_device(fs_info, vol_args->name); 2644 2645 if (!ret) 2646 btrfs_info(fs_info, "disk added %s", vol_args->name); 2647 2648 kfree(vol_args); 2649 out: 2650 mutex_unlock(&fs_info->volume_mutex); 2651 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 2652 return ret; 2653 } 2654 2655 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2656 { 2657 struct inode *inode = file_inode(file); 2658 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2659 struct btrfs_ioctl_vol_args_v2 *vol_args; 2660 int ret; 2661 2662 if (!capable(CAP_SYS_ADMIN)) 2663 return -EPERM; 2664 2665 ret = mnt_want_write_file(file); 2666 if (ret) 2667 return ret; 2668 2669 vol_args = memdup_user(arg, sizeof(*vol_args)); 2670 if (IS_ERR(vol_args)) { 2671 ret = PTR_ERR(vol_args); 2672 goto err_drop; 2673 } 2674 2675 /* Check for compatibility reject unknown flags */ 2676 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) 2677 return -EOPNOTSUPP; 2678 2679 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 2680 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2681 goto out; 2682 } 2683 2684 mutex_lock(&fs_info->volume_mutex); 2685 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2686 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 2687 } else { 2688 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2689 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 2690 } 2691 mutex_unlock(&fs_info->volume_mutex); 2692 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 2693 2694 if (!ret) { 2695 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2696 btrfs_info(fs_info, "device deleted: id %llu", 2697 vol_args->devid); 2698 else 2699 btrfs_info(fs_info, "device deleted: %s", 2700 vol_args->name); 2701 } 2702 out: 2703 kfree(vol_args); 2704 err_drop: 2705 mnt_drop_write_file(file); 2706 return ret; 2707 } 2708 2709 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2710 { 2711 struct inode *inode = file_inode(file); 2712 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2713 struct btrfs_ioctl_vol_args *vol_args; 2714 int ret; 2715 2716 if (!capable(CAP_SYS_ADMIN)) 2717 return -EPERM; 2718 2719 ret = mnt_want_write_file(file); 2720 if (ret) 2721 return ret; 2722 2723 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 2724 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2725 goto out_drop_write; 2726 } 2727 2728 vol_args = memdup_user(arg, sizeof(*vol_args)); 2729 if (IS_ERR(vol_args)) { 2730 ret = PTR_ERR(vol_args); 2731 goto out; 2732 } 2733 2734 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2735 mutex_lock(&fs_info->volume_mutex); 2736 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 2737 mutex_unlock(&fs_info->volume_mutex); 2738 2739 if (!ret) 2740 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2741 kfree(vol_args); 2742 out: 2743 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 2744 out_drop_write: 2745 mnt_drop_write_file(file); 2746 2747 return ret; 2748 } 2749 2750 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2751 void __user *arg) 2752 { 2753 struct btrfs_ioctl_fs_info_args *fi_args; 2754 struct btrfs_device *device; 2755 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2756 int ret = 0; 2757 2758 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2759 if (!fi_args) 2760 return -ENOMEM; 2761 2762 mutex_lock(&fs_devices->device_list_mutex); 2763 fi_args->num_devices = fs_devices->num_devices; 2764 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid)); 2765 2766 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2767 if (device->devid > fi_args->max_id) 2768 fi_args->max_id = device->devid; 2769 } 2770 mutex_unlock(&fs_devices->device_list_mutex); 2771 2772 fi_args->nodesize = fs_info->super_copy->nodesize; 2773 fi_args->sectorsize = fs_info->super_copy->sectorsize; 2774 fi_args->clone_alignment = fs_info->super_copy->sectorsize; 2775 2776 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2777 ret = -EFAULT; 2778 2779 kfree(fi_args); 2780 return ret; 2781 } 2782 2783 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2784 void __user *arg) 2785 { 2786 struct btrfs_ioctl_dev_info_args *di_args; 2787 struct btrfs_device *dev; 2788 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2789 int ret = 0; 2790 char *s_uuid = NULL; 2791 2792 di_args = memdup_user(arg, sizeof(*di_args)); 2793 if (IS_ERR(di_args)) 2794 return PTR_ERR(di_args); 2795 2796 if (!btrfs_is_empty_uuid(di_args->uuid)) 2797 s_uuid = di_args->uuid; 2798 2799 mutex_lock(&fs_devices->device_list_mutex); 2800 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL); 2801 2802 if (!dev) { 2803 ret = -ENODEV; 2804 goto out; 2805 } 2806 2807 di_args->devid = dev->devid; 2808 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2809 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2810 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2811 if (dev->name) { 2812 struct rcu_string *name; 2813 2814 rcu_read_lock(); 2815 name = rcu_dereference(dev->name); 2816 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2817 rcu_read_unlock(); 2818 di_args->path[sizeof(di_args->path) - 1] = 0; 2819 } else { 2820 di_args->path[0] = '\0'; 2821 } 2822 2823 out: 2824 mutex_unlock(&fs_devices->device_list_mutex); 2825 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2826 ret = -EFAULT; 2827 2828 kfree(di_args); 2829 return ret; 2830 } 2831 2832 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 2833 { 2834 struct page *page; 2835 2836 page = grab_cache_page(inode->i_mapping, index); 2837 if (!page) 2838 return ERR_PTR(-ENOMEM); 2839 2840 if (!PageUptodate(page)) { 2841 int ret; 2842 2843 ret = btrfs_readpage(NULL, page); 2844 if (ret) 2845 return ERR_PTR(ret); 2846 lock_page(page); 2847 if (!PageUptodate(page)) { 2848 unlock_page(page); 2849 put_page(page); 2850 return ERR_PTR(-EIO); 2851 } 2852 if (page->mapping != inode->i_mapping) { 2853 unlock_page(page); 2854 put_page(page); 2855 return ERR_PTR(-EAGAIN); 2856 } 2857 } 2858 2859 return page; 2860 } 2861 2862 static int gather_extent_pages(struct inode *inode, struct page **pages, 2863 int num_pages, u64 off) 2864 { 2865 int i; 2866 pgoff_t index = off >> PAGE_SHIFT; 2867 2868 for (i = 0; i < num_pages; i++) { 2869 again: 2870 pages[i] = extent_same_get_page(inode, index + i); 2871 if (IS_ERR(pages[i])) { 2872 int err = PTR_ERR(pages[i]); 2873 2874 if (err == -EAGAIN) 2875 goto again; 2876 pages[i] = NULL; 2877 return err; 2878 } 2879 } 2880 return 0; 2881 } 2882 2883 static int lock_extent_range(struct inode *inode, u64 off, u64 len, 2884 bool retry_range_locking) 2885 { 2886 /* 2887 * Do any pending delalloc/csum calculations on inode, one way or 2888 * another, and lock file content. 2889 * The locking order is: 2890 * 2891 * 1) pages 2892 * 2) range in the inode's io tree 2893 */ 2894 while (1) { 2895 struct btrfs_ordered_extent *ordered; 2896 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2897 ordered = btrfs_lookup_first_ordered_extent(inode, 2898 off + len - 1); 2899 if ((!ordered || 2900 ordered->file_offset + ordered->len <= off || 2901 ordered->file_offset >= off + len) && 2902 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2903 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2904 if (ordered) 2905 btrfs_put_ordered_extent(ordered); 2906 break; 2907 } 2908 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2909 if (ordered) 2910 btrfs_put_ordered_extent(ordered); 2911 if (!retry_range_locking) 2912 return -EAGAIN; 2913 btrfs_wait_ordered_range(inode, off, len); 2914 } 2915 return 0; 2916 } 2917 2918 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 2919 { 2920 inode_unlock(inode1); 2921 inode_unlock(inode2); 2922 } 2923 2924 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 2925 { 2926 if (inode1 < inode2) 2927 swap(inode1, inode2); 2928 2929 inode_lock_nested(inode1, I_MUTEX_PARENT); 2930 inode_lock_nested(inode2, I_MUTEX_CHILD); 2931 } 2932 2933 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 2934 struct inode *inode2, u64 loff2, u64 len) 2935 { 2936 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2937 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2938 } 2939 2940 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 2941 struct inode *inode2, u64 loff2, u64 len, 2942 bool retry_range_locking) 2943 { 2944 int ret; 2945 2946 if (inode1 < inode2) { 2947 swap(inode1, inode2); 2948 swap(loff1, loff2); 2949 } 2950 ret = lock_extent_range(inode1, loff1, len, retry_range_locking); 2951 if (ret) 2952 return ret; 2953 ret = lock_extent_range(inode2, loff2, len, retry_range_locking); 2954 if (ret) 2955 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, 2956 loff1 + len - 1); 2957 return ret; 2958 } 2959 2960 struct cmp_pages { 2961 int num_pages; 2962 struct page **src_pages; 2963 struct page **dst_pages; 2964 }; 2965 2966 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 2967 { 2968 int i; 2969 struct page *pg; 2970 2971 for (i = 0; i < cmp->num_pages; i++) { 2972 pg = cmp->src_pages[i]; 2973 if (pg) { 2974 unlock_page(pg); 2975 put_page(pg); 2976 } 2977 pg = cmp->dst_pages[i]; 2978 if (pg) { 2979 unlock_page(pg); 2980 put_page(pg); 2981 } 2982 } 2983 kfree(cmp->src_pages); 2984 kfree(cmp->dst_pages); 2985 } 2986 2987 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 2988 struct inode *dst, u64 dst_loff, 2989 u64 len, struct cmp_pages *cmp) 2990 { 2991 int ret; 2992 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT; 2993 struct page **src_pgarr, **dst_pgarr; 2994 2995 /* 2996 * We must gather up all the pages before we initiate our 2997 * extent locking. We use an array for the page pointers. Size 2998 * of the array is bounded by len, which is in turn bounded by 2999 * BTRFS_MAX_DEDUPE_LEN. 3000 */ 3001 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3002 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3003 if (!src_pgarr || !dst_pgarr) { 3004 kfree(src_pgarr); 3005 kfree(dst_pgarr); 3006 return -ENOMEM; 3007 } 3008 cmp->num_pages = num_pages; 3009 cmp->src_pages = src_pgarr; 3010 cmp->dst_pages = dst_pgarr; 3011 3012 /* 3013 * If deduping ranges in the same inode, locking rules make it mandatory 3014 * to always lock pages in ascending order to avoid deadlocks with 3015 * concurrent tasks (such as starting writeback/delalloc). 3016 */ 3017 if (src == dst && dst_loff < loff) { 3018 swap(src_pgarr, dst_pgarr); 3019 swap(loff, dst_loff); 3020 } 3021 3022 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff); 3023 if (ret) 3024 goto out; 3025 3026 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff); 3027 3028 out: 3029 if (ret) 3030 btrfs_cmp_data_free(cmp); 3031 return 0; 3032 } 3033 3034 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp) 3035 { 3036 int ret = 0; 3037 int i; 3038 struct page *src_page, *dst_page; 3039 unsigned int cmp_len = PAGE_SIZE; 3040 void *addr, *dst_addr; 3041 3042 i = 0; 3043 while (len) { 3044 if (len < PAGE_SIZE) 3045 cmp_len = len; 3046 3047 BUG_ON(i >= cmp->num_pages); 3048 3049 src_page = cmp->src_pages[i]; 3050 dst_page = cmp->dst_pages[i]; 3051 ASSERT(PageLocked(src_page)); 3052 ASSERT(PageLocked(dst_page)); 3053 3054 addr = kmap_atomic(src_page); 3055 dst_addr = kmap_atomic(dst_page); 3056 3057 flush_dcache_page(src_page); 3058 flush_dcache_page(dst_page); 3059 3060 if (memcmp(addr, dst_addr, cmp_len)) 3061 ret = -EBADE; 3062 3063 kunmap_atomic(addr); 3064 kunmap_atomic(dst_addr); 3065 3066 if (ret) 3067 break; 3068 3069 len -= cmp_len; 3070 i++; 3071 } 3072 3073 return ret; 3074 } 3075 3076 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 3077 u64 olen) 3078 { 3079 u64 len = *plen; 3080 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 3081 3082 if (off + olen > inode->i_size || off + olen < off) 3083 return -EINVAL; 3084 3085 /* if we extend to eof, continue to block boundary */ 3086 if (off + len == inode->i_size) 3087 *plen = len = ALIGN(inode->i_size, bs) - off; 3088 3089 /* Check that we are block aligned - btrfs_clone() requires this */ 3090 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 3091 return -EINVAL; 3092 3093 return 0; 3094 } 3095 3096 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3097 struct inode *dst, u64 dst_loff) 3098 { 3099 int ret; 3100 u64 len = olen; 3101 struct cmp_pages cmp; 3102 bool same_inode = (src == dst); 3103 u64 same_lock_start = 0; 3104 u64 same_lock_len = 0; 3105 3106 if (len == 0) 3107 return 0; 3108 3109 if (same_inode) 3110 inode_lock(src); 3111 else 3112 btrfs_double_inode_lock(src, dst); 3113 3114 ret = extent_same_check_offsets(src, loff, &len, olen); 3115 if (ret) 3116 goto out_unlock; 3117 3118 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3119 if (ret) 3120 goto out_unlock; 3121 3122 if (same_inode) { 3123 /* 3124 * Single inode case wants the same checks, except we 3125 * don't want our length pushed out past i_size as 3126 * comparing that data range makes no sense. 3127 * 3128 * extent_same_check_offsets() will do this for an 3129 * unaligned length at i_size, so catch it here and 3130 * reject the request. 3131 * 3132 * This effectively means we require aligned extents 3133 * for the single-inode case, whereas the other cases 3134 * allow an unaligned length so long as it ends at 3135 * i_size. 3136 */ 3137 if (len != olen) { 3138 ret = -EINVAL; 3139 goto out_unlock; 3140 } 3141 3142 /* Check for overlapping ranges */ 3143 if (dst_loff + len > loff && dst_loff < loff + len) { 3144 ret = -EINVAL; 3145 goto out_unlock; 3146 } 3147 3148 same_lock_start = min_t(u64, loff, dst_loff); 3149 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3150 } 3151 3152 /* don't make the dst file partly checksummed */ 3153 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3154 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3155 ret = -EINVAL; 3156 goto out_unlock; 3157 } 3158 3159 again: 3160 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp); 3161 if (ret) 3162 goto out_unlock; 3163 3164 if (same_inode) 3165 ret = lock_extent_range(src, same_lock_start, same_lock_len, 3166 false); 3167 else 3168 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, 3169 false); 3170 /* 3171 * If one of the inodes has dirty pages in the respective range or 3172 * ordered extents, we need to flush dellaloc and wait for all ordered 3173 * extents in the range. We must unlock the pages and the ranges in the 3174 * io trees to avoid deadlocks when flushing delalloc (requires locking 3175 * pages) and when waiting for ordered extents to complete (they require 3176 * range locking). 3177 */ 3178 if (ret == -EAGAIN) { 3179 /* 3180 * Ranges in the io trees already unlocked. Now unlock all 3181 * pages before waiting for all IO to complete. 3182 */ 3183 btrfs_cmp_data_free(&cmp); 3184 if (same_inode) { 3185 btrfs_wait_ordered_range(src, same_lock_start, 3186 same_lock_len); 3187 } else { 3188 btrfs_wait_ordered_range(src, loff, len); 3189 btrfs_wait_ordered_range(dst, dst_loff, len); 3190 } 3191 goto again; 3192 } 3193 ASSERT(ret == 0); 3194 if (WARN_ON(ret)) { 3195 /* ranges in the io trees already unlocked */ 3196 btrfs_cmp_data_free(&cmp); 3197 return ret; 3198 } 3199 3200 /* pass original length for comparison so we stay within i_size */ 3201 ret = btrfs_cmp_data(olen, &cmp); 3202 if (ret == 0) 3203 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3204 3205 if (same_inode) 3206 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3207 same_lock_start + same_lock_len - 1); 3208 else 3209 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3210 3211 btrfs_cmp_data_free(&cmp); 3212 out_unlock: 3213 if (same_inode) 3214 inode_unlock(src); 3215 else 3216 btrfs_double_inode_unlock(src, dst); 3217 3218 return ret; 3219 } 3220 3221 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3222 3223 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen, 3224 struct file *dst_file, u64 dst_loff) 3225 { 3226 struct inode *src = file_inode(src_file); 3227 struct inode *dst = file_inode(dst_file); 3228 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3229 ssize_t res; 3230 3231 if (olen > BTRFS_MAX_DEDUPE_LEN) 3232 olen = BTRFS_MAX_DEDUPE_LEN; 3233 3234 if (WARN_ON_ONCE(bs < PAGE_SIZE)) { 3235 /* 3236 * Btrfs does not support blocksize < page_size. As a 3237 * result, btrfs_cmp_data() won't correctly handle 3238 * this situation without an update. 3239 */ 3240 return -EINVAL; 3241 } 3242 3243 res = btrfs_extent_same(src, loff, olen, dst, dst_loff); 3244 if (res) 3245 return res; 3246 return olen; 3247 } 3248 3249 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3250 struct inode *inode, 3251 u64 endoff, 3252 const u64 destoff, 3253 const u64 olen, 3254 int no_time_update) 3255 { 3256 struct btrfs_root *root = BTRFS_I(inode)->root; 3257 int ret; 3258 3259 inode_inc_iversion(inode); 3260 if (!no_time_update) 3261 inode->i_mtime = inode->i_ctime = current_time(inode); 3262 /* 3263 * We round up to the block size at eof when determining which 3264 * extents to clone above, but shouldn't round up the file size. 3265 */ 3266 if (endoff > destoff + olen) 3267 endoff = destoff + olen; 3268 if (endoff > inode->i_size) 3269 btrfs_i_size_write(BTRFS_I(inode), endoff); 3270 3271 ret = btrfs_update_inode(trans, root, inode); 3272 if (ret) { 3273 btrfs_abort_transaction(trans, ret); 3274 btrfs_end_transaction(trans); 3275 goto out; 3276 } 3277 ret = btrfs_end_transaction(trans); 3278 out: 3279 return ret; 3280 } 3281 3282 static void clone_update_extent_map(struct btrfs_inode *inode, 3283 const struct btrfs_trans_handle *trans, 3284 const struct btrfs_path *path, 3285 const u64 hole_offset, 3286 const u64 hole_len) 3287 { 3288 struct extent_map_tree *em_tree = &inode->extent_tree; 3289 struct extent_map *em; 3290 int ret; 3291 3292 em = alloc_extent_map(); 3293 if (!em) { 3294 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3295 return; 3296 } 3297 3298 if (path) { 3299 struct btrfs_file_extent_item *fi; 3300 3301 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3302 struct btrfs_file_extent_item); 3303 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3304 em->generation = -1; 3305 if (btrfs_file_extent_type(path->nodes[0], fi) == 3306 BTRFS_FILE_EXTENT_INLINE) 3307 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3308 &inode->runtime_flags); 3309 } else { 3310 em->start = hole_offset; 3311 em->len = hole_len; 3312 em->ram_bytes = em->len; 3313 em->orig_start = hole_offset; 3314 em->block_start = EXTENT_MAP_HOLE; 3315 em->block_len = 0; 3316 em->orig_block_len = 0; 3317 em->compress_type = BTRFS_COMPRESS_NONE; 3318 em->generation = trans->transid; 3319 } 3320 3321 while (1) { 3322 write_lock(&em_tree->lock); 3323 ret = add_extent_mapping(em_tree, em, 1); 3324 write_unlock(&em_tree->lock); 3325 if (ret != -EEXIST) { 3326 free_extent_map(em); 3327 break; 3328 } 3329 btrfs_drop_extent_cache(inode, em->start, 3330 em->start + em->len - 1, 0); 3331 } 3332 3333 if (ret) 3334 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3335 } 3336 3337 /* 3338 * Make sure we do not end up inserting an inline extent into a file that has 3339 * already other (non-inline) extents. If a file has an inline extent it can 3340 * not have any other extents and the (single) inline extent must start at the 3341 * file offset 0. Failing to respect these rules will lead to file corruption, 3342 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3343 * 3344 * We can have extents that have been already written to disk or we can have 3345 * dirty ranges still in delalloc, in which case the extent maps and items are 3346 * created only when we run delalloc, and the delalloc ranges might fall outside 3347 * the range we are currently locking in the inode's io tree. So we check the 3348 * inode's i_size because of that (i_size updates are done while holding the 3349 * i_mutex, which we are holding here). 3350 * We also check to see if the inode has a size not greater than "datal" but has 3351 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3352 * protected against such concurrent fallocate calls by the i_mutex). 3353 * 3354 * If the file has no extents but a size greater than datal, do not allow the 3355 * copy because we would need turn the inline extent into a non-inline one (even 3356 * with NO_HOLES enabled). If we find our destination inode only has one inline 3357 * extent, just overwrite it with the source inline extent if its size is less 3358 * than the source extent's size, or we could copy the source inline extent's 3359 * data into the destination inode's inline extent if the later is greater then 3360 * the former. 3361 */ 3362 static int clone_copy_inline_extent(struct inode *dst, 3363 struct btrfs_trans_handle *trans, 3364 struct btrfs_path *path, 3365 struct btrfs_key *new_key, 3366 const u64 drop_start, 3367 const u64 datal, 3368 const u64 skip, 3369 const u64 size, 3370 char *inline_data) 3371 { 3372 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3373 struct btrfs_root *root = BTRFS_I(dst)->root; 3374 const u64 aligned_end = ALIGN(new_key->offset + datal, 3375 fs_info->sectorsize); 3376 int ret; 3377 struct btrfs_key key; 3378 3379 if (new_key->offset > 0) 3380 return -EOPNOTSUPP; 3381 3382 key.objectid = btrfs_ino(BTRFS_I(dst)); 3383 key.type = BTRFS_EXTENT_DATA_KEY; 3384 key.offset = 0; 3385 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3386 if (ret < 0) { 3387 return ret; 3388 } else if (ret > 0) { 3389 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3390 ret = btrfs_next_leaf(root, path); 3391 if (ret < 0) 3392 return ret; 3393 else if (ret > 0) 3394 goto copy_inline_extent; 3395 } 3396 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3397 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3398 key.type == BTRFS_EXTENT_DATA_KEY) { 3399 ASSERT(key.offset > 0); 3400 return -EOPNOTSUPP; 3401 } 3402 } else if (i_size_read(dst) <= datal) { 3403 struct btrfs_file_extent_item *ei; 3404 u64 ext_len; 3405 3406 /* 3407 * If the file size is <= datal, make sure there are no other 3408 * extents following (can happen do to an fallocate call with 3409 * the flag FALLOC_FL_KEEP_SIZE). 3410 */ 3411 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3412 struct btrfs_file_extent_item); 3413 /* 3414 * If it's an inline extent, it can not have other extents 3415 * following it. 3416 */ 3417 if (btrfs_file_extent_type(path->nodes[0], ei) == 3418 BTRFS_FILE_EXTENT_INLINE) 3419 goto copy_inline_extent; 3420 3421 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3422 if (ext_len > aligned_end) 3423 return -EOPNOTSUPP; 3424 3425 ret = btrfs_next_item(root, path); 3426 if (ret < 0) { 3427 return ret; 3428 } else if (ret == 0) { 3429 btrfs_item_key_to_cpu(path->nodes[0], &key, 3430 path->slots[0]); 3431 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3432 key.type == BTRFS_EXTENT_DATA_KEY) 3433 return -EOPNOTSUPP; 3434 } 3435 } 3436 3437 copy_inline_extent: 3438 /* 3439 * We have no extent items, or we have an extent at offset 0 which may 3440 * or may not be inlined. All these cases are dealt the same way. 3441 */ 3442 if (i_size_read(dst) > datal) { 3443 /* 3444 * If the destination inode has an inline extent... 3445 * This would require copying the data from the source inline 3446 * extent into the beginning of the destination's inline extent. 3447 * But this is really complex, both extents can be compressed 3448 * or just one of them, which would require decompressing and 3449 * re-compressing data (which could increase the new compressed 3450 * size, not allowing the compressed data to fit anymore in an 3451 * inline extent). 3452 * So just don't support this case for now (it should be rare, 3453 * we are not really saving space when cloning inline extents). 3454 */ 3455 return -EOPNOTSUPP; 3456 } 3457 3458 btrfs_release_path(path); 3459 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3460 if (ret) 3461 return ret; 3462 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3463 if (ret) 3464 return ret; 3465 3466 if (skip) { 3467 const u32 start = btrfs_file_extent_calc_inline_size(0); 3468 3469 memmove(inline_data + start, inline_data + start + skip, datal); 3470 } 3471 3472 write_extent_buffer(path->nodes[0], inline_data, 3473 btrfs_item_ptr_offset(path->nodes[0], 3474 path->slots[0]), 3475 size); 3476 inode_add_bytes(dst, datal); 3477 3478 return 0; 3479 } 3480 3481 /** 3482 * btrfs_clone() - clone a range from inode file to another 3483 * 3484 * @src: Inode to clone from 3485 * @inode: Inode to clone to 3486 * @off: Offset within source to start clone from 3487 * @olen: Original length, passed by user, of range to clone 3488 * @olen_aligned: Block-aligned value of olen 3489 * @destoff: Offset within @inode to start clone 3490 * @no_time_update: Whether to update mtime/ctime on the target inode 3491 */ 3492 static int btrfs_clone(struct inode *src, struct inode *inode, 3493 const u64 off, const u64 olen, const u64 olen_aligned, 3494 const u64 destoff, int no_time_update) 3495 { 3496 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3497 struct btrfs_root *root = BTRFS_I(inode)->root; 3498 struct btrfs_path *path = NULL; 3499 struct extent_buffer *leaf; 3500 struct btrfs_trans_handle *trans; 3501 char *buf = NULL; 3502 struct btrfs_key key; 3503 u32 nritems; 3504 int slot; 3505 int ret; 3506 const u64 len = olen_aligned; 3507 u64 last_dest_end = destoff; 3508 3509 ret = -ENOMEM; 3510 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3511 if (!buf) 3512 return ret; 3513 3514 path = btrfs_alloc_path(); 3515 if (!path) { 3516 kvfree(buf); 3517 return ret; 3518 } 3519 3520 path->reada = READA_FORWARD; 3521 /* clone data */ 3522 key.objectid = btrfs_ino(BTRFS_I(src)); 3523 key.type = BTRFS_EXTENT_DATA_KEY; 3524 key.offset = off; 3525 3526 while (1) { 3527 u64 next_key_min_offset = key.offset + 1; 3528 3529 /* 3530 * note the key will change type as we walk through the 3531 * tree. 3532 */ 3533 path->leave_spinning = 1; 3534 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3535 0, 0); 3536 if (ret < 0) 3537 goto out; 3538 /* 3539 * First search, if no extent item that starts at offset off was 3540 * found but the previous item is an extent item, it's possible 3541 * it might overlap our target range, therefore process it. 3542 */ 3543 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3544 btrfs_item_key_to_cpu(path->nodes[0], &key, 3545 path->slots[0] - 1); 3546 if (key.type == BTRFS_EXTENT_DATA_KEY) 3547 path->slots[0]--; 3548 } 3549 3550 nritems = btrfs_header_nritems(path->nodes[0]); 3551 process_slot: 3552 if (path->slots[0] >= nritems) { 3553 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3554 if (ret < 0) 3555 goto out; 3556 if (ret > 0) 3557 break; 3558 nritems = btrfs_header_nritems(path->nodes[0]); 3559 } 3560 leaf = path->nodes[0]; 3561 slot = path->slots[0]; 3562 3563 btrfs_item_key_to_cpu(leaf, &key, slot); 3564 if (key.type > BTRFS_EXTENT_DATA_KEY || 3565 key.objectid != btrfs_ino(BTRFS_I(src))) 3566 break; 3567 3568 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3569 struct btrfs_file_extent_item *extent; 3570 int type; 3571 u32 size; 3572 struct btrfs_key new_key; 3573 u64 disko = 0, diskl = 0; 3574 u64 datao = 0, datal = 0; 3575 u8 comp; 3576 u64 drop_start; 3577 3578 extent = btrfs_item_ptr(leaf, slot, 3579 struct btrfs_file_extent_item); 3580 comp = btrfs_file_extent_compression(leaf, extent); 3581 type = btrfs_file_extent_type(leaf, extent); 3582 if (type == BTRFS_FILE_EXTENT_REG || 3583 type == BTRFS_FILE_EXTENT_PREALLOC) { 3584 disko = btrfs_file_extent_disk_bytenr(leaf, 3585 extent); 3586 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3587 extent); 3588 datao = btrfs_file_extent_offset(leaf, extent); 3589 datal = btrfs_file_extent_num_bytes(leaf, 3590 extent); 3591 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3592 /* take upper bound, may be compressed */ 3593 datal = btrfs_file_extent_ram_bytes(leaf, 3594 extent); 3595 } 3596 3597 /* 3598 * The first search might have left us at an extent 3599 * item that ends before our target range's start, can 3600 * happen if we have holes and NO_HOLES feature enabled. 3601 */ 3602 if (key.offset + datal <= off) { 3603 path->slots[0]++; 3604 goto process_slot; 3605 } else if (key.offset >= off + len) { 3606 break; 3607 } 3608 next_key_min_offset = key.offset + datal; 3609 size = btrfs_item_size_nr(leaf, slot); 3610 read_extent_buffer(leaf, buf, 3611 btrfs_item_ptr_offset(leaf, slot), 3612 size); 3613 3614 btrfs_release_path(path); 3615 path->leave_spinning = 0; 3616 3617 memcpy(&new_key, &key, sizeof(new_key)); 3618 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3619 if (off <= key.offset) 3620 new_key.offset = key.offset + destoff - off; 3621 else 3622 new_key.offset = destoff; 3623 3624 /* 3625 * Deal with a hole that doesn't have an extent item 3626 * that represents it (NO_HOLES feature enabled). 3627 * This hole is either in the middle of the cloning 3628 * range or at the beginning (fully overlaps it or 3629 * partially overlaps it). 3630 */ 3631 if (new_key.offset != last_dest_end) 3632 drop_start = last_dest_end; 3633 else 3634 drop_start = new_key.offset; 3635 3636 /* 3637 * 1 - adjusting old extent (we may have to split it) 3638 * 1 - add new extent 3639 * 1 - inode update 3640 */ 3641 trans = btrfs_start_transaction(root, 3); 3642 if (IS_ERR(trans)) { 3643 ret = PTR_ERR(trans); 3644 goto out; 3645 } 3646 3647 if (type == BTRFS_FILE_EXTENT_REG || 3648 type == BTRFS_FILE_EXTENT_PREALLOC) { 3649 /* 3650 * a | --- range to clone ---| b 3651 * | ------------- extent ------------- | 3652 */ 3653 3654 /* subtract range b */ 3655 if (key.offset + datal > off + len) 3656 datal = off + len - key.offset; 3657 3658 /* subtract range a */ 3659 if (off > key.offset) { 3660 datao += off - key.offset; 3661 datal -= off - key.offset; 3662 } 3663 3664 ret = btrfs_drop_extents(trans, root, inode, 3665 drop_start, 3666 new_key.offset + datal, 3667 1); 3668 if (ret) { 3669 if (ret != -EOPNOTSUPP) 3670 btrfs_abort_transaction(trans, 3671 ret); 3672 btrfs_end_transaction(trans); 3673 goto out; 3674 } 3675 3676 ret = btrfs_insert_empty_item(trans, root, path, 3677 &new_key, size); 3678 if (ret) { 3679 btrfs_abort_transaction(trans, ret); 3680 btrfs_end_transaction(trans); 3681 goto out; 3682 } 3683 3684 leaf = path->nodes[0]; 3685 slot = path->slots[0]; 3686 write_extent_buffer(leaf, buf, 3687 btrfs_item_ptr_offset(leaf, slot), 3688 size); 3689 3690 extent = btrfs_item_ptr(leaf, slot, 3691 struct btrfs_file_extent_item); 3692 3693 /* disko == 0 means it's a hole */ 3694 if (!disko) 3695 datao = 0; 3696 3697 btrfs_set_file_extent_offset(leaf, extent, 3698 datao); 3699 btrfs_set_file_extent_num_bytes(leaf, extent, 3700 datal); 3701 3702 if (disko) { 3703 inode_add_bytes(inode, datal); 3704 ret = btrfs_inc_extent_ref(trans, 3705 fs_info, 3706 disko, diskl, 0, 3707 root->root_key.objectid, 3708 btrfs_ino(BTRFS_I(inode)), 3709 new_key.offset - datao); 3710 if (ret) { 3711 btrfs_abort_transaction(trans, 3712 ret); 3713 btrfs_end_transaction(trans); 3714 goto out; 3715 3716 } 3717 } 3718 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3719 u64 skip = 0; 3720 u64 trim = 0; 3721 3722 if (off > key.offset) { 3723 skip = off - key.offset; 3724 new_key.offset += skip; 3725 } 3726 3727 if (key.offset + datal > off + len) 3728 trim = key.offset + datal - (off + len); 3729 3730 if (comp && (skip || trim)) { 3731 ret = -EINVAL; 3732 btrfs_end_transaction(trans); 3733 goto out; 3734 } 3735 size -= skip + trim; 3736 datal -= skip + trim; 3737 3738 ret = clone_copy_inline_extent(inode, 3739 trans, path, 3740 &new_key, 3741 drop_start, 3742 datal, 3743 skip, size, buf); 3744 if (ret) { 3745 if (ret != -EOPNOTSUPP) 3746 btrfs_abort_transaction(trans, 3747 ret); 3748 btrfs_end_transaction(trans); 3749 goto out; 3750 } 3751 leaf = path->nodes[0]; 3752 slot = path->slots[0]; 3753 } 3754 3755 /* If we have an implicit hole (NO_HOLES feature). */ 3756 if (drop_start < new_key.offset) 3757 clone_update_extent_map(BTRFS_I(inode), trans, 3758 NULL, drop_start, 3759 new_key.offset - drop_start); 3760 3761 clone_update_extent_map(BTRFS_I(inode), trans, 3762 path, 0, 0); 3763 3764 btrfs_mark_buffer_dirty(leaf); 3765 btrfs_release_path(path); 3766 3767 last_dest_end = ALIGN(new_key.offset + datal, 3768 fs_info->sectorsize); 3769 ret = clone_finish_inode_update(trans, inode, 3770 last_dest_end, 3771 destoff, olen, 3772 no_time_update); 3773 if (ret) 3774 goto out; 3775 if (new_key.offset + datal >= destoff + len) 3776 break; 3777 } 3778 btrfs_release_path(path); 3779 key.offset = next_key_min_offset; 3780 3781 if (fatal_signal_pending(current)) { 3782 ret = -EINTR; 3783 goto out; 3784 } 3785 } 3786 ret = 0; 3787 3788 if (last_dest_end < destoff + len) { 3789 /* 3790 * We have an implicit hole (NO_HOLES feature is enabled) that 3791 * fully or partially overlaps our cloning range at its end. 3792 */ 3793 btrfs_release_path(path); 3794 3795 /* 3796 * 1 - remove extent(s) 3797 * 1 - inode update 3798 */ 3799 trans = btrfs_start_transaction(root, 2); 3800 if (IS_ERR(trans)) { 3801 ret = PTR_ERR(trans); 3802 goto out; 3803 } 3804 ret = btrfs_drop_extents(trans, root, inode, 3805 last_dest_end, destoff + len, 1); 3806 if (ret) { 3807 if (ret != -EOPNOTSUPP) 3808 btrfs_abort_transaction(trans, ret); 3809 btrfs_end_transaction(trans); 3810 goto out; 3811 } 3812 clone_update_extent_map(BTRFS_I(inode), trans, NULL, 3813 last_dest_end, 3814 destoff + len - last_dest_end); 3815 ret = clone_finish_inode_update(trans, inode, destoff + len, 3816 destoff, olen, no_time_update); 3817 } 3818 3819 out: 3820 btrfs_free_path(path); 3821 kvfree(buf); 3822 return ret; 3823 } 3824 3825 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3826 u64 off, u64 olen, u64 destoff) 3827 { 3828 struct inode *inode = file_inode(file); 3829 struct inode *src = file_inode(file_src); 3830 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3831 struct btrfs_root *root = BTRFS_I(inode)->root; 3832 int ret; 3833 u64 len = olen; 3834 u64 bs = fs_info->sb->s_blocksize; 3835 int same_inode = src == inode; 3836 3837 /* 3838 * TODO: 3839 * - split compressed inline extents. annoying: we need to 3840 * decompress into destination's address_space (the file offset 3841 * may change, so source mapping won't do), then recompress (or 3842 * otherwise reinsert) a subrange. 3843 * 3844 * - split destination inode's inline extents. The inline extents can 3845 * be either compressed or non-compressed. 3846 */ 3847 3848 if (btrfs_root_readonly(root)) 3849 return -EROFS; 3850 3851 if (file_src->f_path.mnt != file->f_path.mnt || 3852 src->i_sb != inode->i_sb) 3853 return -EXDEV; 3854 3855 /* don't make the dst file partly checksummed */ 3856 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3857 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3858 return -EINVAL; 3859 3860 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3861 return -EISDIR; 3862 3863 if (!same_inode) { 3864 btrfs_double_inode_lock(src, inode); 3865 } else { 3866 inode_lock(src); 3867 } 3868 3869 /* determine range to clone */ 3870 ret = -EINVAL; 3871 if (off + len > src->i_size || off + len < off) 3872 goto out_unlock; 3873 if (len == 0) 3874 olen = len = src->i_size - off; 3875 /* if we extend to eof, continue to block boundary */ 3876 if (off + len == src->i_size) 3877 len = ALIGN(src->i_size, bs) - off; 3878 3879 if (len == 0) { 3880 ret = 0; 3881 goto out_unlock; 3882 } 3883 3884 /* verify the end result is block aligned */ 3885 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3886 !IS_ALIGNED(destoff, bs)) 3887 goto out_unlock; 3888 3889 /* verify if ranges are overlapped within the same file */ 3890 if (same_inode) { 3891 if (destoff + len > off && destoff < off + len) 3892 goto out_unlock; 3893 } 3894 3895 if (destoff > inode->i_size) { 3896 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3897 if (ret) 3898 goto out_unlock; 3899 } 3900 3901 /* 3902 * Lock the target range too. Right after we replace the file extent 3903 * items in the fs tree (which now point to the cloned data), we might 3904 * have a worker replace them with extent items relative to a write 3905 * operation that was issued before this clone operation (i.e. confront 3906 * with inode.c:btrfs_finish_ordered_io). 3907 */ 3908 if (same_inode) { 3909 u64 lock_start = min_t(u64, off, destoff); 3910 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3911 3912 ret = lock_extent_range(src, lock_start, lock_len, true); 3913 } else { 3914 ret = btrfs_double_extent_lock(src, off, inode, destoff, len, 3915 true); 3916 } 3917 ASSERT(ret == 0); 3918 if (WARN_ON(ret)) { 3919 /* ranges in the io trees already unlocked */ 3920 goto out_unlock; 3921 } 3922 3923 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3924 3925 if (same_inode) { 3926 u64 lock_start = min_t(u64, off, destoff); 3927 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3928 3929 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3930 } else { 3931 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3932 } 3933 /* 3934 * Truncate page cache pages so that future reads will see the cloned 3935 * data immediately and not the previous data. 3936 */ 3937 truncate_inode_pages_range(&inode->i_data, 3938 round_down(destoff, PAGE_SIZE), 3939 round_up(destoff + len, PAGE_SIZE) - 1); 3940 out_unlock: 3941 if (!same_inode) 3942 btrfs_double_inode_unlock(src, inode); 3943 else 3944 inode_unlock(src); 3945 return ret; 3946 } 3947 3948 int btrfs_clone_file_range(struct file *src_file, loff_t off, 3949 struct file *dst_file, loff_t destoff, u64 len) 3950 { 3951 return btrfs_clone_files(dst_file, src_file, off, len, destoff); 3952 } 3953 3954 /* 3955 * there are many ways the trans_start and trans_end ioctls can lead 3956 * to deadlocks. They should only be used by applications that 3957 * basically own the machine, and have a very in depth understanding 3958 * of all the possible deadlocks and enospc problems. 3959 */ 3960 static long btrfs_ioctl_trans_start(struct file *file) 3961 { 3962 struct inode *inode = file_inode(file); 3963 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3964 struct btrfs_root *root = BTRFS_I(inode)->root; 3965 struct btrfs_trans_handle *trans; 3966 struct btrfs_file_private *private; 3967 int ret; 3968 static bool warned = false; 3969 3970 ret = -EPERM; 3971 if (!capable(CAP_SYS_ADMIN)) 3972 goto out; 3973 3974 if (!warned) { 3975 btrfs_warn(fs_info, 3976 "Userspace transaction mechanism is considered " 3977 "deprecated and slated to be removed in 4.17. " 3978 "If you have a valid use case please " 3979 "speak up on the mailing list"); 3980 WARN_ON(1); 3981 warned = true; 3982 } 3983 3984 ret = -EINPROGRESS; 3985 private = file->private_data; 3986 if (private && private->trans) 3987 goto out; 3988 if (!private) { 3989 private = kzalloc(sizeof(struct btrfs_file_private), 3990 GFP_KERNEL); 3991 if (!private) 3992 return -ENOMEM; 3993 file->private_data = private; 3994 } 3995 3996 ret = -EROFS; 3997 if (btrfs_root_readonly(root)) 3998 goto out; 3999 4000 ret = mnt_want_write_file(file); 4001 if (ret) 4002 goto out; 4003 4004 atomic_inc(&fs_info->open_ioctl_trans); 4005 4006 ret = -ENOMEM; 4007 trans = btrfs_start_ioctl_transaction(root); 4008 if (IS_ERR(trans)) 4009 goto out_drop; 4010 4011 private->trans = trans; 4012 return 0; 4013 4014 out_drop: 4015 atomic_dec(&fs_info->open_ioctl_trans); 4016 mnt_drop_write_file(file); 4017 out: 4018 return ret; 4019 } 4020 4021 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4022 { 4023 struct inode *inode = file_inode(file); 4024 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4025 struct btrfs_root *root = BTRFS_I(inode)->root; 4026 struct btrfs_root *new_root; 4027 struct btrfs_dir_item *di; 4028 struct btrfs_trans_handle *trans; 4029 struct btrfs_path *path; 4030 struct btrfs_key location; 4031 struct btrfs_disk_key disk_key; 4032 u64 objectid = 0; 4033 u64 dir_id; 4034 int ret; 4035 4036 if (!capable(CAP_SYS_ADMIN)) 4037 return -EPERM; 4038 4039 ret = mnt_want_write_file(file); 4040 if (ret) 4041 return ret; 4042 4043 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4044 ret = -EFAULT; 4045 goto out; 4046 } 4047 4048 if (!objectid) 4049 objectid = BTRFS_FS_TREE_OBJECTID; 4050 4051 location.objectid = objectid; 4052 location.type = BTRFS_ROOT_ITEM_KEY; 4053 location.offset = (u64)-1; 4054 4055 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 4056 if (IS_ERR(new_root)) { 4057 ret = PTR_ERR(new_root); 4058 goto out; 4059 } 4060 4061 path = btrfs_alloc_path(); 4062 if (!path) { 4063 ret = -ENOMEM; 4064 goto out; 4065 } 4066 path->leave_spinning = 1; 4067 4068 trans = btrfs_start_transaction(root, 1); 4069 if (IS_ERR(trans)) { 4070 btrfs_free_path(path); 4071 ret = PTR_ERR(trans); 4072 goto out; 4073 } 4074 4075 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4076 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4077 dir_id, "default", 7, 1); 4078 if (IS_ERR_OR_NULL(di)) { 4079 btrfs_free_path(path); 4080 btrfs_end_transaction(trans); 4081 btrfs_err(fs_info, 4082 "Umm, you don't have the default diritem, this isn't going to work"); 4083 ret = -ENOENT; 4084 goto out; 4085 } 4086 4087 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4088 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4089 btrfs_mark_buffer_dirty(path->nodes[0]); 4090 btrfs_free_path(path); 4091 4092 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4093 btrfs_end_transaction(trans); 4094 out: 4095 mnt_drop_write_file(file); 4096 return ret; 4097 } 4098 4099 void btrfs_get_block_group_info(struct list_head *groups_list, 4100 struct btrfs_ioctl_space_info *space) 4101 { 4102 struct btrfs_block_group_cache *block_group; 4103 4104 space->total_bytes = 0; 4105 space->used_bytes = 0; 4106 space->flags = 0; 4107 list_for_each_entry(block_group, groups_list, list) { 4108 space->flags = block_group->flags; 4109 space->total_bytes += block_group->key.offset; 4110 space->used_bytes += 4111 btrfs_block_group_used(&block_group->item); 4112 } 4113 } 4114 4115 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4116 void __user *arg) 4117 { 4118 struct btrfs_ioctl_space_args space_args; 4119 struct btrfs_ioctl_space_info space; 4120 struct btrfs_ioctl_space_info *dest; 4121 struct btrfs_ioctl_space_info *dest_orig; 4122 struct btrfs_ioctl_space_info __user *user_dest; 4123 struct btrfs_space_info *info; 4124 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 4125 BTRFS_BLOCK_GROUP_SYSTEM, 4126 BTRFS_BLOCK_GROUP_METADATA, 4127 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 4128 int num_types = 4; 4129 int alloc_size; 4130 int ret = 0; 4131 u64 slot_count = 0; 4132 int i, c; 4133 4134 if (copy_from_user(&space_args, 4135 (struct btrfs_ioctl_space_args __user *)arg, 4136 sizeof(space_args))) 4137 return -EFAULT; 4138 4139 for (i = 0; i < num_types; i++) { 4140 struct btrfs_space_info *tmp; 4141 4142 info = NULL; 4143 rcu_read_lock(); 4144 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4145 list) { 4146 if (tmp->flags == types[i]) { 4147 info = tmp; 4148 break; 4149 } 4150 } 4151 rcu_read_unlock(); 4152 4153 if (!info) 4154 continue; 4155 4156 down_read(&info->groups_sem); 4157 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4158 if (!list_empty(&info->block_groups[c])) 4159 slot_count++; 4160 } 4161 up_read(&info->groups_sem); 4162 } 4163 4164 /* 4165 * Global block reserve, exported as a space_info 4166 */ 4167 slot_count++; 4168 4169 /* space_slots == 0 means they are asking for a count */ 4170 if (space_args.space_slots == 0) { 4171 space_args.total_spaces = slot_count; 4172 goto out; 4173 } 4174 4175 slot_count = min_t(u64, space_args.space_slots, slot_count); 4176 4177 alloc_size = sizeof(*dest) * slot_count; 4178 4179 /* we generally have at most 6 or so space infos, one for each raid 4180 * level. So, a whole page should be more than enough for everyone 4181 */ 4182 if (alloc_size > PAGE_SIZE) 4183 return -ENOMEM; 4184 4185 space_args.total_spaces = 0; 4186 dest = kmalloc(alloc_size, GFP_KERNEL); 4187 if (!dest) 4188 return -ENOMEM; 4189 dest_orig = dest; 4190 4191 /* now we have a buffer to copy into */ 4192 for (i = 0; i < num_types; i++) { 4193 struct btrfs_space_info *tmp; 4194 4195 if (!slot_count) 4196 break; 4197 4198 info = NULL; 4199 rcu_read_lock(); 4200 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4201 list) { 4202 if (tmp->flags == types[i]) { 4203 info = tmp; 4204 break; 4205 } 4206 } 4207 rcu_read_unlock(); 4208 4209 if (!info) 4210 continue; 4211 down_read(&info->groups_sem); 4212 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4213 if (!list_empty(&info->block_groups[c])) { 4214 btrfs_get_block_group_info( 4215 &info->block_groups[c], &space); 4216 memcpy(dest, &space, sizeof(space)); 4217 dest++; 4218 space_args.total_spaces++; 4219 slot_count--; 4220 } 4221 if (!slot_count) 4222 break; 4223 } 4224 up_read(&info->groups_sem); 4225 } 4226 4227 /* 4228 * Add global block reserve 4229 */ 4230 if (slot_count) { 4231 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4232 4233 spin_lock(&block_rsv->lock); 4234 space.total_bytes = block_rsv->size; 4235 space.used_bytes = block_rsv->size - block_rsv->reserved; 4236 spin_unlock(&block_rsv->lock); 4237 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4238 memcpy(dest, &space, sizeof(space)); 4239 space_args.total_spaces++; 4240 } 4241 4242 user_dest = (struct btrfs_ioctl_space_info __user *) 4243 (arg + sizeof(struct btrfs_ioctl_space_args)); 4244 4245 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4246 ret = -EFAULT; 4247 4248 kfree(dest_orig); 4249 out: 4250 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4251 ret = -EFAULT; 4252 4253 return ret; 4254 } 4255 4256 /* 4257 * there are many ways the trans_start and trans_end ioctls can lead 4258 * to deadlocks. They should only be used by applications that 4259 * basically own the machine, and have a very in depth understanding 4260 * of all the possible deadlocks and enospc problems. 4261 */ 4262 long btrfs_ioctl_trans_end(struct file *file) 4263 { 4264 struct inode *inode = file_inode(file); 4265 struct btrfs_root *root = BTRFS_I(inode)->root; 4266 struct btrfs_file_private *private = file->private_data; 4267 4268 if (!private || !private->trans) 4269 return -EINVAL; 4270 4271 btrfs_end_transaction(private->trans); 4272 private->trans = NULL; 4273 4274 atomic_dec(&root->fs_info->open_ioctl_trans); 4275 4276 mnt_drop_write_file(file); 4277 return 0; 4278 } 4279 4280 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4281 void __user *argp) 4282 { 4283 struct btrfs_trans_handle *trans; 4284 u64 transid; 4285 int ret; 4286 4287 trans = btrfs_attach_transaction_barrier(root); 4288 if (IS_ERR(trans)) { 4289 if (PTR_ERR(trans) != -ENOENT) 4290 return PTR_ERR(trans); 4291 4292 /* No running transaction, don't bother */ 4293 transid = root->fs_info->last_trans_committed; 4294 goto out; 4295 } 4296 transid = trans->transid; 4297 ret = btrfs_commit_transaction_async(trans, 0); 4298 if (ret) { 4299 btrfs_end_transaction(trans); 4300 return ret; 4301 } 4302 out: 4303 if (argp) 4304 if (copy_to_user(argp, &transid, sizeof(transid))) 4305 return -EFAULT; 4306 return 0; 4307 } 4308 4309 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4310 void __user *argp) 4311 { 4312 u64 transid; 4313 4314 if (argp) { 4315 if (copy_from_user(&transid, argp, sizeof(transid))) 4316 return -EFAULT; 4317 } else { 4318 transid = 0; /* current trans */ 4319 } 4320 return btrfs_wait_for_commit(fs_info, transid); 4321 } 4322 4323 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4324 { 4325 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4326 struct btrfs_ioctl_scrub_args *sa; 4327 int ret; 4328 4329 if (!capable(CAP_SYS_ADMIN)) 4330 return -EPERM; 4331 4332 sa = memdup_user(arg, sizeof(*sa)); 4333 if (IS_ERR(sa)) 4334 return PTR_ERR(sa); 4335 4336 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4337 ret = mnt_want_write_file(file); 4338 if (ret) 4339 goto out; 4340 } 4341 4342 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4343 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4344 0); 4345 4346 if (copy_to_user(arg, sa, sizeof(*sa))) 4347 ret = -EFAULT; 4348 4349 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4350 mnt_drop_write_file(file); 4351 out: 4352 kfree(sa); 4353 return ret; 4354 } 4355 4356 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4357 { 4358 if (!capable(CAP_SYS_ADMIN)) 4359 return -EPERM; 4360 4361 return btrfs_scrub_cancel(fs_info); 4362 } 4363 4364 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4365 void __user *arg) 4366 { 4367 struct btrfs_ioctl_scrub_args *sa; 4368 int ret; 4369 4370 if (!capable(CAP_SYS_ADMIN)) 4371 return -EPERM; 4372 4373 sa = memdup_user(arg, sizeof(*sa)); 4374 if (IS_ERR(sa)) 4375 return PTR_ERR(sa); 4376 4377 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4378 4379 if (copy_to_user(arg, sa, sizeof(*sa))) 4380 ret = -EFAULT; 4381 4382 kfree(sa); 4383 return ret; 4384 } 4385 4386 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4387 void __user *arg) 4388 { 4389 struct btrfs_ioctl_get_dev_stats *sa; 4390 int ret; 4391 4392 sa = memdup_user(arg, sizeof(*sa)); 4393 if (IS_ERR(sa)) 4394 return PTR_ERR(sa); 4395 4396 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4397 kfree(sa); 4398 return -EPERM; 4399 } 4400 4401 ret = btrfs_get_dev_stats(fs_info, sa); 4402 4403 if (copy_to_user(arg, sa, sizeof(*sa))) 4404 ret = -EFAULT; 4405 4406 kfree(sa); 4407 return ret; 4408 } 4409 4410 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4411 void __user *arg) 4412 { 4413 struct btrfs_ioctl_dev_replace_args *p; 4414 int ret; 4415 4416 if (!capable(CAP_SYS_ADMIN)) 4417 return -EPERM; 4418 4419 p = memdup_user(arg, sizeof(*p)); 4420 if (IS_ERR(p)) 4421 return PTR_ERR(p); 4422 4423 switch (p->cmd) { 4424 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4425 if (fs_info->sb->s_flags & MS_RDONLY) { 4426 ret = -EROFS; 4427 goto out; 4428 } 4429 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4430 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4431 } else { 4432 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4433 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4434 } 4435 break; 4436 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4437 btrfs_dev_replace_status(fs_info, p); 4438 ret = 0; 4439 break; 4440 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4441 ret = btrfs_dev_replace_cancel(fs_info, p); 4442 break; 4443 default: 4444 ret = -EINVAL; 4445 break; 4446 } 4447 4448 if (copy_to_user(arg, p, sizeof(*p))) 4449 ret = -EFAULT; 4450 out: 4451 kfree(p); 4452 return ret; 4453 } 4454 4455 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4456 { 4457 int ret = 0; 4458 int i; 4459 u64 rel_ptr; 4460 int size; 4461 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4462 struct inode_fs_paths *ipath = NULL; 4463 struct btrfs_path *path; 4464 4465 if (!capable(CAP_DAC_READ_SEARCH)) 4466 return -EPERM; 4467 4468 path = btrfs_alloc_path(); 4469 if (!path) { 4470 ret = -ENOMEM; 4471 goto out; 4472 } 4473 4474 ipa = memdup_user(arg, sizeof(*ipa)); 4475 if (IS_ERR(ipa)) { 4476 ret = PTR_ERR(ipa); 4477 ipa = NULL; 4478 goto out; 4479 } 4480 4481 size = min_t(u32, ipa->size, 4096); 4482 ipath = init_ipath(size, root, path); 4483 if (IS_ERR(ipath)) { 4484 ret = PTR_ERR(ipath); 4485 ipath = NULL; 4486 goto out; 4487 } 4488 4489 ret = paths_from_inode(ipa->inum, ipath); 4490 if (ret < 0) 4491 goto out; 4492 4493 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4494 rel_ptr = ipath->fspath->val[i] - 4495 (u64)(unsigned long)ipath->fspath->val; 4496 ipath->fspath->val[i] = rel_ptr; 4497 } 4498 4499 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4500 (void *)(unsigned long)ipath->fspath, size); 4501 if (ret) { 4502 ret = -EFAULT; 4503 goto out; 4504 } 4505 4506 out: 4507 btrfs_free_path(path); 4508 free_ipath(ipath); 4509 kfree(ipa); 4510 4511 return ret; 4512 } 4513 4514 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4515 { 4516 struct btrfs_data_container *inodes = ctx; 4517 const size_t c = 3 * sizeof(u64); 4518 4519 if (inodes->bytes_left >= c) { 4520 inodes->bytes_left -= c; 4521 inodes->val[inodes->elem_cnt] = inum; 4522 inodes->val[inodes->elem_cnt + 1] = offset; 4523 inodes->val[inodes->elem_cnt + 2] = root; 4524 inodes->elem_cnt += 3; 4525 } else { 4526 inodes->bytes_missing += c - inodes->bytes_left; 4527 inodes->bytes_left = 0; 4528 inodes->elem_missed += 3; 4529 } 4530 4531 return 0; 4532 } 4533 4534 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4535 void __user *arg) 4536 { 4537 int ret = 0; 4538 int size; 4539 struct btrfs_ioctl_logical_ino_args *loi; 4540 struct btrfs_data_container *inodes = NULL; 4541 struct btrfs_path *path = NULL; 4542 4543 if (!capable(CAP_SYS_ADMIN)) 4544 return -EPERM; 4545 4546 loi = memdup_user(arg, sizeof(*loi)); 4547 if (IS_ERR(loi)) 4548 return PTR_ERR(loi); 4549 4550 path = btrfs_alloc_path(); 4551 if (!path) { 4552 ret = -ENOMEM; 4553 goto out; 4554 } 4555 4556 size = min_t(u32, loi->size, SZ_64K); 4557 inodes = init_data_container(size); 4558 if (IS_ERR(inodes)) { 4559 ret = PTR_ERR(inodes); 4560 inodes = NULL; 4561 goto out; 4562 } 4563 4564 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4565 build_ino_list, inodes); 4566 if (ret == -EINVAL) 4567 ret = -ENOENT; 4568 if (ret < 0) 4569 goto out; 4570 4571 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4572 (void *)(unsigned long)inodes, size); 4573 if (ret) 4574 ret = -EFAULT; 4575 4576 out: 4577 btrfs_free_path(path); 4578 kvfree(inodes); 4579 kfree(loi); 4580 4581 return ret; 4582 } 4583 4584 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4585 struct btrfs_ioctl_balance_args *bargs) 4586 { 4587 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4588 4589 bargs->flags = bctl->flags; 4590 4591 if (atomic_read(&fs_info->balance_running)) 4592 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4593 if (atomic_read(&fs_info->balance_pause_req)) 4594 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4595 if (atomic_read(&fs_info->balance_cancel_req)) 4596 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4597 4598 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4599 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4600 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4601 4602 if (lock) { 4603 spin_lock(&fs_info->balance_lock); 4604 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4605 spin_unlock(&fs_info->balance_lock); 4606 } else { 4607 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4608 } 4609 } 4610 4611 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4612 { 4613 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4614 struct btrfs_fs_info *fs_info = root->fs_info; 4615 struct btrfs_ioctl_balance_args *bargs; 4616 struct btrfs_balance_control *bctl; 4617 bool need_unlock; /* for mut. excl. ops lock */ 4618 int ret; 4619 4620 if (!capable(CAP_SYS_ADMIN)) 4621 return -EPERM; 4622 4623 ret = mnt_want_write_file(file); 4624 if (ret) 4625 return ret; 4626 4627 again: 4628 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4629 mutex_lock(&fs_info->volume_mutex); 4630 mutex_lock(&fs_info->balance_mutex); 4631 need_unlock = true; 4632 goto locked; 4633 } 4634 4635 /* 4636 * mut. excl. ops lock is locked. Three possibilities: 4637 * (1) some other op is running 4638 * (2) balance is running 4639 * (3) balance is paused -- special case (think resume) 4640 */ 4641 mutex_lock(&fs_info->balance_mutex); 4642 if (fs_info->balance_ctl) { 4643 /* this is either (2) or (3) */ 4644 if (!atomic_read(&fs_info->balance_running)) { 4645 mutex_unlock(&fs_info->balance_mutex); 4646 if (!mutex_trylock(&fs_info->volume_mutex)) 4647 goto again; 4648 mutex_lock(&fs_info->balance_mutex); 4649 4650 if (fs_info->balance_ctl && 4651 !atomic_read(&fs_info->balance_running)) { 4652 /* this is (3) */ 4653 need_unlock = false; 4654 goto locked; 4655 } 4656 4657 mutex_unlock(&fs_info->balance_mutex); 4658 mutex_unlock(&fs_info->volume_mutex); 4659 goto again; 4660 } else { 4661 /* this is (2) */ 4662 mutex_unlock(&fs_info->balance_mutex); 4663 ret = -EINPROGRESS; 4664 goto out; 4665 } 4666 } else { 4667 /* this is (1) */ 4668 mutex_unlock(&fs_info->balance_mutex); 4669 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4670 goto out; 4671 } 4672 4673 locked: 4674 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4675 4676 if (arg) { 4677 bargs = memdup_user(arg, sizeof(*bargs)); 4678 if (IS_ERR(bargs)) { 4679 ret = PTR_ERR(bargs); 4680 goto out_unlock; 4681 } 4682 4683 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4684 if (!fs_info->balance_ctl) { 4685 ret = -ENOTCONN; 4686 goto out_bargs; 4687 } 4688 4689 bctl = fs_info->balance_ctl; 4690 spin_lock(&fs_info->balance_lock); 4691 bctl->flags |= BTRFS_BALANCE_RESUME; 4692 spin_unlock(&fs_info->balance_lock); 4693 4694 goto do_balance; 4695 } 4696 } else { 4697 bargs = NULL; 4698 } 4699 4700 if (fs_info->balance_ctl) { 4701 ret = -EINPROGRESS; 4702 goto out_bargs; 4703 } 4704 4705 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4706 if (!bctl) { 4707 ret = -ENOMEM; 4708 goto out_bargs; 4709 } 4710 4711 bctl->fs_info = fs_info; 4712 if (arg) { 4713 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4714 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4715 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4716 4717 bctl->flags = bargs->flags; 4718 } else { 4719 /* balance everything - no filters */ 4720 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4721 } 4722 4723 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4724 ret = -EINVAL; 4725 goto out_bctl; 4726 } 4727 4728 do_balance: 4729 /* 4730 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP 4731 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4732 * or, if restriper was paused all the way until unmount, in 4733 * free_fs_info. The flag is cleared in __cancel_balance. 4734 */ 4735 need_unlock = false; 4736 4737 ret = btrfs_balance(bctl, bargs); 4738 bctl = NULL; 4739 4740 if (arg) { 4741 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4742 ret = -EFAULT; 4743 } 4744 4745 out_bctl: 4746 kfree(bctl); 4747 out_bargs: 4748 kfree(bargs); 4749 out_unlock: 4750 mutex_unlock(&fs_info->balance_mutex); 4751 mutex_unlock(&fs_info->volume_mutex); 4752 if (need_unlock) 4753 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4754 out: 4755 mnt_drop_write_file(file); 4756 return ret; 4757 } 4758 4759 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4760 { 4761 if (!capable(CAP_SYS_ADMIN)) 4762 return -EPERM; 4763 4764 switch (cmd) { 4765 case BTRFS_BALANCE_CTL_PAUSE: 4766 return btrfs_pause_balance(fs_info); 4767 case BTRFS_BALANCE_CTL_CANCEL: 4768 return btrfs_cancel_balance(fs_info); 4769 } 4770 4771 return -EINVAL; 4772 } 4773 4774 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4775 void __user *arg) 4776 { 4777 struct btrfs_ioctl_balance_args *bargs; 4778 int ret = 0; 4779 4780 if (!capable(CAP_SYS_ADMIN)) 4781 return -EPERM; 4782 4783 mutex_lock(&fs_info->balance_mutex); 4784 if (!fs_info->balance_ctl) { 4785 ret = -ENOTCONN; 4786 goto out; 4787 } 4788 4789 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4790 if (!bargs) { 4791 ret = -ENOMEM; 4792 goto out; 4793 } 4794 4795 update_ioctl_balance_args(fs_info, 1, bargs); 4796 4797 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4798 ret = -EFAULT; 4799 4800 kfree(bargs); 4801 out: 4802 mutex_unlock(&fs_info->balance_mutex); 4803 return ret; 4804 } 4805 4806 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4807 { 4808 struct inode *inode = file_inode(file); 4809 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4810 struct btrfs_ioctl_quota_ctl_args *sa; 4811 struct btrfs_trans_handle *trans = NULL; 4812 int ret; 4813 int err; 4814 4815 if (!capable(CAP_SYS_ADMIN)) 4816 return -EPERM; 4817 4818 ret = mnt_want_write_file(file); 4819 if (ret) 4820 return ret; 4821 4822 sa = memdup_user(arg, sizeof(*sa)); 4823 if (IS_ERR(sa)) { 4824 ret = PTR_ERR(sa); 4825 goto drop_write; 4826 } 4827 4828 down_write(&fs_info->subvol_sem); 4829 trans = btrfs_start_transaction(fs_info->tree_root, 2); 4830 if (IS_ERR(trans)) { 4831 ret = PTR_ERR(trans); 4832 goto out; 4833 } 4834 4835 switch (sa->cmd) { 4836 case BTRFS_QUOTA_CTL_ENABLE: 4837 ret = btrfs_quota_enable(trans, fs_info); 4838 break; 4839 case BTRFS_QUOTA_CTL_DISABLE: 4840 ret = btrfs_quota_disable(trans, fs_info); 4841 break; 4842 default: 4843 ret = -EINVAL; 4844 break; 4845 } 4846 4847 err = btrfs_commit_transaction(trans); 4848 if (err && !ret) 4849 ret = err; 4850 out: 4851 kfree(sa); 4852 up_write(&fs_info->subvol_sem); 4853 drop_write: 4854 mnt_drop_write_file(file); 4855 return ret; 4856 } 4857 4858 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4859 { 4860 struct inode *inode = file_inode(file); 4861 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4862 struct btrfs_root *root = BTRFS_I(inode)->root; 4863 struct btrfs_ioctl_qgroup_assign_args *sa; 4864 struct btrfs_trans_handle *trans; 4865 int ret; 4866 int err; 4867 4868 if (!capable(CAP_SYS_ADMIN)) 4869 return -EPERM; 4870 4871 ret = mnt_want_write_file(file); 4872 if (ret) 4873 return ret; 4874 4875 sa = memdup_user(arg, sizeof(*sa)); 4876 if (IS_ERR(sa)) { 4877 ret = PTR_ERR(sa); 4878 goto drop_write; 4879 } 4880 4881 trans = btrfs_join_transaction(root); 4882 if (IS_ERR(trans)) { 4883 ret = PTR_ERR(trans); 4884 goto out; 4885 } 4886 4887 if (sa->assign) { 4888 ret = btrfs_add_qgroup_relation(trans, fs_info, 4889 sa->src, sa->dst); 4890 } else { 4891 ret = btrfs_del_qgroup_relation(trans, fs_info, 4892 sa->src, sa->dst); 4893 } 4894 4895 /* update qgroup status and info */ 4896 err = btrfs_run_qgroups(trans, fs_info); 4897 if (err < 0) 4898 btrfs_handle_fs_error(fs_info, err, 4899 "failed to update qgroup status and info"); 4900 err = btrfs_end_transaction(trans); 4901 if (err && !ret) 4902 ret = err; 4903 4904 out: 4905 kfree(sa); 4906 drop_write: 4907 mnt_drop_write_file(file); 4908 return ret; 4909 } 4910 4911 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4912 { 4913 struct inode *inode = file_inode(file); 4914 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4915 struct btrfs_root *root = BTRFS_I(inode)->root; 4916 struct btrfs_ioctl_qgroup_create_args *sa; 4917 struct btrfs_trans_handle *trans; 4918 int ret; 4919 int err; 4920 4921 if (!capable(CAP_SYS_ADMIN)) 4922 return -EPERM; 4923 4924 ret = mnt_want_write_file(file); 4925 if (ret) 4926 return ret; 4927 4928 sa = memdup_user(arg, sizeof(*sa)); 4929 if (IS_ERR(sa)) { 4930 ret = PTR_ERR(sa); 4931 goto drop_write; 4932 } 4933 4934 if (!sa->qgroupid) { 4935 ret = -EINVAL; 4936 goto out; 4937 } 4938 4939 trans = btrfs_join_transaction(root); 4940 if (IS_ERR(trans)) { 4941 ret = PTR_ERR(trans); 4942 goto out; 4943 } 4944 4945 if (sa->create) { 4946 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid); 4947 } else { 4948 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid); 4949 } 4950 4951 err = btrfs_end_transaction(trans); 4952 if (err && !ret) 4953 ret = err; 4954 4955 out: 4956 kfree(sa); 4957 drop_write: 4958 mnt_drop_write_file(file); 4959 return ret; 4960 } 4961 4962 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4963 { 4964 struct inode *inode = file_inode(file); 4965 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4966 struct btrfs_root *root = BTRFS_I(inode)->root; 4967 struct btrfs_ioctl_qgroup_limit_args *sa; 4968 struct btrfs_trans_handle *trans; 4969 int ret; 4970 int err; 4971 u64 qgroupid; 4972 4973 if (!capable(CAP_SYS_ADMIN)) 4974 return -EPERM; 4975 4976 ret = mnt_want_write_file(file); 4977 if (ret) 4978 return ret; 4979 4980 sa = memdup_user(arg, sizeof(*sa)); 4981 if (IS_ERR(sa)) { 4982 ret = PTR_ERR(sa); 4983 goto drop_write; 4984 } 4985 4986 trans = btrfs_join_transaction(root); 4987 if (IS_ERR(trans)) { 4988 ret = PTR_ERR(trans); 4989 goto out; 4990 } 4991 4992 qgroupid = sa->qgroupid; 4993 if (!qgroupid) { 4994 /* take the current subvol as qgroup */ 4995 qgroupid = root->root_key.objectid; 4996 } 4997 4998 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim); 4999 5000 err = btrfs_end_transaction(trans); 5001 if (err && !ret) 5002 ret = err; 5003 5004 out: 5005 kfree(sa); 5006 drop_write: 5007 mnt_drop_write_file(file); 5008 return ret; 5009 } 5010 5011 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5012 { 5013 struct inode *inode = file_inode(file); 5014 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5015 struct btrfs_ioctl_quota_rescan_args *qsa; 5016 int ret; 5017 5018 if (!capable(CAP_SYS_ADMIN)) 5019 return -EPERM; 5020 5021 ret = mnt_want_write_file(file); 5022 if (ret) 5023 return ret; 5024 5025 qsa = memdup_user(arg, sizeof(*qsa)); 5026 if (IS_ERR(qsa)) { 5027 ret = PTR_ERR(qsa); 5028 goto drop_write; 5029 } 5030 5031 if (qsa->flags) { 5032 ret = -EINVAL; 5033 goto out; 5034 } 5035 5036 ret = btrfs_qgroup_rescan(fs_info); 5037 5038 out: 5039 kfree(qsa); 5040 drop_write: 5041 mnt_drop_write_file(file); 5042 return ret; 5043 } 5044 5045 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5046 { 5047 struct inode *inode = file_inode(file); 5048 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5049 struct btrfs_ioctl_quota_rescan_args *qsa; 5050 int ret = 0; 5051 5052 if (!capable(CAP_SYS_ADMIN)) 5053 return -EPERM; 5054 5055 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5056 if (!qsa) 5057 return -ENOMEM; 5058 5059 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5060 qsa->flags = 1; 5061 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 5062 } 5063 5064 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5065 ret = -EFAULT; 5066 5067 kfree(qsa); 5068 return ret; 5069 } 5070 5071 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5072 { 5073 struct inode *inode = file_inode(file); 5074 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5075 5076 if (!capable(CAP_SYS_ADMIN)) 5077 return -EPERM; 5078 5079 return btrfs_qgroup_wait_for_completion(fs_info, true); 5080 } 5081 5082 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5083 struct btrfs_ioctl_received_subvol_args *sa) 5084 { 5085 struct inode *inode = file_inode(file); 5086 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5087 struct btrfs_root *root = BTRFS_I(inode)->root; 5088 struct btrfs_root_item *root_item = &root->root_item; 5089 struct btrfs_trans_handle *trans; 5090 struct timespec ct = current_time(inode); 5091 int ret = 0; 5092 int received_uuid_changed; 5093 5094 if (!inode_owner_or_capable(inode)) 5095 return -EPERM; 5096 5097 ret = mnt_want_write_file(file); 5098 if (ret < 0) 5099 return ret; 5100 5101 down_write(&fs_info->subvol_sem); 5102 5103 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5104 ret = -EINVAL; 5105 goto out; 5106 } 5107 5108 if (btrfs_root_readonly(root)) { 5109 ret = -EROFS; 5110 goto out; 5111 } 5112 5113 /* 5114 * 1 - root item 5115 * 2 - uuid items (received uuid + subvol uuid) 5116 */ 5117 trans = btrfs_start_transaction(root, 3); 5118 if (IS_ERR(trans)) { 5119 ret = PTR_ERR(trans); 5120 trans = NULL; 5121 goto out; 5122 } 5123 5124 sa->rtransid = trans->transid; 5125 sa->rtime.sec = ct.tv_sec; 5126 sa->rtime.nsec = ct.tv_nsec; 5127 5128 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5129 BTRFS_UUID_SIZE); 5130 if (received_uuid_changed && 5131 !btrfs_is_empty_uuid(root_item->received_uuid)) 5132 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid, 5133 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5134 root->root_key.objectid); 5135 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5136 btrfs_set_root_stransid(root_item, sa->stransid); 5137 btrfs_set_root_rtransid(root_item, sa->rtransid); 5138 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5139 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5140 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5141 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5142 5143 ret = btrfs_update_root(trans, fs_info->tree_root, 5144 &root->root_key, &root->root_item); 5145 if (ret < 0) { 5146 btrfs_end_transaction(trans); 5147 goto out; 5148 } 5149 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5150 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid, 5151 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5152 root->root_key.objectid); 5153 if (ret < 0 && ret != -EEXIST) { 5154 btrfs_abort_transaction(trans, ret); 5155 goto out; 5156 } 5157 } 5158 ret = btrfs_commit_transaction(trans); 5159 if (ret < 0) { 5160 btrfs_abort_transaction(trans, ret); 5161 goto out; 5162 } 5163 5164 out: 5165 up_write(&fs_info->subvol_sem); 5166 mnt_drop_write_file(file); 5167 return ret; 5168 } 5169 5170 #ifdef CONFIG_64BIT 5171 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5172 void __user *arg) 5173 { 5174 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5175 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5176 int ret = 0; 5177 5178 args32 = memdup_user(arg, sizeof(*args32)); 5179 if (IS_ERR(args32)) 5180 return PTR_ERR(args32); 5181 5182 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5183 if (!args64) { 5184 ret = -ENOMEM; 5185 goto out; 5186 } 5187 5188 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5189 args64->stransid = args32->stransid; 5190 args64->rtransid = args32->rtransid; 5191 args64->stime.sec = args32->stime.sec; 5192 args64->stime.nsec = args32->stime.nsec; 5193 args64->rtime.sec = args32->rtime.sec; 5194 args64->rtime.nsec = args32->rtime.nsec; 5195 args64->flags = args32->flags; 5196 5197 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5198 if (ret) 5199 goto out; 5200 5201 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5202 args32->stransid = args64->stransid; 5203 args32->rtransid = args64->rtransid; 5204 args32->stime.sec = args64->stime.sec; 5205 args32->stime.nsec = args64->stime.nsec; 5206 args32->rtime.sec = args64->rtime.sec; 5207 args32->rtime.nsec = args64->rtime.nsec; 5208 args32->flags = args64->flags; 5209 5210 ret = copy_to_user(arg, args32, sizeof(*args32)); 5211 if (ret) 5212 ret = -EFAULT; 5213 5214 out: 5215 kfree(args32); 5216 kfree(args64); 5217 return ret; 5218 } 5219 #endif 5220 5221 static long btrfs_ioctl_set_received_subvol(struct file *file, 5222 void __user *arg) 5223 { 5224 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5225 int ret = 0; 5226 5227 sa = memdup_user(arg, sizeof(*sa)); 5228 if (IS_ERR(sa)) 5229 return PTR_ERR(sa); 5230 5231 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5232 5233 if (ret) 5234 goto out; 5235 5236 ret = copy_to_user(arg, sa, sizeof(*sa)); 5237 if (ret) 5238 ret = -EFAULT; 5239 5240 out: 5241 kfree(sa); 5242 return ret; 5243 } 5244 5245 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5246 { 5247 struct inode *inode = file_inode(file); 5248 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5249 size_t len; 5250 int ret; 5251 char label[BTRFS_LABEL_SIZE]; 5252 5253 spin_lock(&fs_info->super_lock); 5254 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5255 spin_unlock(&fs_info->super_lock); 5256 5257 len = strnlen(label, BTRFS_LABEL_SIZE); 5258 5259 if (len == BTRFS_LABEL_SIZE) { 5260 btrfs_warn(fs_info, 5261 "label is too long, return the first %zu bytes", 5262 --len); 5263 } 5264 5265 ret = copy_to_user(arg, label, len); 5266 5267 return ret ? -EFAULT : 0; 5268 } 5269 5270 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5271 { 5272 struct inode *inode = file_inode(file); 5273 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5274 struct btrfs_root *root = BTRFS_I(inode)->root; 5275 struct btrfs_super_block *super_block = fs_info->super_copy; 5276 struct btrfs_trans_handle *trans; 5277 char label[BTRFS_LABEL_SIZE]; 5278 int ret; 5279 5280 if (!capable(CAP_SYS_ADMIN)) 5281 return -EPERM; 5282 5283 if (copy_from_user(label, arg, sizeof(label))) 5284 return -EFAULT; 5285 5286 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5287 btrfs_err(fs_info, 5288 "unable to set label with more than %d bytes", 5289 BTRFS_LABEL_SIZE - 1); 5290 return -EINVAL; 5291 } 5292 5293 ret = mnt_want_write_file(file); 5294 if (ret) 5295 return ret; 5296 5297 trans = btrfs_start_transaction(root, 0); 5298 if (IS_ERR(trans)) { 5299 ret = PTR_ERR(trans); 5300 goto out_unlock; 5301 } 5302 5303 spin_lock(&fs_info->super_lock); 5304 strcpy(super_block->label, label); 5305 spin_unlock(&fs_info->super_lock); 5306 ret = btrfs_commit_transaction(trans); 5307 5308 out_unlock: 5309 mnt_drop_write_file(file); 5310 return ret; 5311 } 5312 5313 #define INIT_FEATURE_FLAGS(suffix) \ 5314 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5315 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5316 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5317 5318 int btrfs_ioctl_get_supported_features(void __user *arg) 5319 { 5320 static const struct btrfs_ioctl_feature_flags features[3] = { 5321 INIT_FEATURE_FLAGS(SUPP), 5322 INIT_FEATURE_FLAGS(SAFE_SET), 5323 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5324 }; 5325 5326 if (copy_to_user(arg, &features, sizeof(features))) 5327 return -EFAULT; 5328 5329 return 0; 5330 } 5331 5332 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5333 { 5334 struct inode *inode = file_inode(file); 5335 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5336 struct btrfs_super_block *super_block = fs_info->super_copy; 5337 struct btrfs_ioctl_feature_flags features; 5338 5339 features.compat_flags = btrfs_super_compat_flags(super_block); 5340 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5341 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5342 5343 if (copy_to_user(arg, &features, sizeof(features))) 5344 return -EFAULT; 5345 5346 return 0; 5347 } 5348 5349 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5350 enum btrfs_feature_set set, 5351 u64 change_mask, u64 flags, u64 supported_flags, 5352 u64 safe_set, u64 safe_clear) 5353 { 5354 const char *type = btrfs_feature_set_names[set]; 5355 char *names; 5356 u64 disallowed, unsupported; 5357 u64 set_mask = flags & change_mask; 5358 u64 clear_mask = ~flags & change_mask; 5359 5360 unsupported = set_mask & ~supported_flags; 5361 if (unsupported) { 5362 names = btrfs_printable_features(set, unsupported); 5363 if (names) { 5364 btrfs_warn(fs_info, 5365 "this kernel does not support the %s feature bit%s", 5366 names, strchr(names, ',') ? "s" : ""); 5367 kfree(names); 5368 } else 5369 btrfs_warn(fs_info, 5370 "this kernel does not support %s bits 0x%llx", 5371 type, unsupported); 5372 return -EOPNOTSUPP; 5373 } 5374 5375 disallowed = set_mask & ~safe_set; 5376 if (disallowed) { 5377 names = btrfs_printable_features(set, disallowed); 5378 if (names) { 5379 btrfs_warn(fs_info, 5380 "can't set the %s feature bit%s while mounted", 5381 names, strchr(names, ',') ? "s" : ""); 5382 kfree(names); 5383 } else 5384 btrfs_warn(fs_info, 5385 "can't set %s bits 0x%llx while mounted", 5386 type, disallowed); 5387 return -EPERM; 5388 } 5389 5390 disallowed = clear_mask & ~safe_clear; 5391 if (disallowed) { 5392 names = btrfs_printable_features(set, disallowed); 5393 if (names) { 5394 btrfs_warn(fs_info, 5395 "can't clear the %s feature bit%s while mounted", 5396 names, strchr(names, ',') ? "s" : ""); 5397 kfree(names); 5398 } else 5399 btrfs_warn(fs_info, 5400 "can't clear %s bits 0x%llx while mounted", 5401 type, disallowed); 5402 return -EPERM; 5403 } 5404 5405 return 0; 5406 } 5407 5408 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5409 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5410 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5411 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5412 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5413 5414 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5415 { 5416 struct inode *inode = file_inode(file); 5417 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5418 struct btrfs_root *root = BTRFS_I(inode)->root; 5419 struct btrfs_super_block *super_block = fs_info->super_copy; 5420 struct btrfs_ioctl_feature_flags flags[2]; 5421 struct btrfs_trans_handle *trans; 5422 u64 newflags; 5423 int ret; 5424 5425 if (!capable(CAP_SYS_ADMIN)) 5426 return -EPERM; 5427 5428 if (copy_from_user(flags, arg, sizeof(flags))) 5429 return -EFAULT; 5430 5431 /* Nothing to do */ 5432 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5433 !flags[0].incompat_flags) 5434 return 0; 5435 5436 ret = check_feature(fs_info, flags[0].compat_flags, 5437 flags[1].compat_flags, COMPAT); 5438 if (ret) 5439 return ret; 5440 5441 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5442 flags[1].compat_ro_flags, COMPAT_RO); 5443 if (ret) 5444 return ret; 5445 5446 ret = check_feature(fs_info, flags[0].incompat_flags, 5447 flags[1].incompat_flags, INCOMPAT); 5448 if (ret) 5449 return ret; 5450 5451 ret = mnt_want_write_file(file); 5452 if (ret) 5453 return ret; 5454 5455 trans = btrfs_start_transaction(root, 0); 5456 if (IS_ERR(trans)) { 5457 ret = PTR_ERR(trans); 5458 goto out_drop_write; 5459 } 5460 5461 spin_lock(&fs_info->super_lock); 5462 newflags = btrfs_super_compat_flags(super_block); 5463 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5464 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5465 btrfs_set_super_compat_flags(super_block, newflags); 5466 5467 newflags = btrfs_super_compat_ro_flags(super_block); 5468 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5469 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5470 btrfs_set_super_compat_ro_flags(super_block, newflags); 5471 5472 newflags = btrfs_super_incompat_flags(super_block); 5473 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5474 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5475 btrfs_set_super_incompat_flags(super_block, newflags); 5476 spin_unlock(&fs_info->super_lock); 5477 5478 ret = btrfs_commit_transaction(trans); 5479 out_drop_write: 5480 mnt_drop_write_file(file); 5481 5482 return ret; 5483 } 5484 5485 long btrfs_ioctl(struct file *file, unsigned int 5486 cmd, unsigned long arg) 5487 { 5488 struct inode *inode = file_inode(file); 5489 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5490 struct btrfs_root *root = BTRFS_I(inode)->root; 5491 void __user *argp = (void __user *)arg; 5492 5493 switch (cmd) { 5494 case FS_IOC_GETFLAGS: 5495 return btrfs_ioctl_getflags(file, argp); 5496 case FS_IOC_SETFLAGS: 5497 return btrfs_ioctl_setflags(file, argp); 5498 case FS_IOC_GETVERSION: 5499 return btrfs_ioctl_getversion(file, argp); 5500 case FITRIM: 5501 return btrfs_ioctl_fitrim(file, argp); 5502 case BTRFS_IOC_SNAP_CREATE: 5503 return btrfs_ioctl_snap_create(file, argp, 0); 5504 case BTRFS_IOC_SNAP_CREATE_V2: 5505 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5506 case BTRFS_IOC_SUBVOL_CREATE: 5507 return btrfs_ioctl_snap_create(file, argp, 1); 5508 case BTRFS_IOC_SUBVOL_CREATE_V2: 5509 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5510 case BTRFS_IOC_SNAP_DESTROY: 5511 return btrfs_ioctl_snap_destroy(file, argp); 5512 case BTRFS_IOC_SUBVOL_GETFLAGS: 5513 return btrfs_ioctl_subvol_getflags(file, argp); 5514 case BTRFS_IOC_SUBVOL_SETFLAGS: 5515 return btrfs_ioctl_subvol_setflags(file, argp); 5516 case BTRFS_IOC_DEFAULT_SUBVOL: 5517 return btrfs_ioctl_default_subvol(file, argp); 5518 case BTRFS_IOC_DEFRAG: 5519 return btrfs_ioctl_defrag(file, NULL); 5520 case BTRFS_IOC_DEFRAG_RANGE: 5521 return btrfs_ioctl_defrag(file, argp); 5522 case BTRFS_IOC_RESIZE: 5523 return btrfs_ioctl_resize(file, argp); 5524 case BTRFS_IOC_ADD_DEV: 5525 return btrfs_ioctl_add_dev(fs_info, argp); 5526 case BTRFS_IOC_RM_DEV: 5527 return btrfs_ioctl_rm_dev(file, argp); 5528 case BTRFS_IOC_RM_DEV_V2: 5529 return btrfs_ioctl_rm_dev_v2(file, argp); 5530 case BTRFS_IOC_FS_INFO: 5531 return btrfs_ioctl_fs_info(fs_info, argp); 5532 case BTRFS_IOC_DEV_INFO: 5533 return btrfs_ioctl_dev_info(fs_info, argp); 5534 case BTRFS_IOC_BALANCE: 5535 return btrfs_ioctl_balance(file, NULL); 5536 case BTRFS_IOC_TRANS_START: 5537 return btrfs_ioctl_trans_start(file); 5538 case BTRFS_IOC_TRANS_END: 5539 return btrfs_ioctl_trans_end(file); 5540 case BTRFS_IOC_TREE_SEARCH: 5541 return btrfs_ioctl_tree_search(file, argp); 5542 case BTRFS_IOC_TREE_SEARCH_V2: 5543 return btrfs_ioctl_tree_search_v2(file, argp); 5544 case BTRFS_IOC_INO_LOOKUP: 5545 return btrfs_ioctl_ino_lookup(file, argp); 5546 case BTRFS_IOC_INO_PATHS: 5547 return btrfs_ioctl_ino_to_path(root, argp); 5548 case BTRFS_IOC_LOGICAL_INO: 5549 return btrfs_ioctl_logical_to_ino(fs_info, argp); 5550 case BTRFS_IOC_SPACE_INFO: 5551 return btrfs_ioctl_space_info(fs_info, argp); 5552 case BTRFS_IOC_SYNC: { 5553 int ret; 5554 5555 ret = btrfs_start_delalloc_roots(fs_info, 0, -1); 5556 if (ret) 5557 return ret; 5558 ret = btrfs_sync_fs(inode->i_sb, 1); 5559 /* 5560 * The transaction thread may want to do more work, 5561 * namely it pokes the cleaner kthread that will start 5562 * processing uncleaned subvols. 5563 */ 5564 wake_up_process(fs_info->transaction_kthread); 5565 return ret; 5566 } 5567 case BTRFS_IOC_START_SYNC: 5568 return btrfs_ioctl_start_sync(root, argp); 5569 case BTRFS_IOC_WAIT_SYNC: 5570 return btrfs_ioctl_wait_sync(fs_info, argp); 5571 case BTRFS_IOC_SCRUB: 5572 return btrfs_ioctl_scrub(file, argp); 5573 case BTRFS_IOC_SCRUB_CANCEL: 5574 return btrfs_ioctl_scrub_cancel(fs_info); 5575 case BTRFS_IOC_SCRUB_PROGRESS: 5576 return btrfs_ioctl_scrub_progress(fs_info, argp); 5577 case BTRFS_IOC_BALANCE_V2: 5578 return btrfs_ioctl_balance(file, argp); 5579 case BTRFS_IOC_BALANCE_CTL: 5580 return btrfs_ioctl_balance_ctl(fs_info, arg); 5581 case BTRFS_IOC_BALANCE_PROGRESS: 5582 return btrfs_ioctl_balance_progress(fs_info, argp); 5583 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5584 return btrfs_ioctl_set_received_subvol(file, argp); 5585 #ifdef CONFIG_64BIT 5586 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5587 return btrfs_ioctl_set_received_subvol_32(file, argp); 5588 #endif 5589 case BTRFS_IOC_SEND: 5590 return btrfs_ioctl_send(file, argp); 5591 case BTRFS_IOC_GET_DEV_STATS: 5592 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5593 case BTRFS_IOC_QUOTA_CTL: 5594 return btrfs_ioctl_quota_ctl(file, argp); 5595 case BTRFS_IOC_QGROUP_ASSIGN: 5596 return btrfs_ioctl_qgroup_assign(file, argp); 5597 case BTRFS_IOC_QGROUP_CREATE: 5598 return btrfs_ioctl_qgroup_create(file, argp); 5599 case BTRFS_IOC_QGROUP_LIMIT: 5600 return btrfs_ioctl_qgroup_limit(file, argp); 5601 case BTRFS_IOC_QUOTA_RESCAN: 5602 return btrfs_ioctl_quota_rescan(file, argp); 5603 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5604 return btrfs_ioctl_quota_rescan_status(file, argp); 5605 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5606 return btrfs_ioctl_quota_rescan_wait(file, argp); 5607 case BTRFS_IOC_DEV_REPLACE: 5608 return btrfs_ioctl_dev_replace(fs_info, argp); 5609 case BTRFS_IOC_GET_FSLABEL: 5610 return btrfs_ioctl_get_fslabel(file, argp); 5611 case BTRFS_IOC_SET_FSLABEL: 5612 return btrfs_ioctl_set_fslabel(file, argp); 5613 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5614 return btrfs_ioctl_get_supported_features(argp); 5615 case BTRFS_IOC_GET_FEATURES: 5616 return btrfs_ioctl_get_features(file, argp); 5617 case BTRFS_IOC_SET_FEATURES: 5618 return btrfs_ioctl_set_features(file, argp); 5619 } 5620 5621 return -ENOTTY; 5622 } 5623 5624 #ifdef CONFIG_COMPAT 5625 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5626 { 5627 /* 5628 * These all access 32-bit values anyway so no further 5629 * handling is necessary. 5630 */ 5631 switch (cmd) { 5632 case FS_IOC32_GETFLAGS: 5633 cmd = FS_IOC_GETFLAGS; 5634 break; 5635 case FS_IOC32_SETFLAGS: 5636 cmd = FS_IOC_SETFLAGS; 5637 break; 5638 case FS_IOC32_GETVERSION: 5639 cmd = FS_IOC_GETVERSION; 5640 break; 5641 } 5642 5643 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5644 } 5645 #endif 5646