xref: /linux/fs/btrfs/ioctl.c (revision 6faadbbb7f9da70ce484f98f72223c20125a1009)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/mm.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 #include "backref.h"
55 #include "rcu-string.h"
56 #include "send.h"
57 #include "dev-replace.h"
58 #include "props.h"
59 #include "sysfs.h"
60 #include "qgroup.h"
61 #include "tree-log.h"
62 #include "compression.h"
63 
64 #ifdef CONFIG_64BIT
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66  * structures are incorrect, as the timespec structure from userspace
67  * is 4 bytes too small. We define these alternatives here to teach
68  * the kernel about the 32-bit struct packing.
69  */
70 struct btrfs_ioctl_timespec_32 {
71 	__u64 sec;
72 	__u32 nsec;
73 } __attribute__ ((__packed__));
74 
75 struct btrfs_ioctl_received_subvol_args_32 {
76 	char	uuid[BTRFS_UUID_SIZE];	/* in */
77 	__u64	stransid;		/* in */
78 	__u64	rtransid;		/* out */
79 	struct btrfs_ioctl_timespec_32 stime; /* in */
80 	struct btrfs_ioctl_timespec_32 rtime; /* out */
81 	__u64	flags;			/* in */
82 	__u64	reserved[16];		/* in */
83 } __attribute__ ((__packed__));
84 
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 				struct btrfs_ioctl_received_subvol_args_32)
87 #endif
88 
89 
90 static int btrfs_clone(struct inode *src, struct inode *inode,
91 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
92 		       int no_time_update);
93 
94 /* Mask out flags that are inappropriate for the given type of inode. */
95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
96 {
97 	if (S_ISDIR(mode))
98 		return flags;
99 	else if (S_ISREG(mode))
100 		return flags & ~FS_DIRSYNC_FL;
101 	else
102 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 }
104 
105 /*
106  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
107  */
108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
109 {
110 	unsigned int iflags = 0;
111 
112 	if (flags & BTRFS_INODE_SYNC)
113 		iflags |= FS_SYNC_FL;
114 	if (flags & BTRFS_INODE_IMMUTABLE)
115 		iflags |= FS_IMMUTABLE_FL;
116 	if (flags & BTRFS_INODE_APPEND)
117 		iflags |= FS_APPEND_FL;
118 	if (flags & BTRFS_INODE_NODUMP)
119 		iflags |= FS_NODUMP_FL;
120 	if (flags & BTRFS_INODE_NOATIME)
121 		iflags |= FS_NOATIME_FL;
122 	if (flags & BTRFS_INODE_DIRSYNC)
123 		iflags |= FS_DIRSYNC_FL;
124 	if (flags & BTRFS_INODE_NODATACOW)
125 		iflags |= FS_NOCOW_FL;
126 
127 	if (flags & BTRFS_INODE_NOCOMPRESS)
128 		iflags |= FS_NOCOMP_FL;
129 	else if (flags & BTRFS_INODE_COMPRESS)
130 		iflags |= FS_COMPR_FL;
131 
132 	return iflags;
133 }
134 
135 /*
136  * Update inode->i_flags based on the btrfs internal flags.
137  */
138 void btrfs_update_iflags(struct inode *inode)
139 {
140 	struct btrfs_inode *ip = BTRFS_I(inode);
141 	unsigned int new_fl = 0;
142 
143 	if (ip->flags & BTRFS_INODE_SYNC)
144 		new_fl |= S_SYNC;
145 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
146 		new_fl |= S_IMMUTABLE;
147 	if (ip->flags & BTRFS_INODE_APPEND)
148 		new_fl |= S_APPEND;
149 	if (ip->flags & BTRFS_INODE_NOATIME)
150 		new_fl |= S_NOATIME;
151 	if (ip->flags & BTRFS_INODE_DIRSYNC)
152 		new_fl |= S_DIRSYNC;
153 
154 	set_mask_bits(&inode->i_flags,
155 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
156 		      new_fl);
157 }
158 
159 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
160 {
161 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
162 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
163 
164 	if (copy_to_user(arg, &flags, sizeof(flags)))
165 		return -EFAULT;
166 	return 0;
167 }
168 
169 static int check_flags(unsigned int flags)
170 {
171 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
172 		      FS_NOATIME_FL | FS_NODUMP_FL | \
173 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
174 		      FS_NOCOMP_FL | FS_COMPR_FL |
175 		      FS_NOCOW_FL))
176 		return -EOPNOTSUPP;
177 
178 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
179 		return -EINVAL;
180 
181 	return 0;
182 }
183 
184 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
185 {
186 	struct inode *inode = file_inode(file);
187 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
188 	struct btrfs_inode *ip = BTRFS_I(inode);
189 	struct btrfs_root *root = ip->root;
190 	struct btrfs_trans_handle *trans;
191 	unsigned int flags, oldflags;
192 	int ret;
193 	u64 ip_oldflags;
194 	unsigned int i_oldflags;
195 	umode_t mode;
196 
197 	if (!inode_owner_or_capable(inode))
198 		return -EPERM;
199 
200 	if (btrfs_root_readonly(root))
201 		return -EROFS;
202 
203 	if (copy_from_user(&flags, arg, sizeof(flags)))
204 		return -EFAULT;
205 
206 	ret = check_flags(flags);
207 	if (ret)
208 		return ret;
209 
210 	ret = mnt_want_write_file(file);
211 	if (ret)
212 		return ret;
213 
214 	inode_lock(inode);
215 
216 	ip_oldflags = ip->flags;
217 	i_oldflags = inode->i_flags;
218 	mode = inode->i_mode;
219 
220 	flags = btrfs_mask_flags(inode->i_mode, flags);
221 	oldflags = btrfs_flags_to_ioctl(ip->flags);
222 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
223 		if (!capable(CAP_LINUX_IMMUTABLE)) {
224 			ret = -EPERM;
225 			goto out_unlock;
226 		}
227 	}
228 
229 	if (flags & FS_SYNC_FL)
230 		ip->flags |= BTRFS_INODE_SYNC;
231 	else
232 		ip->flags &= ~BTRFS_INODE_SYNC;
233 	if (flags & FS_IMMUTABLE_FL)
234 		ip->flags |= BTRFS_INODE_IMMUTABLE;
235 	else
236 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
237 	if (flags & FS_APPEND_FL)
238 		ip->flags |= BTRFS_INODE_APPEND;
239 	else
240 		ip->flags &= ~BTRFS_INODE_APPEND;
241 	if (flags & FS_NODUMP_FL)
242 		ip->flags |= BTRFS_INODE_NODUMP;
243 	else
244 		ip->flags &= ~BTRFS_INODE_NODUMP;
245 	if (flags & FS_NOATIME_FL)
246 		ip->flags |= BTRFS_INODE_NOATIME;
247 	else
248 		ip->flags &= ~BTRFS_INODE_NOATIME;
249 	if (flags & FS_DIRSYNC_FL)
250 		ip->flags |= BTRFS_INODE_DIRSYNC;
251 	else
252 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
253 	if (flags & FS_NOCOW_FL) {
254 		if (S_ISREG(mode)) {
255 			/*
256 			 * It's safe to turn csums off here, no extents exist.
257 			 * Otherwise we want the flag to reflect the real COW
258 			 * status of the file and will not set it.
259 			 */
260 			if (inode->i_size == 0)
261 				ip->flags |= BTRFS_INODE_NODATACOW
262 					   | BTRFS_INODE_NODATASUM;
263 		} else {
264 			ip->flags |= BTRFS_INODE_NODATACOW;
265 		}
266 	} else {
267 		/*
268 		 * Revert back under same assumptions as above
269 		 */
270 		if (S_ISREG(mode)) {
271 			if (inode->i_size == 0)
272 				ip->flags &= ~(BTRFS_INODE_NODATACOW
273 				             | BTRFS_INODE_NODATASUM);
274 		} else {
275 			ip->flags &= ~BTRFS_INODE_NODATACOW;
276 		}
277 	}
278 
279 	/*
280 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
281 	 * flag may be changed automatically if compression code won't make
282 	 * things smaller.
283 	 */
284 	if (flags & FS_NOCOMP_FL) {
285 		ip->flags &= ~BTRFS_INODE_COMPRESS;
286 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
287 
288 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
289 		if (ret && ret != -ENODATA)
290 			goto out_drop;
291 	} else if (flags & FS_COMPR_FL) {
292 		const char *comp;
293 
294 		ip->flags |= BTRFS_INODE_COMPRESS;
295 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
296 
297 		if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
298 			comp = "lzo";
299 		else
300 			comp = "zlib";
301 		ret = btrfs_set_prop(inode, "btrfs.compression",
302 				     comp, strlen(comp), 0);
303 		if (ret)
304 			goto out_drop;
305 
306 	} else {
307 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
308 		if (ret && ret != -ENODATA)
309 			goto out_drop;
310 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
311 	}
312 
313 	trans = btrfs_start_transaction(root, 1);
314 	if (IS_ERR(trans)) {
315 		ret = PTR_ERR(trans);
316 		goto out_drop;
317 	}
318 
319 	btrfs_update_iflags(inode);
320 	inode_inc_iversion(inode);
321 	inode->i_ctime = current_time(inode);
322 	ret = btrfs_update_inode(trans, root, inode);
323 
324 	btrfs_end_transaction(trans);
325  out_drop:
326 	if (ret) {
327 		ip->flags = ip_oldflags;
328 		inode->i_flags = i_oldflags;
329 	}
330 
331  out_unlock:
332 	inode_unlock(inode);
333 	mnt_drop_write_file(file);
334 	return ret;
335 }
336 
337 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
338 {
339 	struct inode *inode = file_inode(file);
340 
341 	return put_user(inode->i_generation, arg);
342 }
343 
344 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
345 {
346 	struct inode *inode = file_inode(file);
347 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
348 	struct btrfs_device *device;
349 	struct request_queue *q;
350 	struct fstrim_range range;
351 	u64 minlen = ULLONG_MAX;
352 	u64 num_devices = 0;
353 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
354 	int ret;
355 
356 	if (!capable(CAP_SYS_ADMIN))
357 		return -EPERM;
358 
359 	rcu_read_lock();
360 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
361 				dev_list) {
362 		if (!device->bdev)
363 			continue;
364 		q = bdev_get_queue(device->bdev);
365 		if (blk_queue_discard(q)) {
366 			num_devices++;
367 			minlen = min_t(u64, q->limits.discard_granularity,
368 				     minlen);
369 		}
370 	}
371 	rcu_read_unlock();
372 
373 	if (!num_devices)
374 		return -EOPNOTSUPP;
375 	if (copy_from_user(&range, arg, sizeof(range)))
376 		return -EFAULT;
377 	if (range.start > total_bytes ||
378 	    range.len < fs_info->sb->s_blocksize)
379 		return -EINVAL;
380 
381 	range.len = min(range.len, total_bytes - range.start);
382 	range.minlen = max(range.minlen, minlen);
383 	ret = btrfs_trim_fs(fs_info, &range);
384 	if (ret < 0)
385 		return ret;
386 
387 	if (copy_to_user(arg, &range, sizeof(range)))
388 		return -EFAULT;
389 
390 	return 0;
391 }
392 
393 int btrfs_is_empty_uuid(u8 *uuid)
394 {
395 	int i;
396 
397 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
398 		if (uuid[i])
399 			return 0;
400 	}
401 	return 1;
402 }
403 
404 static noinline int create_subvol(struct inode *dir,
405 				  struct dentry *dentry,
406 				  const char *name, int namelen,
407 				  u64 *async_transid,
408 				  struct btrfs_qgroup_inherit *inherit)
409 {
410 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
411 	struct btrfs_trans_handle *trans;
412 	struct btrfs_key key;
413 	struct btrfs_root_item *root_item;
414 	struct btrfs_inode_item *inode_item;
415 	struct extent_buffer *leaf;
416 	struct btrfs_root *root = BTRFS_I(dir)->root;
417 	struct btrfs_root *new_root;
418 	struct btrfs_block_rsv block_rsv;
419 	struct timespec cur_time = current_time(dir);
420 	struct inode *inode;
421 	int ret;
422 	int err;
423 	u64 objectid;
424 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
425 	u64 index = 0;
426 	u64 qgroup_reserved;
427 	uuid_le new_uuid;
428 
429 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
430 	if (!root_item)
431 		return -ENOMEM;
432 
433 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
434 	if (ret)
435 		goto fail_free;
436 
437 	/*
438 	 * Don't create subvolume whose level is not zero. Or qgroup will be
439 	 * screwed up since it assumes subvolume qgroup's level to be 0.
440 	 */
441 	if (btrfs_qgroup_level(objectid)) {
442 		ret = -ENOSPC;
443 		goto fail_free;
444 	}
445 
446 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
447 	/*
448 	 * The same as the snapshot creation, please see the comment
449 	 * of create_snapshot().
450 	 */
451 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
452 					       8, &qgroup_reserved, false);
453 	if (ret)
454 		goto fail_free;
455 
456 	trans = btrfs_start_transaction(root, 0);
457 	if (IS_ERR(trans)) {
458 		ret = PTR_ERR(trans);
459 		btrfs_subvolume_release_metadata(fs_info, &block_rsv);
460 		goto fail_free;
461 	}
462 	trans->block_rsv = &block_rsv;
463 	trans->bytes_reserved = block_rsv.size;
464 
465 	ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
466 	if (ret)
467 		goto fail;
468 
469 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
470 	if (IS_ERR(leaf)) {
471 		ret = PTR_ERR(leaf);
472 		goto fail;
473 	}
474 
475 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
476 	btrfs_set_header_bytenr(leaf, leaf->start);
477 	btrfs_set_header_generation(leaf, trans->transid);
478 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
479 	btrfs_set_header_owner(leaf, objectid);
480 
481 	write_extent_buffer_fsid(leaf, fs_info->fsid);
482 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
483 	btrfs_mark_buffer_dirty(leaf);
484 
485 	inode_item = &root_item->inode;
486 	btrfs_set_stack_inode_generation(inode_item, 1);
487 	btrfs_set_stack_inode_size(inode_item, 3);
488 	btrfs_set_stack_inode_nlink(inode_item, 1);
489 	btrfs_set_stack_inode_nbytes(inode_item,
490 				     fs_info->nodesize);
491 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
492 
493 	btrfs_set_root_flags(root_item, 0);
494 	btrfs_set_root_limit(root_item, 0);
495 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
496 
497 	btrfs_set_root_bytenr(root_item, leaf->start);
498 	btrfs_set_root_generation(root_item, trans->transid);
499 	btrfs_set_root_level(root_item, 0);
500 	btrfs_set_root_refs(root_item, 1);
501 	btrfs_set_root_used(root_item, leaf->len);
502 	btrfs_set_root_last_snapshot(root_item, 0);
503 
504 	btrfs_set_root_generation_v2(root_item,
505 			btrfs_root_generation(root_item));
506 	uuid_le_gen(&new_uuid);
507 	memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
508 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
509 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
510 	root_item->ctime = root_item->otime;
511 	btrfs_set_root_ctransid(root_item, trans->transid);
512 	btrfs_set_root_otransid(root_item, trans->transid);
513 
514 	btrfs_tree_unlock(leaf);
515 	free_extent_buffer(leaf);
516 	leaf = NULL;
517 
518 	btrfs_set_root_dirid(root_item, new_dirid);
519 
520 	key.objectid = objectid;
521 	key.offset = 0;
522 	key.type = BTRFS_ROOT_ITEM_KEY;
523 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
524 				root_item);
525 	if (ret)
526 		goto fail;
527 
528 	key.offset = (u64)-1;
529 	new_root = btrfs_read_fs_root_no_name(fs_info, &key);
530 	if (IS_ERR(new_root)) {
531 		ret = PTR_ERR(new_root);
532 		btrfs_abort_transaction(trans, ret);
533 		goto fail;
534 	}
535 
536 	btrfs_record_root_in_trans(trans, new_root);
537 
538 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
539 	if (ret) {
540 		/* We potentially lose an unused inode item here */
541 		btrfs_abort_transaction(trans, ret);
542 		goto fail;
543 	}
544 
545 	mutex_lock(&new_root->objectid_mutex);
546 	new_root->highest_objectid = new_dirid;
547 	mutex_unlock(&new_root->objectid_mutex);
548 
549 	/*
550 	 * insert the directory item
551 	 */
552 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
553 	if (ret) {
554 		btrfs_abort_transaction(trans, ret);
555 		goto fail;
556 	}
557 
558 	ret = btrfs_insert_dir_item(trans, root,
559 				    name, namelen, BTRFS_I(dir), &key,
560 				    BTRFS_FT_DIR, index);
561 	if (ret) {
562 		btrfs_abort_transaction(trans, ret);
563 		goto fail;
564 	}
565 
566 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
567 	ret = btrfs_update_inode(trans, root, dir);
568 	BUG_ON(ret);
569 
570 	ret = btrfs_add_root_ref(trans, fs_info,
571 				 objectid, root->root_key.objectid,
572 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
573 	BUG_ON(ret);
574 
575 	ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
576 				  BTRFS_UUID_KEY_SUBVOL, objectid);
577 	if (ret)
578 		btrfs_abort_transaction(trans, ret);
579 
580 fail:
581 	kfree(root_item);
582 	trans->block_rsv = NULL;
583 	trans->bytes_reserved = 0;
584 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
585 
586 	if (async_transid) {
587 		*async_transid = trans->transid;
588 		err = btrfs_commit_transaction_async(trans, 1);
589 		if (err)
590 			err = btrfs_commit_transaction(trans);
591 	} else {
592 		err = btrfs_commit_transaction(trans);
593 	}
594 	if (err && !ret)
595 		ret = err;
596 
597 	if (!ret) {
598 		inode = btrfs_lookup_dentry(dir, dentry);
599 		if (IS_ERR(inode))
600 			return PTR_ERR(inode);
601 		d_instantiate(dentry, inode);
602 	}
603 	return ret;
604 
605 fail_free:
606 	kfree(root_item);
607 	return ret;
608 }
609 
610 static void btrfs_wait_for_no_snapshotting_writes(struct btrfs_root *root)
611 {
612 	s64 writers;
613 	DEFINE_WAIT(wait);
614 
615 	do {
616 		prepare_to_wait(&root->subv_writers->wait, &wait,
617 				TASK_UNINTERRUPTIBLE);
618 
619 		writers = percpu_counter_sum(&root->subv_writers->counter);
620 		if (writers)
621 			schedule();
622 
623 		finish_wait(&root->subv_writers->wait, &wait);
624 	} while (writers);
625 }
626 
627 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
628 			   struct dentry *dentry,
629 			   u64 *async_transid, bool readonly,
630 			   struct btrfs_qgroup_inherit *inherit)
631 {
632 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
633 	struct inode *inode;
634 	struct btrfs_pending_snapshot *pending_snapshot;
635 	struct btrfs_trans_handle *trans;
636 	int ret;
637 
638 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
639 		return -EINVAL;
640 
641 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
642 	if (!pending_snapshot)
643 		return -ENOMEM;
644 
645 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
646 			GFP_KERNEL);
647 	pending_snapshot->path = btrfs_alloc_path();
648 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
649 		ret = -ENOMEM;
650 		goto free_pending;
651 	}
652 
653 	atomic_inc(&root->will_be_snapshotted);
654 	smp_mb__after_atomic();
655 	btrfs_wait_for_no_snapshotting_writes(root);
656 
657 	ret = btrfs_start_delalloc_inodes(root, 0);
658 	if (ret)
659 		goto dec_and_free;
660 
661 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
662 
663 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
664 			     BTRFS_BLOCK_RSV_TEMP);
665 	/*
666 	 * 1 - parent dir inode
667 	 * 2 - dir entries
668 	 * 1 - root item
669 	 * 2 - root ref/backref
670 	 * 1 - root of snapshot
671 	 * 1 - UUID item
672 	 */
673 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
674 					&pending_snapshot->block_rsv, 8,
675 					&pending_snapshot->qgroup_reserved,
676 					false);
677 	if (ret)
678 		goto dec_and_free;
679 
680 	pending_snapshot->dentry = dentry;
681 	pending_snapshot->root = root;
682 	pending_snapshot->readonly = readonly;
683 	pending_snapshot->dir = dir;
684 	pending_snapshot->inherit = inherit;
685 
686 	trans = btrfs_start_transaction(root, 0);
687 	if (IS_ERR(trans)) {
688 		ret = PTR_ERR(trans);
689 		goto fail;
690 	}
691 
692 	spin_lock(&fs_info->trans_lock);
693 	list_add(&pending_snapshot->list,
694 		 &trans->transaction->pending_snapshots);
695 	spin_unlock(&fs_info->trans_lock);
696 	if (async_transid) {
697 		*async_transid = trans->transid;
698 		ret = btrfs_commit_transaction_async(trans, 1);
699 		if (ret)
700 			ret = btrfs_commit_transaction(trans);
701 	} else {
702 		ret = btrfs_commit_transaction(trans);
703 	}
704 	if (ret)
705 		goto fail;
706 
707 	ret = pending_snapshot->error;
708 	if (ret)
709 		goto fail;
710 
711 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
712 	if (ret)
713 		goto fail;
714 
715 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
716 	if (IS_ERR(inode)) {
717 		ret = PTR_ERR(inode);
718 		goto fail;
719 	}
720 
721 	d_instantiate(dentry, inode);
722 	ret = 0;
723 fail:
724 	btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
725 dec_and_free:
726 	if (atomic_dec_and_test(&root->will_be_snapshotted))
727 		wake_up_atomic_t(&root->will_be_snapshotted);
728 free_pending:
729 	kfree(pending_snapshot->root_item);
730 	btrfs_free_path(pending_snapshot->path);
731 	kfree(pending_snapshot);
732 
733 	return ret;
734 }
735 
736 /*  copy of may_delete in fs/namei.c()
737  *	Check whether we can remove a link victim from directory dir, check
738  *  whether the type of victim is right.
739  *  1. We can't do it if dir is read-only (done in permission())
740  *  2. We should have write and exec permissions on dir
741  *  3. We can't remove anything from append-only dir
742  *  4. We can't do anything with immutable dir (done in permission())
743  *  5. If the sticky bit on dir is set we should either
744  *	a. be owner of dir, or
745  *	b. be owner of victim, or
746  *	c. have CAP_FOWNER capability
747  *  6. If the victim is append-only or immutable we can't do anything with
748  *     links pointing to it.
749  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
750  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
751  *  9. We can't remove a root or mountpoint.
752  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
753  *     nfs_async_unlink().
754  */
755 
756 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
757 {
758 	int error;
759 
760 	if (d_really_is_negative(victim))
761 		return -ENOENT;
762 
763 	BUG_ON(d_inode(victim->d_parent) != dir);
764 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
765 
766 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
767 	if (error)
768 		return error;
769 	if (IS_APPEND(dir))
770 		return -EPERM;
771 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
772 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
773 		return -EPERM;
774 	if (isdir) {
775 		if (!d_is_dir(victim))
776 			return -ENOTDIR;
777 		if (IS_ROOT(victim))
778 			return -EBUSY;
779 	} else if (d_is_dir(victim))
780 		return -EISDIR;
781 	if (IS_DEADDIR(dir))
782 		return -ENOENT;
783 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
784 		return -EBUSY;
785 	return 0;
786 }
787 
788 /* copy of may_create in fs/namei.c() */
789 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
790 {
791 	if (d_really_is_positive(child))
792 		return -EEXIST;
793 	if (IS_DEADDIR(dir))
794 		return -ENOENT;
795 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
796 }
797 
798 /*
799  * Create a new subvolume below @parent.  This is largely modeled after
800  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
801  * inside this filesystem so it's quite a bit simpler.
802  */
803 static noinline int btrfs_mksubvol(const struct path *parent,
804 				   const char *name, int namelen,
805 				   struct btrfs_root *snap_src,
806 				   u64 *async_transid, bool readonly,
807 				   struct btrfs_qgroup_inherit *inherit)
808 {
809 	struct inode *dir = d_inode(parent->dentry);
810 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
811 	struct dentry *dentry;
812 	int error;
813 
814 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
815 	if (error == -EINTR)
816 		return error;
817 
818 	dentry = lookup_one_len(name, parent->dentry, namelen);
819 	error = PTR_ERR(dentry);
820 	if (IS_ERR(dentry))
821 		goto out_unlock;
822 
823 	error = btrfs_may_create(dir, dentry);
824 	if (error)
825 		goto out_dput;
826 
827 	/*
828 	 * even if this name doesn't exist, we may get hash collisions.
829 	 * check for them now when we can safely fail
830 	 */
831 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
832 					       dir->i_ino, name,
833 					       namelen);
834 	if (error)
835 		goto out_dput;
836 
837 	down_read(&fs_info->subvol_sem);
838 
839 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
840 		goto out_up_read;
841 
842 	if (snap_src) {
843 		error = create_snapshot(snap_src, dir, dentry,
844 					async_transid, readonly, inherit);
845 	} else {
846 		error = create_subvol(dir, dentry, name, namelen,
847 				      async_transid, inherit);
848 	}
849 	if (!error)
850 		fsnotify_mkdir(dir, dentry);
851 out_up_read:
852 	up_read(&fs_info->subvol_sem);
853 out_dput:
854 	dput(dentry);
855 out_unlock:
856 	inode_unlock(dir);
857 	return error;
858 }
859 
860 /*
861  * When we're defragging a range, we don't want to kick it off again
862  * if it is really just waiting for delalloc to send it down.
863  * If we find a nice big extent or delalloc range for the bytes in the
864  * file you want to defrag, we return 0 to let you know to skip this
865  * part of the file
866  */
867 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
868 {
869 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
870 	struct extent_map *em = NULL;
871 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
872 	u64 end;
873 
874 	read_lock(&em_tree->lock);
875 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
876 	read_unlock(&em_tree->lock);
877 
878 	if (em) {
879 		end = extent_map_end(em);
880 		free_extent_map(em);
881 		if (end - offset > thresh)
882 			return 0;
883 	}
884 	/* if we already have a nice delalloc here, just stop */
885 	thresh /= 2;
886 	end = count_range_bits(io_tree, &offset, offset + thresh,
887 			       thresh, EXTENT_DELALLOC, 1);
888 	if (end >= thresh)
889 		return 0;
890 	return 1;
891 }
892 
893 /*
894  * helper function to walk through a file and find extents
895  * newer than a specific transid, and smaller than thresh.
896  *
897  * This is used by the defragging code to find new and small
898  * extents
899  */
900 static int find_new_extents(struct btrfs_root *root,
901 			    struct inode *inode, u64 newer_than,
902 			    u64 *off, u32 thresh)
903 {
904 	struct btrfs_path *path;
905 	struct btrfs_key min_key;
906 	struct extent_buffer *leaf;
907 	struct btrfs_file_extent_item *extent;
908 	int type;
909 	int ret;
910 	u64 ino = btrfs_ino(BTRFS_I(inode));
911 
912 	path = btrfs_alloc_path();
913 	if (!path)
914 		return -ENOMEM;
915 
916 	min_key.objectid = ino;
917 	min_key.type = BTRFS_EXTENT_DATA_KEY;
918 	min_key.offset = *off;
919 
920 	while (1) {
921 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
922 		if (ret != 0)
923 			goto none;
924 process_slot:
925 		if (min_key.objectid != ino)
926 			goto none;
927 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
928 			goto none;
929 
930 		leaf = path->nodes[0];
931 		extent = btrfs_item_ptr(leaf, path->slots[0],
932 					struct btrfs_file_extent_item);
933 
934 		type = btrfs_file_extent_type(leaf, extent);
935 		if (type == BTRFS_FILE_EXTENT_REG &&
936 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
937 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
938 			*off = min_key.offset;
939 			btrfs_free_path(path);
940 			return 0;
941 		}
942 
943 		path->slots[0]++;
944 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
945 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
946 			goto process_slot;
947 		}
948 
949 		if (min_key.offset == (u64)-1)
950 			goto none;
951 
952 		min_key.offset++;
953 		btrfs_release_path(path);
954 	}
955 none:
956 	btrfs_free_path(path);
957 	return -ENOENT;
958 }
959 
960 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
961 {
962 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
963 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
964 	struct extent_map *em;
965 	u64 len = PAGE_SIZE;
966 
967 	/*
968 	 * hopefully we have this extent in the tree already, try without
969 	 * the full extent lock
970 	 */
971 	read_lock(&em_tree->lock);
972 	em = lookup_extent_mapping(em_tree, start, len);
973 	read_unlock(&em_tree->lock);
974 
975 	if (!em) {
976 		struct extent_state *cached = NULL;
977 		u64 end = start + len - 1;
978 
979 		/* get the big lock and read metadata off disk */
980 		lock_extent_bits(io_tree, start, end, &cached);
981 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
982 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
983 
984 		if (IS_ERR(em))
985 			return NULL;
986 	}
987 
988 	return em;
989 }
990 
991 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
992 {
993 	struct extent_map *next;
994 	bool ret = true;
995 
996 	/* this is the last extent */
997 	if (em->start + em->len >= i_size_read(inode))
998 		return false;
999 
1000 	next = defrag_lookup_extent(inode, em->start + em->len);
1001 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1002 		ret = false;
1003 	else if ((em->block_start + em->block_len == next->block_start) &&
1004 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1005 		ret = false;
1006 
1007 	free_extent_map(next);
1008 	return ret;
1009 }
1010 
1011 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1012 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1013 			       int compress)
1014 {
1015 	struct extent_map *em;
1016 	int ret = 1;
1017 	bool next_mergeable = true;
1018 	bool prev_mergeable = true;
1019 
1020 	/*
1021 	 * make sure that once we start defragging an extent, we keep on
1022 	 * defragging it
1023 	 */
1024 	if (start < *defrag_end)
1025 		return 1;
1026 
1027 	*skip = 0;
1028 
1029 	em = defrag_lookup_extent(inode, start);
1030 	if (!em)
1031 		return 0;
1032 
1033 	/* this will cover holes, and inline extents */
1034 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1035 		ret = 0;
1036 		goto out;
1037 	}
1038 
1039 	if (!*defrag_end)
1040 		prev_mergeable = false;
1041 
1042 	next_mergeable = defrag_check_next_extent(inode, em);
1043 	/*
1044 	 * we hit a real extent, if it is big or the next extent is not a
1045 	 * real extent, don't bother defragging it
1046 	 */
1047 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1048 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1049 		ret = 0;
1050 out:
1051 	/*
1052 	 * last_len ends up being a counter of how many bytes we've defragged.
1053 	 * every time we choose not to defrag an extent, we reset *last_len
1054 	 * so that the next tiny extent will force a defrag.
1055 	 *
1056 	 * The end result of this is that tiny extents before a single big
1057 	 * extent will force at least part of that big extent to be defragged.
1058 	 */
1059 	if (ret) {
1060 		*defrag_end = extent_map_end(em);
1061 	} else {
1062 		*last_len = 0;
1063 		*skip = extent_map_end(em);
1064 		*defrag_end = 0;
1065 	}
1066 
1067 	free_extent_map(em);
1068 	return ret;
1069 }
1070 
1071 /*
1072  * it doesn't do much good to defrag one or two pages
1073  * at a time.  This pulls in a nice chunk of pages
1074  * to COW and defrag.
1075  *
1076  * It also makes sure the delalloc code has enough
1077  * dirty data to avoid making new small extents as part
1078  * of the defrag
1079  *
1080  * It's a good idea to start RA on this range
1081  * before calling this.
1082  */
1083 static int cluster_pages_for_defrag(struct inode *inode,
1084 				    struct page **pages,
1085 				    unsigned long start_index,
1086 				    unsigned long num_pages)
1087 {
1088 	unsigned long file_end;
1089 	u64 isize = i_size_read(inode);
1090 	u64 page_start;
1091 	u64 page_end;
1092 	u64 page_cnt;
1093 	int ret;
1094 	int i;
1095 	int i_done;
1096 	struct btrfs_ordered_extent *ordered;
1097 	struct extent_state *cached_state = NULL;
1098 	struct extent_io_tree *tree;
1099 	struct extent_changeset *data_reserved = NULL;
1100 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1101 
1102 	file_end = (isize - 1) >> PAGE_SHIFT;
1103 	if (!isize || start_index > file_end)
1104 		return 0;
1105 
1106 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1107 
1108 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1109 			start_index << PAGE_SHIFT,
1110 			page_cnt << PAGE_SHIFT);
1111 	if (ret)
1112 		return ret;
1113 	i_done = 0;
1114 	tree = &BTRFS_I(inode)->io_tree;
1115 
1116 	/* step one, lock all the pages */
1117 	for (i = 0; i < page_cnt; i++) {
1118 		struct page *page;
1119 again:
1120 		page = find_or_create_page(inode->i_mapping,
1121 					   start_index + i, mask);
1122 		if (!page)
1123 			break;
1124 
1125 		page_start = page_offset(page);
1126 		page_end = page_start + PAGE_SIZE - 1;
1127 		while (1) {
1128 			lock_extent_bits(tree, page_start, page_end,
1129 					 &cached_state);
1130 			ordered = btrfs_lookup_ordered_extent(inode,
1131 							      page_start);
1132 			unlock_extent_cached(tree, page_start, page_end,
1133 					     &cached_state, GFP_NOFS);
1134 			if (!ordered)
1135 				break;
1136 
1137 			unlock_page(page);
1138 			btrfs_start_ordered_extent(inode, ordered, 1);
1139 			btrfs_put_ordered_extent(ordered);
1140 			lock_page(page);
1141 			/*
1142 			 * we unlocked the page above, so we need check if
1143 			 * it was released or not.
1144 			 */
1145 			if (page->mapping != inode->i_mapping) {
1146 				unlock_page(page);
1147 				put_page(page);
1148 				goto again;
1149 			}
1150 		}
1151 
1152 		if (!PageUptodate(page)) {
1153 			btrfs_readpage(NULL, page);
1154 			lock_page(page);
1155 			if (!PageUptodate(page)) {
1156 				unlock_page(page);
1157 				put_page(page);
1158 				ret = -EIO;
1159 				break;
1160 			}
1161 		}
1162 
1163 		if (page->mapping != inode->i_mapping) {
1164 			unlock_page(page);
1165 			put_page(page);
1166 			goto again;
1167 		}
1168 
1169 		pages[i] = page;
1170 		i_done++;
1171 	}
1172 	if (!i_done || ret)
1173 		goto out;
1174 
1175 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1176 		goto out;
1177 
1178 	/*
1179 	 * so now we have a nice long stream of locked
1180 	 * and up to date pages, lets wait on them
1181 	 */
1182 	for (i = 0; i < i_done; i++)
1183 		wait_on_page_writeback(pages[i]);
1184 
1185 	page_start = page_offset(pages[0]);
1186 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1187 
1188 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1189 			 page_start, page_end - 1, &cached_state);
1190 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1191 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1192 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1193 			  &cached_state, GFP_NOFS);
1194 
1195 	if (i_done != page_cnt) {
1196 		spin_lock(&BTRFS_I(inode)->lock);
1197 		BTRFS_I(inode)->outstanding_extents++;
1198 		spin_unlock(&BTRFS_I(inode)->lock);
1199 		btrfs_delalloc_release_space(inode, data_reserved,
1200 				start_index << PAGE_SHIFT,
1201 				(page_cnt - i_done) << PAGE_SHIFT);
1202 	}
1203 
1204 
1205 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1206 			  &cached_state);
1207 
1208 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1209 			     page_start, page_end - 1, &cached_state,
1210 			     GFP_NOFS);
1211 
1212 	for (i = 0; i < i_done; i++) {
1213 		clear_page_dirty_for_io(pages[i]);
1214 		ClearPageChecked(pages[i]);
1215 		set_page_extent_mapped(pages[i]);
1216 		set_page_dirty(pages[i]);
1217 		unlock_page(pages[i]);
1218 		put_page(pages[i]);
1219 	}
1220 	extent_changeset_free(data_reserved);
1221 	return i_done;
1222 out:
1223 	for (i = 0; i < i_done; i++) {
1224 		unlock_page(pages[i]);
1225 		put_page(pages[i]);
1226 	}
1227 	btrfs_delalloc_release_space(inode, data_reserved,
1228 			start_index << PAGE_SHIFT,
1229 			page_cnt << PAGE_SHIFT);
1230 	extent_changeset_free(data_reserved);
1231 	return ret;
1232 
1233 }
1234 
1235 int btrfs_defrag_file(struct inode *inode, struct file *file,
1236 		      struct btrfs_ioctl_defrag_range_args *range,
1237 		      u64 newer_than, unsigned long max_to_defrag)
1238 {
1239 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1240 	struct btrfs_root *root = BTRFS_I(inode)->root;
1241 	struct file_ra_state *ra = NULL;
1242 	unsigned long last_index;
1243 	u64 isize = i_size_read(inode);
1244 	u64 last_len = 0;
1245 	u64 skip = 0;
1246 	u64 defrag_end = 0;
1247 	u64 newer_off = range->start;
1248 	unsigned long i;
1249 	unsigned long ra_index = 0;
1250 	int ret;
1251 	int defrag_count = 0;
1252 	int compress_type = BTRFS_COMPRESS_ZLIB;
1253 	u32 extent_thresh = range->extent_thresh;
1254 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1255 	unsigned long cluster = max_cluster;
1256 	u64 new_align = ~((u64)SZ_128K - 1);
1257 	struct page **pages = NULL;
1258 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1259 
1260 	if (isize == 0)
1261 		return 0;
1262 
1263 	if (range->start >= isize)
1264 		return -EINVAL;
1265 
1266 	if (do_compress) {
1267 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1268 			return -EINVAL;
1269 		if (range->compress_type)
1270 			compress_type = range->compress_type;
1271 	}
1272 
1273 	if (extent_thresh == 0)
1274 		extent_thresh = SZ_256K;
1275 
1276 	/*
1277 	 * If we were not given a file, allocate a readahead context. As
1278 	 * readahead is just an optimization, defrag will work without it so
1279 	 * we don't error out.
1280 	 */
1281 	if (!file) {
1282 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1283 		if (ra)
1284 			file_ra_state_init(ra, inode->i_mapping);
1285 	} else {
1286 		ra = &file->f_ra;
1287 	}
1288 
1289 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1290 	if (!pages) {
1291 		ret = -ENOMEM;
1292 		goto out_ra;
1293 	}
1294 
1295 	/* find the last page to defrag */
1296 	if (range->start + range->len > range->start) {
1297 		last_index = min_t(u64, isize - 1,
1298 			 range->start + range->len - 1) >> PAGE_SHIFT;
1299 	} else {
1300 		last_index = (isize - 1) >> PAGE_SHIFT;
1301 	}
1302 
1303 	if (newer_than) {
1304 		ret = find_new_extents(root, inode, newer_than,
1305 				       &newer_off, SZ_64K);
1306 		if (!ret) {
1307 			range->start = newer_off;
1308 			/*
1309 			 * we always align our defrag to help keep
1310 			 * the extents in the file evenly spaced
1311 			 */
1312 			i = (newer_off & new_align) >> PAGE_SHIFT;
1313 		} else
1314 			goto out_ra;
1315 	} else {
1316 		i = range->start >> PAGE_SHIFT;
1317 	}
1318 	if (!max_to_defrag)
1319 		max_to_defrag = last_index - i + 1;
1320 
1321 	/*
1322 	 * make writeback starts from i, so the defrag range can be
1323 	 * written sequentially.
1324 	 */
1325 	if (i < inode->i_mapping->writeback_index)
1326 		inode->i_mapping->writeback_index = i;
1327 
1328 	while (i <= last_index && defrag_count < max_to_defrag &&
1329 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1330 		/*
1331 		 * make sure we stop running if someone unmounts
1332 		 * the FS
1333 		 */
1334 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1335 			break;
1336 
1337 		if (btrfs_defrag_cancelled(fs_info)) {
1338 			btrfs_debug(fs_info, "defrag_file cancelled");
1339 			ret = -EAGAIN;
1340 			break;
1341 		}
1342 
1343 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1344 					 extent_thresh, &last_len, &skip,
1345 					 &defrag_end, do_compress)){
1346 			unsigned long next;
1347 			/*
1348 			 * the should_defrag function tells us how much to skip
1349 			 * bump our counter by the suggested amount
1350 			 */
1351 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1352 			i = max(i + 1, next);
1353 			continue;
1354 		}
1355 
1356 		if (!newer_than) {
1357 			cluster = (PAGE_ALIGN(defrag_end) >>
1358 				   PAGE_SHIFT) - i;
1359 			cluster = min(cluster, max_cluster);
1360 		} else {
1361 			cluster = max_cluster;
1362 		}
1363 
1364 		if (i + cluster > ra_index) {
1365 			ra_index = max(i, ra_index);
1366 			if (ra)
1367 				page_cache_sync_readahead(inode->i_mapping, ra,
1368 						file, ra_index, cluster);
1369 			ra_index += cluster;
1370 		}
1371 
1372 		inode_lock(inode);
1373 		if (do_compress)
1374 			BTRFS_I(inode)->defrag_compress = compress_type;
1375 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1376 		if (ret < 0) {
1377 			inode_unlock(inode);
1378 			goto out_ra;
1379 		}
1380 
1381 		defrag_count += ret;
1382 		balance_dirty_pages_ratelimited(inode->i_mapping);
1383 		inode_unlock(inode);
1384 
1385 		if (newer_than) {
1386 			if (newer_off == (u64)-1)
1387 				break;
1388 
1389 			if (ret > 0)
1390 				i += ret;
1391 
1392 			newer_off = max(newer_off + 1,
1393 					(u64)i << PAGE_SHIFT);
1394 
1395 			ret = find_new_extents(root, inode, newer_than,
1396 					       &newer_off, SZ_64K);
1397 			if (!ret) {
1398 				range->start = newer_off;
1399 				i = (newer_off & new_align) >> PAGE_SHIFT;
1400 			} else {
1401 				break;
1402 			}
1403 		} else {
1404 			if (ret > 0) {
1405 				i += ret;
1406 				last_len += ret << PAGE_SHIFT;
1407 			} else {
1408 				i++;
1409 				last_len = 0;
1410 			}
1411 		}
1412 	}
1413 
1414 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1415 		filemap_flush(inode->i_mapping);
1416 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1417 			     &BTRFS_I(inode)->runtime_flags))
1418 			filemap_flush(inode->i_mapping);
1419 	}
1420 
1421 	if (do_compress) {
1422 		/* the filemap_flush will queue IO into the worker threads, but
1423 		 * we have to make sure the IO is actually started and that
1424 		 * ordered extents get created before we return
1425 		 */
1426 		atomic_inc(&fs_info->async_submit_draining);
1427 		while (atomic_read(&fs_info->nr_async_submits) ||
1428 		       atomic_read(&fs_info->async_delalloc_pages)) {
1429 			wait_event(fs_info->async_submit_wait,
1430 				   (atomic_read(&fs_info->nr_async_submits) == 0 &&
1431 				    atomic_read(&fs_info->async_delalloc_pages) == 0));
1432 		}
1433 		atomic_dec(&fs_info->async_submit_draining);
1434 	}
1435 
1436 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1437 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1438 	}
1439 
1440 	ret = defrag_count;
1441 
1442 out_ra:
1443 	if (do_compress) {
1444 		inode_lock(inode);
1445 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1446 		inode_unlock(inode);
1447 	}
1448 	if (!file)
1449 		kfree(ra);
1450 	kfree(pages);
1451 	return ret;
1452 }
1453 
1454 static noinline int btrfs_ioctl_resize(struct file *file,
1455 					void __user *arg)
1456 {
1457 	struct inode *inode = file_inode(file);
1458 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1459 	u64 new_size;
1460 	u64 old_size;
1461 	u64 devid = 1;
1462 	struct btrfs_root *root = BTRFS_I(inode)->root;
1463 	struct btrfs_ioctl_vol_args *vol_args;
1464 	struct btrfs_trans_handle *trans;
1465 	struct btrfs_device *device = NULL;
1466 	char *sizestr;
1467 	char *retptr;
1468 	char *devstr = NULL;
1469 	int ret = 0;
1470 	int mod = 0;
1471 
1472 	if (!capable(CAP_SYS_ADMIN))
1473 		return -EPERM;
1474 
1475 	ret = mnt_want_write_file(file);
1476 	if (ret)
1477 		return ret;
1478 
1479 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1480 		mnt_drop_write_file(file);
1481 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1482 	}
1483 
1484 	mutex_lock(&fs_info->volume_mutex);
1485 	vol_args = memdup_user(arg, sizeof(*vol_args));
1486 	if (IS_ERR(vol_args)) {
1487 		ret = PTR_ERR(vol_args);
1488 		goto out;
1489 	}
1490 
1491 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1492 
1493 	sizestr = vol_args->name;
1494 	devstr = strchr(sizestr, ':');
1495 	if (devstr) {
1496 		sizestr = devstr + 1;
1497 		*devstr = '\0';
1498 		devstr = vol_args->name;
1499 		ret = kstrtoull(devstr, 10, &devid);
1500 		if (ret)
1501 			goto out_free;
1502 		if (!devid) {
1503 			ret = -EINVAL;
1504 			goto out_free;
1505 		}
1506 		btrfs_info(fs_info, "resizing devid %llu", devid);
1507 	}
1508 
1509 	device = btrfs_find_device(fs_info, devid, NULL, NULL);
1510 	if (!device) {
1511 		btrfs_info(fs_info, "resizer unable to find device %llu",
1512 			   devid);
1513 		ret = -ENODEV;
1514 		goto out_free;
1515 	}
1516 
1517 	if (!device->writeable) {
1518 		btrfs_info(fs_info,
1519 			   "resizer unable to apply on readonly device %llu",
1520 		       devid);
1521 		ret = -EPERM;
1522 		goto out_free;
1523 	}
1524 
1525 	if (!strcmp(sizestr, "max"))
1526 		new_size = device->bdev->bd_inode->i_size;
1527 	else {
1528 		if (sizestr[0] == '-') {
1529 			mod = -1;
1530 			sizestr++;
1531 		} else if (sizestr[0] == '+') {
1532 			mod = 1;
1533 			sizestr++;
1534 		}
1535 		new_size = memparse(sizestr, &retptr);
1536 		if (*retptr != '\0' || new_size == 0) {
1537 			ret = -EINVAL;
1538 			goto out_free;
1539 		}
1540 	}
1541 
1542 	if (device->is_tgtdev_for_dev_replace) {
1543 		ret = -EPERM;
1544 		goto out_free;
1545 	}
1546 
1547 	old_size = btrfs_device_get_total_bytes(device);
1548 
1549 	if (mod < 0) {
1550 		if (new_size > old_size) {
1551 			ret = -EINVAL;
1552 			goto out_free;
1553 		}
1554 		new_size = old_size - new_size;
1555 	} else if (mod > 0) {
1556 		if (new_size > ULLONG_MAX - old_size) {
1557 			ret = -ERANGE;
1558 			goto out_free;
1559 		}
1560 		new_size = old_size + new_size;
1561 	}
1562 
1563 	if (new_size < SZ_256M) {
1564 		ret = -EINVAL;
1565 		goto out_free;
1566 	}
1567 	if (new_size > device->bdev->bd_inode->i_size) {
1568 		ret = -EFBIG;
1569 		goto out_free;
1570 	}
1571 
1572 	new_size = round_down(new_size, fs_info->sectorsize);
1573 
1574 	btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1575 			  rcu_str_deref(device->name), new_size);
1576 
1577 	if (new_size > old_size) {
1578 		trans = btrfs_start_transaction(root, 0);
1579 		if (IS_ERR(trans)) {
1580 			ret = PTR_ERR(trans);
1581 			goto out_free;
1582 		}
1583 		ret = btrfs_grow_device(trans, device, new_size);
1584 		btrfs_commit_transaction(trans);
1585 	} else if (new_size < old_size) {
1586 		ret = btrfs_shrink_device(device, new_size);
1587 	} /* equal, nothing need to do */
1588 
1589 out_free:
1590 	kfree(vol_args);
1591 out:
1592 	mutex_unlock(&fs_info->volume_mutex);
1593 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1594 	mnt_drop_write_file(file);
1595 	return ret;
1596 }
1597 
1598 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1599 				const char *name, unsigned long fd, int subvol,
1600 				u64 *transid, bool readonly,
1601 				struct btrfs_qgroup_inherit *inherit)
1602 {
1603 	int namelen;
1604 	int ret = 0;
1605 
1606 	if (!S_ISDIR(file_inode(file)->i_mode))
1607 		return -ENOTDIR;
1608 
1609 	ret = mnt_want_write_file(file);
1610 	if (ret)
1611 		goto out;
1612 
1613 	namelen = strlen(name);
1614 	if (strchr(name, '/')) {
1615 		ret = -EINVAL;
1616 		goto out_drop_write;
1617 	}
1618 
1619 	if (name[0] == '.' &&
1620 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1621 		ret = -EEXIST;
1622 		goto out_drop_write;
1623 	}
1624 
1625 	if (subvol) {
1626 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1627 				     NULL, transid, readonly, inherit);
1628 	} else {
1629 		struct fd src = fdget(fd);
1630 		struct inode *src_inode;
1631 		if (!src.file) {
1632 			ret = -EINVAL;
1633 			goto out_drop_write;
1634 		}
1635 
1636 		src_inode = file_inode(src.file);
1637 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1638 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1639 				   "Snapshot src from another FS");
1640 			ret = -EXDEV;
1641 		} else if (!inode_owner_or_capable(src_inode)) {
1642 			/*
1643 			 * Subvolume creation is not restricted, but snapshots
1644 			 * are limited to own subvolumes only
1645 			 */
1646 			ret = -EPERM;
1647 		} else {
1648 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1649 					     BTRFS_I(src_inode)->root,
1650 					     transid, readonly, inherit);
1651 		}
1652 		fdput(src);
1653 	}
1654 out_drop_write:
1655 	mnt_drop_write_file(file);
1656 out:
1657 	return ret;
1658 }
1659 
1660 static noinline int btrfs_ioctl_snap_create(struct file *file,
1661 					    void __user *arg, int subvol)
1662 {
1663 	struct btrfs_ioctl_vol_args *vol_args;
1664 	int ret;
1665 
1666 	if (!S_ISDIR(file_inode(file)->i_mode))
1667 		return -ENOTDIR;
1668 
1669 	vol_args = memdup_user(arg, sizeof(*vol_args));
1670 	if (IS_ERR(vol_args))
1671 		return PTR_ERR(vol_args);
1672 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1673 
1674 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1675 					      vol_args->fd, subvol,
1676 					      NULL, false, NULL);
1677 
1678 	kfree(vol_args);
1679 	return ret;
1680 }
1681 
1682 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1683 					       void __user *arg, int subvol)
1684 {
1685 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1686 	int ret;
1687 	u64 transid = 0;
1688 	u64 *ptr = NULL;
1689 	bool readonly = false;
1690 	struct btrfs_qgroup_inherit *inherit = NULL;
1691 
1692 	if (!S_ISDIR(file_inode(file)->i_mode))
1693 		return -ENOTDIR;
1694 
1695 	vol_args = memdup_user(arg, sizeof(*vol_args));
1696 	if (IS_ERR(vol_args))
1697 		return PTR_ERR(vol_args);
1698 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1699 
1700 	if (vol_args->flags &
1701 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1702 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1703 		ret = -EOPNOTSUPP;
1704 		goto free_args;
1705 	}
1706 
1707 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1708 		ptr = &transid;
1709 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1710 		readonly = true;
1711 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1712 		if (vol_args->size > PAGE_SIZE) {
1713 			ret = -EINVAL;
1714 			goto free_args;
1715 		}
1716 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1717 		if (IS_ERR(inherit)) {
1718 			ret = PTR_ERR(inherit);
1719 			goto free_args;
1720 		}
1721 	}
1722 
1723 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1724 					      vol_args->fd, subvol, ptr,
1725 					      readonly, inherit);
1726 	if (ret)
1727 		goto free_inherit;
1728 
1729 	if (ptr && copy_to_user(arg +
1730 				offsetof(struct btrfs_ioctl_vol_args_v2,
1731 					transid),
1732 				ptr, sizeof(*ptr)))
1733 		ret = -EFAULT;
1734 
1735 free_inherit:
1736 	kfree(inherit);
1737 free_args:
1738 	kfree(vol_args);
1739 	return ret;
1740 }
1741 
1742 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1743 						void __user *arg)
1744 {
1745 	struct inode *inode = file_inode(file);
1746 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1747 	struct btrfs_root *root = BTRFS_I(inode)->root;
1748 	int ret = 0;
1749 	u64 flags = 0;
1750 
1751 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1752 		return -EINVAL;
1753 
1754 	down_read(&fs_info->subvol_sem);
1755 	if (btrfs_root_readonly(root))
1756 		flags |= BTRFS_SUBVOL_RDONLY;
1757 	up_read(&fs_info->subvol_sem);
1758 
1759 	if (copy_to_user(arg, &flags, sizeof(flags)))
1760 		ret = -EFAULT;
1761 
1762 	return ret;
1763 }
1764 
1765 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1766 					      void __user *arg)
1767 {
1768 	struct inode *inode = file_inode(file);
1769 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1770 	struct btrfs_root *root = BTRFS_I(inode)->root;
1771 	struct btrfs_trans_handle *trans;
1772 	u64 root_flags;
1773 	u64 flags;
1774 	int ret = 0;
1775 
1776 	if (!inode_owner_or_capable(inode))
1777 		return -EPERM;
1778 
1779 	ret = mnt_want_write_file(file);
1780 	if (ret)
1781 		goto out;
1782 
1783 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1784 		ret = -EINVAL;
1785 		goto out_drop_write;
1786 	}
1787 
1788 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1789 		ret = -EFAULT;
1790 		goto out_drop_write;
1791 	}
1792 
1793 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1794 		ret = -EINVAL;
1795 		goto out_drop_write;
1796 	}
1797 
1798 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1799 		ret = -EOPNOTSUPP;
1800 		goto out_drop_write;
1801 	}
1802 
1803 	down_write(&fs_info->subvol_sem);
1804 
1805 	/* nothing to do */
1806 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1807 		goto out_drop_sem;
1808 
1809 	root_flags = btrfs_root_flags(&root->root_item);
1810 	if (flags & BTRFS_SUBVOL_RDONLY) {
1811 		btrfs_set_root_flags(&root->root_item,
1812 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1813 	} else {
1814 		/*
1815 		 * Block RO -> RW transition if this subvolume is involved in
1816 		 * send
1817 		 */
1818 		spin_lock(&root->root_item_lock);
1819 		if (root->send_in_progress == 0) {
1820 			btrfs_set_root_flags(&root->root_item,
1821 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1822 			spin_unlock(&root->root_item_lock);
1823 		} else {
1824 			spin_unlock(&root->root_item_lock);
1825 			btrfs_warn(fs_info,
1826 				   "Attempt to set subvolume %llu read-write during send",
1827 				   root->root_key.objectid);
1828 			ret = -EPERM;
1829 			goto out_drop_sem;
1830 		}
1831 	}
1832 
1833 	trans = btrfs_start_transaction(root, 1);
1834 	if (IS_ERR(trans)) {
1835 		ret = PTR_ERR(trans);
1836 		goto out_reset;
1837 	}
1838 
1839 	ret = btrfs_update_root(trans, fs_info->tree_root,
1840 				&root->root_key, &root->root_item);
1841 
1842 	btrfs_commit_transaction(trans);
1843 out_reset:
1844 	if (ret)
1845 		btrfs_set_root_flags(&root->root_item, root_flags);
1846 out_drop_sem:
1847 	up_write(&fs_info->subvol_sem);
1848 out_drop_write:
1849 	mnt_drop_write_file(file);
1850 out:
1851 	return ret;
1852 }
1853 
1854 /*
1855  * helper to check if the subvolume references other subvolumes
1856  */
1857 static noinline int may_destroy_subvol(struct btrfs_root *root)
1858 {
1859 	struct btrfs_fs_info *fs_info = root->fs_info;
1860 	struct btrfs_path *path;
1861 	struct btrfs_dir_item *di;
1862 	struct btrfs_key key;
1863 	u64 dir_id;
1864 	int ret;
1865 
1866 	path = btrfs_alloc_path();
1867 	if (!path)
1868 		return -ENOMEM;
1869 
1870 	/* Make sure this root isn't set as the default subvol */
1871 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1872 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1873 				   dir_id, "default", 7, 0);
1874 	if (di && !IS_ERR(di)) {
1875 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1876 		if (key.objectid == root->root_key.objectid) {
1877 			ret = -EPERM;
1878 			btrfs_err(fs_info,
1879 				  "deleting default subvolume %llu is not allowed",
1880 				  key.objectid);
1881 			goto out;
1882 		}
1883 		btrfs_release_path(path);
1884 	}
1885 
1886 	key.objectid = root->root_key.objectid;
1887 	key.type = BTRFS_ROOT_REF_KEY;
1888 	key.offset = (u64)-1;
1889 
1890 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1891 	if (ret < 0)
1892 		goto out;
1893 	BUG_ON(ret == 0);
1894 
1895 	ret = 0;
1896 	if (path->slots[0] > 0) {
1897 		path->slots[0]--;
1898 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1899 		if (key.objectid == root->root_key.objectid &&
1900 		    key.type == BTRFS_ROOT_REF_KEY)
1901 			ret = -ENOTEMPTY;
1902 	}
1903 out:
1904 	btrfs_free_path(path);
1905 	return ret;
1906 }
1907 
1908 static noinline int key_in_sk(struct btrfs_key *key,
1909 			      struct btrfs_ioctl_search_key *sk)
1910 {
1911 	struct btrfs_key test;
1912 	int ret;
1913 
1914 	test.objectid = sk->min_objectid;
1915 	test.type = sk->min_type;
1916 	test.offset = sk->min_offset;
1917 
1918 	ret = btrfs_comp_cpu_keys(key, &test);
1919 	if (ret < 0)
1920 		return 0;
1921 
1922 	test.objectid = sk->max_objectid;
1923 	test.type = sk->max_type;
1924 	test.offset = sk->max_offset;
1925 
1926 	ret = btrfs_comp_cpu_keys(key, &test);
1927 	if (ret > 0)
1928 		return 0;
1929 	return 1;
1930 }
1931 
1932 static noinline int copy_to_sk(struct btrfs_path *path,
1933 			       struct btrfs_key *key,
1934 			       struct btrfs_ioctl_search_key *sk,
1935 			       size_t *buf_size,
1936 			       char __user *ubuf,
1937 			       unsigned long *sk_offset,
1938 			       int *num_found)
1939 {
1940 	u64 found_transid;
1941 	struct extent_buffer *leaf;
1942 	struct btrfs_ioctl_search_header sh;
1943 	struct btrfs_key test;
1944 	unsigned long item_off;
1945 	unsigned long item_len;
1946 	int nritems;
1947 	int i;
1948 	int slot;
1949 	int ret = 0;
1950 
1951 	leaf = path->nodes[0];
1952 	slot = path->slots[0];
1953 	nritems = btrfs_header_nritems(leaf);
1954 
1955 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1956 		i = nritems;
1957 		goto advance_key;
1958 	}
1959 	found_transid = btrfs_header_generation(leaf);
1960 
1961 	for (i = slot; i < nritems; i++) {
1962 		item_off = btrfs_item_ptr_offset(leaf, i);
1963 		item_len = btrfs_item_size_nr(leaf, i);
1964 
1965 		btrfs_item_key_to_cpu(leaf, key, i);
1966 		if (!key_in_sk(key, sk))
1967 			continue;
1968 
1969 		if (sizeof(sh) + item_len > *buf_size) {
1970 			if (*num_found) {
1971 				ret = 1;
1972 				goto out;
1973 			}
1974 
1975 			/*
1976 			 * return one empty item back for v1, which does not
1977 			 * handle -EOVERFLOW
1978 			 */
1979 
1980 			*buf_size = sizeof(sh) + item_len;
1981 			item_len = 0;
1982 			ret = -EOVERFLOW;
1983 		}
1984 
1985 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1986 			ret = 1;
1987 			goto out;
1988 		}
1989 
1990 		sh.objectid = key->objectid;
1991 		sh.offset = key->offset;
1992 		sh.type = key->type;
1993 		sh.len = item_len;
1994 		sh.transid = found_transid;
1995 
1996 		/* copy search result header */
1997 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1998 			ret = -EFAULT;
1999 			goto out;
2000 		}
2001 
2002 		*sk_offset += sizeof(sh);
2003 
2004 		if (item_len) {
2005 			char __user *up = ubuf + *sk_offset;
2006 			/* copy the item */
2007 			if (read_extent_buffer_to_user(leaf, up,
2008 						       item_off, item_len)) {
2009 				ret = -EFAULT;
2010 				goto out;
2011 			}
2012 
2013 			*sk_offset += item_len;
2014 		}
2015 		(*num_found)++;
2016 
2017 		if (ret) /* -EOVERFLOW from above */
2018 			goto out;
2019 
2020 		if (*num_found >= sk->nr_items) {
2021 			ret = 1;
2022 			goto out;
2023 		}
2024 	}
2025 advance_key:
2026 	ret = 0;
2027 	test.objectid = sk->max_objectid;
2028 	test.type = sk->max_type;
2029 	test.offset = sk->max_offset;
2030 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2031 		ret = 1;
2032 	else if (key->offset < (u64)-1)
2033 		key->offset++;
2034 	else if (key->type < (u8)-1) {
2035 		key->offset = 0;
2036 		key->type++;
2037 	} else if (key->objectid < (u64)-1) {
2038 		key->offset = 0;
2039 		key->type = 0;
2040 		key->objectid++;
2041 	} else
2042 		ret = 1;
2043 out:
2044 	/*
2045 	 *  0: all items from this leaf copied, continue with next
2046 	 *  1: * more items can be copied, but unused buffer is too small
2047 	 *     * all items were found
2048 	 *     Either way, it will stops the loop which iterates to the next
2049 	 *     leaf
2050 	 *  -EOVERFLOW: item was to large for buffer
2051 	 *  -EFAULT: could not copy extent buffer back to userspace
2052 	 */
2053 	return ret;
2054 }
2055 
2056 static noinline int search_ioctl(struct inode *inode,
2057 				 struct btrfs_ioctl_search_key *sk,
2058 				 size_t *buf_size,
2059 				 char __user *ubuf)
2060 {
2061 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2062 	struct btrfs_root *root;
2063 	struct btrfs_key key;
2064 	struct btrfs_path *path;
2065 	int ret;
2066 	int num_found = 0;
2067 	unsigned long sk_offset = 0;
2068 
2069 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2070 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2071 		return -EOVERFLOW;
2072 	}
2073 
2074 	path = btrfs_alloc_path();
2075 	if (!path)
2076 		return -ENOMEM;
2077 
2078 	if (sk->tree_id == 0) {
2079 		/* search the root of the inode that was passed */
2080 		root = BTRFS_I(inode)->root;
2081 	} else {
2082 		key.objectid = sk->tree_id;
2083 		key.type = BTRFS_ROOT_ITEM_KEY;
2084 		key.offset = (u64)-1;
2085 		root = btrfs_read_fs_root_no_name(info, &key);
2086 		if (IS_ERR(root)) {
2087 			btrfs_free_path(path);
2088 			return -ENOENT;
2089 		}
2090 	}
2091 
2092 	key.objectid = sk->min_objectid;
2093 	key.type = sk->min_type;
2094 	key.offset = sk->min_offset;
2095 
2096 	while (1) {
2097 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2098 		if (ret != 0) {
2099 			if (ret > 0)
2100 				ret = 0;
2101 			goto err;
2102 		}
2103 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2104 				 &sk_offset, &num_found);
2105 		btrfs_release_path(path);
2106 		if (ret)
2107 			break;
2108 
2109 	}
2110 	if (ret > 0)
2111 		ret = 0;
2112 err:
2113 	sk->nr_items = num_found;
2114 	btrfs_free_path(path);
2115 	return ret;
2116 }
2117 
2118 static noinline int btrfs_ioctl_tree_search(struct file *file,
2119 					   void __user *argp)
2120 {
2121 	struct btrfs_ioctl_search_args __user *uargs;
2122 	struct btrfs_ioctl_search_key sk;
2123 	struct inode *inode;
2124 	int ret;
2125 	size_t buf_size;
2126 
2127 	if (!capable(CAP_SYS_ADMIN))
2128 		return -EPERM;
2129 
2130 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2131 
2132 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2133 		return -EFAULT;
2134 
2135 	buf_size = sizeof(uargs->buf);
2136 
2137 	inode = file_inode(file);
2138 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2139 
2140 	/*
2141 	 * In the origin implementation an overflow is handled by returning a
2142 	 * search header with a len of zero, so reset ret.
2143 	 */
2144 	if (ret == -EOVERFLOW)
2145 		ret = 0;
2146 
2147 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2148 		ret = -EFAULT;
2149 	return ret;
2150 }
2151 
2152 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2153 					       void __user *argp)
2154 {
2155 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2156 	struct btrfs_ioctl_search_args_v2 args;
2157 	struct inode *inode;
2158 	int ret;
2159 	size_t buf_size;
2160 	const size_t buf_limit = SZ_16M;
2161 
2162 	if (!capable(CAP_SYS_ADMIN))
2163 		return -EPERM;
2164 
2165 	/* copy search header and buffer size */
2166 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2167 	if (copy_from_user(&args, uarg, sizeof(args)))
2168 		return -EFAULT;
2169 
2170 	buf_size = args.buf_size;
2171 
2172 	/* limit result size to 16MB */
2173 	if (buf_size > buf_limit)
2174 		buf_size = buf_limit;
2175 
2176 	inode = file_inode(file);
2177 	ret = search_ioctl(inode, &args.key, &buf_size,
2178 			   (char *)(&uarg->buf[0]));
2179 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2180 		ret = -EFAULT;
2181 	else if (ret == -EOVERFLOW &&
2182 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2183 		ret = -EFAULT;
2184 
2185 	return ret;
2186 }
2187 
2188 /*
2189  * Search INODE_REFs to identify path name of 'dirid' directory
2190  * in a 'tree_id' tree. and sets path name to 'name'.
2191  */
2192 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2193 				u64 tree_id, u64 dirid, char *name)
2194 {
2195 	struct btrfs_root *root;
2196 	struct btrfs_key key;
2197 	char *ptr;
2198 	int ret = -1;
2199 	int slot;
2200 	int len;
2201 	int total_len = 0;
2202 	struct btrfs_inode_ref *iref;
2203 	struct extent_buffer *l;
2204 	struct btrfs_path *path;
2205 
2206 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2207 		name[0]='\0';
2208 		return 0;
2209 	}
2210 
2211 	path = btrfs_alloc_path();
2212 	if (!path)
2213 		return -ENOMEM;
2214 
2215 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2216 
2217 	key.objectid = tree_id;
2218 	key.type = BTRFS_ROOT_ITEM_KEY;
2219 	key.offset = (u64)-1;
2220 	root = btrfs_read_fs_root_no_name(info, &key);
2221 	if (IS_ERR(root)) {
2222 		btrfs_err(info, "could not find root %llu", tree_id);
2223 		ret = -ENOENT;
2224 		goto out;
2225 	}
2226 
2227 	key.objectid = dirid;
2228 	key.type = BTRFS_INODE_REF_KEY;
2229 	key.offset = (u64)-1;
2230 
2231 	while (1) {
2232 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2233 		if (ret < 0)
2234 			goto out;
2235 		else if (ret > 0) {
2236 			ret = btrfs_previous_item(root, path, dirid,
2237 						  BTRFS_INODE_REF_KEY);
2238 			if (ret < 0)
2239 				goto out;
2240 			else if (ret > 0) {
2241 				ret = -ENOENT;
2242 				goto out;
2243 			}
2244 		}
2245 
2246 		l = path->nodes[0];
2247 		slot = path->slots[0];
2248 		btrfs_item_key_to_cpu(l, &key, slot);
2249 
2250 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2251 		len = btrfs_inode_ref_name_len(l, iref);
2252 		ptr -= len + 1;
2253 		total_len += len + 1;
2254 		if (ptr < name) {
2255 			ret = -ENAMETOOLONG;
2256 			goto out;
2257 		}
2258 
2259 		*(ptr + len) = '/';
2260 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2261 
2262 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2263 			break;
2264 
2265 		btrfs_release_path(path);
2266 		key.objectid = key.offset;
2267 		key.offset = (u64)-1;
2268 		dirid = key.objectid;
2269 	}
2270 	memmove(name, ptr, total_len);
2271 	name[total_len] = '\0';
2272 	ret = 0;
2273 out:
2274 	btrfs_free_path(path);
2275 	return ret;
2276 }
2277 
2278 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2279 					   void __user *argp)
2280 {
2281 	 struct btrfs_ioctl_ino_lookup_args *args;
2282 	 struct inode *inode;
2283 	int ret = 0;
2284 
2285 	args = memdup_user(argp, sizeof(*args));
2286 	if (IS_ERR(args))
2287 		return PTR_ERR(args);
2288 
2289 	inode = file_inode(file);
2290 
2291 	/*
2292 	 * Unprivileged query to obtain the containing subvolume root id. The
2293 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2294 	 */
2295 	if (args->treeid == 0)
2296 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2297 
2298 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2299 		args->name[0] = 0;
2300 		goto out;
2301 	}
2302 
2303 	if (!capable(CAP_SYS_ADMIN)) {
2304 		ret = -EPERM;
2305 		goto out;
2306 	}
2307 
2308 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2309 					args->treeid, args->objectid,
2310 					args->name);
2311 
2312 out:
2313 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2314 		ret = -EFAULT;
2315 
2316 	kfree(args);
2317 	return ret;
2318 }
2319 
2320 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2321 					     void __user *arg)
2322 {
2323 	struct dentry *parent = file->f_path.dentry;
2324 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2325 	struct dentry *dentry;
2326 	struct inode *dir = d_inode(parent);
2327 	struct inode *inode;
2328 	struct btrfs_root *root = BTRFS_I(dir)->root;
2329 	struct btrfs_root *dest = NULL;
2330 	struct btrfs_ioctl_vol_args *vol_args;
2331 	struct btrfs_trans_handle *trans;
2332 	struct btrfs_block_rsv block_rsv;
2333 	u64 root_flags;
2334 	u64 qgroup_reserved;
2335 	int namelen;
2336 	int ret;
2337 	int err = 0;
2338 
2339 	if (!S_ISDIR(dir->i_mode))
2340 		return -ENOTDIR;
2341 
2342 	vol_args = memdup_user(arg, sizeof(*vol_args));
2343 	if (IS_ERR(vol_args))
2344 		return PTR_ERR(vol_args);
2345 
2346 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2347 	namelen = strlen(vol_args->name);
2348 	if (strchr(vol_args->name, '/') ||
2349 	    strncmp(vol_args->name, "..", namelen) == 0) {
2350 		err = -EINVAL;
2351 		goto out;
2352 	}
2353 
2354 	err = mnt_want_write_file(file);
2355 	if (err)
2356 		goto out;
2357 
2358 
2359 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2360 	if (err == -EINTR)
2361 		goto out_drop_write;
2362 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2363 	if (IS_ERR(dentry)) {
2364 		err = PTR_ERR(dentry);
2365 		goto out_unlock_dir;
2366 	}
2367 
2368 	if (d_really_is_negative(dentry)) {
2369 		err = -ENOENT;
2370 		goto out_dput;
2371 	}
2372 
2373 	inode = d_inode(dentry);
2374 	dest = BTRFS_I(inode)->root;
2375 	if (!capable(CAP_SYS_ADMIN)) {
2376 		/*
2377 		 * Regular user.  Only allow this with a special mount
2378 		 * option, when the user has write+exec access to the
2379 		 * subvol root, and when rmdir(2) would have been
2380 		 * allowed.
2381 		 *
2382 		 * Note that this is _not_ check that the subvol is
2383 		 * empty or doesn't contain data that we wouldn't
2384 		 * otherwise be able to delete.
2385 		 *
2386 		 * Users who want to delete empty subvols should try
2387 		 * rmdir(2).
2388 		 */
2389 		err = -EPERM;
2390 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2391 			goto out_dput;
2392 
2393 		/*
2394 		 * Do not allow deletion if the parent dir is the same
2395 		 * as the dir to be deleted.  That means the ioctl
2396 		 * must be called on the dentry referencing the root
2397 		 * of the subvol, not a random directory contained
2398 		 * within it.
2399 		 */
2400 		err = -EINVAL;
2401 		if (root == dest)
2402 			goto out_dput;
2403 
2404 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2405 		if (err)
2406 			goto out_dput;
2407 	}
2408 
2409 	/* check if subvolume may be deleted by a user */
2410 	err = btrfs_may_delete(dir, dentry, 1);
2411 	if (err)
2412 		goto out_dput;
2413 
2414 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2415 		err = -EINVAL;
2416 		goto out_dput;
2417 	}
2418 
2419 	inode_lock(inode);
2420 
2421 	/*
2422 	 * Don't allow to delete a subvolume with send in progress. This is
2423 	 * inside the i_mutex so the error handling that has to drop the bit
2424 	 * again is not run concurrently.
2425 	 */
2426 	spin_lock(&dest->root_item_lock);
2427 	root_flags = btrfs_root_flags(&dest->root_item);
2428 	if (dest->send_in_progress == 0) {
2429 		btrfs_set_root_flags(&dest->root_item,
2430 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2431 		spin_unlock(&dest->root_item_lock);
2432 	} else {
2433 		spin_unlock(&dest->root_item_lock);
2434 		btrfs_warn(fs_info,
2435 			   "Attempt to delete subvolume %llu during send",
2436 			   dest->root_key.objectid);
2437 		err = -EPERM;
2438 		goto out_unlock_inode;
2439 	}
2440 
2441 	down_write(&fs_info->subvol_sem);
2442 
2443 	err = may_destroy_subvol(dest);
2444 	if (err)
2445 		goto out_up_write;
2446 
2447 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2448 	/*
2449 	 * One for dir inode, two for dir entries, two for root
2450 	 * ref/backref.
2451 	 */
2452 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2453 					       5, &qgroup_reserved, true);
2454 	if (err)
2455 		goto out_up_write;
2456 
2457 	trans = btrfs_start_transaction(root, 0);
2458 	if (IS_ERR(trans)) {
2459 		err = PTR_ERR(trans);
2460 		goto out_release;
2461 	}
2462 	trans->block_rsv = &block_rsv;
2463 	trans->bytes_reserved = block_rsv.size;
2464 
2465 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2466 
2467 	ret = btrfs_unlink_subvol(trans, root, dir,
2468 				dest->root_key.objectid,
2469 				dentry->d_name.name,
2470 				dentry->d_name.len);
2471 	if (ret) {
2472 		err = ret;
2473 		btrfs_abort_transaction(trans, ret);
2474 		goto out_end_trans;
2475 	}
2476 
2477 	btrfs_record_root_in_trans(trans, dest);
2478 
2479 	memset(&dest->root_item.drop_progress, 0,
2480 		sizeof(dest->root_item.drop_progress));
2481 	dest->root_item.drop_level = 0;
2482 	btrfs_set_root_refs(&dest->root_item, 0);
2483 
2484 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2485 		ret = btrfs_insert_orphan_item(trans,
2486 					fs_info->tree_root,
2487 					dest->root_key.objectid);
2488 		if (ret) {
2489 			btrfs_abort_transaction(trans, ret);
2490 			err = ret;
2491 			goto out_end_trans;
2492 		}
2493 	}
2494 
2495 	ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2496 				  BTRFS_UUID_KEY_SUBVOL,
2497 				  dest->root_key.objectid);
2498 	if (ret && ret != -ENOENT) {
2499 		btrfs_abort_transaction(trans, ret);
2500 		err = ret;
2501 		goto out_end_trans;
2502 	}
2503 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2504 		ret = btrfs_uuid_tree_rem(trans, fs_info,
2505 					  dest->root_item.received_uuid,
2506 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2507 					  dest->root_key.objectid);
2508 		if (ret && ret != -ENOENT) {
2509 			btrfs_abort_transaction(trans, ret);
2510 			err = ret;
2511 			goto out_end_trans;
2512 		}
2513 	}
2514 
2515 out_end_trans:
2516 	trans->block_rsv = NULL;
2517 	trans->bytes_reserved = 0;
2518 	ret = btrfs_end_transaction(trans);
2519 	if (ret && !err)
2520 		err = ret;
2521 	inode->i_flags |= S_DEAD;
2522 out_release:
2523 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2524 out_up_write:
2525 	up_write(&fs_info->subvol_sem);
2526 	if (err) {
2527 		spin_lock(&dest->root_item_lock);
2528 		root_flags = btrfs_root_flags(&dest->root_item);
2529 		btrfs_set_root_flags(&dest->root_item,
2530 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2531 		spin_unlock(&dest->root_item_lock);
2532 	}
2533 out_unlock_inode:
2534 	inode_unlock(inode);
2535 	if (!err) {
2536 		d_invalidate(dentry);
2537 		btrfs_invalidate_inodes(dest);
2538 		d_delete(dentry);
2539 		ASSERT(dest->send_in_progress == 0);
2540 
2541 		/* the last ref */
2542 		if (dest->ino_cache_inode) {
2543 			iput(dest->ino_cache_inode);
2544 			dest->ino_cache_inode = NULL;
2545 		}
2546 	}
2547 out_dput:
2548 	dput(dentry);
2549 out_unlock_dir:
2550 	inode_unlock(dir);
2551 out_drop_write:
2552 	mnt_drop_write_file(file);
2553 out:
2554 	kfree(vol_args);
2555 	return err;
2556 }
2557 
2558 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2559 {
2560 	struct inode *inode = file_inode(file);
2561 	struct btrfs_root *root = BTRFS_I(inode)->root;
2562 	struct btrfs_ioctl_defrag_range_args *range;
2563 	int ret;
2564 
2565 	ret = mnt_want_write_file(file);
2566 	if (ret)
2567 		return ret;
2568 
2569 	if (btrfs_root_readonly(root)) {
2570 		ret = -EROFS;
2571 		goto out;
2572 	}
2573 
2574 	switch (inode->i_mode & S_IFMT) {
2575 	case S_IFDIR:
2576 		if (!capable(CAP_SYS_ADMIN)) {
2577 			ret = -EPERM;
2578 			goto out;
2579 		}
2580 		ret = btrfs_defrag_root(root);
2581 		break;
2582 	case S_IFREG:
2583 		if (!(file->f_mode & FMODE_WRITE)) {
2584 			ret = -EINVAL;
2585 			goto out;
2586 		}
2587 
2588 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2589 		if (!range) {
2590 			ret = -ENOMEM;
2591 			goto out;
2592 		}
2593 
2594 		if (argp) {
2595 			if (copy_from_user(range, argp,
2596 					   sizeof(*range))) {
2597 				ret = -EFAULT;
2598 				kfree(range);
2599 				goto out;
2600 			}
2601 			/* compression requires us to start the IO */
2602 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2603 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2604 				range->extent_thresh = (u32)-1;
2605 			}
2606 		} else {
2607 			/* the rest are all set to zero by kzalloc */
2608 			range->len = (u64)-1;
2609 		}
2610 		ret = btrfs_defrag_file(file_inode(file), file,
2611 					range, 0, 0);
2612 		if (ret > 0)
2613 			ret = 0;
2614 		kfree(range);
2615 		break;
2616 	default:
2617 		ret = -EINVAL;
2618 	}
2619 out:
2620 	mnt_drop_write_file(file);
2621 	return ret;
2622 }
2623 
2624 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2625 {
2626 	struct btrfs_ioctl_vol_args *vol_args;
2627 	int ret;
2628 
2629 	if (!capable(CAP_SYS_ADMIN))
2630 		return -EPERM;
2631 
2632 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2633 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2634 
2635 	mutex_lock(&fs_info->volume_mutex);
2636 	vol_args = memdup_user(arg, sizeof(*vol_args));
2637 	if (IS_ERR(vol_args)) {
2638 		ret = PTR_ERR(vol_args);
2639 		goto out;
2640 	}
2641 
2642 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2643 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2644 
2645 	if (!ret)
2646 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2647 
2648 	kfree(vol_args);
2649 out:
2650 	mutex_unlock(&fs_info->volume_mutex);
2651 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2652 	return ret;
2653 }
2654 
2655 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2656 {
2657 	struct inode *inode = file_inode(file);
2658 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2659 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2660 	int ret;
2661 
2662 	if (!capable(CAP_SYS_ADMIN))
2663 		return -EPERM;
2664 
2665 	ret = mnt_want_write_file(file);
2666 	if (ret)
2667 		return ret;
2668 
2669 	vol_args = memdup_user(arg, sizeof(*vol_args));
2670 	if (IS_ERR(vol_args)) {
2671 		ret = PTR_ERR(vol_args);
2672 		goto err_drop;
2673 	}
2674 
2675 	/* Check for compatibility reject unknown flags */
2676 	if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2677 		return -EOPNOTSUPP;
2678 
2679 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2680 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2681 		goto out;
2682 	}
2683 
2684 	mutex_lock(&fs_info->volume_mutex);
2685 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2686 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2687 	} else {
2688 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2689 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2690 	}
2691 	mutex_unlock(&fs_info->volume_mutex);
2692 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2693 
2694 	if (!ret) {
2695 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2696 			btrfs_info(fs_info, "device deleted: id %llu",
2697 					vol_args->devid);
2698 		else
2699 			btrfs_info(fs_info, "device deleted: %s",
2700 					vol_args->name);
2701 	}
2702 out:
2703 	kfree(vol_args);
2704 err_drop:
2705 	mnt_drop_write_file(file);
2706 	return ret;
2707 }
2708 
2709 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2710 {
2711 	struct inode *inode = file_inode(file);
2712 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2713 	struct btrfs_ioctl_vol_args *vol_args;
2714 	int ret;
2715 
2716 	if (!capable(CAP_SYS_ADMIN))
2717 		return -EPERM;
2718 
2719 	ret = mnt_want_write_file(file);
2720 	if (ret)
2721 		return ret;
2722 
2723 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2724 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2725 		goto out_drop_write;
2726 	}
2727 
2728 	vol_args = memdup_user(arg, sizeof(*vol_args));
2729 	if (IS_ERR(vol_args)) {
2730 		ret = PTR_ERR(vol_args);
2731 		goto out;
2732 	}
2733 
2734 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2735 	mutex_lock(&fs_info->volume_mutex);
2736 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2737 	mutex_unlock(&fs_info->volume_mutex);
2738 
2739 	if (!ret)
2740 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2741 	kfree(vol_args);
2742 out:
2743 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2744 out_drop_write:
2745 	mnt_drop_write_file(file);
2746 
2747 	return ret;
2748 }
2749 
2750 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2751 				void __user *arg)
2752 {
2753 	struct btrfs_ioctl_fs_info_args *fi_args;
2754 	struct btrfs_device *device;
2755 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2756 	int ret = 0;
2757 
2758 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2759 	if (!fi_args)
2760 		return -ENOMEM;
2761 
2762 	mutex_lock(&fs_devices->device_list_mutex);
2763 	fi_args->num_devices = fs_devices->num_devices;
2764 	memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2765 
2766 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2767 		if (device->devid > fi_args->max_id)
2768 			fi_args->max_id = device->devid;
2769 	}
2770 	mutex_unlock(&fs_devices->device_list_mutex);
2771 
2772 	fi_args->nodesize = fs_info->super_copy->nodesize;
2773 	fi_args->sectorsize = fs_info->super_copy->sectorsize;
2774 	fi_args->clone_alignment = fs_info->super_copy->sectorsize;
2775 
2776 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2777 		ret = -EFAULT;
2778 
2779 	kfree(fi_args);
2780 	return ret;
2781 }
2782 
2783 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2784 				 void __user *arg)
2785 {
2786 	struct btrfs_ioctl_dev_info_args *di_args;
2787 	struct btrfs_device *dev;
2788 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2789 	int ret = 0;
2790 	char *s_uuid = NULL;
2791 
2792 	di_args = memdup_user(arg, sizeof(*di_args));
2793 	if (IS_ERR(di_args))
2794 		return PTR_ERR(di_args);
2795 
2796 	if (!btrfs_is_empty_uuid(di_args->uuid))
2797 		s_uuid = di_args->uuid;
2798 
2799 	mutex_lock(&fs_devices->device_list_mutex);
2800 	dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2801 
2802 	if (!dev) {
2803 		ret = -ENODEV;
2804 		goto out;
2805 	}
2806 
2807 	di_args->devid = dev->devid;
2808 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2809 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2810 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2811 	if (dev->name) {
2812 		struct rcu_string *name;
2813 
2814 		rcu_read_lock();
2815 		name = rcu_dereference(dev->name);
2816 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2817 		rcu_read_unlock();
2818 		di_args->path[sizeof(di_args->path) - 1] = 0;
2819 	} else {
2820 		di_args->path[0] = '\0';
2821 	}
2822 
2823 out:
2824 	mutex_unlock(&fs_devices->device_list_mutex);
2825 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2826 		ret = -EFAULT;
2827 
2828 	kfree(di_args);
2829 	return ret;
2830 }
2831 
2832 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2833 {
2834 	struct page *page;
2835 
2836 	page = grab_cache_page(inode->i_mapping, index);
2837 	if (!page)
2838 		return ERR_PTR(-ENOMEM);
2839 
2840 	if (!PageUptodate(page)) {
2841 		int ret;
2842 
2843 		ret = btrfs_readpage(NULL, page);
2844 		if (ret)
2845 			return ERR_PTR(ret);
2846 		lock_page(page);
2847 		if (!PageUptodate(page)) {
2848 			unlock_page(page);
2849 			put_page(page);
2850 			return ERR_PTR(-EIO);
2851 		}
2852 		if (page->mapping != inode->i_mapping) {
2853 			unlock_page(page);
2854 			put_page(page);
2855 			return ERR_PTR(-EAGAIN);
2856 		}
2857 	}
2858 
2859 	return page;
2860 }
2861 
2862 static int gather_extent_pages(struct inode *inode, struct page **pages,
2863 			       int num_pages, u64 off)
2864 {
2865 	int i;
2866 	pgoff_t index = off >> PAGE_SHIFT;
2867 
2868 	for (i = 0; i < num_pages; i++) {
2869 again:
2870 		pages[i] = extent_same_get_page(inode, index + i);
2871 		if (IS_ERR(pages[i])) {
2872 			int err = PTR_ERR(pages[i]);
2873 
2874 			if (err == -EAGAIN)
2875 				goto again;
2876 			pages[i] = NULL;
2877 			return err;
2878 		}
2879 	}
2880 	return 0;
2881 }
2882 
2883 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2884 			     bool retry_range_locking)
2885 {
2886 	/*
2887 	 * Do any pending delalloc/csum calculations on inode, one way or
2888 	 * another, and lock file content.
2889 	 * The locking order is:
2890 	 *
2891 	 *   1) pages
2892 	 *   2) range in the inode's io tree
2893 	 */
2894 	while (1) {
2895 		struct btrfs_ordered_extent *ordered;
2896 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2897 		ordered = btrfs_lookup_first_ordered_extent(inode,
2898 							    off + len - 1);
2899 		if ((!ordered ||
2900 		     ordered->file_offset + ordered->len <= off ||
2901 		     ordered->file_offset >= off + len) &&
2902 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2903 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2904 			if (ordered)
2905 				btrfs_put_ordered_extent(ordered);
2906 			break;
2907 		}
2908 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2909 		if (ordered)
2910 			btrfs_put_ordered_extent(ordered);
2911 		if (!retry_range_locking)
2912 			return -EAGAIN;
2913 		btrfs_wait_ordered_range(inode, off, len);
2914 	}
2915 	return 0;
2916 }
2917 
2918 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2919 {
2920 	inode_unlock(inode1);
2921 	inode_unlock(inode2);
2922 }
2923 
2924 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2925 {
2926 	if (inode1 < inode2)
2927 		swap(inode1, inode2);
2928 
2929 	inode_lock_nested(inode1, I_MUTEX_PARENT);
2930 	inode_lock_nested(inode2, I_MUTEX_CHILD);
2931 }
2932 
2933 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2934 				      struct inode *inode2, u64 loff2, u64 len)
2935 {
2936 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2937 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2938 }
2939 
2940 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2941 				    struct inode *inode2, u64 loff2, u64 len,
2942 				    bool retry_range_locking)
2943 {
2944 	int ret;
2945 
2946 	if (inode1 < inode2) {
2947 		swap(inode1, inode2);
2948 		swap(loff1, loff2);
2949 	}
2950 	ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2951 	if (ret)
2952 		return ret;
2953 	ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2954 	if (ret)
2955 		unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2956 			      loff1 + len - 1);
2957 	return ret;
2958 }
2959 
2960 struct cmp_pages {
2961 	int		num_pages;
2962 	struct page	**src_pages;
2963 	struct page	**dst_pages;
2964 };
2965 
2966 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2967 {
2968 	int i;
2969 	struct page *pg;
2970 
2971 	for (i = 0; i < cmp->num_pages; i++) {
2972 		pg = cmp->src_pages[i];
2973 		if (pg) {
2974 			unlock_page(pg);
2975 			put_page(pg);
2976 		}
2977 		pg = cmp->dst_pages[i];
2978 		if (pg) {
2979 			unlock_page(pg);
2980 			put_page(pg);
2981 		}
2982 	}
2983 	kfree(cmp->src_pages);
2984 	kfree(cmp->dst_pages);
2985 }
2986 
2987 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2988 				  struct inode *dst, u64 dst_loff,
2989 				  u64 len, struct cmp_pages *cmp)
2990 {
2991 	int ret;
2992 	int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2993 	struct page **src_pgarr, **dst_pgarr;
2994 
2995 	/*
2996 	 * We must gather up all the pages before we initiate our
2997 	 * extent locking. We use an array for the page pointers. Size
2998 	 * of the array is bounded by len, which is in turn bounded by
2999 	 * BTRFS_MAX_DEDUPE_LEN.
3000 	 */
3001 	src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3002 	dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3003 	if (!src_pgarr || !dst_pgarr) {
3004 		kfree(src_pgarr);
3005 		kfree(dst_pgarr);
3006 		return -ENOMEM;
3007 	}
3008 	cmp->num_pages = num_pages;
3009 	cmp->src_pages = src_pgarr;
3010 	cmp->dst_pages = dst_pgarr;
3011 
3012 	/*
3013 	 * If deduping ranges in the same inode, locking rules make it mandatory
3014 	 * to always lock pages in ascending order to avoid deadlocks with
3015 	 * concurrent tasks (such as starting writeback/delalloc).
3016 	 */
3017 	if (src == dst && dst_loff < loff) {
3018 		swap(src_pgarr, dst_pgarr);
3019 		swap(loff, dst_loff);
3020 	}
3021 
3022 	ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
3023 	if (ret)
3024 		goto out;
3025 
3026 	ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3027 
3028 out:
3029 	if (ret)
3030 		btrfs_cmp_data_free(cmp);
3031 	return 0;
3032 }
3033 
3034 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3035 {
3036 	int ret = 0;
3037 	int i;
3038 	struct page *src_page, *dst_page;
3039 	unsigned int cmp_len = PAGE_SIZE;
3040 	void *addr, *dst_addr;
3041 
3042 	i = 0;
3043 	while (len) {
3044 		if (len < PAGE_SIZE)
3045 			cmp_len = len;
3046 
3047 		BUG_ON(i >= cmp->num_pages);
3048 
3049 		src_page = cmp->src_pages[i];
3050 		dst_page = cmp->dst_pages[i];
3051 		ASSERT(PageLocked(src_page));
3052 		ASSERT(PageLocked(dst_page));
3053 
3054 		addr = kmap_atomic(src_page);
3055 		dst_addr = kmap_atomic(dst_page);
3056 
3057 		flush_dcache_page(src_page);
3058 		flush_dcache_page(dst_page);
3059 
3060 		if (memcmp(addr, dst_addr, cmp_len))
3061 			ret = -EBADE;
3062 
3063 		kunmap_atomic(addr);
3064 		kunmap_atomic(dst_addr);
3065 
3066 		if (ret)
3067 			break;
3068 
3069 		len -= cmp_len;
3070 		i++;
3071 	}
3072 
3073 	return ret;
3074 }
3075 
3076 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3077 				     u64 olen)
3078 {
3079 	u64 len = *plen;
3080 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3081 
3082 	if (off + olen > inode->i_size || off + olen < off)
3083 		return -EINVAL;
3084 
3085 	/* if we extend to eof, continue to block boundary */
3086 	if (off + len == inode->i_size)
3087 		*plen = len = ALIGN(inode->i_size, bs) - off;
3088 
3089 	/* Check that we are block aligned - btrfs_clone() requires this */
3090 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3091 		return -EINVAL;
3092 
3093 	return 0;
3094 }
3095 
3096 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3097 			     struct inode *dst, u64 dst_loff)
3098 {
3099 	int ret;
3100 	u64 len = olen;
3101 	struct cmp_pages cmp;
3102 	bool same_inode = (src == dst);
3103 	u64 same_lock_start = 0;
3104 	u64 same_lock_len = 0;
3105 
3106 	if (len == 0)
3107 		return 0;
3108 
3109 	if (same_inode)
3110 		inode_lock(src);
3111 	else
3112 		btrfs_double_inode_lock(src, dst);
3113 
3114 	ret = extent_same_check_offsets(src, loff, &len, olen);
3115 	if (ret)
3116 		goto out_unlock;
3117 
3118 	ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3119 	if (ret)
3120 		goto out_unlock;
3121 
3122 	if (same_inode) {
3123 		/*
3124 		 * Single inode case wants the same checks, except we
3125 		 * don't want our length pushed out past i_size as
3126 		 * comparing that data range makes no sense.
3127 		 *
3128 		 * extent_same_check_offsets() will do this for an
3129 		 * unaligned length at i_size, so catch it here and
3130 		 * reject the request.
3131 		 *
3132 		 * This effectively means we require aligned extents
3133 		 * for the single-inode case, whereas the other cases
3134 		 * allow an unaligned length so long as it ends at
3135 		 * i_size.
3136 		 */
3137 		if (len != olen) {
3138 			ret = -EINVAL;
3139 			goto out_unlock;
3140 		}
3141 
3142 		/* Check for overlapping ranges */
3143 		if (dst_loff + len > loff && dst_loff < loff + len) {
3144 			ret = -EINVAL;
3145 			goto out_unlock;
3146 		}
3147 
3148 		same_lock_start = min_t(u64, loff, dst_loff);
3149 		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3150 	}
3151 
3152 	/* don't make the dst file partly checksummed */
3153 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3154 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3155 		ret = -EINVAL;
3156 		goto out_unlock;
3157 	}
3158 
3159 again:
3160 	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3161 	if (ret)
3162 		goto out_unlock;
3163 
3164 	if (same_inode)
3165 		ret = lock_extent_range(src, same_lock_start, same_lock_len,
3166 					false);
3167 	else
3168 		ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3169 					       false);
3170 	/*
3171 	 * If one of the inodes has dirty pages in the respective range or
3172 	 * ordered extents, we need to flush dellaloc and wait for all ordered
3173 	 * extents in the range. We must unlock the pages and the ranges in the
3174 	 * io trees to avoid deadlocks when flushing delalloc (requires locking
3175 	 * pages) and when waiting for ordered extents to complete (they require
3176 	 * range locking).
3177 	 */
3178 	if (ret == -EAGAIN) {
3179 		/*
3180 		 * Ranges in the io trees already unlocked. Now unlock all
3181 		 * pages before waiting for all IO to complete.
3182 		 */
3183 		btrfs_cmp_data_free(&cmp);
3184 		if (same_inode) {
3185 			btrfs_wait_ordered_range(src, same_lock_start,
3186 						 same_lock_len);
3187 		} else {
3188 			btrfs_wait_ordered_range(src, loff, len);
3189 			btrfs_wait_ordered_range(dst, dst_loff, len);
3190 		}
3191 		goto again;
3192 	}
3193 	ASSERT(ret == 0);
3194 	if (WARN_ON(ret)) {
3195 		/* ranges in the io trees already unlocked */
3196 		btrfs_cmp_data_free(&cmp);
3197 		return ret;
3198 	}
3199 
3200 	/* pass original length for comparison so we stay within i_size */
3201 	ret = btrfs_cmp_data(olen, &cmp);
3202 	if (ret == 0)
3203 		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3204 
3205 	if (same_inode)
3206 		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3207 			      same_lock_start + same_lock_len - 1);
3208 	else
3209 		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3210 
3211 	btrfs_cmp_data_free(&cmp);
3212 out_unlock:
3213 	if (same_inode)
3214 		inode_unlock(src);
3215 	else
3216 		btrfs_double_inode_unlock(src, dst);
3217 
3218 	return ret;
3219 }
3220 
3221 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3222 
3223 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3224 				struct file *dst_file, u64 dst_loff)
3225 {
3226 	struct inode *src = file_inode(src_file);
3227 	struct inode *dst = file_inode(dst_file);
3228 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3229 	ssize_t res;
3230 
3231 	if (olen > BTRFS_MAX_DEDUPE_LEN)
3232 		olen = BTRFS_MAX_DEDUPE_LEN;
3233 
3234 	if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3235 		/*
3236 		 * Btrfs does not support blocksize < page_size. As a
3237 		 * result, btrfs_cmp_data() won't correctly handle
3238 		 * this situation without an update.
3239 		 */
3240 		return -EINVAL;
3241 	}
3242 
3243 	res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3244 	if (res)
3245 		return res;
3246 	return olen;
3247 }
3248 
3249 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3250 				     struct inode *inode,
3251 				     u64 endoff,
3252 				     const u64 destoff,
3253 				     const u64 olen,
3254 				     int no_time_update)
3255 {
3256 	struct btrfs_root *root = BTRFS_I(inode)->root;
3257 	int ret;
3258 
3259 	inode_inc_iversion(inode);
3260 	if (!no_time_update)
3261 		inode->i_mtime = inode->i_ctime = current_time(inode);
3262 	/*
3263 	 * We round up to the block size at eof when determining which
3264 	 * extents to clone above, but shouldn't round up the file size.
3265 	 */
3266 	if (endoff > destoff + olen)
3267 		endoff = destoff + olen;
3268 	if (endoff > inode->i_size)
3269 		btrfs_i_size_write(BTRFS_I(inode), endoff);
3270 
3271 	ret = btrfs_update_inode(trans, root, inode);
3272 	if (ret) {
3273 		btrfs_abort_transaction(trans, ret);
3274 		btrfs_end_transaction(trans);
3275 		goto out;
3276 	}
3277 	ret = btrfs_end_transaction(trans);
3278 out:
3279 	return ret;
3280 }
3281 
3282 static void clone_update_extent_map(struct btrfs_inode *inode,
3283 				    const struct btrfs_trans_handle *trans,
3284 				    const struct btrfs_path *path,
3285 				    const u64 hole_offset,
3286 				    const u64 hole_len)
3287 {
3288 	struct extent_map_tree *em_tree = &inode->extent_tree;
3289 	struct extent_map *em;
3290 	int ret;
3291 
3292 	em = alloc_extent_map();
3293 	if (!em) {
3294 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3295 		return;
3296 	}
3297 
3298 	if (path) {
3299 		struct btrfs_file_extent_item *fi;
3300 
3301 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3302 				    struct btrfs_file_extent_item);
3303 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3304 		em->generation = -1;
3305 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3306 		    BTRFS_FILE_EXTENT_INLINE)
3307 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3308 					&inode->runtime_flags);
3309 	} else {
3310 		em->start = hole_offset;
3311 		em->len = hole_len;
3312 		em->ram_bytes = em->len;
3313 		em->orig_start = hole_offset;
3314 		em->block_start = EXTENT_MAP_HOLE;
3315 		em->block_len = 0;
3316 		em->orig_block_len = 0;
3317 		em->compress_type = BTRFS_COMPRESS_NONE;
3318 		em->generation = trans->transid;
3319 	}
3320 
3321 	while (1) {
3322 		write_lock(&em_tree->lock);
3323 		ret = add_extent_mapping(em_tree, em, 1);
3324 		write_unlock(&em_tree->lock);
3325 		if (ret != -EEXIST) {
3326 			free_extent_map(em);
3327 			break;
3328 		}
3329 		btrfs_drop_extent_cache(inode, em->start,
3330 					em->start + em->len - 1, 0);
3331 	}
3332 
3333 	if (ret)
3334 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3335 }
3336 
3337 /*
3338  * Make sure we do not end up inserting an inline extent into a file that has
3339  * already other (non-inline) extents. If a file has an inline extent it can
3340  * not have any other extents and the (single) inline extent must start at the
3341  * file offset 0. Failing to respect these rules will lead to file corruption,
3342  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3343  *
3344  * We can have extents that have been already written to disk or we can have
3345  * dirty ranges still in delalloc, in which case the extent maps and items are
3346  * created only when we run delalloc, and the delalloc ranges might fall outside
3347  * the range we are currently locking in the inode's io tree. So we check the
3348  * inode's i_size because of that (i_size updates are done while holding the
3349  * i_mutex, which we are holding here).
3350  * We also check to see if the inode has a size not greater than "datal" but has
3351  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3352  * protected against such concurrent fallocate calls by the i_mutex).
3353  *
3354  * If the file has no extents but a size greater than datal, do not allow the
3355  * copy because we would need turn the inline extent into a non-inline one (even
3356  * with NO_HOLES enabled). If we find our destination inode only has one inline
3357  * extent, just overwrite it with the source inline extent if its size is less
3358  * than the source extent's size, or we could copy the source inline extent's
3359  * data into the destination inode's inline extent if the later is greater then
3360  * the former.
3361  */
3362 static int clone_copy_inline_extent(struct inode *dst,
3363 				    struct btrfs_trans_handle *trans,
3364 				    struct btrfs_path *path,
3365 				    struct btrfs_key *new_key,
3366 				    const u64 drop_start,
3367 				    const u64 datal,
3368 				    const u64 skip,
3369 				    const u64 size,
3370 				    char *inline_data)
3371 {
3372 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3373 	struct btrfs_root *root = BTRFS_I(dst)->root;
3374 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3375 				      fs_info->sectorsize);
3376 	int ret;
3377 	struct btrfs_key key;
3378 
3379 	if (new_key->offset > 0)
3380 		return -EOPNOTSUPP;
3381 
3382 	key.objectid = btrfs_ino(BTRFS_I(dst));
3383 	key.type = BTRFS_EXTENT_DATA_KEY;
3384 	key.offset = 0;
3385 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3386 	if (ret < 0) {
3387 		return ret;
3388 	} else if (ret > 0) {
3389 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3390 			ret = btrfs_next_leaf(root, path);
3391 			if (ret < 0)
3392 				return ret;
3393 			else if (ret > 0)
3394 				goto copy_inline_extent;
3395 		}
3396 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3397 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3398 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3399 			ASSERT(key.offset > 0);
3400 			return -EOPNOTSUPP;
3401 		}
3402 	} else if (i_size_read(dst) <= datal) {
3403 		struct btrfs_file_extent_item *ei;
3404 		u64 ext_len;
3405 
3406 		/*
3407 		 * If the file size is <= datal, make sure there are no other
3408 		 * extents following (can happen do to an fallocate call with
3409 		 * the flag FALLOC_FL_KEEP_SIZE).
3410 		 */
3411 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3412 				    struct btrfs_file_extent_item);
3413 		/*
3414 		 * If it's an inline extent, it can not have other extents
3415 		 * following it.
3416 		 */
3417 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3418 		    BTRFS_FILE_EXTENT_INLINE)
3419 			goto copy_inline_extent;
3420 
3421 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3422 		if (ext_len > aligned_end)
3423 			return -EOPNOTSUPP;
3424 
3425 		ret = btrfs_next_item(root, path);
3426 		if (ret < 0) {
3427 			return ret;
3428 		} else if (ret == 0) {
3429 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3430 					      path->slots[0]);
3431 			if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3432 			    key.type == BTRFS_EXTENT_DATA_KEY)
3433 				return -EOPNOTSUPP;
3434 		}
3435 	}
3436 
3437 copy_inline_extent:
3438 	/*
3439 	 * We have no extent items, or we have an extent at offset 0 which may
3440 	 * or may not be inlined. All these cases are dealt the same way.
3441 	 */
3442 	if (i_size_read(dst) > datal) {
3443 		/*
3444 		 * If the destination inode has an inline extent...
3445 		 * This would require copying the data from the source inline
3446 		 * extent into the beginning of the destination's inline extent.
3447 		 * But this is really complex, both extents can be compressed
3448 		 * or just one of them, which would require decompressing and
3449 		 * re-compressing data (which could increase the new compressed
3450 		 * size, not allowing the compressed data to fit anymore in an
3451 		 * inline extent).
3452 		 * So just don't support this case for now (it should be rare,
3453 		 * we are not really saving space when cloning inline extents).
3454 		 */
3455 		return -EOPNOTSUPP;
3456 	}
3457 
3458 	btrfs_release_path(path);
3459 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3460 	if (ret)
3461 		return ret;
3462 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3463 	if (ret)
3464 		return ret;
3465 
3466 	if (skip) {
3467 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3468 
3469 		memmove(inline_data + start, inline_data + start + skip, datal);
3470 	}
3471 
3472 	write_extent_buffer(path->nodes[0], inline_data,
3473 			    btrfs_item_ptr_offset(path->nodes[0],
3474 						  path->slots[0]),
3475 			    size);
3476 	inode_add_bytes(dst, datal);
3477 
3478 	return 0;
3479 }
3480 
3481 /**
3482  * btrfs_clone() - clone a range from inode file to another
3483  *
3484  * @src: Inode to clone from
3485  * @inode: Inode to clone to
3486  * @off: Offset within source to start clone from
3487  * @olen: Original length, passed by user, of range to clone
3488  * @olen_aligned: Block-aligned value of olen
3489  * @destoff: Offset within @inode to start clone
3490  * @no_time_update: Whether to update mtime/ctime on the target inode
3491  */
3492 static int btrfs_clone(struct inode *src, struct inode *inode,
3493 		       const u64 off, const u64 olen, const u64 olen_aligned,
3494 		       const u64 destoff, int no_time_update)
3495 {
3496 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3497 	struct btrfs_root *root = BTRFS_I(inode)->root;
3498 	struct btrfs_path *path = NULL;
3499 	struct extent_buffer *leaf;
3500 	struct btrfs_trans_handle *trans;
3501 	char *buf = NULL;
3502 	struct btrfs_key key;
3503 	u32 nritems;
3504 	int slot;
3505 	int ret;
3506 	const u64 len = olen_aligned;
3507 	u64 last_dest_end = destoff;
3508 
3509 	ret = -ENOMEM;
3510 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3511 	if (!buf)
3512 		return ret;
3513 
3514 	path = btrfs_alloc_path();
3515 	if (!path) {
3516 		kvfree(buf);
3517 		return ret;
3518 	}
3519 
3520 	path->reada = READA_FORWARD;
3521 	/* clone data */
3522 	key.objectid = btrfs_ino(BTRFS_I(src));
3523 	key.type = BTRFS_EXTENT_DATA_KEY;
3524 	key.offset = off;
3525 
3526 	while (1) {
3527 		u64 next_key_min_offset = key.offset + 1;
3528 
3529 		/*
3530 		 * note the key will change type as we walk through the
3531 		 * tree.
3532 		 */
3533 		path->leave_spinning = 1;
3534 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3535 				0, 0);
3536 		if (ret < 0)
3537 			goto out;
3538 		/*
3539 		 * First search, if no extent item that starts at offset off was
3540 		 * found but the previous item is an extent item, it's possible
3541 		 * it might overlap our target range, therefore process it.
3542 		 */
3543 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3544 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3545 					      path->slots[0] - 1);
3546 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3547 				path->slots[0]--;
3548 		}
3549 
3550 		nritems = btrfs_header_nritems(path->nodes[0]);
3551 process_slot:
3552 		if (path->slots[0] >= nritems) {
3553 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3554 			if (ret < 0)
3555 				goto out;
3556 			if (ret > 0)
3557 				break;
3558 			nritems = btrfs_header_nritems(path->nodes[0]);
3559 		}
3560 		leaf = path->nodes[0];
3561 		slot = path->slots[0];
3562 
3563 		btrfs_item_key_to_cpu(leaf, &key, slot);
3564 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3565 		    key.objectid != btrfs_ino(BTRFS_I(src)))
3566 			break;
3567 
3568 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3569 			struct btrfs_file_extent_item *extent;
3570 			int type;
3571 			u32 size;
3572 			struct btrfs_key new_key;
3573 			u64 disko = 0, diskl = 0;
3574 			u64 datao = 0, datal = 0;
3575 			u8 comp;
3576 			u64 drop_start;
3577 
3578 			extent = btrfs_item_ptr(leaf, slot,
3579 						struct btrfs_file_extent_item);
3580 			comp = btrfs_file_extent_compression(leaf, extent);
3581 			type = btrfs_file_extent_type(leaf, extent);
3582 			if (type == BTRFS_FILE_EXTENT_REG ||
3583 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3584 				disko = btrfs_file_extent_disk_bytenr(leaf,
3585 								      extent);
3586 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3587 								 extent);
3588 				datao = btrfs_file_extent_offset(leaf, extent);
3589 				datal = btrfs_file_extent_num_bytes(leaf,
3590 								    extent);
3591 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3592 				/* take upper bound, may be compressed */
3593 				datal = btrfs_file_extent_ram_bytes(leaf,
3594 								    extent);
3595 			}
3596 
3597 			/*
3598 			 * The first search might have left us at an extent
3599 			 * item that ends before our target range's start, can
3600 			 * happen if we have holes and NO_HOLES feature enabled.
3601 			 */
3602 			if (key.offset + datal <= off) {
3603 				path->slots[0]++;
3604 				goto process_slot;
3605 			} else if (key.offset >= off + len) {
3606 				break;
3607 			}
3608 			next_key_min_offset = key.offset + datal;
3609 			size = btrfs_item_size_nr(leaf, slot);
3610 			read_extent_buffer(leaf, buf,
3611 					   btrfs_item_ptr_offset(leaf, slot),
3612 					   size);
3613 
3614 			btrfs_release_path(path);
3615 			path->leave_spinning = 0;
3616 
3617 			memcpy(&new_key, &key, sizeof(new_key));
3618 			new_key.objectid = btrfs_ino(BTRFS_I(inode));
3619 			if (off <= key.offset)
3620 				new_key.offset = key.offset + destoff - off;
3621 			else
3622 				new_key.offset = destoff;
3623 
3624 			/*
3625 			 * Deal with a hole that doesn't have an extent item
3626 			 * that represents it (NO_HOLES feature enabled).
3627 			 * This hole is either in the middle of the cloning
3628 			 * range or at the beginning (fully overlaps it or
3629 			 * partially overlaps it).
3630 			 */
3631 			if (new_key.offset != last_dest_end)
3632 				drop_start = last_dest_end;
3633 			else
3634 				drop_start = new_key.offset;
3635 
3636 			/*
3637 			 * 1 - adjusting old extent (we may have to split it)
3638 			 * 1 - add new extent
3639 			 * 1 - inode update
3640 			 */
3641 			trans = btrfs_start_transaction(root, 3);
3642 			if (IS_ERR(trans)) {
3643 				ret = PTR_ERR(trans);
3644 				goto out;
3645 			}
3646 
3647 			if (type == BTRFS_FILE_EXTENT_REG ||
3648 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3649 				/*
3650 				 *    a  | --- range to clone ---|  b
3651 				 * | ------------- extent ------------- |
3652 				 */
3653 
3654 				/* subtract range b */
3655 				if (key.offset + datal > off + len)
3656 					datal = off + len - key.offset;
3657 
3658 				/* subtract range a */
3659 				if (off > key.offset) {
3660 					datao += off - key.offset;
3661 					datal -= off - key.offset;
3662 				}
3663 
3664 				ret = btrfs_drop_extents(trans, root, inode,
3665 							 drop_start,
3666 							 new_key.offset + datal,
3667 							 1);
3668 				if (ret) {
3669 					if (ret != -EOPNOTSUPP)
3670 						btrfs_abort_transaction(trans,
3671 									ret);
3672 					btrfs_end_transaction(trans);
3673 					goto out;
3674 				}
3675 
3676 				ret = btrfs_insert_empty_item(trans, root, path,
3677 							      &new_key, size);
3678 				if (ret) {
3679 					btrfs_abort_transaction(trans, ret);
3680 					btrfs_end_transaction(trans);
3681 					goto out;
3682 				}
3683 
3684 				leaf = path->nodes[0];
3685 				slot = path->slots[0];
3686 				write_extent_buffer(leaf, buf,
3687 					    btrfs_item_ptr_offset(leaf, slot),
3688 					    size);
3689 
3690 				extent = btrfs_item_ptr(leaf, slot,
3691 						struct btrfs_file_extent_item);
3692 
3693 				/* disko == 0 means it's a hole */
3694 				if (!disko)
3695 					datao = 0;
3696 
3697 				btrfs_set_file_extent_offset(leaf, extent,
3698 							     datao);
3699 				btrfs_set_file_extent_num_bytes(leaf, extent,
3700 								datal);
3701 
3702 				if (disko) {
3703 					inode_add_bytes(inode, datal);
3704 					ret = btrfs_inc_extent_ref(trans,
3705 							fs_info,
3706 							disko, diskl, 0,
3707 							root->root_key.objectid,
3708 							btrfs_ino(BTRFS_I(inode)),
3709 							new_key.offset - datao);
3710 					if (ret) {
3711 						btrfs_abort_transaction(trans,
3712 									ret);
3713 						btrfs_end_transaction(trans);
3714 						goto out;
3715 
3716 					}
3717 				}
3718 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3719 				u64 skip = 0;
3720 				u64 trim = 0;
3721 
3722 				if (off > key.offset) {
3723 					skip = off - key.offset;
3724 					new_key.offset += skip;
3725 				}
3726 
3727 				if (key.offset + datal > off + len)
3728 					trim = key.offset + datal - (off + len);
3729 
3730 				if (comp && (skip || trim)) {
3731 					ret = -EINVAL;
3732 					btrfs_end_transaction(trans);
3733 					goto out;
3734 				}
3735 				size -= skip + trim;
3736 				datal -= skip + trim;
3737 
3738 				ret = clone_copy_inline_extent(inode,
3739 							       trans, path,
3740 							       &new_key,
3741 							       drop_start,
3742 							       datal,
3743 							       skip, size, buf);
3744 				if (ret) {
3745 					if (ret != -EOPNOTSUPP)
3746 						btrfs_abort_transaction(trans,
3747 									ret);
3748 					btrfs_end_transaction(trans);
3749 					goto out;
3750 				}
3751 				leaf = path->nodes[0];
3752 				slot = path->slots[0];
3753 			}
3754 
3755 			/* If we have an implicit hole (NO_HOLES feature). */
3756 			if (drop_start < new_key.offset)
3757 				clone_update_extent_map(BTRFS_I(inode), trans,
3758 						NULL, drop_start,
3759 						new_key.offset - drop_start);
3760 
3761 			clone_update_extent_map(BTRFS_I(inode), trans,
3762 					path, 0, 0);
3763 
3764 			btrfs_mark_buffer_dirty(leaf);
3765 			btrfs_release_path(path);
3766 
3767 			last_dest_end = ALIGN(new_key.offset + datal,
3768 					      fs_info->sectorsize);
3769 			ret = clone_finish_inode_update(trans, inode,
3770 							last_dest_end,
3771 							destoff, olen,
3772 							no_time_update);
3773 			if (ret)
3774 				goto out;
3775 			if (new_key.offset + datal >= destoff + len)
3776 				break;
3777 		}
3778 		btrfs_release_path(path);
3779 		key.offset = next_key_min_offset;
3780 
3781 		if (fatal_signal_pending(current)) {
3782 			ret = -EINTR;
3783 			goto out;
3784 		}
3785 	}
3786 	ret = 0;
3787 
3788 	if (last_dest_end < destoff + len) {
3789 		/*
3790 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3791 		 * fully or partially overlaps our cloning range at its end.
3792 		 */
3793 		btrfs_release_path(path);
3794 
3795 		/*
3796 		 * 1 - remove extent(s)
3797 		 * 1 - inode update
3798 		 */
3799 		trans = btrfs_start_transaction(root, 2);
3800 		if (IS_ERR(trans)) {
3801 			ret = PTR_ERR(trans);
3802 			goto out;
3803 		}
3804 		ret = btrfs_drop_extents(trans, root, inode,
3805 					 last_dest_end, destoff + len, 1);
3806 		if (ret) {
3807 			if (ret != -EOPNOTSUPP)
3808 				btrfs_abort_transaction(trans, ret);
3809 			btrfs_end_transaction(trans);
3810 			goto out;
3811 		}
3812 		clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3813 				last_dest_end,
3814 				destoff + len - last_dest_end);
3815 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3816 						destoff, olen, no_time_update);
3817 	}
3818 
3819 out:
3820 	btrfs_free_path(path);
3821 	kvfree(buf);
3822 	return ret;
3823 }
3824 
3825 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3826 					u64 off, u64 olen, u64 destoff)
3827 {
3828 	struct inode *inode = file_inode(file);
3829 	struct inode *src = file_inode(file_src);
3830 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3831 	struct btrfs_root *root = BTRFS_I(inode)->root;
3832 	int ret;
3833 	u64 len = olen;
3834 	u64 bs = fs_info->sb->s_blocksize;
3835 	int same_inode = src == inode;
3836 
3837 	/*
3838 	 * TODO:
3839 	 * - split compressed inline extents.  annoying: we need to
3840 	 *   decompress into destination's address_space (the file offset
3841 	 *   may change, so source mapping won't do), then recompress (or
3842 	 *   otherwise reinsert) a subrange.
3843 	 *
3844 	 * - split destination inode's inline extents.  The inline extents can
3845 	 *   be either compressed or non-compressed.
3846 	 */
3847 
3848 	if (btrfs_root_readonly(root))
3849 		return -EROFS;
3850 
3851 	if (file_src->f_path.mnt != file->f_path.mnt ||
3852 	    src->i_sb != inode->i_sb)
3853 		return -EXDEV;
3854 
3855 	/* don't make the dst file partly checksummed */
3856 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3857 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3858 		return -EINVAL;
3859 
3860 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3861 		return -EISDIR;
3862 
3863 	if (!same_inode) {
3864 		btrfs_double_inode_lock(src, inode);
3865 	} else {
3866 		inode_lock(src);
3867 	}
3868 
3869 	/* determine range to clone */
3870 	ret = -EINVAL;
3871 	if (off + len > src->i_size || off + len < off)
3872 		goto out_unlock;
3873 	if (len == 0)
3874 		olen = len = src->i_size - off;
3875 	/* if we extend to eof, continue to block boundary */
3876 	if (off + len == src->i_size)
3877 		len = ALIGN(src->i_size, bs) - off;
3878 
3879 	if (len == 0) {
3880 		ret = 0;
3881 		goto out_unlock;
3882 	}
3883 
3884 	/* verify the end result is block aligned */
3885 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3886 	    !IS_ALIGNED(destoff, bs))
3887 		goto out_unlock;
3888 
3889 	/* verify if ranges are overlapped within the same file */
3890 	if (same_inode) {
3891 		if (destoff + len > off && destoff < off + len)
3892 			goto out_unlock;
3893 	}
3894 
3895 	if (destoff > inode->i_size) {
3896 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3897 		if (ret)
3898 			goto out_unlock;
3899 	}
3900 
3901 	/*
3902 	 * Lock the target range too. Right after we replace the file extent
3903 	 * items in the fs tree (which now point to the cloned data), we might
3904 	 * have a worker replace them with extent items relative to a write
3905 	 * operation that was issued before this clone operation (i.e. confront
3906 	 * with inode.c:btrfs_finish_ordered_io).
3907 	 */
3908 	if (same_inode) {
3909 		u64 lock_start = min_t(u64, off, destoff);
3910 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3911 
3912 		ret = lock_extent_range(src, lock_start, lock_len, true);
3913 	} else {
3914 		ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3915 					       true);
3916 	}
3917 	ASSERT(ret == 0);
3918 	if (WARN_ON(ret)) {
3919 		/* ranges in the io trees already unlocked */
3920 		goto out_unlock;
3921 	}
3922 
3923 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3924 
3925 	if (same_inode) {
3926 		u64 lock_start = min_t(u64, off, destoff);
3927 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3928 
3929 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3930 	} else {
3931 		btrfs_double_extent_unlock(src, off, inode, destoff, len);
3932 	}
3933 	/*
3934 	 * Truncate page cache pages so that future reads will see the cloned
3935 	 * data immediately and not the previous data.
3936 	 */
3937 	truncate_inode_pages_range(&inode->i_data,
3938 				round_down(destoff, PAGE_SIZE),
3939 				round_up(destoff + len, PAGE_SIZE) - 1);
3940 out_unlock:
3941 	if (!same_inode)
3942 		btrfs_double_inode_unlock(src, inode);
3943 	else
3944 		inode_unlock(src);
3945 	return ret;
3946 }
3947 
3948 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3949 		struct file *dst_file, loff_t destoff, u64 len)
3950 {
3951 	return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3952 }
3953 
3954 /*
3955  * there are many ways the trans_start and trans_end ioctls can lead
3956  * to deadlocks.  They should only be used by applications that
3957  * basically own the machine, and have a very in depth understanding
3958  * of all the possible deadlocks and enospc problems.
3959  */
3960 static long btrfs_ioctl_trans_start(struct file *file)
3961 {
3962 	struct inode *inode = file_inode(file);
3963 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3964 	struct btrfs_root *root = BTRFS_I(inode)->root;
3965 	struct btrfs_trans_handle *trans;
3966 	struct btrfs_file_private *private;
3967 	int ret;
3968 	static bool warned = false;
3969 
3970 	ret = -EPERM;
3971 	if (!capable(CAP_SYS_ADMIN))
3972 		goto out;
3973 
3974 	if (!warned) {
3975 		btrfs_warn(fs_info,
3976 			"Userspace transaction mechanism is considered "
3977 			"deprecated and slated to be removed in 4.17. "
3978 			"If you have a valid use case please "
3979 			"speak up on the mailing list");
3980 		WARN_ON(1);
3981 		warned = true;
3982 	}
3983 
3984 	ret = -EINPROGRESS;
3985 	private = file->private_data;
3986 	if (private && private->trans)
3987 		goto out;
3988 	if (!private) {
3989 		private = kzalloc(sizeof(struct btrfs_file_private),
3990 				  GFP_KERNEL);
3991 		if (!private)
3992 			return -ENOMEM;
3993 		file->private_data = private;
3994 	}
3995 
3996 	ret = -EROFS;
3997 	if (btrfs_root_readonly(root))
3998 		goto out;
3999 
4000 	ret = mnt_want_write_file(file);
4001 	if (ret)
4002 		goto out;
4003 
4004 	atomic_inc(&fs_info->open_ioctl_trans);
4005 
4006 	ret = -ENOMEM;
4007 	trans = btrfs_start_ioctl_transaction(root);
4008 	if (IS_ERR(trans))
4009 		goto out_drop;
4010 
4011 	private->trans = trans;
4012 	return 0;
4013 
4014 out_drop:
4015 	atomic_dec(&fs_info->open_ioctl_trans);
4016 	mnt_drop_write_file(file);
4017 out:
4018 	return ret;
4019 }
4020 
4021 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4022 {
4023 	struct inode *inode = file_inode(file);
4024 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4025 	struct btrfs_root *root = BTRFS_I(inode)->root;
4026 	struct btrfs_root *new_root;
4027 	struct btrfs_dir_item *di;
4028 	struct btrfs_trans_handle *trans;
4029 	struct btrfs_path *path;
4030 	struct btrfs_key location;
4031 	struct btrfs_disk_key disk_key;
4032 	u64 objectid = 0;
4033 	u64 dir_id;
4034 	int ret;
4035 
4036 	if (!capable(CAP_SYS_ADMIN))
4037 		return -EPERM;
4038 
4039 	ret = mnt_want_write_file(file);
4040 	if (ret)
4041 		return ret;
4042 
4043 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4044 		ret = -EFAULT;
4045 		goto out;
4046 	}
4047 
4048 	if (!objectid)
4049 		objectid = BTRFS_FS_TREE_OBJECTID;
4050 
4051 	location.objectid = objectid;
4052 	location.type = BTRFS_ROOT_ITEM_KEY;
4053 	location.offset = (u64)-1;
4054 
4055 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4056 	if (IS_ERR(new_root)) {
4057 		ret = PTR_ERR(new_root);
4058 		goto out;
4059 	}
4060 
4061 	path = btrfs_alloc_path();
4062 	if (!path) {
4063 		ret = -ENOMEM;
4064 		goto out;
4065 	}
4066 	path->leave_spinning = 1;
4067 
4068 	trans = btrfs_start_transaction(root, 1);
4069 	if (IS_ERR(trans)) {
4070 		btrfs_free_path(path);
4071 		ret = PTR_ERR(trans);
4072 		goto out;
4073 	}
4074 
4075 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4076 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4077 				   dir_id, "default", 7, 1);
4078 	if (IS_ERR_OR_NULL(di)) {
4079 		btrfs_free_path(path);
4080 		btrfs_end_transaction(trans);
4081 		btrfs_err(fs_info,
4082 			  "Umm, you don't have the default diritem, this isn't going to work");
4083 		ret = -ENOENT;
4084 		goto out;
4085 	}
4086 
4087 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4088 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4089 	btrfs_mark_buffer_dirty(path->nodes[0]);
4090 	btrfs_free_path(path);
4091 
4092 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4093 	btrfs_end_transaction(trans);
4094 out:
4095 	mnt_drop_write_file(file);
4096 	return ret;
4097 }
4098 
4099 void btrfs_get_block_group_info(struct list_head *groups_list,
4100 				struct btrfs_ioctl_space_info *space)
4101 {
4102 	struct btrfs_block_group_cache *block_group;
4103 
4104 	space->total_bytes = 0;
4105 	space->used_bytes = 0;
4106 	space->flags = 0;
4107 	list_for_each_entry(block_group, groups_list, list) {
4108 		space->flags = block_group->flags;
4109 		space->total_bytes += block_group->key.offset;
4110 		space->used_bytes +=
4111 			btrfs_block_group_used(&block_group->item);
4112 	}
4113 }
4114 
4115 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4116 				   void __user *arg)
4117 {
4118 	struct btrfs_ioctl_space_args space_args;
4119 	struct btrfs_ioctl_space_info space;
4120 	struct btrfs_ioctl_space_info *dest;
4121 	struct btrfs_ioctl_space_info *dest_orig;
4122 	struct btrfs_ioctl_space_info __user *user_dest;
4123 	struct btrfs_space_info *info;
4124 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4125 		       BTRFS_BLOCK_GROUP_SYSTEM,
4126 		       BTRFS_BLOCK_GROUP_METADATA,
4127 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4128 	int num_types = 4;
4129 	int alloc_size;
4130 	int ret = 0;
4131 	u64 slot_count = 0;
4132 	int i, c;
4133 
4134 	if (copy_from_user(&space_args,
4135 			   (struct btrfs_ioctl_space_args __user *)arg,
4136 			   sizeof(space_args)))
4137 		return -EFAULT;
4138 
4139 	for (i = 0; i < num_types; i++) {
4140 		struct btrfs_space_info *tmp;
4141 
4142 		info = NULL;
4143 		rcu_read_lock();
4144 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4145 					list) {
4146 			if (tmp->flags == types[i]) {
4147 				info = tmp;
4148 				break;
4149 			}
4150 		}
4151 		rcu_read_unlock();
4152 
4153 		if (!info)
4154 			continue;
4155 
4156 		down_read(&info->groups_sem);
4157 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4158 			if (!list_empty(&info->block_groups[c]))
4159 				slot_count++;
4160 		}
4161 		up_read(&info->groups_sem);
4162 	}
4163 
4164 	/*
4165 	 * Global block reserve, exported as a space_info
4166 	 */
4167 	slot_count++;
4168 
4169 	/* space_slots == 0 means they are asking for a count */
4170 	if (space_args.space_slots == 0) {
4171 		space_args.total_spaces = slot_count;
4172 		goto out;
4173 	}
4174 
4175 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4176 
4177 	alloc_size = sizeof(*dest) * slot_count;
4178 
4179 	/* we generally have at most 6 or so space infos, one for each raid
4180 	 * level.  So, a whole page should be more than enough for everyone
4181 	 */
4182 	if (alloc_size > PAGE_SIZE)
4183 		return -ENOMEM;
4184 
4185 	space_args.total_spaces = 0;
4186 	dest = kmalloc(alloc_size, GFP_KERNEL);
4187 	if (!dest)
4188 		return -ENOMEM;
4189 	dest_orig = dest;
4190 
4191 	/* now we have a buffer to copy into */
4192 	for (i = 0; i < num_types; i++) {
4193 		struct btrfs_space_info *tmp;
4194 
4195 		if (!slot_count)
4196 			break;
4197 
4198 		info = NULL;
4199 		rcu_read_lock();
4200 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4201 					list) {
4202 			if (tmp->flags == types[i]) {
4203 				info = tmp;
4204 				break;
4205 			}
4206 		}
4207 		rcu_read_unlock();
4208 
4209 		if (!info)
4210 			continue;
4211 		down_read(&info->groups_sem);
4212 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4213 			if (!list_empty(&info->block_groups[c])) {
4214 				btrfs_get_block_group_info(
4215 					&info->block_groups[c], &space);
4216 				memcpy(dest, &space, sizeof(space));
4217 				dest++;
4218 				space_args.total_spaces++;
4219 				slot_count--;
4220 			}
4221 			if (!slot_count)
4222 				break;
4223 		}
4224 		up_read(&info->groups_sem);
4225 	}
4226 
4227 	/*
4228 	 * Add global block reserve
4229 	 */
4230 	if (slot_count) {
4231 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4232 
4233 		spin_lock(&block_rsv->lock);
4234 		space.total_bytes = block_rsv->size;
4235 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4236 		spin_unlock(&block_rsv->lock);
4237 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4238 		memcpy(dest, &space, sizeof(space));
4239 		space_args.total_spaces++;
4240 	}
4241 
4242 	user_dest = (struct btrfs_ioctl_space_info __user *)
4243 		(arg + sizeof(struct btrfs_ioctl_space_args));
4244 
4245 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4246 		ret = -EFAULT;
4247 
4248 	kfree(dest_orig);
4249 out:
4250 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4251 		ret = -EFAULT;
4252 
4253 	return ret;
4254 }
4255 
4256 /*
4257  * there are many ways the trans_start and trans_end ioctls can lead
4258  * to deadlocks.  They should only be used by applications that
4259  * basically own the machine, and have a very in depth understanding
4260  * of all the possible deadlocks and enospc problems.
4261  */
4262 long btrfs_ioctl_trans_end(struct file *file)
4263 {
4264 	struct inode *inode = file_inode(file);
4265 	struct btrfs_root *root = BTRFS_I(inode)->root;
4266 	struct btrfs_file_private *private = file->private_data;
4267 
4268 	if (!private || !private->trans)
4269 		return -EINVAL;
4270 
4271 	btrfs_end_transaction(private->trans);
4272 	private->trans = NULL;
4273 
4274 	atomic_dec(&root->fs_info->open_ioctl_trans);
4275 
4276 	mnt_drop_write_file(file);
4277 	return 0;
4278 }
4279 
4280 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4281 					    void __user *argp)
4282 {
4283 	struct btrfs_trans_handle *trans;
4284 	u64 transid;
4285 	int ret;
4286 
4287 	trans = btrfs_attach_transaction_barrier(root);
4288 	if (IS_ERR(trans)) {
4289 		if (PTR_ERR(trans) != -ENOENT)
4290 			return PTR_ERR(trans);
4291 
4292 		/* No running transaction, don't bother */
4293 		transid = root->fs_info->last_trans_committed;
4294 		goto out;
4295 	}
4296 	transid = trans->transid;
4297 	ret = btrfs_commit_transaction_async(trans, 0);
4298 	if (ret) {
4299 		btrfs_end_transaction(trans);
4300 		return ret;
4301 	}
4302 out:
4303 	if (argp)
4304 		if (copy_to_user(argp, &transid, sizeof(transid)))
4305 			return -EFAULT;
4306 	return 0;
4307 }
4308 
4309 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4310 					   void __user *argp)
4311 {
4312 	u64 transid;
4313 
4314 	if (argp) {
4315 		if (copy_from_user(&transid, argp, sizeof(transid)))
4316 			return -EFAULT;
4317 	} else {
4318 		transid = 0;  /* current trans */
4319 	}
4320 	return btrfs_wait_for_commit(fs_info, transid);
4321 }
4322 
4323 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4324 {
4325 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4326 	struct btrfs_ioctl_scrub_args *sa;
4327 	int ret;
4328 
4329 	if (!capable(CAP_SYS_ADMIN))
4330 		return -EPERM;
4331 
4332 	sa = memdup_user(arg, sizeof(*sa));
4333 	if (IS_ERR(sa))
4334 		return PTR_ERR(sa);
4335 
4336 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4337 		ret = mnt_want_write_file(file);
4338 		if (ret)
4339 			goto out;
4340 	}
4341 
4342 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4343 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4344 			      0);
4345 
4346 	if (copy_to_user(arg, sa, sizeof(*sa)))
4347 		ret = -EFAULT;
4348 
4349 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4350 		mnt_drop_write_file(file);
4351 out:
4352 	kfree(sa);
4353 	return ret;
4354 }
4355 
4356 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4357 {
4358 	if (!capable(CAP_SYS_ADMIN))
4359 		return -EPERM;
4360 
4361 	return btrfs_scrub_cancel(fs_info);
4362 }
4363 
4364 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4365 				       void __user *arg)
4366 {
4367 	struct btrfs_ioctl_scrub_args *sa;
4368 	int ret;
4369 
4370 	if (!capable(CAP_SYS_ADMIN))
4371 		return -EPERM;
4372 
4373 	sa = memdup_user(arg, sizeof(*sa));
4374 	if (IS_ERR(sa))
4375 		return PTR_ERR(sa);
4376 
4377 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4378 
4379 	if (copy_to_user(arg, sa, sizeof(*sa)))
4380 		ret = -EFAULT;
4381 
4382 	kfree(sa);
4383 	return ret;
4384 }
4385 
4386 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4387 				      void __user *arg)
4388 {
4389 	struct btrfs_ioctl_get_dev_stats *sa;
4390 	int ret;
4391 
4392 	sa = memdup_user(arg, sizeof(*sa));
4393 	if (IS_ERR(sa))
4394 		return PTR_ERR(sa);
4395 
4396 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4397 		kfree(sa);
4398 		return -EPERM;
4399 	}
4400 
4401 	ret = btrfs_get_dev_stats(fs_info, sa);
4402 
4403 	if (copy_to_user(arg, sa, sizeof(*sa)))
4404 		ret = -EFAULT;
4405 
4406 	kfree(sa);
4407 	return ret;
4408 }
4409 
4410 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4411 				    void __user *arg)
4412 {
4413 	struct btrfs_ioctl_dev_replace_args *p;
4414 	int ret;
4415 
4416 	if (!capable(CAP_SYS_ADMIN))
4417 		return -EPERM;
4418 
4419 	p = memdup_user(arg, sizeof(*p));
4420 	if (IS_ERR(p))
4421 		return PTR_ERR(p);
4422 
4423 	switch (p->cmd) {
4424 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4425 		if (fs_info->sb->s_flags & MS_RDONLY) {
4426 			ret = -EROFS;
4427 			goto out;
4428 		}
4429 		if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4430 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4431 		} else {
4432 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4433 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4434 		}
4435 		break;
4436 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4437 		btrfs_dev_replace_status(fs_info, p);
4438 		ret = 0;
4439 		break;
4440 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4441 		ret = btrfs_dev_replace_cancel(fs_info, p);
4442 		break;
4443 	default:
4444 		ret = -EINVAL;
4445 		break;
4446 	}
4447 
4448 	if (copy_to_user(arg, p, sizeof(*p)))
4449 		ret = -EFAULT;
4450 out:
4451 	kfree(p);
4452 	return ret;
4453 }
4454 
4455 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4456 {
4457 	int ret = 0;
4458 	int i;
4459 	u64 rel_ptr;
4460 	int size;
4461 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4462 	struct inode_fs_paths *ipath = NULL;
4463 	struct btrfs_path *path;
4464 
4465 	if (!capable(CAP_DAC_READ_SEARCH))
4466 		return -EPERM;
4467 
4468 	path = btrfs_alloc_path();
4469 	if (!path) {
4470 		ret = -ENOMEM;
4471 		goto out;
4472 	}
4473 
4474 	ipa = memdup_user(arg, sizeof(*ipa));
4475 	if (IS_ERR(ipa)) {
4476 		ret = PTR_ERR(ipa);
4477 		ipa = NULL;
4478 		goto out;
4479 	}
4480 
4481 	size = min_t(u32, ipa->size, 4096);
4482 	ipath = init_ipath(size, root, path);
4483 	if (IS_ERR(ipath)) {
4484 		ret = PTR_ERR(ipath);
4485 		ipath = NULL;
4486 		goto out;
4487 	}
4488 
4489 	ret = paths_from_inode(ipa->inum, ipath);
4490 	if (ret < 0)
4491 		goto out;
4492 
4493 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4494 		rel_ptr = ipath->fspath->val[i] -
4495 			  (u64)(unsigned long)ipath->fspath->val;
4496 		ipath->fspath->val[i] = rel_ptr;
4497 	}
4498 
4499 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4500 			   (void *)(unsigned long)ipath->fspath, size);
4501 	if (ret) {
4502 		ret = -EFAULT;
4503 		goto out;
4504 	}
4505 
4506 out:
4507 	btrfs_free_path(path);
4508 	free_ipath(ipath);
4509 	kfree(ipa);
4510 
4511 	return ret;
4512 }
4513 
4514 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4515 {
4516 	struct btrfs_data_container *inodes = ctx;
4517 	const size_t c = 3 * sizeof(u64);
4518 
4519 	if (inodes->bytes_left >= c) {
4520 		inodes->bytes_left -= c;
4521 		inodes->val[inodes->elem_cnt] = inum;
4522 		inodes->val[inodes->elem_cnt + 1] = offset;
4523 		inodes->val[inodes->elem_cnt + 2] = root;
4524 		inodes->elem_cnt += 3;
4525 	} else {
4526 		inodes->bytes_missing += c - inodes->bytes_left;
4527 		inodes->bytes_left = 0;
4528 		inodes->elem_missed += 3;
4529 	}
4530 
4531 	return 0;
4532 }
4533 
4534 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4535 					void __user *arg)
4536 {
4537 	int ret = 0;
4538 	int size;
4539 	struct btrfs_ioctl_logical_ino_args *loi;
4540 	struct btrfs_data_container *inodes = NULL;
4541 	struct btrfs_path *path = NULL;
4542 
4543 	if (!capable(CAP_SYS_ADMIN))
4544 		return -EPERM;
4545 
4546 	loi = memdup_user(arg, sizeof(*loi));
4547 	if (IS_ERR(loi))
4548 		return PTR_ERR(loi);
4549 
4550 	path = btrfs_alloc_path();
4551 	if (!path) {
4552 		ret = -ENOMEM;
4553 		goto out;
4554 	}
4555 
4556 	size = min_t(u32, loi->size, SZ_64K);
4557 	inodes = init_data_container(size);
4558 	if (IS_ERR(inodes)) {
4559 		ret = PTR_ERR(inodes);
4560 		inodes = NULL;
4561 		goto out;
4562 	}
4563 
4564 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4565 					  build_ino_list, inodes);
4566 	if (ret == -EINVAL)
4567 		ret = -ENOENT;
4568 	if (ret < 0)
4569 		goto out;
4570 
4571 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4572 			   (void *)(unsigned long)inodes, size);
4573 	if (ret)
4574 		ret = -EFAULT;
4575 
4576 out:
4577 	btrfs_free_path(path);
4578 	kvfree(inodes);
4579 	kfree(loi);
4580 
4581 	return ret;
4582 }
4583 
4584 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4585 			       struct btrfs_ioctl_balance_args *bargs)
4586 {
4587 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4588 
4589 	bargs->flags = bctl->flags;
4590 
4591 	if (atomic_read(&fs_info->balance_running))
4592 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4593 	if (atomic_read(&fs_info->balance_pause_req))
4594 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4595 	if (atomic_read(&fs_info->balance_cancel_req))
4596 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4597 
4598 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4599 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4600 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4601 
4602 	if (lock) {
4603 		spin_lock(&fs_info->balance_lock);
4604 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4605 		spin_unlock(&fs_info->balance_lock);
4606 	} else {
4607 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4608 	}
4609 }
4610 
4611 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4612 {
4613 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4614 	struct btrfs_fs_info *fs_info = root->fs_info;
4615 	struct btrfs_ioctl_balance_args *bargs;
4616 	struct btrfs_balance_control *bctl;
4617 	bool need_unlock; /* for mut. excl. ops lock */
4618 	int ret;
4619 
4620 	if (!capable(CAP_SYS_ADMIN))
4621 		return -EPERM;
4622 
4623 	ret = mnt_want_write_file(file);
4624 	if (ret)
4625 		return ret;
4626 
4627 again:
4628 	if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4629 		mutex_lock(&fs_info->volume_mutex);
4630 		mutex_lock(&fs_info->balance_mutex);
4631 		need_unlock = true;
4632 		goto locked;
4633 	}
4634 
4635 	/*
4636 	 * mut. excl. ops lock is locked.  Three possibilities:
4637 	 *   (1) some other op is running
4638 	 *   (2) balance is running
4639 	 *   (3) balance is paused -- special case (think resume)
4640 	 */
4641 	mutex_lock(&fs_info->balance_mutex);
4642 	if (fs_info->balance_ctl) {
4643 		/* this is either (2) or (3) */
4644 		if (!atomic_read(&fs_info->balance_running)) {
4645 			mutex_unlock(&fs_info->balance_mutex);
4646 			if (!mutex_trylock(&fs_info->volume_mutex))
4647 				goto again;
4648 			mutex_lock(&fs_info->balance_mutex);
4649 
4650 			if (fs_info->balance_ctl &&
4651 			    !atomic_read(&fs_info->balance_running)) {
4652 				/* this is (3) */
4653 				need_unlock = false;
4654 				goto locked;
4655 			}
4656 
4657 			mutex_unlock(&fs_info->balance_mutex);
4658 			mutex_unlock(&fs_info->volume_mutex);
4659 			goto again;
4660 		} else {
4661 			/* this is (2) */
4662 			mutex_unlock(&fs_info->balance_mutex);
4663 			ret = -EINPROGRESS;
4664 			goto out;
4665 		}
4666 	} else {
4667 		/* this is (1) */
4668 		mutex_unlock(&fs_info->balance_mutex);
4669 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4670 		goto out;
4671 	}
4672 
4673 locked:
4674 	BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4675 
4676 	if (arg) {
4677 		bargs = memdup_user(arg, sizeof(*bargs));
4678 		if (IS_ERR(bargs)) {
4679 			ret = PTR_ERR(bargs);
4680 			goto out_unlock;
4681 		}
4682 
4683 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4684 			if (!fs_info->balance_ctl) {
4685 				ret = -ENOTCONN;
4686 				goto out_bargs;
4687 			}
4688 
4689 			bctl = fs_info->balance_ctl;
4690 			spin_lock(&fs_info->balance_lock);
4691 			bctl->flags |= BTRFS_BALANCE_RESUME;
4692 			spin_unlock(&fs_info->balance_lock);
4693 
4694 			goto do_balance;
4695 		}
4696 	} else {
4697 		bargs = NULL;
4698 	}
4699 
4700 	if (fs_info->balance_ctl) {
4701 		ret = -EINPROGRESS;
4702 		goto out_bargs;
4703 	}
4704 
4705 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4706 	if (!bctl) {
4707 		ret = -ENOMEM;
4708 		goto out_bargs;
4709 	}
4710 
4711 	bctl->fs_info = fs_info;
4712 	if (arg) {
4713 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4714 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4715 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4716 
4717 		bctl->flags = bargs->flags;
4718 	} else {
4719 		/* balance everything - no filters */
4720 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4721 	}
4722 
4723 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4724 		ret = -EINVAL;
4725 		goto out_bctl;
4726 	}
4727 
4728 do_balance:
4729 	/*
4730 	 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4731 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4732 	 * or, if restriper was paused all the way until unmount, in
4733 	 * free_fs_info.  The flag is cleared in __cancel_balance.
4734 	 */
4735 	need_unlock = false;
4736 
4737 	ret = btrfs_balance(bctl, bargs);
4738 	bctl = NULL;
4739 
4740 	if (arg) {
4741 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4742 			ret = -EFAULT;
4743 	}
4744 
4745 out_bctl:
4746 	kfree(bctl);
4747 out_bargs:
4748 	kfree(bargs);
4749 out_unlock:
4750 	mutex_unlock(&fs_info->balance_mutex);
4751 	mutex_unlock(&fs_info->volume_mutex);
4752 	if (need_unlock)
4753 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4754 out:
4755 	mnt_drop_write_file(file);
4756 	return ret;
4757 }
4758 
4759 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4760 {
4761 	if (!capable(CAP_SYS_ADMIN))
4762 		return -EPERM;
4763 
4764 	switch (cmd) {
4765 	case BTRFS_BALANCE_CTL_PAUSE:
4766 		return btrfs_pause_balance(fs_info);
4767 	case BTRFS_BALANCE_CTL_CANCEL:
4768 		return btrfs_cancel_balance(fs_info);
4769 	}
4770 
4771 	return -EINVAL;
4772 }
4773 
4774 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4775 					 void __user *arg)
4776 {
4777 	struct btrfs_ioctl_balance_args *bargs;
4778 	int ret = 0;
4779 
4780 	if (!capable(CAP_SYS_ADMIN))
4781 		return -EPERM;
4782 
4783 	mutex_lock(&fs_info->balance_mutex);
4784 	if (!fs_info->balance_ctl) {
4785 		ret = -ENOTCONN;
4786 		goto out;
4787 	}
4788 
4789 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4790 	if (!bargs) {
4791 		ret = -ENOMEM;
4792 		goto out;
4793 	}
4794 
4795 	update_ioctl_balance_args(fs_info, 1, bargs);
4796 
4797 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4798 		ret = -EFAULT;
4799 
4800 	kfree(bargs);
4801 out:
4802 	mutex_unlock(&fs_info->balance_mutex);
4803 	return ret;
4804 }
4805 
4806 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4807 {
4808 	struct inode *inode = file_inode(file);
4809 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4810 	struct btrfs_ioctl_quota_ctl_args *sa;
4811 	struct btrfs_trans_handle *trans = NULL;
4812 	int ret;
4813 	int err;
4814 
4815 	if (!capable(CAP_SYS_ADMIN))
4816 		return -EPERM;
4817 
4818 	ret = mnt_want_write_file(file);
4819 	if (ret)
4820 		return ret;
4821 
4822 	sa = memdup_user(arg, sizeof(*sa));
4823 	if (IS_ERR(sa)) {
4824 		ret = PTR_ERR(sa);
4825 		goto drop_write;
4826 	}
4827 
4828 	down_write(&fs_info->subvol_sem);
4829 	trans = btrfs_start_transaction(fs_info->tree_root, 2);
4830 	if (IS_ERR(trans)) {
4831 		ret = PTR_ERR(trans);
4832 		goto out;
4833 	}
4834 
4835 	switch (sa->cmd) {
4836 	case BTRFS_QUOTA_CTL_ENABLE:
4837 		ret = btrfs_quota_enable(trans, fs_info);
4838 		break;
4839 	case BTRFS_QUOTA_CTL_DISABLE:
4840 		ret = btrfs_quota_disable(trans, fs_info);
4841 		break;
4842 	default:
4843 		ret = -EINVAL;
4844 		break;
4845 	}
4846 
4847 	err = btrfs_commit_transaction(trans);
4848 	if (err && !ret)
4849 		ret = err;
4850 out:
4851 	kfree(sa);
4852 	up_write(&fs_info->subvol_sem);
4853 drop_write:
4854 	mnt_drop_write_file(file);
4855 	return ret;
4856 }
4857 
4858 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4859 {
4860 	struct inode *inode = file_inode(file);
4861 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4862 	struct btrfs_root *root = BTRFS_I(inode)->root;
4863 	struct btrfs_ioctl_qgroup_assign_args *sa;
4864 	struct btrfs_trans_handle *trans;
4865 	int ret;
4866 	int err;
4867 
4868 	if (!capable(CAP_SYS_ADMIN))
4869 		return -EPERM;
4870 
4871 	ret = mnt_want_write_file(file);
4872 	if (ret)
4873 		return ret;
4874 
4875 	sa = memdup_user(arg, sizeof(*sa));
4876 	if (IS_ERR(sa)) {
4877 		ret = PTR_ERR(sa);
4878 		goto drop_write;
4879 	}
4880 
4881 	trans = btrfs_join_transaction(root);
4882 	if (IS_ERR(trans)) {
4883 		ret = PTR_ERR(trans);
4884 		goto out;
4885 	}
4886 
4887 	if (sa->assign) {
4888 		ret = btrfs_add_qgroup_relation(trans, fs_info,
4889 						sa->src, sa->dst);
4890 	} else {
4891 		ret = btrfs_del_qgroup_relation(trans, fs_info,
4892 						sa->src, sa->dst);
4893 	}
4894 
4895 	/* update qgroup status and info */
4896 	err = btrfs_run_qgroups(trans, fs_info);
4897 	if (err < 0)
4898 		btrfs_handle_fs_error(fs_info, err,
4899 				      "failed to update qgroup status and info");
4900 	err = btrfs_end_transaction(trans);
4901 	if (err && !ret)
4902 		ret = err;
4903 
4904 out:
4905 	kfree(sa);
4906 drop_write:
4907 	mnt_drop_write_file(file);
4908 	return ret;
4909 }
4910 
4911 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4912 {
4913 	struct inode *inode = file_inode(file);
4914 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4915 	struct btrfs_root *root = BTRFS_I(inode)->root;
4916 	struct btrfs_ioctl_qgroup_create_args *sa;
4917 	struct btrfs_trans_handle *trans;
4918 	int ret;
4919 	int err;
4920 
4921 	if (!capable(CAP_SYS_ADMIN))
4922 		return -EPERM;
4923 
4924 	ret = mnt_want_write_file(file);
4925 	if (ret)
4926 		return ret;
4927 
4928 	sa = memdup_user(arg, sizeof(*sa));
4929 	if (IS_ERR(sa)) {
4930 		ret = PTR_ERR(sa);
4931 		goto drop_write;
4932 	}
4933 
4934 	if (!sa->qgroupid) {
4935 		ret = -EINVAL;
4936 		goto out;
4937 	}
4938 
4939 	trans = btrfs_join_transaction(root);
4940 	if (IS_ERR(trans)) {
4941 		ret = PTR_ERR(trans);
4942 		goto out;
4943 	}
4944 
4945 	if (sa->create) {
4946 		ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4947 	} else {
4948 		ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4949 	}
4950 
4951 	err = btrfs_end_transaction(trans);
4952 	if (err && !ret)
4953 		ret = err;
4954 
4955 out:
4956 	kfree(sa);
4957 drop_write:
4958 	mnt_drop_write_file(file);
4959 	return ret;
4960 }
4961 
4962 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4963 {
4964 	struct inode *inode = file_inode(file);
4965 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4966 	struct btrfs_root *root = BTRFS_I(inode)->root;
4967 	struct btrfs_ioctl_qgroup_limit_args *sa;
4968 	struct btrfs_trans_handle *trans;
4969 	int ret;
4970 	int err;
4971 	u64 qgroupid;
4972 
4973 	if (!capable(CAP_SYS_ADMIN))
4974 		return -EPERM;
4975 
4976 	ret = mnt_want_write_file(file);
4977 	if (ret)
4978 		return ret;
4979 
4980 	sa = memdup_user(arg, sizeof(*sa));
4981 	if (IS_ERR(sa)) {
4982 		ret = PTR_ERR(sa);
4983 		goto drop_write;
4984 	}
4985 
4986 	trans = btrfs_join_transaction(root);
4987 	if (IS_ERR(trans)) {
4988 		ret = PTR_ERR(trans);
4989 		goto out;
4990 	}
4991 
4992 	qgroupid = sa->qgroupid;
4993 	if (!qgroupid) {
4994 		/* take the current subvol as qgroup */
4995 		qgroupid = root->root_key.objectid;
4996 	}
4997 
4998 	ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
4999 
5000 	err = btrfs_end_transaction(trans);
5001 	if (err && !ret)
5002 		ret = err;
5003 
5004 out:
5005 	kfree(sa);
5006 drop_write:
5007 	mnt_drop_write_file(file);
5008 	return ret;
5009 }
5010 
5011 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5012 {
5013 	struct inode *inode = file_inode(file);
5014 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5015 	struct btrfs_ioctl_quota_rescan_args *qsa;
5016 	int ret;
5017 
5018 	if (!capable(CAP_SYS_ADMIN))
5019 		return -EPERM;
5020 
5021 	ret = mnt_want_write_file(file);
5022 	if (ret)
5023 		return ret;
5024 
5025 	qsa = memdup_user(arg, sizeof(*qsa));
5026 	if (IS_ERR(qsa)) {
5027 		ret = PTR_ERR(qsa);
5028 		goto drop_write;
5029 	}
5030 
5031 	if (qsa->flags) {
5032 		ret = -EINVAL;
5033 		goto out;
5034 	}
5035 
5036 	ret = btrfs_qgroup_rescan(fs_info);
5037 
5038 out:
5039 	kfree(qsa);
5040 drop_write:
5041 	mnt_drop_write_file(file);
5042 	return ret;
5043 }
5044 
5045 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5046 {
5047 	struct inode *inode = file_inode(file);
5048 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5049 	struct btrfs_ioctl_quota_rescan_args *qsa;
5050 	int ret = 0;
5051 
5052 	if (!capable(CAP_SYS_ADMIN))
5053 		return -EPERM;
5054 
5055 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5056 	if (!qsa)
5057 		return -ENOMEM;
5058 
5059 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5060 		qsa->flags = 1;
5061 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5062 	}
5063 
5064 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5065 		ret = -EFAULT;
5066 
5067 	kfree(qsa);
5068 	return ret;
5069 }
5070 
5071 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5072 {
5073 	struct inode *inode = file_inode(file);
5074 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5075 
5076 	if (!capable(CAP_SYS_ADMIN))
5077 		return -EPERM;
5078 
5079 	return btrfs_qgroup_wait_for_completion(fs_info, true);
5080 }
5081 
5082 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5083 					    struct btrfs_ioctl_received_subvol_args *sa)
5084 {
5085 	struct inode *inode = file_inode(file);
5086 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5087 	struct btrfs_root *root = BTRFS_I(inode)->root;
5088 	struct btrfs_root_item *root_item = &root->root_item;
5089 	struct btrfs_trans_handle *trans;
5090 	struct timespec ct = current_time(inode);
5091 	int ret = 0;
5092 	int received_uuid_changed;
5093 
5094 	if (!inode_owner_or_capable(inode))
5095 		return -EPERM;
5096 
5097 	ret = mnt_want_write_file(file);
5098 	if (ret < 0)
5099 		return ret;
5100 
5101 	down_write(&fs_info->subvol_sem);
5102 
5103 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5104 		ret = -EINVAL;
5105 		goto out;
5106 	}
5107 
5108 	if (btrfs_root_readonly(root)) {
5109 		ret = -EROFS;
5110 		goto out;
5111 	}
5112 
5113 	/*
5114 	 * 1 - root item
5115 	 * 2 - uuid items (received uuid + subvol uuid)
5116 	 */
5117 	trans = btrfs_start_transaction(root, 3);
5118 	if (IS_ERR(trans)) {
5119 		ret = PTR_ERR(trans);
5120 		trans = NULL;
5121 		goto out;
5122 	}
5123 
5124 	sa->rtransid = trans->transid;
5125 	sa->rtime.sec = ct.tv_sec;
5126 	sa->rtime.nsec = ct.tv_nsec;
5127 
5128 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5129 				       BTRFS_UUID_SIZE);
5130 	if (received_uuid_changed &&
5131 	    !btrfs_is_empty_uuid(root_item->received_uuid))
5132 		btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5133 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5134 				    root->root_key.objectid);
5135 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5136 	btrfs_set_root_stransid(root_item, sa->stransid);
5137 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5138 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5139 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5140 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5141 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5142 
5143 	ret = btrfs_update_root(trans, fs_info->tree_root,
5144 				&root->root_key, &root->root_item);
5145 	if (ret < 0) {
5146 		btrfs_end_transaction(trans);
5147 		goto out;
5148 	}
5149 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5150 		ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5151 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5152 					  root->root_key.objectid);
5153 		if (ret < 0 && ret != -EEXIST) {
5154 			btrfs_abort_transaction(trans, ret);
5155 			goto out;
5156 		}
5157 	}
5158 	ret = btrfs_commit_transaction(trans);
5159 	if (ret < 0) {
5160 		btrfs_abort_transaction(trans, ret);
5161 		goto out;
5162 	}
5163 
5164 out:
5165 	up_write(&fs_info->subvol_sem);
5166 	mnt_drop_write_file(file);
5167 	return ret;
5168 }
5169 
5170 #ifdef CONFIG_64BIT
5171 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5172 						void __user *arg)
5173 {
5174 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5175 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5176 	int ret = 0;
5177 
5178 	args32 = memdup_user(arg, sizeof(*args32));
5179 	if (IS_ERR(args32))
5180 		return PTR_ERR(args32);
5181 
5182 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5183 	if (!args64) {
5184 		ret = -ENOMEM;
5185 		goto out;
5186 	}
5187 
5188 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5189 	args64->stransid = args32->stransid;
5190 	args64->rtransid = args32->rtransid;
5191 	args64->stime.sec = args32->stime.sec;
5192 	args64->stime.nsec = args32->stime.nsec;
5193 	args64->rtime.sec = args32->rtime.sec;
5194 	args64->rtime.nsec = args32->rtime.nsec;
5195 	args64->flags = args32->flags;
5196 
5197 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5198 	if (ret)
5199 		goto out;
5200 
5201 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5202 	args32->stransid = args64->stransid;
5203 	args32->rtransid = args64->rtransid;
5204 	args32->stime.sec = args64->stime.sec;
5205 	args32->stime.nsec = args64->stime.nsec;
5206 	args32->rtime.sec = args64->rtime.sec;
5207 	args32->rtime.nsec = args64->rtime.nsec;
5208 	args32->flags = args64->flags;
5209 
5210 	ret = copy_to_user(arg, args32, sizeof(*args32));
5211 	if (ret)
5212 		ret = -EFAULT;
5213 
5214 out:
5215 	kfree(args32);
5216 	kfree(args64);
5217 	return ret;
5218 }
5219 #endif
5220 
5221 static long btrfs_ioctl_set_received_subvol(struct file *file,
5222 					    void __user *arg)
5223 {
5224 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5225 	int ret = 0;
5226 
5227 	sa = memdup_user(arg, sizeof(*sa));
5228 	if (IS_ERR(sa))
5229 		return PTR_ERR(sa);
5230 
5231 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5232 
5233 	if (ret)
5234 		goto out;
5235 
5236 	ret = copy_to_user(arg, sa, sizeof(*sa));
5237 	if (ret)
5238 		ret = -EFAULT;
5239 
5240 out:
5241 	kfree(sa);
5242 	return ret;
5243 }
5244 
5245 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5246 {
5247 	struct inode *inode = file_inode(file);
5248 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5249 	size_t len;
5250 	int ret;
5251 	char label[BTRFS_LABEL_SIZE];
5252 
5253 	spin_lock(&fs_info->super_lock);
5254 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5255 	spin_unlock(&fs_info->super_lock);
5256 
5257 	len = strnlen(label, BTRFS_LABEL_SIZE);
5258 
5259 	if (len == BTRFS_LABEL_SIZE) {
5260 		btrfs_warn(fs_info,
5261 			   "label is too long, return the first %zu bytes",
5262 			   --len);
5263 	}
5264 
5265 	ret = copy_to_user(arg, label, len);
5266 
5267 	return ret ? -EFAULT : 0;
5268 }
5269 
5270 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5271 {
5272 	struct inode *inode = file_inode(file);
5273 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5274 	struct btrfs_root *root = BTRFS_I(inode)->root;
5275 	struct btrfs_super_block *super_block = fs_info->super_copy;
5276 	struct btrfs_trans_handle *trans;
5277 	char label[BTRFS_LABEL_SIZE];
5278 	int ret;
5279 
5280 	if (!capable(CAP_SYS_ADMIN))
5281 		return -EPERM;
5282 
5283 	if (copy_from_user(label, arg, sizeof(label)))
5284 		return -EFAULT;
5285 
5286 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5287 		btrfs_err(fs_info,
5288 			  "unable to set label with more than %d bytes",
5289 			  BTRFS_LABEL_SIZE - 1);
5290 		return -EINVAL;
5291 	}
5292 
5293 	ret = mnt_want_write_file(file);
5294 	if (ret)
5295 		return ret;
5296 
5297 	trans = btrfs_start_transaction(root, 0);
5298 	if (IS_ERR(trans)) {
5299 		ret = PTR_ERR(trans);
5300 		goto out_unlock;
5301 	}
5302 
5303 	spin_lock(&fs_info->super_lock);
5304 	strcpy(super_block->label, label);
5305 	spin_unlock(&fs_info->super_lock);
5306 	ret = btrfs_commit_transaction(trans);
5307 
5308 out_unlock:
5309 	mnt_drop_write_file(file);
5310 	return ret;
5311 }
5312 
5313 #define INIT_FEATURE_FLAGS(suffix) \
5314 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5315 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5316 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5317 
5318 int btrfs_ioctl_get_supported_features(void __user *arg)
5319 {
5320 	static const struct btrfs_ioctl_feature_flags features[3] = {
5321 		INIT_FEATURE_FLAGS(SUPP),
5322 		INIT_FEATURE_FLAGS(SAFE_SET),
5323 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5324 	};
5325 
5326 	if (copy_to_user(arg, &features, sizeof(features)))
5327 		return -EFAULT;
5328 
5329 	return 0;
5330 }
5331 
5332 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5333 {
5334 	struct inode *inode = file_inode(file);
5335 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5336 	struct btrfs_super_block *super_block = fs_info->super_copy;
5337 	struct btrfs_ioctl_feature_flags features;
5338 
5339 	features.compat_flags = btrfs_super_compat_flags(super_block);
5340 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5341 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5342 
5343 	if (copy_to_user(arg, &features, sizeof(features)))
5344 		return -EFAULT;
5345 
5346 	return 0;
5347 }
5348 
5349 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5350 			      enum btrfs_feature_set set,
5351 			      u64 change_mask, u64 flags, u64 supported_flags,
5352 			      u64 safe_set, u64 safe_clear)
5353 {
5354 	const char *type = btrfs_feature_set_names[set];
5355 	char *names;
5356 	u64 disallowed, unsupported;
5357 	u64 set_mask = flags & change_mask;
5358 	u64 clear_mask = ~flags & change_mask;
5359 
5360 	unsupported = set_mask & ~supported_flags;
5361 	if (unsupported) {
5362 		names = btrfs_printable_features(set, unsupported);
5363 		if (names) {
5364 			btrfs_warn(fs_info,
5365 				   "this kernel does not support the %s feature bit%s",
5366 				   names, strchr(names, ',') ? "s" : "");
5367 			kfree(names);
5368 		} else
5369 			btrfs_warn(fs_info,
5370 				   "this kernel does not support %s bits 0x%llx",
5371 				   type, unsupported);
5372 		return -EOPNOTSUPP;
5373 	}
5374 
5375 	disallowed = set_mask & ~safe_set;
5376 	if (disallowed) {
5377 		names = btrfs_printable_features(set, disallowed);
5378 		if (names) {
5379 			btrfs_warn(fs_info,
5380 				   "can't set the %s feature bit%s while mounted",
5381 				   names, strchr(names, ',') ? "s" : "");
5382 			kfree(names);
5383 		} else
5384 			btrfs_warn(fs_info,
5385 				   "can't set %s bits 0x%llx while mounted",
5386 				   type, disallowed);
5387 		return -EPERM;
5388 	}
5389 
5390 	disallowed = clear_mask & ~safe_clear;
5391 	if (disallowed) {
5392 		names = btrfs_printable_features(set, disallowed);
5393 		if (names) {
5394 			btrfs_warn(fs_info,
5395 				   "can't clear the %s feature bit%s while mounted",
5396 				   names, strchr(names, ',') ? "s" : "");
5397 			kfree(names);
5398 		} else
5399 			btrfs_warn(fs_info,
5400 				   "can't clear %s bits 0x%llx while mounted",
5401 				   type, disallowed);
5402 		return -EPERM;
5403 	}
5404 
5405 	return 0;
5406 }
5407 
5408 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5409 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5410 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5411 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5412 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5413 
5414 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5415 {
5416 	struct inode *inode = file_inode(file);
5417 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5418 	struct btrfs_root *root = BTRFS_I(inode)->root;
5419 	struct btrfs_super_block *super_block = fs_info->super_copy;
5420 	struct btrfs_ioctl_feature_flags flags[2];
5421 	struct btrfs_trans_handle *trans;
5422 	u64 newflags;
5423 	int ret;
5424 
5425 	if (!capable(CAP_SYS_ADMIN))
5426 		return -EPERM;
5427 
5428 	if (copy_from_user(flags, arg, sizeof(flags)))
5429 		return -EFAULT;
5430 
5431 	/* Nothing to do */
5432 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5433 	    !flags[0].incompat_flags)
5434 		return 0;
5435 
5436 	ret = check_feature(fs_info, flags[0].compat_flags,
5437 			    flags[1].compat_flags, COMPAT);
5438 	if (ret)
5439 		return ret;
5440 
5441 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5442 			    flags[1].compat_ro_flags, COMPAT_RO);
5443 	if (ret)
5444 		return ret;
5445 
5446 	ret = check_feature(fs_info, flags[0].incompat_flags,
5447 			    flags[1].incompat_flags, INCOMPAT);
5448 	if (ret)
5449 		return ret;
5450 
5451 	ret = mnt_want_write_file(file);
5452 	if (ret)
5453 		return ret;
5454 
5455 	trans = btrfs_start_transaction(root, 0);
5456 	if (IS_ERR(trans)) {
5457 		ret = PTR_ERR(trans);
5458 		goto out_drop_write;
5459 	}
5460 
5461 	spin_lock(&fs_info->super_lock);
5462 	newflags = btrfs_super_compat_flags(super_block);
5463 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5464 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5465 	btrfs_set_super_compat_flags(super_block, newflags);
5466 
5467 	newflags = btrfs_super_compat_ro_flags(super_block);
5468 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5469 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5470 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5471 
5472 	newflags = btrfs_super_incompat_flags(super_block);
5473 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5474 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5475 	btrfs_set_super_incompat_flags(super_block, newflags);
5476 	spin_unlock(&fs_info->super_lock);
5477 
5478 	ret = btrfs_commit_transaction(trans);
5479 out_drop_write:
5480 	mnt_drop_write_file(file);
5481 
5482 	return ret;
5483 }
5484 
5485 long btrfs_ioctl(struct file *file, unsigned int
5486 		cmd, unsigned long arg)
5487 {
5488 	struct inode *inode = file_inode(file);
5489 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5490 	struct btrfs_root *root = BTRFS_I(inode)->root;
5491 	void __user *argp = (void __user *)arg;
5492 
5493 	switch (cmd) {
5494 	case FS_IOC_GETFLAGS:
5495 		return btrfs_ioctl_getflags(file, argp);
5496 	case FS_IOC_SETFLAGS:
5497 		return btrfs_ioctl_setflags(file, argp);
5498 	case FS_IOC_GETVERSION:
5499 		return btrfs_ioctl_getversion(file, argp);
5500 	case FITRIM:
5501 		return btrfs_ioctl_fitrim(file, argp);
5502 	case BTRFS_IOC_SNAP_CREATE:
5503 		return btrfs_ioctl_snap_create(file, argp, 0);
5504 	case BTRFS_IOC_SNAP_CREATE_V2:
5505 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5506 	case BTRFS_IOC_SUBVOL_CREATE:
5507 		return btrfs_ioctl_snap_create(file, argp, 1);
5508 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5509 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5510 	case BTRFS_IOC_SNAP_DESTROY:
5511 		return btrfs_ioctl_snap_destroy(file, argp);
5512 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5513 		return btrfs_ioctl_subvol_getflags(file, argp);
5514 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5515 		return btrfs_ioctl_subvol_setflags(file, argp);
5516 	case BTRFS_IOC_DEFAULT_SUBVOL:
5517 		return btrfs_ioctl_default_subvol(file, argp);
5518 	case BTRFS_IOC_DEFRAG:
5519 		return btrfs_ioctl_defrag(file, NULL);
5520 	case BTRFS_IOC_DEFRAG_RANGE:
5521 		return btrfs_ioctl_defrag(file, argp);
5522 	case BTRFS_IOC_RESIZE:
5523 		return btrfs_ioctl_resize(file, argp);
5524 	case BTRFS_IOC_ADD_DEV:
5525 		return btrfs_ioctl_add_dev(fs_info, argp);
5526 	case BTRFS_IOC_RM_DEV:
5527 		return btrfs_ioctl_rm_dev(file, argp);
5528 	case BTRFS_IOC_RM_DEV_V2:
5529 		return btrfs_ioctl_rm_dev_v2(file, argp);
5530 	case BTRFS_IOC_FS_INFO:
5531 		return btrfs_ioctl_fs_info(fs_info, argp);
5532 	case BTRFS_IOC_DEV_INFO:
5533 		return btrfs_ioctl_dev_info(fs_info, argp);
5534 	case BTRFS_IOC_BALANCE:
5535 		return btrfs_ioctl_balance(file, NULL);
5536 	case BTRFS_IOC_TRANS_START:
5537 		return btrfs_ioctl_trans_start(file);
5538 	case BTRFS_IOC_TRANS_END:
5539 		return btrfs_ioctl_trans_end(file);
5540 	case BTRFS_IOC_TREE_SEARCH:
5541 		return btrfs_ioctl_tree_search(file, argp);
5542 	case BTRFS_IOC_TREE_SEARCH_V2:
5543 		return btrfs_ioctl_tree_search_v2(file, argp);
5544 	case BTRFS_IOC_INO_LOOKUP:
5545 		return btrfs_ioctl_ino_lookup(file, argp);
5546 	case BTRFS_IOC_INO_PATHS:
5547 		return btrfs_ioctl_ino_to_path(root, argp);
5548 	case BTRFS_IOC_LOGICAL_INO:
5549 		return btrfs_ioctl_logical_to_ino(fs_info, argp);
5550 	case BTRFS_IOC_SPACE_INFO:
5551 		return btrfs_ioctl_space_info(fs_info, argp);
5552 	case BTRFS_IOC_SYNC: {
5553 		int ret;
5554 
5555 		ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5556 		if (ret)
5557 			return ret;
5558 		ret = btrfs_sync_fs(inode->i_sb, 1);
5559 		/*
5560 		 * The transaction thread may want to do more work,
5561 		 * namely it pokes the cleaner kthread that will start
5562 		 * processing uncleaned subvols.
5563 		 */
5564 		wake_up_process(fs_info->transaction_kthread);
5565 		return ret;
5566 	}
5567 	case BTRFS_IOC_START_SYNC:
5568 		return btrfs_ioctl_start_sync(root, argp);
5569 	case BTRFS_IOC_WAIT_SYNC:
5570 		return btrfs_ioctl_wait_sync(fs_info, argp);
5571 	case BTRFS_IOC_SCRUB:
5572 		return btrfs_ioctl_scrub(file, argp);
5573 	case BTRFS_IOC_SCRUB_CANCEL:
5574 		return btrfs_ioctl_scrub_cancel(fs_info);
5575 	case BTRFS_IOC_SCRUB_PROGRESS:
5576 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5577 	case BTRFS_IOC_BALANCE_V2:
5578 		return btrfs_ioctl_balance(file, argp);
5579 	case BTRFS_IOC_BALANCE_CTL:
5580 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5581 	case BTRFS_IOC_BALANCE_PROGRESS:
5582 		return btrfs_ioctl_balance_progress(fs_info, argp);
5583 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5584 		return btrfs_ioctl_set_received_subvol(file, argp);
5585 #ifdef CONFIG_64BIT
5586 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5587 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5588 #endif
5589 	case BTRFS_IOC_SEND:
5590 		return btrfs_ioctl_send(file, argp);
5591 	case BTRFS_IOC_GET_DEV_STATS:
5592 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5593 	case BTRFS_IOC_QUOTA_CTL:
5594 		return btrfs_ioctl_quota_ctl(file, argp);
5595 	case BTRFS_IOC_QGROUP_ASSIGN:
5596 		return btrfs_ioctl_qgroup_assign(file, argp);
5597 	case BTRFS_IOC_QGROUP_CREATE:
5598 		return btrfs_ioctl_qgroup_create(file, argp);
5599 	case BTRFS_IOC_QGROUP_LIMIT:
5600 		return btrfs_ioctl_qgroup_limit(file, argp);
5601 	case BTRFS_IOC_QUOTA_RESCAN:
5602 		return btrfs_ioctl_quota_rescan(file, argp);
5603 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5604 		return btrfs_ioctl_quota_rescan_status(file, argp);
5605 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5606 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5607 	case BTRFS_IOC_DEV_REPLACE:
5608 		return btrfs_ioctl_dev_replace(fs_info, argp);
5609 	case BTRFS_IOC_GET_FSLABEL:
5610 		return btrfs_ioctl_get_fslabel(file, argp);
5611 	case BTRFS_IOC_SET_FSLABEL:
5612 		return btrfs_ioctl_set_fslabel(file, argp);
5613 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5614 		return btrfs_ioctl_get_supported_features(argp);
5615 	case BTRFS_IOC_GET_FEATURES:
5616 		return btrfs_ioctl_get_features(file, argp);
5617 	case BTRFS_IOC_SET_FEATURES:
5618 		return btrfs_ioctl_set_features(file, argp);
5619 	}
5620 
5621 	return -ENOTTY;
5622 }
5623 
5624 #ifdef CONFIG_COMPAT
5625 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5626 {
5627 	/*
5628 	 * These all access 32-bit values anyway so no further
5629 	 * handling is necessary.
5630 	 */
5631 	switch (cmd) {
5632 	case FS_IOC32_GETFLAGS:
5633 		cmd = FS_IOC_GETFLAGS;
5634 		break;
5635 	case FS_IOC32_SETFLAGS:
5636 		cmd = FS_IOC_SETFLAGS;
5637 		break;
5638 	case FS_IOC32_GETVERSION:
5639 		cmd = FS_IOC_GETVERSION;
5640 		break;
5641 	}
5642 
5643 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5644 }
5645 #endif
5646