1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "export.h" 34 #include "transaction.h" 35 #include "btrfs_inode.h" 36 #include "print-tree.h" 37 #include "volumes.h" 38 #include "locking.h" 39 #include "backref.h" 40 #include "rcu-string.h" 41 #include "send.h" 42 #include "dev-replace.h" 43 #include "props.h" 44 #include "sysfs.h" 45 #include "qgroup.h" 46 #include "tree-log.h" 47 #include "compression.h" 48 #include "space-info.h" 49 #include "delalloc-space.h" 50 #include "block-group.h" 51 #include "subpage.h" 52 53 #ifdef CONFIG_64BIT 54 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 55 * structures are incorrect, as the timespec structure from userspace 56 * is 4 bytes too small. We define these alternatives here to teach 57 * the kernel about the 32-bit struct packing. 58 */ 59 struct btrfs_ioctl_timespec_32 { 60 __u64 sec; 61 __u32 nsec; 62 } __attribute__ ((__packed__)); 63 64 struct btrfs_ioctl_received_subvol_args_32 { 65 char uuid[BTRFS_UUID_SIZE]; /* in */ 66 __u64 stransid; /* in */ 67 __u64 rtransid; /* out */ 68 struct btrfs_ioctl_timespec_32 stime; /* in */ 69 struct btrfs_ioctl_timespec_32 rtime; /* out */ 70 __u64 flags; /* in */ 71 __u64 reserved[16]; /* in */ 72 } __attribute__ ((__packed__)); 73 74 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 75 struct btrfs_ioctl_received_subvol_args_32) 76 #endif 77 78 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 79 struct btrfs_ioctl_send_args_32 { 80 __s64 send_fd; /* in */ 81 __u64 clone_sources_count; /* in */ 82 compat_uptr_t clone_sources; /* in */ 83 __u64 parent_root; /* in */ 84 __u64 flags; /* in */ 85 __u32 version; /* in */ 86 __u8 reserved[28]; /* in */ 87 } __attribute__ ((__packed__)); 88 89 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 90 struct btrfs_ioctl_send_args_32) 91 #endif 92 93 /* Mask out flags that are inappropriate for the given type of inode. */ 94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 95 unsigned int flags) 96 { 97 if (S_ISDIR(inode->i_mode)) 98 return flags; 99 else if (S_ISREG(inode->i_mode)) 100 return flags & ~FS_DIRSYNC_FL; 101 else 102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 103 } 104 105 /* 106 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 107 * ioctl. 108 */ 109 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 110 { 111 unsigned int iflags = 0; 112 u32 flags = binode->flags; 113 u32 ro_flags = binode->ro_flags; 114 115 if (flags & BTRFS_INODE_SYNC) 116 iflags |= FS_SYNC_FL; 117 if (flags & BTRFS_INODE_IMMUTABLE) 118 iflags |= FS_IMMUTABLE_FL; 119 if (flags & BTRFS_INODE_APPEND) 120 iflags |= FS_APPEND_FL; 121 if (flags & BTRFS_INODE_NODUMP) 122 iflags |= FS_NODUMP_FL; 123 if (flags & BTRFS_INODE_NOATIME) 124 iflags |= FS_NOATIME_FL; 125 if (flags & BTRFS_INODE_DIRSYNC) 126 iflags |= FS_DIRSYNC_FL; 127 if (flags & BTRFS_INODE_NODATACOW) 128 iflags |= FS_NOCOW_FL; 129 if (ro_flags & BTRFS_INODE_RO_VERITY) 130 iflags |= FS_VERITY_FL; 131 132 if (flags & BTRFS_INODE_NOCOMPRESS) 133 iflags |= FS_NOCOMP_FL; 134 else if (flags & BTRFS_INODE_COMPRESS) 135 iflags |= FS_COMPR_FL; 136 137 return iflags; 138 } 139 140 /* 141 * Update inode->i_flags based on the btrfs internal flags. 142 */ 143 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 144 { 145 struct btrfs_inode *binode = BTRFS_I(inode); 146 unsigned int new_fl = 0; 147 148 if (binode->flags & BTRFS_INODE_SYNC) 149 new_fl |= S_SYNC; 150 if (binode->flags & BTRFS_INODE_IMMUTABLE) 151 new_fl |= S_IMMUTABLE; 152 if (binode->flags & BTRFS_INODE_APPEND) 153 new_fl |= S_APPEND; 154 if (binode->flags & BTRFS_INODE_NOATIME) 155 new_fl |= S_NOATIME; 156 if (binode->flags & BTRFS_INODE_DIRSYNC) 157 new_fl |= S_DIRSYNC; 158 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 159 new_fl |= S_VERITY; 160 161 set_mask_bits(&inode->i_flags, 162 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 163 S_VERITY, new_fl); 164 } 165 166 /* 167 * Check if @flags are a supported and valid set of FS_*_FL flags and that 168 * the old and new flags are not conflicting 169 */ 170 static int check_fsflags(unsigned int old_flags, unsigned int flags) 171 { 172 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 173 FS_NOATIME_FL | FS_NODUMP_FL | \ 174 FS_SYNC_FL | FS_DIRSYNC_FL | \ 175 FS_NOCOMP_FL | FS_COMPR_FL | 176 FS_NOCOW_FL)) 177 return -EOPNOTSUPP; 178 179 /* COMPR and NOCOMP on new/old are valid */ 180 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 181 return -EINVAL; 182 183 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 184 return -EINVAL; 185 186 /* NOCOW and compression options are mutually exclusive */ 187 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 188 return -EINVAL; 189 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 190 return -EINVAL; 191 192 return 0; 193 } 194 195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 196 unsigned int flags) 197 { 198 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 199 return -EPERM; 200 201 return 0; 202 } 203 204 /* 205 * Set flags/xflags from the internal inode flags. The remaining items of 206 * fsxattr are zeroed. 207 */ 208 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 209 { 210 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 211 212 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 213 return 0; 214 } 215 216 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 217 struct dentry *dentry, struct fileattr *fa) 218 { 219 struct inode *inode = d_inode(dentry); 220 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 221 struct btrfs_inode *binode = BTRFS_I(inode); 222 struct btrfs_root *root = binode->root; 223 struct btrfs_trans_handle *trans; 224 unsigned int fsflags, old_fsflags; 225 int ret; 226 const char *comp = NULL; 227 u32 binode_flags; 228 229 if (btrfs_root_readonly(root)) 230 return -EROFS; 231 232 if (fileattr_has_fsx(fa)) 233 return -EOPNOTSUPP; 234 235 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 236 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 237 ret = check_fsflags(old_fsflags, fsflags); 238 if (ret) 239 return ret; 240 241 ret = check_fsflags_compatible(fs_info, fsflags); 242 if (ret) 243 return ret; 244 245 binode_flags = binode->flags; 246 if (fsflags & FS_SYNC_FL) 247 binode_flags |= BTRFS_INODE_SYNC; 248 else 249 binode_flags &= ~BTRFS_INODE_SYNC; 250 if (fsflags & FS_IMMUTABLE_FL) 251 binode_flags |= BTRFS_INODE_IMMUTABLE; 252 else 253 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 254 if (fsflags & FS_APPEND_FL) 255 binode_flags |= BTRFS_INODE_APPEND; 256 else 257 binode_flags &= ~BTRFS_INODE_APPEND; 258 if (fsflags & FS_NODUMP_FL) 259 binode_flags |= BTRFS_INODE_NODUMP; 260 else 261 binode_flags &= ~BTRFS_INODE_NODUMP; 262 if (fsflags & FS_NOATIME_FL) 263 binode_flags |= BTRFS_INODE_NOATIME; 264 else 265 binode_flags &= ~BTRFS_INODE_NOATIME; 266 267 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 268 if (!fa->flags_valid) { 269 /* 1 item for the inode */ 270 trans = btrfs_start_transaction(root, 1); 271 if (IS_ERR(trans)) 272 return PTR_ERR(trans); 273 goto update_flags; 274 } 275 276 if (fsflags & FS_DIRSYNC_FL) 277 binode_flags |= BTRFS_INODE_DIRSYNC; 278 else 279 binode_flags &= ~BTRFS_INODE_DIRSYNC; 280 if (fsflags & FS_NOCOW_FL) { 281 if (S_ISREG(inode->i_mode)) { 282 /* 283 * It's safe to turn csums off here, no extents exist. 284 * Otherwise we want the flag to reflect the real COW 285 * status of the file and will not set it. 286 */ 287 if (inode->i_size == 0) 288 binode_flags |= BTRFS_INODE_NODATACOW | 289 BTRFS_INODE_NODATASUM; 290 } else { 291 binode_flags |= BTRFS_INODE_NODATACOW; 292 } 293 } else { 294 /* 295 * Revert back under same assumptions as above 296 */ 297 if (S_ISREG(inode->i_mode)) { 298 if (inode->i_size == 0) 299 binode_flags &= ~(BTRFS_INODE_NODATACOW | 300 BTRFS_INODE_NODATASUM); 301 } else { 302 binode_flags &= ~BTRFS_INODE_NODATACOW; 303 } 304 } 305 306 /* 307 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 308 * flag may be changed automatically if compression code won't make 309 * things smaller. 310 */ 311 if (fsflags & FS_NOCOMP_FL) { 312 binode_flags &= ~BTRFS_INODE_COMPRESS; 313 binode_flags |= BTRFS_INODE_NOCOMPRESS; 314 } else if (fsflags & FS_COMPR_FL) { 315 316 if (IS_SWAPFILE(inode)) 317 return -ETXTBSY; 318 319 binode_flags |= BTRFS_INODE_COMPRESS; 320 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 321 322 comp = btrfs_compress_type2str(fs_info->compress_type); 323 if (!comp || comp[0] == 0) 324 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 325 } else { 326 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 327 } 328 329 /* 330 * 1 for inode item 331 * 2 for properties 332 */ 333 trans = btrfs_start_transaction(root, 3); 334 if (IS_ERR(trans)) 335 return PTR_ERR(trans); 336 337 if (comp) { 338 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 339 strlen(comp), 0); 340 if (ret) { 341 btrfs_abort_transaction(trans, ret); 342 goto out_end_trans; 343 } 344 } else { 345 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 346 0, 0); 347 if (ret && ret != -ENODATA) { 348 btrfs_abort_transaction(trans, ret); 349 goto out_end_trans; 350 } 351 } 352 353 update_flags: 354 binode->flags = binode_flags; 355 btrfs_sync_inode_flags_to_i_flags(inode); 356 inode_inc_iversion(inode); 357 inode->i_ctime = current_time(inode); 358 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 359 360 out_end_trans: 361 btrfs_end_transaction(trans); 362 return ret; 363 } 364 365 /* 366 * Start exclusive operation @type, return true on success 367 */ 368 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 369 enum btrfs_exclusive_operation type) 370 { 371 bool ret = false; 372 373 spin_lock(&fs_info->super_lock); 374 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 375 fs_info->exclusive_operation = type; 376 ret = true; 377 } 378 spin_unlock(&fs_info->super_lock); 379 380 return ret; 381 } 382 383 /* 384 * Conditionally allow to enter the exclusive operation in case it's compatible 385 * with the running one. This must be paired with btrfs_exclop_start_unlock and 386 * btrfs_exclop_finish. 387 * 388 * Compatibility: 389 * - the same type is already running 390 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 391 * must check the condition first that would allow none -> @type 392 */ 393 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 394 enum btrfs_exclusive_operation type) 395 { 396 spin_lock(&fs_info->super_lock); 397 if (fs_info->exclusive_operation == type) 398 return true; 399 400 spin_unlock(&fs_info->super_lock); 401 return false; 402 } 403 404 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 405 { 406 spin_unlock(&fs_info->super_lock); 407 } 408 409 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 410 { 411 spin_lock(&fs_info->super_lock); 412 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 413 spin_unlock(&fs_info->super_lock); 414 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 415 } 416 417 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 418 { 419 struct inode *inode = file_inode(file); 420 421 return put_user(inode->i_generation, arg); 422 } 423 424 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 425 void __user *arg) 426 { 427 struct btrfs_device *device; 428 struct request_queue *q; 429 struct fstrim_range range; 430 u64 minlen = ULLONG_MAX; 431 u64 num_devices = 0; 432 int ret; 433 434 if (!capable(CAP_SYS_ADMIN)) 435 return -EPERM; 436 437 /* 438 * btrfs_trim_block_group() depends on space cache, which is not 439 * available in zoned filesystem. So, disallow fitrim on a zoned 440 * filesystem for now. 441 */ 442 if (btrfs_is_zoned(fs_info)) 443 return -EOPNOTSUPP; 444 445 /* 446 * If the fs is mounted with nologreplay, which requires it to be 447 * mounted in RO mode as well, we can not allow discard on free space 448 * inside block groups, because log trees refer to extents that are not 449 * pinned in a block group's free space cache (pinning the extents is 450 * precisely the first phase of replaying a log tree). 451 */ 452 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 453 return -EROFS; 454 455 rcu_read_lock(); 456 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 457 dev_list) { 458 if (!device->bdev) 459 continue; 460 q = bdev_get_queue(device->bdev); 461 if (blk_queue_discard(q)) { 462 num_devices++; 463 minlen = min_t(u64, q->limits.discard_granularity, 464 minlen); 465 } 466 } 467 rcu_read_unlock(); 468 469 if (!num_devices) 470 return -EOPNOTSUPP; 471 if (copy_from_user(&range, arg, sizeof(range))) 472 return -EFAULT; 473 474 /* 475 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 476 * block group is in the logical address space, which can be any 477 * sectorsize aligned bytenr in the range [0, U64_MAX]. 478 */ 479 if (range.len < fs_info->sb->s_blocksize) 480 return -EINVAL; 481 482 range.minlen = max(range.minlen, minlen); 483 ret = btrfs_trim_fs(fs_info, &range); 484 if (ret < 0) 485 return ret; 486 487 if (copy_to_user(arg, &range, sizeof(range))) 488 return -EFAULT; 489 490 return 0; 491 } 492 493 int __pure btrfs_is_empty_uuid(u8 *uuid) 494 { 495 int i; 496 497 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 498 if (uuid[i]) 499 return 0; 500 } 501 return 1; 502 } 503 504 static noinline int create_subvol(struct user_namespace *mnt_userns, 505 struct inode *dir, struct dentry *dentry, 506 const char *name, int namelen, 507 struct btrfs_qgroup_inherit *inherit) 508 { 509 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 510 struct btrfs_trans_handle *trans; 511 struct btrfs_key key; 512 struct btrfs_root_item *root_item; 513 struct btrfs_inode_item *inode_item; 514 struct extent_buffer *leaf; 515 struct btrfs_root *root = BTRFS_I(dir)->root; 516 struct btrfs_root *new_root; 517 struct btrfs_block_rsv block_rsv; 518 struct timespec64 cur_time = current_time(dir); 519 struct inode *inode; 520 int ret; 521 int err; 522 dev_t anon_dev = 0; 523 u64 objectid; 524 u64 index = 0; 525 526 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 527 if (!root_item) 528 return -ENOMEM; 529 530 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 531 if (ret) 532 goto fail_free; 533 534 ret = get_anon_bdev(&anon_dev); 535 if (ret < 0) 536 goto fail_free; 537 538 /* 539 * Don't create subvolume whose level is not zero. Or qgroup will be 540 * screwed up since it assumes subvolume qgroup's level to be 0. 541 */ 542 if (btrfs_qgroup_level(objectid)) { 543 ret = -ENOSPC; 544 goto fail_free; 545 } 546 547 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 548 /* 549 * The same as the snapshot creation, please see the comment 550 * of create_snapshot(). 551 */ 552 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 553 if (ret) 554 goto fail_free; 555 556 trans = btrfs_start_transaction(root, 0); 557 if (IS_ERR(trans)) { 558 ret = PTR_ERR(trans); 559 btrfs_subvolume_release_metadata(root, &block_rsv); 560 goto fail_free; 561 } 562 trans->block_rsv = &block_rsv; 563 trans->bytes_reserved = block_rsv.size; 564 565 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 566 if (ret) 567 goto fail; 568 569 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 570 BTRFS_NESTING_NORMAL); 571 if (IS_ERR(leaf)) { 572 ret = PTR_ERR(leaf); 573 goto fail; 574 } 575 576 btrfs_mark_buffer_dirty(leaf); 577 578 inode_item = &root_item->inode; 579 btrfs_set_stack_inode_generation(inode_item, 1); 580 btrfs_set_stack_inode_size(inode_item, 3); 581 btrfs_set_stack_inode_nlink(inode_item, 1); 582 btrfs_set_stack_inode_nbytes(inode_item, 583 fs_info->nodesize); 584 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 585 586 btrfs_set_root_flags(root_item, 0); 587 btrfs_set_root_limit(root_item, 0); 588 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 589 590 btrfs_set_root_bytenr(root_item, leaf->start); 591 btrfs_set_root_generation(root_item, trans->transid); 592 btrfs_set_root_level(root_item, 0); 593 btrfs_set_root_refs(root_item, 1); 594 btrfs_set_root_used(root_item, leaf->len); 595 btrfs_set_root_last_snapshot(root_item, 0); 596 597 btrfs_set_root_generation_v2(root_item, 598 btrfs_root_generation(root_item)); 599 generate_random_guid(root_item->uuid); 600 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 601 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 602 root_item->ctime = root_item->otime; 603 btrfs_set_root_ctransid(root_item, trans->transid); 604 btrfs_set_root_otransid(root_item, trans->transid); 605 606 btrfs_tree_unlock(leaf); 607 608 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 609 610 key.objectid = objectid; 611 key.offset = 0; 612 key.type = BTRFS_ROOT_ITEM_KEY; 613 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 614 root_item); 615 if (ret) { 616 /* 617 * Since we don't abort the transaction in this case, free the 618 * tree block so that we don't leak space and leave the 619 * filesystem in an inconsistent state (an extent item in the 620 * extent tree without backreferences). Also no need to have 621 * the tree block locked since it is not in any tree at this 622 * point, so no other task can find it and use it. 623 */ 624 btrfs_free_tree_block(trans, root, leaf, 0, 1); 625 free_extent_buffer(leaf); 626 goto fail; 627 } 628 629 free_extent_buffer(leaf); 630 leaf = NULL; 631 632 key.offset = (u64)-1; 633 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 634 if (IS_ERR(new_root)) { 635 free_anon_bdev(anon_dev); 636 ret = PTR_ERR(new_root); 637 btrfs_abort_transaction(trans, ret); 638 goto fail; 639 } 640 /* Freeing will be done in btrfs_put_root() of new_root */ 641 anon_dev = 0; 642 643 ret = btrfs_record_root_in_trans(trans, new_root); 644 if (ret) { 645 btrfs_put_root(new_root); 646 btrfs_abort_transaction(trans, ret); 647 goto fail; 648 } 649 650 ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns); 651 btrfs_put_root(new_root); 652 if (ret) { 653 /* We potentially lose an unused inode item here */ 654 btrfs_abort_transaction(trans, ret); 655 goto fail; 656 } 657 658 /* 659 * insert the directory item 660 */ 661 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 662 if (ret) { 663 btrfs_abort_transaction(trans, ret); 664 goto fail; 665 } 666 667 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 668 BTRFS_FT_DIR, index); 669 if (ret) { 670 btrfs_abort_transaction(trans, ret); 671 goto fail; 672 } 673 674 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 675 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 676 if (ret) { 677 btrfs_abort_transaction(trans, ret); 678 goto fail; 679 } 680 681 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 682 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 683 if (ret) { 684 btrfs_abort_transaction(trans, ret); 685 goto fail; 686 } 687 688 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 689 BTRFS_UUID_KEY_SUBVOL, objectid); 690 if (ret) 691 btrfs_abort_transaction(trans, ret); 692 693 fail: 694 kfree(root_item); 695 trans->block_rsv = NULL; 696 trans->bytes_reserved = 0; 697 btrfs_subvolume_release_metadata(root, &block_rsv); 698 699 err = btrfs_commit_transaction(trans); 700 if (err && !ret) 701 ret = err; 702 703 if (!ret) { 704 inode = btrfs_lookup_dentry(dir, dentry); 705 if (IS_ERR(inode)) 706 return PTR_ERR(inode); 707 d_instantiate(dentry, inode); 708 } 709 return ret; 710 711 fail_free: 712 if (anon_dev) 713 free_anon_bdev(anon_dev); 714 kfree(root_item); 715 return ret; 716 } 717 718 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 719 struct dentry *dentry, bool readonly, 720 struct btrfs_qgroup_inherit *inherit) 721 { 722 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 723 struct inode *inode; 724 struct btrfs_pending_snapshot *pending_snapshot; 725 struct btrfs_trans_handle *trans; 726 int ret; 727 728 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 729 return -EINVAL; 730 731 if (atomic_read(&root->nr_swapfiles)) { 732 btrfs_warn(fs_info, 733 "cannot snapshot subvolume with active swapfile"); 734 return -ETXTBSY; 735 } 736 737 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 738 if (!pending_snapshot) 739 return -ENOMEM; 740 741 ret = get_anon_bdev(&pending_snapshot->anon_dev); 742 if (ret < 0) 743 goto free_pending; 744 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 745 GFP_KERNEL); 746 pending_snapshot->path = btrfs_alloc_path(); 747 if (!pending_snapshot->root_item || !pending_snapshot->path) { 748 ret = -ENOMEM; 749 goto free_pending; 750 } 751 752 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 753 BTRFS_BLOCK_RSV_TEMP); 754 /* 755 * 1 - parent dir inode 756 * 2 - dir entries 757 * 1 - root item 758 * 2 - root ref/backref 759 * 1 - root of snapshot 760 * 1 - UUID item 761 */ 762 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 763 &pending_snapshot->block_rsv, 8, 764 false); 765 if (ret) 766 goto free_pending; 767 768 pending_snapshot->dentry = dentry; 769 pending_snapshot->root = root; 770 pending_snapshot->readonly = readonly; 771 pending_snapshot->dir = dir; 772 pending_snapshot->inherit = inherit; 773 774 trans = btrfs_start_transaction(root, 0); 775 if (IS_ERR(trans)) { 776 ret = PTR_ERR(trans); 777 goto fail; 778 } 779 780 spin_lock(&fs_info->trans_lock); 781 list_add(&pending_snapshot->list, 782 &trans->transaction->pending_snapshots); 783 spin_unlock(&fs_info->trans_lock); 784 785 ret = btrfs_commit_transaction(trans); 786 if (ret) 787 goto fail; 788 789 ret = pending_snapshot->error; 790 if (ret) 791 goto fail; 792 793 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 794 if (ret) 795 goto fail; 796 797 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 798 if (IS_ERR(inode)) { 799 ret = PTR_ERR(inode); 800 goto fail; 801 } 802 803 d_instantiate(dentry, inode); 804 ret = 0; 805 pending_snapshot->anon_dev = 0; 806 fail: 807 /* Prevent double freeing of anon_dev */ 808 if (ret && pending_snapshot->snap) 809 pending_snapshot->snap->anon_dev = 0; 810 btrfs_put_root(pending_snapshot->snap); 811 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 812 free_pending: 813 if (pending_snapshot->anon_dev) 814 free_anon_bdev(pending_snapshot->anon_dev); 815 kfree(pending_snapshot->root_item); 816 btrfs_free_path(pending_snapshot->path); 817 kfree(pending_snapshot); 818 819 return ret; 820 } 821 822 /* copy of may_delete in fs/namei.c() 823 * Check whether we can remove a link victim from directory dir, check 824 * whether the type of victim is right. 825 * 1. We can't do it if dir is read-only (done in permission()) 826 * 2. We should have write and exec permissions on dir 827 * 3. We can't remove anything from append-only dir 828 * 4. We can't do anything with immutable dir (done in permission()) 829 * 5. If the sticky bit on dir is set we should either 830 * a. be owner of dir, or 831 * b. be owner of victim, or 832 * c. have CAP_FOWNER capability 833 * 6. If the victim is append-only or immutable we can't do anything with 834 * links pointing to it. 835 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 836 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 837 * 9. We can't remove a root or mountpoint. 838 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 839 * nfs_async_unlink(). 840 */ 841 842 static int btrfs_may_delete(struct user_namespace *mnt_userns, 843 struct inode *dir, struct dentry *victim, int isdir) 844 { 845 int error; 846 847 if (d_really_is_negative(victim)) 848 return -ENOENT; 849 850 BUG_ON(d_inode(victim->d_parent) != dir); 851 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 852 853 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 854 if (error) 855 return error; 856 if (IS_APPEND(dir)) 857 return -EPERM; 858 if (check_sticky(mnt_userns, dir, d_inode(victim)) || 859 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 860 IS_SWAPFILE(d_inode(victim))) 861 return -EPERM; 862 if (isdir) { 863 if (!d_is_dir(victim)) 864 return -ENOTDIR; 865 if (IS_ROOT(victim)) 866 return -EBUSY; 867 } else if (d_is_dir(victim)) 868 return -EISDIR; 869 if (IS_DEADDIR(dir)) 870 return -ENOENT; 871 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 872 return -EBUSY; 873 return 0; 874 } 875 876 /* copy of may_create in fs/namei.c() */ 877 static inline int btrfs_may_create(struct user_namespace *mnt_userns, 878 struct inode *dir, struct dentry *child) 879 { 880 if (d_really_is_positive(child)) 881 return -EEXIST; 882 if (IS_DEADDIR(dir)) 883 return -ENOENT; 884 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 885 return -EOVERFLOW; 886 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 887 } 888 889 /* 890 * Create a new subvolume below @parent. This is largely modeled after 891 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 892 * inside this filesystem so it's quite a bit simpler. 893 */ 894 static noinline int btrfs_mksubvol(const struct path *parent, 895 struct user_namespace *mnt_userns, 896 const char *name, int namelen, 897 struct btrfs_root *snap_src, 898 bool readonly, 899 struct btrfs_qgroup_inherit *inherit) 900 { 901 struct inode *dir = d_inode(parent->dentry); 902 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 903 struct dentry *dentry; 904 int error; 905 906 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 907 if (error == -EINTR) 908 return error; 909 910 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen); 911 error = PTR_ERR(dentry); 912 if (IS_ERR(dentry)) 913 goto out_unlock; 914 915 error = btrfs_may_create(mnt_userns, dir, dentry); 916 if (error) 917 goto out_dput; 918 919 /* 920 * even if this name doesn't exist, we may get hash collisions. 921 * check for them now when we can safely fail 922 */ 923 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 924 dir->i_ino, name, 925 namelen); 926 if (error) 927 goto out_dput; 928 929 down_read(&fs_info->subvol_sem); 930 931 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 932 goto out_up_read; 933 934 if (snap_src) 935 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 936 else 937 error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit); 938 939 if (!error) 940 fsnotify_mkdir(dir, dentry); 941 out_up_read: 942 up_read(&fs_info->subvol_sem); 943 out_dput: 944 dput(dentry); 945 out_unlock: 946 btrfs_inode_unlock(dir, 0); 947 return error; 948 } 949 950 static noinline int btrfs_mksnapshot(const struct path *parent, 951 struct user_namespace *mnt_userns, 952 const char *name, int namelen, 953 struct btrfs_root *root, 954 bool readonly, 955 struct btrfs_qgroup_inherit *inherit) 956 { 957 int ret; 958 bool snapshot_force_cow = false; 959 960 /* 961 * Force new buffered writes to reserve space even when NOCOW is 962 * possible. This is to avoid later writeback (running dealloc) to 963 * fallback to COW mode and unexpectedly fail with ENOSPC. 964 */ 965 btrfs_drew_read_lock(&root->snapshot_lock); 966 967 ret = btrfs_start_delalloc_snapshot(root, false); 968 if (ret) 969 goto out; 970 971 /* 972 * All previous writes have started writeback in NOCOW mode, so now 973 * we force future writes to fallback to COW mode during snapshot 974 * creation. 975 */ 976 atomic_inc(&root->snapshot_force_cow); 977 snapshot_force_cow = true; 978 979 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 980 981 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen, 982 root, readonly, inherit); 983 out: 984 if (snapshot_force_cow) 985 atomic_dec(&root->snapshot_force_cow); 986 btrfs_drew_read_unlock(&root->snapshot_lock); 987 return ret; 988 } 989 990 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start, 991 bool locked) 992 { 993 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 994 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 995 struct extent_map *em; 996 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize; 997 998 /* 999 * hopefully we have this extent in the tree already, try without 1000 * the full extent lock 1001 */ 1002 read_lock(&em_tree->lock); 1003 em = lookup_extent_mapping(em_tree, start, sectorsize); 1004 read_unlock(&em_tree->lock); 1005 1006 if (!em) { 1007 struct extent_state *cached = NULL; 1008 u64 end = start + sectorsize - 1; 1009 1010 /* get the big lock and read metadata off disk */ 1011 if (!locked) 1012 lock_extent_bits(io_tree, start, end, &cached); 1013 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, sectorsize); 1014 if (!locked) 1015 unlock_extent_cached(io_tree, start, end, &cached); 1016 1017 if (IS_ERR(em)) 1018 return NULL; 1019 } 1020 1021 return em; 1022 } 1023 1024 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em, 1025 bool locked) 1026 { 1027 struct extent_map *next; 1028 bool ret = true; 1029 1030 /* this is the last extent */ 1031 if (em->start + em->len >= i_size_read(inode)) 1032 return false; 1033 1034 next = defrag_lookup_extent(inode, em->start + em->len, locked); 1035 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1036 ret = false; 1037 else if ((em->block_start + em->block_len == next->block_start) && 1038 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1039 ret = false; 1040 1041 free_extent_map(next); 1042 return ret; 1043 } 1044 1045 /* 1046 * Prepare one page to be defragged. 1047 * 1048 * This will ensure: 1049 * 1050 * - Returned page is locked and has been set up properly. 1051 * - No ordered extent exists in the page. 1052 * - The page is uptodate. 1053 * 1054 * NOTE: Caller should also wait for page writeback after the cluster is 1055 * prepared, here we don't do writeback wait for each page. 1056 */ 1057 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, 1058 pgoff_t index) 1059 { 1060 struct address_space *mapping = inode->vfs_inode.i_mapping; 1061 gfp_t mask = btrfs_alloc_write_mask(mapping); 1062 u64 page_start = (u64)index << PAGE_SHIFT; 1063 u64 page_end = page_start + PAGE_SIZE - 1; 1064 struct extent_state *cached_state = NULL; 1065 struct page *page; 1066 int ret; 1067 1068 again: 1069 page = find_or_create_page(mapping, index, mask); 1070 if (!page) 1071 return ERR_PTR(-ENOMEM); 1072 1073 /* 1074 * Since we can defragment files opened read-only, we can encounter 1075 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We 1076 * can't do I/O using huge pages yet, so return an error for now. 1077 * Filesystem transparent huge pages are typically only used for 1078 * executables that explicitly enable them, so this isn't very 1079 * restrictive. 1080 */ 1081 if (PageCompound(page)) { 1082 unlock_page(page); 1083 put_page(page); 1084 return ERR_PTR(-ETXTBSY); 1085 } 1086 1087 ret = set_page_extent_mapped(page); 1088 if (ret < 0) { 1089 unlock_page(page); 1090 put_page(page); 1091 return ERR_PTR(ret); 1092 } 1093 1094 /* Wait for any existing ordered extent in the range */ 1095 while (1) { 1096 struct btrfs_ordered_extent *ordered; 1097 1098 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 1099 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 1100 unlock_extent_cached(&inode->io_tree, page_start, page_end, 1101 &cached_state); 1102 if (!ordered) 1103 break; 1104 1105 unlock_page(page); 1106 btrfs_start_ordered_extent(ordered, 1); 1107 btrfs_put_ordered_extent(ordered); 1108 lock_page(page); 1109 /* 1110 * We unlocked the page above, so we need check if it was 1111 * released or not. 1112 */ 1113 if (page->mapping != mapping || !PagePrivate(page)) { 1114 unlock_page(page); 1115 put_page(page); 1116 goto again; 1117 } 1118 } 1119 1120 /* 1121 * Now the page range has no ordered extent any more. Read the page to 1122 * make it uptodate. 1123 */ 1124 if (!PageUptodate(page)) { 1125 btrfs_readpage(NULL, page); 1126 lock_page(page); 1127 if (page->mapping != mapping || !PagePrivate(page)) { 1128 unlock_page(page); 1129 put_page(page); 1130 goto again; 1131 } 1132 if (!PageUptodate(page)) { 1133 unlock_page(page); 1134 put_page(page); 1135 return ERR_PTR(-EIO); 1136 } 1137 } 1138 return page; 1139 } 1140 1141 struct defrag_target_range { 1142 struct list_head list; 1143 u64 start; 1144 u64 len; 1145 }; 1146 1147 /* 1148 * Collect all valid target extents. 1149 * 1150 * @start: file offset to lookup 1151 * @len: length to lookup 1152 * @extent_thresh: file extent size threshold, any extent size >= this value 1153 * will be ignored 1154 * @newer_than: only defrag extents newer than this value 1155 * @do_compress: whether the defrag is doing compression 1156 * if true, @extent_thresh will be ignored and all regular 1157 * file extents meeting @newer_than will be targets. 1158 * @locked: if the range has already held extent lock 1159 * @target_list: list of targets file extents 1160 */ 1161 static int defrag_collect_targets(struct btrfs_inode *inode, 1162 u64 start, u64 len, u32 extent_thresh, 1163 u64 newer_than, bool do_compress, 1164 bool locked, struct list_head *target_list) 1165 { 1166 u64 cur = start; 1167 int ret = 0; 1168 1169 while (cur < start + len) { 1170 struct extent_map *em; 1171 struct defrag_target_range *new; 1172 bool next_mergeable = true; 1173 u64 range_len; 1174 1175 em = defrag_lookup_extent(&inode->vfs_inode, cur, locked); 1176 if (!em) 1177 break; 1178 1179 /* Skip hole/inline/preallocated extents */ 1180 if (em->block_start >= EXTENT_MAP_LAST_BYTE || 1181 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 1182 goto next; 1183 1184 /* Skip older extent */ 1185 if (em->generation < newer_than) 1186 goto next; 1187 1188 /* 1189 * For do_compress case, we want to compress all valid file 1190 * extents, thus no @extent_thresh or mergeable check. 1191 */ 1192 if (do_compress) 1193 goto add; 1194 1195 /* Skip too large extent */ 1196 if (em->len >= extent_thresh) 1197 goto next; 1198 1199 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em, 1200 locked); 1201 if (!next_mergeable) { 1202 struct defrag_target_range *last; 1203 1204 /* Empty target list, no way to merge with last entry */ 1205 if (list_empty(target_list)) 1206 goto next; 1207 last = list_entry(target_list->prev, 1208 struct defrag_target_range, list); 1209 /* Not mergeable with last entry */ 1210 if (last->start + last->len != cur) 1211 goto next; 1212 1213 /* Mergeable, fall through to add it to @target_list. */ 1214 } 1215 1216 add: 1217 range_len = min(extent_map_end(em), start + len) - cur; 1218 /* 1219 * This one is a good target, check if it can be merged into 1220 * last range of the target list. 1221 */ 1222 if (!list_empty(target_list)) { 1223 struct defrag_target_range *last; 1224 1225 last = list_entry(target_list->prev, 1226 struct defrag_target_range, list); 1227 ASSERT(last->start + last->len <= cur); 1228 if (last->start + last->len == cur) { 1229 /* Mergeable, enlarge the last entry */ 1230 last->len += range_len; 1231 goto next; 1232 } 1233 /* Fall through to allocate a new entry */ 1234 } 1235 1236 /* Allocate new defrag_target_range */ 1237 new = kmalloc(sizeof(*new), GFP_NOFS); 1238 if (!new) { 1239 free_extent_map(em); 1240 ret = -ENOMEM; 1241 break; 1242 } 1243 new->start = cur; 1244 new->len = range_len; 1245 list_add_tail(&new->list, target_list); 1246 1247 next: 1248 cur = extent_map_end(em); 1249 free_extent_map(em); 1250 } 1251 if (ret < 0) { 1252 struct defrag_target_range *entry; 1253 struct defrag_target_range *tmp; 1254 1255 list_for_each_entry_safe(entry, tmp, target_list, list) { 1256 list_del_init(&entry->list); 1257 kfree(entry); 1258 } 1259 } 1260 return ret; 1261 } 1262 1263 #define CLUSTER_SIZE (SZ_256K) 1264 1265 /* 1266 * Defrag one contiguous target range. 1267 * 1268 * @inode: target inode 1269 * @target: target range to defrag 1270 * @pages: locked pages covering the defrag range 1271 * @nr_pages: number of locked pages 1272 * 1273 * Caller should ensure: 1274 * 1275 * - Pages are prepared 1276 * Pages should be locked, no ordered extent in the pages range, 1277 * no writeback. 1278 * 1279 * - Extent bits are locked 1280 */ 1281 static int defrag_one_locked_target(struct btrfs_inode *inode, 1282 struct defrag_target_range *target, 1283 struct page **pages, int nr_pages, 1284 struct extent_state **cached_state) 1285 { 1286 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1287 struct extent_changeset *data_reserved = NULL; 1288 const u64 start = target->start; 1289 const u64 len = target->len; 1290 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT; 1291 unsigned long start_index = start >> PAGE_SHIFT; 1292 unsigned long first_index = page_index(pages[0]); 1293 int ret = 0; 1294 int i; 1295 1296 ASSERT(last_index - first_index + 1 <= nr_pages); 1297 1298 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len); 1299 if (ret < 0) 1300 return ret; 1301 clear_extent_bit(&inode->io_tree, start, start + len - 1, 1302 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1303 EXTENT_DEFRAG, 0, 0, cached_state); 1304 set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state); 1305 1306 /* Update the page status */ 1307 for (i = start_index - first_index; i <= last_index - first_index; i++) { 1308 ClearPageChecked(pages[i]); 1309 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len); 1310 } 1311 btrfs_delalloc_release_extents(inode, len); 1312 extent_changeset_free(data_reserved); 1313 1314 return ret; 1315 } 1316 1317 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len, 1318 u32 extent_thresh, u64 newer_than, bool do_compress) 1319 { 1320 struct extent_state *cached_state = NULL; 1321 struct defrag_target_range *entry; 1322 struct defrag_target_range *tmp; 1323 LIST_HEAD(target_list); 1324 struct page **pages; 1325 const u32 sectorsize = inode->root->fs_info->sectorsize; 1326 u64 last_index = (start + len - 1) >> PAGE_SHIFT; 1327 u64 start_index = start >> PAGE_SHIFT; 1328 unsigned int nr_pages = last_index - start_index + 1; 1329 int ret = 0; 1330 int i; 1331 1332 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE); 1333 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize)); 1334 1335 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 1336 if (!pages) 1337 return -ENOMEM; 1338 1339 /* Prepare all pages */ 1340 for (i = 0; i < nr_pages; i++) { 1341 pages[i] = defrag_prepare_one_page(inode, start_index + i); 1342 if (IS_ERR(pages[i])) { 1343 ret = PTR_ERR(pages[i]); 1344 pages[i] = NULL; 1345 goto free_pages; 1346 } 1347 } 1348 for (i = 0; i < nr_pages; i++) 1349 wait_on_page_writeback(pages[i]); 1350 1351 /* Lock the pages range */ 1352 lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT, 1353 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1354 &cached_state); 1355 /* 1356 * Now we have a consistent view about the extent map, re-check 1357 * which range really needs to be defragged. 1358 * 1359 * And this time we have extent locked already, pass @locked = true 1360 * so that we won't relock the extent range and cause deadlock. 1361 */ 1362 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1363 newer_than, do_compress, true, 1364 &target_list); 1365 if (ret < 0) 1366 goto unlock_extent; 1367 1368 list_for_each_entry(entry, &target_list, list) { 1369 ret = defrag_one_locked_target(inode, entry, pages, nr_pages, 1370 &cached_state); 1371 if (ret < 0) 1372 break; 1373 } 1374 1375 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1376 list_del_init(&entry->list); 1377 kfree(entry); 1378 } 1379 unlock_extent: 1380 unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT, 1381 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1, 1382 &cached_state); 1383 free_pages: 1384 for (i = 0; i < nr_pages; i++) { 1385 if (pages[i]) { 1386 unlock_page(pages[i]); 1387 put_page(pages[i]); 1388 } 1389 } 1390 kfree(pages); 1391 return ret; 1392 } 1393 1394 static int defrag_one_cluster(struct btrfs_inode *inode, 1395 struct file_ra_state *ra, 1396 u64 start, u32 len, u32 extent_thresh, 1397 u64 newer_than, bool do_compress, 1398 unsigned long *sectors_defragged, 1399 unsigned long max_sectors) 1400 { 1401 const u32 sectorsize = inode->root->fs_info->sectorsize; 1402 struct defrag_target_range *entry; 1403 struct defrag_target_range *tmp; 1404 LIST_HEAD(target_list); 1405 int ret; 1406 1407 BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1408 ret = defrag_collect_targets(inode, start, len, extent_thresh, 1409 newer_than, do_compress, false, 1410 &target_list); 1411 if (ret < 0) 1412 goto out; 1413 1414 list_for_each_entry(entry, &target_list, list) { 1415 u32 range_len = entry->len; 1416 1417 /* Reached the limit */ 1418 if (max_sectors && max_sectors == *sectors_defragged) 1419 break; 1420 1421 if (max_sectors) 1422 range_len = min_t(u32, range_len, 1423 (max_sectors - *sectors_defragged) * sectorsize); 1424 1425 if (ra) 1426 page_cache_sync_readahead(inode->vfs_inode.i_mapping, 1427 ra, NULL, entry->start >> PAGE_SHIFT, 1428 ((entry->start + range_len - 1) >> PAGE_SHIFT) - 1429 (entry->start >> PAGE_SHIFT) + 1); 1430 /* 1431 * Here we may not defrag any range if holes are punched before 1432 * we locked the pages. 1433 * But that's fine, it only affects the @sectors_defragged 1434 * accounting. 1435 */ 1436 ret = defrag_one_range(inode, entry->start, range_len, 1437 extent_thresh, newer_than, do_compress); 1438 if (ret < 0) 1439 break; 1440 *sectors_defragged += range_len; 1441 } 1442 out: 1443 list_for_each_entry_safe(entry, tmp, &target_list, list) { 1444 list_del_init(&entry->list); 1445 kfree(entry); 1446 } 1447 return ret; 1448 } 1449 1450 /* 1451 * Entry point to file defragmentation. 1452 * 1453 * @inode: inode to be defragged 1454 * @ra: readahead state (can be NUL) 1455 * @range: defrag options including range and flags 1456 * @newer_than: minimum transid to defrag 1457 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode 1458 * will be defragged. 1459 */ 1460 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 1461 struct btrfs_ioctl_defrag_range_args *range, 1462 u64 newer_than, unsigned long max_to_defrag) 1463 { 1464 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1465 unsigned long sectors_defragged = 0; 1466 u64 isize = i_size_read(inode); 1467 u64 cur; 1468 u64 last_byte; 1469 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1470 bool ra_allocated = false; 1471 int compress_type = BTRFS_COMPRESS_ZLIB; 1472 int ret = 0; 1473 u32 extent_thresh = range->extent_thresh; 1474 1475 if (isize == 0) 1476 return 0; 1477 1478 if (range->start >= isize) 1479 return -EINVAL; 1480 1481 if (do_compress) { 1482 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1483 return -EINVAL; 1484 if (range->compress_type) 1485 compress_type = range->compress_type; 1486 } 1487 1488 if (extent_thresh == 0) 1489 extent_thresh = SZ_256K; 1490 1491 if (range->start + range->len > range->start) { 1492 /* Got a specific range */ 1493 last_byte = min(isize, range->start + range->len) - 1; 1494 } else { 1495 /* Defrag until file end */ 1496 last_byte = isize - 1; 1497 } 1498 1499 /* 1500 * If we were not given a ra, allocate a readahead context. As 1501 * readahead is just an optimization, defrag will work without it so 1502 * we don't error out. 1503 */ 1504 if (!ra) { 1505 ra_allocated = true; 1506 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1507 if (ra) 1508 file_ra_state_init(ra, inode->i_mapping); 1509 } 1510 1511 /* Align the range */ 1512 cur = round_down(range->start, fs_info->sectorsize); 1513 last_byte = round_up(last_byte, fs_info->sectorsize) - 1; 1514 1515 while (cur < last_byte) { 1516 u64 cluster_end; 1517 1518 /* The cluster size 256K should always be page aligned */ 1519 BUILD_BUG_ON(!IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE)); 1520 1521 /* We want the cluster end at page boundary when possible */ 1522 cluster_end = (((cur >> PAGE_SHIFT) + 1523 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1; 1524 cluster_end = min(cluster_end, last_byte); 1525 1526 btrfs_inode_lock(inode, 0); 1527 if (IS_SWAPFILE(inode)) { 1528 ret = -ETXTBSY; 1529 btrfs_inode_unlock(inode, 0); 1530 break; 1531 } 1532 if (!(inode->i_sb->s_flags & SB_ACTIVE)) { 1533 btrfs_inode_unlock(inode, 0); 1534 break; 1535 } 1536 if (do_compress) 1537 BTRFS_I(inode)->defrag_compress = compress_type; 1538 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur, 1539 cluster_end + 1 - cur, extent_thresh, 1540 newer_than, do_compress, 1541 §ors_defragged, max_to_defrag); 1542 btrfs_inode_unlock(inode, 0); 1543 if (ret < 0) 1544 break; 1545 cur = cluster_end + 1; 1546 } 1547 1548 if (ra_allocated) 1549 kfree(ra); 1550 if (sectors_defragged) { 1551 /* 1552 * We have defragged some sectors, for compression case they 1553 * need to be written back immediately. 1554 */ 1555 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) { 1556 filemap_flush(inode->i_mapping); 1557 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1558 &BTRFS_I(inode)->runtime_flags)) 1559 filemap_flush(inode->i_mapping); 1560 } 1561 if (range->compress_type == BTRFS_COMPRESS_LZO) 1562 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1563 else if (range->compress_type == BTRFS_COMPRESS_ZSTD) 1564 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1565 ret = sectors_defragged; 1566 } 1567 if (do_compress) { 1568 btrfs_inode_lock(inode, 0); 1569 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1570 btrfs_inode_unlock(inode, 0); 1571 } 1572 return ret; 1573 } 1574 1575 /* 1576 * Try to start exclusive operation @type or cancel it if it's running. 1577 * 1578 * Return: 1579 * 0 - normal mode, newly claimed op started 1580 * >0 - normal mode, something else is running, 1581 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1582 * ECANCELED - cancel mode, successful cancel 1583 * ENOTCONN - cancel mode, operation not running anymore 1584 */ 1585 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1586 enum btrfs_exclusive_operation type, bool cancel) 1587 { 1588 if (!cancel) { 1589 /* Start normal op */ 1590 if (!btrfs_exclop_start(fs_info, type)) 1591 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1592 /* Exclusive operation is now claimed */ 1593 return 0; 1594 } 1595 1596 /* Cancel running op */ 1597 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1598 /* 1599 * This blocks any exclop finish from setting it to NONE, so we 1600 * request cancellation. Either it runs and we will wait for it, 1601 * or it has finished and no waiting will happen. 1602 */ 1603 atomic_inc(&fs_info->reloc_cancel_req); 1604 btrfs_exclop_start_unlock(fs_info); 1605 1606 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1607 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1608 TASK_INTERRUPTIBLE); 1609 1610 return -ECANCELED; 1611 } 1612 1613 /* Something else is running or none */ 1614 return -ENOTCONN; 1615 } 1616 1617 static noinline int btrfs_ioctl_resize(struct file *file, 1618 void __user *arg) 1619 { 1620 BTRFS_DEV_LOOKUP_ARGS(args); 1621 struct inode *inode = file_inode(file); 1622 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1623 u64 new_size; 1624 u64 old_size; 1625 u64 devid = 1; 1626 struct btrfs_root *root = BTRFS_I(inode)->root; 1627 struct btrfs_ioctl_vol_args *vol_args; 1628 struct btrfs_trans_handle *trans; 1629 struct btrfs_device *device = NULL; 1630 char *sizestr; 1631 char *retptr; 1632 char *devstr = NULL; 1633 int ret = 0; 1634 int mod = 0; 1635 bool cancel; 1636 1637 if (!capable(CAP_SYS_ADMIN)) 1638 return -EPERM; 1639 1640 ret = mnt_want_write_file(file); 1641 if (ret) 1642 return ret; 1643 1644 /* 1645 * Read the arguments before checking exclusivity to be able to 1646 * distinguish regular resize and cancel 1647 */ 1648 vol_args = memdup_user(arg, sizeof(*vol_args)); 1649 if (IS_ERR(vol_args)) { 1650 ret = PTR_ERR(vol_args); 1651 goto out_drop; 1652 } 1653 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1654 sizestr = vol_args->name; 1655 cancel = (strcmp("cancel", sizestr) == 0); 1656 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1657 if (ret) 1658 goto out_free; 1659 /* Exclusive operation is now claimed */ 1660 1661 devstr = strchr(sizestr, ':'); 1662 if (devstr) { 1663 sizestr = devstr + 1; 1664 *devstr = '\0'; 1665 devstr = vol_args->name; 1666 ret = kstrtoull(devstr, 10, &devid); 1667 if (ret) 1668 goto out_finish; 1669 if (!devid) { 1670 ret = -EINVAL; 1671 goto out_finish; 1672 } 1673 btrfs_info(fs_info, "resizing devid %llu", devid); 1674 } 1675 1676 args.devid = devid; 1677 device = btrfs_find_device(fs_info->fs_devices, &args); 1678 if (!device) { 1679 btrfs_info(fs_info, "resizer unable to find device %llu", 1680 devid); 1681 ret = -ENODEV; 1682 goto out_finish; 1683 } 1684 1685 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1686 btrfs_info(fs_info, 1687 "resizer unable to apply on readonly device %llu", 1688 devid); 1689 ret = -EPERM; 1690 goto out_finish; 1691 } 1692 1693 if (!strcmp(sizestr, "max")) 1694 new_size = bdev_nr_bytes(device->bdev); 1695 else { 1696 if (sizestr[0] == '-') { 1697 mod = -1; 1698 sizestr++; 1699 } else if (sizestr[0] == '+') { 1700 mod = 1; 1701 sizestr++; 1702 } 1703 new_size = memparse(sizestr, &retptr); 1704 if (*retptr != '\0' || new_size == 0) { 1705 ret = -EINVAL; 1706 goto out_finish; 1707 } 1708 } 1709 1710 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1711 ret = -EPERM; 1712 goto out_finish; 1713 } 1714 1715 old_size = btrfs_device_get_total_bytes(device); 1716 1717 if (mod < 0) { 1718 if (new_size > old_size) { 1719 ret = -EINVAL; 1720 goto out_finish; 1721 } 1722 new_size = old_size - new_size; 1723 } else if (mod > 0) { 1724 if (new_size > ULLONG_MAX - old_size) { 1725 ret = -ERANGE; 1726 goto out_finish; 1727 } 1728 new_size = old_size + new_size; 1729 } 1730 1731 if (new_size < SZ_256M) { 1732 ret = -EINVAL; 1733 goto out_finish; 1734 } 1735 if (new_size > bdev_nr_bytes(device->bdev)) { 1736 ret = -EFBIG; 1737 goto out_finish; 1738 } 1739 1740 new_size = round_down(new_size, fs_info->sectorsize); 1741 1742 if (new_size > old_size) { 1743 trans = btrfs_start_transaction(root, 0); 1744 if (IS_ERR(trans)) { 1745 ret = PTR_ERR(trans); 1746 goto out_finish; 1747 } 1748 ret = btrfs_grow_device(trans, device, new_size); 1749 btrfs_commit_transaction(trans); 1750 } else if (new_size < old_size) { 1751 ret = btrfs_shrink_device(device, new_size); 1752 } /* equal, nothing need to do */ 1753 1754 if (ret == 0 && new_size != old_size) 1755 btrfs_info_in_rcu(fs_info, 1756 "resize device %s (devid %llu) from %llu to %llu", 1757 rcu_str_deref(device->name), device->devid, 1758 old_size, new_size); 1759 out_finish: 1760 btrfs_exclop_finish(fs_info); 1761 out_free: 1762 kfree(vol_args); 1763 out_drop: 1764 mnt_drop_write_file(file); 1765 return ret; 1766 } 1767 1768 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1769 struct user_namespace *mnt_userns, 1770 const char *name, unsigned long fd, int subvol, 1771 bool readonly, 1772 struct btrfs_qgroup_inherit *inherit) 1773 { 1774 int namelen; 1775 int ret = 0; 1776 1777 if (!S_ISDIR(file_inode(file)->i_mode)) 1778 return -ENOTDIR; 1779 1780 ret = mnt_want_write_file(file); 1781 if (ret) 1782 goto out; 1783 1784 namelen = strlen(name); 1785 if (strchr(name, '/')) { 1786 ret = -EINVAL; 1787 goto out_drop_write; 1788 } 1789 1790 if (name[0] == '.' && 1791 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1792 ret = -EEXIST; 1793 goto out_drop_write; 1794 } 1795 1796 if (subvol) { 1797 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name, 1798 namelen, NULL, readonly, inherit); 1799 } else { 1800 struct fd src = fdget(fd); 1801 struct inode *src_inode; 1802 if (!src.file) { 1803 ret = -EINVAL; 1804 goto out_drop_write; 1805 } 1806 1807 src_inode = file_inode(src.file); 1808 if (src_inode->i_sb != file_inode(file)->i_sb) { 1809 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1810 "Snapshot src from another FS"); 1811 ret = -EXDEV; 1812 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) { 1813 /* 1814 * Subvolume creation is not restricted, but snapshots 1815 * are limited to own subvolumes only 1816 */ 1817 ret = -EPERM; 1818 } else { 1819 ret = btrfs_mksnapshot(&file->f_path, mnt_userns, 1820 name, namelen, 1821 BTRFS_I(src_inode)->root, 1822 readonly, inherit); 1823 } 1824 fdput(src); 1825 } 1826 out_drop_write: 1827 mnt_drop_write_file(file); 1828 out: 1829 return ret; 1830 } 1831 1832 static noinline int btrfs_ioctl_snap_create(struct file *file, 1833 void __user *arg, int subvol) 1834 { 1835 struct btrfs_ioctl_vol_args *vol_args; 1836 int ret; 1837 1838 if (!S_ISDIR(file_inode(file)->i_mode)) 1839 return -ENOTDIR; 1840 1841 vol_args = memdup_user(arg, sizeof(*vol_args)); 1842 if (IS_ERR(vol_args)) 1843 return PTR_ERR(vol_args); 1844 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1845 1846 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 1847 vol_args->name, vol_args->fd, subvol, 1848 false, NULL); 1849 1850 kfree(vol_args); 1851 return ret; 1852 } 1853 1854 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1855 void __user *arg, int subvol) 1856 { 1857 struct btrfs_ioctl_vol_args_v2 *vol_args; 1858 int ret; 1859 bool readonly = false; 1860 struct btrfs_qgroup_inherit *inherit = NULL; 1861 1862 if (!S_ISDIR(file_inode(file)->i_mode)) 1863 return -ENOTDIR; 1864 1865 vol_args = memdup_user(arg, sizeof(*vol_args)); 1866 if (IS_ERR(vol_args)) 1867 return PTR_ERR(vol_args); 1868 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1869 1870 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1871 ret = -EOPNOTSUPP; 1872 goto free_args; 1873 } 1874 1875 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1876 readonly = true; 1877 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1878 u64 nums; 1879 1880 if (vol_args->size < sizeof(*inherit) || 1881 vol_args->size > PAGE_SIZE) { 1882 ret = -EINVAL; 1883 goto free_args; 1884 } 1885 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1886 if (IS_ERR(inherit)) { 1887 ret = PTR_ERR(inherit); 1888 goto free_args; 1889 } 1890 1891 if (inherit->num_qgroups > PAGE_SIZE || 1892 inherit->num_ref_copies > PAGE_SIZE || 1893 inherit->num_excl_copies > PAGE_SIZE) { 1894 ret = -EINVAL; 1895 goto free_inherit; 1896 } 1897 1898 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1899 2 * inherit->num_excl_copies; 1900 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1901 ret = -EINVAL; 1902 goto free_inherit; 1903 } 1904 } 1905 1906 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 1907 vol_args->name, vol_args->fd, subvol, 1908 readonly, inherit); 1909 if (ret) 1910 goto free_inherit; 1911 free_inherit: 1912 kfree(inherit); 1913 free_args: 1914 kfree(vol_args); 1915 return ret; 1916 } 1917 1918 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1919 void __user *arg) 1920 { 1921 struct inode *inode = file_inode(file); 1922 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1923 struct btrfs_root *root = BTRFS_I(inode)->root; 1924 int ret = 0; 1925 u64 flags = 0; 1926 1927 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1928 return -EINVAL; 1929 1930 down_read(&fs_info->subvol_sem); 1931 if (btrfs_root_readonly(root)) 1932 flags |= BTRFS_SUBVOL_RDONLY; 1933 up_read(&fs_info->subvol_sem); 1934 1935 if (copy_to_user(arg, &flags, sizeof(flags))) 1936 ret = -EFAULT; 1937 1938 return ret; 1939 } 1940 1941 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1942 void __user *arg) 1943 { 1944 struct inode *inode = file_inode(file); 1945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1946 struct btrfs_root *root = BTRFS_I(inode)->root; 1947 struct btrfs_trans_handle *trans; 1948 u64 root_flags; 1949 u64 flags; 1950 int ret = 0; 1951 1952 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode)) 1953 return -EPERM; 1954 1955 ret = mnt_want_write_file(file); 1956 if (ret) 1957 goto out; 1958 1959 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1960 ret = -EINVAL; 1961 goto out_drop_write; 1962 } 1963 1964 if (copy_from_user(&flags, arg, sizeof(flags))) { 1965 ret = -EFAULT; 1966 goto out_drop_write; 1967 } 1968 1969 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1970 ret = -EOPNOTSUPP; 1971 goto out_drop_write; 1972 } 1973 1974 down_write(&fs_info->subvol_sem); 1975 1976 /* nothing to do */ 1977 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1978 goto out_drop_sem; 1979 1980 root_flags = btrfs_root_flags(&root->root_item); 1981 if (flags & BTRFS_SUBVOL_RDONLY) { 1982 btrfs_set_root_flags(&root->root_item, 1983 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1984 } else { 1985 /* 1986 * Block RO -> RW transition if this subvolume is involved in 1987 * send 1988 */ 1989 spin_lock(&root->root_item_lock); 1990 if (root->send_in_progress == 0) { 1991 btrfs_set_root_flags(&root->root_item, 1992 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1993 spin_unlock(&root->root_item_lock); 1994 } else { 1995 spin_unlock(&root->root_item_lock); 1996 btrfs_warn(fs_info, 1997 "Attempt to set subvolume %llu read-write during send", 1998 root->root_key.objectid); 1999 ret = -EPERM; 2000 goto out_drop_sem; 2001 } 2002 } 2003 2004 trans = btrfs_start_transaction(root, 1); 2005 if (IS_ERR(trans)) { 2006 ret = PTR_ERR(trans); 2007 goto out_reset; 2008 } 2009 2010 ret = btrfs_update_root(trans, fs_info->tree_root, 2011 &root->root_key, &root->root_item); 2012 if (ret < 0) { 2013 btrfs_end_transaction(trans); 2014 goto out_reset; 2015 } 2016 2017 ret = btrfs_commit_transaction(trans); 2018 2019 out_reset: 2020 if (ret) 2021 btrfs_set_root_flags(&root->root_item, root_flags); 2022 out_drop_sem: 2023 up_write(&fs_info->subvol_sem); 2024 out_drop_write: 2025 mnt_drop_write_file(file); 2026 out: 2027 return ret; 2028 } 2029 2030 static noinline int key_in_sk(struct btrfs_key *key, 2031 struct btrfs_ioctl_search_key *sk) 2032 { 2033 struct btrfs_key test; 2034 int ret; 2035 2036 test.objectid = sk->min_objectid; 2037 test.type = sk->min_type; 2038 test.offset = sk->min_offset; 2039 2040 ret = btrfs_comp_cpu_keys(key, &test); 2041 if (ret < 0) 2042 return 0; 2043 2044 test.objectid = sk->max_objectid; 2045 test.type = sk->max_type; 2046 test.offset = sk->max_offset; 2047 2048 ret = btrfs_comp_cpu_keys(key, &test); 2049 if (ret > 0) 2050 return 0; 2051 return 1; 2052 } 2053 2054 static noinline int copy_to_sk(struct btrfs_path *path, 2055 struct btrfs_key *key, 2056 struct btrfs_ioctl_search_key *sk, 2057 size_t *buf_size, 2058 char __user *ubuf, 2059 unsigned long *sk_offset, 2060 int *num_found) 2061 { 2062 u64 found_transid; 2063 struct extent_buffer *leaf; 2064 struct btrfs_ioctl_search_header sh; 2065 struct btrfs_key test; 2066 unsigned long item_off; 2067 unsigned long item_len; 2068 int nritems; 2069 int i; 2070 int slot; 2071 int ret = 0; 2072 2073 leaf = path->nodes[0]; 2074 slot = path->slots[0]; 2075 nritems = btrfs_header_nritems(leaf); 2076 2077 if (btrfs_header_generation(leaf) > sk->max_transid) { 2078 i = nritems; 2079 goto advance_key; 2080 } 2081 found_transid = btrfs_header_generation(leaf); 2082 2083 for (i = slot; i < nritems; i++) { 2084 item_off = btrfs_item_ptr_offset(leaf, i); 2085 item_len = btrfs_item_size_nr(leaf, i); 2086 2087 btrfs_item_key_to_cpu(leaf, key, i); 2088 if (!key_in_sk(key, sk)) 2089 continue; 2090 2091 if (sizeof(sh) + item_len > *buf_size) { 2092 if (*num_found) { 2093 ret = 1; 2094 goto out; 2095 } 2096 2097 /* 2098 * return one empty item back for v1, which does not 2099 * handle -EOVERFLOW 2100 */ 2101 2102 *buf_size = sizeof(sh) + item_len; 2103 item_len = 0; 2104 ret = -EOVERFLOW; 2105 } 2106 2107 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2108 ret = 1; 2109 goto out; 2110 } 2111 2112 sh.objectid = key->objectid; 2113 sh.offset = key->offset; 2114 sh.type = key->type; 2115 sh.len = item_len; 2116 sh.transid = found_transid; 2117 2118 /* 2119 * Copy search result header. If we fault then loop again so we 2120 * can fault in the pages and -EFAULT there if there's a 2121 * problem. Otherwise we'll fault and then copy the buffer in 2122 * properly this next time through 2123 */ 2124 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2125 ret = 0; 2126 goto out; 2127 } 2128 2129 *sk_offset += sizeof(sh); 2130 2131 if (item_len) { 2132 char __user *up = ubuf + *sk_offset; 2133 /* 2134 * Copy the item, same behavior as above, but reset the 2135 * * sk_offset so we copy the full thing again. 2136 */ 2137 if (read_extent_buffer_to_user_nofault(leaf, up, 2138 item_off, item_len)) { 2139 ret = 0; 2140 *sk_offset -= sizeof(sh); 2141 goto out; 2142 } 2143 2144 *sk_offset += item_len; 2145 } 2146 (*num_found)++; 2147 2148 if (ret) /* -EOVERFLOW from above */ 2149 goto out; 2150 2151 if (*num_found >= sk->nr_items) { 2152 ret = 1; 2153 goto out; 2154 } 2155 } 2156 advance_key: 2157 ret = 0; 2158 test.objectid = sk->max_objectid; 2159 test.type = sk->max_type; 2160 test.offset = sk->max_offset; 2161 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2162 ret = 1; 2163 else if (key->offset < (u64)-1) 2164 key->offset++; 2165 else if (key->type < (u8)-1) { 2166 key->offset = 0; 2167 key->type++; 2168 } else if (key->objectid < (u64)-1) { 2169 key->offset = 0; 2170 key->type = 0; 2171 key->objectid++; 2172 } else 2173 ret = 1; 2174 out: 2175 /* 2176 * 0: all items from this leaf copied, continue with next 2177 * 1: * more items can be copied, but unused buffer is too small 2178 * * all items were found 2179 * Either way, it will stops the loop which iterates to the next 2180 * leaf 2181 * -EOVERFLOW: item was to large for buffer 2182 * -EFAULT: could not copy extent buffer back to userspace 2183 */ 2184 return ret; 2185 } 2186 2187 static noinline int search_ioctl(struct inode *inode, 2188 struct btrfs_ioctl_search_key *sk, 2189 size_t *buf_size, 2190 char __user *ubuf) 2191 { 2192 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2193 struct btrfs_root *root; 2194 struct btrfs_key key; 2195 struct btrfs_path *path; 2196 int ret; 2197 int num_found = 0; 2198 unsigned long sk_offset = 0; 2199 2200 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2201 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2202 return -EOVERFLOW; 2203 } 2204 2205 path = btrfs_alloc_path(); 2206 if (!path) 2207 return -ENOMEM; 2208 2209 if (sk->tree_id == 0) { 2210 /* search the root of the inode that was passed */ 2211 root = btrfs_grab_root(BTRFS_I(inode)->root); 2212 } else { 2213 root = btrfs_get_fs_root(info, sk->tree_id, true); 2214 if (IS_ERR(root)) { 2215 btrfs_free_path(path); 2216 return PTR_ERR(root); 2217 } 2218 } 2219 2220 key.objectid = sk->min_objectid; 2221 key.type = sk->min_type; 2222 key.offset = sk->min_offset; 2223 2224 while (1) { 2225 ret = -EFAULT; 2226 if (fault_in_writeable(ubuf + sk_offset, *buf_size - sk_offset)) 2227 break; 2228 2229 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2230 if (ret != 0) { 2231 if (ret > 0) 2232 ret = 0; 2233 goto err; 2234 } 2235 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2236 &sk_offset, &num_found); 2237 btrfs_release_path(path); 2238 if (ret) 2239 break; 2240 2241 } 2242 if (ret > 0) 2243 ret = 0; 2244 err: 2245 sk->nr_items = num_found; 2246 btrfs_put_root(root); 2247 btrfs_free_path(path); 2248 return ret; 2249 } 2250 2251 static noinline int btrfs_ioctl_tree_search(struct file *file, 2252 void __user *argp) 2253 { 2254 struct btrfs_ioctl_search_args __user *uargs; 2255 struct btrfs_ioctl_search_key sk; 2256 struct inode *inode; 2257 int ret; 2258 size_t buf_size; 2259 2260 if (!capable(CAP_SYS_ADMIN)) 2261 return -EPERM; 2262 2263 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2264 2265 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2266 return -EFAULT; 2267 2268 buf_size = sizeof(uargs->buf); 2269 2270 inode = file_inode(file); 2271 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2272 2273 /* 2274 * In the origin implementation an overflow is handled by returning a 2275 * search header with a len of zero, so reset ret. 2276 */ 2277 if (ret == -EOVERFLOW) 2278 ret = 0; 2279 2280 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2281 ret = -EFAULT; 2282 return ret; 2283 } 2284 2285 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2286 void __user *argp) 2287 { 2288 struct btrfs_ioctl_search_args_v2 __user *uarg; 2289 struct btrfs_ioctl_search_args_v2 args; 2290 struct inode *inode; 2291 int ret; 2292 size_t buf_size; 2293 const size_t buf_limit = SZ_16M; 2294 2295 if (!capable(CAP_SYS_ADMIN)) 2296 return -EPERM; 2297 2298 /* copy search header and buffer size */ 2299 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2300 if (copy_from_user(&args, uarg, sizeof(args))) 2301 return -EFAULT; 2302 2303 buf_size = args.buf_size; 2304 2305 /* limit result size to 16MB */ 2306 if (buf_size > buf_limit) 2307 buf_size = buf_limit; 2308 2309 inode = file_inode(file); 2310 ret = search_ioctl(inode, &args.key, &buf_size, 2311 (char __user *)(&uarg->buf[0])); 2312 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2313 ret = -EFAULT; 2314 else if (ret == -EOVERFLOW && 2315 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2316 ret = -EFAULT; 2317 2318 return ret; 2319 } 2320 2321 /* 2322 * Search INODE_REFs to identify path name of 'dirid' directory 2323 * in a 'tree_id' tree. and sets path name to 'name'. 2324 */ 2325 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2326 u64 tree_id, u64 dirid, char *name) 2327 { 2328 struct btrfs_root *root; 2329 struct btrfs_key key; 2330 char *ptr; 2331 int ret = -1; 2332 int slot; 2333 int len; 2334 int total_len = 0; 2335 struct btrfs_inode_ref *iref; 2336 struct extent_buffer *l; 2337 struct btrfs_path *path; 2338 2339 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2340 name[0]='\0'; 2341 return 0; 2342 } 2343 2344 path = btrfs_alloc_path(); 2345 if (!path) 2346 return -ENOMEM; 2347 2348 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2349 2350 root = btrfs_get_fs_root(info, tree_id, true); 2351 if (IS_ERR(root)) { 2352 ret = PTR_ERR(root); 2353 root = NULL; 2354 goto out; 2355 } 2356 2357 key.objectid = dirid; 2358 key.type = BTRFS_INODE_REF_KEY; 2359 key.offset = (u64)-1; 2360 2361 while (1) { 2362 ret = btrfs_search_backwards(root, &key, path); 2363 if (ret < 0) 2364 goto out; 2365 else if (ret > 0) { 2366 ret = -ENOENT; 2367 goto out; 2368 } 2369 2370 l = path->nodes[0]; 2371 slot = path->slots[0]; 2372 2373 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2374 len = btrfs_inode_ref_name_len(l, iref); 2375 ptr -= len + 1; 2376 total_len += len + 1; 2377 if (ptr < name) { 2378 ret = -ENAMETOOLONG; 2379 goto out; 2380 } 2381 2382 *(ptr + len) = '/'; 2383 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2384 2385 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2386 break; 2387 2388 btrfs_release_path(path); 2389 key.objectid = key.offset; 2390 key.offset = (u64)-1; 2391 dirid = key.objectid; 2392 } 2393 memmove(name, ptr, total_len); 2394 name[total_len] = '\0'; 2395 ret = 0; 2396 out: 2397 btrfs_put_root(root); 2398 btrfs_free_path(path); 2399 return ret; 2400 } 2401 2402 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns, 2403 struct inode *inode, 2404 struct btrfs_ioctl_ino_lookup_user_args *args) 2405 { 2406 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2407 struct super_block *sb = inode->i_sb; 2408 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2409 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2410 u64 dirid = args->dirid; 2411 unsigned long item_off; 2412 unsigned long item_len; 2413 struct btrfs_inode_ref *iref; 2414 struct btrfs_root_ref *rref; 2415 struct btrfs_root *root = NULL; 2416 struct btrfs_path *path; 2417 struct btrfs_key key, key2; 2418 struct extent_buffer *leaf; 2419 struct inode *temp_inode; 2420 char *ptr; 2421 int slot; 2422 int len; 2423 int total_len = 0; 2424 int ret; 2425 2426 path = btrfs_alloc_path(); 2427 if (!path) 2428 return -ENOMEM; 2429 2430 /* 2431 * If the bottom subvolume does not exist directly under upper_limit, 2432 * construct the path in from the bottom up. 2433 */ 2434 if (dirid != upper_limit.objectid) { 2435 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2436 2437 root = btrfs_get_fs_root(fs_info, treeid, true); 2438 if (IS_ERR(root)) { 2439 ret = PTR_ERR(root); 2440 goto out; 2441 } 2442 2443 key.objectid = dirid; 2444 key.type = BTRFS_INODE_REF_KEY; 2445 key.offset = (u64)-1; 2446 while (1) { 2447 ret = btrfs_search_backwards(root, &key, path); 2448 if (ret < 0) 2449 goto out_put; 2450 else if (ret > 0) { 2451 ret = -ENOENT; 2452 goto out_put; 2453 } 2454 2455 leaf = path->nodes[0]; 2456 slot = path->slots[0]; 2457 2458 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2459 len = btrfs_inode_ref_name_len(leaf, iref); 2460 ptr -= len + 1; 2461 total_len += len + 1; 2462 if (ptr < args->path) { 2463 ret = -ENAMETOOLONG; 2464 goto out_put; 2465 } 2466 2467 *(ptr + len) = '/'; 2468 read_extent_buffer(leaf, ptr, 2469 (unsigned long)(iref + 1), len); 2470 2471 /* Check the read+exec permission of this directory */ 2472 ret = btrfs_previous_item(root, path, dirid, 2473 BTRFS_INODE_ITEM_KEY); 2474 if (ret < 0) { 2475 goto out_put; 2476 } else if (ret > 0) { 2477 ret = -ENOENT; 2478 goto out_put; 2479 } 2480 2481 leaf = path->nodes[0]; 2482 slot = path->slots[0]; 2483 btrfs_item_key_to_cpu(leaf, &key2, slot); 2484 if (key2.objectid != dirid) { 2485 ret = -ENOENT; 2486 goto out_put; 2487 } 2488 2489 temp_inode = btrfs_iget(sb, key2.objectid, root); 2490 if (IS_ERR(temp_inode)) { 2491 ret = PTR_ERR(temp_inode); 2492 goto out_put; 2493 } 2494 ret = inode_permission(mnt_userns, temp_inode, 2495 MAY_READ | MAY_EXEC); 2496 iput(temp_inode); 2497 if (ret) { 2498 ret = -EACCES; 2499 goto out_put; 2500 } 2501 2502 if (key.offset == upper_limit.objectid) 2503 break; 2504 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2505 ret = -EACCES; 2506 goto out_put; 2507 } 2508 2509 btrfs_release_path(path); 2510 key.objectid = key.offset; 2511 key.offset = (u64)-1; 2512 dirid = key.objectid; 2513 } 2514 2515 memmove(args->path, ptr, total_len); 2516 args->path[total_len] = '\0'; 2517 btrfs_put_root(root); 2518 root = NULL; 2519 btrfs_release_path(path); 2520 } 2521 2522 /* Get the bottom subvolume's name from ROOT_REF */ 2523 key.objectid = treeid; 2524 key.type = BTRFS_ROOT_REF_KEY; 2525 key.offset = args->treeid; 2526 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2527 if (ret < 0) { 2528 goto out; 2529 } else if (ret > 0) { 2530 ret = -ENOENT; 2531 goto out; 2532 } 2533 2534 leaf = path->nodes[0]; 2535 slot = path->slots[0]; 2536 btrfs_item_key_to_cpu(leaf, &key, slot); 2537 2538 item_off = btrfs_item_ptr_offset(leaf, slot); 2539 item_len = btrfs_item_size_nr(leaf, slot); 2540 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2541 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2542 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2543 ret = -EINVAL; 2544 goto out; 2545 } 2546 2547 /* Copy subvolume's name */ 2548 item_off += sizeof(struct btrfs_root_ref); 2549 item_len -= sizeof(struct btrfs_root_ref); 2550 read_extent_buffer(leaf, args->name, item_off, item_len); 2551 args->name[item_len] = 0; 2552 2553 out_put: 2554 btrfs_put_root(root); 2555 out: 2556 btrfs_free_path(path); 2557 return ret; 2558 } 2559 2560 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2561 void __user *argp) 2562 { 2563 struct btrfs_ioctl_ino_lookup_args *args; 2564 struct inode *inode; 2565 int ret = 0; 2566 2567 args = memdup_user(argp, sizeof(*args)); 2568 if (IS_ERR(args)) 2569 return PTR_ERR(args); 2570 2571 inode = file_inode(file); 2572 2573 /* 2574 * Unprivileged query to obtain the containing subvolume root id. The 2575 * path is reset so it's consistent with btrfs_search_path_in_tree. 2576 */ 2577 if (args->treeid == 0) 2578 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2579 2580 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2581 args->name[0] = 0; 2582 goto out; 2583 } 2584 2585 if (!capable(CAP_SYS_ADMIN)) { 2586 ret = -EPERM; 2587 goto out; 2588 } 2589 2590 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2591 args->treeid, args->objectid, 2592 args->name); 2593 2594 out: 2595 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2596 ret = -EFAULT; 2597 2598 kfree(args); 2599 return ret; 2600 } 2601 2602 /* 2603 * Version of ino_lookup ioctl (unprivileged) 2604 * 2605 * The main differences from ino_lookup ioctl are: 2606 * 2607 * 1. Read + Exec permission will be checked using inode_permission() during 2608 * path construction. -EACCES will be returned in case of failure. 2609 * 2. Path construction will be stopped at the inode number which corresponds 2610 * to the fd with which this ioctl is called. If constructed path does not 2611 * exist under fd's inode, -EACCES will be returned. 2612 * 3. The name of bottom subvolume is also searched and filled. 2613 */ 2614 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2615 { 2616 struct btrfs_ioctl_ino_lookup_user_args *args; 2617 struct inode *inode; 2618 int ret; 2619 2620 args = memdup_user(argp, sizeof(*args)); 2621 if (IS_ERR(args)) 2622 return PTR_ERR(args); 2623 2624 inode = file_inode(file); 2625 2626 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2627 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2628 /* 2629 * The subvolume does not exist under fd with which this is 2630 * called 2631 */ 2632 kfree(args); 2633 return -EACCES; 2634 } 2635 2636 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args); 2637 2638 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2639 ret = -EFAULT; 2640 2641 kfree(args); 2642 return ret; 2643 } 2644 2645 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2646 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2647 { 2648 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2649 struct btrfs_fs_info *fs_info; 2650 struct btrfs_root *root; 2651 struct btrfs_path *path; 2652 struct btrfs_key key; 2653 struct btrfs_root_item *root_item; 2654 struct btrfs_root_ref *rref; 2655 struct extent_buffer *leaf; 2656 unsigned long item_off; 2657 unsigned long item_len; 2658 struct inode *inode; 2659 int slot; 2660 int ret = 0; 2661 2662 path = btrfs_alloc_path(); 2663 if (!path) 2664 return -ENOMEM; 2665 2666 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2667 if (!subvol_info) { 2668 btrfs_free_path(path); 2669 return -ENOMEM; 2670 } 2671 2672 inode = file_inode(file); 2673 fs_info = BTRFS_I(inode)->root->fs_info; 2674 2675 /* Get root_item of inode's subvolume */ 2676 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2677 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2678 if (IS_ERR(root)) { 2679 ret = PTR_ERR(root); 2680 goto out_free; 2681 } 2682 root_item = &root->root_item; 2683 2684 subvol_info->treeid = key.objectid; 2685 2686 subvol_info->generation = btrfs_root_generation(root_item); 2687 subvol_info->flags = btrfs_root_flags(root_item); 2688 2689 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2690 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2691 BTRFS_UUID_SIZE); 2692 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2693 BTRFS_UUID_SIZE); 2694 2695 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2696 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2697 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2698 2699 subvol_info->otransid = btrfs_root_otransid(root_item); 2700 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2701 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2702 2703 subvol_info->stransid = btrfs_root_stransid(root_item); 2704 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2705 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2706 2707 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2708 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2709 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2710 2711 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2712 /* Search root tree for ROOT_BACKREF of this subvolume */ 2713 key.type = BTRFS_ROOT_BACKREF_KEY; 2714 key.offset = 0; 2715 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2716 if (ret < 0) { 2717 goto out; 2718 } else if (path->slots[0] >= 2719 btrfs_header_nritems(path->nodes[0])) { 2720 ret = btrfs_next_leaf(fs_info->tree_root, path); 2721 if (ret < 0) { 2722 goto out; 2723 } else if (ret > 0) { 2724 ret = -EUCLEAN; 2725 goto out; 2726 } 2727 } 2728 2729 leaf = path->nodes[0]; 2730 slot = path->slots[0]; 2731 btrfs_item_key_to_cpu(leaf, &key, slot); 2732 if (key.objectid == subvol_info->treeid && 2733 key.type == BTRFS_ROOT_BACKREF_KEY) { 2734 subvol_info->parent_id = key.offset; 2735 2736 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2737 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2738 2739 item_off = btrfs_item_ptr_offset(leaf, slot) 2740 + sizeof(struct btrfs_root_ref); 2741 item_len = btrfs_item_size_nr(leaf, slot) 2742 - sizeof(struct btrfs_root_ref); 2743 read_extent_buffer(leaf, subvol_info->name, 2744 item_off, item_len); 2745 } else { 2746 ret = -ENOENT; 2747 goto out; 2748 } 2749 } 2750 2751 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2752 ret = -EFAULT; 2753 2754 out: 2755 btrfs_put_root(root); 2756 out_free: 2757 btrfs_free_path(path); 2758 kfree(subvol_info); 2759 return ret; 2760 } 2761 2762 /* 2763 * Return ROOT_REF information of the subvolume containing this inode 2764 * except the subvolume name. 2765 */ 2766 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2767 { 2768 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2769 struct btrfs_root_ref *rref; 2770 struct btrfs_root *root; 2771 struct btrfs_path *path; 2772 struct btrfs_key key; 2773 struct extent_buffer *leaf; 2774 struct inode *inode; 2775 u64 objectid; 2776 int slot; 2777 int ret; 2778 u8 found; 2779 2780 path = btrfs_alloc_path(); 2781 if (!path) 2782 return -ENOMEM; 2783 2784 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2785 if (IS_ERR(rootrefs)) { 2786 btrfs_free_path(path); 2787 return PTR_ERR(rootrefs); 2788 } 2789 2790 inode = file_inode(file); 2791 root = BTRFS_I(inode)->root->fs_info->tree_root; 2792 objectid = BTRFS_I(inode)->root->root_key.objectid; 2793 2794 key.objectid = objectid; 2795 key.type = BTRFS_ROOT_REF_KEY; 2796 key.offset = rootrefs->min_treeid; 2797 found = 0; 2798 2799 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2800 if (ret < 0) { 2801 goto out; 2802 } else if (path->slots[0] >= 2803 btrfs_header_nritems(path->nodes[0])) { 2804 ret = btrfs_next_leaf(root, path); 2805 if (ret < 0) { 2806 goto out; 2807 } else if (ret > 0) { 2808 ret = -EUCLEAN; 2809 goto out; 2810 } 2811 } 2812 while (1) { 2813 leaf = path->nodes[0]; 2814 slot = path->slots[0]; 2815 2816 btrfs_item_key_to_cpu(leaf, &key, slot); 2817 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2818 ret = 0; 2819 goto out; 2820 } 2821 2822 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2823 ret = -EOVERFLOW; 2824 goto out; 2825 } 2826 2827 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2828 rootrefs->rootref[found].treeid = key.offset; 2829 rootrefs->rootref[found].dirid = 2830 btrfs_root_ref_dirid(leaf, rref); 2831 found++; 2832 2833 ret = btrfs_next_item(root, path); 2834 if (ret < 0) { 2835 goto out; 2836 } else if (ret > 0) { 2837 ret = -EUCLEAN; 2838 goto out; 2839 } 2840 } 2841 2842 out: 2843 if (!ret || ret == -EOVERFLOW) { 2844 rootrefs->num_items = found; 2845 /* update min_treeid for next search */ 2846 if (found) 2847 rootrefs->min_treeid = 2848 rootrefs->rootref[found - 1].treeid + 1; 2849 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2850 ret = -EFAULT; 2851 } 2852 2853 kfree(rootrefs); 2854 btrfs_free_path(path); 2855 2856 return ret; 2857 } 2858 2859 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2860 void __user *arg, 2861 bool destroy_v2) 2862 { 2863 struct dentry *parent = file->f_path.dentry; 2864 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2865 struct dentry *dentry; 2866 struct inode *dir = d_inode(parent); 2867 struct inode *inode; 2868 struct btrfs_root *root = BTRFS_I(dir)->root; 2869 struct btrfs_root *dest = NULL; 2870 struct btrfs_ioctl_vol_args *vol_args = NULL; 2871 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2872 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 2873 char *subvol_name, *subvol_name_ptr = NULL; 2874 int subvol_namelen; 2875 int err = 0; 2876 bool destroy_parent = false; 2877 2878 if (destroy_v2) { 2879 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2880 if (IS_ERR(vol_args2)) 2881 return PTR_ERR(vol_args2); 2882 2883 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2884 err = -EOPNOTSUPP; 2885 goto out; 2886 } 2887 2888 /* 2889 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2890 * name, same as v1 currently does. 2891 */ 2892 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2893 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2894 subvol_name = vol_args2->name; 2895 2896 err = mnt_want_write_file(file); 2897 if (err) 2898 goto out; 2899 } else { 2900 struct inode *old_dir; 2901 2902 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2903 err = -EINVAL; 2904 goto out; 2905 } 2906 2907 err = mnt_want_write_file(file); 2908 if (err) 2909 goto out; 2910 2911 dentry = btrfs_get_dentry(fs_info->sb, 2912 BTRFS_FIRST_FREE_OBJECTID, 2913 vol_args2->subvolid, 0, 0); 2914 if (IS_ERR(dentry)) { 2915 err = PTR_ERR(dentry); 2916 goto out_drop_write; 2917 } 2918 2919 /* 2920 * Change the default parent since the subvolume being 2921 * deleted can be outside of the current mount point. 2922 */ 2923 parent = btrfs_get_parent(dentry); 2924 2925 /* 2926 * At this point dentry->d_name can point to '/' if the 2927 * subvolume we want to destroy is outsite of the 2928 * current mount point, so we need to release the 2929 * current dentry and execute the lookup to return a new 2930 * one with ->d_name pointing to the 2931 * <mount point>/subvol_name. 2932 */ 2933 dput(dentry); 2934 if (IS_ERR(parent)) { 2935 err = PTR_ERR(parent); 2936 goto out_drop_write; 2937 } 2938 old_dir = dir; 2939 dir = d_inode(parent); 2940 2941 /* 2942 * If v2 was used with SPEC_BY_ID, a new parent was 2943 * allocated since the subvolume can be outside of the 2944 * current mount point. Later on we need to release this 2945 * new parent dentry. 2946 */ 2947 destroy_parent = true; 2948 2949 /* 2950 * On idmapped mounts, deletion via subvolid is 2951 * restricted to subvolumes that are immediate 2952 * ancestors of the inode referenced by the file 2953 * descriptor in the ioctl. Otherwise the idmapping 2954 * could potentially be abused to delete subvolumes 2955 * anywhere in the filesystem the user wouldn't be able 2956 * to delete without an idmapped mount. 2957 */ 2958 if (old_dir != dir && mnt_userns != &init_user_ns) { 2959 err = -EOPNOTSUPP; 2960 goto free_parent; 2961 } 2962 2963 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2964 fs_info, vol_args2->subvolid); 2965 if (IS_ERR(subvol_name_ptr)) { 2966 err = PTR_ERR(subvol_name_ptr); 2967 goto free_parent; 2968 } 2969 /* subvol_name_ptr is already nul terminated */ 2970 subvol_name = (char *)kbasename(subvol_name_ptr); 2971 } 2972 } else { 2973 vol_args = memdup_user(arg, sizeof(*vol_args)); 2974 if (IS_ERR(vol_args)) 2975 return PTR_ERR(vol_args); 2976 2977 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2978 subvol_name = vol_args->name; 2979 2980 err = mnt_want_write_file(file); 2981 if (err) 2982 goto out; 2983 } 2984 2985 subvol_namelen = strlen(subvol_name); 2986 2987 if (strchr(subvol_name, '/') || 2988 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2989 err = -EINVAL; 2990 goto free_subvol_name; 2991 } 2992 2993 if (!S_ISDIR(dir->i_mode)) { 2994 err = -ENOTDIR; 2995 goto free_subvol_name; 2996 } 2997 2998 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2999 if (err == -EINTR) 3000 goto free_subvol_name; 3001 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen); 3002 if (IS_ERR(dentry)) { 3003 err = PTR_ERR(dentry); 3004 goto out_unlock_dir; 3005 } 3006 3007 if (d_really_is_negative(dentry)) { 3008 err = -ENOENT; 3009 goto out_dput; 3010 } 3011 3012 inode = d_inode(dentry); 3013 dest = BTRFS_I(inode)->root; 3014 if (!capable(CAP_SYS_ADMIN)) { 3015 /* 3016 * Regular user. Only allow this with a special mount 3017 * option, when the user has write+exec access to the 3018 * subvol root, and when rmdir(2) would have been 3019 * allowed. 3020 * 3021 * Note that this is _not_ check that the subvol is 3022 * empty or doesn't contain data that we wouldn't 3023 * otherwise be able to delete. 3024 * 3025 * Users who want to delete empty subvols should try 3026 * rmdir(2). 3027 */ 3028 err = -EPERM; 3029 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3030 goto out_dput; 3031 3032 /* 3033 * Do not allow deletion if the parent dir is the same 3034 * as the dir to be deleted. That means the ioctl 3035 * must be called on the dentry referencing the root 3036 * of the subvol, not a random directory contained 3037 * within it. 3038 */ 3039 err = -EINVAL; 3040 if (root == dest) 3041 goto out_dput; 3042 3043 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC); 3044 if (err) 3045 goto out_dput; 3046 } 3047 3048 /* check if subvolume may be deleted by a user */ 3049 err = btrfs_may_delete(mnt_userns, dir, dentry, 1); 3050 if (err) 3051 goto out_dput; 3052 3053 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3054 err = -EINVAL; 3055 goto out_dput; 3056 } 3057 3058 btrfs_inode_lock(inode, 0); 3059 err = btrfs_delete_subvolume(dir, dentry); 3060 btrfs_inode_unlock(inode, 0); 3061 if (!err) { 3062 fsnotify_rmdir(dir, dentry); 3063 d_delete(dentry); 3064 } 3065 3066 out_dput: 3067 dput(dentry); 3068 out_unlock_dir: 3069 btrfs_inode_unlock(dir, 0); 3070 free_subvol_name: 3071 kfree(subvol_name_ptr); 3072 free_parent: 3073 if (destroy_parent) 3074 dput(parent); 3075 out_drop_write: 3076 mnt_drop_write_file(file); 3077 out: 3078 kfree(vol_args2); 3079 kfree(vol_args); 3080 return err; 3081 } 3082 3083 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3084 { 3085 struct inode *inode = file_inode(file); 3086 struct btrfs_root *root = BTRFS_I(inode)->root; 3087 struct btrfs_ioctl_defrag_range_args range = {0}; 3088 int ret; 3089 3090 ret = mnt_want_write_file(file); 3091 if (ret) 3092 return ret; 3093 3094 if (btrfs_root_readonly(root)) { 3095 ret = -EROFS; 3096 goto out; 3097 } 3098 3099 switch (inode->i_mode & S_IFMT) { 3100 case S_IFDIR: 3101 if (!capable(CAP_SYS_ADMIN)) { 3102 ret = -EPERM; 3103 goto out; 3104 } 3105 ret = btrfs_defrag_root(root); 3106 break; 3107 case S_IFREG: 3108 /* 3109 * Note that this does not check the file descriptor for write 3110 * access. This prevents defragmenting executables that are 3111 * running and allows defrag on files open in read-only mode. 3112 */ 3113 if (!capable(CAP_SYS_ADMIN) && 3114 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3115 ret = -EPERM; 3116 goto out; 3117 } 3118 3119 if (argp) { 3120 if (copy_from_user(&range, argp, sizeof(range))) { 3121 ret = -EFAULT; 3122 goto out; 3123 } 3124 /* compression requires us to start the IO */ 3125 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3126 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 3127 range.extent_thresh = (u32)-1; 3128 } 3129 } else { 3130 /* the rest are all set to zero by kzalloc */ 3131 range.len = (u64)-1; 3132 } 3133 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 3134 &range, BTRFS_OLDEST_GENERATION, 0); 3135 if (ret > 0) 3136 ret = 0; 3137 break; 3138 default: 3139 ret = -EINVAL; 3140 } 3141 out: 3142 mnt_drop_write_file(file); 3143 return ret; 3144 } 3145 3146 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3147 { 3148 struct btrfs_ioctl_vol_args *vol_args; 3149 int ret; 3150 3151 if (!capable(CAP_SYS_ADMIN)) 3152 return -EPERM; 3153 3154 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3155 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3156 3157 vol_args = memdup_user(arg, sizeof(*vol_args)); 3158 if (IS_ERR(vol_args)) { 3159 ret = PTR_ERR(vol_args); 3160 goto out; 3161 } 3162 3163 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3164 ret = btrfs_init_new_device(fs_info, vol_args->name); 3165 3166 if (!ret) 3167 btrfs_info(fs_info, "disk added %s", vol_args->name); 3168 3169 kfree(vol_args); 3170 out: 3171 btrfs_exclop_finish(fs_info); 3172 return ret; 3173 } 3174 3175 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3176 { 3177 BTRFS_DEV_LOOKUP_ARGS(args); 3178 struct inode *inode = file_inode(file); 3179 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3180 struct btrfs_ioctl_vol_args_v2 *vol_args; 3181 struct block_device *bdev = NULL; 3182 fmode_t mode; 3183 int ret; 3184 bool cancel = false; 3185 3186 if (!capable(CAP_SYS_ADMIN)) 3187 return -EPERM; 3188 3189 vol_args = memdup_user(arg, sizeof(*vol_args)); 3190 if (IS_ERR(vol_args)) { 3191 ret = PTR_ERR(vol_args); 3192 goto out; 3193 } 3194 3195 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3196 ret = -EOPNOTSUPP; 3197 goto out; 3198 } 3199 3200 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3201 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3202 args.devid = vol_args->devid; 3203 } else if (!strcmp("cancel", vol_args->name)) { 3204 cancel = true; 3205 } else { 3206 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3207 if (ret) 3208 goto out; 3209 } 3210 3211 ret = mnt_want_write_file(file); 3212 if (ret) 3213 goto out; 3214 3215 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3216 cancel); 3217 if (ret) 3218 goto err_drop; 3219 3220 /* Exclusive operation is now claimed */ 3221 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3222 3223 btrfs_exclop_finish(fs_info); 3224 3225 if (!ret) { 3226 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3227 btrfs_info(fs_info, "device deleted: id %llu", 3228 vol_args->devid); 3229 else 3230 btrfs_info(fs_info, "device deleted: %s", 3231 vol_args->name); 3232 } 3233 err_drop: 3234 mnt_drop_write_file(file); 3235 if (bdev) 3236 blkdev_put(bdev, mode); 3237 out: 3238 btrfs_put_dev_args_from_path(&args); 3239 kfree(vol_args); 3240 return ret; 3241 } 3242 3243 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3244 { 3245 BTRFS_DEV_LOOKUP_ARGS(args); 3246 struct inode *inode = file_inode(file); 3247 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3248 struct btrfs_ioctl_vol_args *vol_args; 3249 struct block_device *bdev = NULL; 3250 fmode_t mode; 3251 int ret; 3252 bool cancel; 3253 3254 if (!capable(CAP_SYS_ADMIN)) 3255 return -EPERM; 3256 3257 vol_args = memdup_user(arg, sizeof(*vol_args)); 3258 if (IS_ERR(vol_args)) 3259 return PTR_ERR(vol_args); 3260 3261 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3262 if (!strcmp("cancel", vol_args->name)) { 3263 cancel = true; 3264 } else { 3265 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 3266 if (ret) 3267 goto out; 3268 } 3269 3270 ret = mnt_want_write_file(file); 3271 if (ret) 3272 goto out; 3273 3274 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3275 cancel); 3276 if (ret == 0) { 3277 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 3278 if (!ret) 3279 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3280 btrfs_exclop_finish(fs_info); 3281 } 3282 3283 mnt_drop_write_file(file); 3284 if (bdev) 3285 blkdev_put(bdev, mode); 3286 out: 3287 btrfs_put_dev_args_from_path(&args); 3288 kfree(vol_args); 3289 return ret; 3290 } 3291 3292 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3293 void __user *arg) 3294 { 3295 struct btrfs_ioctl_fs_info_args *fi_args; 3296 struct btrfs_device *device; 3297 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3298 u64 flags_in; 3299 int ret = 0; 3300 3301 fi_args = memdup_user(arg, sizeof(*fi_args)); 3302 if (IS_ERR(fi_args)) 3303 return PTR_ERR(fi_args); 3304 3305 flags_in = fi_args->flags; 3306 memset(fi_args, 0, sizeof(*fi_args)); 3307 3308 rcu_read_lock(); 3309 fi_args->num_devices = fs_devices->num_devices; 3310 3311 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3312 if (device->devid > fi_args->max_id) 3313 fi_args->max_id = device->devid; 3314 } 3315 rcu_read_unlock(); 3316 3317 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3318 fi_args->nodesize = fs_info->nodesize; 3319 fi_args->sectorsize = fs_info->sectorsize; 3320 fi_args->clone_alignment = fs_info->sectorsize; 3321 3322 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3323 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3324 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3325 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3326 } 3327 3328 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3329 fi_args->generation = fs_info->generation; 3330 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3331 } 3332 3333 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3334 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3335 sizeof(fi_args->metadata_uuid)); 3336 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3337 } 3338 3339 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3340 ret = -EFAULT; 3341 3342 kfree(fi_args); 3343 return ret; 3344 } 3345 3346 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3347 void __user *arg) 3348 { 3349 BTRFS_DEV_LOOKUP_ARGS(args); 3350 struct btrfs_ioctl_dev_info_args *di_args; 3351 struct btrfs_device *dev; 3352 int ret = 0; 3353 3354 di_args = memdup_user(arg, sizeof(*di_args)); 3355 if (IS_ERR(di_args)) 3356 return PTR_ERR(di_args); 3357 3358 args.devid = di_args->devid; 3359 if (!btrfs_is_empty_uuid(di_args->uuid)) 3360 args.uuid = di_args->uuid; 3361 3362 rcu_read_lock(); 3363 dev = btrfs_find_device(fs_info->fs_devices, &args); 3364 if (!dev) { 3365 ret = -ENODEV; 3366 goto out; 3367 } 3368 3369 di_args->devid = dev->devid; 3370 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3371 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3372 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3373 if (dev->name) { 3374 strncpy(di_args->path, rcu_str_deref(dev->name), 3375 sizeof(di_args->path) - 1); 3376 di_args->path[sizeof(di_args->path) - 1] = 0; 3377 } else { 3378 di_args->path[0] = '\0'; 3379 } 3380 3381 out: 3382 rcu_read_unlock(); 3383 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3384 ret = -EFAULT; 3385 3386 kfree(di_args); 3387 return ret; 3388 } 3389 3390 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3391 { 3392 struct inode *inode = file_inode(file); 3393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3394 struct btrfs_root *root = BTRFS_I(inode)->root; 3395 struct btrfs_root *new_root; 3396 struct btrfs_dir_item *di; 3397 struct btrfs_trans_handle *trans; 3398 struct btrfs_path *path = NULL; 3399 struct btrfs_disk_key disk_key; 3400 u64 objectid = 0; 3401 u64 dir_id; 3402 int ret; 3403 3404 if (!capable(CAP_SYS_ADMIN)) 3405 return -EPERM; 3406 3407 ret = mnt_want_write_file(file); 3408 if (ret) 3409 return ret; 3410 3411 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3412 ret = -EFAULT; 3413 goto out; 3414 } 3415 3416 if (!objectid) 3417 objectid = BTRFS_FS_TREE_OBJECTID; 3418 3419 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3420 if (IS_ERR(new_root)) { 3421 ret = PTR_ERR(new_root); 3422 goto out; 3423 } 3424 if (!is_fstree(new_root->root_key.objectid)) { 3425 ret = -ENOENT; 3426 goto out_free; 3427 } 3428 3429 path = btrfs_alloc_path(); 3430 if (!path) { 3431 ret = -ENOMEM; 3432 goto out_free; 3433 } 3434 3435 trans = btrfs_start_transaction(root, 1); 3436 if (IS_ERR(trans)) { 3437 ret = PTR_ERR(trans); 3438 goto out_free; 3439 } 3440 3441 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3442 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3443 dir_id, "default", 7, 1); 3444 if (IS_ERR_OR_NULL(di)) { 3445 btrfs_release_path(path); 3446 btrfs_end_transaction(trans); 3447 btrfs_err(fs_info, 3448 "Umm, you don't have the default diritem, this isn't going to work"); 3449 ret = -ENOENT; 3450 goto out_free; 3451 } 3452 3453 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3454 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3455 btrfs_mark_buffer_dirty(path->nodes[0]); 3456 btrfs_release_path(path); 3457 3458 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3459 btrfs_end_transaction(trans); 3460 out_free: 3461 btrfs_put_root(new_root); 3462 btrfs_free_path(path); 3463 out: 3464 mnt_drop_write_file(file); 3465 return ret; 3466 } 3467 3468 static void get_block_group_info(struct list_head *groups_list, 3469 struct btrfs_ioctl_space_info *space) 3470 { 3471 struct btrfs_block_group *block_group; 3472 3473 space->total_bytes = 0; 3474 space->used_bytes = 0; 3475 space->flags = 0; 3476 list_for_each_entry(block_group, groups_list, list) { 3477 space->flags = block_group->flags; 3478 space->total_bytes += block_group->length; 3479 space->used_bytes += block_group->used; 3480 } 3481 } 3482 3483 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3484 void __user *arg) 3485 { 3486 struct btrfs_ioctl_space_args space_args; 3487 struct btrfs_ioctl_space_info space; 3488 struct btrfs_ioctl_space_info *dest; 3489 struct btrfs_ioctl_space_info *dest_orig; 3490 struct btrfs_ioctl_space_info __user *user_dest; 3491 struct btrfs_space_info *info; 3492 static const u64 types[] = { 3493 BTRFS_BLOCK_GROUP_DATA, 3494 BTRFS_BLOCK_GROUP_SYSTEM, 3495 BTRFS_BLOCK_GROUP_METADATA, 3496 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3497 }; 3498 int num_types = 4; 3499 int alloc_size; 3500 int ret = 0; 3501 u64 slot_count = 0; 3502 int i, c; 3503 3504 if (copy_from_user(&space_args, 3505 (struct btrfs_ioctl_space_args __user *)arg, 3506 sizeof(space_args))) 3507 return -EFAULT; 3508 3509 for (i = 0; i < num_types; i++) { 3510 struct btrfs_space_info *tmp; 3511 3512 info = NULL; 3513 list_for_each_entry(tmp, &fs_info->space_info, list) { 3514 if (tmp->flags == types[i]) { 3515 info = tmp; 3516 break; 3517 } 3518 } 3519 3520 if (!info) 3521 continue; 3522 3523 down_read(&info->groups_sem); 3524 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3525 if (!list_empty(&info->block_groups[c])) 3526 slot_count++; 3527 } 3528 up_read(&info->groups_sem); 3529 } 3530 3531 /* 3532 * Global block reserve, exported as a space_info 3533 */ 3534 slot_count++; 3535 3536 /* space_slots == 0 means they are asking for a count */ 3537 if (space_args.space_slots == 0) { 3538 space_args.total_spaces = slot_count; 3539 goto out; 3540 } 3541 3542 slot_count = min_t(u64, space_args.space_slots, slot_count); 3543 3544 alloc_size = sizeof(*dest) * slot_count; 3545 3546 /* we generally have at most 6 or so space infos, one for each raid 3547 * level. So, a whole page should be more than enough for everyone 3548 */ 3549 if (alloc_size > PAGE_SIZE) 3550 return -ENOMEM; 3551 3552 space_args.total_spaces = 0; 3553 dest = kmalloc(alloc_size, GFP_KERNEL); 3554 if (!dest) 3555 return -ENOMEM; 3556 dest_orig = dest; 3557 3558 /* now we have a buffer to copy into */ 3559 for (i = 0; i < num_types; i++) { 3560 struct btrfs_space_info *tmp; 3561 3562 if (!slot_count) 3563 break; 3564 3565 info = NULL; 3566 list_for_each_entry(tmp, &fs_info->space_info, list) { 3567 if (tmp->flags == types[i]) { 3568 info = tmp; 3569 break; 3570 } 3571 } 3572 3573 if (!info) 3574 continue; 3575 down_read(&info->groups_sem); 3576 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3577 if (!list_empty(&info->block_groups[c])) { 3578 get_block_group_info(&info->block_groups[c], 3579 &space); 3580 memcpy(dest, &space, sizeof(space)); 3581 dest++; 3582 space_args.total_spaces++; 3583 slot_count--; 3584 } 3585 if (!slot_count) 3586 break; 3587 } 3588 up_read(&info->groups_sem); 3589 } 3590 3591 /* 3592 * Add global block reserve 3593 */ 3594 if (slot_count) { 3595 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3596 3597 spin_lock(&block_rsv->lock); 3598 space.total_bytes = block_rsv->size; 3599 space.used_bytes = block_rsv->size - block_rsv->reserved; 3600 spin_unlock(&block_rsv->lock); 3601 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3602 memcpy(dest, &space, sizeof(space)); 3603 space_args.total_spaces++; 3604 } 3605 3606 user_dest = (struct btrfs_ioctl_space_info __user *) 3607 (arg + sizeof(struct btrfs_ioctl_space_args)); 3608 3609 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3610 ret = -EFAULT; 3611 3612 kfree(dest_orig); 3613 out: 3614 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3615 ret = -EFAULT; 3616 3617 return ret; 3618 } 3619 3620 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3621 void __user *argp) 3622 { 3623 struct btrfs_trans_handle *trans; 3624 u64 transid; 3625 int ret; 3626 3627 trans = btrfs_attach_transaction_barrier(root); 3628 if (IS_ERR(trans)) { 3629 if (PTR_ERR(trans) != -ENOENT) 3630 return PTR_ERR(trans); 3631 3632 /* No running transaction, don't bother */ 3633 transid = root->fs_info->last_trans_committed; 3634 goto out; 3635 } 3636 transid = trans->transid; 3637 ret = btrfs_commit_transaction_async(trans); 3638 if (ret) { 3639 btrfs_end_transaction(trans); 3640 return ret; 3641 } 3642 out: 3643 if (argp) 3644 if (copy_to_user(argp, &transid, sizeof(transid))) 3645 return -EFAULT; 3646 return 0; 3647 } 3648 3649 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3650 void __user *argp) 3651 { 3652 u64 transid; 3653 3654 if (argp) { 3655 if (copy_from_user(&transid, argp, sizeof(transid))) 3656 return -EFAULT; 3657 } else { 3658 transid = 0; /* current trans */ 3659 } 3660 return btrfs_wait_for_commit(fs_info, transid); 3661 } 3662 3663 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3664 { 3665 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3666 struct btrfs_ioctl_scrub_args *sa; 3667 int ret; 3668 3669 if (!capable(CAP_SYS_ADMIN)) 3670 return -EPERM; 3671 3672 sa = memdup_user(arg, sizeof(*sa)); 3673 if (IS_ERR(sa)) 3674 return PTR_ERR(sa); 3675 3676 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3677 ret = mnt_want_write_file(file); 3678 if (ret) 3679 goto out; 3680 } 3681 3682 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3683 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3684 0); 3685 3686 /* 3687 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3688 * error. This is important as it allows user space to know how much 3689 * progress scrub has done. For example, if scrub is canceled we get 3690 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3691 * space. Later user space can inspect the progress from the structure 3692 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3693 * previously (btrfs-progs does this). 3694 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3695 * then return -EFAULT to signal the structure was not copied or it may 3696 * be corrupt and unreliable due to a partial copy. 3697 */ 3698 if (copy_to_user(arg, sa, sizeof(*sa))) 3699 ret = -EFAULT; 3700 3701 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3702 mnt_drop_write_file(file); 3703 out: 3704 kfree(sa); 3705 return ret; 3706 } 3707 3708 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3709 { 3710 if (!capable(CAP_SYS_ADMIN)) 3711 return -EPERM; 3712 3713 return btrfs_scrub_cancel(fs_info); 3714 } 3715 3716 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3717 void __user *arg) 3718 { 3719 struct btrfs_ioctl_scrub_args *sa; 3720 int ret; 3721 3722 if (!capable(CAP_SYS_ADMIN)) 3723 return -EPERM; 3724 3725 sa = memdup_user(arg, sizeof(*sa)); 3726 if (IS_ERR(sa)) 3727 return PTR_ERR(sa); 3728 3729 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3730 3731 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3732 ret = -EFAULT; 3733 3734 kfree(sa); 3735 return ret; 3736 } 3737 3738 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3739 void __user *arg) 3740 { 3741 struct btrfs_ioctl_get_dev_stats *sa; 3742 int ret; 3743 3744 sa = memdup_user(arg, sizeof(*sa)); 3745 if (IS_ERR(sa)) 3746 return PTR_ERR(sa); 3747 3748 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3749 kfree(sa); 3750 return -EPERM; 3751 } 3752 3753 ret = btrfs_get_dev_stats(fs_info, sa); 3754 3755 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3756 ret = -EFAULT; 3757 3758 kfree(sa); 3759 return ret; 3760 } 3761 3762 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3763 void __user *arg) 3764 { 3765 struct btrfs_ioctl_dev_replace_args *p; 3766 int ret; 3767 3768 if (!capable(CAP_SYS_ADMIN)) 3769 return -EPERM; 3770 3771 p = memdup_user(arg, sizeof(*p)); 3772 if (IS_ERR(p)) 3773 return PTR_ERR(p); 3774 3775 switch (p->cmd) { 3776 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3777 if (sb_rdonly(fs_info->sb)) { 3778 ret = -EROFS; 3779 goto out; 3780 } 3781 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3782 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3783 } else { 3784 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3785 btrfs_exclop_finish(fs_info); 3786 } 3787 break; 3788 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3789 btrfs_dev_replace_status(fs_info, p); 3790 ret = 0; 3791 break; 3792 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3793 p->result = btrfs_dev_replace_cancel(fs_info); 3794 ret = 0; 3795 break; 3796 default: 3797 ret = -EINVAL; 3798 break; 3799 } 3800 3801 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3802 ret = -EFAULT; 3803 out: 3804 kfree(p); 3805 return ret; 3806 } 3807 3808 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3809 { 3810 int ret = 0; 3811 int i; 3812 u64 rel_ptr; 3813 int size; 3814 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3815 struct inode_fs_paths *ipath = NULL; 3816 struct btrfs_path *path; 3817 3818 if (!capable(CAP_DAC_READ_SEARCH)) 3819 return -EPERM; 3820 3821 path = btrfs_alloc_path(); 3822 if (!path) { 3823 ret = -ENOMEM; 3824 goto out; 3825 } 3826 3827 ipa = memdup_user(arg, sizeof(*ipa)); 3828 if (IS_ERR(ipa)) { 3829 ret = PTR_ERR(ipa); 3830 ipa = NULL; 3831 goto out; 3832 } 3833 3834 size = min_t(u32, ipa->size, 4096); 3835 ipath = init_ipath(size, root, path); 3836 if (IS_ERR(ipath)) { 3837 ret = PTR_ERR(ipath); 3838 ipath = NULL; 3839 goto out; 3840 } 3841 3842 ret = paths_from_inode(ipa->inum, ipath); 3843 if (ret < 0) 3844 goto out; 3845 3846 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3847 rel_ptr = ipath->fspath->val[i] - 3848 (u64)(unsigned long)ipath->fspath->val; 3849 ipath->fspath->val[i] = rel_ptr; 3850 } 3851 3852 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3853 ipath->fspath, size); 3854 if (ret) { 3855 ret = -EFAULT; 3856 goto out; 3857 } 3858 3859 out: 3860 btrfs_free_path(path); 3861 free_ipath(ipath); 3862 kfree(ipa); 3863 3864 return ret; 3865 } 3866 3867 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3868 { 3869 struct btrfs_data_container *inodes = ctx; 3870 const size_t c = 3 * sizeof(u64); 3871 3872 if (inodes->bytes_left >= c) { 3873 inodes->bytes_left -= c; 3874 inodes->val[inodes->elem_cnt] = inum; 3875 inodes->val[inodes->elem_cnt + 1] = offset; 3876 inodes->val[inodes->elem_cnt + 2] = root; 3877 inodes->elem_cnt += 3; 3878 } else { 3879 inodes->bytes_missing += c - inodes->bytes_left; 3880 inodes->bytes_left = 0; 3881 inodes->elem_missed += 3; 3882 } 3883 3884 return 0; 3885 } 3886 3887 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3888 void __user *arg, int version) 3889 { 3890 int ret = 0; 3891 int size; 3892 struct btrfs_ioctl_logical_ino_args *loi; 3893 struct btrfs_data_container *inodes = NULL; 3894 struct btrfs_path *path = NULL; 3895 bool ignore_offset; 3896 3897 if (!capable(CAP_SYS_ADMIN)) 3898 return -EPERM; 3899 3900 loi = memdup_user(arg, sizeof(*loi)); 3901 if (IS_ERR(loi)) 3902 return PTR_ERR(loi); 3903 3904 if (version == 1) { 3905 ignore_offset = false; 3906 size = min_t(u32, loi->size, SZ_64K); 3907 } else { 3908 /* All reserved bits must be 0 for now */ 3909 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3910 ret = -EINVAL; 3911 goto out_loi; 3912 } 3913 /* Only accept flags we have defined so far */ 3914 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3915 ret = -EINVAL; 3916 goto out_loi; 3917 } 3918 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3919 size = min_t(u32, loi->size, SZ_16M); 3920 } 3921 3922 path = btrfs_alloc_path(); 3923 if (!path) { 3924 ret = -ENOMEM; 3925 goto out; 3926 } 3927 3928 inodes = init_data_container(size); 3929 if (IS_ERR(inodes)) { 3930 ret = PTR_ERR(inodes); 3931 inodes = NULL; 3932 goto out; 3933 } 3934 3935 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3936 build_ino_list, inodes, ignore_offset); 3937 if (ret == -EINVAL) 3938 ret = -ENOENT; 3939 if (ret < 0) 3940 goto out; 3941 3942 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3943 size); 3944 if (ret) 3945 ret = -EFAULT; 3946 3947 out: 3948 btrfs_free_path(path); 3949 kvfree(inodes); 3950 out_loi: 3951 kfree(loi); 3952 3953 return ret; 3954 } 3955 3956 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3957 struct btrfs_ioctl_balance_args *bargs) 3958 { 3959 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3960 3961 bargs->flags = bctl->flags; 3962 3963 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3964 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3965 if (atomic_read(&fs_info->balance_pause_req)) 3966 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3967 if (atomic_read(&fs_info->balance_cancel_req)) 3968 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3969 3970 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3971 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3972 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3973 3974 spin_lock(&fs_info->balance_lock); 3975 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3976 spin_unlock(&fs_info->balance_lock); 3977 } 3978 3979 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3980 { 3981 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3982 struct btrfs_fs_info *fs_info = root->fs_info; 3983 struct btrfs_ioctl_balance_args *bargs; 3984 struct btrfs_balance_control *bctl; 3985 bool need_unlock; /* for mut. excl. ops lock */ 3986 int ret; 3987 3988 if (!capable(CAP_SYS_ADMIN)) 3989 return -EPERM; 3990 3991 ret = mnt_want_write_file(file); 3992 if (ret) 3993 return ret; 3994 3995 again: 3996 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3997 mutex_lock(&fs_info->balance_mutex); 3998 need_unlock = true; 3999 goto locked; 4000 } 4001 4002 /* 4003 * mut. excl. ops lock is locked. Three possibilities: 4004 * (1) some other op is running 4005 * (2) balance is running 4006 * (3) balance is paused -- special case (think resume) 4007 */ 4008 mutex_lock(&fs_info->balance_mutex); 4009 if (fs_info->balance_ctl) { 4010 /* this is either (2) or (3) */ 4011 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4012 mutex_unlock(&fs_info->balance_mutex); 4013 /* 4014 * Lock released to allow other waiters to continue, 4015 * we'll reexamine the status again. 4016 */ 4017 mutex_lock(&fs_info->balance_mutex); 4018 4019 if (fs_info->balance_ctl && 4020 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4021 /* this is (3) */ 4022 need_unlock = false; 4023 goto locked; 4024 } 4025 4026 mutex_unlock(&fs_info->balance_mutex); 4027 goto again; 4028 } else { 4029 /* this is (2) */ 4030 mutex_unlock(&fs_info->balance_mutex); 4031 ret = -EINPROGRESS; 4032 goto out; 4033 } 4034 } else { 4035 /* this is (1) */ 4036 mutex_unlock(&fs_info->balance_mutex); 4037 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4038 goto out; 4039 } 4040 4041 locked: 4042 4043 if (arg) { 4044 bargs = memdup_user(arg, sizeof(*bargs)); 4045 if (IS_ERR(bargs)) { 4046 ret = PTR_ERR(bargs); 4047 goto out_unlock; 4048 } 4049 4050 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4051 if (!fs_info->balance_ctl) { 4052 ret = -ENOTCONN; 4053 goto out_bargs; 4054 } 4055 4056 bctl = fs_info->balance_ctl; 4057 spin_lock(&fs_info->balance_lock); 4058 bctl->flags |= BTRFS_BALANCE_RESUME; 4059 spin_unlock(&fs_info->balance_lock); 4060 4061 goto do_balance; 4062 } 4063 } else { 4064 bargs = NULL; 4065 } 4066 4067 if (fs_info->balance_ctl) { 4068 ret = -EINPROGRESS; 4069 goto out_bargs; 4070 } 4071 4072 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4073 if (!bctl) { 4074 ret = -ENOMEM; 4075 goto out_bargs; 4076 } 4077 4078 if (arg) { 4079 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4080 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4081 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4082 4083 bctl->flags = bargs->flags; 4084 } else { 4085 /* balance everything - no filters */ 4086 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4087 } 4088 4089 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4090 ret = -EINVAL; 4091 goto out_bctl; 4092 } 4093 4094 do_balance: 4095 /* 4096 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4097 * bctl is freed in reset_balance_state, or, if restriper was paused 4098 * all the way until unmount, in free_fs_info. The flag should be 4099 * cleared after reset_balance_state. 4100 */ 4101 need_unlock = false; 4102 4103 ret = btrfs_balance(fs_info, bctl, bargs); 4104 bctl = NULL; 4105 4106 if ((ret == 0 || ret == -ECANCELED) && arg) { 4107 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4108 ret = -EFAULT; 4109 } 4110 4111 out_bctl: 4112 kfree(bctl); 4113 out_bargs: 4114 kfree(bargs); 4115 out_unlock: 4116 mutex_unlock(&fs_info->balance_mutex); 4117 if (need_unlock) 4118 btrfs_exclop_finish(fs_info); 4119 out: 4120 mnt_drop_write_file(file); 4121 return ret; 4122 } 4123 4124 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4125 { 4126 if (!capable(CAP_SYS_ADMIN)) 4127 return -EPERM; 4128 4129 switch (cmd) { 4130 case BTRFS_BALANCE_CTL_PAUSE: 4131 return btrfs_pause_balance(fs_info); 4132 case BTRFS_BALANCE_CTL_CANCEL: 4133 return btrfs_cancel_balance(fs_info); 4134 } 4135 4136 return -EINVAL; 4137 } 4138 4139 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4140 void __user *arg) 4141 { 4142 struct btrfs_ioctl_balance_args *bargs; 4143 int ret = 0; 4144 4145 if (!capable(CAP_SYS_ADMIN)) 4146 return -EPERM; 4147 4148 mutex_lock(&fs_info->balance_mutex); 4149 if (!fs_info->balance_ctl) { 4150 ret = -ENOTCONN; 4151 goto out; 4152 } 4153 4154 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4155 if (!bargs) { 4156 ret = -ENOMEM; 4157 goto out; 4158 } 4159 4160 btrfs_update_ioctl_balance_args(fs_info, bargs); 4161 4162 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4163 ret = -EFAULT; 4164 4165 kfree(bargs); 4166 out: 4167 mutex_unlock(&fs_info->balance_mutex); 4168 return ret; 4169 } 4170 4171 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4172 { 4173 struct inode *inode = file_inode(file); 4174 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4175 struct btrfs_ioctl_quota_ctl_args *sa; 4176 int ret; 4177 4178 if (!capable(CAP_SYS_ADMIN)) 4179 return -EPERM; 4180 4181 ret = mnt_want_write_file(file); 4182 if (ret) 4183 return ret; 4184 4185 sa = memdup_user(arg, sizeof(*sa)); 4186 if (IS_ERR(sa)) { 4187 ret = PTR_ERR(sa); 4188 goto drop_write; 4189 } 4190 4191 down_write(&fs_info->subvol_sem); 4192 4193 switch (sa->cmd) { 4194 case BTRFS_QUOTA_CTL_ENABLE: 4195 ret = btrfs_quota_enable(fs_info); 4196 break; 4197 case BTRFS_QUOTA_CTL_DISABLE: 4198 ret = btrfs_quota_disable(fs_info); 4199 break; 4200 default: 4201 ret = -EINVAL; 4202 break; 4203 } 4204 4205 kfree(sa); 4206 up_write(&fs_info->subvol_sem); 4207 drop_write: 4208 mnt_drop_write_file(file); 4209 return ret; 4210 } 4211 4212 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4213 { 4214 struct inode *inode = file_inode(file); 4215 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4216 struct btrfs_root *root = BTRFS_I(inode)->root; 4217 struct btrfs_ioctl_qgroup_assign_args *sa; 4218 struct btrfs_trans_handle *trans; 4219 int ret; 4220 int err; 4221 4222 if (!capable(CAP_SYS_ADMIN)) 4223 return -EPERM; 4224 4225 ret = mnt_want_write_file(file); 4226 if (ret) 4227 return ret; 4228 4229 sa = memdup_user(arg, sizeof(*sa)); 4230 if (IS_ERR(sa)) { 4231 ret = PTR_ERR(sa); 4232 goto drop_write; 4233 } 4234 4235 trans = btrfs_join_transaction(root); 4236 if (IS_ERR(trans)) { 4237 ret = PTR_ERR(trans); 4238 goto out; 4239 } 4240 4241 if (sa->assign) { 4242 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4243 } else { 4244 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4245 } 4246 4247 /* update qgroup status and info */ 4248 err = btrfs_run_qgroups(trans); 4249 if (err < 0) 4250 btrfs_handle_fs_error(fs_info, err, 4251 "failed to update qgroup status and info"); 4252 err = btrfs_end_transaction(trans); 4253 if (err && !ret) 4254 ret = err; 4255 4256 out: 4257 kfree(sa); 4258 drop_write: 4259 mnt_drop_write_file(file); 4260 return ret; 4261 } 4262 4263 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4264 { 4265 struct inode *inode = file_inode(file); 4266 struct btrfs_root *root = BTRFS_I(inode)->root; 4267 struct btrfs_ioctl_qgroup_create_args *sa; 4268 struct btrfs_trans_handle *trans; 4269 int ret; 4270 int err; 4271 4272 if (!capable(CAP_SYS_ADMIN)) 4273 return -EPERM; 4274 4275 ret = mnt_want_write_file(file); 4276 if (ret) 4277 return ret; 4278 4279 sa = memdup_user(arg, sizeof(*sa)); 4280 if (IS_ERR(sa)) { 4281 ret = PTR_ERR(sa); 4282 goto drop_write; 4283 } 4284 4285 if (!sa->qgroupid) { 4286 ret = -EINVAL; 4287 goto out; 4288 } 4289 4290 trans = btrfs_join_transaction(root); 4291 if (IS_ERR(trans)) { 4292 ret = PTR_ERR(trans); 4293 goto out; 4294 } 4295 4296 if (sa->create) { 4297 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4298 } else { 4299 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4300 } 4301 4302 err = btrfs_end_transaction(trans); 4303 if (err && !ret) 4304 ret = err; 4305 4306 out: 4307 kfree(sa); 4308 drop_write: 4309 mnt_drop_write_file(file); 4310 return ret; 4311 } 4312 4313 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4314 { 4315 struct inode *inode = file_inode(file); 4316 struct btrfs_root *root = BTRFS_I(inode)->root; 4317 struct btrfs_ioctl_qgroup_limit_args *sa; 4318 struct btrfs_trans_handle *trans; 4319 int ret; 4320 int err; 4321 u64 qgroupid; 4322 4323 if (!capable(CAP_SYS_ADMIN)) 4324 return -EPERM; 4325 4326 ret = mnt_want_write_file(file); 4327 if (ret) 4328 return ret; 4329 4330 sa = memdup_user(arg, sizeof(*sa)); 4331 if (IS_ERR(sa)) { 4332 ret = PTR_ERR(sa); 4333 goto drop_write; 4334 } 4335 4336 trans = btrfs_join_transaction(root); 4337 if (IS_ERR(trans)) { 4338 ret = PTR_ERR(trans); 4339 goto out; 4340 } 4341 4342 qgroupid = sa->qgroupid; 4343 if (!qgroupid) { 4344 /* take the current subvol as qgroup */ 4345 qgroupid = root->root_key.objectid; 4346 } 4347 4348 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4349 4350 err = btrfs_end_transaction(trans); 4351 if (err && !ret) 4352 ret = err; 4353 4354 out: 4355 kfree(sa); 4356 drop_write: 4357 mnt_drop_write_file(file); 4358 return ret; 4359 } 4360 4361 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4362 { 4363 struct inode *inode = file_inode(file); 4364 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4365 struct btrfs_ioctl_quota_rescan_args *qsa; 4366 int ret; 4367 4368 if (!capable(CAP_SYS_ADMIN)) 4369 return -EPERM; 4370 4371 ret = mnt_want_write_file(file); 4372 if (ret) 4373 return ret; 4374 4375 qsa = memdup_user(arg, sizeof(*qsa)); 4376 if (IS_ERR(qsa)) { 4377 ret = PTR_ERR(qsa); 4378 goto drop_write; 4379 } 4380 4381 if (qsa->flags) { 4382 ret = -EINVAL; 4383 goto out; 4384 } 4385 4386 ret = btrfs_qgroup_rescan(fs_info); 4387 4388 out: 4389 kfree(qsa); 4390 drop_write: 4391 mnt_drop_write_file(file); 4392 return ret; 4393 } 4394 4395 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4396 void __user *arg) 4397 { 4398 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 4399 4400 if (!capable(CAP_SYS_ADMIN)) 4401 return -EPERM; 4402 4403 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4404 qsa.flags = 1; 4405 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 4406 } 4407 4408 if (copy_to_user(arg, &qsa, sizeof(qsa))) 4409 return -EFAULT; 4410 4411 return 0; 4412 } 4413 4414 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4415 void __user *arg) 4416 { 4417 if (!capable(CAP_SYS_ADMIN)) 4418 return -EPERM; 4419 4420 return btrfs_qgroup_wait_for_completion(fs_info, true); 4421 } 4422 4423 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4424 struct user_namespace *mnt_userns, 4425 struct btrfs_ioctl_received_subvol_args *sa) 4426 { 4427 struct inode *inode = file_inode(file); 4428 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4429 struct btrfs_root *root = BTRFS_I(inode)->root; 4430 struct btrfs_root_item *root_item = &root->root_item; 4431 struct btrfs_trans_handle *trans; 4432 struct timespec64 ct = current_time(inode); 4433 int ret = 0; 4434 int received_uuid_changed; 4435 4436 if (!inode_owner_or_capable(mnt_userns, inode)) 4437 return -EPERM; 4438 4439 ret = mnt_want_write_file(file); 4440 if (ret < 0) 4441 return ret; 4442 4443 down_write(&fs_info->subvol_sem); 4444 4445 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4446 ret = -EINVAL; 4447 goto out; 4448 } 4449 4450 if (btrfs_root_readonly(root)) { 4451 ret = -EROFS; 4452 goto out; 4453 } 4454 4455 /* 4456 * 1 - root item 4457 * 2 - uuid items (received uuid + subvol uuid) 4458 */ 4459 trans = btrfs_start_transaction(root, 3); 4460 if (IS_ERR(trans)) { 4461 ret = PTR_ERR(trans); 4462 trans = NULL; 4463 goto out; 4464 } 4465 4466 sa->rtransid = trans->transid; 4467 sa->rtime.sec = ct.tv_sec; 4468 sa->rtime.nsec = ct.tv_nsec; 4469 4470 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4471 BTRFS_UUID_SIZE); 4472 if (received_uuid_changed && 4473 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4474 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4475 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4476 root->root_key.objectid); 4477 if (ret && ret != -ENOENT) { 4478 btrfs_abort_transaction(trans, ret); 4479 btrfs_end_transaction(trans); 4480 goto out; 4481 } 4482 } 4483 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4484 btrfs_set_root_stransid(root_item, sa->stransid); 4485 btrfs_set_root_rtransid(root_item, sa->rtransid); 4486 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4487 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4488 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4489 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4490 4491 ret = btrfs_update_root(trans, fs_info->tree_root, 4492 &root->root_key, &root->root_item); 4493 if (ret < 0) { 4494 btrfs_end_transaction(trans); 4495 goto out; 4496 } 4497 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4498 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4499 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4500 root->root_key.objectid); 4501 if (ret < 0 && ret != -EEXIST) { 4502 btrfs_abort_transaction(trans, ret); 4503 btrfs_end_transaction(trans); 4504 goto out; 4505 } 4506 } 4507 ret = btrfs_commit_transaction(trans); 4508 out: 4509 up_write(&fs_info->subvol_sem); 4510 mnt_drop_write_file(file); 4511 return ret; 4512 } 4513 4514 #ifdef CONFIG_64BIT 4515 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4516 void __user *arg) 4517 { 4518 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4519 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4520 int ret = 0; 4521 4522 args32 = memdup_user(arg, sizeof(*args32)); 4523 if (IS_ERR(args32)) 4524 return PTR_ERR(args32); 4525 4526 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4527 if (!args64) { 4528 ret = -ENOMEM; 4529 goto out; 4530 } 4531 4532 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4533 args64->stransid = args32->stransid; 4534 args64->rtransid = args32->rtransid; 4535 args64->stime.sec = args32->stime.sec; 4536 args64->stime.nsec = args32->stime.nsec; 4537 args64->rtime.sec = args32->rtime.sec; 4538 args64->rtime.nsec = args32->rtime.nsec; 4539 args64->flags = args32->flags; 4540 4541 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64); 4542 if (ret) 4543 goto out; 4544 4545 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4546 args32->stransid = args64->stransid; 4547 args32->rtransid = args64->rtransid; 4548 args32->stime.sec = args64->stime.sec; 4549 args32->stime.nsec = args64->stime.nsec; 4550 args32->rtime.sec = args64->rtime.sec; 4551 args32->rtime.nsec = args64->rtime.nsec; 4552 args32->flags = args64->flags; 4553 4554 ret = copy_to_user(arg, args32, sizeof(*args32)); 4555 if (ret) 4556 ret = -EFAULT; 4557 4558 out: 4559 kfree(args32); 4560 kfree(args64); 4561 return ret; 4562 } 4563 #endif 4564 4565 static long btrfs_ioctl_set_received_subvol(struct file *file, 4566 void __user *arg) 4567 { 4568 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4569 int ret = 0; 4570 4571 sa = memdup_user(arg, sizeof(*sa)); 4572 if (IS_ERR(sa)) 4573 return PTR_ERR(sa); 4574 4575 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa); 4576 4577 if (ret) 4578 goto out; 4579 4580 ret = copy_to_user(arg, sa, sizeof(*sa)); 4581 if (ret) 4582 ret = -EFAULT; 4583 4584 out: 4585 kfree(sa); 4586 return ret; 4587 } 4588 4589 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4590 void __user *arg) 4591 { 4592 size_t len; 4593 int ret; 4594 char label[BTRFS_LABEL_SIZE]; 4595 4596 spin_lock(&fs_info->super_lock); 4597 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4598 spin_unlock(&fs_info->super_lock); 4599 4600 len = strnlen(label, BTRFS_LABEL_SIZE); 4601 4602 if (len == BTRFS_LABEL_SIZE) { 4603 btrfs_warn(fs_info, 4604 "label is too long, return the first %zu bytes", 4605 --len); 4606 } 4607 4608 ret = copy_to_user(arg, label, len); 4609 4610 return ret ? -EFAULT : 0; 4611 } 4612 4613 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4614 { 4615 struct inode *inode = file_inode(file); 4616 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4617 struct btrfs_root *root = BTRFS_I(inode)->root; 4618 struct btrfs_super_block *super_block = fs_info->super_copy; 4619 struct btrfs_trans_handle *trans; 4620 char label[BTRFS_LABEL_SIZE]; 4621 int ret; 4622 4623 if (!capable(CAP_SYS_ADMIN)) 4624 return -EPERM; 4625 4626 if (copy_from_user(label, arg, sizeof(label))) 4627 return -EFAULT; 4628 4629 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4630 btrfs_err(fs_info, 4631 "unable to set label with more than %d bytes", 4632 BTRFS_LABEL_SIZE - 1); 4633 return -EINVAL; 4634 } 4635 4636 ret = mnt_want_write_file(file); 4637 if (ret) 4638 return ret; 4639 4640 trans = btrfs_start_transaction(root, 0); 4641 if (IS_ERR(trans)) { 4642 ret = PTR_ERR(trans); 4643 goto out_unlock; 4644 } 4645 4646 spin_lock(&fs_info->super_lock); 4647 strcpy(super_block->label, label); 4648 spin_unlock(&fs_info->super_lock); 4649 ret = btrfs_commit_transaction(trans); 4650 4651 out_unlock: 4652 mnt_drop_write_file(file); 4653 return ret; 4654 } 4655 4656 #define INIT_FEATURE_FLAGS(suffix) \ 4657 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4658 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4659 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4660 4661 int btrfs_ioctl_get_supported_features(void __user *arg) 4662 { 4663 static const struct btrfs_ioctl_feature_flags features[3] = { 4664 INIT_FEATURE_FLAGS(SUPP), 4665 INIT_FEATURE_FLAGS(SAFE_SET), 4666 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4667 }; 4668 4669 if (copy_to_user(arg, &features, sizeof(features))) 4670 return -EFAULT; 4671 4672 return 0; 4673 } 4674 4675 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4676 void __user *arg) 4677 { 4678 struct btrfs_super_block *super_block = fs_info->super_copy; 4679 struct btrfs_ioctl_feature_flags features; 4680 4681 features.compat_flags = btrfs_super_compat_flags(super_block); 4682 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4683 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4684 4685 if (copy_to_user(arg, &features, sizeof(features))) 4686 return -EFAULT; 4687 4688 return 0; 4689 } 4690 4691 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4692 enum btrfs_feature_set set, 4693 u64 change_mask, u64 flags, u64 supported_flags, 4694 u64 safe_set, u64 safe_clear) 4695 { 4696 const char *type = btrfs_feature_set_name(set); 4697 char *names; 4698 u64 disallowed, unsupported; 4699 u64 set_mask = flags & change_mask; 4700 u64 clear_mask = ~flags & change_mask; 4701 4702 unsupported = set_mask & ~supported_flags; 4703 if (unsupported) { 4704 names = btrfs_printable_features(set, unsupported); 4705 if (names) { 4706 btrfs_warn(fs_info, 4707 "this kernel does not support the %s feature bit%s", 4708 names, strchr(names, ',') ? "s" : ""); 4709 kfree(names); 4710 } else 4711 btrfs_warn(fs_info, 4712 "this kernel does not support %s bits 0x%llx", 4713 type, unsupported); 4714 return -EOPNOTSUPP; 4715 } 4716 4717 disallowed = set_mask & ~safe_set; 4718 if (disallowed) { 4719 names = btrfs_printable_features(set, disallowed); 4720 if (names) { 4721 btrfs_warn(fs_info, 4722 "can't set the %s feature bit%s while mounted", 4723 names, strchr(names, ',') ? "s" : ""); 4724 kfree(names); 4725 } else 4726 btrfs_warn(fs_info, 4727 "can't set %s bits 0x%llx while mounted", 4728 type, disallowed); 4729 return -EPERM; 4730 } 4731 4732 disallowed = clear_mask & ~safe_clear; 4733 if (disallowed) { 4734 names = btrfs_printable_features(set, disallowed); 4735 if (names) { 4736 btrfs_warn(fs_info, 4737 "can't clear the %s feature bit%s while mounted", 4738 names, strchr(names, ',') ? "s" : ""); 4739 kfree(names); 4740 } else 4741 btrfs_warn(fs_info, 4742 "can't clear %s bits 0x%llx while mounted", 4743 type, disallowed); 4744 return -EPERM; 4745 } 4746 4747 return 0; 4748 } 4749 4750 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4751 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4752 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4753 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4754 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4755 4756 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4757 { 4758 struct inode *inode = file_inode(file); 4759 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4760 struct btrfs_root *root = BTRFS_I(inode)->root; 4761 struct btrfs_super_block *super_block = fs_info->super_copy; 4762 struct btrfs_ioctl_feature_flags flags[2]; 4763 struct btrfs_trans_handle *trans; 4764 u64 newflags; 4765 int ret; 4766 4767 if (!capable(CAP_SYS_ADMIN)) 4768 return -EPERM; 4769 4770 if (copy_from_user(flags, arg, sizeof(flags))) 4771 return -EFAULT; 4772 4773 /* Nothing to do */ 4774 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4775 !flags[0].incompat_flags) 4776 return 0; 4777 4778 ret = check_feature(fs_info, flags[0].compat_flags, 4779 flags[1].compat_flags, COMPAT); 4780 if (ret) 4781 return ret; 4782 4783 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4784 flags[1].compat_ro_flags, COMPAT_RO); 4785 if (ret) 4786 return ret; 4787 4788 ret = check_feature(fs_info, flags[0].incompat_flags, 4789 flags[1].incompat_flags, INCOMPAT); 4790 if (ret) 4791 return ret; 4792 4793 ret = mnt_want_write_file(file); 4794 if (ret) 4795 return ret; 4796 4797 trans = btrfs_start_transaction(root, 0); 4798 if (IS_ERR(trans)) { 4799 ret = PTR_ERR(trans); 4800 goto out_drop_write; 4801 } 4802 4803 spin_lock(&fs_info->super_lock); 4804 newflags = btrfs_super_compat_flags(super_block); 4805 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4806 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4807 btrfs_set_super_compat_flags(super_block, newflags); 4808 4809 newflags = btrfs_super_compat_ro_flags(super_block); 4810 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4811 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4812 btrfs_set_super_compat_ro_flags(super_block, newflags); 4813 4814 newflags = btrfs_super_incompat_flags(super_block); 4815 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4816 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4817 btrfs_set_super_incompat_flags(super_block, newflags); 4818 spin_unlock(&fs_info->super_lock); 4819 4820 ret = btrfs_commit_transaction(trans); 4821 out_drop_write: 4822 mnt_drop_write_file(file); 4823 4824 return ret; 4825 } 4826 4827 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4828 { 4829 struct btrfs_ioctl_send_args *arg; 4830 int ret; 4831 4832 if (compat) { 4833 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4834 struct btrfs_ioctl_send_args_32 args32; 4835 4836 ret = copy_from_user(&args32, argp, sizeof(args32)); 4837 if (ret) 4838 return -EFAULT; 4839 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4840 if (!arg) 4841 return -ENOMEM; 4842 arg->send_fd = args32.send_fd; 4843 arg->clone_sources_count = args32.clone_sources_count; 4844 arg->clone_sources = compat_ptr(args32.clone_sources); 4845 arg->parent_root = args32.parent_root; 4846 arg->flags = args32.flags; 4847 memcpy(arg->reserved, args32.reserved, 4848 sizeof(args32.reserved)); 4849 #else 4850 return -ENOTTY; 4851 #endif 4852 } else { 4853 arg = memdup_user(argp, sizeof(*arg)); 4854 if (IS_ERR(arg)) 4855 return PTR_ERR(arg); 4856 } 4857 ret = btrfs_ioctl_send(file, arg); 4858 kfree(arg); 4859 return ret; 4860 } 4861 4862 long btrfs_ioctl(struct file *file, unsigned int 4863 cmd, unsigned long arg) 4864 { 4865 struct inode *inode = file_inode(file); 4866 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4867 struct btrfs_root *root = BTRFS_I(inode)->root; 4868 void __user *argp = (void __user *)arg; 4869 4870 switch (cmd) { 4871 case FS_IOC_GETVERSION: 4872 return btrfs_ioctl_getversion(file, argp); 4873 case FS_IOC_GETFSLABEL: 4874 return btrfs_ioctl_get_fslabel(fs_info, argp); 4875 case FS_IOC_SETFSLABEL: 4876 return btrfs_ioctl_set_fslabel(file, argp); 4877 case FITRIM: 4878 return btrfs_ioctl_fitrim(fs_info, argp); 4879 case BTRFS_IOC_SNAP_CREATE: 4880 return btrfs_ioctl_snap_create(file, argp, 0); 4881 case BTRFS_IOC_SNAP_CREATE_V2: 4882 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4883 case BTRFS_IOC_SUBVOL_CREATE: 4884 return btrfs_ioctl_snap_create(file, argp, 1); 4885 case BTRFS_IOC_SUBVOL_CREATE_V2: 4886 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4887 case BTRFS_IOC_SNAP_DESTROY: 4888 return btrfs_ioctl_snap_destroy(file, argp, false); 4889 case BTRFS_IOC_SNAP_DESTROY_V2: 4890 return btrfs_ioctl_snap_destroy(file, argp, true); 4891 case BTRFS_IOC_SUBVOL_GETFLAGS: 4892 return btrfs_ioctl_subvol_getflags(file, argp); 4893 case BTRFS_IOC_SUBVOL_SETFLAGS: 4894 return btrfs_ioctl_subvol_setflags(file, argp); 4895 case BTRFS_IOC_DEFAULT_SUBVOL: 4896 return btrfs_ioctl_default_subvol(file, argp); 4897 case BTRFS_IOC_DEFRAG: 4898 return btrfs_ioctl_defrag(file, NULL); 4899 case BTRFS_IOC_DEFRAG_RANGE: 4900 return btrfs_ioctl_defrag(file, argp); 4901 case BTRFS_IOC_RESIZE: 4902 return btrfs_ioctl_resize(file, argp); 4903 case BTRFS_IOC_ADD_DEV: 4904 return btrfs_ioctl_add_dev(fs_info, argp); 4905 case BTRFS_IOC_RM_DEV: 4906 return btrfs_ioctl_rm_dev(file, argp); 4907 case BTRFS_IOC_RM_DEV_V2: 4908 return btrfs_ioctl_rm_dev_v2(file, argp); 4909 case BTRFS_IOC_FS_INFO: 4910 return btrfs_ioctl_fs_info(fs_info, argp); 4911 case BTRFS_IOC_DEV_INFO: 4912 return btrfs_ioctl_dev_info(fs_info, argp); 4913 case BTRFS_IOC_BALANCE: 4914 return btrfs_ioctl_balance(file, NULL); 4915 case BTRFS_IOC_TREE_SEARCH: 4916 return btrfs_ioctl_tree_search(file, argp); 4917 case BTRFS_IOC_TREE_SEARCH_V2: 4918 return btrfs_ioctl_tree_search_v2(file, argp); 4919 case BTRFS_IOC_INO_LOOKUP: 4920 return btrfs_ioctl_ino_lookup(file, argp); 4921 case BTRFS_IOC_INO_PATHS: 4922 return btrfs_ioctl_ino_to_path(root, argp); 4923 case BTRFS_IOC_LOGICAL_INO: 4924 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4925 case BTRFS_IOC_LOGICAL_INO_V2: 4926 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4927 case BTRFS_IOC_SPACE_INFO: 4928 return btrfs_ioctl_space_info(fs_info, argp); 4929 case BTRFS_IOC_SYNC: { 4930 int ret; 4931 4932 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4933 if (ret) 4934 return ret; 4935 ret = btrfs_sync_fs(inode->i_sb, 1); 4936 /* 4937 * The transaction thread may want to do more work, 4938 * namely it pokes the cleaner kthread that will start 4939 * processing uncleaned subvols. 4940 */ 4941 wake_up_process(fs_info->transaction_kthread); 4942 return ret; 4943 } 4944 case BTRFS_IOC_START_SYNC: 4945 return btrfs_ioctl_start_sync(root, argp); 4946 case BTRFS_IOC_WAIT_SYNC: 4947 return btrfs_ioctl_wait_sync(fs_info, argp); 4948 case BTRFS_IOC_SCRUB: 4949 return btrfs_ioctl_scrub(file, argp); 4950 case BTRFS_IOC_SCRUB_CANCEL: 4951 return btrfs_ioctl_scrub_cancel(fs_info); 4952 case BTRFS_IOC_SCRUB_PROGRESS: 4953 return btrfs_ioctl_scrub_progress(fs_info, argp); 4954 case BTRFS_IOC_BALANCE_V2: 4955 return btrfs_ioctl_balance(file, argp); 4956 case BTRFS_IOC_BALANCE_CTL: 4957 return btrfs_ioctl_balance_ctl(fs_info, arg); 4958 case BTRFS_IOC_BALANCE_PROGRESS: 4959 return btrfs_ioctl_balance_progress(fs_info, argp); 4960 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4961 return btrfs_ioctl_set_received_subvol(file, argp); 4962 #ifdef CONFIG_64BIT 4963 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4964 return btrfs_ioctl_set_received_subvol_32(file, argp); 4965 #endif 4966 case BTRFS_IOC_SEND: 4967 return _btrfs_ioctl_send(file, argp, false); 4968 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4969 case BTRFS_IOC_SEND_32: 4970 return _btrfs_ioctl_send(file, argp, true); 4971 #endif 4972 case BTRFS_IOC_GET_DEV_STATS: 4973 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4974 case BTRFS_IOC_QUOTA_CTL: 4975 return btrfs_ioctl_quota_ctl(file, argp); 4976 case BTRFS_IOC_QGROUP_ASSIGN: 4977 return btrfs_ioctl_qgroup_assign(file, argp); 4978 case BTRFS_IOC_QGROUP_CREATE: 4979 return btrfs_ioctl_qgroup_create(file, argp); 4980 case BTRFS_IOC_QGROUP_LIMIT: 4981 return btrfs_ioctl_qgroup_limit(file, argp); 4982 case BTRFS_IOC_QUOTA_RESCAN: 4983 return btrfs_ioctl_quota_rescan(file, argp); 4984 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4985 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4986 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4987 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4988 case BTRFS_IOC_DEV_REPLACE: 4989 return btrfs_ioctl_dev_replace(fs_info, argp); 4990 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4991 return btrfs_ioctl_get_supported_features(argp); 4992 case BTRFS_IOC_GET_FEATURES: 4993 return btrfs_ioctl_get_features(fs_info, argp); 4994 case BTRFS_IOC_SET_FEATURES: 4995 return btrfs_ioctl_set_features(file, argp); 4996 case BTRFS_IOC_GET_SUBVOL_INFO: 4997 return btrfs_ioctl_get_subvol_info(file, argp); 4998 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4999 return btrfs_ioctl_get_subvol_rootref(file, argp); 5000 case BTRFS_IOC_INO_LOOKUP_USER: 5001 return btrfs_ioctl_ino_lookup_user(file, argp); 5002 case FS_IOC_ENABLE_VERITY: 5003 return fsverity_ioctl_enable(file, (const void __user *)argp); 5004 case FS_IOC_MEASURE_VERITY: 5005 return fsverity_ioctl_measure(file, argp); 5006 } 5007 5008 return -ENOTTY; 5009 } 5010 5011 #ifdef CONFIG_COMPAT 5012 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5013 { 5014 /* 5015 * These all access 32-bit values anyway so no further 5016 * handling is necessary. 5017 */ 5018 switch (cmd) { 5019 case FS_IOC32_GETVERSION: 5020 cmd = FS_IOC_GETVERSION; 5021 break; 5022 } 5023 5024 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5025 } 5026 #endif 5027