1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "export.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "rcu-string.h" 42 #include "send.h" 43 #include "dev-replace.h" 44 #include "props.h" 45 #include "sysfs.h" 46 #include "qgroup.h" 47 #include "tree-log.h" 48 #include "compression.h" 49 #include "space-info.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "subpage.h" 53 #include "fs.h" 54 #include "accessors.h" 55 #include "extent-tree.h" 56 #include "root-tree.h" 57 #include "defrag.h" 58 #include "dir-item.h" 59 #include "uuid-tree.h" 60 #include "ioctl.h" 61 #include "file.h" 62 #include "scrub.h" 63 #include "super.h" 64 65 #ifdef CONFIG_64BIT 66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 67 * structures are incorrect, as the timespec structure from userspace 68 * is 4 bytes too small. We define these alternatives here to teach 69 * the kernel about the 32-bit struct packing. 70 */ 71 struct btrfs_ioctl_timespec_32 { 72 __u64 sec; 73 __u32 nsec; 74 } __attribute__ ((__packed__)); 75 76 struct btrfs_ioctl_received_subvol_args_32 { 77 char uuid[BTRFS_UUID_SIZE]; /* in */ 78 __u64 stransid; /* in */ 79 __u64 rtransid; /* out */ 80 struct btrfs_ioctl_timespec_32 stime; /* in */ 81 struct btrfs_ioctl_timespec_32 rtime; /* out */ 82 __u64 flags; /* in */ 83 __u64 reserved[16]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 87 struct btrfs_ioctl_received_subvol_args_32) 88 #endif 89 90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 91 struct btrfs_ioctl_send_args_32 { 92 __s64 send_fd; /* in */ 93 __u64 clone_sources_count; /* in */ 94 compat_uptr_t clone_sources; /* in */ 95 __u64 parent_root; /* in */ 96 __u64 flags; /* in */ 97 __u32 version; /* in */ 98 __u8 reserved[28]; /* in */ 99 } __attribute__ ((__packed__)); 100 101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 102 struct btrfs_ioctl_send_args_32) 103 104 struct btrfs_ioctl_encoded_io_args_32 { 105 compat_uptr_t iov; 106 compat_ulong_t iovcnt; 107 __s64 offset; 108 __u64 flags; 109 __u64 len; 110 __u64 unencoded_len; 111 __u64 unencoded_offset; 112 __u32 compression; 113 __u32 encryption; 114 __u8 reserved[64]; 115 }; 116 117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 118 struct btrfs_ioctl_encoded_io_args_32) 119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 120 struct btrfs_ioctl_encoded_io_args_32) 121 #endif 122 123 /* Mask out flags that are inappropriate for the given type of inode. */ 124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 125 unsigned int flags) 126 { 127 if (S_ISDIR(inode->i_mode)) 128 return flags; 129 else if (S_ISREG(inode->i_mode)) 130 return flags & ~FS_DIRSYNC_FL; 131 else 132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 133 } 134 135 /* 136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 137 * ioctl. 138 */ 139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 140 { 141 unsigned int iflags = 0; 142 u32 flags = binode->flags; 143 u32 ro_flags = binode->ro_flags; 144 145 if (flags & BTRFS_INODE_SYNC) 146 iflags |= FS_SYNC_FL; 147 if (flags & BTRFS_INODE_IMMUTABLE) 148 iflags |= FS_IMMUTABLE_FL; 149 if (flags & BTRFS_INODE_APPEND) 150 iflags |= FS_APPEND_FL; 151 if (flags & BTRFS_INODE_NODUMP) 152 iflags |= FS_NODUMP_FL; 153 if (flags & BTRFS_INODE_NOATIME) 154 iflags |= FS_NOATIME_FL; 155 if (flags & BTRFS_INODE_DIRSYNC) 156 iflags |= FS_DIRSYNC_FL; 157 if (flags & BTRFS_INODE_NODATACOW) 158 iflags |= FS_NOCOW_FL; 159 if (ro_flags & BTRFS_INODE_RO_VERITY) 160 iflags |= FS_VERITY_FL; 161 162 if (flags & BTRFS_INODE_NOCOMPRESS) 163 iflags |= FS_NOCOMP_FL; 164 else if (flags & BTRFS_INODE_COMPRESS) 165 iflags |= FS_COMPR_FL; 166 167 return iflags; 168 } 169 170 /* 171 * Update inode->i_flags based on the btrfs internal flags. 172 */ 173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 174 { 175 struct btrfs_inode *binode = BTRFS_I(inode); 176 unsigned int new_fl = 0; 177 178 if (binode->flags & BTRFS_INODE_SYNC) 179 new_fl |= S_SYNC; 180 if (binode->flags & BTRFS_INODE_IMMUTABLE) 181 new_fl |= S_IMMUTABLE; 182 if (binode->flags & BTRFS_INODE_APPEND) 183 new_fl |= S_APPEND; 184 if (binode->flags & BTRFS_INODE_NOATIME) 185 new_fl |= S_NOATIME; 186 if (binode->flags & BTRFS_INODE_DIRSYNC) 187 new_fl |= S_DIRSYNC; 188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 189 new_fl |= S_VERITY; 190 191 set_mask_bits(&inode->i_flags, 192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 193 S_VERITY, new_fl); 194 } 195 196 /* 197 * Check if @flags are a supported and valid set of FS_*_FL flags and that 198 * the old and new flags are not conflicting 199 */ 200 static int check_fsflags(unsigned int old_flags, unsigned int flags) 201 { 202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 203 FS_NOATIME_FL | FS_NODUMP_FL | \ 204 FS_SYNC_FL | FS_DIRSYNC_FL | \ 205 FS_NOCOMP_FL | FS_COMPR_FL | 206 FS_NOCOW_FL)) 207 return -EOPNOTSUPP; 208 209 /* COMPR and NOCOMP on new/old are valid */ 210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 211 return -EINVAL; 212 213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 214 return -EINVAL; 215 216 /* NOCOW and compression options are mutually exclusive */ 217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 218 return -EINVAL; 219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 220 return -EINVAL; 221 222 return 0; 223 } 224 225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 226 unsigned int flags) 227 { 228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 229 return -EPERM; 230 231 return 0; 232 } 233 234 /* 235 * Set flags/xflags from the internal inode flags. The remaining items of 236 * fsxattr are zeroed. 237 */ 238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 239 { 240 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 241 242 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 243 return 0; 244 } 245 246 int btrfs_fileattr_set(struct mnt_idmap *idmap, 247 struct dentry *dentry, struct fileattr *fa) 248 { 249 struct inode *inode = d_inode(dentry); 250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 251 struct btrfs_inode *binode = BTRFS_I(inode); 252 struct btrfs_root *root = binode->root; 253 struct btrfs_trans_handle *trans; 254 unsigned int fsflags, old_fsflags; 255 int ret; 256 const char *comp = NULL; 257 u32 binode_flags; 258 259 if (btrfs_root_readonly(root)) 260 return -EROFS; 261 262 if (fileattr_has_fsx(fa)) 263 return -EOPNOTSUPP; 264 265 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 266 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 267 ret = check_fsflags(old_fsflags, fsflags); 268 if (ret) 269 return ret; 270 271 ret = check_fsflags_compatible(fs_info, fsflags); 272 if (ret) 273 return ret; 274 275 binode_flags = binode->flags; 276 if (fsflags & FS_SYNC_FL) 277 binode_flags |= BTRFS_INODE_SYNC; 278 else 279 binode_flags &= ~BTRFS_INODE_SYNC; 280 if (fsflags & FS_IMMUTABLE_FL) 281 binode_flags |= BTRFS_INODE_IMMUTABLE; 282 else 283 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 284 if (fsflags & FS_APPEND_FL) 285 binode_flags |= BTRFS_INODE_APPEND; 286 else 287 binode_flags &= ~BTRFS_INODE_APPEND; 288 if (fsflags & FS_NODUMP_FL) 289 binode_flags |= BTRFS_INODE_NODUMP; 290 else 291 binode_flags &= ~BTRFS_INODE_NODUMP; 292 if (fsflags & FS_NOATIME_FL) 293 binode_flags |= BTRFS_INODE_NOATIME; 294 else 295 binode_flags &= ~BTRFS_INODE_NOATIME; 296 297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 298 if (!fa->flags_valid) { 299 /* 1 item for the inode */ 300 trans = btrfs_start_transaction(root, 1); 301 if (IS_ERR(trans)) 302 return PTR_ERR(trans); 303 goto update_flags; 304 } 305 306 if (fsflags & FS_DIRSYNC_FL) 307 binode_flags |= BTRFS_INODE_DIRSYNC; 308 else 309 binode_flags &= ~BTRFS_INODE_DIRSYNC; 310 if (fsflags & FS_NOCOW_FL) { 311 if (S_ISREG(inode->i_mode)) { 312 /* 313 * It's safe to turn csums off here, no extents exist. 314 * Otherwise we want the flag to reflect the real COW 315 * status of the file and will not set it. 316 */ 317 if (inode->i_size == 0) 318 binode_flags |= BTRFS_INODE_NODATACOW | 319 BTRFS_INODE_NODATASUM; 320 } else { 321 binode_flags |= BTRFS_INODE_NODATACOW; 322 } 323 } else { 324 /* 325 * Revert back under same assumptions as above 326 */ 327 if (S_ISREG(inode->i_mode)) { 328 if (inode->i_size == 0) 329 binode_flags &= ~(BTRFS_INODE_NODATACOW | 330 BTRFS_INODE_NODATASUM); 331 } else { 332 binode_flags &= ~BTRFS_INODE_NODATACOW; 333 } 334 } 335 336 /* 337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 338 * flag may be changed automatically if compression code won't make 339 * things smaller. 340 */ 341 if (fsflags & FS_NOCOMP_FL) { 342 binode_flags &= ~BTRFS_INODE_COMPRESS; 343 binode_flags |= BTRFS_INODE_NOCOMPRESS; 344 } else if (fsflags & FS_COMPR_FL) { 345 346 if (IS_SWAPFILE(inode)) 347 return -ETXTBSY; 348 349 binode_flags |= BTRFS_INODE_COMPRESS; 350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 351 352 comp = btrfs_compress_type2str(fs_info->compress_type); 353 if (!comp || comp[0] == 0) 354 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 355 } else { 356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 357 } 358 359 /* 360 * 1 for inode item 361 * 2 for properties 362 */ 363 trans = btrfs_start_transaction(root, 3); 364 if (IS_ERR(trans)) 365 return PTR_ERR(trans); 366 367 if (comp) { 368 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 369 strlen(comp), 0); 370 if (ret) { 371 btrfs_abort_transaction(trans, ret); 372 goto out_end_trans; 373 } 374 } else { 375 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 376 0, 0); 377 if (ret && ret != -ENODATA) { 378 btrfs_abort_transaction(trans, ret); 379 goto out_end_trans; 380 } 381 } 382 383 update_flags: 384 binode->flags = binode_flags; 385 btrfs_sync_inode_flags_to_i_flags(inode); 386 inode_inc_iversion(inode); 387 inode_set_ctime_current(inode); 388 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 389 390 out_end_trans: 391 btrfs_end_transaction(trans); 392 return ret; 393 } 394 395 /* 396 * Start exclusive operation @type, return true on success 397 */ 398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 399 enum btrfs_exclusive_operation type) 400 { 401 bool ret = false; 402 403 spin_lock(&fs_info->super_lock); 404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 405 fs_info->exclusive_operation = type; 406 ret = true; 407 } 408 spin_unlock(&fs_info->super_lock); 409 410 return ret; 411 } 412 413 /* 414 * Conditionally allow to enter the exclusive operation in case it's compatible 415 * with the running one. This must be paired with btrfs_exclop_start_unlock and 416 * btrfs_exclop_finish. 417 * 418 * Compatibility: 419 * - the same type is already running 420 * - when trying to add a device and balance has been paused 421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 422 * must check the condition first that would allow none -> @type 423 */ 424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 425 enum btrfs_exclusive_operation type) 426 { 427 spin_lock(&fs_info->super_lock); 428 if (fs_info->exclusive_operation == type || 429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 430 type == BTRFS_EXCLOP_DEV_ADD)) 431 return true; 432 433 spin_unlock(&fs_info->super_lock); 434 return false; 435 } 436 437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 438 { 439 spin_unlock(&fs_info->super_lock); 440 } 441 442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 443 { 444 spin_lock(&fs_info->super_lock); 445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 446 spin_unlock(&fs_info->super_lock); 447 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 448 } 449 450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 451 enum btrfs_exclusive_operation op) 452 { 453 switch (op) { 454 case BTRFS_EXCLOP_BALANCE_PAUSED: 455 spin_lock(&fs_info->super_lock); 456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || 458 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE || 459 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 460 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 461 spin_unlock(&fs_info->super_lock); 462 break; 463 case BTRFS_EXCLOP_BALANCE: 464 spin_lock(&fs_info->super_lock); 465 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 466 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 467 spin_unlock(&fs_info->super_lock); 468 break; 469 default: 470 btrfs_warn(fs_info, 471 "invalid exclop balance operation %d requested", op); 472 } 473 } 474 475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 476 { 477 return put_user(inode->i_generation, arg); 478 } 479 480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 481 void __user *arg) 482 { 483 struct btrfs_device *device; 484 struct fstrim_range range; 485 u64 minlen = ULLONG_MAX; 486 u64 num_devices = 0; 487 int ret; 488 489 if (!capable(CAP_SYS_ADMIN)) 490 return -EPERM; 491 492 /* 493 * btrfs_trim_block_group() depends on space cache, which is not 494 * available in zoned filesystem. So, disallow fitrim on a zoned 495 * filesystem for now. 496 */ 497 if (btrfs_is_zoned(fs_info)) 498 return -EOPNOTSUPP; 499 500 /* 501 * If the fs is mounted with nologreplay, which requires it to be 502 * mounted in RO mode as well, we can not allow discard on free space 503 * inside block groups, because log trees refer to extents that are not 504 * pinned in a block group's free space cache (pinning the extents is 505 * precisely the first phase of replaying a log tree). 506 */ 507 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 508 return -EROFS; 509 510 rcu_read_lock(); 511 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 512 dev_list) { 513 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 514 continue; 515 num_devices++; 516 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 517 minlen); 518 } 519 rcu_read_unlock(); 520 521 if (!num_devices) 522 return -EOPNOTSUPP; 523 if (copy_from_user(&range, arg, sizeof(range))) 524 return -EFAULT; 525 526 /* 527 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 528 * block group is in the logical address space, which can be any 529 * sectorsize aligned bytenr in the range [0, U64_MAX]. 530 */ 531 if (range.len < fs_info->sb->s_blocksize) 532 return -EINVAL; 533 534 range.minlen = max(range.minlen, minlen); 535 ret = btrfs_trim_fs(fs_info, &range); 536 if (ret < 0) 537 return ret; 538 539 if (copy_to_user(arg, &range, sizeof(range))) 540 return -EFAULT; 541 542 return 0; 543 } 544 545 int __pure btrfs_is_empty_uuid(u8 *uuid) 546 { 547 int i; 548 549 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 550 if (uuid[i]) 551 return 0; 552 } 553 return 1; 554 } 555 556 /* 557 * Calculate the number of transaction items to reserve for creating a subvolume 558 * or snapshot, not including the inode, directory entries, or parent directory. 559 */ 560 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) 561 { 562 /* 563 * 1 to add root block 564 * 1 to add root item 565 * 1 to add root ref 566 * 1 to add root backref 567 * 1 to add UUID item 568 * 1 to add qgroup info 569 * 1 to add qgroup limit 570 * 571 * Ideally the last two would only be accounted if qgroups are enabled, 572 * but that can change between now and the time we would insert them. 573 */ 574 unsigned int num_items = 7; 575 576 if (inherit) { 577 /* 2 to add qgroup relations for each inherited qgroup */ 578 num_items += 2 * inherit->num_qgroups; 579 } 580 return num_items; 581 } 582 583 static noinline int create_subvol(struct mnt_idmap *idmap, 584 struct inode *dir, struct dentry *dentry, 585 struct btrfs_qgroup_inherit *inherit) 586 { 587 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 588 struct btrfs_trans_handle *trans; 589 struct btrfs_key key; 590 struct btrfs_root_item *root_item; 591 struct btrfs_inode_item *inode_item; 592 struct extent_buffer *leaf; 593 struct btrfs_root *root = BTRFS_I(dir)->root; 594 struct btrfs_root *new_root; 595 struct btrfs_block_rsv block_rsv; 596 struct timespec64 cur_time = current_time(dir); 597 struct btrfs_new_inode_args new_inode_args = { 598 .dir = dir, 599 .dentry = dentry, 600 .subvol = true, 601 }; 602 unsigned int trans_num_items; 603 int ret; 604 dev_t anon_dev; 605 u64 objectid; 606 607 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 608 if (!root_item) 609 return -ENOMEM; 610 611 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 612 if (ret) 613 goto out_root_item; 614 615 /* 616 * Don't create subvolume whose level is not zero. Or qgroup will be 617 * screwed up since it assumes subvolume qgroup's level to be 0. 618 */ 619 if (btrfs_qgroup_level(objectid)) { 620 ret = -ENOSPC; 621 goto out_root_item; 622 } 623 624 ret = get_anon_bdev(&anon_dev); 625 if (ret < 0) 626 goto out_root_item; 627 628 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir); 629 if (!new_inode_args.inode) { 630 ret = -ENOMEM; 631 goto out_anon_dev; 632 } 633 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 634 if (ret) 635 goto out_inode; 636 trans_num_items += create_subvol_num_items(inherit); 637 638 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 639 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 640 trans_num_items, false); 641 if (ret) 642 goto out_new_inode_args; 643 644 trans = btrfs_start_transaction(root, 0); 645 if (IS_ERR(trans)) { 646 ret = PTR_ERR(trans); 647 btrfs_subvolume_release_metadata(root, &block_rsv); 648 goto out_new_inode_args; 649 } 650 trans->block_rsv = &block_rsv; 651 trans->bytes_reserved = block_rsv.size; 652 /* Tree log can't currently deal with an inode which is a new root. */ 653 btrfs_set_log_full_commit(trans); 654 655 ret = btrfs_qgroup_inherit(trans, 0, objectid, root->root_key.objectid, inherit); 656 if (ret) 657 goto out; 658 659 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 660 0, BTRFS_NESTING_NORMAL); 661 if (IS_ERR(leaf)) { 662 ret = PTR_ERR(leaf); 663 goto out; 664 } 665 666 btrfs_mark_buffer_dirty(trans, leaf); 667 668 inode_item = &root_item->inode; 669 btrfs_set_stack_inode_generation(inode_item, 1); 670 btrfs_set_stack_inode_size(inode_item, 3); 671 btrfs_set_stack_inode_nlink(inode_item, 1); 672 btrfs_set_stack_inode_nbytes(inode_item, 673 fs_info->nodesize); 674 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 675 676 btrfs_set_root_flags(root_item, 0); 677 btrfs_set_root_limit(root_item, 0); 678 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 679 680 btrfs_set_root_bytenr(root_item, leaf->start); 681 btrfs_set_root_generation(root_item, trans->transid); 682 btrfs_set_root_level(root_item, 0); 683 btrfs_set_root_refs(root_item, 1); 684 btrfs_set_root_used(root_item, leaf->len); 685 btrfs_set_root_last_snapshot(root_item, 0); 686 687 btrfs_set_root_generation_v2(root_item, 688 btrfs_root_generation(root_item)); 689 generate_random_guid(root_item->uuid); 690 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 691 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 692 root_item->ctime = root_item->otime; 693 btrfs_set_root_ctransid(root_item, trans->transid); 694 btrfs_set_root_otransid(root_item, trans->transid); 695 696 btrfs_tree_unlock(leaf); 697 698 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 699 700 key.objectid = objectid; 701 key.offset = 0; 702 key.type = BTRFS_ROOT_ITEM_KEY; 703 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 704 root_item); 705 if (ret) { 706 /* 707 * Since we don't abort the transaction in this case, free the 708 * tree block so that we don't leak space and leave the 709 * filesystem in an inconsistent state (an extent item in the 710 * extent tree with a backreference for a root that does not 711 * exists). 712 */ 713 btrfs_tree_lock(leaf); 714 btrfs_clear_buffer_dirty(trans, leaf); 715 btrfs_tree_unlock(leaf); 716 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 717 free_extent_buffer(leaf); 718 goto out; 719 } 720 721 free_extent_buffer(leaf); 722 leaf = NULL; 723 724 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 725 if (IS_ERR(new_root)) { 726 ret = PTR_ERR(new_root); 727 btrfs_abort_transaction(trans, ret); 728 goto out; 729 } 730 /* anon_dev is owned by new_root now. */ 731 anon_dev = 0; 732 BTRFS_I(new_inode_args.inode)->root = new_root; 733 /* ... and new_root is owned by new_inode_args.inode now. */ 734 735 ret = btrfs_record_root_in_trans(trans, new_root); 736 if (ret) { 737 btrfs_abort_transaction(trans, ret); 738 goto out; 739 } 740 741 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 742 BTRFS_UUID_KEY_SUBVOL, objectid); 743 if (ret) { 744 btrfs_abort_transaction(trans, ret); 745 goto out; 746 } 747 748 ret = btrfs_create_new_inode(trans, &new_inode_args); 749 if (ret) { 750 btrfs_abort_transaction(trans, ret); 751 goto out; 752 } 753 754 d_instantiate_new(dentry, new_inode_args.inode); 755 new_inode_args.inode = NULL; 756 757 out: 758 trans->block_rsv = NULL; 759 trans->bytes_reserved = 0; 760 btrfs_subvolume_release_metadata(root, &block_rsv); 761 762 btrfs_end_transaction(trans); 763 out_new_inode_args: 764 btrfs_new_inode_args_destroy(&new_inode_args); 765 out_inode: 766 iput(new_inode_args.inode); 767 out_anon_dev: 768 if (anon_dev) 769 free_anon_bdev(anon_dev); 770 out_root_item: 771 kfree(root_item); 772 return ret; 773 } 774 775 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 776 struct dentry *dentry, bool readonly, 777 struct btrfs_qgroup_inherit *inherit) 778 { 779 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 780 struct inode *inode; 781 struct btrfs_pending_snapshot *pending_snapshot; 782 unsigned int trans_num_items; 783 struct btrfs_trans_handle *trans; 784 int ret; 785 786 /* We do not support snapshotting right now. */ 787 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 788 btrfs_warn(fs_info, 789 "extent tree v2 doesn't support snapshotting yet"); 790 return -EOPNOTSUPP; 791 } 792 793 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 794 return -EINVAL; 795 796 if (atomic_read(&root->nr_swapfiles)) { 797 btrfs_warn(fs_info, 798 "cannot snapshot subvolume with active swapfile"); 799 return -ETXTBSY; 800 } 801 802 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 803 if (!pending_snapshot) 804 return -ENOMEM; 805 806 ret = get_anon_bdev(&pending_snapshot->anon_dev); 807 if (ret < 0) 808 goto free_pending; 809 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 810 GFP_KERNEL); 811 pending_snapshot->path = btrfs_alloc_path(); 812 if (!pending_snapshot->root_item || !pending_snapshot->path) { 813 ret = -ENOMEM; 814 goto free_pending; 815 } 816 817 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 818 BTRFS_BLOCK_RSV_TEMP); 819 /* 820 * 1 to add dir item 821 * 1 to add dir index 822 * 1 to update parent inode item 823 */ 824 trans_num_items = create_subvol_num_items(inherit) + 3; 825 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 826 &pending_snapshot->block_rsv, 827 trans_num_items, false); 828 if (ret) 829 goto free_pending; 830 831 pending_snapshot->dentry = dentry; 832 pending_snapshot->root = root; 833 pending_snapshot->readonly = readonly; 834 pending_snapshot->dir = dir; 835 pending_snapshot->inherit = inherit; 836 837 trans = btrfs_start_transaction(root, 0); 838 if (IS_ERR(trans)) { 839 ret = PTR_ERR(trans); 840 goto fail; 841 } 842 843 trans->pending_snapshot = pending_snapshot; 844 845 ret = btrfs_commit_transaction(trans); 846 if (ret) 847 goto fail; 848 849 ret = pending_snapshot->error; 850 if (ret) 851 goto fail; 852 853 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 854 if (ret) 855 goto fail; 856 857 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 858 if (IS_ERR(inode)) { 859 ret = PTR_ERR(inode); 860 goto fail; 861 } 862 863 d_instantiate(dentry, inode); 864 ret = 0; 865 pending_snapshot->anon_dev = 0; 866 fail: 867 /* Prevent double freeing of anon_dev */ 868 if (ret && pending_snapshot->snap) 869 pending_snapshot->snap->anon_dev = 0; 870 btrfs_put_root(pending_snapshot->snap); 871 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 872 free_pending: 873 if (pending_snapshot->anon_dev) 874 free_anon_bdev(pending_snapshot->anon_dev); 875 kfree(pending_snapshot->root_item); 876 btrfs_free_path(pending_snapshot->path); 877 kfree(pending_snapshot); 878 879 return ret; 880 } 881 882 /* copy of may_delete in fs/namei.c() 883 * Check whether we can remove a link victim from directory dir, check 884 * whether the type of victim is right. 885 * 1. We can't do it if dir is read-only (done in permission()) 886 * 2. We should have write and exec permissions on dir 887 * 3. We can't remove anything from append-only dir 888 * 4. We can't do anything with immutable dir (done in permission()) 889 * 5. If the sticky bit on dir is set we should either 890 * a. be owner of dir, or 891 * b. be owner of victim, or 892 * c. have CAP_FOWNER capability 893 * 6. If the victim is append-only or immutable we can't do anything with 894 * links pointing to it. 895 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 896 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 897 * 9. We can't remove a root or mountpoint. 898 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 899 * nfs_async_unlink(). 900 */ 901 902 static int btrfs_may_delete(struct mnt_idmap *idmap, 903 struct inode *dir, struct dentry *victim, int isdir) 904 { 905 int error; 906 907 if (d_really_is_negative(victim)) 908 return -ENOENT; 909 910 BUG_ON(d_inode(victim->d_parent) != dir); 911 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 912 913 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 914 if (error) 915 return error; 916 if (IS_APPEND(dir)) 917 return -EPERM; 918 if (check_sticky(idmap, dir, d_inode(victim)) || 919 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 920 IS_SWAPFILE(d_inode(victim))) 921 return -EPERM; 922 if (isdir) { 923 if (!d_is_dir(victim)) 924 return -ENOTDIR; 925 if (IS_ROOT(victim)) 926 return -EBUSY; 927 } else if (d_is_dir(victim)) 928 return -EISDIR; 929 if (IS_DEADDIR(dir)) 930 return -ENOENT; 931 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 932 return -EBUSY; 933 return 0; 934 } 935 936 /* copy of may_create in fs/namei.c() */ 937 static inline int btrfs_may_create(struct mnt_idmap *idmap, 938 struct inode *dir, struct dentry *child) 939 { 940 if (d_really_is_positive(child)) 941 return -EEXIST; 942 if (IS_DEADDIR(dir)) 943 return -ENOENT; 944 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 945 return -EOVERFLOW; 946 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 947 } 948 949 /* 950 * Create a new subvolume below @parent. This is largely modeled after 951 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 952 * inside this filesystem so it's quite a bit simpler. 953 */ 954 static noinline int btrfs_mksubvol(const struct path *parent, 955 struct mnt_idmap *idmap, 956 const char *name, int namelen, 957 struct btrfs_root *snap_src, 958 bool readonly, 959 struct btrfs_qgroup_inherit *inherit) 960 { 961 struct inode *dir = d_inode(parent->dentry); 962 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 963 struct dentry *dentry; 964 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen); 965 int error; 966 967 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 968 if (error == -EINTR) 969 return error; 970 971 dentry = lookup_one(idmap, name, parent->dentry, namelen); 972 error = PTR_ERR(dentry); 973 if (IS_ERR(dentry)) 974 goto out_unlock; 975 976 error = btrfs_may_create(idmap, dir, dentry); 977 if (error) 978 goto out_dput; 979 980 /* 981 * even if this name doesn't exist, we may get hash collisions. 982 * check for them now when we can safely fail 983 */ 984 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 985 dir->i_ino, &name_str); 986 if (error) 987 goto out_dput; 988 989 down_read(&fs_info->subvol_sem); 990 991 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 992 goto out_up_read; 993 994 if (snap_src) 995 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 996 else 997 error = create_subvol(idmap, dir, dentry, inherit); 998 999 if (!error) 1000 fsnotify_mkdir(dir, dentry); 1001 out_up_read: 1002 up_read(&fs_info->subvol_sem); 1003 out_dput: 1004 dput(dentry); 1005 out_unlock: 1006 btrfs_inode_unlock(BTRFS_I(dir), 0); 1007 return error; 1008 } 1009 1010 static noinline int btrfs_mksnapshot(const struct path *parent, 1011 struct mnt_idmap *idmap, 1012 const char *name, int namelen, 1013 struct btrfs_root *root, 1014 bool readonly, 1015 struct btrfs_qgroup_inherit *inherit) 1016 { 1017 int ret; 1018 bool snapshot_force_cow = false; 1019 1020 /* 1021 * Force new buffered writes to reserve space even when NOCOW is 1022 * possible. This is to avoid later writeback (running dealloc) to 1023 * fallback to COW mode and unexpectedly fail with ENOSPC. 1024 */ 1025 btrfs_drew_read_lock(&root->snapshot_lock); 1026 1027 ret = btrfs_start_delalloc_snapshot(root, false); 1028 if (ret) 1029 goto out; 1030 1031 /* 1032 * All previous writes have started writeback in NOCOW mode, so now 1033 * we force future writes to fallback to COW mode during snapshot 1034 * creation. 1035 */ 1036 atomic_inc(&root->snapshot_force_cow); 1037 snapshot_force_cow = true; 1038 1039 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1040 1041 ret = btrfs_mksubvol(parent, idmap, name, namelen, 1042 root, readonly, inherit); 1043 out: 1044 if (snapshot_force_cow) 1045 atomic_dec(&root->snapshot_force_cow); 1046 btrfs_drew_read_unlock(&root->snapshot_lock); 1047 return ret; 1048 } 1049 1050 /* 1051 * Try to start exclusive operation @type or cancel it if it's running. 1052 * 1053 * Return: 1054 * 0 - normal mode, newly claimed op started 1055 * >0 - normal mode, something else is running, 1056 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1057 * ECANCELED - cancel mode, successful cancel 1058 * ENOTCONN - cancel mode, operation not running anymore 1059 */ 1060 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1061 enum btrfs_exclusive_operation type, bool cancel) 1062 { 1063 if (!cancel) { 1064 /* Start normal op */ 1065 if (!btrfs_exclop_start(fs_info, type)) 1066 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1067 /* Exclusive operation is now claimed */ 1068 return 0; 1069 } 1070 1071 /* Cancel running op */ 1072 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1073 /* 1074 * This blocks any exclop finish from setting it to NONE, so we 1075 * request cancellation. Either it runs and we will wait for it, 1076 * or it has finished and no waiting will happen. 1077 */ 1078 atomic_inc(&fs_info->reloc_cancel_req); 1079 btrfs_exclop_start_unlock(fs_info); 1080 1081 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1082 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1083 TASK_INTERRUPTIBLE); 1084 1085 return -ECANCELED; 1086 } 1087 1088 /* Something else is running or none */ 1089 return -ENOTCONN; 1090 } 1091 1092 static noinline int btrfs_ioctl_resize(struct file *file, 1093 void __user *arg) 1094 { 1095 BTRFS_DEV_LOOKUP_ARGS(args); 1096 struct inode *inode = file_inode(file); 1097 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1098 u64 new_size; 1099 u64 old_size; 1100 u64 devid = 1; 1101 struct btrfs_root *root = BTRFS_I(inode)->root; 1102 struct btrfs_ioctl_vol_args *vol_args; 1103 struct btrfs_trans_handle *trans; 1104 struct btrfs_device *device = NULL; 1105 char *sizestr; 1106 char *retptr; 1107 char *devstr = NULL; 1108 int ret = 0; 1109 int mod = 0; 1110 bool cancel; 1111 1112 if (!capable(CAP_SYS_ADMIN)) 1113 return -EPERM; 1114 1115 ret = mnt_want_write_file(file); 1116 if (ret) 1117 return ret; 1118 1119 /* 1120 * Read the arguments before checking exclusivity to be able to 1121 * distinguish regular resize and cancel 1122 */ 1123 vol_args = memdup_user(arg, sizeof(*vol_args)); 1124 if (IS_ERR(vol_args)) { 1125 ret = PTR_ERR(vol_args); 1126 goto out_drop; 1127 } 1128 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1129 sizestr = vol_args->name; 1130 cancel = (strcmp("cancel", sizestr) == 0); 1131 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1132 if (ret) 1133 goto out_free; 1134 /* Exclusive operation is now claimed */ 1135 1136 devstr = strchr(sizestr, ':'); 1137 if (devstr) { 1138 sizestr = devstr + 1; 1139 *devstr = '\0'; 1140 devstr = vol_args->name; 1141 ret = kstrtoull(devstr, 10, &devid); 1142 if (ret) 1143 goto out_finish; 1144 if (!devid) { 1145 ret = -EINVAL; 1146 goto out_finish; 1147 } 1148 btrfs_info(fs_info, "resizing devid %llu", devid); 1149 } 1150 1151 args.devid = devid; 1152 device = btrfs_find_device(fs_info->fs_devices, &args); 1153 if (!device) { 1154 btrfs_info(fs_info, "resizer unable to find device %llu", 1155 devid); 1156 ret = -ENODEV; 1157 goto out_finish; 1158 } 1159 1160 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1161 btrfs_info(fs_info, 1162 "resizer unable to apply on readonly device %llu", 1163 devid); 1164 ret = -EPERM; 1165 goto out_finish; 1166 } 1167 1168 if (!strcmp(sizestr, "max")) 1169 new_size = bdev_nr_bytes(device->bdev); 1170 else { 1171 if (sizestr[0] == '-') { 1172 mod = -1; 1173 sizestr++; 1174 } else if (sizestr[0] == '+') { 1175 mod = 1; 1176 sizestr++; 1177 } 1178 new_size = memparse(sizestr, &retptr); 1179 if (*retptr != '\0' || new_size == 0) { 1180 ret = -EINVAL; 1181 goto out_finish; 1182 } 1183 } 1184 1185 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1186 ret = -EPERM; 1187 goto out_finish; 1188 } 1189 1190 old_size = btrfs_device_get_total_bytes(device); 1191 1192 if (mod < 0) { 1193 if (new_size > old_size) { 1194 ret = -EINVAL; 1195 goto out_finish; 1196 } 1197 new_size = old_size - new_size; 1198 } else if (mod > 0) { 1199 if (new_size > ULLONG_MAX - old_size) { 1200 ret = -ERANGE; 1201 goto out_finish; 1202 } 1203 new_size = old_size + new_size; 1204 } 1205 1206 if (new_size < SZ_256M) { 1207 ret = -EINVAL; 1208 goto out_finish; 1209 } 1210 if (new_size > bdev_nr_bytes(device->bdev)) { 1211 ret = -EFBIG; 1212 goto out_finish; 1213 } 1214 1215 new_size = round_down(new_size, fs_info->sectorsize); 1216 1217 if (new_size > old_size) { 1218 trans = btrfs_start_transaction(root, 0); 1219 if (IS_ERR(trans)) { 1220 ret = PTR_ERR(trans); 1221 goto out_finish; 1222 } 1223 ret = btrfs_grow_device(trans, device, new_size); 1224 btrfs_commit_transaction(trans); 1225 } else if (new_size < old_size) { 1226 ret = btrfs_shrink_device(device, new_size); 1227 } /* equal, nothing need to do */ 1228 1229 if (ret == 0 && new_size != old_size) 1230 btrfs_info_in_rcu(fs_info, 1231 "resize device %s (devid %llu) from %llu to %llu", 1232 btrfs_dev_name(device), device->devid, 1233 old_size, new_size); 1234 out_finish: 1235 btrfs_exclop_finish(fs_info); 1236 out_free: 1237 kfree(vol_args); 1238 out_drop: 1239 mnt_drop_write_file(file); 1240 return ret; 1241 } 1242 1243 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1244 struct mnt_idmap *idmap, 1245 const char *name, unsigned long fd, int subvol, 1246 bool readonly, 1247 struct btrfs_qgroup_inherit *inherit) 1248 { 1249 int namelen; 1250 int ret = 0; 1251 1252 if (!S_ISDIR(file_inode(file)->i_mode)) 1253 return -ENOTDIR; 1254 1255 ret = mnt_want_write_file(file); 1256 if (ret) 1257 goto out; 1258 1259 namelen = strlen(name); 1260 if (strchr(name, '/')) { 1261 ret = -EINVAL; 1262 goto out_drop_write; 1263 } 1264 1265 if (name[0] == '.' && 1266 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1267 ret = -EEXIST; 1268 goto out_drop_write; 1269 } 1270 1271 if (subvol) { 1272 ret = btrfs_mksubvol(&file->f_path, idmap, name, 1273 namelen, NULL, readonly, inherit); 1274 } else { 1275 struct fd src = fdget(fd); 1276 struct inode *src_inode; 1277 if (!src.file) { 1278 ret = -EINVAL; 1279 goto out_drop_write; 1280 } 1281 1282 src_inode = file_inode(src.file); 1283 if (src_inode->i_sb != file_inode(file)->i_sb) { 1284 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1285 "Snapshot src from another FS"); 1286 ret = -EXDEV; 1287 } else if (!inode_owner_or_capable(idmap, src_inode)) { 1288 /* 1289 * Subvolume creation is not restricted, but snapshots 1290 * are limited to own subvolumes only 1291 */ 1292 ret = -EPERM; 1293 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1294 /* 1295 * Snapshots must be made with the src_inode referring 1296 * to the subvolume inode, otherwise the permission 1297 * checking above is useless because we may have 1298 * permission on a lower directory but not the subvol 1299 * itself. 1300 */ 1301 ret = -EINVAL; 1302 } else { 1303 ret = btrfs_mksnapshot(&file->f_path, idmap, 1304 name, namelen, 1305 BTRFS_I(src_inode)->root, 1306 readonly, inherit); 1307 } 1308 fdput(src); 1309 } 1310 out_drop_write: 1311 mnt_drop_write_file(file); 1312 out: 1313 return ret; 1314 } 1315 1316 static noinline int btrfs_ioctl_snap_create(struct file *file, 1317 void __user *arg, int subvol) 1318 { 1319 struct btrfs_ioctl_vol_args *vol_args; 1320 int ret; 1321 1322 if (!S_ISDIR(file_inode(file)->i_mode)) 1323 return -ENOTDIR; 1324 1325 vol_args = memdup_user(arg, sizeof(*vol_args)); 1326 if (IS_ERR(vol_args)) 1327 return PTR_ERR(vol_args); 1328 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1329 1330 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1331 vol_args->name, vol_args->fd, subvol, 1332 false, NULL); 1333 1334 kfree(vol_args); 1335 return ret; 1336 } 1337 1338 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1339 void __user *arg, int subvol) 1340 { 1341 struct btrfs_ioctl_vol_args_v2 *vol_args; 1342 int ret; 1343 bool readonly = false; 1344 struct btrfs_qgroup_inherit *inherit = NULL; 1345 1346 if (!S_ISDIR(file_inode(file)->i_mode)) 1347 return -ENOTDIR; 1348 1349 vol_args = memdup_user(arg, sizeof(*vol_args)); 1350 if (IS_ERR(vol_args)) 1351 return PTR_ERR(vol_args); 1352 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1353 1354 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1355 ret = -EOPNOTSUPP; 1356 goto free_args; 1357 } 1358 1359 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1360 readonly = true; 1361 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1362 u64 nums; 1363 1364 if (vol_args->size < sizeof(*inherit) || 1365 vol_args->size > PAGE_SIZE) { 1366 ret = -EINVAL; 1367 goto free_args; 1368 } 1369 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1370 if (IS_ERR(inherit)) { 1371 ret = PTR_ERR(inherit); 1372 goto free_args; 1373 } 1374 1375 if (inherit->num_qgroups > PAGE_SIZE || 1376 inherit->num_ref_copies > PAGE_SIZE || 1377 inherit->num_excl_copies > PAGE_SIZE) { 1378 ret = -EINVAL; 1379 goto free_inherit; 1380 } 1381 1382 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1383 2 * inherit->num_excl_copies; 1384 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1385 ret = -EINVAL; 1386 goto free_inherit; 1387 } 1388 } 1389 1390 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1391 vol_args->name, vol_args->fd, subvol, 1392 readonly, inherit); 1393 if (ret) 1394 goto free_inherit; 1395 free_inherit: 1396 kfree(inherit); 1397 free_args: 1398 kfree(vol_args); 1399 return ret; 1400 } 1401 1402 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 1403 void __user *arg) 1404 { 1405 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1406 struct btrfs_root *root = BTRFS_I(inode)->root; 1407 int ret = 0; 1408 u64 flags = 0; 1409 1410 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1411 return -EINVAL; 1412 1413 down_read(&fs_info->subvol_sem); 1414 if (btrfs_root_readonly(root)) 1415 flags |= BTRFS_SUBVOL_RDONLY; 1416 up_read(&fs_info->subvol_sem); 1417 1418 if (copy_to_user(arg, &flags, sizeof(flags))) 1419 ret = -EFAULT; 1420 1421 return ret; 1422 } 1423 1424 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1425 void __user *arg) 1426 { 1427 struct inode *inode = file_inode(file); 1428 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1429 struct btrfs_root *root = BTRFS_I(inode)->root; 1430 struct btrfs_trans_handle *trans; 1431 u64 root_flags; 1432 u64 flags; 1433 int ret = 0; 1434 1435 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 1436 return -EPERM; 1437 1438 ret = mnt_want_write_file(file); 1439 if (ret) 1440 goto out; 1441 1442 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1443 ret = -EINVAL; 1444 goto out_drop_write; 1445 } 1446 1447 if (copy_from_user(&flags, arg, sizeof(flags))) { 1448 ret = -EFAULT; 1449 goto out_drop_write; 1450 } 1451 1452 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1453 ret = -EOPNOTSUPP; 1454 goto out_drop_write; 1455 } 1456 1457 down_write(&fs_info->subvol_sem); 1458 1459 /* nothing to do */ 1460 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1461 goto out_drop_sem; 1462 1463 root_flags = btrfs_root_flags(&root->root_item); 1464 if (flags & BTRFS_SUBVOL_RDONLY) { 1465 btrfs_set_root_flags(&root->root_item, 1466 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1467 } else { 1468 /* 1469 * Block RO -> RW transition if this subvolume is involved in 1470 * send 1471 */ 1472 spin_lock(&root->root_item_lock); 1473 if (root->send_in_progress == 0) { 1474 btrfs_set_root_flags(&root->root_item, 1475 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1476 spin_unlock(&root->root_item_lock); 1477 } else { 1478 spin_unlock(&root->root_item_lock); 1479 btrfs_warn(fs_info, 1480 "Attempt to set subvolume %llu read-write during send", 1481 root->root_key.objectid); 1482 ret = -EPERM; 1483 goto out_drop_sem; 1484 } 1485 } 1486 1487 trans = btrfs_start_transaction(root, 1); 1488 if (IS_ERR(trans)) { 1489 ret = PTR_ERR(trans); 1490 goto out_reset; 1491 } 1492 1493 ret = btrfs_update_root(trans, fs_info->tree_root, 1494 &root->root_key, &root->root_item); 1495 if (ret < 0) { 1496 btrfs_end_transaction(trans); 1497 goto out_reset; 1498 } 1499 1500 ret = btrfs_commit_transaction(trans); 1501 1502 out_reset: 1503 if (ret) 1504 btrfs_set_root_flags(&root->root_item, root_flags); 1505 out_drop_sem: 1506 up_write(&fs_info->subvol_sem); 1507 out_drop_write: 1508 mnt_drop_write_file(file); 1509 out: 1510 return ret; 1511 } 1512 1513 static noinline int key_in_sk(struct btrfs_key *key, 1514 struct btrfs_ioctl_search_key *sk) 1515 { 1516 struct btrfs_key test; 1517 int ret; 1518 1519 test.objectid = sk->min_objectid; 1520 test.type = sk->min_type; 1521 test.offset = sk->min_offset; 1522 1523 ret = btrfs_comp_cpu_keys(key, &test); 1524 if (ret < 0) 1525 return 0; 1526 1527 test.objectid = sk->max_objectid; 1528 test.type = sk->max_type; 1529 test.offset = sk->max_offset; 1530 1531 ret = btrfs_comp_cpu_keys(key, &test); 1532 if (ret > 0) 1533 return 0; 1534 return 1; 1535 } 1536 1537 static noinline int copy_to_sk(struct btrfs_path *path, 1538 struct btrfs_key *key, 1539 struct btrfs_ioctl_search_key *sk, 1540 u64 *buf_size, 1541 char __user *ubuf, 1542 unsigned long *sk_offset, 1543 int *num_found) 1544 { 1545 u64 found_transid; 1546 struct extent_buffer *leaf; 1547 struct btrfs_ioctl_search_header sh; 1548 struct btrfs_key test; 1549 unsigned long item_off; 1550 unsigned long item_len; 1551 int nritems; 1552 int i; 1553 int slot; 1554 int ret = 0; 1555 1556 leaf = path->nodes[0]; 1557 slot = path->slots[0]; 1558 nritems = btrfs_header_nritems(leaf); 1559 1560 if (btrfs_header_generation(leaf) > sk->max_transid) { 1561 i = nritems; 1562 goto advance_key; 1563 } 1564 found_transid = btrfs_header_generation(leaf); 1565 1566 for (i = slot; i < nritems; i++) { 1567 item_off = btrfs_item_ptr_offset(leaf, i); 1568 item_len = btrfs_item_size(leaf, i); 1569 1570 btrfs_item_key_to_cpu(leaf, key, i); 1571 if (!key_in_sk(key, sk)) 1572 continue; 1573 1574 if (sizeof(sh) + item_len > *buf_size) { 1575 if (*num_found) { 1576 ret = 1; 1577 goto out; 1578 } 1579 1580 /* 1581 * return one empty item back for v1, which does not 1582 * handle -EOVERFLOW 1583 */ 1584 1585 *buf_size = sizeof(sh) + item_len; 1586 item_len = 0; 1587 ret = -EOVERFLOW; 1588 } 1589 1590 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1591 ret = 1; 1592 goto out; 1593 } 1594 1595 sh.objectid = key->objectid; 1596 sh.offset = key->offset; 1597 sh.type = key->type; 1598 sh.len = item_len; 1599 sh.transid = found_transid; 1600 1601 /* 1602 * Copy search result header. If we fault then loop again so we 1603 * can fault in the pages and -EFAULT there if there's a 1604 * problem. Otherwise we'll fault and then copy the buffer in 1605 * properly this next time through 1606 */ 1607 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 1608 ret = 0; 1609 goto out; 1610 } 1611 1612 *sk_offset += sizeof(sh); 1613 1614 if (item_len) { 1615 char __user *up = ubuf + *sk_offset; 1616 /* 1617 * Copy the item, same behavior as above, but reset the 1618 * * sk_offset so we copy the full thing again. 1619 */ 1620 if (read_extent_buffer_to_user_nofault(leaf, up, 1621 item_off, item_len)) { 1622 ret = 0; 1623 *sk_offset -= sizeof(sh); 1624 goto out; 1625 } 1626 1627 *sk_offset += item_len; 1628 } 1629 (*num_found)++; 1630 1631 if (ret) /* -EOVERFLOW from above */ 1632 goto out; 1633 1634 if (*num_found >= sk->nr_items) { 1635 ret = 1; 1636 goto out; 1637 } 1638 } 1639 advance_key: 1640 ret = 0; 1641 test.objectid = sk->max_objectid; 1642 test.type = sk->max_type; 1643 test.offset = sk->max_offset; 1644 if (btrfs_comp_cpu_keys(key, &test) >= 0) 1645 ret = 1; 1646 else if (key->offset < (u64)-1) 1647 key->offset++; 1648 else if (key->type < (u8)-1) { 1649 key->offset = 0; 1650 key->type++; 1651 } else if (key->objectid < (u64)-1) { 1652 key->offset = 0; 1653 key->type = 0; 1654 key->objectid++; 1655 } else 1656 ret = 1; 1657 out: 1658 /* 1659 * 0: all items from this leaf copied, continue with next 1660 * 1: * more items can be copied, but unused buffer is too small 1661 * * all items were found 1662 * Either way, it will stops the loop which iterates to the next 1663 * leaf 1664 * -EOVERFLOW: item was to large for buffer 1665 * -EFAULT: could not copy extent buffer back to userspace 1666 */ 1667 return ret; 1668 } 1669 1670 static noinline int search_ioctl(struct inode *inode, 1671 struct btrfs_ioctl_search_key *sk, 1672 u64 *buf_size, 1673 char __user *ubuf) 1674 { 1675 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 1676 struct btrfs_root *root; 1677 struct btrfs_key key; 1678 struct btrfs_path *path; 1679 int ret; 1680 int num_found = 0; 1681 unsigned long sk_offset = 0; 1682 1683 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 1684 *buf_size = sizeof(struct btrfs_ioctl_search_header); 1685 return -EOVERFLOW; 1686 } 1687 1688 path = btrfs_alloc_path(); 1689 if (!path) 1690 return -ENOMEM; 1691 1692 if (sk->tree_id == 0) { 1693 /* search the root of the inode that was passed */ 1694 root = btrfs_grab_root(BTRFS_I(inode)->root); 1695 } else { 1696 root = btrfs_get_fs_root(info, sk->tree_id, true); 1697 if (IS_ERR(root)) { 1698 btrfs_free_path(path); 1699 return PTR_ERR(root); 1700 } 1701 } 1702 1703 key.objectid = sk->min_objectid; 1704 key.type = sk->min_type; 1705 key.offset = sk->min_offset; 1706 1707 while (1) { 1708 ret = -EFAULT; 1709 /* 1710 * Ensure that the whole user buffer is faulted in at sub-page 1711 * granularity, otherwise the loop may live-lock. 1712 */ 1713 if (fault_in_subpage_writeable(ubuf + sk_offset, 1714 *buf_size - sk_offset)) 1715 break; 1716 1717 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1718 if (ret != 0) { 1719 if (ret > 0) 1720 ret = 0; 1721 goto err; 1722 } 1723 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 1724 &sk_offset, &num_found); 1725 btrfs_release_path(path); 1726 if (ret) 1727 break; 1728 1729 } 1730 if (ret > 0) 1731 ret = 0; 1732 err: 1733 sk->nr_items = num_found; 1734 btrfs_put_root(root); 1735 btrfs_free_path(path); 1736 return ret; 1737 } 1738 1739 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 1740 void __user *argp) 1741 { 1742 struct btrfs_ioctl_search_args __user *uargs = argp; 1743 struct btrfs_ioctl_search_key sk; 1744 int ret; 1745 u64 buf_size; 1746 1747 if (!capable(CAP_SYS_ADMIN)) 1748 return -EPERM; 1749 1750 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 1751 return -EFAULT; 1752 1753 buf_size = sizeof(uargs->buf); 1754 1755 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 1756 1757 /* 1758 * In the origin implementation an overflow is handled by returning a 1759 * search header with a len of zero, so reset ret. 1760 */ 1761 if (ret == -EOVERFLOW) 1762 ret = 0; 1763 1764 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 1765 ret = -EFAULT; 1766 return ret; 1767 } 1768 1769 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 1770 void __user *argp) 1771 { 1772 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 1773 struct btrfs_ioctl_search_args_v2 args; 1774 int ret; 1775 u64 buf_size; 1776 const u64 buf_limit = SZ_16M; 1777 1778 if (!capable(CAP_SYS_ADMIN)) 1779 return -EPERM; 1780 1781 /* copy search header and buffer size */ 1782 if (copy_from_user(&args, uarg, sizeof(args))) 1783 return -EFAULT; 1784 1785 buf_size = args.buf_size; 1786 1787 /* limit result size to 16MB */ 1788 if (buf_size > buf_limit) 1789 buf_size = buf_limit; 1790 1791 ret = search_ioctl(inode, &args.key, &buf_size, 1792 (char __user *)(&uarg->buf[0])); 1793 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 1794 ret = -EFAULT; 1795 else if (ret == -EOVERFLOW && 1796 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 1797 ret = -EFAULT; 1798 1799 return ret; 1800 } 1801 1802 /* 1803 * Search INODE_REFs to identify path name of 'dirid' directory 1804 * in a 'tree_id' tree. and sets path name to 'name'. 1805 */ 1806 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1807 u64 tree_id, u64 dirid, char *name) 1808 { 1809 struct btrfs_root *root; 1810 struct btrfs_key key; 1811 char *ptr; 1812 int ret = -1; 1813 int slot; 1814 int len; 1815 int total_len = 0; 1816 struct btrfs_inode_ref *iref; 1817 struct extent_buffer *l; 1818 struct btrfs_path *path; 1819 1820 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1821 name[0]='\0'; 1822 return 0; 1823 } 1824 1825 path = btrfs_alloc_path(); 1826 if (!path) 1827 return -ENOMEM; 1828 1829 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 1830 1831 root = btrfs_get_fs_root(info, tree_id, true); 1832 if (IS_ERR(root)) { 1833 ret = PTR_ERR(root); 1834 root = NULL; 1835 goto out; 1836 } 1837 1838 key.objectid = dirid; 1839 key.type = BTRFS_INODE_REF_KEY; 1840 key.offset = (u64)-1; 1841 1842 while (1) { 1843 ret = btrfs_search_backwards(root, &key, path); 1844 if (ret < 0) 1845 goto out; 1846 else if (ret > 0) { 1847 ret = -ENOENT; 1848 goto out; 1849 } 1850 1851 l = path->nodes[0]; 1852 slot = path->slots[0]; 1853 1854 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1855 len = btrfs_inode_ref_name_len(l, iref); 1856 ptr -= len + 1; 1857 total_len += len + 1; 1858 if (ptr < name) { 1859 ret = -ENAMETOOLONG; 1860 goto out; 1861 } 1862 1863 *(ptr + len) = '/'; 1864 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 1865 1866 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1867 break; 1868 1869 btrfs_release_path(path); 1870 key.objectid = key.offset; 1871 key.offset = (u64)-1; 1872 dirid = key.objectid; 1873 } 1874 memmove(name, ptr, total_len); 1875 name[total_len] = '\0'; 1876 ret = 0; 1877 out: 1878 btrfs_put_root(root); 1879 btrfs_free_path(path); 1880 return ret; 1881 } 1882 1883 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap, 1884 struct inode *inode, 1885 struct btrfs_ioctl_ino_lookup_user_args *args) 1886 { 1887 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1888 struct super_block *sb = inode->i_sb; 1889 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 1890 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 1891 u64 dirid = args->dirid; 1892 unsigned long item_off; 1893 unsigned long item_len; 1894 struct btrfs_inode_ref *iref; 1895 struct btrfs_root_ref *rref; 1896 struct btrfs_root *root = NULL; 1897 struct btrfs_path *path; 1898 struct btrfs_key key, key2; 1899 struct extent_buffer *leaf; 1900 struct inode *temp_inode; 1901 char *ptr; 1902 int slot; 1903 int len; 1904 int total_len = 0; 1905 int ret; 1906 1907 path = btrfs_alloc_path(); 1908 if (!path) 1909 return -ENOMEM; 1910 1911 /* 1912 * If the bottom subvolume does not exist directly under upper_limit, 1913 * construct the path in from the bottom up. 1914 */ 1915 if (dirid != upper_limit.objectid) { 1916 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 1917 1918 root = btrfs_get_fs_root(fs_info, treeid, true); 1919 if (IS_ERR(root)) { 1920 ret = PTR_ERR(root); 1921 goto out; 1922 } 1923 1924 key.objectid = dirid; 1925 key.type = BTRFS_INODE_REF_KEY; 1926 key.offset = (u64)-1; 1927 while (1) { 1928 ret = btrfs_search_backwards(root, &key, path); 1929 if (ret < 0) 1930 goto out_put; 1931 else if (ret > 0) { 1932 ret = -ENOENT; 1933 goto out_put; 1934 } 1935 1936 leaf = path->nodes[0]; 1937 slot = path->slots[0]; 1938 1939 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 1940 len = btrfs_inode_ref_name_len(leaf, iref); 1941 ptr -= len + 1; 1942 total_len += len + 1; 1943 if (ptr < args->path) { 1944 ret = -ENAMETOOLONG; 1945 goto out_put; 1946 } 1947 1948 *(ptr + len) = '/'; 1949 read_extent_buffer(leaf, ptr, 1950 (unsigned long)(iref + 1), len); 1951 1952 /* Check the read+exec permission of this directory */ 1953 ret = btrfs_previous_item(root, path, dirid, 1954 BTRFS_INODE_ITEM_KEY); 1955 if (ret < 0) { 1956 goto out_put; 1957 } else if (ret > 0) { 1958 ret = -ENOENT; 1959 goto out_put; 1960 } 1961 1962 leaf = path->nodes[0]; 1963 slot = path->slots[0]; 1964 btrfs_item_key_to_cpu(leaf, &key2, slot); 1965 if (key2.objectid != dirid) { 1966 ret = -ENOENT; 1967 goto out_put; 1968 } 1969 1970 /* 1971 * We don't need the path anymore, so release it and 1972 * avoid deadlocks and lockdep warnings in case 1973 * btrfs_iget() needs to lookup the inode from its root 1974 * btree and lock the same leaf. 1975 */ 1976 btrfs_release_path(path); 1977 temp_inode = btrfs_iget(sb, key2.objectid, root); 1978 if (IS_ERR(temp_inode)) { 1979 ret = PTR_ERR(temp_inode); 1980 goto out_put; 1981 } 1982 ret = inode_permission(idmap, temp_inode, 1983 MAY_READ | MAY_EXEC); 1984 iput(temp_inode); 1985 if (ret) { 1986 ret = -EACCES; 1987 goto out_put; 1988 } 1989 1990 if (key.offset == upper_limit.objectid) 1991 break; 1992 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 1993 ret = -EACCES; 1994 goto out_put; 1995 } 1996 1997 key.objectid = key.offset; 1998 key.offset = (u64)-1; 1999 dirid = key.objectid; 2000 } 2001 2002 memmove(args->path, ptr, total_len); 2003 args->path[total_len] = '\0'; 2004 btrfs_put_root(root); 2005 root = NULL; 2006 btrfs_release_path(path); 2007 } 2008 2009 /* Get the bottom subvolume's name from ROOT_REF */ 2010 key.objectid = treeid; 2011 key.type = BTRFS_ROOT_REF_KEY; 2012 key.offset = args->treeid; 2013 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2014 if (ret < 0) { 2015 goto out; 2016 } else if (ret > 0) { 2017 ret = -ENOENT; 2018 goto out; 2019 } 2020 2021 leaf = path->nodes[0]; 2022 slot = path->slots[0]; 2023 btrfs_item_key_to_cpu(leaf, &key, slot); 2024 2025 item_off = btrfs_item_ptr_offset(leaf, slot); 2026 item_len = btrfs_item_size(leaf, slot); 2027 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2028 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2029 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2030 ret = -EINVAL; 2031 goto out; 2032 } 2033 2034 /* Copy subvolume's name */ 2035 item_off += sizeof(struct btrfs_root_ref); 2036 item_len -= sizeof(struct btrfs_root_ref); 2037 read_extent_buffer(leaf, args->name, item_off, item_len); 2038 args->name[item_len] = 0; 2039 2040 out_put: 2041 btrfs_put_root(root); 2042 out: 2043 btrfs_free_path(path); 2044 return ret; 2045 } 2046 2047 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2048 void __user *argp) 2049 { 2050 struct btrfs_ioctl_ino_lookup_args *args; 2051 int ret = 0; 2052 2053 args = memdup_user(argp, sizeof(*args)); 2054 if (IS_ERR(args)) 2055 return PTR_ERR(args); 2056 2057 /* 2058 * Unprivileged query to obtain the containing subvolume root id. The 2059 * path is reset so it's consistent with btrfs_search_path_in_tree. 2060 */ 2061 if (args->treeid == 0) 2062 args->treeid = root->root_key.objectid; 2063 2064 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2065 args->name[0] = 0; 2066 goto out; 2067 } 2068 2069 if (!capable(CAP_SYS_ADMIN)) { 2070 ret = -EPERM; 2071 goto out; 2072 } 2073 2074 ret = btrfs_search_path_in_tree(root->fs_info, 2075 args->treeid, args->objectid, 2076 args->name); 2077 2078 out: 2079 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2080 ret = -EFAULT; 2081 2082 kfree(args); 2083 return ret; 2084 } 2085 2086 /* 2087 * Version of ino_lookup ioctl (unprivileged) 2088 * 2089 * The main differences from ino_lookup ioctl are: 2090 * 2091 * 1. Read + Exec permission will be checked using inode_permission() during 2092 * path construction. -EACCES will be returned in case of failure. 2093 * 2. Path construction will be stopped at the inode number which corresponds 2094 * to the fd with which this ioctl is called. If constructed path does not 2095 * exist under fd's inode, -EACCES will be returned. 2096 * 3. The name of bottom subvolume is also searched and filled. 2097 */ 2098 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2099 { 2100 struct btrfs_ioctl_ino_lookup_user_args *args; 2101 struct inode *inode; 2102 int ret; 2103 2104 args = memdup_user(argp, sizeof(*args)); 2105 if (IS_ERR(args)) 2106 return PTR_ERR(args); 2107 2108 inode = file_inode(file); 2109 2110 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2111 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2112 /* 2113 * The subvolume does not exist under fd with which this is 2114 * called 2115 */ 2116 kfree(args); 2117 return -EACCES; 2118 } 2119 2120 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args); 2121 2122 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2123 ret = -EFAULT; 2124 2125 kfree(args); 2126 return ret; 2127 } 2128 2129 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2130 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2131 { 2132 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2133 struct btrfs_fs_info *fs_info; 2134 struct btrfs_root *root; 2135 struct btrfs_path *path; 2136 struct btrfs_key key; 2137 struct btrfs_root_item *root_item; 2138 struct btrfs_root_ref *rref; 2139 struct extent_buffer *leaf; 2140 unsigned long item_off; 2141 unsigned long item_len; 2142 int slot; 2143 int ret = 0; 2144 2145 path = btrfs_alloc_path(); 2146 if (!path) 2147 return -ENOMEM; 2148 2149 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2150 if (!subvol_info) { 2151 btrfs_free_path(path); 2152 return -ENOMEM; 2153 } 2154 2155 fs_info = BTRFS_I(inode)->root->fs_info; 2156 2157 /* Get root_item of inode's subvolume */ 2158 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2159 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2160 if (IS_ERR(root)) { 2161 ret = PTR_ERR(root); 2162 goto out_free; 2163 } 2164 root_item = &root->root_item; 2165 2166 subvol_info->treeid = key.objectid; 2167 2168 subvol_info->generation = btrfs_root_generation(root_item); 2169 subvol_info->flags = btrfs_root_flags(root_item); 2170 2171 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2172 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2173 BTRFS_UUID_SIZE); 2174 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2175 BTRFS_UUID_SIZE); 2176 2177 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2178 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2179 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2180 2181 subvol_info->otransid = btrfs_root_otransid(root_item); 2182 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2183 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2184 2185 subvol_info->stransid = btrfs_root_stransid(root_item); 2186 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2187 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2188 2189 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2190 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2191 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2192 2193 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2194 /* Search root tree for ROOT_BACKREF of this subvolume */ 2195 key.type = BTRFS_ROOT_BACKREF_KEY; 2196 key.offset = 0; 2197 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2198 if (ret < 0) { 2199 goto out; 2200 } else if (path->slots[0] >= 2201 btrfs_header_nritems(path->nodes[0])) { 2202 ret = btrfs_next_leaf(fs_info->tree_root, path); 2203 if (ret < 0) { 2204 goto out; 2205 } else if (ret > 0) { 2206 ret = -EUCLEAN; 2207 goto out; 2208 } 2209 } 2210 2211 leaf = path->nodes[0]; 2212 slot = path->slots[0]; 2213 btrfs_item_key_to_cpu(leaf, &key, slot); 2214 if (key.objectid == subvol_info->treeid && 2215 key.type == BTRFS_ROOT_BACKREF_KEY) { 2216 subvol_info->parent_id = key.offset; 2217 2218 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2219 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2220 2221 item_off = btrfs_item_ptr_offset(leaf, slot) 2222 + sizeof(struct btrfs_root_ref); 2223 item_len = btrfs_item_size(leaf, slot) 2224 - sizeof(struct btrfs_root_ref); 2225 read_extent_buffer(leaf, subvol_info->name, 2226 item_off, item_len); 2227 } else { 2228 ret = -ENOENT; 2229 goto out; 2230 } 2231 } 2232 2233 btrfs_free_path(path); 2234 path = NULL; 2235 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2236 ret = -EFAULT; 2237 2238 out: 2239 btrfs_put_root(root); 2240 out_free: 2241 btrfs_free_path(path); 2242 kfree(subvol_info); 2243 return ret; 2244 } 2245 2246 /* 2247 * Return ROOT_REF information of the subvolume containing this inode 2248 * except the subvolume name. 2249 */ 2250 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 2251 void __user *argp) 2252 { 2253 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2254 struct btrfs_root_ref *rref; 2255 struct btrfs_path *path; 2256 struct btrfs_key key; 2257 struct extent_buffer *leaf; 2258 u64 objectid; 2259 int slot; 2260 int ret; 2261 u8 found; 2262 2263 path = btrfs_alloc_path(); 2264 if (!path) 2265 return -ENOMEM; 2266 2267 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2268 if (IS_ERR(rootrefs)) { 2269 btrfs_free_path(path); 2270 return PTR_ERR(rootrefs); 2271 } 2272 2273 objectid = root->root_key.objectid; 2274 key.objectid = objectid; 2275 key.type = BTRFS_ROOT_REF_KEY; 2276 key.offset = rootrefs->min_treeid; 2277 found = 0; 2278 2279 root = root->fs_info->tree_root; 2280 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2281 if (ret < 0) { 2282 goto out; 2283 } else if (path->slots[0] >= 2284 btrfs_header_nritems(path->nodes[0])) { 2285 ret = btrfs_next_leaf(root, path); 2286 if (ret < 0) { 2287 goto out; 2288 } else if (ret > 0) { 2289 ret = -EUCLEAN; 2290 goto out; 2291 } 2292 } 2293 while (1) { 2294 leaf = path->nodes[0]; 2295 slot = path->slots[0]; 2296 2297 btrfs_item_key_to_cpu(leaf, &key, slot); 2298 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2299 ret = 0; 2300 goto out; 2301 } 2302 2303 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2304 ret = -EOVERFLOW; 2305 goto out; 2306 } 2307 2308 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2309 rootrefs->rootref[found].treeid = key.offset; 2310 rootrefs->rootref[found].dirid = 2311 btrfs_root_ref_dirid(leaf, rref); 2312 found++; 2313 2314 ret = btrfs_next_item(root, path); 2315 if (ret < 0) { 2316 goto out; 2317 } else if (ret > 0) { 2318 ret = -EUCLEAN; 2319 goto out; 2320 } 2321 } 2322 2323 out: 2324 btrfs_free_path(path); 2325 2326 if (!ret || ret == -EOVERFLOW) { 2327 rootrefs->num_items = found; 2328 /* update min_treeid for next search */ 2329 if (found) 2330 rootrefs->min_treeid = 2331 rootrefs->rootref[found - 1].treeid + 1; 2332 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2333 ret = -EFAULT; 2334 } 2335 2336 kfree(rootrefs); 2337 2338 return ret; 2339 } 2340 2341 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2342 void __user *arg, 2343 bool destroy_v2) 2344 { 2345 struct dentry *parent = file->f_path.dentry; 2346 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2347 struct dentry *dentry; 2348 struct inode *dir = d_inode(parent); 2349 struct inode *inode; 2350 struct btrfs_root *root = BTRFS_I(dir)->root; 2351 struct btrfs_root *dest = NULL; 2352 struct btrfs_ioctl_vol_args *vol_args = NULL; 2353 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2354 struct mnt_idmap *idmap = file_mnt_idmap(file); 2355 char *subvol_name, *subvol_name_ptr = NULL; 2356 int subvol_namelen; 2357 int err = 0; 2358 bool destroy_parent = false; 2359 2360 /* We don't support snapshots with extent tree v2 yet. */ 2361 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2362 btrfs_err(fs_info, 2363 "extent tree v2 doesn't support snapshot deletion yet"); 2364 return -EOPNOTSUPP; 2365 } 2366 2367 if (destroy_v2) { 2368 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2369 if (IS_ERR(vol_args2)) 2370 return PTR_ERR(vol_args2); 2371 2372 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2373 err = -EOPNOTSUPP; 2374 goto out; 2375 } 2376 2377 /* 2378 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2379 * name, same as v1 currently does. 2380 */ 2381 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2382 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2383 subvol_name = vol_args2->name; 2384 2385 err = mnt_want_write_file(file); 2386 if (err) 2387 goto out; 2388 } else { 2389 struct inode *old_dir; 2390 2391 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2392 err = -EINVAL; 2393 goto out; 2394 } 2395 2396 err = mnt_want_write_file(file); 2397 if (err) 2398 goto out; 2399 2400 dentry = btrfs_get_dentry(fs_info->sb, 2401 BTRFS_FIRST_FREE_OBJECTID, 2402 vol_args2->subvolid, 0); 2403 if (IS_ERR(dentry)) { 2404 err = PTR_ERR(dentry); 2405 goto out_drop_write; 2406 } 2407 2408 /* 2409 * Change the default parent since the subvolume being 2410 * deleted can be outside of the current mount point. 2411 */ 2412 parent = btrfs_get_parent(dentry); 2413 2414 /* 2415 * At this point dentry->d_name can point to '/' if the 2416 * subvolume we want to destroy is outsite of the 2417 * current mount point, so we need to release the 2418 * current dentry and execute the lookup to return a new 2419 * one with ->d_name pointing to the 2420 * <mount point>/subvol_name. 2421 */ 2422 dput(dentry); 2423 if (IS_ERR(parent)) { 2424 err = PTR_ERR(parent); 2425 goto out_drop_write; 2426 } 2427 old_dir = dir; 2428 dir = d_inode(parent); 2429 2430 /* 2431 * If v2 was used with SPEC_BY_ID, a new parent was 2432 * allocated since the subvolume can be outside of the 2433 * current mount point. Later on we need to release this 2434 * new parent dentry. 2435 */ 2436 destroy_parent = true; 2437 2438 /* 2439 * On idmapped mounts, deletion via subvolid is 2440 * restricted to subvolumes that are immediate 2441 * ancestors of the inode referenced by the file 2442 * descriptor in the ioctl. Otherwise the idmapping 2443 * could potentially be abused to delete subvolumes 2444 * anywhere in the filesystem the user wouldn't be able 2445 * to delete without an idmapped mount. 2446 */ 2447 if (old_dir != dir && idmap != &nop_mnt_idmap) { 2448 err = -EOPNOTSUPP; 2449 goto free_parent; 2450 } 2451 2452 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2453 fs_info, vol_args2->subvolid); 2454 if (IS_ERR(subvol_name_ptr)) { 2455 err = PTR_ERR(subvol_name_ptr); 2456 goto free_parent; 2457 } 2458 /* subvol_name_ptr is already nul terminated */ 2459 subvol_name = (char *)kbasename(subvol_name_ptr); 2460 } 2461 } else { 2462 vol_args = memdup_user(arg, sizeof(*vol_args)); 2463 if (IS_ERR(vol_args)) 2464 return PTR_ERR(vol_args); 2465 2466 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2467 subvol_name = vol_args->name; 2468 2469 err = mnt_want_write_file(file); 2470 if (err) 2471 goto out; 2472 } 2473 2474 subvol_namelen = strlen(subvol_name); 2475 2476 if (strchr(subvol_name, '/') || 2477 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2478 err = -EINVAL; 2479 goto free_subvol_name; 2480 } 2481 2482 if (!S_ISDIR(dir->i_mode)) { 2483 err = -ENOTDIR; 2484 goto free_subvol_name; 2485 } 2486 2487 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2488 if (err == -EINTR) 2489 goto free_subvol_name; 2490 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen); 2491 if (IS_ERR(dentry)) { 2492 err = PTR_ERR(dentry); 2493 goto out_unlock_dir; 2494 } 2495 2496 if (d_really_is_negative(dentry)) { 2497 err = -ENOENT; 2498 goto out_dput; 2499 } 2500 2501 inode = d_inode(dentry); 2502 dest = BTRFS_I(inode)->root; 2503 if (!capable(CAP_SYS_ADMIN)) { 2504 /* 2505 * Regular user. Only allow this with a special mount 2506 * option, when the user has write+exec access to the 2507 * subvol root, and when rmdir(2) would have been 2508 * allowed. 2509 * 2510 * Note that this is _not_ check that the subvol is 2511 * empty or doesn't contain data that we wouldn't 2512 * otherwise be able to delete. 2513 * 2514 * Users who want to delete empty subvols should try 2515 * rmdir(2). 2516 */ 2517 err = -EPERM; 2518 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2519 goto out_dput; 2520 2521 /* 2522 * Do not allow deletion if the parent dir is the same 2523 * as the dir to be deleted. That means the ioctl 2524 * must be called on the dentry referencing the root 2525 * of the subvol, not a random directory contained 2526 * within it. 2527 */ 2528 err = -EINVAL; 2529 if (root == dest) 2530 goto out_dput; 2531 2532 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC); 2533 if (err) 2534 goto out_dput; 2535 } 2536 2537 /* check if subvolume may be deleted by a user */ 2538 err = btrfs_may_delete(idmap, dir, dentry, 1); 2539 if (err) 2540 goto out_dput; 2541 2542 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2543 err = -EINVAL; 2544 goto out_dput; 2545 } 2546 2547 btrfs_inode_lock(BTRFS_I(inode), 0); 2548 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry); 2549 btrfs_inode_unlock(BTRFS_I(inode), 0); 2550 if (!err) 2551 d_delete_notify(dir, dentry); 2552 2553 out_dput: 2554 dput(dentry); 2555 out_unlock_dir: 2556 btrfs_inode_unlock(BTRFS_I(dir), 0); 2557 free_subvol_name: 2558 kfree(subvol_name_ptr); 2559 free_parent: 2560 if (destroy_parent) 2561 dput(parent); 2562 out_drop_write: 2563 mnt_drop_write_file(file); 2564 out: 2565 kfree(vol_args2); 2566 kfree(vol_args); 2567 return err; 2568 } 2569 2570 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2571 { 2572 struct inode *inode = file_inode(file); 2573 struct btrfs_root *root = BTRFS_I(inode)->root; 2574 struct btrfs_ioctl_defrag_range_args range = {0}; 2575 int ret; 2576 2577 ret = mnt_want_write_file(file); 2578 if (ret) 2579 return ret; 2580 2581 if (btrfs_root_readonly(root)) { 2582 ret = -EROFS; 2583 goto out; 2584 } 2585 2586 switch (inode->i_mode & S_IFMT) { 2587 case S_IFDIR: 2588 if (!capable(CAP_SYS_ADMIN)) { 2589 ret = -EPERM; 2590 goto out; 2591 } 2592 ret = btrfs_defrag_root(root); 2593 break; 2594 case S_IFREG: 2595 /* 2596 * Note that this does not check the file descriptor for write 2597 * access. This prevents defragmenting executables that are 2598 * running and allows defrag on files open in read-only mode. 2599 */ 2600 if (!capable(CAP_SYS_ADMIN) && 2601 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) { 2602 ret = -EPERM; 2603 goto out; 2604 } 2605 2606 if (argp) { 2607 if (copy_from_user(&range, argp, sizeof(range))) { 2608 ret = -EFAULT; 2609 goto out; 2610 } 2611 /* compression requires us to start the IO */ 2612 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2613 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 2614 range.extent_thresh = (u32)-1; 2615 } 2616 } else { 2617 /* the rest are all set to zero by kzalloc */ 2618 range.len = (u64)-1; 2619 } 2620 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 2621 &range, BTRFS_OLDEST_GENERATION, 0); 2622 if (ret > 0) 2623 ret = 0; 2624 break; 2625 default: 2626 ret = -EINVAL; 2627 } 2628 out: 2629 mnt_drop_write_file(file); 2630 return ret; 2631 } 2632 2633 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2634 { 2635 struct btrfs_ioctl_vol_args *vol_args; 2636 bool restore_op = false; 2637 int ret; 2638 2639 if (!capable(CAP_SYS_ADMIN)) 2640 return -EPERM; 2641 2642 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2643 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 2644 return -EINVAL; 2645 } 2646 2647 if (fs_info->fs_devices->temp_fsid) { 2648 btrfs_err(fs_info, 2649 "device add not supported on cloned temp-fsid mount"); 2650 return -EINVAL; 2651 } 2652 2653 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 2654 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 2655 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2656 2657 /* 2658 * We can do the device add because we have a paused balanced, 2659 * change the exclusive op type and remember we should bring 2660 * back the paused balance 2661 */ 2662 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 2663 btrfs_exclop_start_unlock(fs_info); 2664 restore_op = true; 2665 } 2666 2667 vol_args = memdup_user(arg, sizeof(*vol_args)); 2668 if (IS_ERR(vol_args)) { 2669 ret = PTR_ERR(vol_args); 2670 goto out; 2671 } 2672 2673 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2674 ret = btrfs_init_new_device(fs_info, vol_args->name); 2675 2676 if (!ret) 2677 btrfs_info(fs_info, "disk added %s", vol_args->name); 2678 2679 kfree(vol_args); 2680 out: 2681 if (restore_op) 2682 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 2683 else 2684 btrfs_exclop_finish(fs_info); 2685 return ret; 2686 } 2687 2688 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2689 { 2690 BTRFS_DEV_LOOKUP_ARGS(args); 2691 struct inode *inode = file_inode(file); 2692 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2693 struct btrfs_ioctl_vol_args_v2 *vol_args; 2694 struct bdev_handle *bdev_handle = NULL; 2695 int ret; 2696 bool cancel = false; 2697 2698 if (!capable(CAP_SYS_ADMIN)) 2699 return -EPERM; 2700 2701 vol_args = memdup_user(arg, sizeof(*vol_args)); 2702 if (IS_ERR(vol_args)) 2703 return PTR_ERR(vol_args); 2704 2705 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 2706 ret = -EOPNOTSUPP; 2707 goto out; 2708 } 2709 2710 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2711 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2712 args.devid = vol_args->devid; 2713 } else if (!strcmp("cancel", vol_args->name)) { 2714 cancel = true; 2715 } else { 2716 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2717 if (ret) 2718 goto out; 2719 } 2720 2721 ret = mnt_want_write_file(file); 2722 if (ret) 2723 goto out; 2724 2725 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2726 cancel); 2727 if (ret) 2728 goto err_drop; 2729 2730 /* Exclusive operation is now claimed */ 2731 ret = btrfs_rm_device(fs_info, &args, &bdev_handle); 2732 2733 btrfs_exclop_finish(fs_info); 2734 2735 if (!ret) { 2736 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2737 btrfs_info(fs_info, "device deleted: id %llu", 2738 vol_args->devid); 2739 else 2740 btrfs_info(fs_info, "device deleted: %s", 2741 vol_args->name); 2742 } 2743 err_drop: 2744 mnt_drop_write_file(file); 2745 if (bdev_handle) 2746 bdev_release(bdev_handle); 2747 out: 2748 btrfs_put_dev_args_from_path(&args); 2749 kfree(vol_args); 2750 return ret; 2751 } 2752 2753 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2754 { 2755 BTRFS_DEV_LOOKUP_ARGS(args); 2756 struct inode *inode = file_inode(file); 2757 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2758 struct btrfs_ioctl_vol_args *vol_args; 2759 struct bdev_handle *bdev_handle = NULL; 2760 int ret; 2761 bool cancel = false; 2762 2763 if (!capable(CAP_SYS_ADMIN)) 2764 return -EPERM; 2765 2766 vol_args = memdup_user(arg, sizeof(*vol_args)); 2767 if (IS_ERR(vol_args)) 2768 return PTR_ERR(vol_args); 2769 2770 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2771 if (!strcmp("cancel", vol_args->name)) { 2772 cancel = true; 2773 } else { 2774 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2775 if (ret) 2776 goto out; 2777 } 2778 2779 ret = mnt_want_write_file(file); 2780 if (ret) 2781 goto out; 2782 2783 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2784 cancel); 2785 if (ret == 0) { 2786 ret = btrfs_rm_device(fs_info, &args, &bdev_handle); 2787 if (!ret) 2788 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2789 btrfs_exclop_finish(fs_info); 2790 } 2791 2792 mnt_drop_write_file(file); 2793 if (bdev_handle) 2794 bdev_release(bdev_handle); 2795 out: 2796 btrfs_put_dev_args_from_path(&args); 2797 kfree(vol_args); 2798 return ret; 2799 } 2800 2801 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2802 void __user *arg) 2803 { 2804 struct btrfs_ioctl_fs_info_args *fi_args; 2805 struct btrfs_device *device; 2806 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2807 u64 flags_in; 2808 int ret = 0; 2809 2810 fi_args = memdup_user(arg, sizeof(*fi_args)); 2811 if (IS_ERR(fi_args)) 2812 return PTR_ERR(fi_args); 2813 2814 flags_in = fi_args->flags; 2815 memset(fi_args, 0, sizeof(*fi_args)); 2816 2817 rcu_read_lock(); 2818 fi_args->num_devices = fs_devices->num_devices; 2819 2820 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2821 if (device->devid > fi_args->max_id) 2822 fi_args->max_id = device->devid; 2823 } 2824 rcu_read_unlock(); 2825 2826 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 2827 fi_args->nodesize = fs_info->nodesize; 2828 fi_args->sectorsize = fs_info->sectorsize; 2829 fi_args->clone_alignment = fs_info->sectorsize; 2830 2831 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 2832 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 2833 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 2834 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 2835 } 2836 2837 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 2838 fi_args->generation = btrfs_get_fs_generation(fs_info); 2839 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 2840 } 2841 2842 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 2843 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 2844 sizeof(fi_args->metadata_uuid)); 2845 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 2846 } 2847 2848 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2849 ret = -EFAULT; 2850 2851 kfree(fi_args); 2852 return ret; 2853 } 2854 2855 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2856 void __user *arg) 2857 { 2858 BTRFS_DEV_LOOKUP_ARGS(args); 2859 struct btrfs_ioctl_dev_info_args *di_args; 2860 struct btrfs_device *dev; 2861 int ret = 0; 2862 2863 di_args = memdup_user(arg, sizeof(*di_args)); 2864 if (IS_ERR(di_args)) 2865 return PTR_ERR(di_args); 2866 2867 args.devid = di_args->devid; 2868 if (!btrfs_is_empty_uuid(di_args->uuid)) 2869 args.uuid = di_args->uuid; 2870 2871 rcu_read_lock(); 2872 dev = btrfs_find_device(fs_info->fs_devices, &args); 2873 if (!dev) { 2874 ret = -ENODEV; 2875 goto out; 2876 } 2877 2878 di_args->devid = dev->devid; 2879 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2880 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2881 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2882 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2883 if (dev->name) 2884 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path)); 2885 else 2886 di_args->path[0] = '\0'; 2887 2888 out: 2889 rcu_read_unlock(); 2890 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2891 ret = -EFAULT; 2892 2893 kfree(di_args); 2894 return ret; 2895 } 2896 2897 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2898 { 2899 struct inode *inode = file_inode(file); 2900 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2901 struct btrfs_root *root = BTRFS_I(inode)->root; 2902 struct btrfs_root *new_root; 2903 struct btrfs_dir_item *di; 2904 struct btrfs_trans_handle *trans; 2905 struct btrfs_path *path = NULL; 2906 struct btrfs_disk_key disk_key; 2907 struct fscrypt_str name = FSTR_INIT("default", 7); 2908 u64 objectid = 0; 2909 u64 dir_id; 2910 int ret; 2911 2912 if (!capable(CAP_SYS_ADMIN)) 2913 return -EPERM; 2914 2915 ret = mnt_want_write_file(file); 2916 if (ret) 2917 return ret; 2918 2919 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2920 ret = -EFAULT; 2921 goto out; 2922 } 2923 2924 if (!objectid) 2925 objectid = BTRFS_FS_TREE_OBJECTID; 2926 2927 new_root = btrfs_get_fs_root(fs_info, objectid, true); 2928 if (IS_ERR(new_root)) { 2929 ret = PTR_ERR(new_root); 2930 goto out; 2931 } 2932 if (!is_fstree(new_root->root_key.objectid)) { 2933 ret = -ENOENT; 2934 goto out_free; 2935 } 2936 2937 path = btrfs_alloc_path(); 2938 if (!path) { 2939 ret = -ENOMEM; 2940 goto out_free; 2941 } 2942 2943 trans = btrfs_start_transaction(root, 1); 2944 if (IS_ERR(trans)) { 2945 ret = PTR_ERR(trans); 2946 goto out_free; 2947 } 2948 2949 dir_id = btrfs_super_root_dir(fs_info->super_copy); 2950 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 2951 dir_id, &name, 1); 2952 if (IS_ERR_OR_NULL(di)) { 2953 btrfs_release_path(path); 2954 btrfs_end_transaction(trans); 2955 btrfs_err(fs_info, 2956 "Umm, you don't have the default diritem, this isn't going to work"); 2957 ret = -ENOENT; 2958 goto out_free; 2959 } 2960 2961 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2962 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2963 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 2964 btrfs_release_path(path); 2965 2966 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 2967 btrfs_end_transaction(trans); 2968 out_free: 2969 btrfs_put_root(new_root); 2970 btrfs_free_path(path); 2971 out: 2972 mnt_drop_write_file(file); 2973 return ret; 2974 } 2975 2976 static void get_block_group_info(struct list_head *groups_list, 2977 struct btrfs_ioctl_space_info *space) 2978 { 2979 struct btrfs_block_group *block_group; 2980 2981 space->total_bytes = 0; 2982 space->used_bytes = 0; 2983 space->flags = 0; 2984 list_for_each_entry(block_group, groups_list, list) { 2985 space->flags = block_group->flags; 2986 space->total_bytes += block_group->length; 2987 space->used_bytes += block_group->used; 2988 } 2989 } 2990 2991 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 2992 void __user *arg) 2993 { 2994 struct btrfs_ioctl_space_args space_args = { 0 }; 2995 struct btrfs_ioctl_space_info space; 2996 struct btrfs_ioctl_space_info *dest; 2997 struct btrfs_ioctl_space_info *dest_orig; 2998 struct btrfs_ioctl_space_info __user *user_dest; 2999 struct btrfs_space_info *info; 3000 static const u64 types[] = { 3001 BTRFS_BLOCK_GROUP_DATA, 3002 BTRFS_BLOCK_GROUP_SYSTEM, 3003 BTRFS_BLOCK_GROUP_METADATA, 3004 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3005 }; 3006 int num_types = 4; 3007 int alloc_size; 3008 int ret = 0; 3009 u64 slot_count = 0; 3010 int i, c; 3011 3012 if (copy_from_user(&space_args, 3013 (struct btrfs_ioctl_space_args __user *)arg, 3014 sizeof(space_args))) 3015 return -EFAULT; 3016 3017 for (i = 0; i < num_types; i++) { 3018 struct btrfs_space_info *tmp; 3019 3020 info = NULL; 3021 list_for_each_entry(tmp, &fs_info->space_info, list) { 3022 if (tmp->flags == types[i]) { 3023 info = tmp; 3024 break; 3025 } 3026 } 3027 3028 if (!info) 3029 continue; 3030 3031 down_read(&info->groups_sem); 3032 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3033 if (!list_empty(&info->block_groups[c])) 3034 slot_count++; 3035 } 3036 up_read(&info->groups_sem); 3037 } 3038 3039 /* 3040 * Global block reserve, exported as a space_info 3041 */ 3042 slot_count++; 3043 3044 /* space_slots == 0 means they are asking for a count */ 3045 if (space_args.space_slots == 0) { 3046 space_args.total_spaces = slot_count; 3047 goto out; 3048 } 3049 3050 slot_count = min_t(u64, space_args.space_slots, slot_count); 3051 3052 alloc_size = sizeof(*dest) * slot_count; 3053 3054 /* we generally have at most 6 or so space infos, one for each raid 3055 * level. So, a whole page should be more than enough for everyone 3056 */ 3057 if (alloc_size > PAGE_SIZE) 3058 return -ENOMEM; 3059 3060 space_args.total_spaces = 0; 3061 dest = kmalloc(alloc_size, GFP_KERNEL); 3062 if (!dest) 3063 return -ENOMEM; 3064 dest_orig = dest; 3065 3066 /* now we have a buffer to copy into */ 3067 for (i = 0; i < num_types; i++) { 3068 struct btrfs_space_info *tmp; 3069 3070 if (!slot_count) 3071 break; 3072 3073 info = NULL; 3074 list_for_each_entry(tmp, &fs_info->space_info, list) { 3075 if (tmp->flags == types[i]) { 3076 info = tmp; 3077 break; 3078 } 3079 } 3080 3081 if (!info) 3082 continue; 3083 down_read(&info->groups_sem); 3084 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3085 if (!list_empty(&info->block_groups[c])) { 3086 get_block_group_info(&info->block_groups[c], 3087 &space); 3088 memcpy(dest, &space, sizeof(space)); 3089 dest++; 3090 space_args.total_spaces++; 3091 slot_count--; 3092 } 3093 if (!slot_count) 3094 break; 3095 } 3096 up_read(&info->groups_sem); 3097 } 3098 3099 /* 3100 * Add global block reserve 3101 */ 3102 if (slot_count) { 3103 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3104 3105 spin_lock(&block_rsv->lock); 3106 space.total_bytes = block_rsv->size; 3107 space.used_bytes = block_rsv->size - block_rsv->reserved; 3108 spin_unlock(&block_rsv->lock); 3109 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3110 memcpy(dest, &space, sizeof(space)); 3111 space_args.total_spaces++; 3112 } 3113 3114 user_dest = (struct btrfs_ioctl_space_info __user *) 3115 (arg + sizeof(struct btrfs_ioctl_space_args)); 3116 3117 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3118 ret = -EFAULT; 3119 3120 kfree(dest_orig); 3121 out: 3122 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3123 ret = -EFAULT; 3124 3125 return ret; 3126 } 3127 3128 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3129 void __user *argp) 3130 { 3131 struct btrfs_trans_handle *trans; 3132 u64 transid; 3133 3134 /* 3135 * Start orphan cleanup here for the given root in case it hasn't been 3136 * started already by other means. Errors are handled in the other 3137 * functions during transaction commit. 3138 */ 3139 btrfs_orphan_cleanup(root); 3140 3141 trans = btrfs_attach_transaction_barrier(root); 3142 if (IS_ERR(trans)) { 3143 if (PTR_ERR(trans) != -ENOENT) 3144 return PTR_ERR(trans); 3145 3146 /* No running transaction, don't bother */ 3147 transid = btrfs_get_last_trans_committed(root->fs_info); 3148 goto out; 3149 } 3150 transid = trans->transid; 3151 btrfs_commit_transaction_async(trans); 3152 out: 3153 if (argp) 3154 if (copy_to_user(argp, &transid, sizeof(transid))) 3155 return -EFAULT; 3156 return 0; 3157 } 3158 3159 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3160 void __user *argp) 3161 { 3162 /* By default wait for the current transaction. */ 3163 u64 transid = 0; 3164 3165 if (argp) 3166 if (copy_from_user(&transid, argp, sizeof(transid))) 3167 return -EFAULT; 3168 3169 return btrfs_wait_for_commit(fs_info, transid); 3170 } 3171 3172 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3173 { 3174 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3175 struct btrfs_ioctl_scrub_args *sa; 3176 int ret; 3177 3178 if (!capable(CAP_SYS_ADMIN)) 3179 return -EPERM; 3180 3181 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3182 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 3183 return -EINVAL; 3184 } 3185 3186 sa = memdup_user(arg, sizeof(*sa)); 3187 if (IS_ERR(sa)) 3188 return PTR_ERR(sa); 3189 3190 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) { 3191 ret = -EOPNOTSUPP; 3192 goto out; 3193 } 3194 3195 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3196 ret = mnt_want_write_file(file); 3197 if (ret) 3198 goto out; 3199 } 3200 3201 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3202 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3203 0); 3204 3205 /* 3206 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3207 * error. This is important as it allows user space to know how much 3208 * progress scrub has done. For example, if scrub is canceled we get 3209 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3210 * space. Later user space can inspect the progress from the structure 3211 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3212 * previously (btrfs-progs does this). 3213 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3214 * then return -EFAULT to signal the structure was not copied or it may 3215 * be corrupt and unreliable due to a partial copy. 3216 */ 3217 if (copy_to_user(arg, sa, sizeof(*sa))) 3218 ret = -EFAULT; 3219 3220 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3221 mnt_drop_write_file(file); 3222 out: 3223 kfree(sa); 3224 return ret; 3225 } 3226 3227 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3228 { 3229 if (!capable(CAP_SYS_ADMIN)) 3230 return -EPERM; 3231 3232 return btrfs_scrub_cancel(fs_info); 3233 } 3234 3235 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3236 void __user *arg) 3237 { 3238 struct btrfs_ioctl_scrub_args *sa; 3239 int ret; 3240 3241 if (!capable(CAP_SYS_ADMIN)) 3242 return -EPERM; 3243 3244 sa = memdup_user(arg, sizeof(*sa)); 3245 if (IS_ERR(sa)) 3246 return PTR_ERR(sa); 3247 3248 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3249 3250 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3251 ret = -EFAULT; 3252 3253 kfree(sa); 3254 return ret; 3255 } 3256 3257 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3258 void __user *arg) 3259 { 3260 struct btrfs_ioctl_get_dev_stats *sa; 3261 int ret; 3262 3263 sa = memdup_user(arg, sizeof(*sa)); 3264 if (IS_ERR(sa)) 3265 return PTR_ERR(sa); 3266 3267 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3268 kfree(sa); 3269 return -EPERM; 3270 } 3271 3272 ret = btrfs_get_dev_stats(fs_info, sa); 3273 3274 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3275 ret = -EFAULT; 3276 3277 kfree(sa); 3278 return ret; 3279 } 3280 3281 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3282 void __user *arg) 3283 { 3284 struct btrfs_ioctl_dev_replace_args *p; 3285 int ret; 3286 3287 if (!capable(CAP_SYS_ADMIN)) 3288 return -EPERM; 3289 3290 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3291 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 3292 return -EINVAL; 3293 } 3294 3295 p = memdup_user(arg, sizeof(*p)); 3296 if (IS_ERR(p)) 3297 return PTR_ERR(p); 3298 3299 switch (p->cmd) { 3300 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3301 if (sb_rdonly(fs_info->sb)) { 3302 ret = -EROFS; 3303 goto out; 3304 } 3305 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3306 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3307 } else { 3308 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3309 btrfs_exclop_finish(fs_info); 3310 } 3311 break; 3312 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3313 btrfs_dev_replace_status(fs_info, p); 3314 ret = 0; 3315 break; 3316 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3317 p->result = btrfs_dev_replace_cancel(fs_info); 3318 ret = 0; 3319 break; 3320 default: 3321 ret = -EINVAL; 3322 break; 3323 } 3324 3325 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3326 ret = -EFAULT; 3327 out: 3328 kfree(p); 3329 return ret; 3330 } 3331 3332 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3333 { 3334 int ret = 0; 3335 int i; 3336 u64 rel_ptr; 3337 int size; 3338 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3339 struct inode_fs_paths *ipath = NULL; 3340 struct btrfs_path *path; 3341 3342 if (!capable(CAP_DAC_READ_SEARCH)) 3343 return -EPERM; 3344 3345 path = btrfs_alloc_path(); 3346 if (!path) { 3347 ret = -ENOMEM; 3348 goto out; 3349 } 3350 3351 ipa = memdup_user(arg, sizeof(*ipa)); 3352 if (IS_ERR(ipa)) { 3353 ret = PTR_ERR(ipa); 3354 ipa = NULL; 3355 goto out; 3356 } 3357 3358 size = min_t(u32, ipa->size, 4096); 3359 ipath = init_ipath(size, root, path); 3360 if (IS_ERR(ipath)) { 3361 ret = PTR_ERR(ipath); 3362 ipath = NULL; 3363 goto out; 3364 } 3365 3366 ret = paths_from_inode(ipa->inum, ipath); 3367 if (ret < 0) 3368 goto out; 3369 3370 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3371 rel_ptr = ipath->fspath->val[i] - 3372 (u64)(unsigned long)ipath->fspath->val; 3373 ipath->fspath->val[i] = rel_ptr; 3374 } 3375 3376 btrfs_free_path(path); 3377 path = NULL; 3378 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3379 ipath->fspath, size); 3380 if (ret) { 3381 ret = -EFAULT; 3382 goto out; 3383 } 3384 3385 out: 3386 btrfs_free_path(path); 3387 free_ipath(ipath); 3388 kfree(ipa); 3389 3390 return ret; 3391 } 3392 3393 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3394 void __user *arg, int version) 3395 { 3396 int ret = 0; 3397 int size; 3398 struct btrfs_ioctl_logical_ino_args *loi; 3399 struct btrfs_data_container *inodes = NULL; 3400 struct btrfs_path *path = NULL; 3401 bool ignore_offset; 3402 3403 if (!capable(CAP_SYS_ADMIN)) 3404 return -EPERM; 3405 3406 loi = memdup_user(arg, sizeof(*loi)); 3407 if (IS_ERR(loi)) 3408 return PTR_ERR(loi); 3409 3410 if (version == 1) { 3411 ignore_offset = false; 3412 size = min_t(u32, loi->size, SZ_64K); 3413 } else { 3414 /* All reserved bits must be 0 for now */ 3415 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3416 ret = -EINVAL; 3417 goto out_loi; 3418 } 3419 /* Only accept flags we have defined so far */ 3420 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3421 ret = -EINVAL; 3422 goto out_loi; 3423 } 3424 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3425 size = min_t(u32, loi->size, SZ_16M); 3426 } 3427 3428 inodes = init_data_container(size); 3429 if (IS_ERR(inodes)) { 3430 ret = PTR_ERR(inodes); 3431 goto out_loi; 3432 } 3433 3434 path = btrfs_alloc_path(); 3435 if (!path) { 3436 ret = -ENOMEM; 3437 goto out; 3438 } 3439 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3440 inodes, ignore_offset); 3441 btrfs_free_path(path); 3442 if (ret == -EINVAL) 3443 ret = -ENOENT; 3444 if (ret < 0) 3445 goto out; 3446 3447 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3448 size); 3449 if (ret) 3450 ret = -EFAULT; 3451 3452 out: 3453 kvfree(inodes); 3454 out_loi: 3455 kfree(loi); 3456 3457 return ret; 3458 } 3459 3460 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3461 struct btrfs_ioctl_balance_args *bargs) 3462 { 3463 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3464 3465 bargs->flags = bctl->flags; 3466 3467 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3468 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3469 if (atomic_read(&fs_info->balance_pause_req)) 3470 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3471 if (atomic_read(&fs_info->balance_cancel_req)) 3472 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3473 3474 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3475 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3476 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3477 3478 spin_lock(&fs_info->balance_lock); 3479 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3480 spin_unlock(&fs_info->balance_lock); 3481 } 3482 3483 /* 3484 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 3485 * required. 3486 * 3487 * @fs_info: the filesystem 3488 * @excl_acquired: ptr to boolean value which is set to false in case balance 3489 * is being resumed 3490 * 3491 * Return 0 on success in which case both fs_info::balance is acquired as well 3492 * as exclusive ops are blocked. In case of failure return an error code. 3493 */ 3494 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 3495 { 3496 int ret; 3497 3498 /* 3499 * Exclusive operation is locked. Three possibilities: 3500 * (1) some other op is running 3501 * (2) balance is running 3502 * (3) balance is paused -- special case (think resume) 3503 */ 3504 while (1) { 3505 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3506 *excl_acquired = true; 3507 mutex_lock(&fs_info->balance_mutex); 3508 return 0; 3509 } 3510 3511 mutex_lock(&fs_info->balance_mutex); 3512 if (fs_info->balance_ctl) { 3513 /* This is either (2) or (3) */ 3514 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3515 /* This is (2) */ 3516 ret = -EINPROGRESS; 3517 goto out_failure; 3518 3519 } else { 3520 mutex_unlock(&fs_info->balance_mutex); 3521 /* 3522 * Lock released to allow other waiters to 3523 * continue, we'll reexamine the status again. 3524 */ 3525 mutex_lock(&fs_info->balance_mutex); 3526 3527 if (fs_info->balance_ctl && 3528 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3529 /* This is (3) */ 3530 *excl_acquired = false; 3531 return 0; 3532 } 3533 } 3534 } else { 3535 /* This is (1) */ 3536 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3537 goto out_failure; 3538 } 3539 3540 mutex_unlock(&fs_info->balance_mutex); 3541 } 3542 3543 out_failure: 3544 mutex_unlock(&fs_info->balance_mutex); 3545 *excl_acquired = false; 3546 return ret; 3547 } 3548 3549 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3550 { 3551 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3552 struct btrfs_fs_info *fs_info = root->fs_info; 3553 struct btrfs_ioctl_balance_args *bargs; 3554 struct btrfs_balance_control *bctl; 3555 bool need_unlock = true; 3556 int ret; 3557 3558 if (!capable(CAP_SYS_ADMIN)) 3559 return -EPERM; 3560 3561 ret = mnt_want_write_file(file); 3562 if (ret) 3563 return ret; 3564 3565 bargs = memdup_user(arg, sizeof(*bargs)); 3566 if (IS_ERR(bargs)) { 3567 ret = PTR_ERR(bargs); 3568 bargs = NULL; 3569 goto out; 3570 } 3571 3572 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 3573 if (ret) 3574 goto out; 3575 3576 lockdep_assert_held(&fs_info->balance_mutex); 3577 3578 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3579 if (!fs_info->balance_ctl) { 3580 ret = -ENOTCONN; 3581 goto out_unlock; 3582 } 3583 3584 bctl = fs_info->balance_ctl; 3585 spin_lock(&fs_info->balance_lock); 3586 bctl->flags |= BTRFS_BALANCE_RESUME; 3587 spin_unlock(&fs_info->balance_lock); 3588 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 3589 3590 goto do_balance; 3591 } 3592 3593 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3594 ret = -EINVAL; 3595 goto out_unlock; 3596 } 3597 3598 if (fs_info->balance_ctl) { 3599 ret = -EINPROGRESS; 3600 goto out_unlock; 3601 } 3602 3603 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3604 if (!bctl) { 3605 ret = -ENOMEM; 3606 goto out_unlock; 3607 } 3608 3609 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3610 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3611 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3612 3613 bctl->flags = bargs->flags; 3614 do_balance: 3615 /* 3616 * Ownership of bctl and exclusive operation goes to btrfs_balance. 3617 * bctl is freed in reset_balance_state, or, if restriper was paused 3618 * all the way until unmount, in free_fs_info. The flag should be 3619 * cleared after reset_balance_state. 3620 */ 3621 need_unlock = false; 3622 3623 ret = btrfs_balance(fs_info, bctl, bargs); 3624 bctl = NULL; 3625 3626 if (ret == 0 || ret == -ECANCELED) { 3627 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3628 ret = -EFAULT; 3629 } 3630 3631 kfree(bctl); 3632 out_unlock: 3633 mutex_unlock(&fs_info->balance_mutex); 3634 if (need_unlock) 3635 btrfs_exclop_finish(fs_info); 3636 out: 3637 mnt_drop_write_file(file); 3638 kfree(bargs); 3639 return ret; 3640 } 3641 3642 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 3643 { 3644 if (!capable(CAP_SYS_ADMIN)) 3645 return -EPERM; 3646 3647 switch (cmd) { 3648 case BTRFS_BALANCE_CTL_PAUSE: 3649 return btrfs_pause_balance(fs_info); 3650 case BTRFS_BALANCE_CTL_CANCEL: 3651 return btrfs_cancel_balance(fs_info); 3652 } 3653 3654 return -EINVAL; 3655 } 3656 3657 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 3658 void __user *arg) 3659 { 3660 struct btrfs_ioctl_balance_args *bargs; 3661 int ret = 0; 3662 3663 if (!capable(CAP_SYS_ADMIN)) 3664 return -EPERM; 3665 3666 mutex_lock(&fs_info->balance_mutex); 3667 if (!fs_info->balance_ctl) { 3668 ret = -ENOTCONN; 3669 goto out; 3670 } 3671 3672 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 3673 if (!bargs) { 3674 ret = -ENOMEM; 3675 goto out; 3676 } 3677 3678 btrfs_update_ioctl_balance_args(fs_info, bargs); 3679 3680 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3681 ret = -EFAULT; 3682 3683 kfree(bargs); 3684 out: 3685 mutex_unlock(&fs_info->balance_mutex); 3686 return ret; 3687 } 3688 3689 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3690 { 3691 struct inode *inode = file_inode(file); 3692 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3693 struct btrfs_ioctl_quota_ctl_args *sa; 3694 int ret; 3695 3696 if (!capable(CAP_SYS_ADMIN)) 3697 return -EPERM; 3698 3699 ret = mnt_want_write_file(file); 3700 if (ret) 3701 return ret; 3702 3703 sa = memdup_user(arg, sizeof(*sa)); 3704 if (IS_ERR(sa)) { 3705 ret = PTR_ERR(sa); 3706 goto drop_write; 3707 } 3708 3709 down_write(&fs_info->subvol_sem); 3710 3711 switch (sa->cmd) { 3712 case BTRFS_QUOTA_CTL_ENABLE: 3713 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA: 3714 ret = btrfs_quota_enable(fs_info, sa); 3715 break; 3716 case BTRFS_QUOTA_CTL_DISABLE: 3717 ret = btrfs_quota_disable(fs_info); 3718 break; 3719 default: 3720 ret = -EINVAL; 3721 break; 3722 } 3723 3724 kfree(sa); 3725 up_write(&fs_info->subvol_sem); 3726 drop_write: 3727 mnt_drop_write_file(file); 3728 return ret; 3729 } 3730 3731 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3732 { 3733 struct inode *inode = file_inode(file); 3734 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3735 struct btrfs_root *root = BTRFS_I(inode)->root; 3736 struct btrfs_ioctl_qgroup_assign_args *sa; 3737 struct btrfs_trans_handle *trans; 3738 int ret; 3739 int err; 3740 3741 if (!capable(CAP_SYS_ADMIN)) 3742 return -EPERM; 3743 3744 ret = mnt_want_write_file(file); 3745 if (ret) 3746 return ret; 3747 3748 sa = memdup_user(arg, sizeof(*sa)); 3749 if (IS_ERR(sa)) { 3750 ret = PTR_ERR(sa); 3751 goto drop_write; 3752 } 3753 3754 trans = btrfs_join_transaction(root); 3755 if (IS_ERR(trans)) { 3756 ret = PTR_ERR(trans); 3757 goto out; 3758 } 3759 3760 if (sa->assign) { 3761 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 3762 } else { 3763 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 3764 } 3765 3766 /* update qgroup status and info */ 3767 mutex_lock(&fs_info->qgroup_ioctl_lock); 3768 err = btrfs_run_qgroups(trans); 3769 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3770 if (err < 0) 3771 btrfs_handle_fs_error(fs_info, err, 3772 "failed to update qgroup status and info"); 3773 err = btrfs_end_transaction(trans); 3774 if (err && !ret) 3775 ret = err; 3776 3777 out: 3778 kfree(sa); 3779 drop_write: 3780 mnt_drop_write_file(file); 3781 return ret; 3782 } 3783 3784 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3785 { 3786 struct inode *inode = file_inode(file); 3787 struct btrfs_root *root = BTRFS_I(inode)->root; 3788 struct btrfs_ioctl_qgroup_create_args *sa; 3789 struct btrfs_trans_handle *trans; 3790 int ret; 3791 int err; 3792 3793 if (!capable(CAP_SYS_ADMIN)) 3794 return -EPERM; 3795 3796 ret = mnt_want_write_file(file); 3797 if (ret) 3798 return ret; 3799 3800 sa = memdup_user(arg, sizeof(*sa)); 3801 if (IS_ERR(sa)) { 3802 ret = PTR_ERR(sa); 3803 goto drop_write; 3804 } 3805 3806 if (!sa->qgroupid) { 3807 ret = -EINVAL; 3808 goto out; 3809 } 3810 3811 trans = btrfs_join_transaction(root); 3812 if (IS_ERR(trans)) { 3813 ret = PTR_ERR(trans); 3814 goto out; 3815 } 3816 3817 if (sa->create) { 3818 ret = btrfs_create_qgroup(trans, sa->qgroupid); 3819 } else { 3820 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 3821 } 3822 3823 err = btrfs_end_transaction(trans); 3824 if (err && !ret) 3825 ret = err; 3826 3827 out: 3828 kfree(sa); 3829 drop_write: 3830 mnt_drop_write_file(file); 3831 return ret; 3832 } 3833 3834 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3835 { 3836 struct inode *inode = file_inode(file); 3837 struct btrfs_root *root = BTRFS_I(inode)->root; 3838 struct btrfs_ioctl_qgroup_limit_args *sa; 3839 struct btrfs_trans_handle *trans; 3840 int ret; 3841 int err; 3842 u64 qgroupid; 3843 3844 if (!capable(CAP_SYS_ADMIN)) 3845 return -EPERM; 3846 3847 ret = mnt_want_write_file(file); 3848 if (ret) 3849 return ret; 3850 3851 sa = memdup_user(arg, sizeof(*sa)); 3852 if (IS_ERR(sa)) { 3853 ret = PTR_ERR(sa); 3854 goto drop_write; 3855 } 3856 3857 trans = btrfs_join_transaction(root); 3858 if (IS_ERR(trans)) { 3859 ret = PTR_ERR(trans); 3860 goto out; 3861 } 3862 3863 qgroupid = sa->qgroupid; 3864 if (!qgroupid) { 3865 /* take the current subvol as qgroup */ 3866 qgroupid = root->root_key.objectid; 3867 } 3868 3869 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 3870 3871 err = btrfs_end_transaction(trans); 3872 if (err && !ret) 3873 ret = err; 3874 3875 out: 3876 kfree(sa); 3877 drop_write: 3878 mnt_drop_write_file(file); 3879 return ret; 3880 } 3881 3882 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 3883 { 3884 struct inode *inode = file_inode(file); 3885 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3886 struct btrfs_ioctl_quota_rescan_args *qsa; 3887 int ret; 3888 3889 if (!capable(CAP_SYS_ADMIN)) 3890 return -EPERM; 3891 3892 ret = mnt_want_write_file(file); 3893 if (ret) 3894 return ret; 3895 3896 qsa = memdup_user(arg, sizeof(*qsa)); 3897 if (IS_ERR(qsa)) { 3898 ret = PTR_ERR(qsa); 3899 goto drop_write; 3900 } 3901 3902 if (qsa->flags) { 3903 ret = -EINVAL; 3904 goto out; 3905 } 3906 3907 ret = btrfs_qgroup_rescan(fs_info); 3908 3909 out: 3910 kfree(qsa); 3911 drop_write: 3912 mnt_drop_write_file(file); 3913 return ret; 3914 } 3915 3916 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 3917 void __user *arg) 3918 { 3919 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 3920 3921 if (!capable(CAP_SYS_ADMIN)) 3922 return -EPERM; 3923 3924 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 3925 qsa.flags = 1; 3926 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 3927 } 3928 3929 if (copy_to_user(arg, &qsa, sizeof(qsa))) 3930 return -EFAULT; 3931 3932 return 0; 3933 } 3934 3935 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 3936 void __user *arg) 3937 { 3938 if (!capable(CAP_SYS_ADMIN)) 3939 return -EPERM; 3940 3941 return btrfs_qgroup_wait_for_completion(fs_info, true); 3942 } 3943 3944 static long _btrfs_ioctl_set_received_subvol(struct file *file, 3945 struct mnt_idmap *idmap, 3946 struct btrfs_ioctl_received_subvol_args *sa) 3947 { 3948 struct inode *inode = file_inode(file); 3949 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3950 struct btrfs_root *root = BTRFS_I(inode)->root; 3951 struct btrfs_root_item *root_item = &root->root_item; 3952 struct btrfs_trans_handle *trans; 3953 struct timespec64 ct = current_time(inode); 3954 int ret = 0; 3955 int received_uuid_changed; 3956 3957 if (!inode_owner_or_capable(idmap, inode)) 3958 return -EPERM; 3959 3960 ret = mnt_want_write_file(file); 3961 if (ret < 0) 3962 return ret; 3963 3964 down_write(&fs_info->subvol_sem); 3965 3966 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3967 ret = -EINVAL; 3968 goto out; 3969 } 3970 3971 if (btrfs_root_readonly(root)) { 3972 ret = -EROFS; 3973 goto out; 3974 } 3975 3976 /* 3977 * 1 - root item 3978 * 2 - uuid items (received uuid + subvol uuid) 3979 */ 3980 trans = btrfs_start_transaction(root, 3); 3981 if (IS_ERR(trans)) { 3982 ret = PTR_ERR(trans); 3983 trans = NULL; 3984 goto out; 3985 } 3986 3987 sa->rtransid = trans->transid; 3988 sa->rtime.sec = ct.tv_sec; 3989 sa->rtime.nsec = ct.tv_nsec; 3990 3991 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 3992 BTRFS_UUID_SIZE); 3993 if (received_uuid_changed && 3994 !btrfs_is_empty_uuid(root_item->received_uuid)) { 3995 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 3996 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3997 root->root_key.objectid); 3998 if (ret && ret != -ENOENT) { 3999 btrfs_abort_transaction(trans, ret); 4000 btrfs_end_transaction(trans); 4001 goto out; 4002 } 4003 } 4004 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4005 btrfs_set_root_stransid(root_item, sa->stransid); 4006 btrfs_set_root_rtransid(root_item, sa->rtransid); 4007 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4008 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4009 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4010 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4011 4012 ret = btrfs_update_root(trans, fs_info->tree_root, 4013 &root->root_key, &root->root_item); 4014 if (ret < 0) { 4015 btrfs_end_transaction(trans); 4016 goto out; 4017 } 4018 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4019 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4020 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4021 root->root_key.objectid); 4022 if (ret < 0 && ret != -EEXIST) { 4023 btrfs_abort_transaction(trans, ret); 4024 btrfs_end_transaction(trans); 4025 goto out; 4026 } 4027 } 4028 ret = btrfs_commit_transaction(trans); 4029 out: 4030 up_write(&fs_info->subvol_sem); 4031 mnt_drop_write_file(file); 4032 return ret; 4033 } 4034 4035 #ifdef CONFIG_64BIT 4036 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4037 void __user *arg) 4038 { 4039 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4040 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4041 int ret = 0; 4042 4043 args32 = memdup_user(arg, sizeof(*args32)); 4044 if (IS_ERR(args32)) 4045 return PTR_ERR(args32); 4046 4047 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4048 if (!args64) { 4049 ret = -ENOMEM; 4050 goto out; 4051 } 4052 4053 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4054 args64->stransid = args32->stransid; 4055 args64->rtransid = args32->rtransid; 4056 args64->stime.sec = args32->stime.sec; 4057 args64->stime.nsec = args32->stime.nsec; 4058 args64->rtime.sec = args32->rtime.sec; 4059 args64->rtime.nsec = args32->rtime.nsec; 4060 args64->flags = args32->flags; 4061 4062 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64); 4063 if (ret) 4064 goto out; 4065 4066 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4067 args32->stransid = args64->stransid; 4068 args32->rtransid = args64->rtransid; 4069 args32->stime.sec = args64->stime.sec; 4070 args32->stime.nsec = args64->stime.nsec; 4071 args32->rtime.sec = args64->rtime.sec; 4072 args32->rtime.nsec = args64->rtime.nsec; 4073 args32->flags = args64->flags; 4074 4075 ret = copy_to_user(arg, args32, sizeof(*args32)); 4076 if (ret) 4077 ret = -EFAULT; 4078 4079 out: 4080 kfree(args32); 4081 kfree(args64); 4082 return ret; 4083 } 4084 #endif 4085 4086 static long btrfs_ioctl_set_received_subvol(struct file *file, 4087 void __user *arg) 4088 { 4089 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4090 int ret = 0; 4091 4092 sa = memdup_user(arg, sizeof(*sa)); 4093 if (IS_ERR(sa)) 4094 return PTR_ERR(sa); 4095 4096 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa); 4097 4098 if (ret) 4099 goto out; 4100 4101 ret = copy_to_user(arg, sa, sizeof(*sa)); 4102 if (ret) 4103 ret = -EFAULT; 4104 4105 out: 4106 kfree(sa); 4107 return ret; 4108 } 4109 4110 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4111 void __user *arg) 4112 { 4113 size_t len; 4114 int ret; 4115 char label[BTRFS_LABEL_SIZE]; 4116 4117 spin_lock(&fs_info->super_lock); 4118 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4119 spin_unlock(&fs_info->super_lock); 4120 4121 len = strnlen(label, BTRFS_LABEL_SIZE); 4122 4123 if (len == BTRFS_LABEL_SIZE) { 4124 btrfs_warn(fs_info, 4125 "label is too long, return the first %zu bytes", 4126 --len); 4127 } 4128 4129 ret = copy_to_user(arg, label, len); 4130 4131 return ret ? -EFAULT : 0; 4132 } 4133 4134 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4135 { 4136 struct inode *inode = file_inode(file); 4137 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4138 struct btrfs_root *root = BTRFS_I(inode)->root; 4139 struct btrfs_super_block *super_block = fs_info->super_copy; 4140 struct btrfs_trans_handle *trans; 4141 char label[BTRFS_LABEL_SIZE]; 4142 int ret; 4143 4144 if (!capable(CAP_SYS_ADMIN)) 4145 return -EPERM; 4146 4147 if (copy_from_user(label, arg, sizeof(label))) 4148 return -EFAULT; 4149 4150 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4151 btrfs_err(fs_info, 4152 "unable to set label with more than %d bytes", 4153 BTRFS_LABEL_SIZE - 1); 4154 return -EINVAL; 4155 } 4156 4157 ret = mnt_want_write_file(file); 4158 if (ret) 4159 return ret; 4160 4161 trans = btrfs_start_transaction(root, 0); 4162 if (IS_ERR(trans)) { 4163 ret = PTR_ERR(trans); 4164 goto out_unlock; 4165 } 4166 4167 spin_lock(&fs_info->super_lock); 4168 strcpy(super_block->label, label); 4169 spin_unlock(&fs_info->super_lock); 4170 ret = btrfs_commit_transaction(trans); 4171 4172 out_unlock: 4173 mnt_drop_write_file(file); 4174 return ret; 4175 } 4176 4177 #define INIT_FEATURE_FLAGS(suffix) \ 4178 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4179 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4180 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4181 4182 int btrfs_ioctl_get_supported_features(void __user *arg) 4183 { 4184 static const struct btrfs_ioctl_feature_flags features[3] = { 4185 INIT_FEATURE_FLAGS(SUPP), 4186 INIT_FEATURE_FLAGS(SAFE_SET), 4187 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4188 }; 4189 4190 if (copy_to_user(arg, &features, sizeof(features))) 4191 return -EFAULT; 4192 4193 return 0; 4194 } 4195 4196 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4197 void __user *arg) 4198 { 4199 struct btrfs_super_block *super_block = fs_info->super_copy; 4200 struct btrfs_ioctl_feature_flags features; 4201 4202 features.compat_flags = btrfs_super_compat_flags(super_block); 4203 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4204 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4205 4206 if (copy_to_user(arg, &features, sizeof(features))) 4207 return -EFAULT; 4208 4209 return 0; 4210 } 4211 4212 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4213 enum btrfs_feature_set set, 4214 u64 change_mask, u64 flags, u64 supported_flags, 4215 u64 safe_set, u64 safe_clear) 4216 { 4217 const char *type = btrfs_feature_set_name(set); 4218 char *names; 4219 u64 disallowed, unsupported; 4220 u64 set_mask = flags & change_mask; 4221 u64 clear_mask = ~flags & change_mask; 4222 4223 unsupported = set_mask & ~supported_flags; 4224 if (unsupported) { 4225 names = btrfs_printable_features(set, unsupported); 4226 if (names) { 4227 btrfs_warn(fs_info, 4228 "this kernel does not support the %s feature bit%s", 4229 names, strchr(names, ',') ? "s" : ""); 4230 kfree(names); 4231 } else 4232 btrfs_warn(fs_info, 4233 "this kernel does not support %s bits 0x%llx", 4234 type, unsupported); 4235 return -EOPNOTSUPP; 4236 } 4237 4238 disallowed = set_mask & ~safe_set; 4239 if (disallowed) { 4240 names = btrfs_printable_features(set, disallowed); 4241 if (names) { 4242 btrfs_warn(fs_info, 4243 "can't set the %s feature bit%s while mounted", 4244 names, strchr(names, ',') ? "s" : ""); 4245 kfree(names); 4246 } else 4247 btrfs_warn(fs_info, 4248 "can't set %s bits 0x%llx while mounted", 4249 type, disallowed); 4250 return -EPERM; 4251 } 4252 4253 disallowed = clear_mask & ~safe_clear; 4254 if (disallowed) { 4255 names = btrfs_printable_features(set, disallowed); 4256 if (names) { 4257 btrfs_warn(fs_info, 4258 "can't clear the %s feature bit%s while mounted", 4259 names, strchr(names, ',') ? "s" : ""); 4260 kfree(names); 4261 } else 4262 btrfs_warn(fs_info, 4263 "can't clear %s bits 0x%llx while mounted", 4264 type, disallowed); 4265 return -EPERM; 4266 } 4267 4268 return 0; 4269 } 4270 4271 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4272 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4273 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4274 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4275 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4276 4277 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4278 { 4279 struct inode *inode = file_inode(file); 4280 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4281 struct btrfs_root *root = BTRFS_I(inode)->root; 4282 struct btrfs_super_block *super_block = fs_info->super_copy; 4283 struct btrfs_ioctl_feature_flags flags[2]; 4284 struct btrfs_trans_handle *trans; 4285 u64 newflags; 4286 int ret; 4287 4288 if (!capable(CAP_SYS_ADMIN)) 4289 return -EPERM; 4290 4291 if (copy_from_user(flags, arg, sizeof(flags))) 4292 return -EFAULT; 4293 4294 /* Nothing to do */ 4295 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4296 !flags[0].incompat_flags) 4297 return 0; 4298 4299 ret = check_feature(fs_info, flags[0].compat_flags, 4300 flags[1].compat_flags, COMPAT); 4301 if (ret) 4302 return ret; 4303 4304 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4305 flags[1].compat_ro_flags, COMPAT_RO); 4306 if (ret) 4307 return ret; 4308 4309 ret = check_feature(fs_info, flags[0].incompat_flags, 4310 flags[1].incompat_flags, INCOMPAT); 4311 if (ret) 4312 return ret; 4313 4314 ret = mnt_want_write_file(file); 4315 if (ret) 4316 return ret; 4317 4318 trans = btrfs_start_transaction(root, 0); 4319 if (IS_ERR(trans)) { 4320 ret = PTR_ERR(trans); 4321 goto out_drop_write; 4322 } 4323 4324 spin_lock(&fs_info->super_lock); 4325 newflags = btrfs_super_compat_flags(super_block); 4326 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4327 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4328 btrfs_set_super_compat_flags(super_block, newflags); 4329 4330 newflags = btrfs_super_compat_ro_flags(super_block); 4331 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4332 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4333 btrfs_set_super_compat_ro_flags(super_block, newflags); 4334 4335 newflags = btrfs_super_incompat_flags(super_block); 4336 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4337 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4338 btrfs_set_super_incompat_flags(super_block, newflags); 4339 spin_unlock(&fs_info->super_lock); 4340 4341 ret = btrfs_commit_transaction(trans); 4342 out_drop_write: 4343 mnt_drop_write_file(file); 4344 4345 return ret; 4346 } 4347 4348 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) 4349 { 4350 struct btrfs_ioctl_send_args *arg; 4351 int ret; 4352 4353 if (compat) { 4354 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4355 struct btrfs_ioctl_send_args_32 args32 = { 0 }; 4356 4357 ret = copy_from_user(&args32, argp, sizeof(args32)); 4358 if (ret) 4359 return -EFAULT; 4360 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4361 if (!arg) 4362 return -ENOMEM; 4363 arg->send_fd = args32.send_fd; 4364 arg->clone_sources_count = args32.clone_sources_count; 4365 arg->clone_sources = compat_ptr(args32.clone_sources); 4366 arg->parent_root = args32.parent_root; 4367 arg->flags = args32.flags; 4368 arg->version = args32.version; 4369 memcpy(arg->reserved, args32.reserved, 4370 sizeof(args32.reserved)); 4371 #else 4372 return -ENOTTY; 4373 #endif 4374 } else { 4375 arg = memdup_user(argp, sizeof(*arg)); 4376 if (IS_ERR(arg)) 4377 return PTR_ERR(arg); 4378 } 4379 ret = btrfs_ioctl_send(inode, arg); 4380 kfree(arg); 4381 return ret; 4382 } 4383 4384 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 4385 bool compat) 4386 { 4387 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4388 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 4389 flags); 4390 size_t copy_end; 4391 struct iovec iovstack[UIO_FASTIOV]; 4392 struct iovec *iov = iovstack; 4393 struct iov_iter iter; 4394 loff_t pos; 4395 struct kiocb kiocb; 4396 ssize_t ret; 4397 4398 if (!capable(CAP_SYS_ADMIN)) { 4399 ret = -EPERM; 4400 goto out_acct; 4401 } 4402 4403 if (compat) { 4404 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4405 struct btrfs_ioctl_encoded_io_args_32 args32; 4406 4407 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 4408 flags); 4409 if (copy_from_user(&args32, argp, copy_end)) { 4410 ret = -EFAULT; 4411 goto out_acct; 4412 } 4413 args.iov = compat_ptr(args32.iov); 4414 args.iovcnt = args32.iovcnt; 4415 args.offset = args32.offset; 4416 args.flags = args32.flags; 4417 #else 4418 return -ENOTTY; 4419 #endif 4420 } else { 4421 copy_end = copy_end_kernel; 4422 if (copy_from_user(&args, argp, copy_end)) { 4423 ret = -EFAULT; 4424 goto out_acct; 4425 } 4426 } 4427 if (args.flags != 0) { 4428 ret = -EINVAL; 4429 goto out_acct; 4430 } 4431 4432 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4433 &iov, &iter); 4434 if (ret < 0) 4435 goto out_acct; 4436 4437 if (iov_iter_count(&iter) == 0) { 4438 ret = 0; 4439 goto out_iov; 4440 } 4441 pos = args.offset; 4442 ret = rw_verify_area(READ, file, &pos, args.len); 4443 if (ret < 0) 4444 goto out_iov; 4445 4446 init_sync_kiocb(&kiocb, file); 4447 kiocb.ki_pos = pos; 4448 4449 ret = btrfs_encoded_read(&kiocb, &iter, &args); 4450 if (ret >= 0) { 4451 fsnotify_access(file); 4452 if (copy_to_user(argp + copy_end, 4453 (char *)&args + copy_end_kernel, 4454 sizeof(args) - copy_end_kernel)) 4455 ret = -EFAULT; 4456 } 4457 4458 out_iov: 4459 kfree(iov); 4460 out_acct: 4461 if (ret > 0) 4462 add_rchar(current, ret); 4463 inc_syscr(current); 4464 return ret; 4465 } 4466 4467 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 4468 { 4469 struct btrfs_ioctl_encoded_io_args args; 4470 struct iovec iovstack[UIO_FASTIOV]; 4471 struct iovec *iov = iovstack; 4472 struct iov_iter iter; 4473 loff_t pos; 4474 struct kiocb kiocb; 4475 ssize_t ret; 4476 4477 if (!capable(CAP_SYS_ADMIN)) { 4478 ret = -EPERM; 4479 goto out_acct; 4480 } 4481 4482 if (!(file->f_mode & FMODE_WRITE)) { 4483 ret = -EBADF; 4484 goto out_acct; 4485 } 4486 4487 if (compat) { 4488 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4489 struct btrfs_ioctl_encoded_io_args_32 args32; 4490 4491 if (copy_from_user(&args32, argp, sizeof(args32))) { 4492 ret = -EFAULT; 4493 goto out_acct; 4494 } 4495 args.iov = compat_ptr(args32.iov); 4496 args.iovcnt = args32.iovcnt; 4497 args.offset = args32.offset; 4498 args.flags = args32.flags; 4499 args.len = args32.len; 4500 args.unencoded_len = args32.unencoded_len; 4501 args.unencoded_offset = args32.unencoded_offset; 4502 args.compression = args32.compression; 4503 args.encryption = args32.encryption; 4504 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 4505 #else 4506 return -ENOTTY; 4507 #endif 4508 } else { 4509 if (copy_from_user(&args, argp, sizeof(args))) { 4510 ret = -EFAULT; 4511 goto out_acct; 4512 } 4513 } 4514 4515 ret = -EINVAL; 4516 if (args.flags != 0) 4517 goto out_acct; 4518 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 4519 goto out_acct; 4520 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4521 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4522 goto out_acct; 4523 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4524 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4525 goto out_acct; 4526 if (args.unencoded_offset > args.unencoded_len) 4527 goto out_acct; 4528 if (args.len > args.unencoded_len - args.unencoded_offset) 4529 goto out_acct; 4530 4531 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4532 &iov, &iter); 4533 if (ret < 0) 4534 goto out_acct; 4535 4536 if (iov_iter_count(&iter) == 0) { 4537 ret = 0; 4538 goto out_iov; 4539 } 4540 pos = args.offset; 4541 ret = rw_verify_area(WRITE, file, &pos, args.len); 4542 if (ret < 0) 4543 goto out_iov; 4544 4545 init_sync_kiocb(&kiocb, file); 4546 ret = kiocb_set_rw_flags(&kiocb, 0); 4547 if (ret) 4548 goto out_iov; 4549 kiocb.ki_pos = pos; 4550 4551 file_start_write(file); 4552 4553 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 4554 if (ret > 0) 4555 fsnotify_modify(file); 4556 4557 file_end_write(file); 4558 out_iov: 4559 kfree(iov); 4560 out_acct: 4561 if (ret > 0) 4562 add_wchar(current, ret); 4563 inc_syscw(current); 4564 return ret; 4565 } 4566 4567 long btrfs_ioctl(struct file *file, unsigned int 4568 cmd, unsigned long arg) 4569 { 4570 struct inode *inode = file_inode(file); 4571 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4572 struct btrfs_root *root = BTRFS_I(inode)->root; 4573 void __user *argp = (void __user *)arg; 4574 4575 switch (cmd) { 4576 case FS_IOC_GETVERSION: 4577 return btrfs_ioctl_getversion(inode, argp); 4578 case FS_IOC_GETFSLABEL: 4579 return btrfs_ioctl_get_fslabel(fs_info, argp); 4580 case FS_IOC_SETFSLABEL: 4581 return btrfs_ioctl_set_fslabel(file, argp); 4582 case FITRIM: 4583 return btrfs_ioctl_fitrim(fs_info, argp); 4584 case BTRFS_IOC_SNAP_CREATE: 4585 return btrfs_ioctl_snap_create(file, argp, 0); 4586 case BTRFS_IOC_SNAP_CREATE_V2: 4587 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4588 case BTRFS_IOC_SUBVOL_CREATE: 4589 return btrfs_ioctl_snap_create(file, argp, 1); 4590 case BTRFS_IOC_SUBVOL_CREATE_V2: 4591 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4592 case BTRFS_IOC_SNAP_DESTROY: 4593 return btrfs_ioctl_snap_destroy(file, argp, false); 4594 case BTRFS_IOC_SNAP_DESTROY_V2: 4595 return btrfs_ioctl_snap_destroy(file, argp, true); 4596 case BTRFS_IOC_SUBVOL_GETFLAGS: 4597 return btrfs_ioctl_subvol_getflags(inode, argp); 4598 case BTRFS_IOC_SUBVOL_SETFLAGS: 4599 return btrfs_ioctl_subvol_setflags(file, argp); 4600 case BTRFS_IOC_DEFAULT_SUBVOL: 4601 return btrfs_ioctl_default_subvol(file, argp); 4602 case BTRFS_IOC_DEFRAG: 4603 return btrfs_ioctl_defrag(file, NULL); 4604 case BTRFS_IOC_DEFRAG_RANGE: 4605 return btrfs_ioctl_defrag(file, argp); 4606 case BTRFS_IOC_RESIZE: 4607 return btrfs_ioctl_resize(file, argp); 4608 case BTRFS_IOC_ADD_DEV: 4609 return btrfs_ioctl_add_dev(fs_info, argp); 4610 case BTRFS_IOC_RM_DEV: 4611 return btrfs_ioctl_rm_dev(file, argp); 4612 case BTRFS_IOC_RM_DEV_V2: 4613 return btrfs_ioctl_rm_dev_v2(file, argp); 4614 case BTRFS_IOC_FS_INFO: 4615 return btrfs_ioctl_fs_info(fs_info, argp); 4616 case BTRFS_IOC_DEV_INFO: 4617 return btrfs_ioctl_dev_info(fs_info, argp); 4618 case BTRFS_IOC_TREE_SEARCH: 4619 return btrfs_ioctl_tree_search(inode, argp); 4620 case BTRFS_IOC_TREE_SEARCH_V2: 4621 return btrfs_ioctl_tree_search_v2(inode, argp); 4622 case BTRFS_IOC_INO_LOOKUP: 4623 return btrfs_ioctl_ino_lookup(root, argp); 4624 case BTRFS_IOC_INO_PATHS: 4625 return btrfs_ioctl_ino_to_path(root, argp); 4626 case BTRFS_IOC_LOGICAL_INO: 4627 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4628 case BTRFS_IOC_LOGICAL_INO_V2: 4629 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4630 case BTRFS_IOC_SPACE_INFO: 4631 return btrfs_ioctl_space_info(fs_info, argp); 4632 case BTRFS_IOC_SYNC: { 4633 int ret; 4634 4635 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4636 if (ret) 4637 return ret; 4638 ret = btrfs_sync_fs(inode->i_sb, 1); 4639 /* 4640 * The transaction thread may want to do more work, 4641 * namely it pokes the cleaner kthread that will start 4642 * processing uncleaned subvols. 4643 */ 4644 wake_up_process(fs_info->transaction_kthread); 4645 return ret; 4646 } 4647 case BTRFS_IOC_START_SYNC: 4648 return btrfs_ioctl_start_sync(root, argp); 4649 case BTRFS_IOC_WAIT_SYNC: 4650 return btrfs_ioctl_wait_sync(fs_info, argp); 4651 case BTRFS_IOC_SCRUB: 4652 return btrfs_ioctl_scrub(file, argp); 4653 case BTRFS_IOC_SCRUB_CANCEL: 4654 return btrfs_ioctl_scrub_cancel(fs_info); 4655 case BTRFS_IOC_SCRUB_PROGRESS: 4656 return btrfs_ioctl_scrub_progress(fs_info, argp); 4657 case BTRFS_IOC_BALANCE_V2: 4658 return btrfs_ioctl_balance(file, argp); 4659 case BTRFS_IOC_BALANCE_CTL: 4660 return btrfs_ioctl_balance_ctl(fs_info, arg); 4661 case BTRFS_IOC_BALANCE_PROGRESS: 4662 return btrfs_ioctl_balance_progress(fs_info, argp); 4663 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4664 return btrfs_ioctl_set_received_subvol(file, argp); 4665 #ifdef CONFIG_64BIT 4666 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4667 return btrfs_ioctl_set_received_subvol_32(file, argp); 4668 #endif 4669 case BTRFS_IOC_SEND: 4670 return _btrfs_ioctl_send(inode, argp, false); 4671 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4672 case BTRFS_IOC_SEND_32: 4673 return _btrfs_ioctl_send(inode, argp, true); 4674 #endif 4675 case BTRFS_IOC_GET_DEV_STATS: 4676 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4677 case BTRFS_IOC_QUOTA_CTL: 4678 return btrfs_ioctl_quota_ctl(file, argp); 4679 case BTRFS_IOC_QGROUP_ASSIGN: 4680 return btrfs_ioctl_qgroup_assign(file, argp); 4681 case BTRFS_IOC_QGROUP_CREATE: 4682 return btrfs_ioctl_qgroup_create(file, argp); 4683 case BTRFS_IOC_QGROUP_LIMIT: 4684 return btrfs_ioctl_qgroup_limit(file, argp); 4685 case BTRFS_IOC_QUOTA_RESCAN: 4686 return btrfs_ioctl_quota_rescan(file, argp); 4687 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4688 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4689 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4690 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4691 case BTRFS_IOC_DEV_REPLACE: 4692 return btrfs_ioctl_dev_replace(fs_info, argp); 4693 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4694 return btrfs_ioctl_get_supported_features(argp); 4695 case BTRFS_IOC_GET_FEATURES: 4696 return btrfs_ioctl_get_features(fs_info, argp); 4697 case BTRFS_IOC_SET_FEATURES: 4698 return btrfs_ioctl_set_features(file, argp); 4699 case BTRFS_IOC_GET_SUBVOL_INFO: 4700 return btrfs_ioctl_get_subvol_info(inode, argp); 4701 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4702 return btrfs_ioctl_get_subvol_rootref(root, argp); 4703 case BTRFS_IOC_INO_LOOKUP_USER: 4704 return btrfs_ioctl_ino_lookup_user(file, argp); 4705 case FS_IOC_ENABLE_VERITY: 4706 return fsverity_ioctl_enable(file, (const void __user *)argp); 4707 case FS_IOC_MEASURE_VERITY: 4708 return fsverity_ioctl_measure(file, argp); 4709 case BTRFS_IOC_ENCODED_READ: 4710 return btrfs_ioctl_encoded_read(file, argp, false); 4711 case BTRFS_IOC_ENCODED_WRITE: 4712 return btrfs_ioctl_encoded_write(file, argp, false); 4713 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4714 case BTRFS_IOC_ENCODED_READ_32: 4715 return btrfs_ioctl_encoded_read(file, argp, true); 4716 case BTRFS_IOC_ENCODED_WRITE_32: 4717 return btrfs_ioctl_encoded_write(file, argp, true); 4718 #endif 4719 } 4720 4721 return -ENOTTY; 4722 } 4723 4724 #ifdef CONFIG_COMPAT 4725 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4726 { 4727 /* 4728 * These all access 32-bit values anyway so no further 4729 * handling is necessary. 4730 */ 4731 switch (cmd) { 4732 case FS_IOC32_GETVERSION: 4733 cmd = FS_IOC_GETVERSION; 4734 break; 4735 } 4736 4737 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4738 } 4739 #endif 4740