1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include <linux/btrfs.h> 46 #include <linux/uaccess.h> 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 #include "dev-replace.h" 59 #include "props.h" 60 #include "sysfs.h" 61 #include "qgroup.h" 62 #include "tree-log.h" 63 #include "compression.h" 64 65 #ifdef CONFIG_64BIT 66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 67 * structures are incorrect, as the timespec structure from userspace 68 * is 4 bytes too small. We define these alternatives here to teach 69 * the kernel about the 32-bit struct packing. 70 */ 71 struct btrfs_ioctl_timespec_32 { 72 __u64 sec; 73 __u32 nsec; 74 } __attribute__ ((__packed__)); 75 76 struct btrfs_ioctl_received_subvol_args_32 { 77 char uuid[BTRFS_UUID_SIZE]; /* in */ 78 __u64 stransid; /* in */ 79 __u64 rtransid; /* out */ 80 struct btrfs_ioctl_timespec_32 stime; /* in */ 81 struct btrfs_ioctl_timespec_32 rtime; /* out */ 82 __u64 flags; /* in */ 83 __u64 reserved[16]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 87 struct btrfs_ioctl_received_subvol_args_32) 88 #endif 89 90 91 static int btrfs_clone(struct inode *src, struct inode *inode, 92 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 93 int no_time_update); 94 95 /* Mask out flags that are inappropriate for the given type of inode. */ 96 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 97 { 98 if (S_ISDIR(mode)) 99 return flags; 100 else if (S_ISREG(mode)) 101 return flags & ~FS_DIRSYNC_FL; 102 else 103 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 104 } 105 106 /* 107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 108 */ 109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 110 { 111 unsigned int iflags = 0; 112 113 if (flags & BTRFS_INODE_SYNC) 114 iflags |= FS_SYNC_FL; 115 if (flags & BTRFS_INODE_IMMUTABLE) 116 iflags |= FS_IMMUTABLE_FL; 117 if (flags & BTRFS_INODE_APPEND) 118 iflags |= FS_APPEND_FL; 119 if (flags & BTRFS_INODE_NODUMP) 120 iflags |= FS_NODUMP_FL; 121 if (flags & BTRFS_INODE_NOATIME) 122 iflags |= FS_NOATIME_FL; 123 if (flags & BTRFS_INODE_DIRSYNC) 124 iflags |= FS_DIRSYNC_FL; 125 if (flags & BTRFS_INODE_NODATACOW) 126 iflags |= FS_NOCOW_FL; 127 128 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 129 iflags |= FS_COMPR_FL; 130 else if (flags & BTRFS_INODE_NOCOMPRESS) 131 iflags |= FS_NOCOMP_FL; 132 133 return iflags; 134 } 135 136 /* 137 * Update inode->i_flags based on the btrfs internal flags. 138 */ 139 void btrfs_update_iflags(struct inode *inode) 140 { 141 struct btrfs_inode *ip = BTRFS_I(inode); 142 unsigned int new_fl = 0; 143 144 if (ip->flags & BTRFS_INODE_SYNC) 145 new_fl |= S_SYNC; 146 if (ip->flags & BTRFS_INODE_IMMUTABLE) 147 new_fl |= S_IMMUTABLE; 148 if (ip->flags & BTRFS_INODE_APPEND) 149 new_fl |= S_APPEND; 150 if (ip->flags & BTRFS_INODE_NOATIME) 151 new_fl |= S_NOATIME; 152 if (ip->flags & BTRFS_INODE_DIRSYNC) 153 new_fl |= S_DIRSYNC; 154 155 set_mask_bits(&inode->i_flags, 156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 157 new_fl); 158 } 159 160 /* 161 * Inherit flags from the parent inode. 162 * 163 * Currently only the compression flags and the cow flags are inherited. 164 */ 165 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 166 { 167 unsigned int flags; 168 169 if (!dir) 170 return; 171 172 flags = BTRFS_I(dir)->flags; 173 174 if (flags & BTRFS_INODE_NOCOMPRESS) { 175 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 176 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 177 } else if (flags & BTRFS_INODE_COMPRESS) { 178 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 179 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 180 } 181 182 if (flags & BTRFS_INODE_NODATACOW) { 183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 184 if (S_ISREG(inode->i_mode)) 185 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 186 } 187 188 btrfs_update_iflags(inode); 189 } 190 191 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 192 { 193 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 194 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 195 196 if (copy_to_user(arg, &flags, sizeof(flags))) 197 return -EFAULT; 198 return 0; 199 } 200 201 static int check_flags(unsigned int flags) 202 { 203 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 204 FS_NOATIME_FL | FS_NODUMP_FL | \ 205 FS_SYNC_FL | FS_DIRSYNC_FL | \ 206 FS_NOCOMP_FL | FS_COMPR_FL | 207 FS_NOCOW_FL)) 208 return -EOPNOTSUPP; 209 210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 211 return -EINVAL; 212 213 return 0; 214 } 215 216 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 217 { 218 struct inode *inode = file_inode(file); 219 struct btrfs_inode *ip = BTRFS_I(inode); 220 struct btrfs_root *root = ip->root; 221 struct btrfs_trans_handle *trans; 222 unsigned int flags, oldflags; 223 int ret; 224 u64 ip_oldflags; 225 unsigned int i_oldflags; 226 umode_t mode; 227 228 if (!inode_owner_or_capable(inode)) 229 return -EPERM; 230 231 if (btrfs_root_readonly(root)) 232 return -EROFS; 233 234 if (copy_from_user(&flags, arg, sizeof(flags))) 235 return -EFAULT; 236 237 ret = check_flags(flags); 238 if (ret) 239 return ret; 240 241 ret = mnt_want_write_file(file); 242 if (ret) 243 return ret; 244 245 inode_lock(inode); 246 247 ip_oldflags = ip->flags; 248 i_oldflags = inode->i_flags; 249 mode = inode->i_mode; 250 251 flags = btrfs_mask_flags(inode->i_mode, flags); 252 oldflags = btrfs_flags_to_ioctl(ip->flags); 253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 254 if (!capable(CAP_LINUX_IMMUTABLE)) { 255 ret = -EPERM; 256 goto out_unlock; 257 } 258 } 259 260 if (flags & FS_SYNC_FL) 261 ip->flags |= BTRFS_INODE_SYNC; 262 else 263 ip->flags &= ~BTRFS_INODE_SYNC; 264 if (flags & FS_IMMUTABLE_FL) 265 ip->flags |= BTRFS_INODE_IMMUTABLE; 266 else 267 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 268 if (flags & FS_APPEND_FL) 269 ip->flags |= BTRFS_INODE_APPEND; 270 else 271 ip->flags &= ~BTRFS_INODE_APPEND; 272 if (flags & FS_NODUMP_FL) 273 ip->flags |= BTRFS_INODE_NODUMP; 274 else 275 ip->flags &= ~BTRFS_INODE_NODUMP; 276 if (flags & FS_NOATIME_FL) 277 ip->flags |= BTRFS_INODE_NOATIME; 278 else 279 ip->flags &= ~BTRFS_INODE_NOATIME; 280 if (flags & FS_DIRSYNC_FL) 281 ip->flags |= BTRFS_INODE_DIRSYNC; 282 else 283 ip->flags &= ~BTRFS_INODE_DIRSYNC; 284 if (flags & FS_NOCOW_FL) { 285 if (S_ISREG(mode)) { 286 /* 287 * It's safe to turn csums off here, no extents exist. 288 * Otherwise we want the flag to reflect the real COW 289 * status of the file and will not set it. 290 */ 291 if (inode->i_size == 0) 292 ip->flags |= BTRFS_INODE_NODATACOW 293 | BTRFS_INODE_NODATASUM; 294 } else { 295 ip->flags |= BTRFS_INODE_NODATACOW; 296 } 297 } else { 298 /* 299 * Revert back under same assuptions as above 300 */ 301 if (S_ISREG(mode)) { 302 if (inode->i_size == 0) 303 ip->flags &= ~(BTRFS_INODE_NODATACOW 304 | BTRFS_INODE_NODATASUM); 305 } else { 306 ip->flags &= ~BTRFS_INODE_NODATACOW; 307 } 308 } 309 310 /* 311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 312 * flag may be changed automatically if compression code won't make 313 * things smaller. 314 */ 315 if (flags & FS_NOCOMP_FL) { 316 ip->flags &= ~BTRFS_INODE_COMPRESS; 317 ip->flags |= BTRFS_INODE_NOCOMPRESS; 318 319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 320 if (ret && ret != -ENODATA) 321 goto out_drop; 322 } else if (flags & FS_COMPR_FL) { 323 const char *comp; 324 325 ip->flags |= BTRFS_INODE_COMPRESS; 326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 327 328 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 329 comp = "lzo"; 330 else 331 comp = "zlib"; 332 ret = btrfs_set_prop(inode, "btrfs.compression", 333 comp, strlen(comp), 0); 334 if (ret) 335 goto out_drop; 336 337 } else { 338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 339 if (ret && ret != -ENODATA) 340 goto out_drop; 341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 342 } 343 344 trans = btrfs_start_transaction(root, 1); 345 if (IS_ERR(trans)) { 346 ret = PTR_ERR(trans); 347 goto out_drop; 348 } 349 350 btrfs_update_iflags(inode); 351 inode_inc_iversion(inode); 352 inode->i_ctime = current_fs_time(inode->i_sb); 353 ret = btrfs_update_inode(trans, root, inode); 354 355 btrfs_end_transaction(trans, root); 356 out_drop: 357 if (ret) { 358 ip->flags = ip_oldflags; 359 inode->i_flags = i_oldflags; 360 } 361 362 out_unlock: 363 inode_unlock(inode); 364 mnt_drop_write_file(file); 365 return ret; 366 } 367 368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 369 { 370 struct inode *inode = file_inode(file); 371 372 return put_user(inode->i_generation, arg); 373 } 374 375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 376 { 377 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 378 struct btrfs_device *device; 379 struct request_queue *q; 380 struct fstrim_range range; 381 u64 minlen = ULLONG_MAX; 382 u64 num_devices = 0; 383 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 384 int ret; 385 386 if (!capable(CAP_SYS_ADMIN)) 387 return -EPERM; 388 389 rcu_read_lock(); 390 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 391 dev_list) { 392 if (!device->bdev) 393 continue; 394 q = bdev_get_queue(device->bdev); 395 if (blk_queue_discard(q)) { 396 num_devices++; 397 minlen = min((u64)q->limits.discard_granularity, 398 minlen); 399 } 400 } 401 rcu_read_unlock(); 402 403 if (!num_devices) 404 return -EOPNOTSUPP; 405 if (copy_from_user(&range, arg, sizeof(range))) 406 return -EFAULT; 407 if (range.start > total_bytes || 408 range.len < fs_info->sb->s_blocksize) 409 return -EINVAL; 410 411 range.len = min(range.len, total_bytes - range.start); 412 range.minlen = max(range.minlen, minlen); 413 ret = btrfs_trim_fs(fs_info->tree_root, &range); 414 if (ret < 0) 415 return ret; 416 417 if (copy_to_user(arg, &range, sizeof(range))) 418 return -EFAULT; 419 420 return 0; 421 } 422 423 int btrfs_is_empty_uuid(u8 *uuid) 424 { 425 int i; 426 427 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 428 if (uuid[i]) 429 return 0; 430 } 431 return 1; 432 } 433 434 static noinline int create_subvol(struct inode *dir, 435 struct dentry *dentry, 436 char *name, int namelen, 437 u64 *async_transid, 438 struct btrfs_qgroup_inherit *inherit) 439 { 440 struct btrfs_trans_handle *trans; 441 struct btrfs_key key; 442 struct btrfs_root_item root_item; 443 struct btrfs_inode_item *inode_item; 444 struct extent_buffer *leaf; 445 struct btrfs_root *root = BTRFS_I(dir)->root; 446 struct btrfs_root *new_root; 447 struct btrfs_block_rsv block_rsv; 448 struct timespec cur_time = current_fs_time(dir->i_sb); 449 struct inode *inode; 450 int ret; 451 int err; 452 u64 objectid; 453 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 454 u64 index = 0; 455 u64 qgroup_reserved; 456 uuid_le new_uuid; 457 458 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 459 if (ret) 460 return ret; 461 462 /* 463 * Don't create subvolume whose level is not zero. Or qgroup will be 464 * screwed up since it assume subvolme qgroup's level to be 0. 465 */ 466 if (btrfs_qgroup_level(objectid)) 467 return -ENOSPC; 468 469 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 470 /* 471 * The same as the snapshot creation, please see the comment 472 * of create_snapshot(). 473 */ 474 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 475 8, &qgroup_reserved, false); 476 if (ret) 477 return ret; 478 479 trans = btrfs_start_transaction(root, 0); 480 if (IS_ERR(trans)) { 481 ret = PTR_ERR(trans); 482 btrfs_subvolume_release_metadata(root, &block_rsv, 483 qgroup_reserved); 484 return ret; 485 } 486 trans->block_rsv = &block_rsv; 487 trans->bytes_reserved = block_rsv.size; 488 489 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit); 490 if (ret) 491 goto fail; 492 493 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 494 if (IS_ERR(leaf)) { 495 ret = PTR_ERR(leaf); 496 goto fail; 497 } 498 499 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 500 btrfs_set_header_bytenr(leaf, leaf->start); 501 btrfs_set_header_generation(leaf, trans->transid); 502 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 503 btrfs_set_header_owner(leaf, objectid); 504 505 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(), 506 BTRFS_FSID_SIZE); 507 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 508 btrfs_header_chunk_tree_uuid(leaf), 509 BTRFS_UUID_SIZE); 510 btrfs_mark_buffer_dirty(leaf); 511 512 memset(&root_item, 0, sizeof(root_item)); 513 514 inode_item = &root_item.inode; 515 btrfs_set_stack_inode_generation(inode_item, 1); 516 btrfs_set_stack_inode_size(inode_item, 3); 517 btrfs_set_stack_inode_nlink(inode_item, 1); 518 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 519 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 520 521 btrfs_set_root_flags(&root_item, 0); 522 btrfs_set_root_limit(&root_item, 0); 523 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 524 525 btrfs_set_root_bytenr(&root_item, leaf->start); 526 btrfs_set_root_generation(&root_item, trans->transid); 527 btrfs_set_root_level(&root_item, 0); 528 btrfs_set_root_refs(&root_item, 1); 529 btrfs_set_root_used(&root_item, leaf->len); 530 btrfs_set_root_last_snapshot(&root_item, 0); 531 532 btrfs_set_root_generation_v2(&root_item, 533 btrfs_root_generation(&root_item)); 534 uuid_le_gen(&new_uuid); 535 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE); 536 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec); 537 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec); 538 root_item.ctime = root_item.otime; 539 btrfs_set_root_ctransid(&root_item, trans->transid); 540 btrfs_set_root_otransid(&root_item, trans->transid); 541 542 btrfs_tree_unlock(leaf); 543 free_extent_buffer(leaf); 544 leaf = NULL; 545 546 btrfs_set_root_dirid(&root_item, new_dirid); 547 548 key.objectid = objectid; 549 key.offset = 0; 550 key.type = BTRFS_ROOT_ITEM_KEY; 551 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 552 &root_item); 553 if (ret) 554 goto fail; 555 556 key.offset = (u64)-1; 557 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 558 if (IS_ERR(new_root)) { 559 ret = PTR_ERR(new_root); 560 btrfs_abort_transaction(trans, root, ret); 561 goto fail; 562 } 563 564 btrfs_record_root_in_trans(trans, new_root); 565 566 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 567 if (ret) { 568 /* We potentially lose an unused inode item here */ 569 btrfs_abort_transaction(trans, root, ret); 570 goto fail; 571 } 572 573 mutex_lock(&new_root->objectid_mutex); 574 new_root->highest_objectid = new_dirid; 575 mutex_unlock(&new_root->objectid_mutex); 576 577 /* 578 * insert the directory item 579 */ 580 ret = btrfs_set_inode_index(dir, &index); 581 if (ret) { 582 btrfs_abort_transaction(trans, root, ret); 583 goto fail; 584 } 585 586 ret = btrfs_insert_dir_item(trans, root, 587 name, namelen, dir, &key, 588 BTRFS_FT_DIR, index); 589 if (ret) { 590 btrfs_abort_transaction(trans, root, ret); 591 goto fail; 592 } 593 594 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 595 ret = btrfs_update_inode(trans, root, dir); 596 BUG_ON(ret); 597 598 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 599 objectid, root->root_key.objectid, 600 btrfs_ino(dir), index, name, namelen); 601 BUG_ON(ret); 602 603 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 604 root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 605 objectid); 606 if (ret) 607 btrfs_abort_transaction(trans, root, ret); 608 609 fail: 610 trans->block_rsv = NULL; 611 trans->bytes_reserved = 0; 612 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 613 614 if (async_transid) { 615 *async_transid = trans->transid; 616 err = btrfs_commit_transaction_async(trans, root, 1); 617 if (err) 618 err = btrfs_commit_transaction(trans, root); 619 } else { 620 err = btrfs_commit_transaction(trans, root); 621 } 622 if (err && !ret) 623 ret = err; 624 625 if (!ret) { 626 inode = btrfs_lookup_dentry(dir, dentry); 627 if (IS_ERR(inode)) 628 return PTR_ERR(inode); 629 d_instantiate(dentry, inode); 630 } 631 return ret; 632 } 633 634 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root) 635 { 636 s64 writers; 637 DEFINE_WAIT(wait); 638 639 do { 640 prepare_to_wait(&root->subv_writers->wait, &wait, 641 TASK_UNINTERRUPTIBLE); 642 643 writers = percpu_counter_sum(&root->subv_writers->counter); 644 if (writers) 645 schedule(); 646 647 finish_wait(&root->subv_writers->wait, &wait); 648 } while (writers); 649 } 650 651 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 652 struct dentry *dentry, char *name, int namelen, 653 u64 *async_transid, bool readonly, 654 struct btrfs_qgroup_inherit *inherit) 655 { 656 struct inode *inode; 657 struct btrfs_pending_snapshot *pending_snapshot; 658 struct btrfs_trans_handle *trans; 659 int ret; 660 661 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 662 return -EINVAL; 663 664 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 665 if (!pending_snapshot) 666 return -ENOMEM; 667 668 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 669 GFP_NOFS); 670 pending_snapshot->path = btrfs_alloc_path(); 671 if (!pending_snapshot->root_item || !pending_snapshot->path) { 672 ret = -ENOMEM; 673 goto free_pending; 674 } 675 676 atomic_inc(&root->will_be_snapshoted); 677 smp_mb__after_atomic(); 678 btrfs_wait_for_no_snapshoting_writes(root); 679 680 ret = btrfs_start_delalloc_inodes(root, 0); 681 if (ret) 682 goto dec_and_free; 683 684 btrfs_wait_ordered_extents(root, -1); 685 686 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 687 BTRFS_BLOCK_RSV_TEMP); 688 /* 689 * 1 - parent dir inode 690 * 2 - dir entries 691 * 1 - root item 692 * 2 - root ref/backref 693 * 1 - root of snapshot 694 * 1 - UUID item 695 */ 696 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 697 &pending_snapshot->block_rsv, 8, 698 &pending_snapshot->qgroup_reserved, 699 false); 700 if (ret) 701 goto dec_and_free; 702 703 pending_snapshot->dentry = dentry; 704 pending_snapshot->root = root; 705 pending_snapshot->readonly = readonly; 706 pending_snapshot->dir = dir; 707 pending_snapshot->inherit = inherit; 708 709 trans = btrfs_start_transaction(root, 0); 710 if (IS_ERR(trans)) { 711 ret = PTR_ERR(trans); 712 goto fail; 713 } 714 715 spin_lock(&root->fs_info->trans_lock); 716 list_add(&pending_snapshot->list, 717 &trans->transaction->pending_snapshots); 718 spin_unlock(&root->fs_info->trans_lock); 719 if (async_transid) { 720 *async_transid = trans->transid; 721 ret = btrfs_commit_transaction_async(trans, 722 root->fs_info->extent_root, 1); 723 if (ret) 724 ret = btrfs_commit_transaction(trans, root); 725 } else { 726 ret = btrfs_commit_transaction(trans, 727 root->fs_info->extent_root); 728 } 729 if (ret) 730 goto fail; 731 732 ret = pending_snapshot->error; 733 if (ret) 734 goto fail; 735 736 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 737 if (ret) 738 goto fail; 739 740 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 741 if (IS_ERR(inode)) { 742 ret = PTR_ERR(inode); 743 goto fail; 744 } 745 746 d_instantiate(dentry, inode); 747 ret = 0; 748 fail: 749 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root, 750 &pending_snapshot->block_rsv, 751 pending_snapshot->qgroup_reserved); 752 dec_and_free: 753 if (atomic_dec_and_test(&root->will_be_snapshoted)) 754 wake_up_atomic_t(&root->will_be_snapshoted); 755 free_pending: 756 kfree(pending_snapshot->root_item); 757 btrfs_free_path(pending_snapshot->path); 758 kfree(pending_snapshot); 759 760 return ret; 761 } 762 763 /* copy of may_delete in fs/namei.c() 764 * Check whether we can remove a link victim from directory dir, check 765 * whether the type of victim is right. 766 * 1. We can't do it if dir is read-only (done in permission()) 767 * 2. We should have write and exec permissions on dir 768 * 3. We can't remove anything from append-only dir 769 * 4. We can't do anything with immutable dir (done in permission()) 770 * 5. If the sticky bit on dir is set we should either 771 * a. be owner of dir, or 772 * b. be owner of victim, or 773 * c. have CAP_FOWNER capability 774 * 6. If the victim is append-only or immutable we can't do antyhing with 775 * links pointing to it. 776 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 777 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 778 * 9. We can't remove a root or mountpoint. 779 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 780 * nfs_async_unlink(). 781 */ 782 783 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 784 { 785 int error; 786 787 if (d_really_is_negative(victim)) 788 return -ENOENT; 789 790 BUG_ON(d_inode(victim->d_parent) != dir); 791 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 792 793 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 794 if (error) 795 return error; 796 if (IS_APPEND(dir)) 797 return -EPERM; 798 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 799 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 800 return -EPERM; 801 if (isdir) { 802 if (!d_is_dir(victim)) 803 return -ENOTDIR; 804 if (IS_ROOT(victim)) 805 return -EBUSY; 806 } else if (d_is_dir(victim)) 807 return -EISDIR; 808 if (IS_DEADDIR(dir)) 809 return -ENOENT; 810 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 811 return -EBUSY; 812 return 0; 813 } 814 815 /* copy of may_create in fs/namei.c() */ 816 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 817 { 818 if (d_really_is_positive(child)) 819 return -EEXIST; 820 if (IS_DEADDIR(dir)) 821 return -ENOENT; 822 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 823 } 824 825 /* 826 * Create a new subvolume below @parent. This is largely modeled after 827 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 828 * inside this filesystem so it's quite a bit simpler. 829 */ 830 static noinline int btrfs_mksubvol(struct path *parent, 831 char *name, int namelen, 832 struct btrfs_root *snap_src, 833 u64 *async_transid, bool readonly, 834 struct btrfs_qgroup_inherit *inherit) 835 { 836 struct inode *dir = d_inode(parent->dentry); 837 struct dentry *dentry; 838 int error; 839 840 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 841 if (error == -EINTR) 842 return error; 843 844 dentry = lookup_one_len(name, parent->dentry, namelen); 845 error = PTR_ERR(dentry); 846 if (IS_ERR(dentry)) 847 goto out_unlock; 848 849 error = btrfs_may_create(dir, dentry); 850 if (error) 851 goto out_dput; 852 853 /* 854 * even if this name doesn't exist, we may get hash collisions. 855 * check for them now when we can safely fail 856 */ 857 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 858 dir->i_ino, name, 859 namelen); 860 if (error) 861 goto out_dput; 862 863 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 864 865 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 866 goto out_up_read; 867 868 if (snap_src) { 869 error = create_snapshot(snap_src, dir, dentry, name, namelen, 870 async_transid, readonly, inherit); 871 } else { 872 error = create_subvol(dir, dentry, name, namelen, 873 async_transid, inherit); 874 } 875 if (!error) 876 fsnotify_mkdir(dir, dentry); 877 out_up_read: 878 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 879 out_dput: 880 dput(dentry); 881 out_unlock: 882 inode_unlock(dir); 883 return error; 884 } 885 886 /* 887 * When we're defragging a range, we don't want to kick it off again 888 * if it is really just waiting for delalloc to send it down. 889 * If we find a nice big extent or delalloc range for the bytes in the 890 * file you want to defrag, we return 0 to let you know to skip this 891 * part of the file 892 */ 893 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 894 { 895 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 896 struct extent_map *em = NULL; 897 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 898 u64 end; 899 900 read_lock(&em_tree->lock); 901 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 902 read_unlock(&em_tree->lock); 903 904 if (em) { 905 end = extent_map_end(em); 906 free_extent_map(em); 907 if (end - offset > thresh) 908 return 0; 909 } 910 /* if we already have a nice delalloc here, just stop */ 911 thresh /= 2; 912 end = count_range_bits(io_tree, &offset, offset + thresh, 913 thresh, EXTENT_DELALLOC, 1); 914 if (end >= thresh) 915 return 0; 916 return 1; 917 } 918 919 /* 920 * helper function to walk through a file and find extents 921 * newer than a specific transid, and smaller than thresh. 922 * 923 * This is used by the defragging code to find new and small 924 * extents 925 */ 926 static int find_new_extents(struct btrfs_root *root, 927 struct inode *inode, u64 newer_than, 928 u64 *off, u32 thresh) 929 { 930 struct btrfs_path *path; 931 struct btrfs_key min_key; 932 struct extent_buffer *leaf; 933 struct btrfs_file_extent_item *extent; 934 int type; 935 int ret; 936 u64 ino = btrfs_ino(inode); 937 938 path = btrfs_alloc_path(); 939 if (!path) 940 return -ENOMEM; 941 942 min_key.objectid = ino; 943 min_key.type = BTRFS_EXTENT_DATA_KEY; 944 min_key.offset = *off; 945 946 while (1) { 947 ret = btrfs_search_forward(root, &min_key, path, newer_than); 948 if (ret != 0) 949 goto none; 950 process_slot: 951 if (min_key.objectid != ino) 952 goto none; 953 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 954 goto none; 955 956 leaf = path->nodes[0]; 957 extent = btrfs_item_ptr(leaf, path->slots[0], 958 struct btrfs_file_extent_item); 959 960 type = btrfs_file_extent_type(leaf, extent); 961 if (type == BTRFS_FILE_EXTENT_REG && 962 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 963 check_defrag_in_cache(inode, min_key.offset, thresh)) { 964 *off = min_key.offset; 965 btrfs_free_path(path); 966 return 0; 967 } 968 969 path->slots[0]++; 970 if (path->slots[0] < btrfs_header_nritems(leaf)) { 971 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 972 goto process_slot; 973 } 974 975 if (min_key.offset == (u64)-1) 976 goto none; 977 978 min_key.offset++; 979 btrfs_release_path(path); 980 } 981 none: 982 btrfs_free_path(path); 983 return -ENOENT; 984 } 985 986 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 987 { 988 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 989 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 990 struct extent_map *em; 991 u64 len = PAGE_SIZE; 992 993 /* 994 * hopefully we have this extent in the tree already, try without 995 * the full extent lock 996 */ 997 read_lock(&em_tree->lock); 998 em = lookup_extent_mapping(em_tree, start, len); 999 read_unlock(&em_tree->lock); 1000 1001 if (!em) { 1002 struct extent_state *cached = NULL; 1003 u64 end = start + len - 1; 1004 1005 /* get the big lock and read metadata off disk */ 1006 lock_extent_bits(io_tree, start, end, &cached); 1007 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 1008 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 1009 1010 if (IS_ERR(em)) 1011 return NULL; 1012 } 1013 1014 return em; 1015 } 1016 1017 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1018 { 1019 struct extent_map *next; 1020 bool ret = true; 1021 1022 /* this is the last extent */ 1023 if (em->start + em->len >= i_size_read(inode)) 1024 return false; 1025 1026 next = defrag_lookup_extent(inode, em->start + em->len); 1027 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1028 ret = false; 1029 else if ((em->block_start + em->block_len == next->block_start) && 1030 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1031 ret = false; 1032 1033 free_extent_map(next); 1034 return ret; 1035 } 1036 1037 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1038 u64 *last_len, u64 *skip, u64 *defrag_end, 1039 int compress) 1040 { 1041 struct extent_map *em; 1042 int ret = 1; 1043 bool next_mergeable = true; 1044 bool prev_mergeable = true; 1045 1046 /* 1047 * make sure that once we start defragging an extent, we keep on 1048 * defragging it 1049 */ 1050 if (start < *defrag_end) 1051 return 1; 1052 1053 *skip = 0; 1054 1055 em = defrag_lookup_extent(inode, start); 1056 if (!em) 1057 return 0; 1058 1059 /* this will cover holes, and inline extents */ 1060 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1061 ret = 0; 1062 goto out; 1063 } 1064 1065 if (!*defrag_end) 1066 prev_mergeable = false; 1067 1068 next_mergeable = defrag_check_next_extent(inode, em); 1069 /* 1070 * we hit a real extent, if it is big or the next extent is not a 1071 * real extent, don't bother defragging it 1072 */ 1073 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1074 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1075 ret = 0; 1076 out: 1077 /* 1078 * last_len ends up being a counter of how many bytes we've defragged. 1079 * every time we choose not to defrag an extent, we reset *last_len 1080 * so that the next tiny extent will force a defrag. 1081 * 1082 * The end result of this is that tiny extents before a single big 1083 * extent will force at least part of that big extent to be defragged. 1084 */ 1085 if (ret) { 1086 *defrag_end = extent_map_end(em); 1087 } else { 1088 *last_len = 0; 1089 *skip = extent_map_end(em); 1090 *defrag_end = 0; 1091 } 1092 1093 free_extent_map(em); 1094 return ret; 1095 } 1096 1097 /* 1098 * it doesn't do much good to defrag one or two pages 1099 * at a time. This pulls in a nice chunk of pages 1100 * to COW and defrag. 1101 * 1102 * It also makes sure the delalloc code has enough 1103 * dirty data to avoid making new small extents as part 1104 * of the defrag 1105 * 1106 * It's a good idea to start RA on this range 1107 * before calling this. 1108 */ 1109 static int cluster_pages_for_defrag(struct inode *inode, 1110 struct page **pages, 1111 unsigned long start_index, 1112 unsigned long num_pages) 1113 { 1114 unsigned long file_end; 1115 u64 isize = i_size_read(inode); 1116 u64 page_start; 1117 u64 page_end; 1118 u64 page_cnt; 1119 int ret; 1120 int i; 1121 int i_done; 1122 struct btrfs_ordered_extent *ordered; 1123 struct extent_state *cached_state = NULL; 1124 struct extent_io_tree *tree; 1125 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1126 1127 file_end = (isize - 1) >> PAGE_SHIFT; 1128 if (!isize || start_index > file_end) 1129 return 0; 1130 1131 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1132 1133 ret = btrfs_delalloc_reserve_space(inode, 1134 start_index << PAGE_SHIFT, 1135 page_cnt << PAGE_SHIFT); 1136 if (ret) 1137 return ret; 1138 i_done = 0; 1139 tree = &BTRFS_I(inode)->io_tree; 1140 1141 /* step one, lock all the pages */ 1142 for (i = 0; i < page_cnt; i++) { 1143 struct page *page; 1144 again: 1145 page = find_or_create_page(inode->i_mapping, 1146 start_index + i, mask); 1147 if (!page) 1148 break; 1149 1150 page_start = page_offset(page); 1151 page_end = page_start + PAGE_SIZE - 1; 1152 while (1) { 1153 lock_extent_bits(tree, page_start, page_end, 1154 &cached_state); 1155 ordered = btrfs_lookup_ordered_extent(inode, 1156 page_start); 1157 unlock_extent_cached(tree, page_start, page_end, 1158 &cached_state, GFP_NOFS); 1159 if (!ordered) 1160 break; 1161 1162 unlock_page(page); 1163 btrfs_start_ordered_extent(inode, ordered, 1); 1164 btrfs_put_ordered_extent(ordered); 1165 lock_page(page); 1166 /* 1167 * we unlocked the page above, so we need check if 1168 * it was released or not. 1169 */ 1170 if (page->mapping != inode->i_mapping) { 1171 unlock_page(page); 1172 put_page(page); 1173 goto again; 1174 } 1175 } 1176 1177 if (!PageUptodate(page)) { 1178 btrfs_readpage(NULL, page); 1179 lock_page(page); 1180 if (!PageUptodate(page)) { 1181 unlock_page(page); 1182 put_page(page); 1183 ret = -EIO; 1184 break; 1185 } 1186 } 1187 1188 if (page->mapping != inode->i_mapping) { 1189 unlock_page(page); 1190 put_page(page); 1191 goto again; 1192 } 1193 1194 pages[i] = page; 1195 i_done++; 1196 } 1197 if (!i_done || ret) 1198 goto out; 1199 1200 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1201 goto out; 1202 1203 /* 1204 * so now we have a nice long stream of locked 1205 * and up to date pages, lets wait on them 1206 */ 1207 for (i = 0; i < i_done; i++) 1208 wait_on_page_writeback(pages[i]); 1209 1210 page_start = page_offset(pages[0]); 1211 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1212 1213 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1214 page_start, page_end - 1, &cached_state); 1215 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1216 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1217 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1218 &cached_state, GFP_NOFS); 1219 1220 if (i_done != page_cnt) { 1221 spin_lock(&BTRFS_I(inode)->lock); 1222 BTRFS_I(inode)->outstanding_extents++; 1223 spin_unlock(&BTRFS_I(inode)->lock); 1224 btrfs_delalloc_release_space(inode, 1225 start_index << PAGE_SHIFT, 1226 (page_cnt - i_done) << PAGE_SHIFT); 1227 } 1228 1229 1230 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1231 &cached_state, GFP_NOFS); 1232 1233 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1234 page_start, page_end - 1, &cached_state, 1235 GFP_NOFS); 1236 1237 for (i = 0; i < i_done; i++) { 1238 clear_page_dirty_for_io(pages[i]); 1239 ClearPageChecked(pages[i]); 1240 set_page_extent_mapped(pages[i]); 1241 set_page_dirty(pages[i]); 1242 unlock_page(pages[i]); 1243 put_page(pages[i]); 1244 } 1245 return i_done; 1246 out: 1247 for (i = 0; i < i_done; i++) { 1248 unlock_page(pages[i]); 1249 put_page(pages[i]); 1250 } 1251 btrfs_delalloc_release_space(inode, 1252 start_index << PAGE_SHIFT, 1253 page_cnt << PAGE_SHIFT); 1254 return ret; 1255 1256 } 1257 1258 int btrfs_defrag_file(struct inode *inode, struct file *file, 1259 struct btrfs_ioctl_defrag_range_args *range, 1260 u64 newer_than, unsigned long max_to_defrag) 1261 { 1262 struct btrfs_root *root = BTRFS_I(inode)->root; 1263 struct file_ra_state *ra = NULL; 1264 unsigned long last_index; 1265 u64 isize = i_size_read(inode); 1266 u64 last_len = 0; 1267 u64 skip = 0; 1268 u64 defrag_end = 0; 1269 u64 newer_off = range->start; 1270 unsigned long i; 1271 unsigned long ra_index = 0; 1272 int ret; 1273 int defrag_count = 0; 1274 int compress_type = BTRFS_COMPRESS_ZLIB; 1275 u32 extent_thresh = range->extent_thresh; 1276 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1277 unsigned long cluster = max_cluster; 1278 u64 new_align = ~((u64)SZ_128K - 1); 1279 struct page **pages = NULL; 1280 1281 if (isize == 0) 1282 return 0; 1283 1284 if (range->start >= isize) 1285 return -EINVAL; 1286 1287 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1288 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1289 return -EINVAL; 1290 if (range->compress_type) 1291 compress_type = range->compress_type; 1292 } 1293 1294 if (extent_thresh == 0) 1295 extent_thresh = SZ_256K; 1296 1297 /* 1298 * if we were not given a file, allocate a readahead 1299 * context 1300 */ 1301 if (!file) { 1302 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1303 if (!ra) 1304 return -ENOMEM; 1305 file_ra_state_init(ra, inode->i_mapping); 1306 } else { 1307 ra = &file->f_ra; 1308 } 1309 1310 pages = kmalloc_array(max_cluster, sizeof(struct page *), 1311 GFP_NOFS); 1312 if (!pages) { 1313 ret = -ENOMEM; 1314 goto out_ra; 1315 } 1316 1317 /* find the last page to defrag */ 1318 if (range->start + range->len > range->start) { 1319 last_index = min_t(u64, isize - 1, 1320 range->start + range->len - 1) >> PAGE_SHIFT; 1321 } else { 1322 last_index = (isize - 1) >> PAGE_SHIFT; 1323 } 1324 1325 if (newer_than) { 1326 ret = find_new_extents(root, inode, newer_than, 1327 &newer_off, SZ_64K); 1328 if (!ret) { 1329 range->start = newer_off; 1330 /* 1331 * we always align our defrag to help keep 1332 * the extents in the file evenly spaced 1333 */ 1334 i = (newer_off & new_align) >> PAGE_SHIFT; 1335 } else 1336 goto out_ra; 1337 } else { 1338 i = range->start >> PAGE_SHIFT; 1339 } 1340 if (!max_to_defrag) 1341 max_to_defrag = last_index - i + 1; 1342 1343 /* 1344 * make writeback starts from i, so the defrag range can be 1345 * written sequentially. 1346 */ 1347 if (i < inode->i_mapping->writeback_index) 1348 inode->i_mapping->writeback_index = i; 1349 1350 while (i <= last_index && defrag_count < max_to_defrag && 1351 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1352 /* 1353 * make sure we stop running if someone unmounts 1354 * the FS 1355 */ 1356 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1357 break; 1358 1359 if (btrfs_defrag_cancelled(root->fs_info)) { 1360 btrfs_debug(root->fs_info, "defrag_file cancelled"); 1361 ret = -EAGAIN; 1362 break; 1363 } 1364 1365 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1366 extent_thresh, &last_len, &skip, 1367 &defrag_end, range->flags & 1368 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1369 unsigned long next; 1370 /* 1371 * the should_defrag function tells us how much to skip 1372 * bump our counter by the suggested amount 1373 */ 1374 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1375 i = max(i + 1, next); 1376 continue; 1377 } 1378 1379 if (!newer_than) { 1380 cluster = (PAGE_ALIGN(defrag_end) >> 1381 PAGE_SHIFT) - i; 1382 cluster = min(cluster, max_cluster); 1383 } else { 1384 cluster = max_cluster; 1385 } 1386 1387 if (i + cluster > ra_index) { 1388 ra_index = max(i, ra_index); 1389 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1390 cluster); 1391 ra_index += cluster; 1392 } 1393 1394 inode_lock(inode); 1395 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1396 BTRFS_I(inode)->force_compress = compress_type; 1397 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1398 if (ret < 0) { 1399 inode_unlock(inode); 1400 goto out_ra; 1401 } 1402 1403 defrag_count += ret; 1404 balance_dirty_pages_ratelimited(inode->i_mapping); 1405 inode_unlock(inode); 1406 1407 if (newer_than) { 1408 if (newer_off == (u64)-1) 1409 break; 1410 1411 if (ret > 0) 1412 i += ret; 1413 1414 newer_off = max(newer_off + 1, 1415 (u64)i << PAGE_SHIFT); 1416 1417 ret = find_new_extents(root, inode, newer_than, 1418 &newer_off, SZ_64K); 1419 if (!ret) { 1420 range->start = newer_off; 1421 i = (newer_off & new_align) >> PAGE_SHIFT; 1422 } else { 1423 break; 1424 } 1425 } else { 1426 if (ret > 0) { 1427 i += ret; 1428 last_len += ret << PAGE_SHIFT; 1429 } else { 1430 i++; 1431 last_len = 0; 1432 } 1433 } 1434 } 1435 1436 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1437 filemap_flush(inode->i_mapping); 1438 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1439 &BTRFS_I(inode)->runtime_flags)) 1440 filemap_flush(inode->i_mapping); 1441 } 1442 1443 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1444 /* the filemap_flush will queue IO into the worker threads, but 1445 * we have to make sure the IO is actually started and that 1446 * ordered extents get created before we return 1447 */ 1448 atomic_inc(&root->fs_info->async_submit_draining); 1449 while (atomic_read(&root->fs_info->nr_async_submits) || 1450 atomic_read(&root->fs_info->async_delalloc_pages)) { 1451 wait_event(root->fs_info->async_submit_wait, 1452 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1453 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1454 } 1455 atomic_dec(&root->fs_info->async_submit_draining); 1456 } 1457 1458 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1459 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1460 } 1461 1462 ret = defrag_count; 1463 1464 out_ra: 1465 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1466 inode_lock(inode); 1467 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1468 inode_unlock(inode); 1469 } 1470 if (!file) 1471 kfree(ra); 1472 kfree(pages); 1473 return ret; 1474 } 1475 1476 static noinline int btrfs_ioctl_resize(struct file *file, 1477 void __user *arg) 1478 { 1479 u64 new_size; 1480 u64 old_size; 1481 u64 devid = 1; 1482 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1483 struct btrfs_ioctl_vol_args *vol_args; 1484 struct btrfs_trans_handle *trans; 1485 struct btrfs_device *device = NULL; 1486 char *sizestr; 1487 char *retptr; 1488 char *devstr = NULL; 1489 int ret = 0; 1490 int mod = 0; 1491 1492 if (!capable(CAP_SYS_ADMIN)) 1493 return -EPERM; 1494 1495 ret = mnt_want_write_file(file); 1496 if (ret) 1497 return ret; 1498 1499 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1500 1)) { 1501 mnt_drop_write_file(file); 1502 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1503 } 1504 1505 mutex_lock(&root->fs_info->volume_mutex); 1506 vol_args = memdup_user(arg, sizeof(*vol_args)); 1507 if (IS_ERR(vol_args)) { 1508 ret = PTR_ERR(vol_args); 1509 goto out; 1510 } 1511 1512 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1513 1514 sizestr = vol_args->name; 1515 devstr = strchr(sizestr, ':'); 1516 if (devstr) { 1517 sizestr = devstr + 1; 1518 *devstr = '\0'; 1519 devstr = vol_args->name; 1520 ret = kstrtoull(devstr, 10, &devid); 1521 if (ret) 1522 goto out_free; 1523 if (!devid) { 1524 ret = -EINVAL; 1525 goto out_free; 1526 } 1527 btrfs_info(root->fs_info, "resizing devid %llu", devid); 1528 } 1529 1530 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1531 if (!device) { 1532 btrfs_info(root->fs_info, "resizer unable to find device %llu", 1533 devid); 1534 ret = -ENODEV; 1535 goto out_free; 1536 } 1537 1538 if (!device->writeable) { 1539 btrfs_info(root->fs_info, 1540 "resizer unable to apply on readonly device %llu", 1541 devid); 1542 ret = -EPERM; 1543 goto out_free; 1544 } 1545 1546 if (!strcmp(sizestr, "max")) 1547 new_size = device->bdev->bd_inode->i_size; 1548 else { 1549 if (sizestr[0] == '-') { 1550 mod = -1; 1551 sizestr++; 1552 } else if (sizestr[0] == '+') { 1553 mod = 1; 1554 sizestr++; 1555 } 1556 new_size = memparse(sizestr, &retptr); 1557 if (*retptr != '\0' || new_size == 0) { 1558 ret = -EINVAL; 1559 goto out_free; 1560 } 1561 } 1562 1563 if (device->is_tgtdev_for_dev_replace) { 1564 ret = -EPERM; 1565 goto out_free; 1566 } 1567 1568 old_size = btrfs_device_get_total_bytes(device); 1569 1570 if (mod < 0) { 1571 if (new_size > old_size) { 1572 ret = -EINVAL; 1573 goto out_free; 1574 } 1575 new_size = old_size - new_size; 1576 } else if (mod > 0) { 1577 if (new_size > ULLONG_MAX - old_size) { 1578 ret = -ERANGE; 1579 goto out_free; 1580 } 1581 new_size = old_size + new_size; 1582 } 1583 1584 if (new_size < SZ_256M) { 1585 ret = -EINVAL; 1586 goto out_free; 1587 } 1588 if (new_size > device->bdev->bd_inode->i_size) { 1589 ret = -EFBIG; 1590 goto out_free; 1591 } 1592 1593 new_size = div_u64(new_size, root->sectorsize); 1594 new_size *= root->sectorsize; 1595 1596 btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu", 1597 rcu_str_deref(device->name), new_size); 1598 1599 if (new_size > old_size) { 1600 trans = btrfs_start_transaction(root, 0); 1601 if (IS_ERR(trans)) { 1602 ret = PTR_ERR(trans); 1603 goto out_free; 1604 } 1605 ret = btrfs_grow_device(trans, device, new_size); 1606 btrfs_commit_transaction(trans, root); 1607 } else if (new_size < old_size) { 1608 ret = btrfs_shrink_device(device, new_size); 1609 } /* equal, nothing need to do */ 1610 1611 out_free: 1612 kfree(vol_args); 1613 out: 1614 mutex_unlock(&root->fs_info->volume_mutex); 1615 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1616 mnt_drop_write_file(file); 1617 return ret; 1618 } 1619 1620 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1621 char *name, unsigned long fd, int subvol, 1622 u64 *transid, bool readonly, 1623 struct btrfs_qgroup_inherit *inherit) 1624 { 1625 int namelen; 1626 int ret = 0; 1627 1628 ret = mnt_want_write_file(file); 1629 if (ret) 1630 goto out; 1631 1632 namelen = strlen(name); 1633 if (strchr(name, '/')) { 1634 ret = -EINVAL; 1635 goto out_drop_write; 1636 } 1637 1638 if (name[0] == '.' && 1639 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1640 ret = -EEXIST; 1641 goto out_drop_write; 1642 } 1643 1644 if (subvol) { 1645 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1646 NULL, transid, readonly, inherit); 1647 } else { 1648 struct fd src = fdget(fd); 1649 struct inode *src_inode; 1650 if (!src.file) { 1651 ret = -EINVAL; 1652 goto out_drop_write; 1653 } 1654 1655 src_inode = file_inode(src.file); 1656 if (src_inode->i_sb != file_inode(file)->i_sb) { 1657 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1658 "Snapshot src from another FS"); 1659 ret = -EXDEV; 1660 } else if (!inode_owner_or_capable(src_inode)) { 1661 /* 1662 * Subvolume creation is not restricted, but snapshots 1663 * are limited to own subvolumes only 1664 */ 1665 ret = -EPERM; 1666 } else { 1667 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1668 BTRFS_I(src_inode)->root, 1669 transid, readonly, inherit); 1670 } 1671 fdput(src); 1672 } 1673 out_drop_write: 1674 mnt_drop_write_file(file); 1675 out: 1676 return ret; 1677 } 1678 1679 static noinline int btrfs_ioctl_snap_create(struct file *file, 1680 void __user *arg, int subvol) 1681 { 1682 struct btrfs_ioctl_vol_args *vol_args; 1683 int ret; 1684 1685 vol_args = memdup_user(arg, sizeof(*vol_args)); 1686 if (IS_ERR(vol_args)) 1687 return PTR_ERR(vol_args); 1688 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1689 1690 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1691 vol_args->fd, subvol, 1692 NULL, false, NULL); 1693 1694 kfree(vol_args); 1695 return ret; 1696 } 1697 1698 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1699 void __user *arg, int subvol) 1700 { 1701 struct btrfs_ioctl_vol_args_v2 *vol_args; 1702 int ret; 1703 u64 transid = 0; 1704 u64 *ptr = NULL; 1705 bool readonly = false; 1706 struct btrfs_qgroup_inherit *inherit = NULL; 1707 1708 vol_args = memdup_user(arg, sizeof(*vol_args)); 1709 if (IS_ERR(vol_args)) 1710 return PTR_ERR(vol_args); 1711 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1712 1713 if (vol_args->flags & 1714 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1715 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1716 ret = -EOPNOTSUPP; 1717 goto free_args; 1718 } 1719 1720 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1721 ptr = &transid; 1722 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1723 readonly = true; 1724 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1725 if (vol_args->size > PAGE_SIZE) { 1726 ret = -EINVAL; 1727 goto free_args; 1728 } 1729 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1730 if (IS_ERR(inherit)) { 1731 ret = PTR_ERR(inherit); 1732 goto free_args; 1733 } 1734 } 1735 1736 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1737 vol_args->fd, subvol, ptr, 1738 readonly, inherit); 1739 if (ret) 1740 goto free_inherit; 1741 1742 if (ptr && copy_to_user(arg + 1743 offsetof(struct btrfs_ioctl_vol_args_v2, 1744 transid), 1745 ptr, sizeof(*ptr))) 1746 ret = -EFAULT; 1747 1748 free_inherit: 1749 kfree(inherit); 1750 free_args: 1751 kfree(vol_args); 1752 return ret; 1753 } 1754 1755 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1756 void __user *arg) 1757 { 1758 struct inode *inode = file_inode(file); 1759 struct btrfs_root *root = BTRFS_I(inode)->root; 1760 int ret = 0; 1761 u64 flags = 0; 1762 1763 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1764 return -EINVAL; 1765 1766 down_read(&root->fs_info->subvol_sem); 1767 if (btrfs_root_readonly(root)) 1768 flags |= BTRFS_SUBVOL_RDONLY; 1769 up_read(&root->fs_info->subvol_sem); 1770 1771 if (copy_to_user(arg, &flags, sizeof(flags))) 1772 ret = -EFAULT; 1773 1774 return ret; 1775 } 1776 1777 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1778 void __user *arg) 1779 { 1780 struct inode *inode = file_inode(file); 1781 struct btrfs_root *root = BTRFS_I(inode)->root; 1782 struct btrfs_trans_handle *trans; 1783 u64 root_flags; 1784 u64 flags; 1785 int ret = 0; 1786 1787 if (!inode_owner_or_capable(inode)) 1788 return -EPERM; 1789 1790 ret = mnt_want_write_file(file); 1791 if (ret) 1792 goto out; 1793 1794 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1795 ret = -EINVAL; 1796 goto out_drop_write; 1797 } 1798 1799 if (copy_from_user(&flags, arg, sizeof(flags))) { 1800 ret = -EFAULT; 1801 goto out_drop_write; 1802 } 1803 1804 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1805 ret = -EINVAL; 1806 goto out_drop_write; 1807 } 1808 1809 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1810 ret = -EOPNOTSUPP; 1811 goto out_drop_write; 1812 } 1813 1814 down_write(&root->fs_info->subvol_sem); 1815 1816 /* nothing to do */ 1817 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1818 goto out_drop_sem; 1819 1820 root_flags = btrfs_root_flags(&root->root_item); 1821 if (flags & BTRFS_SUBVOL_RDONLY) { 1822 btrfs_set_root_flags(&root->root_item, 1823 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1824 } else { 1825 /* 1826 * Block RO -> RW transition if this subvolume is involved in 1827 * send 1828 */ 1829 spin_lock(&root->root_item_lock); 1830 if (root->send_in_progress == 0) { 1831 btrfs_set_root_flags(&root->root_item, 1832 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1833 spin_unlock(&root->root_item_lock); 1834 } else { 1835 spin_unlock(&root->root_item_lock); 1836 btrfs_warn(root->fs_info, 1837 "Attempt to set subvolume %llu read-write during send", 1838 root->root_key.objectid); 1839 ret = -EPERM; 1840 goto out_drop_sem; 1841 } 1842 } 1843 1844 trans = btrfs_start_transaction(root, 1); 1845 if (IS_ERR(trans)) { 1846 ret = PTR_ERR(trans); 1847 goto out_reset; 1848 } 1849 1850 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1851 &root->root_key, &root->root_item); 1852 1853 btrfs_commit_transaction(trans, root); 1854 out_reset: 1855 if (ret) 1856 btrfs_set_root_flags(&root->root_item, root_flags); 1857 out_drop_sem: 1858 up_write(&root->fs_info->subvol_sem); 1859 out_drop_write: 1860 mnt_drop_write_file(file); 1861 out: 1862 return ret; 1863 } 1864 1865 /* 1866 * helper to check if the subvolume references other subvolumes 1867 */ 1868 static noinline int may_destroy_subvol(struct btrfs_root *root) 1869 { 1870 struct btrfs_path *path; 1871 struct btrfs_dir_item *di; 1872 struct btrfs_key key; 1873 u64 dir_id; 1874 int ret; 1875 1876 path = btrfs_alloc_path(); 1877 if (!path) 1878 return -ENOMEM; 1879 1880 /* Make sure this root isn't set as the default subvol */ 1881 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 1882 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, 1883 dir_id, "default", 7, 0); 1884 if (di && !IS_ERR(di)) { 1885 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1886 if (key.objectid == root->root_key.objectid) { 1887 ret = -EPERM; 1888 btrfs_err(root->fs_info, "deleting default subvolume " 1889 "%llu is not allowed", key.objectid); 1890 goto out; 1891 } 1892 btrfs_release_path(path); 1893 } 1894 1895 key.objectid = root->root_key.objectid; 1896 key.type = BTRFS_ROOT_REF_KEY; 1897 key.offset = (u64)-1; 1898 1899 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1900 &key, path, 0, 0); 1901 if (ret < 0) 1902 goto out; 1903 BUG_ON(ret == 0); 1904 1905 ret = 0; 1906 if (path->slots[0] > 0) { 1907 path->slots[0]--; 1908 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1909 if (key.objectid == root->root_key.objectid && 1910 key.type == BTRFS_ROOT_REF_KEY) 1911 ret = -ENOTEMPTY; 1912 } 1913 out: 1914 btrfs_free_path(path); 1915 return ret; 1916 } 1917 1918 static noinline int key_in_sk(struct btrfs_key *key, 1919 struct btrfs_ioctl_search_key *sk) 1920 { 1921 struct btrfs_key test; 1922 int ret; 1923 1924 test.objectid = sk->min_objectid; 1925 test.type = sk->min_type; 1926 test.offset = sk->min_offset; 1927 1928 ret = btrfs_comp_cpu_keys(key, &test); 1929 if (ret < 0) 1930 return 0; 1931 1932 test.objectid = sk->max_objectid; 1933 test.type = sk->max_type; 1934 test.offset = sk->max_offset; 1935 1936 ret = btrfs_comp_cpu_keys(key, &test); 1937 if (ret > 0) 1938 return 0; 1939 return 1; 1940 } 1941 1942 static noinline int copy_to_sk(struct btrfs_root *root, 1943 struct btrfs_path *path, 1944 struct btrfs_key *key, 1945 struct btrfs_ioctl_search_key *sk, 1946 size_t *buf_size, 1947 char __user *ubuf, 1948 unsigned long *sk_offset, 1949 int *num_found) 1950 { 1951 u64 found_transid; 1952 struct extent_buffer *leaf; 1953 struct btrfs_ioctl_search_header sh; 1954 struct btrfs_key test; 1955 unsigned long item_off; 1956 unsigned long item_len; 1957 int nritems; 1958 int i; 1959 int slot; 1960 int ret = 0; 1961 1962 leaf = path->nodes[0]; 1963 slot = path->slots[0]; 1964 nritems = btrfs_header_nritems(leaf); 1965 1966 if (btrfs_header_generation(leaf) > sk->max_transid) { 1967 i = nritems; 1968 goto advance_key; 1969 } 1970 found_transid = btrfs_header_generation(leaf); 1971 1972 for (i = slot; i < nritems; i++) { 1973 item_off = btrfs_item_ptr_offset(leaf, i); 1974 item_len = btrfs_item_size_nr(leaf, i); 1975 1976 btrfs_item_key_to_cpu(leaf, key, i); 1977 if (!key_in_sk(key, sk)) 1978 continue; 1979 1980 if (sizeof(sh) + item_len > *buf_size) { 1981 if (*num_found) { 1982 ret = 1; 1983 goto out; 1984 } 1985 1986 /* 1987 * return one empty item back for v1, which does not 1988 * handle -EOVERFLOW 1989 */ 1990 1991 *buf_size = sizeof(sh) + item_len; 1992 item_len = 0; 1993 ret = -EOVERFLOW; 1994 } 1995 1996 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1997 ret = 1; 1998 goto out; 1999 } 2000 2001 sh.objectid = key->objectid; 2002 sh.offset = key->offset; 2003 sh.type = key->type; 2004 sh.len = item_len; 2005 sh.transid = found_transid; 2006 2007 /* copy search result header */ 2008 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2009 ret = -EFAULT; 2010 goto out; 2011 } 2012 2013 *sk_offset += sizeof(sh); 2014 2015 if (item_len) { 2016 char __user *up = ubuf + *sk_offset; 2017 /* copy the item */ 2018 if (read_extent_buffer_to_user(leaf, up, 2019 item_off, item_len)) { 2020 ret = -EFAULT; 2021 goto out; 2022 } 2023 2024 *sk_offset += item_len; 2025 } 2026 (*num_found)++; 2027 2028 if (ret) /* -EOVERFLOW from above */ 2029 goto out; 2030 2031 if (*num_found >= sk->nr_items) { 2032 ret = 1; 2033 goto out; 2034 } 2035 } 2036 advance_key: 2037 ret = 0; 2038 test.objectid = sk->max_objectid; 2039 test.type = sk->max_type; 2040 test.offset = sk->max_offset; 2041 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2042 ret = 1; 2043 else if (key->offset < (u64)-1) 2044 key->offset++; 2045 else if (key->type < (u8)-1) { 2046 key->offset = 0; 2047 key->type++; 2048 } else if (key->objectid < (u64)-1) { 2049 key->offset = 0; 2050 key->type = 0; 2051 key->objectid++; 2052 } else 2053 ret = 1; 2054 out: 2055 /* 2056 * 0: all items from this leaf copied, continue with next 2057 * 1: * more items can be copied, but unused buffer is too small 2058 * * all items were found 2059 * Either way, it will stops the loop which iterates to the next 2060 * leaf 2061 * -EOVERFLOW: item was to large for buffer 2062 * -EFAULT: could not copy extent buffer back to userspace 2063 */ 2064 return ret; 2065 } 2066 2067 static noinline int search_ioctl(struct inode *inode, 2068 struct btrfs_ioctl_search_key *sk, 2069 size_t *buf_size, 2070 char __user *ubuf) 2071 { 2072 struct btrfs_root *root; 2073 struct btrfs_key key; 2074 struct btrfs_path *path; 2075 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 2076 int ret; 2077 int num_found = 0; 2078 unsigned long sk_offset = 0; 2079 2080 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2081 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2082 return -EOVERFLOW; 2083 } 2084 2085 path = btrfs_alloc_path(); 2086 if (!path) 2087 return -ENOMEM; 2088 2089 if (sk->tree_id == 0) { 2090 /* search the root of the inode that was passed */ 2091 root = BTRFS_I(inode)->root; 2092 } else { 2093 key.objectid = sk->tree_id; 2094 key.type = BTRFS_ROOT_ITEM_KEY; 2095 key.offset = (u64)-1; 2096 root = btrfs_read_fs_root_no_name(info, &key); 2097 if (IS_ERR(root)) { 2098 btrfs_free_path(path); 2099 return -ENOENT; 2100 } 2101 } 2102 2103 key.objectid = sk->min_objectid; 2104 key.type = sk->min_type; 2105 key.offset = sk->min_offset; 2106 2107 while (1) { 2108 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2109 if (ret != 0) { 2110 if (ret > 0) 2111 ret = 0; 2112 goto err; 2113 } 2114 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf, 2115 &sk_offset, &num_found); 2116 btrfs_release_path(path); 2117 if (ret) 2118 break; 2119 2120 } 2121 if (ret > 0) 2122 ret = 0; 2123 err: 2124 sk->nr_items = num_found; 2125 btrfs_free_path(path); 2126 return ret; 2127 } 2128 2129 static noinline int btrfs_ioctl_tree_search(struct file *file, 2130 void __user *argp) 2131 { 2132 struct btrfs_ioctl_search_args __user *uargs; 2133 struct btrfs_ioctl_search_key sk; 2134 struct inode *inode; 2135 int ret; 2136 size_t buf_size; 2137 2138 if (!capable(CAP_SYS_ADMIN)) 2139 return -EPERM; 2140 2141 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2142 2143 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2144 return -EFAULT; 2145 2146 buf_size = sizeof(uargs->buf); 2147 2148 inode = file_inode(file); 2149 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2150 2151 /* 2152 * In the origin implementation an overflow is handled by returning a 2153 * search header with a len of zero, so reset ret. 2154 */ 2155 if (ret == -EOVERFLOW) 2156 ret = 0; 2157 2158 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2159 ret = -EFAULT; 2160 return ret; 2161 } 2162 2163 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2164 void __user *argp) 2165 { 2166 struct btrfs_ioctl_search_args_v2 __user *uarg; 2167 struct btrfs_ioctl_search_args_v2 args; 2168 struct inode *inode; 2169 int ret; 2170 size_t buf_size; 2171 const size_t buf_limit = SZ_16M; 2172 2173 if (!capable(CAP_SYS_ADMIN)) 2174 return -EPERM; 2175 2176 /* copy search header and buffer size */ 2177 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2178 if (copy_from_user(&args, uarg, sizeof(args))) 2179 return -EFAULT; 2180 2181 buf_size = args.buf_size; 2182 2183 if (buf_size < sizeof(struct btrfs_ioctl_search_header)) 2184 return -EOVERFLOW; 2185 2186 /* limit result size to 16MB */ 2187 if (buf_size > buf_limit) 2188 buf_size = buf_limit; 2189 2190 inode = file_inode(file); 2191 ret = search_ioctl(inode, &args.key, &buf_size, 2192 (char *)(&uarg->buf[0])); 2193 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2194 ret = -EFAULT; 2195 else if (ret == -EOVERFLOW && 2196 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2197 ret = -EFAULT; 2198 2199 return ret; 2200 } 2201 2202 /* 2203 * Search INODE_REFs to identify path name of 'dirid' directory 2204 * in a 'tree_id' tree. and sets path name to 'name'. 2205 */ 2206 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2207 u64 tree_id, u64 dirid, char *name) 2208 { 2209 struct btrfs_root *root; 2210 struct btrfs_key key; 2211 char *ptr; 2212 int ret = -1; 2213 int slot; 2214 int len; 2215 int total_len = 0; 2216 struct btrfs_inode_ref *iref; 2217 struct extent_buffer *l; 2218 struct btrfs_path *path; 2219 2220 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2221 name[0]='\0'; 2222 return 0; 2223 } 2224 2225 path = btrfs_alloc_path(); 2226 if (!path) 2227 return -ENOMEM; 2228 2229 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2230 2231 key.objectid = tree_id; 2232 key.type = BTRFS_ROOT_ITEM_KEY; 2233 key.offset = (u64)-1; 2234 root = btrfs_read_fs_root_no_name(info, &key); 2235 if (IS_ERR(root)) { 2236 btrfs_err(info, "could not find root %llu", tree_id); 2237 ret = -ENOENT; 2238 goto out; 2239 } 2240 2241 key.objectid = dirid; 2242 key.type = BTRFS_INODE_REF_KEY; 2243 key.offset = (u64)-1; 2244 2245 while (1) { 2246 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2247 if (ret < 0) 2248 goto out; 2249 else if (ret > 0) { 2250 ret = btrfs_previous_item(root, path, dirid, 2251 BTRFS_INODE_REF_KEY); 2252 if (ret < 0) 2253 goto out; 2254 else if (ret > 0) { 2255 ret = -ENOENT; 2256 goto out; 2257 } 2258 } 2259 2260 l = path->nodes[0]; 2261 slot = path->slots[0]; 2262 btrfs_item_key_to_cpu(l, &key, slot); 2263 2264 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2265 len = btrfs_inode_ref_name_len(l, iref); 2266 ptr -= len + 1; 2267 total_len += len + 1; 2268 if (ptr < name) { 2269 ret = -ENAMETOOLONG; 2270 goto out; 2271 } 2272 2273 *(ptr + len) = '/'; 2274 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2275 2276 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2277 break; 2278 2279 btrfs_release_path(path); 2280 key.objectid = key.offset; 2281 key.offset = (u64)-1; 2282 dirid = key.objectid; 2283 } 2284 memmove(name, ptr, total_len); 2285 name[total_len] = '\0'; 2286 ret = 0; 2287 out: 2288 btrfs_free_path(path); 2289 return ret; 2290 } 2291 2292 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2293 void __user *argp) 2294 { 2295 struct btrfs_ioctl_ino_lookup_args *args; 2296 struct inode *inode; 2297 int ret = 0; 2298 2299 args = memdup_user(argp, sizeof(*args)); 2300 if (IS_ERR(args)) 2301 return PTR_ERR(args); 2302 2303 inode = file_inode(file); 2304 2305 /* 2306 * Unprivileged query to obtain the containing subvolume root id. The 2307 * path is reset so it's consistent with btrfs_search_path_in_tree. 2308 */ 2309 if (args->treeid == 0) 2310 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2311 2312 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2313 args->name[0] = 0; 2314 goto out; 2315 } 2316 2317 if (!capable(CAP_SYS_ADMIN)) { 2318 ret = -EPERM; 2319 goto out; 2320 } 2321 2322 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2323 args->treeid, args->objectid, 2324 args->name); 2325 2326 out: 2327 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2328 ret = -EFAULT; 2329 2330 kfree(args); 2331 return ret; 2332 } 2333 2334 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2335 void __user *arg) 2336 { 2337 struct dentry *parent = file->f_path.dentry; 2338 struct dentry *dentry; 2339 struct inode *dir = d_inode(parent); 2340 struct inode *inode; 2341 struct btrfs_root *root = BTRFS_I(dir)->root; 2342 struct btrfs_root *dest = NULL; 2343 struct btrfs_ioctl_vol_args *vol_args; 2344 struct btrfs_trans_handle *trans; 2345 struct btrfs_block_rsv block_rsv; 2346 u64 root_flags; 2347 u64 qgroup_reserved; 2348 int namelen; 2349 int ret; 2350 int err = 0; 2351 2352 vol_args = memdup_user(arg, sizeof(*vol_args)); 2353 if (IS_ERR(vol_args)) 2354 return PTR_ERR(vol_args); 2355 2356 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2357 namelen = strlen(vol_args->name); 2358 if (strchr(vol_args->name, '/') || 2359 strncmp(vol_args->name, "..", namelen) == 0) { 2360 err = -EINVAL; 2361 goto out; 2362 } 2363 2364 err = mnt_want_write_file(file); 2365 if (err) 2366 goto out; 2367 2368 2369 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 2370 if (err == -EINTR) 2371 goto out_drop_write; 2372 dentry = lookup_one_len(vol_args->name, parent, namelen); 2373 if (IS_ERR(dentry)) { 2374 err = PTR_ERR(dentry); 2375 goto out_unlock_dir; 2376 } 2377 2378 if (d_really_is_negative(dentry)) { 2379 err = -ENOENT; 2380 goto out_dput; 2381 } 2382 2383 inode = d_inode(dentry); 2384 dest = BTRFS_I(inode)->root; 2385 if (!capable(CAP_SYS_ADMIN)) { 2386 /* 2387 * Regular user. Only allow this with a special mount 2388 * option, when the user has write+exec access to the 2389 * subvol root, and when rmdir(2) would have been 2390 * allowed. 2391 * 2392 * Note that this is _not_ check that the subvol is 2393 * empty or doesn't contain data that we wouldn't 2394 * otherwise be able to delete. 2395 * 2396 * Users who want to delete empty subvols should try 2397 * rmdir(2). 2398 */ 2399 err = -EPERM; 2400 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2401 goto out_dput; 2402 2403 /* 2404 * Do not allow deletion if the parent dir is the same 2405 * as the dir to be deleted. That means the ioctl 2406 * must be called on the dentry referencing the root 2407 * of the subvol, not a random directory contained 2408 * within it. 2409 */ 2410 err = -EINVAL; 2411 if (root == dest) 2412 goto out_dput; 2413 2414 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2415 if (err) 2416 goto out_dput; 2417 } 2418 2419 /* check if subvolume may be deleted by a user */ 2420 err = btrfs_may_delete(dir, dentry, 1); 2421 if (err) 2422 goto out_dput; 2423 2424 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2425 err = -EINVAL; 2426 goto out_dput; 2427 } 2428 2429 inode_lock(inode); 2430 2431 /* 2432 * Don't allow to delete a subvolume with send in progress. This is 2433 * inside the i_mutex so the error handling that has to drop the bit 2434 * again is not run concurrently. 2435 */ 2436 spin_lock(&dest->root_item_lock); 2437 root_flags = btrfs_root_flags(&dest->root_item); 2438 if (dest->send_in_progress == 0) { 2439 btrfs_set_root_flags(&dest->root_item, 2440 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2441 spin_unlock(&dest->root_item_lock); 2442 } else { 2443 spin_unlock(&dest->root_item_lock); 2444 btrfs_warn(root->fs_info, 2445 "Attempt to delete subvolume %llu during send", 2446 dest->root_key.objectid); 2447 err = -EPERM; 2448 goto out_unlock_inode; 2449 } 2450 2451 down_write(&root->fs_info->subvol_sem); 2452 2453 err = may_destroy_subvol(dest); 2454 if (err) 2455 goto out_up_write; 2456 2457 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2458 /* 2459 * One for dir inode, two for dir entries, two for root 2460 * ref/backref. 2461 */ 2462 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2463 5, &qgroup_reserved, true); 2464 if (err) 2465 goto out_up_write; 2466 2467 trans = btrfs_start_transaction(root, 0); 2468 if (IS_ERR(trans)) { 2469 err = PTR_ERR(trans); 2470 goto out_release; 2471 } 2472 trans->block_rsv = &block_rsv; 2473 trans->bytes_reserved = block_rsv.size; 2474 2475 btrfs_record_snapshot_destroy(trans, dir); 2476 2477 ret = btrfs_unlink_subvol(trans, root, dir, 2478 dest->root_key.objectid, 2479 dentry->d_name.name, 2480 dentry->d_name.len); 2481 if (ret) { 2482 err = ret; 2483 btrfs_abort_transaction(trans, root, ret); 2484 goto out_end_trans; 2485 } 2486 2487 btrfs_record_root_in_trans(trans, dest); 2488 2489 memset(&dest->root_item.drop_progress, 0, 2490 sizeof(dest->root_item.drop_progress)); 2491 dest->root_item.drop_level = 0; 2492 btrfs_set_root_refs(&dest->root_item, 0); 2493 2494 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2495 ret = btrfs_insert_orphan_item(trans, 2496 root->fs_info->tree_root, 2497 dest->root_key.objectid); 2498 if (ret) { 2499 btrfs_abort_transaction(trans, root, ret); 2500 err = ret; 2501 goto out_end_trans; 2502 } 2503 } 2504 2505 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2506 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 2507 dest->root_key.objectid); 2508 if (ret && ret != -ENOENT) { 2509 btrfs_abort_transaction(trans, root, ret); 2510 err = ret; 2511 goto out_end_trans; 2512 } 2513 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2514 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2515 dest->root_item.received_uuid, 2516 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2517 dest->root_key.objectid); 2518 if (ret && ret != -ENOENT) { 2519 btrfs_abort_transaction(trans, root, ret); 2520 err = ret; 2521 goto out_end_trans; 2522 } 2523 } 2524 2525 out_end_trans: 2526 trans->block_rsv = NULL; 2527 trans->bytes_reserved = 0; 2528 ret = btrfs_end_transaction(trans, root); 2529 if (ret && !err) 2530 err = ret; 2531 inode->i_flags |= S_DEAD; 2532 out_release: 2533 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 2534 out_up_write: 2535 up_write(&root->fs_info->subvol_sem); 2536 if (err) { 2537 spin_lock(&dest->root_item_lock); 2538 root_flags = btrfs_root_flags(&dest->root_item); 2539 btrfs_set_root_flags(&dest->root_item, 2540 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2541 spin_unlock(&dest->root_item_lock); 2542 } 2543 out_unlock_inode: 2544 inode_unlock(inode); 2545 if (!err) { 2546 d_invalidate(dentry); 2547 btrfs_invalidate_inodes(dest); 2548 d_delete(dentry); 2549 ASSERT(dest->send_in_progress == 0); 2550 2551 /* the last ref */ 2552 if (dest->ino_cache_inode) { 2553 iput(dest->ino_cache_inode); 2554 dest->ino_cache_inode = NULL; 2555 } 2556 } 2557 out_dput: 2558 dput(dentry); 2559 out_unlock_dir: 2560 inode_unlock(dir); 2561 out_drop_write: 2562 mnt_drop_write_file(file); 2563 out: 2564 kfree(vol_args); 2565 return err; 2566 } 2567 2568 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2569 { 2570 struct inode *inode = file_inode(file); 2571 struct btrfs_root *root = BTRFS_I(inode)->root; 2572 struct btrfs_ioctl_defrag_range_args *range; 2573 int ret; 2574 2575 ret = mnt_want_write_file(file); 2576 if (ret) 2577 return ret; 2578 2579 if (btrfs_root_readonly(root)) { 2580 ret = -EROFS; 2581 goto out; 2582 } 2583 2584 switch (inode->i_mode & S_IFMT) { 2585 case S_IFDIR: 2586 if (!capable(CAP_SYS_ADMIN)) { 2587 ret = -EPERM; 2588 goto out; 2589 } 2590 ret = btrfs_defrag_root(root); 2591 if (ret) 2592 goto out; 2593 ret = btrfs_defrag_root(root->fs_info->extent_root); 2594 break; 2595 case S_IFREG: 2596 if (!(file->f_mode & FMODE_WRITE)) { 2597 ret = -EINVAL; 2598 goto out; 2599 } 2600 2601 range = kzalloc(sizeof(*range), GFP_KERNEL); 2602 if (!range) { 2603 ret = -ENOMEM; 2604 goto out; 2605 } 2606 2607 if (argp) { 2608 if (copy_from_user(range, argp, 2609 sizeof(*range))) { 2610 ret = -EFAULT; 2611 kfree(range); 2612 goto out; 2613 } 2614 /* compression requires us to start the IO */ 2615 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2616 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2617 range->extent_thresh = (u32)-1; 2618 } 2619 } else { 2620 /* the rest are all set to zero by kzalloc */ 2621 range->len = (u64)-1; 2622 } 2623 ret = btrfs_defrag_file(file_inode(file), file, 2624 range, 0, 0); 2625 if (ret > 0) 2626 ret = 0; 2627 kfree(range); 2628 break; 2629 default: 2630 ret = -EINVAL; 2631 } 2632 out: 2633 mnt_drop_write_file(file); 2634 return ret; 2635 } 2636 2637 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2638 { 2639 struct btrfs_ioctl_vol_args *vol_args; 2640 int ret; 2641 2642 if (!capable(CAP_SYS_ADMIN)) 2643 return -EPERM; 2644 2645 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2646 1)) { 2647 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2648 } 2649 2650 mutex_lock(&root->fs_info->volume_mutex); 2651 vol_args = memdup_user(arg, sizeof(*vol_args)); 2652 if (IS_ERR(vol_args)) { 2653 ret = PTR_ERR(vol_args); 2654 goto out; 2655 } 2656 2657 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2658 ret = btrfs_init_new_device(root, vol_args->name); 2659 2660 if (!ret) 2661 btrfs_info(root->fs_info, "disk added %s",vol_args->name); 2662 2663 kfree(vol_args); 2664 out: 2665 mutex_unlock(&root->fs_info->volume_mutex); 2666 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2667 return ret; 2668 } 2669 2670 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2671 { 2672 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2673 struct btrfs_ioctl_vol_args *vol_args; 2674 int ret; 2675 2676 if (!capable(CAP_SYS_ADMIN)) 2677 return -EPERM; 2678 2679 ret = mnt_want_write_file(file); 2680 if (ret) 2681 return ret; 2682 2683 vol_args = memdup_user(arg, sizeof(*vol_args)); 2684 if (IS_ERR(vol_args)) { 2685 ret = PTR_ERR(vol_args); 2686 goto err_drop; 2687 } 2688 2689 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2690 2691 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2692 1)) { 2693 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2694 goto out; 2695 } 2696 2697 mutex_lock(&root->fs_info->volume_mutex); 2698 ret = btrfs_rm_device(root, vol_args->name); 2699 mutex_unlock(&root->fs_info->volume_mutex); 2700 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2701 2702 if (!ret) 2703 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name); 2704 2705 out: 2706 kfree(vol_args); 2707 err_drop: 2708 mnt_drop_write_file(file); 2709 return ret; 2710 } 2711 2712 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2713 { 2714 struct btrfs_ioctl_fs_info_args *fi_args; 2715 struct btrfs_device *device; 2716 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2717 int ret = 0; 2718 2719 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2720 if (!fi_args) 2721 return -ENOMEM; 2722 2723 mutex_lock(&fs_devices->device_list_mutex); 2724 fi_args->num_devices = fs_devices->num_devices; 2725 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2726 2727 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2728 if (device->devid > fi_args->max_id) 2729 fi_args->max_id = device->devid; 2730 } 2731 mutex_unlock(&fs_devices->device_list_mutex); 2732 2733 fi_args->nodesize = root->fs_info->super_copy->nodesize; 2734 fi_args->sectorsize = root->fs_info->super_copy->sectorsize; 2735 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize; 2736 2737 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2738 ret = -EFAULT; 2739 2740 kfree(fi_args); 2741 return ret; 2742 } 2743 2744 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2745 { 2746 struct btrfs_ioctl_dev_info_args *di_args; 2747 struct btrfs_device *dev; 2748 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2749 int ret = 0; 2750 char *s_uuid = NULL; 2751 2752 di_args = memdup_user(arg, sizeof(*di_args)); 2753 if (IS_ERR(di_args)) 2754 return PTR_ERR(di_args); 2755 2756 if (!btrfs_is_empty_uuid(di_args->uuid)) 2757 s_uuid = di_args->uuid; 2758 2759 mutex_lock(&fs_devices->device_list_mutex); 2760 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2761 2762 if (!dev) { 2763 ret = -ENODEV; 2764 goto out; 2765 } 2766 2767 di_args->devid = dev->devid; 2768 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2769 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2770 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2771 if (dev->name) { 2772 struct rcu_string *name; 2773 2774 rcu_read_lock(); 2775 name = rcu_dereference(dev->name); 2776 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2777 rcu_read_unlock(); 2778 di_args->path[sizeof(di_args->path) - 1] = 0; 2779 } else { 2780 di_args->path[0] = '\0'; 2781 } 2782 2783 out: 2784 mutex_unlock(&fs_devices->device_list_mutex); 2785 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2786 ret = -EFAULT; 2787 2788 kfree(di_args); 2789 return ret; 2790 } 2791 2792 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 2793 { 2794 struct page *page; 2795 2796 page = grab_cache_page(inode->i_mapping, index); 2797 if (!page) 2798 return ERR_PTR(-ENOMEM); 2799 2800 if (!PageUptodate(page)) { 2801 int ret; 2802 2803 ret = btrfs_readpage(NULL, page); 2804 if (ret) 2805 return ERR_PTR(ret); 2806 lock_page(page); 2807 if (!PageUptodate(page)) { 2808 unlock_page(page); 2809 put_page(page); 2810 return ERR_PTR(-EIO); 2811 } 2812 if (page->mapping != inode->i_mapping) { 2813 unlock_page(page); 2814 put_page(page); 2815 return ERR_PTR(-EAGAIN); 2816 } 2817 } 2818 2819 return page; 2820 } 2821 2822 static int gather_extent_pages(struct inode *inode, struct page **pages, 2823 int num_pages, u64 off) 2824 { 2825 int i; 2826 pgoff_t index = off >> PAGE_SHIFT; 2827 2828 for (i = 0; i < num_pages; i++) { 2829 again: 2830 pages[i] = extent_same_get_page(inode, index + i); 2831 if (IS_ERR(pages[i])) { 2832 int err = PTR_ERR(pages[i]); 2833 2834 if (err == -EAGAIN) 2835 goto again; 2836 pages[i] = NULL; 2837 return err; 2838 } 2839 } 2840 return 0; 2841 } 2842 2843 static int lock_extent_range(struct inode *inode, u64 off, u64 len, 2844 bool retry_range_locking) 2845 { 2846 /* 2847 * Do any pending delalloc/csum calculations on inode, one way or 2848 * another, and lock file content. 2849 * The locking order is: 2850 * 2851 * 1) pages 2852 * 2) range in the inode's io tree 2853 */ 2854 while (1) { 2855 struct btrfs_ordered_extent *ordered; 2856 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2857 ordered = btrfs_lookup_first_ordered_extent(inode, 2858 off + len - 1); 2859 if ((!ordered || 2860 ordered->file_offset + ordered->len <= off || 2861 ordered->file_offset >= off + len) && 2862 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2863 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2864 if (ordered) 2865 btrfs_put_ordered_extent(ordered); 2866 break; 2867 } 2868 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2869 if (ordered) 2870 btrfs_put_ordered_extent(ordered); 2871 if (!retry_range_locking) 2872 return -EAGAIN; 2873 btrfs_wait_ordered_range(inode, off, len); 2874 } 2875 return 0; 2876 } 2877 2878 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 2879 { 2880 inode_unlock(inode1); 2881 inode_unlock(inode2); 2882 } 2883 2884 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 2885 { 2886 if (inode1 < inode2) 2887 swap(inode1, inode2); 2888 2889 inode_lock_nested(inode1, I_MUTEX_PARENT); 2890 inode_lock_nested(inode2, I_MUTEX_CHILD); 2891 } 2892 2893 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 2894 struct inode *inode2, u64 loff2, u64 len) 2895 { 2896 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2897 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2898 } 2899 2900 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 2901 struct inode *inode2, u64 loff2, u64 len, 2902 bool retry_range_locking) 2903 { 2904 int ret; 2905 2906 if (inode1 < inode2) { 2907 swap(inode1, inode2); 2908 swap(loff1, loff2); 2909 } 2910 ret = lock_extent_range(inode1, loff1, len, retry_range_locking); 2911 if (ret) 2912 return ret; 2913 ret = lock_extent_range(inode2, loff2, len, retry_range_locking); 2914 if (ret) 2915 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, 2916 loff1 + len - 1); 2917 return ret; 2918 } 2919 2920 struct cmp_pages { 2921 int num_pages; 2922 struct page **src_pages; 2923 struct page **dst_pages; 2924 }; 2925 2926 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 2927 { 2928 int i; 2929 struct page *pg; 2930 2931 for (i = 0; i < cmp->num_pages; i++) { 2932 pg = cmp->src_pages[i]; 2933 if (pg) { 2934 unlock_page(pg); 2935 put_page(pg); 2936 } 2937 pg = cmp->dst_pages[i]; 2938 if (pg) { 2939 unlock_page(pg); 2940 put_page(pg); 2941 } 2942 } 2943 kfree(cmp->src_pages); 2944 kfree(cmp->dst_pages); 2945 } 2946 2947 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 2948 struct inode *dst, u64 dst_loff, 2949 u64 len, struct cmp_pages *cmp) 2950 { 2951 int ret; 2952 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT; 2953 struct page **src_pgarr, **dst_pgarr; 2954 2955 /* 2956 * We must gather up all the pages before we initiate our 2957 * extent locking. We use an array for the page pointers. Size 2958 * of the array is bounded by len, which is in turn bounded by 2959 * BTRFS_MAX_DEDUPE_LEN. 2960 */ 2961 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 2962 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 2963 if (!src_pgarr || !dst_pgarr) { 2964 kfree(src_pgarr); 2965 kfree(dst_pgarr); 2966 return -ENOMEM; 2967 } 2968 cmp->num_pages = num_pages; 2969 cmp->src_pages = src_pgarr; 2970 cmp->dst_pages = dst_pgarr; 2971 2972 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff); 2973 if (ret) 2974 goto out; 2975 2976 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff); 2977 2978 out: 2979 if (ret) 2980 btrfs_cmp_data_free(cmp); 2981 return 0; 2982 } 2983 2984 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst, 2985 u64 dst_loff, u64 len, struct cmp_pages *cmp) 2986 { 2987 int ret = 0; 2988 int i; 2989 struct page *src_page, *dst_page; 2990 unsigned int cmp_len = PAGE_SIZE; 2991 void *addr, *dst_addr; 2992 2993 i = 0; 2994 while (len) { 2995 if (len < PAGE_SIZE) 2996 cmp_len = len; 2997 2998 BUG_ON(i >= cmp->num_pages); 2999 3000 src_page = cmp->src_pages[i]; 3001 dst_page = cmp->dst_pages[i]; 3002 ASSERT(PageLocked(src_page)); 3003 ASSERT(PageLocked(dst_page)); 3004 3005 addr = kmap_atomic(src_page); 3006 dst_addr = kmap_atomic(dst_page); 3007 3008 flush_dcache_page(src_page); 3009 flush_dcache_page(dst_page); 3010 3011 if (memcmp(addr, dst_addr, cmp_len)) 3012 ret = -EBADE; 3013 3014 kunmap_atomic(addr); 3015 kunmap_atomic(dst_addr); 3016 3017 if (ret) 3018 break; 3019 3020 len -= cmp_len; 3021 i++; 3022 } 3023 3024 return ret; 3025 } 3026 3027 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 3028 u64 olen) 3029 { 3030 u64 len = *plen; 3031 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 3032 3033 if (off + olen > inode->i_size || off + olen < off) 3034 return -EINVAL; 3035 3036 /* if we extend to eof, continue to block boundary */ 3037 if (off + len == inode->i_size) 3038 *plen = len = ALIGN(inode->i_size, bs) - off; 3039 3040 /* Check that we are block aligned - btrfs_clone() requires this */ 3041 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 3042 return -EINVAL; 3043 3044 return 0; 3045 } 3046 3047 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3048 struct inode *dst, u64 dst_loff) 3049 { 3050 int ret; 3051 u64 len = olen; 3052 struct cmp_pages cmp; 3053 int same_inode = 0; 3054 u64 same_lock_start = 0; 3055 u64 same_lock_len = 0; 3056 3057 if (src == dst) 3058 same_inode = 1; 3059 3060 if (len == 0) 3061 return 0; 3062 3063 if (same_inode) { 3064 inode_lock(src); 3065 3066 ret = extent_same_check_offsets(src, loff, &len, olen); 3067 if (ret) 3068 goto out_unlock; 3069 ret = extent_same_check_offsets(src, dst_loff, &len, olen); 3070 if (ret) 3071 goto out_unlock; 3072 3073 /* 3074 * Single inode case wants the same checks, except we 3075 * don't want our length pushed out past i_size as 3076 * comparing that data range makes no sense. 3077 * 3078 * extent_same_check_offsets() will do this for an 3079 * unaligned length at i_size, so catch it here and 3080 * reject the request. 3081 * 3082 * This effectively means we require aligned extents 3083 * for the single-inode case, whereas the other cases 3084 * allow an unaligned length so long as it ends at 3085 * i_size. 3086 */ 3087 if (len != olen) { 3088 ret = -EINVAL; 3089 goto out_unlock; 3090 } 3091 3092 /* Check for overlapping ranges */ 3093 if (dst_loff + len > loff && dst_loff < loff + len) { 3094 ret = -EINVAL; 3095 goto out_unlock; 3096 } 3097 3098 same_lock_start = min_t(u64, loff, dst_loff); 3099 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3100 } else { 3101 btrfs_double_inode_lock(src, dst); 3102 3103 ret = extent_same_check_offsets(src, loff, &len, olen); 3104 if (ret) 3105 goto out_unlock; 3106 3107 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3108 if (ret) 3109 goto out_unlock; 3110 } 3111 3112 /* don't make the dst file partly checksummed */ 3113 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3114 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3115 ret = -EINVAL; 3116 goto out_unlock; 3117 } 3118 3119 again: 3120 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp); 3121 if (ret) 3122 goto out_unlock; 3123 3124 if (same_inode) 3125 ret = lock_extent_range(src, same_lock_start, same_lock_len, 3126 false); 3127 else 3128 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, 3129 false); 3130 /* 3131 * If one of the inodes has dirty pages in the respective range or 3132 * ordered extents, we need to flush dellaloc and wait for all ordered 3133 * extents in the range. We must unlock the pages and the ranges in the 3134 * io trees to avoid deadlocks when flushing delalloc (requires locking 3135 * pages) and when waiting for ordered extents to complete (they require 3136 * range locking). 3137 */ 3138 if (ret == -EAGAIN) { 3139 /* 3140 * Ranges in the io trees already unlocked. Now unlock all 3141 * pages before waiting for all IO to complete. 3142 */ 3143 btrfs_cmp_data_free(&cmp); 3144 if (same_inode) { 3145 btrfs_wait_ordered_range(src, same_lock_start, 3146 same_lock_len); 3147 } else { 3148 btrfs_wait_ordered_range(src, loff, len); 3149 btrfs_wait_ordered_range(dst, dst_loff, len); 3150 } 3151 goto again; 3152 } 3153 ASSERT(ret == 0); 3154 if (WARN_ON(ret)) { 3155 /* ranges in the io trees already unlocked */ 3156 btrfs_cmp_data_free(&cmp); 3157 return ret; 3158 } 3159 3160 /* pass original length for comparison so we stay within i_size */ 3161 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp); 3162 if (ret == 0) 3163 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3164 3165 if (same_inode) 3166 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3167 same_lock_start + same_lock_len - 1); 3168 else 3169 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3170 3171 btrfs_cmp_data_free(&cmp); 3172 out_unlock: 3173 if (same_inode) 3174 inode_unlock(src); 3175 else 3176 btrfs_double_inode_unlock(src, dst); 3177 3178 return ret; 3179 } 3180 3181 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3182 3183 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen, 3184 struct file *dst_file, u64 dst_loff) 3185 { 3186 struct inode *src = file_inode(src_file); 3187 struct inode *dst = file_inode(dst_file); 3188 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3189 ssize_t res; 3190 3191 if (olen > BTRFS_MAX_DEDUPE_LEN) 3192 olen = BTRFS_MAX_DEDUPE_LEN; 3193 3194 if (WARN_ON_ONCE(bs < PAGE_SIZE)) { 3195 /* 3196 * Btrfs does not support blocksize < page_size. As a 3197 * result, btrfs_cmp_data() won't correctly handle 3198 * this situation without an update. 3199 */ 3200 return -EINVAL; 3201 } 3202 3203 res = btrfs_extent_same(src, loff, olen, dst, dst_loff); 3204 if (res) 3205 return res; 3206 return olen; 3207 } 3208 3209 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3210 struct inode *inode, 3211 u64 endoff, 3212 const u64 destoff, 3213 const u64 olen, 3214 int no_time_update) 3215 { 3216 struct btrfs_root *root = BTRFS_I(inode)->root; 3217 int ret; 3218 3219 inode_inc_iversion(inode); 3220 if (!no_time_update) 3221 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 3222 /* 3223 * We round up to the block size at eof when determining which 3224 * extents to clone above, but shouldn't round up the file size. 3225 */ 3226 if (endoff > destoff + olen) 3227 endoff = destoff + olen; 3228 if (endoff > inode->i_size) 3229 btrfs_i_size_write(inode, endoff); 3230 3231 ret = btrfs_update_inode(trans, root, inode); 3232 if (ret) { 3233 btrfs_abort_transaction(trans, root, ret); 3234 btrfs_end_transaction(trans, root); 3235 goto out; 3236 } 3237 ret = btrfs_end_transaction(trans, root); 3238 out: 3239 return ret; 3240 } 3241 3242 static void clone_update_extent_map(struct inode *inode, 3243 const struct btrfs_trans_handle *trans, 3244 const struct btrfs_path *path, 3245 const u64 hole_offset, 3246 const u64 hole_len) 3247 { 3248 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3249 struct extent_map *em; 3250 int ret; 3251 3252 em = alloc_extent_map(); 3253 if (!em) { 3254 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3255 &BTRFS_I(inode)->runtime_flags); 3256 return; 3257 } 3258 3259 if (path) { 3260 struct btrfs_file_extent_item *fi; 3261 3262 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3263 struct btrfs_file_extent_item); 3264 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3265 em->generation = -1; 3266 if (btrfs_file_extent_type(path->nodes[0], fi) == 3267 BTRFS_FILE_EXTENT_INLINE) 3268 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3269 &BTRFS_I(inode)->runtime_flags); 3270 } else { 3271 em->start = hole_offset; 3272 em->len = hole_len; 3273 em->ram_bytes = em->len; 3274 em->orig_start = hole_offset; 3275 em->block_start = EXTENT_MAP_HOLE; 3276 em->block_len = 0; 3277 em->orig_block_len = 0; 3278 em->compress_type = BTRFS_COMPRESS_NONE; 3279 em->generation = trans->transid; 3280 } 3281 3282 while (1) { 3283 write_lock(&em_tree->lock); 3284 ret = add_extent_mapping(em_tree, em, 1); 3285 write_unlock(&em_tree->lock); 3286 if (ret != -EEXIST) { 3287 free_extent_map(em); 3288 break; 3289 } 3290 btrfs_drop_extent_cache(inode, em->start, 3291 em->start + em->len - 1, 0); 3292 } 3293 3294 if (ret) 3295 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3296 &BTRFS_I(inode)->runtime_flags); 3297 } 3298 3299 /* 3300 * Make sure we do not end up inserting an inline extent into a file that has 3301 * already other (non-inline) extents. If a file has an inline extent it can 3302 * not have any other extents and the (single) inline extent must start at the 3303 * file offset 0. Failing to respect these rules will lead to file corruption, 3304 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3305 * 3306 * We can have extents that have been already written to disk or we can have 3307 * dirty ranges still in delalloc, in which case the extent maps and items are 3308 * created only when we run delalloc, and the delalloc ranges might fall outside 3309 * the range we are currently locking in the inode's io tree. So we check the 3310 * inode's i_size because of that (i_size updates are done while holding the 3311 * i_mutex, which we are holding here). 3312 * We also check to see if the inode has a size not greater than "datal" but has 3313 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3314 * protected against such concurrent fallocate calls by the i_mutex). 3315 * 3316 * If the file has no extents but a size greater than datal, do not allow the 3317 * copy because we would need turn the inline extent into a non-inline one (even 3318 * with NO_HOLES enabled). If we find our destination inode only has one inline 3319 * extent, just overwrite it with the source inline extent if its size is less 3320 * than the source extent's size, or we could copy the source inline extent's 3321 * data into the destination inode's inline extent if the later is greater then 3322 * the former. 3323 */ 3324 static int clone_copy_inline_extent(struct inode *src, 3325 struct inode *dst, 3326 struct btrfs_trans_handle *trans, 3327 struct btrfs_path *path, 3328 struct btrfs_key *new_key, 3329 const u64 drop_start, 3330 const u64 datal, 3331 const u64 skip, 3332 const u64 size, 3333 char *inline_data) 3334 { 3335 struct btrfs_root *root = BTRFS_I(dst)->root; 3336 const u64 aligned_end = ALIGN(new_key->offset + datal, 3337 root->sectorsize); 3338 int ret; 3339 struct btrfs_key key; 3340 3341 if (new_key->offset > 0) 3342 return -EOPNOTSUPP; 3343 3344 key.objectid = btrfs_ino(dst); 3345 key.type = BTRFS_EXTENT_DATA_KEY; 3346 key.offset = 0; 3347 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3348 if (ret < 0) { 3349 return ret; 3350 } else if (ret > 0) { 3351 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3352 ret = btrfs_next_leaf(root, path); 3353 if (ret < 0) 3354 return ret; 3355 else if (ret > 0) 3356 goto copy_inline_extent; 3357 } 3358 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3359 if (key.objectid == btrfs_ino(dst) && 3360 key.type == BTRFS_EXTENT_DATA_KEY) { 3361 ASSERT(key.offset > 0); 3362 return -EOPNOTSUPP; 3363 } 3364 } else if (i_size_read(dst) <= datal) { 3365 struct btrfs_file_extent_item *ei; 3366 u64 ext_len; 3367 3368 /* 3369 * If the file size is <= datal, make sure there are no other 3370 * extents following (can happen do to an fallocate call with 3371 * the flag FALLOC_FL_KEEP_SIZE). 3372 */ 3373 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3374 struct btrfs_file_extent_item); 3375 /* 3376 * If it's an inline extent, it can not have other extents 3377 * following it. 3378 */ 3379 if (btrfs_file_extent_type(path->nodes[0], ei) == 3380 BTRFS_FILE_EXTENT_INLINE) 3381 goto copy_inline_extent; 3382 3383 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3384 if (ext_len > aligned_end) 3385 return -EOPNOTSUPP; 3386 3387 ret = btrfs_next_item(root, path); 3388 if (ret < 0) { 3389 return ret; 3390 } else if (ret == 0) { 3391 btrfs_item_key_to_cpu(path->nodes[0], &key, 3392 path->slots[0]); 3393 if (key.objectid == btrfs_ino(dst) && 3394 key.type == BTRFS_EXTENT_DATA_KEY) 3395 return -EOPNOTSUPP; 3396 } 3397 } 3398 3399 copy_inline_extent: 3400 /* 3401 * We have no extent items, or we have an extent at offset 0 which may 3402 * or may not be inlined. All these cases are dealt the same way. 3403 */ 3404 if (i_size_read(dst) > datal) { 3405 /* 3406 * If the destination inode has an inline extent... 3407 * This would require copying the data from the source inline 3408 * extent into the beginning of the destination's inline extent. 3409 * But this is really complex, both extents can be compressed 3410 * or just one of them, which would require decompressing and 3411 * re-compressing data (which could increase the new compressed 3412 * size, not allowing the compressed data to fit anymore in an 3413 * inline extent). 3414 * So just don't support this case for now (it should be rare, 3415 * we are not really saving space when cloning inline extents). 3416 */ 3417 return -EOPNOTSUPP; 3418 } 3419 3420 btrfs_release_path(path); 3421 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3422 if (ret) 3423 return ret; 3424 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3425 if (ret) 3426 return ret; 3427 3428 if (skip) { 3429 const u32 start = btrfs_file_extent_calc_inline_size(0); 3430 3431 memmove(inline_data + start, inline_data + start + skip, datal); 3432 } 3433 3434 write_extent_buffer(path->nodes[0], inline_data, 3435 btrfs_item_ptr_offset(path->nodes[0], 3436 path->slots[0]), 3437 size); 3438 inode_add_bytes(dst, datal); 3439 3440 return 0; 3441 } 3442 3443 /** 3444 * btrfs_clone() - clone a range from inode file to another 3445 * 3446 * @src: Inode to clone from 3447 * @inode: Inode to clone to 3448 * @off: Offset within source to start clone from 3449 * @olen: Original length, passed by user, of range to clone 3450 * @olen_aligned: Block-aligned value of olen 3451 * @destoff: Offset within @inode to start clone 3452 * @no_time_update: Whether to update mtime/ctime on the target inode 3453 */ 3454 static int btrfs_clone(struct inode *src, struct inode *inode, 3455 const u64 off, const u64 olen, const u64 olen_aligned, 3456 const u64 destoff, int no_time_update) 3457 { 3458 struct btrfs_root *root = BTRFS_I(inode)->root; 3459 struct btrfs_path *path = NULL; 3460 struct extent_buffer *leaf; 3461 struct btrfs_trans_handle *trans; 3462 char *buf = NULL; 3463 struct btrfs_key key; 3464 u32 nritems; 3465 int slot; 3466 int ret; 3467 const u64 len = olen_aligned; 3468 u64 last_dest_end = destoff; 3469 3470 ret = -ENOMEM; 3471 buf = vmalloc(root->nodesize); 3472 if (!buf) 3473 return ret; 3474 3475 path = btrfs_alloc_path(); 3476 if (!path) { 3477 vfree(buf); 3478 return ret; 3479 } 3480 3481 path->reada = READA_FORWARD; 3482 /* clone data */ 3483 key.objectid = btrfs_ino(src); 3484 key.type = BTRFS_EXTENT_DATA_KEY; 3485 key.offset = off; 3486 3487 while (1) { 3488 u64 next_key_min_offset = key.offset + 1; 3489 3490 /* 3491 * note the key will change type as we walk through the 3492 * tree. 3493 */ 3494 path->leave_spinning = 1; 3495 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3496 0, 0); 3497 if (ret < 0) 3498 goto out; 3499 /* 3500 * First search, if no extent item that starts at offset off was 3501 * found but the previous item is an extent item, it's possible 3502 * it might overlap our target range, therefore process it. 3503 */ 3504 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3505 btrfs_item_key_to_cpu(path->nodes[0], &key, 3506 path->slots[0] - 1); 3507 if (key.type == BTRFS_EXTENT_DATA_KEY) 3508 path->slots[0]--; 3509 } 3510 3511 nritems = btrfs_header_nritems(path->nodes[0]); 3512 process_slot: 3513 if (path->slots[0] >= nritems) { 3514 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3515 if (ret < 0) 3516 goto out; 3517 if (ret > 0) 3518 break; 3519 nritems = btrfs_header_nritems(path->nodes[0]); 3520 } 3521 leaf = path->nodes[0]; 3522 slot = path->slots[0]; 3523 3524 btrfs_item_key_to_cpu(leaf, &key, slot); 3525 if (key.type > BTRFS_EXTENT_DATA_KEY || 3526 key.objectid != btrfs_ino(src)) 3527 break; 3528 3529 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3530 struct btrfs_file_extent_item *extent; 3531 int type; 3532 u32 size; 3533 struct btrfs_key new_key; 3534 u64 disko = 0, diskl = 0; 3535 u64 datao = 0, datal = 0; 3536 u8 comp; 3537 u64 drop_start; 3538 3539 extent = btrfs_item_ptr(leaf, slot, 3540 struct btrfs_file_extent_item); 3541 comp = btrfs_file_extent_compression(leaf, extent); 3542 type = btrfs_file_extent_type(leaf, extent); 3543 if (type == BTRFS_FILE_EXTENT_REG || 3544 type == BTRFS_FILE_EXTENT_PREALLOC) { 3545 disko = btrfs_file_extent_disk_bytenr(leaf, 3546 extent); 3547 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3548 extent); 3549 datao = btrfs_file_extent_offset(leaf, extent); 3550 datal = btrfs_file_extent_num_bytes(leaf, 3551 extent); 3552 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3553 /* take upper bound, may be compressed */ 3554 datal = btrfs_file_extent_ram_bytes(leaf, 3555 extent); 3556 } 3557 3558 /* 3559 * The first search might have left us at an extent 3560 * item that ends before our target range's start, can 3561 * happen if we have holes and NO_HOLES feature enabled. 3562 */ 3563 if (key.offset + datal <= off) { 3564 path->slots[0]++; 3565 goto process_slot; 3566 } else if (key.offset >= off + len) { 3567 break; 3568 } 3569 next_key_min_offset = key.offset + datal; 3570 size = btrfs_item_size_nr(leaf, slot); 3571 read_extent_buffer(leaf, buf, 3572 btrfs_item_ptr_offset(leaf, slot), 3573 size); 3574 3575 btrfs_release_path(path); 3576 path->leave_spinning = 0; 3577 3578 memcpy(&new_key, &key, sizeof(new_key)); 3579 new_key.objectid = btrfs_ino(inode); 3580 if (off <= key.offset) 3581 new_key.offset = key.offset + destoff - off; 3582 else 3583 new_key.offset = destoff; 3584 3585 /* 3586 * Deal with a hole that doesn't have an extent item 3587 * that represents it (NO_HOLES feature enabled). 3588 * This hole is either in the middle of the cloning 3589 * range or at the beginning (fully overlaps it or 3590 * partially overlaps it). 3591 */ 3592 if (new_key.offset != last_dest_end) 3593 drop_start = last_dest_end; 3594 else 3595 drop_start = new_key.offset; 3596 3597 /* 3598 * 1 - adjusting old extent (we may have to split it) 3599 * 1 - add new extent 3600 * 1 - inode update 3601 */ 3602 trans = btrfs_start_transaction(root, 3); 3603 if (IS_ERR(trans)) { 3604 ret = PTR_ERR(trans); 3605 goto out; 3606 } 3607 3608 if (type == BTRFS_FILE_EXTENT_REG || 3609 type == BTRFS_FILE_EXTENT_PREALLOC) { 3610 /* 3611 * a | --- range to clone ---| b 3612 * | ------------- extent ------------- | 3613 */ 3614 3615 /* subtract range b */ 3616 if (key.offset + datal > off + len) 3617 datal = off + len - key.offset; 3618 3619 /* subtract range a */ 3620 if (off > key.offset) { 3621 datao += off - key.offset; 3622 datal -= off - key.offset; 3623 } 3624 3625 ret = btrfs_drop_extents(trans, root, inode, 3626 drop_start, 3627 new_key.offset + datal, 3628 1); 3629 if (ret) { 3630 if (ret != -EOPNOTSUPP) 3631 btrfs_abort_transaction(trans, 3632 root, ret); 3633 btrfs_end_transaction(trans, root); 3634 goto out; 3635 } 3636 3637 ret = btrfs_insert_empty_item(trans, root, path, 3638 &new_key, size); 3639 if (ret) { 3640 btrfs_abort_transaction(trans, root, 3641 ret); 3642 btrfs_end_transaction(trans, root); 3643 goto out; 3644 } 3645 3646 leaf = path->nodes[0]; 3647 slot = path->slots[0]; 3648 write_extent_buffer(leaf, buf, 3649 btrfs_item_ptr_offset(leaf, slot), 3650 size); 3651 3652 extent = btrfs_item_ptr(leaf, slot, 3653 struct btrfs_file_extent_item); 3654 3655 /* disko == 0 means it's a hole */ 3656 if (!disko) 3657 datao = 0; 3658 3659 btrfs_set_file_extent_offset(leaf, extent, 3660 datao); 3661 btrfs_set_file_extent_num_bytes(leaf, extent, 3662 datal); 3663 3664 if (disko) { 3665 inode_add_bytes(inode, datal); 3666 ret = btrfs_inc_extent_ref(trans, root, 3667 disko, diskl, 0, 3668 root->root_key.objectid, 3669 btrfs_ino(inode), 3670 new_key.offset - datao); 3671 if (ret) { 3672 btrfs_abort_transaction(trans, 3673 root, 3674 ret); 3675 btrfs_end_transaction(trans, 3676 root); 3677 goto out; 3678 3679 } 3680 } 3681 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3682 u64 skip = 0; 3683 u64 trim = 0; 3684 3685 if (off > key.offset) { 3686 skip = off - key.offset; 3687 new_key.offset += skip; 3688 } 3689 3690 if (key.offset + datal > off + len) 3691 trim = key.offset + datal - (off + len); 3692 3693 if (comp && (skip || trim)) { 3694 ret = -EINVAL; 3695 btrfs_end_transaction(trans, root); 3696 goto out; 3697 } 3698 size -= skip + trim; 3699 datal -= skip + trim; 3700 3701 ret = clone_copy_inline_extent(src, inode, 3702 trans, path, 3703 &new_key, 3704 drop_start, 3705 datal, 3706 skip, size, buf); 3707 if (ret) { 3708 if (ret != -EOPNOTSUPP) 3709 btrfs_abort_transaction(trans, 3710 root, 3711 ret); 3712 btrfs_end_transaction(trans, root); 3713 goto out; 3714 } 3715 leaf = path->nodes[0]; 3716 slot = path->slots[0]; 3717 } 3718 3719 /* If we have an implicit hole (NO_HOLES feature). */ 3720 if (drop_start < new_key.offset) 3721 clone_update_extent_map(inode, trans, 3722 NULL, drop_start, 3723 new_key.offset - drop_start); 3724 3725 clone_update_extent_map(inode, trans, path, 0, 0); 3726 3727 btrfs_mark_buffer_dirty(leaf); 3728 btrfs_release_path(path); 3729 3730 last_dest_end = ALIGN(new_key.offset + datal, 3731 root->sectorsize); 3732 ret = clone_finish_inode_update(trans, inode, 3733 last_dest_end, 3734 destoff, olen, 3735 no_time_update); 3736 if (ret) 3737 goto out; 3738 if (new_key.offset + datal >= destoff + len) 3739 break; 3740 } 3741 btrfs_release_path(path); 3742 key.offset = next_key_min_offset; 3743 } 3744 ret = 0; 3745 3746 if (last_dest_end < destoff + len) { 3747 /* 3748 * We have an implicit hole (NO_HOLES feature is enabled) that 3749 * fully or partially overlaps our cloning range at its end. 3750 */ 3751 btrfs_release_path(path); 3752 3753 /* 3754 * 1 - remove extent(s) 3755 * 1 - inode update 3756 */ 3757 trans = btrfs_start_transaction(root, 2); 3758 if (IS_ERR(trans)) { 3759 ret = PTR_ERR(trans); 3760 goto out; 3761 } 3762 ret = btrfs_drop_extents(trans, root, inode, 3763 last_dest_end, destoff + len, 1); 3764 if (ret) { 3765 if (ret != -EOPNOTSUPP) 3766 btrfs_abort_transaction(trans, root, ret); 3767 btrfs_end_transaction(trans, root); 3768 goto out; 3769 } 3770 clone_update_extent_map(inode, trans, NULL, last_dest_end, 3771 destoff + len - last_dest_end); 3772 ret = clone_finish_inode_update(trans, inode, destoff + len, 3773 destoff, olen, no_time_update); 3774 } 3775 3776 out: 3777 btrfs_free_path(path); 3778 vfree(buf); 3779 return ret; 3780 } 3781 3782 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3783 u64 off, u64 olen, u64 destoff) 3784 { 3785 struct inode *inode = file_inode(file); 3786 struct inode *src = file_inode(file_src); 3787 struct btrfs_root *root = BTRFS_I(inode)->root; 3788 int ret; 3789 u64 len = olen; 3790 u64 bs = root->fs_info->sb->s_blocksize; 3791 int same_inode = src == inode; 3792 3793 /* 3794 * TODO: 3795 * - split compressed inline extents. annoying: we need to 3796 * decompress into destination's address_space (the file offset 3797 * may change, so source mapping won't do), then recompress (or 3798 * otherwise reinsert) a subrange. 3799 * 3800 * - split destination inode's inline extents. The inline extents can 3801 * be either compressed or non-compressed. 3802 */ 3803 3804 if (btrfs_root_readonly(root)) 3805 return -EROFS; 3806 3807 if (file_src->f_path.mnt != file->f_path.mnt || 3808 src->i_sb != inode->i_sb) 3809 return -EXDEV; 3810 3811 /* don't make the dst file partly checksummed */ 3812 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3813 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3814 return -EINVAL; 3815 3816 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3817 return -EISDIR; 3818 3819 if (!same_inode) { 3820 btrfs_double_inode_lock(src, inode); 3821 } else { 3822 inode_lock(src); 3823 } 3824 3825 /* determine range to clone */ 3826 ret = -EINVAL; 3827 if (off + len > src->i_size || off + len < off) 3828 goto out_unlock; 3829 if (len == 0) 3830 olen = len = src->i_size - off; 3831 /* if we extend to eof, continue to block boundary */ 3832 if (off + len == src->i_size) 3833 len = ALIGN(src->i_size, bs) - off; 3834 3835 if (len == 0) { 3836 ret = 0; 3837 goto out_unlock; 3838 } 3839 3840 /* verify the end result is block aligned */ 3841 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3842 !IS_ALIGNED(destoff, bs)) 3843 goto out_unlock; 3844 3845 /* verify if ranges are overlapped within the same file */ 3846 if (same_inode) { 3847 if (destoff + len > off && destoff < off + len) 3848 goto out_unlock; 3849 } 3850 3851 if (destoff > inode->i_size) { 3852 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3853 if (ret) 3854 goto out_unlock; 3855 } 3856 3857 /* 3858 * Lock the target range too. Right after we replace the file extent 3859 * items in the fs tree (which now point to the cloned data), we might 3860 * have a worker replace them with extent items relative to a write 3861 * operation that was issued before this clone operation (i.e. confront 3862 * with inode.c:btrfs_finish_ordered_io). 3863 */ 3864 if (same_inode) { 3865 u64 lock_start = min_t(u64, off, destoff); 3866 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3867 3868 ret = lock_extent_range(src, lock_start, lock_len, true); 3869 } else { 3870 ret = btrfs_double_extent_lock(src, off, inode, destoff, len, 3871 true); 3872 } 3873 ASSERT(ret == 0); 3874 if (WARN_ON(ret)) { 3875 /* ranges in the io trees already unlocked */ 3876 goto out_unlock; 3877 } 3878 3879 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3880 3881 if (same_inode) { 3882 u64 lock_start = min_t(u64, off, destoff); 3883 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3884 3885 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3886 } else { 3887 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3888 } 3889 /* 3890 * Truncate page cache pages so that future reads will see the cloned 3891 * data immediately and not the previous data. 3892 */ 3893 truncate_inode_pages_range(&inode->i_data, 3894 round_down(destoff, PAGE_SIZE), 3895 round_up(destoff + len, PAGE_SIZE) - 1); 3896 out_unlock: 3897 if (!same_inode) 3898 btrfs_double_inode_unlock(src, inode); 3899 else 3900 inode_unlock(src); 3901 return ret; 3902 } 3903 3904 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in, 3905 struct file *file_out, loff_t pos_out, 3906 size_t len, unsigned int flags) 3907 { 3908 ssize_t ret; 3909 3910 ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out); 3911 if (ret == 0) 3912 ret = len; 3913 return ret; 3914 } 3915 3916 int btrfs_clone_file_range(struct file *src_file, loff_t off, 3917 struct file *dst_file, loff_t destoff, u64 len) 3918 { 3919 return btrfs_clone_files(dst_file, src_file, off, len, destoff); 3920 } 3921 3922 /* 3923 * there are many ways the trans_start and trans_end ioctls can lead 3924 * to deadlocks. They should only be used by applications that 3925 * basically own the machine, and have a very in depth understanding 3926 * of all the possible deadlocks and enospc problems. 3927 */ 3928 static long btrfs_ioctl_trans_start(struct file *file) 3929 { 3930 struct inode *inode = file_inode(file); 3931 struct btrfs_root *root = BTRFS_I(inode)->root; 3932 struct btrfs_trans_handle *trans; 3933 int ret; 3934 3935 ret = -EPERM; 3936 if (!capable(CAP_SYS_ADMIN)) 3937 goto out; 3938 3939 ret = -EINPROGRESS; 3940 if (file->private_data) 3941 goto out; 3942 3943 ret = -EROFS; 3944 if (btrfs_root_readonly(root)) 3945 goto out; 3946 3947 ret = mnt_want_write_file(file); 3948 if (ret) 3949 goto out; 3950 3951 atomic_inc(&root->fs_info->open_ioctl_trans); 3952 3953 ret = -ENOMEM; 3954 trans = btrfs_start_ioctl_transaction(root); 3955 if (IS_ERR(trans)) 3956 goto out_drop; 3957 3958 file->private_data = trans; 3959 return 0; 3960 3961 out_drop: 3962 atomic_dec(&root->fs_info->open_ioctl_trans); 3963 mnt_drop_write_file(file); 3964 out: 3965 return ret; 3966 } 3967 3968 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3969 { 3970 struct inode *inode = file_inode(file); 3971 struct btrfs_root *root = BTRFS_I(inode)->root; 3972 struct btrfs_root *new_root; 3973 struct btrfs_dir_item *di; 3974 struct btrfs_trans_handle *trans; 3975 struct btrfs_path *path; 3976 struct btrfs_key location; 3977 struct btrfs_disk_key disk_key; 3978 u64 objectid = 0; 3979 u64 dir_id; 3980 int ret; 3981 3982 if (!capable(CAP_SYS_ADMIN)) 3983 return -EPERM; 3984 3985 ret = mnt_want_write_file(file); 3986 if (ret) 3987 return ret; 3988 3989 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3990 ret = -EFAULT; 3991 goto out; 3992 } 3993 3994 if (!objectid) 3995 objectid = BTRFS_FS_TREE_OBJECTID; 3996 3997 location.objectid = objectid; 3998 location.type = BTRFS_ROOT_ITEM_KEY; 3999 location.offset = (u64)-1; 4000 4001 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 4002 if (IS_ERR(new_root)) { 4003 ret = PTR_ERR(new_root); 4004 goto out; 4005 } 4006 4007 path = btrfs_alloc_path(); 4008 if (!path) { 4009 ret = -ENOMEM; 4010 goto out; 4011 } 4012 path->leave_spinning = 1; 4013 4014 trans = btrfs_start_transaction(root, 1); 4015 if (IS_ERR(trans)) { 4016 btrfs_free_path(path); 4017 ret = PTR_ERR(trans); 4018 goto out; 4019 } 4020 4021 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 4022 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 4023 dir_id, "default", 7, 1); 4024 if (IS_ERR_OR_NULL(di)) { 4025 btrfs_free_path(path); 4026 btrfs_end_transaction(trans, root); 4027 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir" 4028 "item, this isn't going to work"); 4029 ret = -ENOENT; 4030 goto out; 4031 } 4032 4033 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4034 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4035 btrfs_mark_buffer_dirty(path->nodes[0]); 4036 btrfs_free_path(path); 4037 4038 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 4039 btrfs_end_transaction(trans, root); 4040 out: 4041 mnt_drop_write_file(file); 4042 return ret; 4043 } 4044 4045 void btrfs_get_block_group_info(struct list_head *groups_list, 4046 struct btrfs_ioctl_space_info *space) 4047 { 4048 struct btrfs_block_group_cache *block_group; 4049 4050 space->total_bytes = 0; 4051 space->used_bytes = 0; 4052 space->flags = 0; 4053 list_for_each_entry(block_group, groups_list, list) { 4054 space->flags = block_group->flags; 4055 space->total_bytes += block_group->key.offset; 4056 space->used_bytes += 4057 btrfs_block_group_used(&block_group->item); 4058 } 4059 } 4060 4061 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 4062 { 4063 struct btrfs_ioctl_space_args space_args; 4064 struct btrfs_ioctl_space_info space; 4065 struct btrfs_ioctl_space_info *dest; 4066 struct btrfs_ioctl_space_info *dest_orig; 4067 struct btrfs_ioctl_space_info __user *user_dest; 4068 struct btrfs_space_info *info; 4069 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 4070 BTRFS_BLOCK_GROUP_SYSTEM, 4071 BTRFS_BLOCK_GROUP_METADATA, 4072 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 4073 int num_types = 4; 4074 int alloc_size; 4075 int ret = 0; 4076 u64 slot_count = 0; 4077 int i, c; 4078 4079 if (copy_from_user(&space_args, 4080 (struct btrfs_ioctl_space_args __user *)arg, 4081 sizeof(space_args))) 4082 return -EFAULT; 4083 4084 for (i = 0; i < num_types; i++) { 4085 struct btrfs_space_info *tmp; 4086 4087 info = NULL; 4088 rcu_read_lock(); 4089 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4090 list) { 4091 if (tmp->flags == types[i]) { 4092 info = tmp; 4093 break; 4094 } 4095 } 4096 rcu_read_unlock(); 4097 4098 if (!info) 4099 continue; 4100 4101 down_read(&info->groups_sem); 4102 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4103 if (!list_empty(&info->block_groups[c])) 4104 slot_count++; 4105 } 4106 up_read(&info->groups_sem); 4107 } 4108 4109 /* 4110 * Global block reserve, exported as a space_info 4111 */ 4112 slot_count++; 4113 4114 /* space_slots == 0 means they are asking for a count */ 4115 if (space_args.space_slots == 0) { 4116 space_args.total_spaces = slot_count; 4117 goto out; 4118 } 4119 4120 slot_count = min_t(u64, space_args.space_slots, slot_count); 4121 4122 alloc_size = sizeof(*dest) * slot_count; 4123 4124 /* we generally have at most 6 or so space infos, one for each raid 4125 * level. So, a whole page should be more than enough for everyone 4126 */ 4127 if (alloc_size > PAGE_SIZE) 4128 return -ENOMEM; 4129 4130 space_args.total_spaces = 0; 4131 dest = kmalloc(alloc_size, GFP_KERNEL); 4132 if (!dest) 4133 return -ENOMEM; 4134 dest_orig = dest; 4135 4136 /* now we have a buffer to copy into */ 4137 for (i = 0; i < num_types; i++) { 4138 struct btrfs_space_info *tmp; 4139 4140 if (!slot_count) 4141 break; 4142 4143 info = NULL; 4144 rcu_read_lock(); 4145 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4146 list) { 4147 if (tmp->flags == types[i]) { 4148 info = tmp; 4149 break; 4150 } 4151 } 4152 rcu_read_unlock(); 4153 4154 if (!info) 4155 continue; 4156 down_read(&info->groups_sem); 4157 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4158 if (!list_empty(&info->block_groups[c])) { 4159 btrfs_get_block_group_info( 4160 &info->block_groups[c], &space); 4161 memcpy(dest, &space, sizeof(space)); 4162 dest++; 4163 space_args.total_spaces++; 4164 slot_count--; 4165 } 4166 if (!slot_count) 4167 break; 4168 } 4169 up_read(&info->groups_sem); 4170 } 4171 4172 /* 4173 * Add global block reserve 4174 */ 4175 if (slot_count) { 4176 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv; 4177 4178 spin_lock(&block_rsv->lock); 4179 space.total_bytes = block_rsv->size; 4180 space.used_bytes = block_rsv->size - block_rsv->reserved; 4181 spin_unlock(&block_rsv->lock); 4182 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4183 memcpy(dest, &space, sizeof(space)); 4184 space_args.total_spaces++; 4185 } 4186 4187 user_dest = (struct btrfs_ioctl_space_info __user *) 4188 (arg + sizeof(struct btrfs_ioctl_space_args)); 4189 4190 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4191 ret = -EFAULT; 4192 4193 kfree(dest_orig); 4194 out: 4195 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4196 ret = -EFAULT; 4197 4198 return ret; 4199 } 4200 4201 /* 4202 * there are many ways the trans_start and trans_end ioctls can lead 4203 * to deadlocks. They should only be used by applications that 4204 * basically own the machine, and have a very in depth understanding 4205 * of all the possible deadlocks and enospc problems. 4206 */ 4207 long btrfs_ioctl_trans_end(struct file *file) 4208 { 4209 struct inode *inode = file_inode(file); 4210 struct btrfs_root *root = BTRFS_I(inode)->root; 4211 struct btrfs_trans_handle *trans; 4212 4213 trans = file->private_data; 4214 if (!trans) 4215 return -EINVAL; 4216 file->private_data = NULL; 4217 4218 btrfs_end_transaction(trans, root); 4219 4220 atomic_dec(&root->fs_info->open_ioctl_trans); 4221 4222 mnt_drop_write_file(file); 4223 return 0; 4224 } 4225 4226 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4227 void __user *argp) 4228 { 4229 struct btrfs_trans_handle *trans; 4230 u64 transid; 4231 int ret; 4232 4233 trans = btrfs_attach_transaction_barrier(root); 4234 if (IS_ERR(trans)) { 4235 if (PTR_ERR(trans) != -ENOENT) 4236 return PTR_ERR(trans); 4237 4238 /* No running transaction, don't bother */ 4239 transid = root->fs_info->last_trans_committed; 4240 goto out; 4241 } 4242 transid = trans->transid; 4243 ret = btrfs_commit_transaction_async(trans, root, 0); 4244 if (ret) { 4245 btrfs_end_transaction(trans, root); 4246 return ret; 4247 } 4248 out: 4249 if (argp) 4250 if (copy_to_user(argp, &transid, sizeof(transid))) 4251 return -EFAULT; 4252 return 0; 4253 } 4254 4255 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 4256 void __user *argp) 4257 { 4258 u64 transid; 4259 4260 if (argp) { 4261 if (copy_from_user(&transid, argp, sizeof(transid))) 4262 return -EFAULT; 4263 } else { 4264 transid = 0; /* current trans */ 4265 } 4266 return btrfs_wait_for_commit(root, transid); 4267 } 4268 4269 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4270 { 4271 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4272 struct btrfs_ioctl_scrub_args *sa; 4273 int ret; 4274 4275 if (!capable(CAP_SYS_ADMIN)) 4276 return -EPERM; 4277 4278 sa = memdup_user(arg, sizeof(*sa)); 4279 if (IS_ERR(sa)) 4280 return PTR_ERR(sa); 4281 4282 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4283 ret = mnt_want_write_file(file); 4284 if (ret) 4285 goto out; 4286 } 4287 4288 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 4289 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4290 0); 4291 4292 if (copy_to_user(arg, sa, sizeof(*sa))) 4293 ret = -EFAULT; 4294 4295 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4296 mnt_drop_write_file(file); 4297 out: 4298 kfree(sa); 4299 return ret; 4300 } 4301 4302 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 4303 { 4304 if (!capable(CAP_SYS_ADMIN)) 4305 return -EPERM; 4306 4307 return btrfs_scrub_cancel(root->fs_info); 4308 } 4309 4310 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 4311 void __user *arg) 4312 { 4313 struct btrfs_ioctl_scrub_args *sa; 4314 int ret; 4315 4316 if (!capable(CAP_SYS_ADMIN)) 4317 return -EPERM; 4318 4319 sa = memdup_user(arg, sizeof(*sa)); 4320 if (IS_ERR(sa)) 4321 return PTR_ERR(sa); 4322 4323 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 4324 4325 if (copy_to_user(arg, sa, sizeof(*sa))) 4326 ret = -EFAULT; 4327 4328 kfree(sa); 4329 return ret; 4330 } 4331 4332 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 4333 void __user *arg) 4334 { 4335 struct btrfs_ioctl_get_dev_stats *sa; 4336 int ret; 4337 4338 sa = memdup_user(arg, sizeof(*sa)); 4339 if (IS_ERR(sa)) 4340 return PTR_ERR(sa); 4341 4342 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4343 kfree(sa); 4344 return -EPERM; 4345 } 4346 4347 ret = btrfs_get_dev_stats(root, sa); 4348 4349 if (copy_to_user(arg, sa, sizeof(*sa))) 4350 ret = -EFAULT; 4351 4352 kfree(sa); 4353 return ret; 4354 } 4355 4356 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 4357 { 4358 struct btrfs_ioctl_dev_replace_args *p; 4359 int ret; 4360 4361 if (!capable(CAP_SYS_ADMIN)) 4362 return -EPERM; 4363 4364 p = memdup_user(arg, sizeof(*p)); 4365 if (IS_ERR(p)) 4366 return PTR_ERR(p); 4367 4368 switch (p->cmd) { 4369 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4370 if (root->fs_info->sb->s_flags & MS_RDONLY) { 4371 ret = -EROFS; 4372 goto out; 4373 } 4374 if (atomic_xchg( 4375 &root->fs_info->mutually_exclusive_operation_running, 4376 1)) { 4377 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4378 } else { 4379 ret = btrfs_dev_replace_start(root, p); 4380 atomic_set( 4381 &root->fs_info->mutually_exclusive_operation_running, 4382 0); 4383 } 4384 break; 4385 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4386 btrfs_dev_replace_status(root->fs_info, p); 4387 ret = 0; 4388 break; 4389 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4390 ret = btrfs_dev_replace_cancel(root->fs_info, p); 4391 break; 4392 default: 4393 ret = -EINVAL; 4394 break; 4395 } 4396 4397 if (copy_to_user(arg, p, sizeof(*p))) 4398 ret = -EFAULT; 4399 out: 4400 kfree(p); 4401 return ret; 4402 } 4403 4404 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4405 { 4406 int ret = 0; 4407 int i; 4408 u64 rel_ptr; 4409 int size; 4410 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4411 struct inode_fs_paths *ipath = NULL; 4412 struct btrfs_path *path; 4413 4414 if (!capable(CAP_DAC_READ_SEARCH)) 4415 return -EPERM; 4416 4417 path = btrfs_alloc_path(); 4418 if (!path) { 4419 ret = -ENOMEM; 4420 goto out; 4421 } 4422 4423 ipa = memdup_user(arg, sizeof(*ipa)); 4424 if (IS_ERR(ipa)) { 4425 ret = PTR_ERR(ipa); 4426 ipa = NULL; 4427 goto out; 4428 } 4429 4430 size = min_t(u32, ipa->size, 4096); 4431 ipath = init_ipath(size, root, path); 4432 if (IS_ERR(ipath)) { 4433 ret = PTR_ERR(ipath); 4434 ipath = NULL; 4435 goto out; 4436 } 4437 4438 ret = paths_from_inode(ipa->inum, ipath); 4439 if (ret < 0) 4440 goto out; 4441 4442 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4443 rel_ptr = ipath->fspath->val[i] - 4444 (u64)(unsigned long)ipath->fspath->val; 4445 ipath->fspath->val[i] = rel_ptr; 4446 } 4447 4448 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4449 (void *)(unsigned long)ipath->fspath, size); 4450 if (ret) { 4451 ret = -EFAULT; 4452 goto out; 4453 } 4454 4455 out: 4456 btrfs_free_path(path); 4457 free_ipath(ipath); 4458 kfree(ipa); 4459 4460 return ret; 4461 } 4462 4463 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4464 { 4465 struct btrfs_data_container *inodes = ctx; 4466 const size_t c = 3 * sizeof(u64); 4467 4468 if (inodes->bytes_left >= c) { 4469 inodes->bytes_left -= c; 4470 inodes->val[inodes->elem_cnt] = inum; 4471 inodes->val[inodes->elem_cnt + 1] = offset; 4472 inodes->val[inodes->elem_cnt + 2] = root; 4473 inodes->elem_cnt += 3; 4474 } else { 4475 inodes->bytes_missing += c - inodes->bytes_left; 4476 inodes->bytes_left = 0; 4477 inodes->elem_missed += 3; 4478 } 4479 4480 return 0; 4481 } 4482 4483 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 4484 void __user *arg) 4485 { 4486 int ret = 0; 4487 int size; 4488 struct btrfs_ioctl_logical_ino_args *loi; 4489 struct btrfs_data_container *inodes = NULL; 4490 struct btrfs_path *path = NULL; 4491 4492 if (!capable(CAP_SYS_ADMIN)) 4493 return -EPERM; 4494 4495 loi = memdup_user(arg, sizeof(*loi)); 4496 if (IS_ERR(loi)) { 4497 ret = PTR_ERR(loi); 4498 loi = NULL; 4499 goto out; 4500 } 4501 4502 path = btrfs_alloc_path(); 4503 if (!path) { 4504 ret = -ENOMEM; 4505 goto out; 4506 } 4507 4508 size = min_t(u32, loi->size, SZ_64K); 4509 inodes = init_data_container(size); 4510 if (IS_ERR(inodes)) { 4511 ret = PTR_ERR(inodes); 4512 inodes = NULL; 4513 goto out; 4514 } 4515 4516 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 4517 build_ino_list, inodes); 4518 if (ret == -EINVAL) 4519 ret = -ENOENT; 4520 if (ret < 0) 4521 goto out; 4522 4523 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4524 (void *)(unsigned long)inodes, size); 4525 if (ret) 4526 ret = -EFAULT; 4527 4528 out: 4529 btrfs_free_path(path); 4530 vfree(inodes); 4531 kfree(loi); 4532 4533 return ret; 4534 } 4535 4536 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4537 struct btrfs_ioctl_balance_args *bargs) 4538 { 4539 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4540 4541 bargs->flags = bctl->flags; 4542 4543 if (atomic_read(&fs_info->balance_running)) 4544 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4545 if (atomic_read(&fs_info->balance_pause_req)) 4546 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4547 if (atomic_read(&fs_info->balance_cancel_req)) 4548 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4549 4550 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4551 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4552 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4553 4554 if (lock) { 4555 spin_lock(&fs_info->balance_lock); 4556 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4557 spin_unlock(&fs_info->balance_lock); 4558 } else { 4559 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4560 } 4561 } 4562 4563 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4564 { 4565 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4566 struct btrfs_fs_info *fs_info = root->fs_info; 4567 struct btrfs_ioctl_balance_args *bargs; 4568 struct btrfs_balance_control *bctl; 4569 bool need_unlock; /* for mut. excl. ops lock */ 4570 int ret; 4571 4572 if (!capable(CAP_SYS_ADMIN)) 4573 return -EPERM; 4574 4575 ret = mnt_want_write_file(file); 4576 if (ret) 4577 return ret; 4578 4579 again: 4580 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 4581 mutex_lock(&fs_info->volume_mutex); 4582 mutex_lock(&fs_info->balance_mutex); 4583 need_unlock = true; 4584 goto locked; 4585 } 4586 4587 /* 4588 * mut. excl. ops lock is locked. Three possibilites: 4589 * (1) some other op is running 4590 * (2) balance is running 4591 * (3) balance is paused -- special case (think resume) 4592 */ 4593 mutex_lock(&fs_info->balance_mutex); 4594 if (fs_info->balance_ctl) { 4595 /* this is either (2) or (3) */ 4596 if (!atomic_read(&fs_info->balance_running)) { 4597 mutex_unlock(&fs_info->balance_mutex); 4598 if (!mutex_trylock(&fs_info->volume_mutex)) 4599 goto again; 4600 mutex_lock(&fs_info->balance_mutex); 4601 4602 if (fs_info->balance_ctl && 4603 !atomic_read(&fs_info->balance_running)) { 4604 /* this is (3) */ 4605 need_unlock = false; 4606 goto locked; 4607 } 4608 4609 mutex_unlock(&fs_info->balance_mutex); 4610 mutex_unlock(&fs_info->volume_mutex); 4611 goto again; 4612 } else { 4613 /* this is (2) */ 4614 mutex_unlock(&fs_info->balance_mutex); 4615 ret = -EINPROGRESS; 4616 goto out; 4617 } 4618 } else { 4619 /* this is (1) */ 4620 mutex_unlock(&fs_info->balance_mutex); 4621 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4622 goto out; 4623 } 4624 4625 locked: 4626 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 4627 4628 if (arg) { 4629 bargs = memdup_user(arg, sizeof(*bargs)); 4630 if (IS_ERR(bargs)) { 4631 ret = PTR_ERR(bargs); 4632 goto out_unlock; 4633 } 4634 4635 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4636 if (!fs_info->balance_ctl) { 4637 ret = -ENOTCONN; 4638 goto out_bargs; 4639 } 4640 4641 bctl = fs_info->balance_ctl; 4642 spin_lock(&fs_info->balance_lock); 4643 bctl->flags |= BTRFS_BALANCE_RESUME; 4644 spin_unlock(&fs_info->balance_lock); 4645 4646 goto do_balance; 4647 } 4648 } else { 4649 bargs = NULL; 4650 } 4651 4652 if (fs_info->balance_ctl) { 4653 ret = -EINPROGRESS; 4654 goto out_bargs; 4655 } 4656 4657 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4658 if (!bctl) { 4659 ret = -ENOMEM; 4660 goto out_bargs; 4661 } 4662 4663 bctl->fs_info = fs_info; 4664 if (arg) { 4665 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4666 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4667 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4668 4669 bctl->flags = bargs->flags; 4670 } else { 4671 /* balance everything - no filters */ 4672 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4673 } 4674 4675 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4676 ret = -EINVAL; 4677 goto out_bctl; 4678 } 4679 4680 do_balance: 4681 /* 4682 * Ownership of bctl and mutually_exclusive_operation_running 4683 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4684 * or, if restriper was paused all the way until unmount, in 4685 * free_fs_info. mutually_exclusive_operation_running is 4686 * cleared in __cancel_balance. 4687 */ 4688 need_unlock = false; 4689 4690 ret = btrfs_balance(bctl, bargs); 4691 bctl = NULL; 4692 4693 if (arg) { 4694 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4695 ret = -EFAULT; 4696 } 4697 4698 out_bctl: 4699 kfree(bctl); 4700 out_bargs: 4701 kfree(bargs); 4702 out_unlock: 4703 mutex_unlock(&fs_info->balance_mutex); 4704 mutex_unlock(&fs_info->volume_mutex); 4705 if (need_unlock) 4706 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 4707 out: 4708 mnt_drop_write_file(file); 4709 return ret; 4710 } 4711 4712 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 4713 { 4714 if (!capable(CAP_SYS_ADMIN)) 4715 return -EPERM; 4716 4717 switch (cmd) { 4718 case BTRFS_BALANCE_CTL_PAUSE: 4719 return btrfs_pause_balance(root->fs_info); 4720 case BTRFS_BALANCE_CTL_CANCEL: 4721 return btrfs_cancel_balance(root->fs_info); 4722 } 4723 4724 return -EINVAL; 4725 } 4726 4727 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 4728 void __user *arg) 4729 { 4730 struct btrfs_fs_info *fs_info = root->fs_info; 4731 struct btrfs_ioctl_balance_args *bargs; 4732 int ret = 0; 4733 4734 if (!capable(CAP_SYS_ADMIN)) 4735 return -EPERM; 4736 4737 mutex_lock(&fs_info->balance_mutex); 4738 if (!fs_info->balance_ctl) { 4739 ret = -ENOTCONN; 4740 goto out; 4741 } 4742 4743 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4744 if (!bargs) { 4745 ret = -ENOMEM; 4746 goto out; 4747 } 4748 4749 update_ioctl_balance_args(fs_info, 1, bargs); 4750 4751 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4752 ret = -EFAULT; 4753 4754 kfree(bargs); 4755 out: 4756 mutex_unlock(&fs_info->balance_mutex); 4757 return ret; 4758 } 4759 4760 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4761 { 4762 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4763 struct btrfs_ioctl_quota_ctl_args *sa; 4764 struct btrfs_trans_handle *trans = NULL; 4765 int ret; 4766 int err; 4767 4768 if (!capable(CAP_SYS_ADMIN)) 4769 return -EPERM; 4770 4771 ret = mnt_want_write_file(file); 4772 if (ret) 4773 return ret; 4774 4775 sa = memdup_user(arg, sizeof(*sa)); 4776 if (IS_ERR(sa)) { 4777 ret = PTR_ERR(sa); 4778 goto drop_write; 4779 } 4780 4781 down_write(&root->fs_info->subvol_sem); 4782 trans = btrfs_start_transaction(root->fs_info->tree_root, 2); 4783 if (IS_ERR(trans)) { 4784 ret = PTR_ERR(trans); 4785 goto out; 4786 } 4787 4788 switch (sa->cmd) { 4789 case BTRFS_QUOTA_CTL_ENABLE: 4790 ret = btrfs_quota_enable(trans, root->fs_info); 4791 break; 4792 case BTRFS_QUOTA_CTL_DISABLE: 4793 ret = btrfs_quota_disable(trans, root->fs_info); 4794 break; 4795 default: 4796 ret = -EINVAL; 4797 break; 4798 } 4799 4800 err = btrfs_commit_transaction(trans, root->fs_info->tree_root); 4801 if (err && !ret) 4802 ret = err; 4803 out: 4804 kfree(sa); 4805 up_write(&root->fs_info->subvol_sem); 4806 drop_write: 4807 mnt_drop_write_file(file); 4808 return ret; 4809 } 4810 4811 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4812 { 4813 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4814 struct btrfs_ioctl_qgroup_assign_args *sa; 4815 struct btrfs_trans_handle *trans; 4816 int ret; 4817 int err; 4818 4819 if (!capable(CAP_SYS_ADMIN)) 4820 return -EPERM; 4821 4822 ret = mnt_want_write_file(file); 4823 if (ret) 4824 return ret; 4825 4826 sa = memdup_user(arg, sizeof(*sa)); 4827 if (IS_ERR(sa)) { 4828 ret = PTR_ERR(sa); 4829 goto drop_write; 4830 } 4831 4832 trans = btrfs_join_transaction(root); 4833 if (IS_ERR(trans)) { 4834 ret = PTR_ERR(trans); 4835 goto out; 4836 } 4837 4838 /* FIXME: check if the IDs really exist */ 4839 if (sa->assign) { 4840 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 4841 sa->src, sa->dst); 4842 } else { 4843 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 4844 sa->src, sa->dst); 4845 } 4846 4847 /* update qgroup status and info */ 4848 err = btrfs_run_qgroups(trans, root->fs_info); 4849 if (err < 0) 4850 btrfs_std_error(root->fs_info, ret, 4851 "failed to update qgroup status and info\n"); 4852 err = btrfs_end_transaction(trans, root); 4853 if (err && !ret) 4854 ret = err; 4855 4856 out: 4857 kfree(sa); 4858 drop_write: 4859 mnt_drop_write_file(file); 4860 return ret; 4861 } 4862 4863 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4864 { 4865 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4866 struct btrfs_ioctl_qgroup_create_args *sa; 4867 struct btrfs_trans_handle *trans; 4868 int ret; 4869 int err; 4870 4871 if (!capable(CAP_SYS_ADMIN)) 4872 return -EPERM; 4873 4874 ret = mnt_want_write_file(file); 4875 if (ret) 4876 return ret; 4877 4878 sa = memdup_user(arg, sizeof(*sa)); 4879 if (IS_ERR(sa)) { 4880 ret = PTR_ERR(sa); 4881 goto drop_write; 4882 } 4883 4884 if (!sa->qgroupid) { 4885 ret = -EINVAL; 4886 goto out; 4887 } 4888 4889 trans = btrfs_join_transaction(root); 4890 if (IS_ERR(trans)) { 4891 ret = PTR_ERR(trans); 4892 goto out; 4893 } 4894 4895 /* FIXME: check if the IDs really exist */ 4896 if (sa->create) { 4897 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid); 4898 } else { 4899 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 4900 } 4901 4902 err = btrfs_end_transaction(trans, root); 4903 if (err && !ret) 4904 ret = err; 4905 4906 out: 4907 kfree(sa); 4908 drop_write: 4909 mnt_drop_write_file(file); 4910 return ret; 4911 } 4912 4913 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4914 { 4915 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4916 struct btrfs_ioctl_qgroup_limit_args *sa; 4917 struct btrfs_trans_handle *trans; 4918 int ret; 4919 int err; 4920 u64 qgroupid; 4921 4922 if (!capable(CAP_SYS_ADMIN)) 4923 return -EPERM; 4924 4925 ret = mnt_want_write_file(file); 4926 if (ret) 4927 return ret; 4928 4929 sa = memdup_user(arg, sizeof(*sa)); 4930 if (IS_ERR(sa)) { 4931 ret = PTR_ERR(sa); 4932 goto drop_write; 4933 } 4934 4935 trans = btrfs_join_transaction(root); 4936 if (IS_ERR(trans)) { 4937 ret = PTR_ERR(trans); 4938 goto out; 4939 } 4940 4941 qgroupid = sa->qgroupid; 4942 if (!qgroupid) { 4943 /* take the current subvol as qgroup */ 4944 qgroupid = root->root_key.objectid; 4945 } 4946 4947 /* FIXME: check if the IDs really exist */ 4948 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 4949 4950 err = btrfs_end_transaction(trans, root); 4951 if (err && !ret) 4952 ret = err; 4953 4954 out: 4955 kfree(sa); 4956 drop_write: 4957 mnt_drop_write_file(file); 4958 return ret; 4959 } 4960 4961 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4962 { 4963 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4964 struct btrfs_ioctl_quota_rescan_args *qsa; 4965 int ret; 4966 4967 if (!capable(CAP_SYS_ADMIN)) 4968 return -EPERM; 4969 4970 ret = mnt_want_write_file(file); 4971 if (ret) 4972 return ret; 4973 4974 qsa = memdup_user(arg, sizeof(*qsa)); 4975 if (IS_ERR(qsa)) { 4976 ret = PTR_ERR(qsa); 4977 goto drop_write; 4978 } 4979 4980 if (qsa->flags) { 4981 ret = -EINVAL; 4982 goto out; 4983 } 4984 4985 ret = btrfs_qgroup_rescan(root->fs_info); 4986 4987 out: 4988 kfree(qsa); 4989 drop_write: 4990 mnt_drop_write_file(file); 4991 return ret; 4992 } 4993 4994 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 4995 { 4996 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4997 struct btrfs_ioctl_quota_rescan_args *qsa; 4998 int ret = 0; 4999 5000 if (!capable(CAP_SYS_ADMIN)) 5001 return -EPERM; 5002 5003 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5004 if (!qsa) 5005 return -ENOMEM; 5006 5007 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5008 qsa->flags = 1; 5009 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid; 5010 } 5011 5012 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5013 ret = -EFAULT; 5014 5015 kfree(qsa); 5016 return ret; 5017 } 5018 5019 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5020 { 5021 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5022 5023 if (!capable(CAP_SYS_ADMIN)) 5024 return -EPERM; 5025 5026 return btrfs_qgroup_wait_for_completion(root->fs_info); 5027 } 5028 5029 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5030 struct btrfs_ioctl_received_subvol_args *sa) 5031 { 5032 struct inode *inode = file_inode(file); 5033 struct btrfs_root *root = BTRFS_I(inode)->root; 5034 struct btrfs_root_item *root_item = &root->root_item; 5035 struct btrfs_trans_handle *trans; 5036 struct timespec ct = current_fs_time(inode->i_sb); 5037 int ret = 0; 5038 int received_uuid_changed; 5039 5040 if (!inode_owner_or_capable(inode)) 5041 return -EPERM; 5042 5043 ret = mnt_want_write_file(file); 5044 if (ret < 0) 5045 return ret; 5046 5047 down_write(&root->fs_info->subvol_sem); 5048 5049 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 5050 ret = -EINVAL; 5051 goto out; 5052 } 5053 5054 if (btrfs_root_readonly(root)) { 5055 ret = -EROFS; 5056 goto out; 5057 } 5058 5059 /* 5060 * 1 - root item 5061 * 2 - uuid items (received uuid + subvol uuid) 5062 */ 5063 trans = btrfs_start_transaction(root, 3); 5064 if (IS_ERR(trans)) { 5065 ret = PTR_ERR(trans); 5066 trans = NULL; 5067 goto out; 5068 } 5069 5070 sa->rtransid = trans->transid; 5071 sa->rtime.sec = ct.tv_sec; 5072 sa->rtime.nsec = ct.tv_nsec; 5073 5074 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5075 BTRFS_UUID_SIZE); 5076 if (received_uuid_changed && 5077 !btrfs_is_empty_uuid(root_item->received_uuid)) 5078 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 5079 root_item->received_uuid, 5080 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5081 root->root_key.objectid); 5082 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5083 btrfs_set_root_stransid(root_item, sa->stransid); 5084 btrfs_set_root_rtransid(root_item, sa->rtransid); 5085 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5086 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5087 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5088 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5089 5090 ret = btrfs_update_root(trans, root->fs_info->tree_root, 5091 &root->root_key, &root->root_item); 5092 if (ret < 0) { 5093 btrfs_end_transaction(trans, root); 5094 goto out; 5095 } 5096 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5097 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 5098 sa->uuid, 5099 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5100 root->root_key.objectid); 5101 if (ret < 0 && ret != -EEXIST) { 5102 btrfs_abort_transaction(trans, root, ret); 5103 goto out; 5104 } 5105 } 5106 ret = btrfs_commit_transaction(trans, root); 5107 if (ret < 0) { 5108 btrfs_abort_transaction(trans, root, ret); 5109 goto out; 5110 } 5111 5112 out: 5113 up_write(&root->fs_info->subvol_sem); 5114 mnt_drop_write_file(file); 5115 return ret; 5116 } 5117 5118 #ifdef CONFIG_64BIT 5119 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5120 void __user *arg) 5121 { 5122 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5123 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5124 int ret = 0; 5125 5126 args32 = memdup_user(arg, sizeof(*args32)); 5127 if (IS_ERR(args32)) { 5128 ret = PTR_ERR(args32); 5129 args32 = NULL; 5130 goto out; 5131 } 5132 5133 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5134 if (!args64) { 5135 ret = -ENOMEM; 5136 goto out; 5137 } 5138 5139 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5140 args64->stransid = args32->stransid; 5141 args64->rtransid = args32->rtransid; 5142 args64->stime.sec = args32->stime.sec; 5143 args64->stime.nsec = args32->stime.nsec; 5144 args64->rtime.sec = args32->rtime.sec; 5145 args64->rtime.nsec = args32->rtime.nsec; 5146 args64->flags = args32->flags; 5147 5148 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5149 if (ret) 5150 goto out; 5151 5152 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5153 args32->stransid = args64->stransid; 5154 args32->rtransid = args64->rtransid; 5155 args32->stime.sec = args64->stime.sec; 5156 args32->stime.nsec = args64->stime.nsec; 5157 args32->rtime.sec = args64->rtime.sec; 5158 args32->rtime.nsec = args64->rtime.nsec; 5159 args32->flags = args64->flags; 5160 5161 ret = copy_to_user(arg, args32, sizeof(*args32)); 5162 if (ret) 5163 ret = -EFAULT; 5164 5165 out: 5166 kfree(args32); 5167 kfree(args64); 5168 return ret; 5169 } 5170 #endif 5171 5172 static long btrfs_ioctl_set_received_subvol(struct file *file, 5173 void __user *arg) 5174 { 5175 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5176 int ret = 0; 5177 5178 sa = memdup_user(arg, sizeof(*sa)); 5179 if (IS_ERR(sa)) { 5180 ret = PTR_ERR(sa); 5181 sa = NULL; 5182 goto out; 5183 } 5184 5185 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5186 5187 if (ret) 5188 goto out; 5189 5190 ret = copy_to_user(arg, sa, sizeof(*sa)); 5191 if (ret) 5192 ret = -EFAULT; 5193 5194 out: 5195 kfree(sa); 5196 return ret; 5197 } 5198 5199 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5200 { 5201 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5202 size_t len; 5203 int ret; 5204 char label[BTRFS_LABEL_SIZE]; 5205 5206 spin_lock(&root->fs_info->super_lock); 5207 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5208 spin_unlock(&root->fs_info->super_lock); 5209 5210 len = strnlen(label, BTRFS_LABEL_SIZE); 5211 5212 if (len == BTRFS_LABEL_SIZE) { 5213 btrfs_warn(root->fs_info, 5214 "label is too long, return the first %zu bytes", --len); 5215 } 5216 5217 ret = copy_to_user(arg, label, len); 5218 5219 return ret ? -EFAULT : 0; 5220 } 5221 5222 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5223 { 5224 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5225 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5226 struct btrfs_trans_handle *trans; 5227 char label[BTRFS_LABEL_SIZE]; 5228 int ret; 5229 5230 if (!capable(CAP_SYS_ADMIN)) 5231 return -EPERM; 5232 5233 if (copy_from_user(label, arg, sizeof(label))) 5234 return -EFAULT; 5235 5236 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5237 btrfs_err(root->fs_info, "unable to set label with more than %d bytes", 5238 BTRFS_LABEL_SIZE - 1); 5239 return -EINVAL; 5240 } 5241 5242 ret = mnt_want_write_file(file); 5243 if (ret) 5244 return ret; 5245 5246 trans = btrfs_start_transaction(root, 0); 5247 if (IS_ERR(trans)) { 5248 ret = PTR_ERR(trans); 5249 goto out_unlock; 5250 } 5251 5252 spin_lock(&root->fs_info->super_lock); 5253 strcpy(super_block->label, label); 5254 spin_unlock(&root->fs_info->super_lock); 5255 ret = btrfs_commit_transaction(trans, root); 5256 5257 out_unlock: 5258 mnt_drop_write_file(file); 5259 return ret; 5260 } 5261 5262 #define INIT_FEATURE_FLAGS(suffix) \ 5263 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5264 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5265 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5266 5267 int btrfs_ioctl_get_supported_features(void __user *arg) 5268 { 5269 static const struct btrfs_ioctl_feature_flags features[3] = { 5270 INIT_FEATURE_FLAGS(SUPP), 5271 INIT_FEATURE_FLAGS(SAFE_SET), 5272 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5273 }; 5274 5275 if (copy_to_user(arg, &features, sizeof(features))) 5276 return -EFAULT; 5277 5278 return 0; 5279 } 5280 5281 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5282 { 5283 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5284 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5285 struct btrfs_ioctl_feature_flags features; 5286 5287 features.compat_flags = btrfs_super_compat_flags(super_block); 5288 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5289 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5290 5291 if (copy_to_user(arg, &features, sizeof(features))) 5292 return -EFAULT; 5293 5294 return 0; 5295 } 5296 5297 static int check_feature_bits(struct btrfs_root *root, 5298 enum btrfs_feature_set set, 5299 u64 change_mask, u64 flags, u64 supported_flags, 5300 u64 safe_set, u64 safe_clear) 5301 { 5302 const char *type = btrfs_feature_set_names[set]; 5303 char *names; 5304 u64 disallowed, unsupported; 5305 u64 set_mask = flags & change_mask; 5306 u64 clear_mask = ~flags & change_mask; 5307 5308 unsupported = set_mask & ~supported_flags; 5309 if (unsupported) { 5310 names = btrfs_printable_features(set, unsupported); 5311 if (names) { 5312 btrfs_warn(root->fs_info, 5313 "this kernel does not support the %s feature bit%s", 5314 names, strchr(names, ',') ? "s" : ""); 5315 kfree(names); 5316 } else 5317 btrfs_warn(root->fs_info, 5318 "this kernel does not support %s bits 0x%llx", 5319 type, unsupported); 5320 return -EOPNOTSUPP; 5321 } 5322 5323 disallowed = set_mask & ~safe_set; 5324 if (disallowed) { 5325 names = btrfs_printable_features(set, disallowed); 5326 if (names) { 5327 btrfs_warn(root->fs_info, 5328 "can't set the %s feature bit%s while mounted", 5329 names, strchr(names, ',') ? "s" : ""); 5330 kfree(names); 5331 } else 5332 btrfs_warn(root->fs_info, 5333 "can't set %s bits 0x%llx while mounted", 5334 type, disallowed); 5335 return -EPERM; 5336 } 5337 5338 disallowed = clear_mask & ~safe_clear; 5339 if (disallowed) { 5340 names = btrfs_printable_features(set, disallowed); 5341 if (names) { 5342 btrfs_warn(root->fs_info, 5343 "can't clear the %s feature bit%s while mounted", 5344 names, strchr(names, ',') ? "s" : ""); 5345 kfree(names); 5346 } else 5347 btrfs_warn(root->fs_info, 5348 "can't clear %s bits 0x%llx while mounted", 5349 type, disallowed); 5350 return -EPERM; 5351 } 5352 5353 return 0; 5354 } 5355 5356 #define check_feature(root, change_mask, flags, mask_base) \ 5357 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \ 5358 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5359 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5360 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5361 5362 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5363 { 5364 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5365 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5366 struct btrfs_ioctl_feature_flags flags[2]; 5367 struct btrfs_trans_handle *trans; 5368 u64 newflags; 5369 int ret; 5370 5371 if (!capable(CAP_SYS_ADMIN)) 5372 return -EPERM; 5373 5374 if (copy_from_user(flags, arg, sizeof(flags))) 5375 return -EFAULT; 5376 5377 /* Nothing to do */ 5378 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5379 !flags[0].incompat_flags) 5380 return 0; 5381 5382 ret = check_feature(root, flags[0].compat_flags, 5383 flags[1].compat_flags, COMPAT); 5384 if (ret) 5385 return ret; 5386 5387 ret = check_feature(root, flags[0].compat_ro_flags, 5388 flags[1].compat_ro_flags, COMPAT_RO); 5389 if (ret) 5390 return ret; 5391 5392 ret = check_feature(root, flags[0].incompat_flags, 5393 flags[1].incompat_flags, INCOMPAT); 5394 if (ret) 5395 return ret; 5396 5397 trans = btrfs_start_transaction(root, 0); 5398 if (IS_ERR(trans)) 5399 return PTR_ERR(trans); 5400 5401 spin_lock(&root->fs_info->super_lock); 5402 newflags = btrfs_super_compat_flags(super_block); 5403 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5404 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5405 btrfs_set_super_compat_flags(super_block, newflags); 5406 5407 newflags = btrfs_super_compat_ro_flags(super_block); 5408 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5409 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5410 btrfs_set_super_compat_ro_flags(super_block, newflags); 5411 5412 newflags = btrfs_super_incompat_flags(super_block); 5413 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5414 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5415 btrfs_set_super_incompat_flags(super_block, newflags); 5416 spin_unlock(&root->fs_info->super_lock); 5417 5418 return btrfs_commit_transaction(trans, root); 5419 } 5420 5421 long btrfs_ioctl(struct file *file, unsigned int 5422 cmd, unsigned long arg) 5423 { 5424 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5425 void __user *argp = (void __user *)arg; 5426 5427 switch (cmd) { 5428 case FS_IOC_GETFLAGS: 5429 return btrfs_ioctl_getflags(file, argp); 5430 case FS_IOC_SETFLAGS: 5431 return btrfs_ioctl_setflags(file, argp); 5432 case FS_IOC_GETVERSION: 5433 return btrfs_ioctl_getversion(file, argp); 5434 case FITRIM: 5435 return btrfs_ioctl_fitrim(file, argp); 5436 case BTRFS_IOC_SNAP_CREATE: 5437 return btrfs_ioctl_snap_create(file, argp, 0); 5438 case BTRFS_IOC_SNAP_CREATE_V2: 5439 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5440 case BTRFS_IOC_SUBVOL_CREATE: 5441 return btrfs_ioctl_snap_create(file, argp, 1); 5442 case BTRFS_IOC_SUBVOL_CREATE_V2: 5443 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5444 case BTRFS_IOC_SNAP_DESTROY: 5445 return btrfs_ioctl_snap_destroy(file, argp); 5446 case BTRFS_IOC_SUBVOL_GETFLAGS: 5447 return btrfs_ioctl_subvol_getflags(file, argp); 5448 case BTRFS_IOC_SUBVOL_SETFLAGS: 5449 return btrfs_ioctl_subvol_setflags(file, argp); 5450 case BTRFS_IOC_DEFAULT_SUBVOL: 5451 return btrfs_ioctl_default_subvol(file, argp); 5452 case BTRFS_IOC_DEFRAG: 5453 return btrfs_ioctl_defrag(file, NULL); 5454 case BTRFS_IOC_DEFRAG_RANGE: 5455 return btrfs_ioctl_defrag(file, argp); 5456 case BTRFS_IOC_RESIZE: 5457 return btrfs_ioctl_resize(file, argp); 5458 case BTRFS_IOC_ADD_DEV: 5459 return btrfs_ioctl_add_dev(root, argp); 5460 case BTRFS_IOC_RM_DEV: 5461 return btrfs_ioctl_rm_dev(file, argp); 5462 case BTRFS_IOC_FS_INFO: 5463 return btrfs_ioctl_fs_info(root, argp); 5464 case BTRFS_IOC_DEV_INFO: 5465 return btrfs_ioctl_dev_info(root, argp); 5466 case BTRFS_IOC_BALANCE: 5467 return btrfs_ioctl_balance(file, NULL); 5468 case BTRFS_IOC_TRANS_START: 5469 return btrfs_ioctl_trans_start(file); 5470 case BTRFS_IOC_TRANS_END: 5471 return btrfs_ioctl_trans_end(file); 5472 case BTRFS_IOC_TREE_SEARCH: 5473 return btrfs_ioctl_tree_search(file, argp); 5474 case BTRFS_IOC_TREE_SEARCH_V2: 5475 return btrfs_ioctl_tree_search_v2(file, argp); 5476 case BTRFS_IOC_INO_LOOKUP: 5477 return btrfs_ioctl_ino_lookup(file, argp); 5478 case BTRFS_IOC_INO_PATHS: 5479 return btrfs_ioctl_ino_to_path(root, argp); 5480 case BTRFS_IOC_LOGICAL_INO: 5481 return btrfs_ioctl_logical_to_ino(root, argp); 5482 case BTRFS_IOC_SPACE_INFO: 5483 return btrfs_ioctl_space_info(root, argp); 5484 case BTRFS_IOC_SYNC: { 5485 int ret; 5486 5487 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1); 5488 if (ret) 5489 return ret; 5490 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1); 5491 /* 5492 * The transaction thread may want to do more work, 5493 * namely it pokes the cleaner ktread that will start 5494 * processing uncleaned subvols. 5495 */ 5496 wake_up_process(root->fs_info->transaction_kthread); 5497 return ret; 5498 } 5499 case BTRFS_IOC_START_SYNC: 5500 return btrfs_ioctl_start_sync(root, argp); 5501 case BTRFS_IOC_WAIT_SYNC: 5502 return btrfs_ioctl_wait_sync(root, argp); 5503 case BTRFS_IOC_SCRUB: 5504 return btrfs_ioctl_scrub(file, argp); 5505 case BTRFS_IOC_SCRUB_CANCEL: 5506 return btrfs_ioctl_scrub_cancel(root, argp); 5507 case BTRFS_IOC_SCRUB_PROGRESS: 5508 return btrfs_ioctl_scrub_progress(root, argp); 5509 case BTRFS_IOC_BALANCE_V2: 5510 return btrfs_ioctl_balance(file, argp); 5511 case BTRFS_IOC_BALANCE_CTL: 5512 return btrfs_ioctl_balance_ctl(root, arg); 5513 case BTRFS_IOC_BALANCE_PROGRESS: 5514 return btrfs_ioctl_balance_progress(root, argp); 5515 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5516 return btrfs_ioctl_set_received_subvol(file, argp); 5517 #ifdef CONFIG_64BIT 5518 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5519 return btrfs_ioctl_set_received_subvol_32(file, argp); 5520 #endif 5521 case BTRFS_IOC_SEND: 5522 return btrfs_ioctl_send(file, argp); 5523 case BTRFS_IOC_GET_DEV_STATS: 5524 return btrfs_ioctl_get_dev_stats(root, argp); 5525 case BTRFS_IOC_QUOTA_CTL: 5526 return btrfs_ioctl_quota_ctl(file, argp); 5527 case BTRFS_IOC_QGROUP_ASSIGN: 5528 return btrfs_ioctl_qgroup_assign(file, argp); 5529 case BTRFS_IOC_QGROUP_CREATE: 5530 return btrfs_ioctl_qgroup_create(file, argp); 5531 case BTRFS_IOC_QGROUP_LIMIT: 5532 return btrfs_ioctl_qgroup_limit(file, argp); 5533 case BTRFS_IOC_QUOTA_RESCAN: 5534 return btrfs_ioctl_quota_rescan(file, argp); 5535 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5536 return btrfs_ioctl_quota_rescan_status(file, argp); 5537 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5538 return btrfs_ioctl_quota_rescan_wait(file, argp); 5539 case BTRFS_IOC_DEV_REPLACE: 5540 return btrfs_ioctl_dev_replace(root, argp); 5541 case BTRFS_IOC_GET_FSLABEL: 5542 return btrfs_ioctl_get_fslabel(file, argp); 5543 case BTRFS_IOC_SET_FSLABEL: 5544 return btrfs_ioctl_set_fslabel(file, argp); 5545 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5546 return btrfs_ioctl_get_supported_features(argp); 5547 case BTRFS_IOC_GET_FEATURES: 5548 return btrfs_ioctl_get_features(file, argp); 5549 case BTRFS_IOC_SET_FEATURES: 5550 return btrfs_ioctl_set_features(file, argp); 5551 } 5552 5553 return -ENOTTY; 5554 } 5555