1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include <linux/io_uring/cmd.h> 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "export.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "send.h" 42 #include "dev-replace.h" 43 #include "props.h" 44 #include "sysfs.h" 45 #include "qgroup.h" 46 #include "tree-log.h" 47 #include "compression.h" 48 #include "space-info.h" 49 #include "block-group.h" 50 #include "fs.h" 51 #include "accessors.h" 52 #include "extent-tree.h" 53 #include "root-tree.h" 54 #include "defrag.h" 55 #include "dir-item.h" 56 #include "uuid-tree.h" 57 #include "ioctl.h" 58 #include "file.h" 59 #include "scrub.h" 60 #include "super.h" 61 62 #ifdef CONFIG_64BIT 63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 64 * structures are incorrect, as the timespec structure from userspace 65 * is 4 bytes too small. We define these alternatives here to teach 66 * the kernel about the 32-bit struct packing. 67 */ 68 struct btrfs_ioctl_timespec_32 { 69 __u64 sec; 70 __u32 nsec; 71 } __attribute__ ((__packed__)); 72 73 struct btrfs_ioctl_received_subvol_args_32 { 74 char uuid[BTRFS_UUID_SIZE]; /* in */ 75 __u64 stransid; /* in */ 76 __u64 rtransid; /* out */ 77 struct btrfs_ioctl_timespec_32 stime; /* in */ 78 struct btrfs_ioctl_timespec_32 rtime; /* out */ 79 __u64 flags; /* in */ 80 __u64 reserved[16]; /* in */ 81 } __attribute__ ((__packed__)); 82 83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 84 struct btrfs_ioctl_received_subvol_args_32) 85 #endif 86 87 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 88 struct btrfs_ioctl_send_args_32 { 89 __s64 send_fd; /* in */ 90 __u64 clone_sources_count; /* in */ 91 compat_uptr_t clone_sources; /* in */ 92 __u64 parent_root; /* in */ 93 __u64 flags; /* in */ 94 __u32 version; /* in */ 95 __u8 reserved[28]; /* in */ 96 } __attribute__ ((__packed__)); 97 98 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 99 struct btrfs_ioctl_send_args_32) 100 101 struct btrfs_ioctl_encoded_io_args_32 { 102 compat_uptr_t iov; 103 compat_ulong_t iovcnt; 104 __s64 offset; 105 __u64 flags; 106 __u64 len; 107 __u64 unencoded_len; 108 __u64 unencoded_offset; 109 __u32 compression; 110 __u32 encryption; 111 __u8 reserved[64]; 112 }; 113 114 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 115 struct btrfs_ioctl_encoded_io_args_32) 116 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 117 struct btrfs_ioctl_encoded_io_args_32) 118 #endif 119 120 /* Mask out flags that are inappropriate for the given type of inode. */ 121 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 122 unsigned int flags) 123 { 124 if (S_ISDIR(inode->i_mode)) 125 return flags; 126 else if (S_ISREG(inode->i_mode)) 127 return flags & ~FS_DIRSYNC_FL; 128 else 129 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 130 } 131 132 /* 133 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 134 * ioctl. 135 */ 136 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 137 { 138 unsigned int iflags = 0; 139 u32 flags = binode->flags; 140 u32 ro_flags = binode->ro_flags; 141 142 if (flags & BTRFS_INODE_SYNC) 143 iflags |= FS_SYNC_FL; 144 if (flags & BTRFS_INODE_IMMUTABLE) 145 iflags |= FS_IMMUTABLE_FL; 146 if (flags & BTRFS_INODE_APPEND) 147 iflags |= FS_APPEND_FL; 148 if (flags & BTRFS_INODE_NODUMP) 149 iflags |= FS_NODUMP_FL; 150 if (flags & BTRFS_INODE_NOATIME) 151 iflags |= FS_NOATIME_FL; 152 if (flags & BTRFS_INODE_DIRSYNC) 153 iflags |= FS_DIRSYNC_FL; 154 if (flags & BTRFS_INODE_NODATACOW) 155 iflags |= FS_NOCOW_FL; 156 if (ro_flags & BTRFS_INODE_RO_VERITY) 157 iflags |= FS_VERITY_FL; 158 159 if (flags & BTRFS_INODE_NOCOMPRESS) 160 iflags |= FS_NOCOMP_FL; 161 else if (flags & BTRFS_INODE_COMPRESS) 162 iflags |= FS_COMPR_FL; 163 164 return iflags; 165 } 166 167 /* 168 * Update inode->i_flags based on the btrfs internal flags. 169 */ 170 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 171 { 172 struct btrfs_inode *binode = BTRFS_I(inode); 173 unsigned int new_fl = 0; 174 175 if (binode->flags & BTRFS_INODE_SYNC) 176 new_fl |= S_SYNC; 177 if (binode->flags & BTRFS_INODE_IMMUTABLE) 178 new_fl |= S_IMMUTABLE; 179 if (binode->flags & BTRFS_INODE_APPEND) 180 new_fl |= S_APPEND; 181 if (binode->flags & BTRFS_INODE_NOATIME) 182 new_fl |= S_NOATIME; 183 if (binode->flags & BTRFS_INODE_DIRSYNC) 184 new_fl |= S_DIRSYNC; 185 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 186 new_fl |= S_VERITY; 187 188 set_mask_bits(&inode->i_flags, 189 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 190 S_VERITY, new_fl); 191 } 192 193 /* 194 * Check if @flags are a supported and valid set of FS_*_FL flags and that 195 * the old and new flags are not conflicting 196 */ 197 static int check_fsflags(unsigned int old_flags, unsigned int flags) 198 { 199 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 200 FS_NOATIME_FL | FS_NODUMP_FL | \ 201 FS_SYNC_FL | FS_DIRSYNC_FL | \ 202 FS_NOCOMP_FL | FS_COMPR_FL | 203 FS_NOCOW_FL)) 204 return -EOPNOTSUPP; 205 206 /* COMPR and NOCOMP on new/old are valid */ 207 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 208 return -EINVAL; 209 210 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 211 return -EINVAL; 212 213 /* NOCOW and compression options are mutually exclusive */ 214 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 215 return -EINVAL; 216 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 217 return -EINVAL; 218 219 return 0; 220 } 221 222 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 223 unsigned int flags) 224 { 225 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 226 return -EPERM; 227 228 return 0; 229 } 230 231 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args) 232 { 233 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL) 234 return -ENAMETOOLONG; 235 return 0; 236 } 237 238 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2) 239 { 240 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL) 241 return -ENAMETOOLONG; 242 return 0; 243 } 244 245 /* 246 * Set flags/xflags from the internal inode flags. The remaining items of 247 * fsxattr are zeroed. 248 */ 249 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 250 { 251 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 252 253 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 254 return 0; 255 } 256 257 int btrfs_fileattr_set(struct mnt_idmap *idmap, 258 struct dentry *dentry, struct fileattr *fa) 259 { 260 struct inode *inode = d_inode(dentry); 261 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 262 struct btrfs_inode *binode = BTRFS_I(inode); 263 struct btrfs_root *root = binode->root; 264 struct btrfs_trans_handle *trans; 265 unsigned int fsflags, old_fsflags; 266 int ret; 267 const char *comp = NULL; 268 u32 binode_flags; 269 270 if (btrfs_root_readonly(root)) 271 return -EROFS; 272 273 if (fileattr_has_fsx(fa)) 274 return -EOPNOTSUPP; 275 276 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 277 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 278 ret = check_fsflags(old_fsflags, fsflags); 279 if (ret) 280 return ret; 281 282 ret = check_fsflags_compatible(fs_info, fsflags); 283 if (ret) 284 return ret; 285 286 binode_flags = binode->flags; 287 if (fsflags & FS_SYNC_FL) 288 binode_flags |= BTRFS_INODE_SYNC; 289 else 290 binode_flags &= ~BTRFS_INODE_SYNC; 291 if (fsflags & FS_IMMUTABLE_FL) 292 binode_flags |= BTRFS_INODE_IMMUTABLE; 293 else 294 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 295 if (fsflags & FS_APPEND_FL) 296 binode_flags |= BTRFS_INODE_APPEND; 297 else 298 binode_flags &= ~BTRFS_INODE_APPEND; 299 if (fsflags & FS_NODUMP_FL) 300 binode_flags |= BTRFS_INODE_NODUMP; 301 else 302 binode_flags &= ~BTRFS_INODE_NODUMP; 303 if (fsflags & FS_NOATIME_FL) 304 binode_flags |= BTRFS_INODE_NOATIME; 305 else 306 binode_flags &= ~BTRFS_INODE_NOATIME; 307 308 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 309 if (!fa->flags_valid) { 310 /* 1 item for the inode */ 311 trans = btrfs_start_transaction(root, 1); 312 if (IS_ERR(trans)) 313 return PTR_ERR(trans); 314 goto update_flags; 315 } 316 317 if (fsflags & FS_DIRSYNC_FL) 318 binode_flags |= BTRFS_INODE_DIRSYNC; 319 else 320 binode_flags &= ~BTRFS_INODE_DIRSYNC; 321 if (fsflags & FS_NOCOW_FL) { 322 if (S_ISREG(inode->i_mode)) { 323 /* 324 * It's safe to turn csums off here, no extents exist. 325 * Otherwise we want the flag to reflect the real COW 326 * status of the file and will not set it. 327 */ 328 if (inode->i_size == 0) 329 binode_flags |= BTRFS_INODE_NODATACOW | 330 BTRFS_INODE_NODATASUM; 331 } else { 332 binode_flags |= BTRFS_INODE_NODATACOW; 333 } 334 } else { 335 /* 336 * Revert back under same assumptions as above 337 */ 338 if (S_ISREG(inode->i_mode)) { 339 if (inode->i_size == 0) 340 binode_flags &= ~(BTRFS_INODE_NODATACOW | 341 BTRFS_INODE_NODATASUM); 342 } else { 343 binode_flags &= ~BTRFS_INODE_NODATACOW; 344 } 345 } 346 347 /* 348 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 349 * flag may be changed automatically if compression code won't make 350 * things smaller. 351 */ 352 if (fsflags & FS_NOCOMP_FL) { 353 binode_flags &= ~BTRFS_INODE_COMPRESS; 354 binode_flags |= BTRFS_INODE_NOCOMPRESS; 355 } else if (fsflags & FS_COMPR_FL) { 356 357 if (IS_SWAPFILE(inode)) 358 return -ETXTBSY; 359 360 binode_flags |= BTRFS_INODE_COMPRESS; 361 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 362 363 comp = btrfs_compress_type2str(fs_info->compress_type); 364 if (!comp || comp[0] == 0) 365 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 366 } else { 367 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 368 } 369 370 /* 371 * 1 for inode item 372 * 2 for properties 373 */ 374 trans = btrfs_start_transaction(root, 3); 375 if (IS_ERR(trans)) 376 return PTR_ERR(trans); 377 378 if (comp) { 379 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression", 380 comp, strlen(comp), 0); 381 if (ret) { 382 btrfs_abort_transaction(trans, ret); 383 goto out_end_trans; 384 } 385 } else { 386 ret = btrfs_set_prop(trans, BTRFS_I(inode), "btrfs.compression", 387 NULL, 0, 0); 388 if (ret && ret != -ENODATA) { 389 btrfs_abort_transaction(trans, ret); 390 goto out_end_trans; 391 } 392 } 393 394 update_flags: 395 binode->flags = binode_flags; 396 btrfs_sync_inode_flags_to_i_flags(inode); 397 inode_inc_iversion(inode); 398 inode_set_ctime_current(inode); 399 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 400 401 out_end_trans: 402 btrfs_end_transaction(trans); 403 return ret; 404 } 405 406 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 407 { 408 return put_user(inode->i_generation, arg); 409 } 410 411 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 412 void __user *arg) 413 { 414 struct btrfs_device *device; 415 struct fstrim_range range; 416 u64 minlen = ULLONG_MAX; 417 u64 num_devices = 0; 418 int ret; 419 420 if (!capable(CAP_SYS_ADMIN)) 421 return -EPERM; 422 423 /* 424 * btrfs_trim_block_group() depends on space cache, which is not 425 * available in zoned filesystem. So, disallow fitrim on a zoned 426 * filesystem for now. 427 */ 428 if (btrfs_is_zoned(fs_info)) 429 return -EOPNOTSUPP; 430 431 /* 432 * If the fs is mounted with nologreplay, which requires it to be 433 * mounted in RO mode as well, we can not allow discard on free space 434 * inside block groups, because log trees refer to extents that are not 435 * pinned in a block group's free space cache (pinning the extents is 436 * precisely the first phase of replaying a log tree). 437 */ 438 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 439 return -EROFS; 440 441 rcu_read_lock(); 442 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 443 dev_list) { 444 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 445 continue; 446 num_devices++; 447 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 448 minlen); 449 } 450 rcu_read_unlock(); 451 452 if (!num_devices) 453 return -EOPNOTSUPP; 454 if (copy_from_user(&range, arg, sizeof(range))) 455 return -EFAULT; 456 457 /* 458 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 459 * block group is in the logical address space, which can be any 460 * sectorsize aligned bytenr in the range [0, U64_MAX]. 461 */ 462 if (range.len < fs_info->sectorsize) 463 return -EINVAL; 464 465 range.minlen = max(range.minlen, minlen); 466 ret = btrfs_trim_fs(fs_info, &range); 467 468 if (copy_to_user(arg, &range, sizeof(range))) 469 return -EFAULT; 470 471 return ret; 472 } 473 474 /* 475 * Calculate the number of transaction items to reserve for creating a subvolume 476 * or snapshot, not including the inode, directory entries, or parent directory. 477 */ 478 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) 479 { 480 /* 481 * 1 to add root block 482 * 1 to add root item 483 * 1 to add root ref 484 * 1 to add root backref 485 * 1 to add UUID item 486 * 1 to add qgroup info 487 * 1 to add qgroup limit 488 * 489 * Ideally the last two would only be accounted if qgroups are enabled, 490 * but that can change between now and the time we would insert them. 491 */ 492 unsigned int num_items = 7; 493 494 if (inherit) { 495 /* 2 to add qgroup relations for each inherited qgroup */ 496 num_items += 2 * inherit->num_qgroups; 497 } 498 return num_items; 499 } 500 501 static noinline int create_subvol(struct mnt_idmap *idmap, 502 struct inode *dir, struct dentry *dentry, 503 struct btrfs_qgroup_inherit *inherit) 504 { 505 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 506 struct btrfs_trans_handle *trans; 507 struct btrfs_key key; 508 struct btrfs_root_item *root_item; 509 struct btrfs_inode_item *inode_item; 510 struct extent_buffer *leaf; 511 struct btrfs_root *root = BTRFS_I(dir)->root; 512 struct btrfs_root *new_root; 513 struct btrfs_block_rsv block_rsv; 514 struct timespec64 cur_time = current_time(dir); 515 struct btrfs_new_inode_args new_inode_args = { 516 .dir = dir, 517 .dentry = dentry, 518 .subvol = true, 519 }; 520 unsigned int trans_num_items; 521 int ret; 522 dev_t anon_dev; 523 u64 objectid; 524 u64 qgroup_reserved = 0; 525 526 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 527 if (!root_item) 528 return -ENOMEM; 529 530 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 531 if (ret) 532 goto out_root_item; 533 534 /* 535 * Don't create subvolume whose level is not zero. Or qgroup will be 536 * screwed up since it assumes subvolume qgroup's level to be 0. 537 */ 538 if (btrfs_qgroup_level(objectid)) { 539 ret = -ENOSPC; 540 goto out_root_item; 541 } 542 543 ret = get_anon_bdev(&anon_dev); 544 if (ret < 0) 545 goto out_root_item; 546 547 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir); 548 if (!new_inode_args.inode) { 549 ret = -ENOMEM; 550 goto out_anon_dev; 551 } 552 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 553 if (ret) 554 goto out_inode; 555 trans_num_items += create_subvol_num_items(inherit); 556 557 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 558 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 559 trans_num_items, false); 560 if (ret) 561 goto out_new_inode_args; 562 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 563 564 trans = btrfs_start_transaction(root, 0); 565 if (IS_ERR(trans)) { 566 ret = PTR_ERR(trans); 567 goto out_release_rsv; 568 } 569 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 570 qgroup_reserved = 0; 571 trans->block_rsv = &block_rsv; 572 trans->bytes_reserved = block_rsv.size; 573 574 ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit); 575 if (ret) 576 goto out; 577 578 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 579 0, BTRFS_NESTING_NORMAL); 580 if (IS_ERR(leaf)) { 581 ret = PTR_ERR(leaf); 582 goto out; 583 } 584 585 btrfs_mark_buffer_dirty(trans, leaf); 586 587 inode_item = &root_item->inode; 588 btrfs_set_stack_inode_generation(inode_item, 1); 589 btrfs_set_stack_inode_size(inode_item, 3); 590 btrfs_set_stack_inode_nlink(inode_item, 1); 591 btrfs_set_stack_inode_nbytes(inode_item, 592 fs_info->nodesize); 593 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 594 595 btrfs_set_root_flags(root_item, 0); 596 btrfs_set_root_limit(root_item, 0); 597 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 598 599 btrfs_set_root_bytenr(root_item, leaf->start); 600 btrfs_set_root_generation(root_item, trans->transid); 601 btrfs_set_root_level(root_item, 0); 602 btrfs_set_root_refs(root_item, 1); 603 btrfs_set_root_used(root_item, leaf->len); 604 btrfs_set_root_last_snapshot(root_item, 0); 605 606 btrfs_set_root_generation_v2(root_item, 607 btrfs_root_generation(root_item)); 608 generate_random_guid(root_item->uuid); 609 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 610 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 611 root_item->ctime = root_item->otime; 612 btrfs_set_root_ctransid(root_item, trans->transid); 613 btrfs_set_root_otransid(root_item, trans->transid); 614 615 btrfs_tree_unlock(leaf); 616 617 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 618 619 key.objectid = objectid; 620 key.offset = 0; 621 key.type = BTRFS_ROOT_ITEM_KEY; 622 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 623 root_item); 624 if (ret) { 625 int ret2; 626 627 /* 628 * Since we don't abort the transaction in this case, free the 629 * tree block so that we don't leak space and leave the 630 * filesystem in an inconsistent state (an extent item in the 631 * extent tree with a backreference for a root that does not 632 * exists). 633 */ 634 btrfs_tree_lock(leaf); 635 btrfs_clear_buffer_dirty(trans, leaf); 636 btrfs_tree_unlock(leaf); 637 ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 638 if (ret2 < 0) 639 btrfs_abort_transaction(trans, ret2); 640 free_extent_buffer(leaf); 641 goto out; 642 } 643 644 free_extent_buffer(leaf); 645 leaf = NULL; 646 647 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev); 648 if (IS_ERR(new_root)) { 649 ret = PTR_ERR(new_root); 650 btrfs_abort_transaction(trans, ret); 651 goto out; 652 } 653 /* anon_dev is owned by new_root now. */ 654 anon_dev = 0; 655 BTRFS_I(new_inode_args.inode)->root = new_root; 656 /* ... and new_root is owned by new_inode_args.inode now. */ 657 658 ret = btrfs_record_root_in_trans(trans, new_root); 659 if (ret) { 660 btrfs_abort_transaction(trans, ret); 661 goto out; 662 } 663 664 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 665 BTRFS_UUID_KEY_SUBVOL, objectid); 666 if (ret) { 667 btrfs_abort_transaction(trans, ret); 668 goto out; 669 } 670 671 ret = btrfs_create_new_inode(trans, &new_inode_args); 672 if (ret) { 673 btrfs_abort_transaction(trans, ret); 674 goto out; 675 } 676 677 btrfs_record_new_subvolume(trans, BTRFS_I(dir)); 678 679 d_instantiate_new(dentry, new_inode_args.inode); 680 new_inode_args.inode = NULL; 681 682 out: 683 trans->block_rsv = NULL; 684 trans->bytes_reserved = 0; 685 btrfs_end_transaction(trans); 686 out_release_rsv: 687 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 688 if (qgroup_reserved) 689 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 690 out_new_inode_args: 691 btrfs_new_inode_args_destroy(&new_inode_args); 692 out_inode: 693 iput(new_inode_args.inode); 694 out_anon_dev: 695 if (anon_dev) 696 free_anon_bdev(anon_dev); 697 out_root_item: 698 kfree(root_item); 699 return ret; 700 } 701 702 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 703 struct dentry *dentry, bool readonly, 704 struct btrfs_qgroup_inherit *inherit) 705 { 706 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 707 struct inode *inode; 708 struct btrfs_pending_snapshot *pending_snapshot; 709 unsigned int trans_num_items; 710 struct btrfs_trans_handle *trans; 711 struct btrfs_block_rsv *block_rsv; 712 u64 qgroup_reserved = 0; 713 int ret; 714 715 /* We do not support snapshotting right now. */ 716 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 717 btrfs_warn(fs_info, 718 "extent tree v2 doesn't support snapshotting yet"); 719 return -EOPNOTSUPP; 720 } 721 722 if (btrfs_root_refs(&root->root_item) == 0) 723 return -ENOENT; 724 725 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 726 return -EINVAL; 727 728 if (atomic_read(&root->nr_swapfiles)) { 729 btrfs_warn(fs_info, 730 "cannot snapshot subvolume with active swapfile"); 731 return -ETXTBSY; 732 } 733 734 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 735 if (!pending_snapshot) 736 return -ENOMEM; 737 738 ret = get_anon_bdev(&pending_snapshot->anon_dev); 739 if (ret < 0) 740 goto free_pending; 741 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 742 GFP_KERNEL); 743 pending_snapshot->path = btrfs_alloc_path(); 744 if (!pending_snapshot->root_item || !pending_snapshot->path) { 745 ret = -ENOMEM; 746 goto free_pending; 747 } 748 749 block_rsv = &pending_snapshot->block_rsv; 750 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP); 751 /* 752 * 1 to add dir item 753 * 1 to add dir index 754 * 1 to update parent inode item 755 */ 756 trans_num_items = create_subvol_num_items(inherit) + 3; 757 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv, 758 trans_num_items, false); 759 if (ret) 760 goto free_pending; 761 qgroup_reserved = block_rsv->qgroup_rsv_reserved; 762 763 pending_snapshot->dentry = dentry; 764 pending_snapshot->root = root; 765 pending_snapshot->readonly = readonly; 766 pending_snapshot->dir = BTRFS_I(dir); 767 pending_snapshot->inherit = inherit; 768 769 trans = btrfs_start_transaction(root, 0); 770 if (IS_ERR(trans)) { 771 ret = PTR_ERR(trans); 772 goto fail; 773 } 774 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root); 775 if (ret) { 776 btrfs_end_transaction(trans); 777 goto fail; 778 } 779 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 780 qgroup_reserved = 0; 781 782 trans->pending_snapshot = pending_snapshot; 783 784 ret = btrfs_commit_transaction(trans); 785 if (ret) 786 goto fail; 787 788 ret = pending_snapshot->error; 789 if (ret) 790 goto fail; 791 792 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 793 if (ret) 794 goto fail; 795 796 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 797 if (IS_ERR(inode)) { 798 ret = PTR_ERR(inode); 799 goto fail; 800 } 801 802 d_instantiate(dentry, inode); 803 ret = 0; 804 pending_snapshot->anon_dev = 0; 805 fail: 806 /* Prevent double freeing of anon_dev */ 807 if (ret && pending_snapshot->snap) 808 pending_snapshot->snap->anon_dev = 0; 809 btrfs_put_root(pending_snapshot->snap); 810 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL); 811 if (qgroup_reserved) 812 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 813 free_pending: 814 if (pending_snapshot->anon_dev) 815 free_anon_bdev(pending_snapshot->anon_dev); 816 kfree(pending_snapshot->root_item); 817 btrfs_free_path(pending_snapshot->path); 818 kfree(pending_snapshot); 819 820 return ret; 821 } 822 823 /* copy of may_delete in fs/namei.c() 824 * Check whether we can remove a link victim from directory dir, check 825 * whether the type of victim is right. 826 * 1. We can't do it if dir is read-only (done in permission()) 827 * 2. We should have write and exec permissions on dir 828 * 3. We can't remove anything from append-only dir 829 * 4. We can't do anything with immutable dir (done in permission()) 830 * 5. If the sticky bit on dir is set we should either 831 * a. be owner of dir, or 832 * b. be owner of victim, or 833 * c. have CAP_FOWNER capability 834 * 6. If the victim is append-only or immutable we can't do anything with 835 * links pointing to it. 836 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 837 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 838 * 9. We can't remove a root or mountpoint. 839 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 840 * nfs_async_unlink(). 841 */ 842 843 static int btrfs_may_delete(struct mnt_idmap *idmap, 844 struct inode *dir, struct dentry *victim, int isdir) 845 { 846 int error; 847 848 if (d_really_is_negative(victim)) 849 return -ENOENT; 850 851 /* The @victim is not inside @dir. */ 852 if (d_inode(victim->d_parent) != dir) 853 return -EINVAL; 854 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 855 856 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 857 if (error) 858 return error; 859 if (IS_APPEND(dir)) 860 return -EPERM; 861 if (check_sticky(idmap, dir, d_inode(victim)) || 862 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 863 IS_SWAPFILE(d_inode(victim))) 864 return -EPERM; 865 if (isdir) { 866 if (!d_is_dir(victim)) 867 return -ENOTDIR; 868 if (IS_ROOT(victim)) 869 return -EBUSY; 870 } else if (d_is_dir(victim)) 871 return -EISDIR; 872 if (IS_DEADDIR(dir)) 873 return -ENOENT; 874 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 875 return -EBUSY; 876 return 0; 877 } 878 879 /* copy of may_create in fs/namei.c() */ 880 static inline int btrfs_may_create(struct mnt_idmap *idmap, 881 struct inode *dir, struct dentry *child) 882 { 883 if (d_really_is_positive(child)) 884 return -EEXIST; 885 if (IS_DEADDIR(dir)) 886 return -ENOENT; 887 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 888 return -EOVERFLOW; 889 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 890 } 891 892 /* 893 * Create a new subvolume below @parent. This is largely modeled after 894 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 895 * inside this filesystem so it's quite a bit simpler. 896 */ 897 static noinline int btrfs_mksubvol(const struct path *parent, 898 struct mnt_idmap *idmap, 899 const char *name, int namelen, 900 struct btrfs_root *snap_src, 901 bool readonly, 902 struct btrfs_qgroup_inherit *inherit) 903 { 904 struct inode *dir = d_inode(parent->dentry); 905 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 906 struct dentry *dentry; 907 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen); 908 int error; 909 910 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 911 if (error == -EINTR) 912 return error; 913 914 dentry = lookup_one(idmap, name, parent->dentry, namelen); 915 error = PTR_ERR(dentry); 916 if (IS_ERR(dentry)) 917 goto out_unlock; 918 919 error = btrfs_may_create(idmap, dir, dentry); 920 if (error) 921 goto out_dput; 922 923 /* 924 * even if this name doesn't exist, we may get hash collisions. 925 * check for them now when we can safely fail 926 */ 927 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 928 dir->i_ino, &name_str); 929 if (error) 930 goto out_dput; 931 932 down_read(&fs_info->subvol_sem); 933 934 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 935 goto out_up_read; 936 937 if (snap_src) 938 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 939 else 940 error = create_subvol(idmap, dir, dentry, inherit); 941 942 if (!error) 943 fsnotify_mkdir(dir, dentry); 944 out_up_read: 945 up_read(&fs_info->subvol_sem); 946 out_dput: 947 dput(dentry); 948 out_unlock: 949 btrfs_inode_unlock(BTRFS_I(dir), 0); 950 return error; 951 } 952 953 static noinline int btrfs_mksnapshot(const struct path *parent, 954 struct mnt_idmap *idmap, 955 const char *name, int namelen, 956 struct btrfs_root *root, 957 bool readonly, 958 struct btrfs_qgroup_inherit *inherit) 959 { 960 int ret; 961 962 /* 963 * Force new buffered writes to reserve space even when NOCOW is 964 * possible. This is to avoid later writeback (running dealloc) to 965 * fallback to COW mode and unexpectedly fail with ENOSPC. 966 */ 967 btrfs_drew_read_lock(&root->snapshot_lock); 968 969 ret = btrfs_start_delalloc_snapshot(root, false); 970 if (ret) 971 goto out; 972 973 /* 974 * All previous writes have started writeback in NOCOW mode, so now 975 * we force future writes to fallback to COW mode during snapshot 976 * creation. 977 */ 978 atomic_inc(&root->snapshot_force_cow); 979 980 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 981 982 ret = btrfs_mksubvol(parent, idmap, name, namelen, 983 root, readonly, inherit); 984 atomic_dec(&root->snapshot_force_cow); 985 out: 986 btrfs_drew_read_unlock(&root->snapshot_lock); 987 return ret; 988 } 989 990 /* 991 * Try to start exclusive operation @type or cancel it if it's running. 992 * 993 * Return: 994 * 0 - normal mode, newly claimed op started 995 * >0 - normal mode, something else is running, 996 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 997 * ECANCELED - cancel mode, successful cancel 998 * ENOTCONN - cancel mode, operation not running anymore 999 */ 1000 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1001 enum btrfs_exclusive_operation type, bool cancel) 1002 { 1003 if (!cancel) { 1004 /* Start normal op */ 1005 if (!btrfs_exclop_start(fs_info, type)) 1006 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1007 /* Exclusive operation is now claimed */ 1008 return 0; 1009 } 1010 1011 /* Cancel running op */ 1012 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1013 /* 1014 * This blocks any exclop finish from setting it to NONE, so we 1015 * request cancellation. Either it runs and we will wait for it, 1016 * or it has finished and no waiting will happen. 1017 */ 1018 atomic_inc(&fs_info->reloc_cancel_req); 1019 btrfs_exclop_start_unlock(fs_info); 1020 1021 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1022 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1023 TASK_INTERRUPTIBLE); 1024 1025 return -ECANCELED; 1026 } 1027 1028 /* Something else is running or none */ 1029 return -ENOTCONN; 1030 } 1031 1032 static noinline int btrfs_ioctl_resize(struct file *file, 1033 void __user *arg) 1034 { 1035 BTRFS_DEV_LOOKUP_ARGS(args); 1036 struct inode *inode = file_inode(file); 1037 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1038 u64 new_size; 1039 u64 old_size; 1040 u64 devid = 1; 1041 struct btrfs_root *root = BTRFS_I(inode)->root; 1042 struct btrfs_ioctl_vol_args *vol_args; 1043 struct btrfs_trans_handle *trans; 1044 struct btrfs_device *device = NULL; 1045 char *sizestr; 1046 char *retptr; 1047 char *devstr = NULL; 1048 int ret = 0; 1049 int mod = 0; 1050 bool cancel; 1051 1052 if (!capable(CAP_SYS_ADMIN)) 1053 return -EPERM; 1054 1055 ret = mnt_want_write_file(file); 1056 if (ret) 1057 return ret; 1058 1059 /* 1060 * Read the arguments before checking exclusivity to be able to 1061 * distinguish regular resize and cancel 1062 */ 1063 vol_args = memdup_user(arg, sizeof(*vol_args)); 1064 if (IS_ERR(vol_args)) { 1065 ret = PTR_ERR(vol_args); 1066 goto out_drop; 1067 } 1068 ret = btrfs_check_ioctl_vol_args_path(vol_args); 1069 if (ret < 0) 1070 goto out_free; 1071 1072 sizestr = vol_args->name; 1073 cancel = (strcmp("cancel", sizestr) == 0); 1074 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1075 if (ret) 1076 goto out_free; 1077 /* Exclusive operation is now claimed */ 1078 1079 devstr = strchr(sizestr, ':'); 1080 if (devstr) { 1081 sizestr = devstr + 1; 1082 *devstr = '\0'; 1083 devstr = vol_args->name; 1084 ret = kstrtoull(devstr, 10, &devid); 1085 if (ret) 1086 goto out_finish; 1087 if (!devid) { 1088 ret = -EINVAL; 1089 goto out_finish; 1090 } 1091 btrfs_info(fs_info, "resizing devid %llu", devid); 1092 } 1093 1094 args.devid = devid; 1095 device = btrfs_find_device(fs_info->fs_devices, &args); 1096 if (!device) { 1097 btrfs_info(fs_info, "resizer unable to find device %llu", 1098 devid); 1099 ret = -ENODEV; 1100 goto out_finish; 1101 } 1102 1103 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1104 btrfs_info(fs_info, 1105 "resizer unable to apply on readonly device %llu", 1106 devid); 1107 ret = -EPERM; 1108 goto out_finish; 1109 } 1110 1111 if (!strcmp(sizestr, "max")) 1112 new_size = bdev_nr_bytes(device->bdev); 1113 else { 1114 if (sizestr[0] == '-') { 1115 mod = -1; 1116 sizestr++; 1117 } else if (sizestr[0] == '+') { 1118 mod = 1; 1119 sizestr++; 1120 } 1121 new_size = memparse(sizestr, &retptr); 1122 if (*retptr != '\0' || new_size == 0) { 1123 ret = -EINVAL; 1124 goto out_finish; 1125 } 1126 } 1127 1128 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1129 ret = -EPERM; 1130 goto out_finish; 1131 } 1132 1133 old_size = btrfs_device_get_total_bytes(device); 1134 1135 if (mod < 0) { 1136 if (new_size > old_size) { 1137 ret = -EINVAL; 1138 goto out_finish; 1139 } 1140 new_size = old_size - new_size; 1141 } else if (mod > 0) { 1142 if (new_size > ULLONG_MAX - old_size) { 1143 ret = -ERANGE; 1144 goto out_finish; 1145 } 1146 new_size = old_size + new_size; 1147 } 1148 1149 if (new_size < SZ_256M) { 1150 ret = -EINVAL; 1151 goto out_finish; 1152 } 1153 if (new_size > bdev_nr_bytes(device->bdev)) { 1154 ret = -EFBIG; 1155 goto out_finish; 1156 } 1157 1158 new_size = round_down(new_size, fs_info->sectorsize); 1159 1160 if (new_size > old_size) { 1161 trans = btrfs_start_transaction(root, 0); 1162 if (IS_ERR(trans)) { 1163 ret = PTR_ERR(trans); 1164 goto out_finish; 1165 } 1166 ret = btrfs_grow_device(trans, device, new_size); 1167 btrfs_commit_transaction(trans); 1168 } else if (new_size < old_size) { 1169 ret = btrfs_shrink_device(device, new_size); 1170 } /* equal, nothing need to do */ 1171 1172 if (ret == 0 && new_size != old_size) 1173 btrfs_info_in_rcu(fs_info, 1174 "resize device %s (devid %llu) from %llu to %llu", 1175 btrfs_dev_name(device), device->devid, 1176 old_size, new_size); 1177 out_finish: 1178 btrfs_exclop_finish(fs_info); 1179 out_free: 1180 kfree(vol_args); 1181 out_drop: 1182 mnt_drop_write_file(file); 1183 return ret; 1184 } 1185 1186 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1187 struct mnt_idmap *idmap, 1188 const char *name, unsigned long fd, int subvol, 1189 bool readonly, 1190 struct btrfs_qgroup_inherit *inherit) 1191 { 1192 int namelen; 1193 int ret = 0; 1194 1195 if (!S_ISDIR(file_inode(file)->i_mode)) 1196 return -ENOTDIR; 1197 1198 ret = mnt_want_write_file(file); 1199 if (ret) 1200 goto out; 1201 1202 namelen = strlen(name); 1203 if (strchr(name, '/')) { 1204 ret = -EINVAL; 1205 goto out_drop_write; 1206 } 1207 1208 if (name[0] == '.' && 1209 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1210 ret = -EEXIST; 1211 goto out_drop_write; 1212 } 1213 1214 if (subvol) { 1215 ret = btrfs_mksubvol(&file->f_path, idmap, name, 1216 namelen, NULL, readonly, inherit); 1217 } else { 1218 CLASS(fd, src)(fd); 1219 struct inode *src_inode; 1220 if (fd_empty(src)) { 1221 ret = -EINVAL; 1222 goto out_drop_write; 1223 } 1224 1225 src_inode = file_inode(fd_file(src)); 1226 if (src_inode->i_sb != file_inode(file)->i_sb) { 1227 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1228 "Snapshot src from another FS"); 1229 ret = -EXDEV; 1230 } else if (!inode_owner_or_capable(idmap, src_inode)) { 1231 /* 1232 * Subvolume creation is not restricted, but snapshots 1233 * are limited to own subvolumes only 1234 */ 1235 ret = -EPERM; 1236 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1237 /* 1238 * Snapshots must be made with the src_inode referring 1239 * to the subvolume inode, otherwise the permission 1240 * checking above is useless because we may have 1241 * permission on a lower directory but not the subvol 1242 * itself. 1243 */ 1244 ret = -EINVAL; 1245 } else { 1246 ret = btrfs_mksnapshot(&file->f_path, idmap, 1247 name, namelen, 1248 BTRFS_I(src_inode)->root, 1249 readonly, inherit); 1250 } 1251 } 1252 out_drop_write: 1253 mnt_drop_write_file(file); 1254 out: 1255 return ret; 1256 } 1257 1258 static noinline int btrfs_ioctl_snap_create(struct file *file, 1259 void __user *arg, int subvol) 1260 { 1261 struct btrfs_ioctl_vol_args *vol_args; 1262 int ret; 1263 1264 if (!S_ISDIR(file_inode(file)->i_mode)) 1265 return -ENOTDIR; 1266 1267 vol_args = memdup_user(arg, sizeof(*vol_args)); 1268 if (IS_ERR(vol_args)) 1269 return PTR_ERR(vol_args); 1270 ret = btrfs_check_ioctl_vol_args_path(vol_args); 1271 if (ret < 0) 1272 goto out; 1273 1274 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1275 vol_args->name, vol_args->fd, subvol, 1276 false, NULL); 1277 1278 out: 1279 kfree(vol_args); 1280 return ret; 1281 } 1282 1283 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1284 void __user *arg, int subvol) 1285 { 1286 struct btrfs_ioctl_vol_args_v2 *vol_args; 1287 int ret; 1288 bool readonly = false; 1289 struct btrfs_qgroup_inherit *inherit = NULL; 1290 1291 if (!S_ISDIR(file_inode(file)->i_mode)) 1292 return -ENOTDIR; 1293 1294 vol_args = memdup_user(arg, sizeof(*vol_args)); 1295 if (IS_ERR(vol_args)) 1296 return PTR_ERR(vol_args); 1297 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args); 1298 if (ret < 0) 1299 goto free_args; 1300 1301 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1302 ret = -EOPNOTSUPP; 1303 goto free_args; 1304 } 1305 1306 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1307 readonly = true; 1308 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1309 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file)); 1310 1311 if (vol_args->size < sizeof(*inherit) || 1312 vol_args->size > PAGE_SIZE) { 1313 ret = -EINVAL; 1314 goto free_args; 1315 } 1316 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1317 if (IS_ERR(inherit)) { 1318 ret = PTR_ERR(inherit); 1319 goto free_args; 1320 } 1321 1322 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size); 1323 if (ret < 0) 1324 goto free_inherit; 1325 } 1326 1327 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1328 vol_args->name, vol_args->fd, subvol, 1329 readonly, inherit); 1330 if (ret) 1331 goto free_inherit; 1332 free_inherit: 1333 kfree(inherit); 1334 free_args: 1335 kfree(vol_args); 1336 return ret; 1337 } 1338 1339 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 1340 void __user *arg) 1341 { 1342 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1343 struct btrfs_root *root = BTRFS_I(inode)->root; 1344 int ret = 0; 1345 u64 flags = 0; 1346 1347 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1348 return -EINVAL; 1349 1350 down_read(&fs_info->subvol_sem); 1351 if (btrfs_root_readonly(root)) 1352 flags |= BTRFS_SUBVOL_RDONLY; 1353 up_read(&fs_info->subvol_sem); 1354 1355 if (copy_to_user(arg, &flags, sizeof(flags))) 1356 ret = -EFAULT; 1357 1358 return ret; 1359 } 1360 1361 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1362 void __user *arg) 1363 { 1364 struct inode *inode = file_inode(file); 1365 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1366 struct btrfs_root *root = BTRFS_I(inode)->root; 1367 struct btrfs_trans_handle *trans; 1368 u64 root_flags; 1369 u64 flags; 1370 int ret = 0; 1371 1372 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 1373 return -EPERM; 1374 1375 ret = mnt_want_write_file(file); 1376 if (ret) 1377 goto out; 1378 1379 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1380 ret = -EINVAL; 1381 goto out_drop_write; 1382 } 1383 1384 if (copy_from_user(&flags, arg, sizeof(flags))) { 1385 ret = -EFAULT; 1386 goto out_drop_write; 1387 } 1388 1389 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1390 ret = -EOPNOTSUPP; 1391 goto out_drop_write; 1392 } 1393 1394 down_write(&fs_info->subvol_sem); 1395 1396 /* nothing to do */ 1397 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1398 goto out_drop_sem; 1399 1400 root_flags = btrfs_root_flags(&root->root_item); 1401 if (flags & BTRFS_SUBVOL_RDONLY) { 1402 btrfs_set_root_flags(&root->root_item, 1403 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1404 } else { 1405 /* 1406 * Block RO -> RW transition if this subvolume is involved in 1407 * send 1408 */ 1409 spin_lock(&root->root_item_lock); 1410 if (root->send_in_progress == 0) { 1411 btrfs_set_root_flags(&root->root_item, 1412 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1413 spin_unlock(&root->root_item_lock); 1414 } else { 1415 spin_unlock(&root->root_item_lock); 1416 btrfs_warn(fs_info, 1417 "Attempt to set subvolume %llu read-write during send", 1418 btrfs_root_id(root)); 1419 ret = -EPERM; 1420 goto out_drop_sem; 1421 } 1422 } 1423 1424 trans = btrfs_start_transaction(root, 1); 1425 if (IS_ERR(trans)) { 1426 ret = PTR_ERR(trans); 1427 goto out_reset; 1428 } 1429 1430 ret = btrfs_update_root(trans, fs_info->tree_root, 1431 &root->root_key, &root->root_item); 1432 if (ret < 0) { 1433 btrfs_end_transaction(trans); 1434 goto out_reset; 1435 } 1436 1437 ret = btrfs_commit_transaction(trans); 1438 1439 out_reset: 1440 if (ret) 1441 btrfs_set_root_flags(&root->root_item, root_flags); 1442 out_drop_sem: 1443 up_write(&fs_info->subvol_sem); 1444 out_drop_write: 1445 mnt_drop_write_file(file); 1446 out: 1447 return ret; 1448 } 1449 1450 static noinline int key_in_sk(struct btrfs_key *key, 1451 struct btrfs_ioctl_search_key *sk) 1452 { 1453 struct btrfs_key test; 1454 int ret; 1455 1456 test.objectid = sk->min_objectid; 1457 test.type = sk->min_type; 1458 test.offset = sk->min_offset; 1459 1460 ret = btrfs_comp_cpu_keys(key, &test); 1461 if (ret < 0) 1462 return 0; 1463 1464 test.objectid = sk->max_objectid; 1465 test.type = sk->max_type; 1466 test.offset = sk->max_offset; 1467 1468 ret = btrfs_comp_cpu_keys(key, &test); 1469 if (ret > 0) 1470 return 0; 1471 return 1; 1472 } 1473 1474 static noinline int copy_to_sk(struct btrfs_path *path, 1475 struct btrfs_key *key, 1476 struct btrfs_ioctl_search_key *sk, 1477 u64 *buf_size, 1478 char __user *ubuf, 1479 unsigned long *sk_offset, 1480 int *num_found) 1481 { 1482 u64 found_transid; 1483 struct extent_buffer *leaf; 1484 struct btrfs_ioctl_search_header sh; 1485 struct btrfs_key test; 1486 unsigned long item_off; 1487 unsigned long item_len; 1488 int nritems; 1489 int i; 1490 int slot; 1491 int ret = 0; 1492 1493 leaf = path->nodes[0]; 1494 slot = path->slots[0]; 1495 nritems = btrfs_header_nritems(leaf); 1496 1497 if (btrfs_header_generation(leaf) > sk->max_transid) { 1498 i = nritems; 1499 goto advance_key; 1500 } 1501 found_transid = btrfs_header_generation(leaf); 1502 1503 for (i = slot; i < nritems; i++) { 1504 item_off = btrfs_item_ptr_offset(leaf, i); 1505 item_len = btrfs_item_size(leaf, i); 1506 1507 btrfs_item_key_to_cpu(leaf, key, i); 1508 if (!key_in_sk(key, sk)) 1509 continue; 1510 1511 if (sizeof(sh) + item_len > *buf_size) { 1512 if (*num_found) { 1513 ret = 1; 1514 goto out; 1515 } 1516 1517 /* 1518 * return one empty item back for v1, which does not 1519 * handle -EOVERFLOW 1520 */ 1521 1522 *buf_size = sizeof(sh) + item_len; 1523 item_len = 0; 1524 ret = -EOVERFLOW; 1525 } 1526 1527 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1528 ret = 1; 1529 goto out; 1530 } 1531 1532 sh.objectid = key->objectid; 1533 sh.offset = key->offset; 1534 sh.type = key->type; 1535 sh.len = item_len; 1536 sh.transid = found_transid; 1537 1538 /* 1539 * Copy search result header. If we fault then loop again so we 1540 * can fault in the pages and -EFAULT there if there's a 1541 * problem. Otherwise we'll fault and then copy the buffer in 1542 * properly this next time through 1543 */ 1544 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 1545 ret = 0; 1546 goto out; 1547 } 1548 1549 *sk_offset += sizeof(sh); 1550 1551 if (item_len) { 1552 char __user *up = ubuf + *sk_offset; 1553 /* 1554 * Copy the item, same behavior as above, but reset the 1555 * * sk_offset so we copy the full thing again. 1556 */ 1557 if (read_extent_buffer_to_user_nofault(leaf, up, 1558 item_off, item_len)) { 1559 ret = 0; 1560 *sk_offset -= sizeof(sh); 1561 goto out; 1562 } 1563 1564 *sk_offset += item_len; 1565 } 1566 (*num_found)++; 1567 1568 if (ret) /* -EOVERFLOW from above */ 1569 goto out; 1570 1571 if (*num_found >= sk->nr_items) { 1572 ret = 1; 1573 goto out; 1574 } 1575 } 1576 advance_key: 1577 ret = 0; 1578 test.objectid = sk->max_objectid; 1579 test.type = sk->max_type; 1580 test.offset = sk->max_offset; 1581 if (btrfs_comp_cpu_keys(key, &test) >= 0) 1582 ret = 1; 1583 else if (key->offset < (u64)-1) 1584 key->offset++; 1585 else if (key->type < (u8)-1) { 1586 key->offset = 0; 1587 key->type++; 1588 } else if (key->objectid < (u64)-1) { 1589 key->offset = 0; 1590 key->type = 0; 1591 key->objectid++; 1592 } else 1593 ret = 1; 1594 out: 1595 /* 1596 * 0: all items from this leaf copied, continue with next 1597 * 1: * more items can be copied, but unused buffer is too small 1598 * * all items were found 1599 * Either way, it will stops the loop which iterates to the next 1600 * leaf 1601 * -EOVERFLOW: item was to large for buffer 1602 * -EFAULT: could not copy extent buffer back to userspace 1603 */ 1604 return ret; 1605 } 1606 1607 static noinline int search_ioctl(struct inode *inode, 1608 struct btrfs_ioctl_search_key *sk, 1609 u64 *buf_size, 1610 char __user *ubuf) 1611 { 1612 struct btrfs_fs_info *info = inode_to_fs_info(inode); 1613 struct btrfs_root *root; 1614 struct btrfs_key key; 1615 struct btrfs_path *path; 1616 int ret; 1617 int num_found = 0; 1618 unsigned long sk_offset = 0; 1619 1620 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 1621 *buf_size = sizeof(struct btrfs_ioctl_search_header); 1622 return -EOVERFLOW; 1623 } 1624 1625 path = btrfs_alloc_path(); 1626 if (!path) 1627 return -ENOMEM; 1628 1629 if (sk->tree_id == 0) { 1630 /* search the root of the inode that was passed */ 1631 root = btrfs_grab_root(BTRFS_I(inode)->root); 1632 } else { 1633 root = btrfs_get_fs_root(info, sk->tree_id, true); 1634 if (IS_ERR(root)) { 1635 btrfs_free_path(path); 1636 return PTR_ERR(root); 1637 } 1638 } 1639 1640 key.objectid = sk->min_objectid; 1641 key.type = sk->min_type; 1642 key.offset = sk->min_offset; 1643 1644 while (1) { 1645 ret = -EFAULT; 1646 /* 1647 * Ensure that the whole user buffer is faulted in at sub-page 1648 * granularity, otherwise the loop may live-lock. 1649 */ 1650 if (fault_in_subpage_writeable(ubuf + sk_offset, 1651 *buf_size - sk_offset)) 1652 break; 1653 1654 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1655 if (ret != 0) { 1656 if (ret > 0) 1657 ret = 0; 1658 goto err; 1659 } 1660 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 1661 &sk_offset, &num_found); 1662 btrfs_release_path(path); 1663 if (ret) 1664 break; 1665 1666 } 1667 if (ret > 0) 1668 ret = 0; 1669 err: 1670 sk->nr_items = num_found; 1671 btrfs_put_root(root); 1672 btrfs_free_path(path); 1673 return ret; 1674 } 1675 1676 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 1677 void __user *argp) 1678 { 1679 struct btrfs_ioctl_search_args __user *uargs = argp; 1680 struct btrfs_ioctl_search_key sk; 1681 int ret; 1682 u64 buf_size; 1683 1684 if (!capable(CAP_SYS_ADMIN)) 1685 return -EPERM; 1686 1687 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 1688 return -EFAULT; 1689 1690 buf_size = sizeof(uargs->buf); 1691 1692 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 1693 1694 /* 1695 * In the origin implementation an overflow is handled by returning a 1696 * search header with a len of zero, so reset ret. 1697 */ 1698 if (ret == -EOVERFLOW) 1699 ret = 0; 1700 1701 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 1702 ret = -EFAULT; 1703 return ret; 1704 } 1705 1706 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 1707 void __user *argp) 1708 { 1709 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 1710 struct btrfs_ioctl_search_args_v2 args; 1711 int ret; 1712 u64 buf_size; 1713 const u64 buf_limit = SZ_16M; 1714 1715 if (!capable(CAP_SYS_ADMIN)) 1716 return -EPERM; 1717 1718 /* copy search header and buffer size */ 1719 if (copy_from_user(&args, uarg, sizeof(args))) 1720 return -EFAULT; 1721 1722 buf_size = args.buf_size; 1723 1724 /* limit result size to 16MB */ 1725 if (buf_size > buf_limit) 1726 buf_size = buf_limit; 1727 1728 ret = search_ioctl(inode, &args.key, &buf_size, 1729 (char __user *)(&uarg->buf[0])); 1730 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 1731 ret = -EFAULT; 1732 else if (ret == -EOVERFLOW && 1733 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 1734 ret = -EFAULT; 1735 1736 return ret; 1737 } 1738 1739 /* 1740 * Search INODE_REFs to identify path name of 'dirid' directory 1741 * in a 'tree_id' tree. and sets path name to 'name'. 1742 */ 1743 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1744 u64 tree_id, u64 dirid, char *name) 1745 { 1746 struct btrfs_root *root; 1747 struct btrfs_key key; 1748 char *ptr; 1749 int ret = -1; 1750 int slot; 1751 int len; 1752 int total_len = 0; 1753 struct btrfs_inode_ref *iref; 1754 struct extent_buffer *l; 1755 struct btrfs_path *path; 1756 1757 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1758 name[0]='\0'; 1759 return 0; 1760 } 1761 1762 path = btrfs_alloc_path(); 1763 if (!path) 1764 return -ENOMEM; 1765 1766 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 1767 1768 root = btrfs_get_fs_root(info, tree_id, true); 1769 if (IS_ERR(root)) { 1770 ret = PTR_ERR(root); 1771 root = NULL; 1772 goto out; 1773 } 1774 1775 key.objectid = dirid; 1776 key.type = BTRFS_INODE_REF_KEY; 1777 key.offset = (u64)-1; 1778 1779 while (1) { 1780 ret = btrfs_search_backwards(root, &key, path); 1781 if (ret < 0) 1782 goto out; 1783 else if (ret > 0) { 1784 ret = -ENOENT; 1785 goto out; 1786 } 1787 1788 l = path->nodes[0]; 1789 slot = path->slots[0]; 1790 1791 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1792 len = btrfs_inode_ref_name_len(l, iref); 1793 ptr -= len + 1; 1794 total_len += len + 1; 1795 if (ptr < name) { 1796 ret = -ENAMETOOLONG; 1797 goto out; 1798 } 1799 1800 *(ptr + len) = '/'; 1801 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 1802 1803 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1804 break; 1805 1806 btrfs_release_path(path); 1807 key.objectid = key.offset; 1808 key.offset = (u64)-1; 1809 dirid = key.objectid; 1810 } 1811 memmove(name, ptr, total_len); 1812 name[total_len] = '\0'; 1813 ret = 0; 1814 out: 1815 btrfs_put_root(root); 1816 btrfs_free_path(path); 1817 return ret; 1818 } 1819 1820 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap, 1821 struct inode *inode, 1822 struct btrfs_ioctl_ino_lookup_user_args *args) 1823 { 1824 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1825 u64 upper_limit = btrfs_ino(BTRFS_I(inode)); 1826 u64 treeid = btrfs_root_id(BTRFS_I(inode)->root); 1827 u64 dirid = args->dirid; 1828 unsigned long item_off; 1829 unsigned long item_len; 1830 struct btrfs_inode_ref *iref; 1831 struct btrfs_root_ref *rref; 1832 struct btrfs_root *root = NULL; 1833 struct btrfs_path *path; 1834 struct btrfs_key key, key2; 1835 struct extent_buffer *leaf; 1836 struct inode *temp_inode; 1837 char *ptr; 1838 int slot; 1839 int len; 1840 int total_len = 0; 1841 int ret; 1842 1843 path = btrfs_alloc_path(); 1844 if (!path) 1845 return -ENOMEM; 1846 1847 /* 1848 * If the bottom subvolume does not exist directly under upper_limit, 1849 * construct the path in from the bottom up. 1850 */ 1851 if (dirid != upper_limit) { 1852 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 1853 1854 root = btrfs_get_fs_root(fs_info, treeid, true); 1855 if (IS_ERR(root)) { 1856 ret = PTR_ERR(root); 1857 goto out; 1858 } 1859 1860 key.objectid = dirid; 1861 key.type = BTRFS_INODE_REF_KEY; 1862 key.offset = (u64)-1; 1863 while (1) { 1864 ret = btrfs_search_backwards(root, &key, path); 1865 if (ret < 0) 1866 goto out_put; 1867 else if (ret > 0) { 1868 ret = -ENOENT; 1869 goto out_put; 1870 } 1871 1872 leaf = path->nodes[0]; 1873 slot = path->slots[0]; 1874 1875 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 1876 len = btrfs_inode_ref_name_len(leaf, iref); 1877 ptr -= len + 1; 1878 total_len += len + 1; 1879 if (ptr < args->path) { 1880 ret = -ENAMETOOLONG; 1881 goto out_put; 1882 } 1883 1884 *(ptr + len) = '/'; 1885 read_extent_buffer(leaf, ptr, 1886 (unsigned long)(iref + 1), len); 1887 1888 /* Check the read+exec permission of this directory */ 1889 ret = btrfs_previous_item(root, path, dirid, 1890 BTRFS_INODE_ITEM_KEY); 1891 if (ret < 0) { 1892 goto out_put; 1893 } else if (ret > 0) { 1894 ret = -ENOENT; 1895 goto out_put; 1896 } 1897 1898 leaf = path->nodes[0]; 1899 slot = path->slots[0]; 1900 btrfs_item_key_to_cpu(leaf, &key2, slot); 1901 if (key2.objectid != dirid) { 1902 ret = -ENOENT; 1903 goto out_put; 1904 } 1905 1906 /* 1907 * We don't need the path anymore, so release it and 1908 * avoid deadlocks and lockdep warnings in case 1909 * btrfs_iget() needs to lookup the inode from its root 1910 * btree and lock the same leaf. 1911 */ 1912 btrfs_release_path(path); 1913 temp_inode = btrfs_iget(key2.objectid, root); 1914 if (IS_ERR(temp_inode)) { 1915 ret = PTR_ERR(temp_inode); 1916 goto out_put; 1917 } 1918 ret = inode_permission(idmap, temp_inode, 1919 MAY_READ | MAY_EXEC); 1920 iput(temp_inode); 1921 if (ret) { 1922 ret = -EACCES; 1923 goto out_put; 1924 } 1925 1926 if (key.offset == upper_limit) 1927 break; 1928 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 1929 ret = -EACCES; 1930 goto out_put; 1931 } 1932 1933 key.objectid = key.offset; 1934 key.offset = (u64)-1; 1935 dirid = key.objectid; 1936 } 1937 1938 memmove(args->path, ptr, total_len); 1939 args->path[total_len] = '\0'; 1940 btrfs_put_root(root); 1941 root = NULL; 1942 btrfs_release_path(path); 1943 } 1944 1945 /* Get the bottom subvolume's name from ROOT_REF */ 1946 key.objectid = treeid; 1947 key.type = BTRFS_ROOT_REF_KEY; 1948 key.offset = args->treeid; 1949 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1950 if (ret < 0) { 1951 goto out; 1952 } else if (ret > 0) { 1953 ret = -ENOENT; 1954 goto out; 1955 } 1956 1957 leaf = path->nodes[0]; 1958 slot = path->slots[0]; 1959 btrfs_item_key_to_cpu(leaf, &key, slot); 1960 1961 item_off = btrfs_item_ptr_offset(leaf, slot); 1962 item_len = btrfs_item_size(leaf, slot); 1963 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 1964 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 1965 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 1966 ret = -EINVAL; 1967 goto out; 1968 } 1969 1970 /* Copy subvolume's name */ 1971 item_off += sizeof(struct btrfs_root_ref); 1972 item_len -= sizeof(struct btrfs_root_ref); 1973 read_extent_buffer(leaf, args->name, item_off, item_len); 1974 args->name[item_len] = 0; 1975 1976 out_put: 1977 btrfs_put_root(root); 1978 out: 1979 btrfs_free_path(path); 1980 return ret; 1981 } 1982 1983 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 1984 void __user *argp) 1985 { 1986 struct btrfs_ioctl_ino_lookup_args *args; 1987 int ret = 0; 1988 1989 args = memdup_user(argp, sizeof(*args)); 1990 if (IS_ERR(args)) 1991 return PTR_ERR(args); 1992 1993 /* 1994 * Unprivileged query to obtain the containing subvolume root id. The 1995 * path is reset so it's consistent with btrfs_search_path_in_tree. 1996 */ 1997 if (args->treeid == 0) 1998 args->treeid = btrfs_root_id(root); 1999 2000 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2001 args->name[0] = 0; 2002 goto out; 2003 } 2004 2005 if (!capable(CAP_SYS_ADMIN)) { 2006 ret = -EPERM; 2007 goto out; 2008 } 2009 2010 ret = btrfs_search_path_in_tree(root->fs_info, 2011 args->treeid, args->objectid, 2012 args->name); 2013 2014 out: 2015 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2016 ret = -EFAULT; 2017 2018 kfree(args); 2019 return ret; 2020 } 2021 2022 /* 2023 * Version of ino_lookup ioctl (unprivileged) 2024 * 2025 * The main differences from ino_lookup ioctl are: 2026 * 2027 * 1. Read + Exec permission will be checked using inode_permission() during 2028 * path construction. -EACCES will be returned in case of failure. 2029 * 2. Path construction will be stopped at the inode number which corresponds 2030 * to the fd with which this ioctl is called. If constructed path does not 2031 * exist under fd's inode, -EACCES will be returned. 2032 * 3. The name of bottom subvolume is also searched and filled. 2033 */ 2034 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2035 { 2036 struct btrfs_ioctl_ino_lookup_user_args *args; 2037 struct inode *inode; 2038 int ret; 2039 2040 args = memdup_user(argp, sizeof(*args)); 2041 if (IS_ERR(args)) 2042 return PTR_ERR(args); 2043 2044 inode = file_inode(file); 2045 2046 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2047 btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2048 /* 2049 * The subvolume does not exist under fd with which this is 2050 * called 2051 */ 2052 kfree(args); 2053 return -EACCES; 2054 } 2055 2056 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args); 2057 2058 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2059 ret = -EFAULT; 2060 2061 kfree(args); 2062 return ret; 2063 } 2064 2065 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2066 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2067 { 2068 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2069 struct btrfs_fs_info *fs_info; 2070 struct btrfs_root *root; 2071 struct btrfs_path *path; 2072 struct btrfs_key key; 2073 struct btrfs_root_item *root_item; 2074 struct btrfs_root_ref *rref; 2075 struct extent_buffer *leaf; 2076 unsigned long item_off; 2077 unsigned long item_len; 2078 int slot; 2079 int ret = 0; 2080 2081 path = btrfs_alloc_path(); 2082 if (!path) 2083 return -ENOMEM; 2084 2085 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2086 if (!subvol_info) { 2087 btrfs_free_path(path); 2088 return -ENOMEM; 2089 } 2090 2091 fs_info = BTRFS_I(inode)->root->fs_info; 2092 2093 /* Get root_item of inode's subvolume */ 2094 key.objectid = btrfs_root_id(BTRFS_I(inode)->root); 2095 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2096 if (IS_ERR(root)) { 2097 ret = PTR_ERR(root); 2098 goto out_free; 2099 } 2100 root_item = &root->root_item; 2101 2102 subvol_info->treeid = key.objectid; 2103 2104 subvol_info->generation = btrfs_root_generation(root_item); 2105 subvol_info->flags = btrfs_root_flags(root_item); 2106 2107 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2108 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2109 BTRFS_UUID_SIZE); 2110 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2111 BTRFS_UUID_SIZE); 2112 2113 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2114 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2115 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2116 2117 subvol_info->otransid = btrfs_root_otransid(root_item); 2118 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2119 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2120 2121 subvol_info->stransid = btrfs_root_stransid(root_item); 2122 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2123 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2124 2125 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2126 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2127 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2128 2129 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2130 /* Search root tree for ROOT_BACKREF of this subvolume */ 2131 key.type = BTRFS_ROOT_BACKREF_KEY; 2132 key.offset = 0; 2133 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2134 if (ret < 0) { 2135 goto out; 2136 } else if (path->slots[0] >= 2137 btrfs_header_nritems(path->nodes[0])) { 2138 ret = btrfs_next_leaf(fs_info->tree_root, path); 2139 if (ret < 0) { 2140 goto out; 2141 } else if (ret > 0) { 2142 ret = -EUCLEAN; 2143 goto out; 2144 } 2145 } 2146 2147 leaf = path->nodes[0]; 2148 slot = path->slots[0]; 2149 btrfs_item_key_to_cpu(leaf, &key, slot); 2150 if (key.objectid == subvol_info->treeid && 2151 key.type == BTRFS_ROOT_BACKREF_KEY) { 2152 subvol_info->parent_id = key.offset; 2153 2154 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2155 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2156 2157 item_off = btrfs_item_ptr_offset(leaf, slot) 2158 + sizeof(struct btrfs_root_ref); 2159 item_len = btrfs_item_size(leaf, slot) 2160 - sizeof(struct btrfs_root_ref); 2161 read_extent_buffer(leaf, subvol_info->name, 2162 item_off, item_len); 2163 } else { 2164 ret = -ENOENT; 2165 goto out; 2166 } 2167 } 2168 2169 btrfs_free_path(path); 2170 path = NULL; 2171 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2172 ret = -EFAULT; 2173 2174 out: 2175 btrfs_put_root(root); 2176 out_free: 2177 btrfs_free_path(path); 2178 kfree(subvol_info); 2179 return ret; 2180 } 2181 2182 /* 2183 * Return ROOT_REF information of the subvolume containing this inode 2184 * except the subvolume name. 2185 */ 2186 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 2187 void __user *argp) 2188 { 2189 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2190 struct btrfs_root_ref *rref; 2191 struct btrfs_path *path; 2192 struct btrfs_key key; 2193 struct extent_buffer *leaf; 2194 u64 objectid; 2195 int slot; 2196 int ret; 2197 u8 found; 2198 2199 path = btrfs_alloc_path(); 2200 if (!path) 2201 return -ENOMEM; 2202 2203 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2204 if (IS_ERR(rootrefs)) { 2205 btrfs_free_path(path); 2206 return PTR_ERR(rootrefs); 2207 } 2208 2209 objectid = btrfs_root_id(root); 2210 key.objectid = objectid; 2211 key.type = BTRFS_ROOT_REF_KEY; 2212 key.offset = rootrefs->min_treeid; 2213 found = 0; 2214 2215 root = root->fs_info->tree_root; 2216 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2217 if (ret < 0) { 2218 goto out; 2219 } else if (path->slots[0] >= 2220 btrfs_header_nritems(path->nodes[0])) { 2221 ret = btrfs_next_leaf(root, path); 2222 if (ret < 0) { 2223 goto out; 2224 } else if (ret > 0) { 2225 ret = -EUCLEAN; 2226 goto out; 2227 } 2228 } 2229 while (1) { 2230 leaf = path->nodes[0]; 2231 slot = path->slots[0]; 2232 2233 btrfs_item_key_to_cpu(leaf, &key, slot); 2234 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2235 ret = 0; 2236 goto out; 2237 } 2238 2239 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2240 ret = -EOVERFLOW; 2241 goto out; 2242 } 2243 2244 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2245 rootrefs->rootref[found].treeid = key.offset; 2246 rootrefs->rootref[found].dirid = 2247 btrfs_root_ref_dirid(leaf, rref); 2248 found++; 2249 2250 ret = btrfs_next_item(root, path); 2251 if (ret < 0) { 2252 goto out; 2253 } else if (ret > 0) { 2254 ret = -EUCLEAN; 2255 goto out; 2256 } 2257 } 2258 2259 out: 2260 btrfs_free_path(path); 2261 2262 if (!ret || ret == -EOVERFLOW) { 2263 rootrefs->num_items = found; 2264 /* update min_treeid for next search */ 2265 if (found) 2266 rootrefs->min_treeid = 2267 rootrefs->rootref[found - 1].treeid + 1; 2268 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2269 ret = -EFAULT; 2270 } 2271 2272 kfree(rootrefs); 2273 2274 return ret; 2275 } 2276 2277 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2278 void __user *arg, 2279 bool destroy_v2) 2280 { 2281 struct dentry *parent = file->f_path.dentry; 2282 struct dentry *dentry; 2283 struct inode *dir = d_inode(parent); 2284 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 2285 struct inode *inode; 2286 struct btrfs_root *root = BTRFS_I(dir)->root; 2287 struct btrfs_root *dest = NULL; 2288 struct btrfs_ioctl_vol_args *vol_args = NULL; 2289 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2290 struct mnt_idmap *idmap = file_mnt_idmap(file); 2291 char *subvol_name, *subvol_name_ptr = NULL; 2292 int subvol_namelen; 2293 int ret = 0; 2294 bool destroy_parent = false; 2295 2296 /* We don't support snapshots with extent tree v2 yet. */ 2297 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2298 btrfs_err(fs_info, 2299 "extent tree v2 doesn't support snapshot deletion yet"); 2300 return -EOPNOTSUPP; 2301 } 2302 2303 if (destroy_v2) { 2304 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2305 if (IS_ERR(vol_args2)) 2306 return PTR_ERR(vol_args2); 2307 2308 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2309 ret = -EOPNOTSUPP; 2310 goto out; 2311 } 2312 2313 /* 2314 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2315 * name, same as v1 currently does. 2316 */ 2317 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2318 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2); 2319 if (ret < 0) 2320 goto out; 2321 subvol_name = vol_args2->name; 2322 2323 ret = mnt_want_write_file(file); 2324 if (ret) 2325 goto out; 2326 } else { 2327 struct inode *old_dir; 2328 2329 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2330 ret = -EINVAL; 2331 goto out; 2332 } 2333 2334 ret = mnt_want_write_file(file); 2335 if (ret) 2336 goto out; 2337 2338 dentry = btrfs_get_dentry(fs_info->sb, 2339 BTRFS_FIRST_FREE_OBJECTID, 2340 vol_args2->subvolid, 0); 2341 if (IS_ERR(dentry)) { 2342 ret = PTR_ERR(dentry); 2343 goto out_drop_write; 2344 } 2345 2346 /* 2347 * Change the default parent since the subvolume being 2348 * deleted can be outside of the current mount point. 2349 */ 2350 parent = btrfs_get_parent(dentry); 2351 2352 /* 2353 * At this point dentry->d_name can point to '/' if the 2354 * subvolume we want to destroy is outsite of the 2355 * current mount point, so we need to release the 2356 * current dentry and execute the lookup to return a new 2357 * one with ->d_name pointing to the 2358 * <mount point>/subvol_name. 2359 */ 2360 dput(dentry); 2361 if (IS_ERR(parent)) { 2362 ret = PTR_ERR(parent); 2363 goto out_drop_write; 2364 } 2365 old_dir = dir; 2366 dir = d_inode(parent); 2367 2368 /* 2369 * If v2 was used with SPEC_BY_ID, a new parent was 2370 * allocated since the subvolume can be outside of the 2371 * current mount point. Later on we need to release this 2372 * new parent dentry. 2373 */ 2374 destroy_parent = true; 2375 2376 /* 2377 * On idmapped mounts, deletion via subvolid is 2378 * restricted to subvolumes that are immediate 2379 * ancestors of the inode referenced by the file 2380 * descriptor in the ioctl. Otherwise the idmapping 2381 * could potentially be abused to delete subvolumes 2382 * anywhere in the filesystem the user wouldn't be able 2383 * to delete without an idmapped mount. 2384 */ 2385 if (old_dir != dir && idmap != &nop_mnt_idmap) { 2386 ret = -EOPNOTSUPP; 2387 goto free_parent; 2388 } 2389 2390 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2391 fs_info, vol_args2->subvolid); 2392 if (IS_ERR(subvol_name_ptr)) { 2393 ret = PTR_ERR(subvol_name_ptr); 2394 goto free_parent; 2395 } 2396 /* subvol_name_ptr is already nul terminated */ 2397 subvol_name = (char *)kbasename(subvol_name_ptr); 2398 } 2399 } else { 2400 vol_args = memdup_user(arg, sizeof(*vol_args)); 2401 if (IS_ERR(vol_args)) 2402 return PTR_ERR(vol_args); 2403 2404 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2405 if (ret < 0) 2406 goto out; 2407 2408 subvol_name = vol_args->name; 2409 2410 ret = mnt_want_write_file(file); 2411 if (ret) 2412 goto out; 2413 } 2414 2415 subvol_namelen = strlen(subvol_name); 2416 2417 if (strchr(subvol_name, '/') || 2418 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2419 ret = -EINVAL; 2420 goto free_subvol_name; 2421 } 2422 2423 if (!S_ISDIR(dir->i_mode)) { 2424 ret = -ENOTDIR; 2425 goto free_subvol_name; 2426 } 2427 2428 ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2429 if (ret == -EINTR) 2430 goto free_subvol_name; 2431 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen); 2432 if (IS_ERR(dentry)) { 2433 ret = PTR_ERR(dentry); 2434 goto out_unlock_dir; 2435 } 2436 2437 if (d_really_is_negative(dentry)) { 2438 ret = -ENOENT; 2439 goto out_dput; 2440 } 2441 2442 inode = d_inode(dentry); 2443 dest = BTRFS_I(inode)->root; 2444 if (!capable(CAP_SYS_ADMIN)) { 2445 /* 2446 * Regular user. Only allow this with a special mount 2447 * option, when the user has write+exec access to the 2448 * subvol root, and when rmdir(2) would have been 2449 * allowed. 2450 * 2451 * Note that this is _not_ check that the subvol is 2452 * empty or doesn't contain data that we wouldn't 2453 * otherwise be able to delete. 2454 * 2455 * Users who want to delete empty subvols should try 2456 * rmdir(2). 2457 */ 2458 ret = -EPERM; 2459 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2460 goto out_dput; 2461 2462 /* 2463 * Do not allow deletion if the parent dir is the same 2464 * as the dir to be deleted. That means the ioctl 2465 * must be called on the dentry referencing the root 2466 * of the subvol, not a random directory contained 2467 * within it. 2468 */ 2469 ret = -EINVAL; 2470 if (root == dest) 2471 goto out_dput; 2472 2473 ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC); 2474 if (ret) 2475 goto out_dput; 2476 } 2477 2478 /* check if subvolume may be deleted by a user */ 2479 ret = btrfs_may_delete(idmap, dir, dentry, 1); 2480 if (ret) 2481 goto out_dput; 2482 2483 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2484 ret = -EINVAL; 2485 goto out_dput; 2486 } 2487 2488 btrfs_inode_lock(BTRFS_I(inode), 0); 2489 ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry); 2490 btrfs_inode_unlock(BTRFS_I(inode), 0); 2491 if (!ret) 2492 d_delete_notify(dir, dentry); 2493 2494 out_dput: 2495 dput(dentry); 2496 out_unlock_dir: 2497 btrfs_inode_unlock(BTRFS_I(dir), 0); 2498 free_subvol_name: 2499 kfree(subvol_name_ptr); 2500 free_parent: 2501 if (destroy_parent) 2502 dput(parent); 2503 out_drop_write: 2504 mnt_drop_write_file(file); 2505 out: 2506 kfree(vol_args2); 2507 kfree(vol_args); 2508 return ret; 2509 } 2510 2511 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2512 { 2513 struct inode *inode = file_inode(file); 2514 struct btrfs_root *root = BTRFS_I(inode)->root; 2515 struct btrfs_ioctl_defrag_range_args range = {0}; 2516 int ret; 2517 2518 ret = mnt_want_write_file(file); 2519 if (ret) 2520 return ret; 2521 2522 if (btrfs_root_readonly(root)) { 2523 ret = -EROFS; 2524 goto out; 2525 } 2526 2527 switch (inode->i_mode & S_IFMT) { 2528 case S_IFDIR: 2529 if (!capable(CAP_SYS_ADMIN)) { 2530 ret = -EPERM; 2531 goto out; 2532 } 2533 ret = btrfs_defrag_root(root); 2534 break; 2535 case S_IFREG: 2536 /* 2537 * Note that this does not check the file descriptor for write 2538 * access. This prevents defragmenting executables that are 2539 * running and allows defrag on files open in read-only mode. 2540 */ 2541 if (!capable(CAP_SYS_ADMIN) && 2542 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) { 2543 ret = -EPERM; 2544 goto out; 2545 } 2546 2547 if (argp) { 2548 if (copy_from_user(&range, argp, sizeof(range))) { 2549 ret = -EFAULT; 2550 goto out; 2551 } 2552 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) { 2553 ret = -EOPNOTSUPP; 2554 goto out; 2555 } 2556 /* compression requires us to start the IO */ 2557 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2558 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 2559 range.extent_thresh = (u32)-1; 2560 } 2561 } else { 2562 /* the rest are all set to zero by kzalloc */ 2563 range.len = (u64)-1; 2564 } 2565 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 2566 &range, BTRFS_OLDEST_GENERATION, 0); 2567 if (ret > 0) 2568 ret = 0; 2569 break; 2570 default: 2571 ret = -EINVAL; 2572 } 2573 out: 2574 mnt_drop_write_file(file); 2575 return ret; 2576 } 2577 2578 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2579 { 2580 struct btrfs_ioctl_vol_args *vol_args; 2581 bool restore_op = false; 2582 int ret; 2583 2584 if (!capable(CAP_SYS_ADMIN)) 2585 return -EPERM; 2586 2587 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2588 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 2589 return -EINVAL; 2590 } 2591 2592 if (fs_info->fs_devices->temp_fsid) { 2593 btrfs_err(fs_info, 2594 "device add not supported on cloned temp-fsid mount"); 2595 return -EINVAL; 2596 } 2597 2598 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 2599 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 2600 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2601 2602 /* 2603 * We can do the device add because we have a paused balanced, 2604 * change the exclusive op type and remember we should bring 2605 * back the paused balance 2606 */ 2607 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 2608 btrfs_exclop_start_unlock(fs_info); 2609 restore_op = true; 2610 } 2611 2612 vol_args = memdup_user(arg, sizeof(*vol_args)); 2613 if (IS_ERR(vol_args)) { 2614 ret = PTR_ERR(vol_args); 2615 goto out; 2616 } 2617 2618 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2619 if (ret < 0) 2620 goto out_free; 2621 2622 ret = btrfs_init_new_device(fs_info, vol_args->name); 2623 2624 if (!ret) 2625 btrfs_info(fs_info, "disk added %s", vol_args->name); 2626 2627 out_free: 2628 kfree(vol_args); 2629 out: 2630 if (restore_op) 2631 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 2632 else 2633 btrfs_exclop_finish(fs_info); 2634 return ret; 2635 } 2636 2637 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2638 { 2639 BTRFS_DEV_LOOKUP_ARGS(args); 2640 struct inode *inode = file_inode(file); 2641 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2642 struct btrfs_ioctl_vol_args_v2 *vol_args; 2643 struct file *bdev_file = NULL; 2644 int ret; 2645 bool cancel = false; 2646 2647 if (!capable(CAP_SYS_ADMIN)) 2648 return -EPERM; 2649 2650 vol_args = memdup_user(arg, sizeof(*vol_args)); 2651 if (IS_ERR(vol_args)) 2652 return PTR_ERR(vol_args); 2653 2654 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 2655 ret = -EOPNOTSUPP; 2656 goto out; 2657 } 2658 2659 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args); 2660 if (ret < 0) 2661 goto out; 2662 2663 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2664 args.devid = vol_args->devid; 2665 } else if (!strcmp("cancel", vol_args->name)) { 2666 cancel = true; 2667 } else { 2668 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2669 if (ret) 2670 goto out; 2671 } 2672 2673 ret = mnt_want_write_file(file); 2674 if (ret) 2675 goto out; 2676 2677 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2678 cancel); 2679 if (ret) 2680 goto err_drop; 2681 2682 /* Exclusive operation is now claimed */ 2683 ret = btrfs_rm_device(fs_info, &args, &bdev_file); 2684 2685 btrfs_exclop_finish(fs_info); 2686 2687 if (!ret) { 2688 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2689 btrfs_info(fs_info, "device deleted: id %llu", 2690 vol_args->devid); 2691 else 2692 btrfs_info(fs_info, "device deleted: %s", 2693 vol_args->name); 2694 } 2695 err_drop: 2696 mnt_drop_write_file(file); 2697 if (bdev_file) 2698 fput(bdev_file); 2699 out: 2700 btrfs_put_dev_args_from_path(&args); 2701 kfree(vol_args); 2702 return ret; 2703 } 2704 2705 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2706 { 2707 BTRFS_DEV_LOOKUP_ARGS(args); 2708 struct inode *inode = file_inode(file); 2709 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2710 struct btrfs_ioctl_vol_args *vol_args; 2711 struct file *bdev_file = NULL; 2712 int ret; 2713 bool cancel = false; 2714 2715 if (!capable(CAP_SYS_ADMIN)) 2716 return -EPERM; 2717 2718 vol_args = memdup_user(arg, sizeof(*vol_args)); 2719 if (IS_ERR(vol_args)) 2720 return PTR_ERR(vol_args); 2721 2722 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2723 if (ret < 0) 2724 goto out_free; 2725 2726 if (!strcmp("cancel", vol_args->name)) { 2727 cancel = true; 2728 } else { 2729 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2730 if (ret) 2731 goto out; 2732 } 2733 2734 ret = mnt_want_write_file(file); 2735 if (ret) 2736 goto out; 2737 2738 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2739 cancel); 2740 if (ret == 0) { 2741 ret = btrfs_rm_device(fs_info, &args, &bdev_file); 2742 if (!ret) 2743 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2744 btrfs_exclop_finish(fs_info); 2745 } 2746 2747 mnt_drop_write_file(file); 2748 if (bdev_file) 2749 fput(bdev_file); 2750 out: 2751 btrfs_put_dev_args_from_path(&args); 2752 out_free: 2753 kfree(vol_args); 2754 return ret; 2755 } 2756 2757 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2758 void __user *arg) 2759 { 2760 struct btrfs_ioctl_fs_info_args *fi_args; 2761 struct btrfs_device *device; 2762 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2763 u64 flags_in; 2764 int ret = 0; 2765 2766 fi_args = memdup_user(arg, sizeof(*fi_args)); 2767 if (IS_ERR(fi_args)) 2768 return PTR_ERR(fi_args); 2769 2770 flags_in = fi_args->flags; 2771 memset(fi_args, 0, sizeof(*fi_args)); 2772 2773 rcu_read_lock(); 2774 fi_args->num_devices = fs_devices->num_devices; 2775 2776 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2777 if (device->devid > fi_args->max_id) 2778 fi_args->max_id = device->devid; 2779 } 2780 rcu_read_unlock(); 2781 2782 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 2783 fi_args->nodesize = fs_info->nodesize; 2784 fi_args->sectorsize = fs_info->sectorsize; 2785 fi_args->clone_alignment = fs_info->sectorsize; 2786 2787 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 2788 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 2789 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 2790 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 2791 } 2792 2793 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 2794 fi_args->generation = btrfs_get_fs_generation(fs_info); 2795 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 2796 } 2797 2798 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 2799 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 2800 sizeof(fi_args->metadata_uuid)); 2801 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 2802 } 2803 2804 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2805 ret = -EFAULT; 2806 2807 kfree(fi_args); 2808 return ret; 2809 } 2810 2811 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2812 void __user *arg) 2813 { 2814 BTRFS_DEV_LOOKUP_ARGS(args); 2815 struct btrfs_ioctl_dev_info_args *di_args; 2816 struct btrfs_device *dev; 2817 int ret = 0; 2818 2819 di_args = memdup_user(arg, sizeof(*di_args)); 2820 if (IS_ERR(di_args)) 2821 return PTR_ERR(di_args); 2822 2823 args.devid = di_args->devid; 2824 if (!btrfs_is_empty_uuid(di_args->uuid)) 2825 args.uuid = di_args->uuid; 2826 2827 rcu_read_lock(); 2828 dev = btrfs_find_device(fs_info->fs_devices, &args); 2829 if (!dev) { 2830 ret = -ENODEV; 2831 goto out; 2832 } 2833 2834 di_args->devid = dev->devid; 2835 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2836 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2837 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2838 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2839 if (dev->name) 2840 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path)); 2841 else 2842 di_args->path[0] = '\0'; 2843 2844 out: 2845 rcu_read_unlock(); 2846 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2847 ret = -EFAULT; 2848 2849 kfree(di_args); 2850 return ret; 2851 } 2852 2853 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2854 { 2855 struct inode *inode = file_inode(file); 2856 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2857 struct btrfs_root *root = BTRFS_I(inode)->root; 2858 struct btrfs_root *new_root; 2859 struct btrfs_dir_item *di; 2860 struct btrfs_trans_handle *trans; 2861 struct btrfs_path *path = NULL; 2862 struct btrfs_disk_key disk_key; 2863 struct fscrypt_str name = FSTR_INIT("default", 7); 2864 u64 objectid = 0; 2865 u64 dir_id; 2866 int ret; 2867 2868 if (!capable(CAP_SYS_ADMIN)) 2869 return -EPERM; 2870 2871 ret = mnt_want_write_file(file); 2872 if (ret) 2873 return ret; 2874 2875 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2876 ret = -EFAULT; 2877 goto out; 2878 } 2879 2880 if (!objectid) 2881 objectid = BTRFS_FS_TREE_OBJECTID; 2882 2883 new_root = btrfs_get_fs_root(fs_info, objectid, true); 2884 if (IS_ERR(new_root)) { 2885 ret = PTR_ERR(new_root); 2886 goto out; 2887 } 2888 if (!is_fstree(btrfs_root_id(new_root))) { 2889 ret = -ENOENT; 2890 goto out_free; 2891 } 2892 2893 path = btrfs_alloc_path(); 2894 if (!path) { 2895 ret = -ENOMEM; 2896 goto out_free; 2897 } 2898 2899 trans = btrfs_start_transaction(root, 1); 2900 if (IS_ERR(trans)) { 2901 ret = PTR_ERR(trans); 2902 goto out_free; 2903 } 2904 2905 dir_id = btrfs_super_root_dir(fs_info->super_copy); 2906 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 2907 dir_id, &name, 1); 2908 if (IS_ERR_OR_NULL(di)) { 2909 btrfs_release_path(path); 2910 btrfs_end_transaction(trans); 2911 btrfs_err(fs_info, 2912 "Umm, you don't have the default diritem, this isn't going to work"); 2913 ret = -ENOENT; 2914 goto out_free; 2915 } 2916 2917 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2918 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2919 btrfs_release_path(path); 2920 2921 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 2922 btrfs_end_transaction(trans); 2923 out_free: 2924 btrfs_put_root(new_root); 2925 btrfs_free_path(path); 2926 out: 2927 mnt_drop_write_file(file); 2928 return ret; 2929 } 2930 2931 static void get_block_group_info(struct list_head *groups_list, 2932 struct btrfs_ioctl_space_info *space) 2933 { 2934 struct btrfs_block_group *block_group; 2935 2936 space->total_bytes = 0; 2937 space->used_bytes = 0; 2938 space->flags = 0; 2939 list_for_each_entry(block_group, groups_list, list) { 2940 space->flags = block_group->flags; 2941 space->total_bytes += block_group->length; 2942 space->used_bytes += block_group->used; 2943 } 2944 } 2945 2946 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 2947 void __user *arg) 2948 { 2949 struct btrfs_ioctl_space_args space_args = { 0 }; 2950 struct btrfs_ioctl_space_info space; 2951 struct btrfs_ioctl_space_info *dest; 2952 struct btrfs_ioctl_space_info *dest_orig; 2953 struct btrfs_ioctl_space_info __user *user_dest; 2954 struct btrfs_space_info *info; 2955 static const u64 types[] = { 2956 BTRFS_BLOCK_GROUP_DATA, 2957 BTRFS_BLOCK_GROUP_SYSTEM, 2958 BTRFS_BLOCK_GROUP_METADATA, 2959 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 2960 }; 2961 int num_types = 4; 2962 int alloc_size; 2963 int ret = 0; 2964 u64 slot_count = 0; 2965 int i, c; 2966 2967 if (copy_from_user(&space_args, 2968 (struct btrfs_ioctl_space_args __user *)arg, 2969 sizeof(space_args))) 2970 return -EFAULT; 2971 2972 for (i = 0; i < num_types; i++) { 2973 struct btrfs_space_info *tmp; 2974 2975 info = NULL; 2976 list_for_each_entry(tmp, &fs_info->space_info, list) { 2977 if (tmp->flags == types[i]) { 2978 info = tmp; 2979 break; 2980 } 2981 } 2982 2983 if (!info) 2984 continue; 2985 2986 down_read(&info->groups_sem); 2987 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2988 if (!list_empty(&info->block_groups[c])) 2989 slot_count++; 2990 } 2991 up_read(&info->groups_sem); 2992 } 2993 2994 /* 2995 * Global block reserve, exported as a space_info 2996 */ 2997 slot_count++; 2998 2999 /* space_slots == 0 means they are asking for a count */ 3000 if (space_args.space_slots == 0) { 3001 space_args.total_spaces = slot_count; 3002 goto out; 3003 } 3004 3005 slot_count = min_t(u64, space_args.space_slots, slot_count); 3006 3007 alloc_size = sizeof(*dest) * slot_count; 3008 3009 /* we generally have at most 6 or so space infos, one for each raid 3010 * level. So, a whole page should be more than enough for everyone 3011 */ 3012 if (alloc_size > PAGE_SIZE) 3013 return -ENOMEM; 3014 3015 space_args.total_spaces = 0; 3016 dest = kmalloc(alloc_size, GFP_KERNEL); 3017 if (!dest) 3018 return -ENOMEM; 3019 dest_orig = dest; 3020 3021 /* now we have a buffer to copy into */ 3022 for (i = 0; i < num_types; i++) { 3023 struct btrfs_space_info *tmp; 3024 3025 if (!slot_count) 3026 break; 3027 3028 info = NULL; 3029 list_for_each_entry(tmp, &fs_info->space_info, list) { 3030 if (tmp->flags == types[i]) { 3031 info = tmp; 3032 break; 3033 } 3034 } 3035 3036 if (!info) 3037 continue; 3038 down_read(&info->groups_sem); 3039 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3040 if (!list_empty(&info->block_groups[c])) { 3041 get_block_group_info(&info->block_groups[c], 3042 &space); 3043 memcpy(dest, &space, sizeof(space)); 3044 dest++; 3045 space_args.total_spaces++; 3046 slot_count--; 3047 } 3048 if (!slot_count) 3049 break; 3050 } 3051 up_read(&info->groups_sem); 3052 } 3053 3054 /* 3055 * Add global block reserve 3056 */ 3057 if (slot_count) { 3058 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3059 3060 spin_lock(&block_rsv->lock); 3061 space.total_bytes = block_rsv->size; 3062 space.used_bytes = block_rsv->size - block_rsv->reserved; 3063 spin_unlock(&block_rsv->lock); 3064 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3065 memcpy(dest, &space, sizeof(space)); 3066 space_args.total_spaces++; 3067 } 3068 3069 user_dest = (struct btrfs_ioctl_space_info __user *) 3070 (arg + sizeof(struct btrfs_ioctl_space_args)); 3071 3072 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3073 ret = -EFAULT; 3074 3075 kfree(dest_orig); 3076 out: 3077 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3078 ret = -EFAULT; 3079 3080 return ret; 3081 } 3082 3083 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3084 void __user *argp) 3085 { 3086 struct btrfs_trans_handle *trans; 3087 u64 transid; 3088 3089 /* 3090 * Start orphan cleanup here for the given root in case it hasn't been 3091 * started already by other means. Errors are handled in the other 3092 * functions during transaction commit. 3093 */ 3094 btrfs_orphan_cleanup(root); 3095 3096 trans = btrfs_attach_transaction_barrier(root); 3097 if (IS_ERR(trans)) { 3098 if (PTR_ERR(trans) != -ENOENT) 3099 return PTR_ERR(trans); 3100 3101 /* No running transaction, don't bother */ 3102 transid = btrfs_get_last_trans_committed(root->fs_info); 3103 goto out; 3104 } 3105 transid = trans->transid; 3106 btrfs_commit_transaction_async(trans); 3107 out: 3108 if (argp) 3109 if (copy_to_user(argp, &transid, sizeof(transid))) 3110 return -EFAULT; 3111 return 0; 3112 } 3113 3114 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3115 void __user *argp) 3116 { 3117 /* By default wait for the current transaction. */ 3118 u64 transid = 0; 3119 3120 if (argp) 3121 if (copy_from_user(&transid, argp, sizeof(transid))) 3122 return -EFAULT; 3123 3124 return btrfs_wait_for_commit(fs_info, transid); 3125 } 3126 3127 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3128 { 3129 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file)); 3130 struct btrfs_ioctl_scrub_args *sa; 3131 int ret; 3132 3133 if (!capable(CAP_SYS_ADMIN)) 3134 return -EPERM; 3135 3136 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3137 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 3138 return -EINVAL; 3139 } 3140 3141 sa = memdup_user(arg, sizeof(*sa)); 3142 if (IS_ERR(sa)) 3143 return PTR_ERR(sa); 3144 3145 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) { 3146 ret = -EOPNOTSUPP; 3147 goto out; 3148 } 3149 3150 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3151 ret = mnt_want_write_file(file); 3152 if (ret) 3153 goto out; 3154 } 3155 3156 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3157 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3158 0); 3159 3160 /* 3161 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3162 * error. This is important as it allows user space to know how much 3163 * progress scrub has done. For example, if scrub is canceled we get 3164 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3165 * space. Later user space can inspect the progress from the structure 3166 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3167 * previously (btrfs-progs does this). 3168 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3169 * then return -EFAULT to signal the structure was not copied or it may 3170 * be corrupt and unreliable due to a partial copy. 3171 */ 3172 if (copy_to_user(arg, sa, sizeof(*sa))) 3173 ret = -EFAULT; 3174 3175 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3176 mnt_drop_write_file(file); 3177 out: 3178 kfree(sa); 3179 return ret; 3180 } 3181 3182 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3183 { 3184 if (!capable(CAP_SYS_ADMIN)) 3185 return -EPERM; 3186 3187 return btrfs_scrub_cancel(fs_info); 3188 } 3189 3190 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3191 void __user *arg) 3192 { 3193 struct btrfs_ioctl_scrub_args *sa; 3194 int ret; 3195 3196 if (!capable(CAP_SYS_ADMIN)) 3197 return -EPERM; 3198 3199 sa = memdup_user(arg, sizeof(*sa)); 3200 if (IS_ERR(sa)) 3201 return PTR_ERR(sa); 3202 3203 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3204 3205 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3206 ret = -EFAULT; 3207 3208 kfree(sa); 3209 return ret; 3210 } 3211 3212 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3213 void __user *arg) 3214 { 3215 struct btrfs_ioctl_get_dev_stats *sa; 3216 int ret; 3217 3218 sa = memdup_user(arg, sizeof(*sa)); 3219 if (IS_ERR(sa)) 3220 return PTR_ERR(sa); 3221 3222 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3223 kfree(sa); 3224 return -EPERM; 3225 } 3226 3227 ret = btrfs_get_dev_stats(fs_info, sa); 3228 3229 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3230 ret = -EFAULT; 3231 3232 kfree(sa); 3233 return ret; 3234 } 3235 3236 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3237 void __user *arg) 3238 { 3239 struct btrfs_ioctl_dev_replace_args *p; 3240 int ret; 3241 3242 if (!capable(CAP_SYS_ADMIN)) 3243 return -EPERM; 3244 3245 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3246 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 3247 return -EINVAL; 3248 } 3249 3250 p = memdup_user(arg, sizeof(*p)); 3251 if (IS_ERR(p)) 3252 return PTR_ERR(p); 3253 3254 switch (p->cmd) { 3255 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3256 if (sb_rdonly(fs_info->sb)) { 3257 ret = -EROFS; 3258 goto out; 3259 } 3260 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3261 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3262 } else { 3263 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3264 btrfs_exclop_finish(fs_info); 3265 } 3266 break; 3267 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3268 btrfs_dev_replace_status(fs_info, p); 3269 ret = 0; 3270 break; 3271 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3272 p->result = btrfs_dev_replace_cancel(fs_info); 3273 ret = 0; 3274 break; 3275 default: 3276 ret = -EINVAL; 3277 break; 3278 } 3279 3280 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3281 ret = -EFAULT; 3282 out: 3283 kfree(p); 3284 return ret; 3285 } 3286 3287 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3288 { 3289 int ret = 0; 3290 int i; 3291 u64 rel_ptr; 3292 int size; 3293 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3294 struct inode_fs_paths *ipath = NULL; 3295 struct btrfs_path *path; 3296 3297 if (!capable(CAP_DAC_READ_SEARCH)) 3298 return -EPERM; 3299 3300 path = btrfs_alloc_path(); 3301 if (!path) { 3302 ret = -ENOMEM; 3303 goto out; 3304 } 3305 3306 ipa = memdup_user(arg, sizeof(*ipa)); 3307 if (IS_ERR(ipa)) { 3308 ret = PTR_ERR(ipa); 3309 ipa = NULL; 3310 goto out; 3311 } 3312 3313 size = min_t(u32, ipa->size, 4096); 3314 ipath = init_ipath(size, root, path); 3315 if (IS_ERR(ipath)) { 3316 ret = PTR_ERR(ipath); 3317 ipath = NULL; 3318 goto out; 3319 } 3320 3321 ret = paths_from_inode(ipa->inum, ipath); 3322 if (ret < 0) 3323 goto out; 3324 3325 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3326 rel_ptr = ipath->fspath->val[i] - 3327 (u64)(unsigned long)ipath->fspath->val; 3328 ipath->fspath->val[i] = rel_ptr; 3329 } 3330 3331 btrfs_free_path(path); 3332 path = NULL; 3333 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3334 ipath->fspath, size); 3335 if (ret) { 3336 ret = -EFAULT; 3337 goto out; 3338 } 3339 3340 out: 3341 btrfs_free_path(path); 3342 free_ipath(ipath); 3343 kfree(ipa); 3344 3345 return ret; 3346 } 3347 3348 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3349 void __user *arg, int version) 3350 { 3351 int ret = 0; 3352 int size; 3353 struct btrfs_ioctl_logical_ino_args *loi; 3354 struct btrfs_data_container *inodes = NULL; 3355 struct btrfs_path *path = NULL; 3356 bool ignore_offset; 3357 3358 if (!capable(CAP_SYS_ADMIN)) 3359 return -EPERM; 3360 3361 loi = memdup_user(arg, sizeof(*loi)); 3362 if (IS_ERR(loi)) 3363 return PTR_ERR(loi); 3364 3365 if (version == 1) { 3366 ignore_offset = false; 3367 size = min_t(u32, loi->size, SZ_64K); 3368 } else { 3369 /* All reserved bits must be 0 for now */ 3370 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3371 ret = -EINVAL; 3372 goto out_loi; 3373 } 3374 /* Only accept flags we have defined so far */ 3375 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3376 ret = -EINVAL; 3377 goto out_loi; 3378 } 3379 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3380 size = min_t(u32, loi->size, SZ_16M); 3381 } 3382 3383 inodes = init_data_container(size); 3384 if (IS_ERR(inodes)) { 3385 ret = PTR_ERR(inodes); 3386 goto out_loi; 3387 } 3388 3389 path = btrfs_alloc_path(); 3390 if (!path) { 3391 ret = -ENOMEM; 3392 goto out; 3393 } 3394 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3395 inodes, ignore_offset); 3396 btrfs_free_path(path); 3397 if (ret == -EINVAL) 3398 ret = -ENOENT; 3399 if (ret < 0) 3400 goto out; 3401 3402 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3403 size); 3404 if (ret) 3405 ret = -EFAULT; 3406 3407 out: 3408 kvfree(inodes); 3409 out_loi: 3410 kfree(loi); 3411 3412 return ret; 3413 } 3414 3415 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3416 struct btrfs_ioctl_balance_args *bargs) 3417 { 3418 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3419 3420 bargs->flags = bctl->flags; 3421 3422 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3423 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3424 if (atomic_read(&fs_info->balance_pause_req)) 3425 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3426 if (atomic_read(&fs_info->balance_cancel_req)) 3427 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3428 3429 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3430 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3431 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3432 3433 spin_lock(&fs_info->balance_lock); 3434 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3435 spin_unlock(&fs_info->balance_lock); 3436 } 3437 3438 /* 3439 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 3440 * required. 3441 * 3442 * @fs_info: the filesystem 3443 * @excl_acquired: ptr to boolean value which is set to false in case balance 3444 * is being resumed 3445 * 3446 * Return 0 on success in which case both fs_info::balance is acquired as well 3447 * as exclusive ops are blocked. In case of failure return an error code. 3448 */ 3449 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 3450 { 3451 int ret; 3452 3453 /* 3454 * Exclusive operation is locked. Three possibilities: 3455 * (1) some other op is running 3456 * (2) balance is running 3457 * (3) balance is paused -- special case (think resume) 3458 */ 3459 while (1) { 3460 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3461 *excl_acquired = true; 3462 mutex_lock(&fs_info->balance_mutex); 3463 return 0; 3464 } 3465 3466 mutex_lock(&fs_info->balance_mutex); 3467 if (fs_info->balance_ctl) { 3468 /* This is either (2) or (3) */ 3469 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3470 /* This is (2) */ 3471 ret = -EINPROGRESS; 3472 goto out_failure; 3473 3474 } else { 3475 mutex_unlock(&fs_info->balance_mutex); 3476 /* 3477 * Lock released to allow other waiters to 3478 * continue, we'll reexamine the status again. 3479 */ 3480 mutex_lock(&fs_info->balance_mutex); 3481 3482 if (fs_info->balance_ctl && 3483 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3484 /* This is (3) */ 3485 *excl_acquired = false; 3486 return 0; 3487 } 3488 } 3489 } else { 3490 /* This is (1) */ 3491 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3492 goto out_failure; 3493 } 3494 3495 mutex_unlock(&fs_info->balance_mutex); 3496 } 3497 3498 out_failure: 3499 mutex_unlock(&fs_info->balance_mutex); 3500 *excl_acquired = false; 3501 return ret; 3502 } 3503 3504 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3505 { 3506 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3507 struct btrfs_fs_info *fs_info = root->fs_info; 3508 struct btrfs_ioctl_balance_args *bargs; 3509 struct btrfs_balance_control *bctl; 3510 bool need_unlock = true; 3511 int ret; 3512 3513 if (!capable(CAP_SYS_ADMIN)) 3514 return -EPERM; 3515 3516 ret = mnt_want_write_file(file); 3517 if (ret) 3518 return ret; 3519 3520 bargs = memdup_user(arg, sizeof(*bargs)); 3521 if (IS_ERR(bargs)) { 3522 ret = PTR_ERR(bargs); 3523 bargs = NULL; 3524 goto out; 3525 } 3526 3527 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 3528 if (ret) 3529 goto out; 3530 3531 lockdep_assert_held(&fs_info->balance_mutex); 3532 3533 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3534 if (!fs_info->balance_ctl) { 3535 ret = -ENOTCONN; 3536 goto out_unlock; 3537 } 3538 3539 bctl = fs_info->balance_ctl; 3540 spin_lock(&fs_info->balance_lock); 3541 bctl->flags |= BTRFS_BALANCE_RESUME; 3542 spin_unlock(&fs_info->balance_lock); 3543 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 3544 3545 goto do_balance; 3546 } 3547 3548 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3549 ret = -EINVAL; 3550 goto out_unlock; 3551 } 3552 3553 if (fs_info->balance_ctl) { 3554 ret = -EINPROGRESS; 3555 goto out_unlock; 3556 } 3557 3558 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3559 if (!bctl) { 3560 ret = -ENOMEM; 3561 goto out_unlock; 3562 } 3563 3564 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3565 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3566 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3567 3568 bctl->flags = bargs->flags; 3569 do_balance: 3570 /* 3571 * Ownership of bctl and exclusive operation goes to btrfs_balance. 3572 * bctl is freed in reset_balance_state, or, if restriper was paused 3573 * all the way until unmount, in free_fs_info. The flag should be 3574 * cleared after reset_balance_state. 3575 */ 3576 need_unlock = false; 3577 3578 ret = btrfs_balance(fs_info, bctl, bargs); 3579 bctl = NULL; 3580 3581 if (ret == 0 || ret == -ECANCELED) { 3582 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3583 ret = -EFAULT; 3584 } 3585 3586 kfree(bctl); 3587 out_unlock: 3588 mutex_unlock(&fs_info->balance_mutex); 3589 if (need_unlock) 3590 btrfs_exclop_finish(fs_info); 3591 out: 3592 mnt_drop_write_file(file); 3593 kfree(bargs); 3594 return ret; 3595 } 3596 3597 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 3598 { 3599 if (!capable(CAP_SYS_ADMIN)) 3600 return -EPERM; 3601 3602 switch (cmd) { 3603 case BTRFS_BALANCE_CTL_PAUSE: 3604 return btrfs_pause_balance(fs_info); 3605 case BTRFS_BALANCE_CTL_CANCEL: 3606 return btrfs_cancel_balance(fs_info); 3607 } 3608 3609 return -EINVAL; 3610 } 3611 3612 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 3613 void __user *arg) 3614 { 3615 struct btrfs_ioctl_balance_args *bargs; 3616 int ret = 0; 3617 3618 if (!capable(CAP_SYS_ADMIN)) 3619 return -EPERM; 3620 3621 mutex_lock(&fs_info->balance_mutex); 3622 if (!fs_info->balance_ctl) { 3623 ret = -ENOTCONN; 3624 goto out; 3625 } 3626 3627 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 3628 if (!bargs) { 3629 ret = -ENOMEM; 3630 goto out; 3631 } 3632 3633 btrfs_update_ioctl_balance_args(fs_info, bargs); 3634 3635 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3636 ret = -EFAULT; 3637 3638 kfree(bargs); 3639 out: 3640 mutex_unlock(&fs_info->balance_mutex); 3641 return ret; 3642 } 3643 3644 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3645 { 3646 struct inode *inode = file_inode(file); 3647 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3648 struct btrfs_ioctl_quota_ctl_args *sa; 3649 int ret; 3650 3651 if (!capable(CAP_SYS_ADMIN)) 3652 return -EPERM; 3653 3654 ret = mnt_want_write_file(file); 3655 if (ret) 3656 return ret; 3657 3658 sa = memdup_user(arg, sizeof(*sa)); 3659 if (IS_ERR(sa)) { 3660 ret = PTR_ERR(sa); 3661 goto drop_write; 3662 } 3663 3664 switch (sa->cmd) { 3665 case BTRFS_QUOTA_CTL_ENABLE: 3666 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA: 3667 down_write(&fs_info->subvol_sem); 3668 ret = btrfs_quota_enable(fs_info, sa); 3669 up_write(&fs_info->subvol_sem); 3670 break; 3671 case BTRFS_QUOTA_CTL_DISABLE: 3672 /* 3673 * Lock the cleaner mutex to prevent races with concurrent 3674 * relocation, because relocation may be building backrefs for 3675 * blocks of the quota root while we are deleting the root. This 3676 * is like dropping fs roots of deleted snapshots/subvolumes, we 3677 * need the same protection. 3678 * 3679 * This also prevents races between concurrent tasks trying to 3680 * disable quotas, because we will unlock and relock 3681 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes. 3682 * 3683 * We take this here because we have the dependency of 3684 * 3685 * inode_lock -> subvol_sem 3686 * 3687 * because of rename. With relocation we can prealloc extents, 3688 * so that makes the dependency chain 3689 * 3690 * cleaner_mutex -> inode_lock -> subvol_sem 3691 * 3692 * so we must take the cleaner_mutex here before we take the 3693 * subvol_sem. The deadlock can't actually happen, but this 3694 * quiets lockdep. 3695 */ 3696 mutex_lock(&fs_info->cleaner_mutex); 3697 down_write(&fs_info->subvol_sem); 3698 ret = btrfs_quota_disable(fs_info); 3699 up_write(&fs_info->subvol_sem); 3700 mutex_unlock(&fs_info->cleaner_mutex); 3701 break; 3702 default: 3703 ret = -EINVAL; 3704 break; 3705 } 3706 3707 kfree(sa); 3708 drop_write: 3709 mnt_drop_write_file(file); 3710 return ret; 3711 } 3712 3713 /* 3714 * Quick check for ioctl handlers if quotas are enabled. Proper locking must be 3715 * done before any operations. 3716 */ 3717 static bool qgroup_enabled(struct btrfs_fs_info *fs_info) 3718 { 3719 bool ret = true; 3720 3721 mutex_lock(&fs_info->qgroup_ioctl_lock); 3722 if (!fs_info->quota_root) 3723 ret = false; 3724 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3725 3726 return ret; 3727 } 3728 3729 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3730 { 3731 struct inode *inode = file_inode(file); 3732 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3733 struct btrfs_root *root = BTRFS_I(inode)->root; 3734 struct btrfs_ioctl_qgroup_assign_args *sa; 3735 struct btrfs_qgroup_list *prealloc = NULL; 3736 struct btrfs_trans_handle *trans; 3737 int ret; 3738 int err; 3739 3740 if (!capable(CAP_SYS_ADMIN)) 3741 return -EPERM; 3742 3743 if (!qgroup_enabled(root->fs_info)) 3744 return -ENOTCONN; 3745 3746 ret = mnt_want_write_file(file); 3747 if (ret) 3748 return ret; 3749 3750 sa = memdup_user(arg, sizeof(*sa)); 3751 if (IS_ERR(sa)) { 3752 ret = PTR_ERR(sa); 3753 goto drop_write; 3754 } 3755 3756 if (sa->assign) { 3757 prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL); 3758 if (!prealloc) { 3759 ret = -ENOMEM; 3760 goto drop_write; 3761 } 3762 } 3763 3764 trans = btrfs_join_transaction(root); 3765 if (IS_ERR(trans)) { 3766 ret = PTR_ERR(trans); 3767 goto out; 3768 } 3769 3770 /* 3771 * Prealloc ownership is moved to the relation handler, there it's used 3772 * or freed on error. 3773 */ 3774 if (sa->assign) { 3775 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc); 3776 prealloc = NULL; 3777 } else { 3778 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 3779 } 3780 3781 /* update qgroup status and info */ 3782 mutex_lock(&fs_info->qgroup_ioctl_lock); 3783 err = btrfs_run_qgroups(trans); 3784 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3785 if (err < 0) 3786 btrfs_warn(fs_info, 3787 "qgroup status update failed after %s relation, marked as inconsistent", 3788 sa->assign ? "adding" : "deleting"); 3789 err = btrfs_end_transaction(trans); 3790 if (err && !ret) 3791 ret = err; 3792 3793 out: 3794 kfree(prealloc); 3795 kfree(sa); 3796 drop_write: 3797 mnt_drop_write_file(file); 3798 return ret; 3799 } 3800 3801 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3802 { 3803 struct inode *inode = file_inode(file); 3804 struct btrfs_root *root = BTRFS_I(inode)->root; 3805 struct btrfs_ioctl_qgroup_create_args *sa; 3806 struct btrfs_trans_handle *trans; 3807 int ret; 3808 int err; 3809 3810 if (!capable(CAP_SYS_ADMIN)) 3811 return -EPERM; 3812 3813 if (!qgroup_enabled(root->fs_info)) 3814 return -ENOTCONN; 3815 3816 ret = mnt_want_write_file(file); 3817 if (ret) 3818 return ret; 3819 3820 sa = memdup_user(arg, sizeof(*sa)); 3821 if (IS_ERR(sa)) { 3822 ret = PTR_ERR(sa); 3823 goto drop_write; 3824 } 3825 3826 if (!sa->qgroupid) { 3827 ret = -EINVAL; 3828 goto out; 3829 } 3830 3831 if (sa->create && is_fstree(sa->qgroupid)) { 3832 ret = -EINVAL; 3833 goto out; 3834 } 3835 3836 trans = btrfs_join_transaction(root); 3837 if (IS_ERR(trans)) { 3838 ret = PTR_ERR(trans); 3839 goto out; 3840 } 3841 3842 if (sa->create) { 3843 ret = btrfs_create_qgroup(trans, sa->qgroupid); 3844 } else { 3845 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 3846 } 3847 3848 err = btrfs_end_transaction(trans); 3849 if (err && !ret) 3850 ret = err; 3851 3852 out: 3853 kfree(sa); 3854 drop_write: 3855 mnt_drop_write_file(file); 3856 return ret; 3857 } 3858 3859 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3860 { 3861 struct inode *inode = file_inode(file); 3862 struct btrfs_root *root = BTRFS_I(inode)->root; 3863 struct btrfs_ioctl_qgroup_limit_args *sa; 3864 struct btrfs_trans_handle *trans; 3865 int ret; 3866 int err; 3867 u64 qgroupid; 3868 3869 if (!capable(CAP_SYS_ADMIN)) 3870 return -EPERM; 3871 3872 if (!qgroup_enabled(root->fs_info)) 3873 return -ENOTCONN; 3874 3875 ret = mnt_want_write_file(file); 3876 if (ret) 3877 return ret; 3878 3879 sa = memdup_user(arg, sizeof(*sa)); 3880 if (IS_ERR(sa)) { 3881 ret = PTR_ERR(sa); 3882 goto drop_write; 3883 } 3884 3885 trans = btrfs_join_transaction(root); 3886 if (IS_ERR(trans)) { 3887 ret = PTR_ERR(trans); 3888 goto out; 3889 } 3890 3891 qgroupid = sa->qgroupid; 3892 if (!qgroupid) { 3893 /* take the current subvol as qgroup */ 3894 qgroupid = btrfs_root_id(root); 3895 } 3896 3897 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 3898 3899 err = btrfs_end_transaction(trans); 3900 if (err && !ret) 3901 ret = err; 3902 3903 out: 3904 kfree(sa); 3905 drop_write: 3906 mnt_drop_write_file(file); 3907 return ret; 3908 } 3909 3910 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 3911 { 3912 struct inode *inode = file_inode(file); 3913 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3914 struct btrfs_ioctl_quota_rescan_args *qsa; 3915 int ret; 3916 3917 if (!capable(CAP_SYS_ADMIN)) 3918 return -EPERM; 3919 3920 if (!qgroup_enabled(fs_info)) 3921 return -ENOTCONN; 3922 3923 ret = mnt_want_write_file(file); 3924 if (ret) 3925 return ret; 3926 3927 qsa = memdup_user(arg, sizeof(*qsa)); 3928 if (IS_ERR(qsa)) { 3929 ret = PTR_ERR(qsa); 3930 goto drop_write; 3931 } 3932 3933 if (qsa->flags) { 3934 ret = -EINVAL; 3935 goto out; 3936 } 3937 3938 ret = btrfs_qgroup_rescan(fs_info); 3939 3940 out: 3941 kfree(qsa); 3942 drop_write: 3943 mnt_drop_write_file(file); 3944 return ret; 3945 } 3946 3947 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 3948 void __user *arg) 3949 { 3950 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 3951 3952 if (!capable(CAP_SYS_ADMIN)) 3953 return -EPERM; 3954 3955 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 3956 qsa.flags = 1; 3957 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 3958 } 3959 3960 if (copy_to_user(arg, &qsa, sizeof(qsa))) 3961 return -EFAULT; 3962 3963 return 0; 3964 } 3965 3966 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info) 3967 { 3968 if (!capable(CAP_SYS_ADMIN)) 3969 return -EPERM; 3970 3971 return btrfs_qgroup_wait_for_completion(fs_info, true); 3972 } 3973 3974 static long _btrfs_ioctl_set_received_subvol(struct file *file, 3975 struct mnt_idmap *idmap, 3976 struct btrfs_ioctl_received_subvol_args *sa) 3977 { 3978 struct inode *inode = file_inode(file); 3979 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3980 struct btrfs_root *root = BTRFS_I(inode)->root; 3981 struct btrfs_root_item *root_item = &root->root_item; 3982 struct btrfs_trans_handle *trans; 3983 struct timespec64 ct = current_time(inode); 3984 int ret = 0; 3985 int received_uuid_changed; 3986 3987 if (!inode_owner_or_capable(idmap, inode)) 3988 return -EPERM; 3989 3990 ret = mnt_want_write_file(file); 3991 if (ret < 0) 3992 return ret; 3993 3994 down_write(&fs_info->subvol_sem); 3995 3996 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3997 ret = -EINVAL; 3998 goto out; 3999 } 4000 4001 if (btrfs_root_readonly(root)) { 4002 ret = -EROFS; 4003 goto out; 4004 } 4005 4006 /* 4007 * 1 - root item 4008 * 2 - uuid items (received uuid + subvol uuid) 4009 */ 4010 trans = btrfs_start_transaction(root, 3); 4011 if (IS_ERR(trans)) { 4012 ret = PTR_ERR(trans); 4013 trans = NULL; 4014 goto out; 4015 } 4016 4017 sa->rtransid = trans->transid; 4018 sa->rtime.sec = ct.tv_sec; 4019 sa->rtime.nsec = ct.tv_nsec; 4020 4021 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4022 BTRFS_UUID_SIZE); 4023 if (received_uuid_changed && 4024 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4025 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4026 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4027 btrfs_root_id(root)); 4028 if (ret && ret != -ENOENT) { 4029 btrfs_abort_transaction(trans, ret); 4030 btrfs_end_transaction(trans); 4031 goto out; 4032 } 4033 } 4034 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4035 btrfs_set_root_stransid(root_item, sa->stransid); 4036 btrfs_set_root_rtransid(root_item, sa->rtransid); 4037 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4038 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4039 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4040 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4041 4042 ret = btrfs_update_root(trans, fs_info->tree_root, 4043 &root->root_key, &root->root_item); 4044 if (ret < 0) { 4045 btrfs_end_transaction(trans); 4046 goto out; 4047 } 4048 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4049 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4050 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4051 btrfs_root_id(root)); 4052 if (ret < 0 && ret != -EEXIST) { 4053 btrfs_abort_transaction(trans, ret); 4054 btrfs_end_transaction(trans); 4055 goto out; 4056 } 4057 } 4058 ret = btrfs_commit_transaction(trans); 4059 out: 4060 up_write(&fs_info->subvol_sem); 4061 mnt_drop_write_file(file); 4062 return ret; 4063 } 4064 4065 #ifdef CONFIG_64BIT 4066 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4067 void __user *arg) 4068 { 4069 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4070 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4071 int ret = 0; 4072 4073 args32 = memdup_user(arg, sizeof(*args32)); 4074 if (IS_ERR(args32)) 4075 return PTR_ERR(args32); 4076 4077 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4078 if (!args64) { 4079 ret = -ENOMEM; 4080 goto out; 4081 } 4082 4083 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4084 args64->stransid = args32->stransid; 4085 args64->rtransid = args32->rtransid; 4086 args64->stime.sec = args32->stime.sec; 4087 args64->stime.nsec = args32->stime.nsec; 4088 args64->rtime.sec = args32->rtime.sec; 4089 args64->rtime.nsec = args32->rtime.nsec; 4090 args64->flags = args32->flags; 4091 4092 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64); 4093 if (ret) 4094 goto out; 4095 4096 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4097 args32->stransid = args64->stransid; 4098 args32->rtransid = args64->rtransid; 4099 args32->stime.sec = args64->stime.sec; 4100 args32->stime.nsec = args64->stime.nsec; 4101 args32->rtime.sec = args64->rtime.sec; 4102 args32->rtime.nsec = args64->rtime.nsec; 4103 args32->flags = args64->flags; 4104 4105 ret = copy_to_user(arg, args32, sizeof(*args32)); 4106 if (ret) 4107 ret = -EFAULT; 4108 4109 out: 4110 kfree(args32); 4111 kfree(args64); 4112 return ret; 4113 } 4114 #endif 4115 4116 static long btrfs_ioctl_set_received_subvol(struct file *file, 4117 void __user *arg) 4118 { 4119 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4120 int ret = 0; 4121 4122 sa = memdup_user(arg, sizeof(*sa)); 4123 if (IS_ERR(sa)) 4124 return PTR_ERR(sa); 4125 4126 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa); 4127 4128 if (ret) 4129 goto out; 4130 4131 ret = copy_to_user(arg, sa, sizeof(*sa)); 4132 if (ret) 4133 ret = -EFAULT; 4134 4135 out: 4136 kfree(sa); 4137 return ret; 4138 } 4139 4140 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4141 void __user *arg) 4142 { 4143 size_t len; 4144 int ret; 4145 char label[BTRFS_LABEL_SIZE]; 4146 4147 spin_lock(&fs_info->super_lock); 4148 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4149 spin_unlock(&fs_info->super_lock); 4150 4151 len = strnlen(label, BTRFS_LABEL_SIZE); 4152 4153 if (len == BTRFS_LABEL_SIZE) { 4154 btrfs_warn(fs_info, 4155 "label is too long, return the first %zu bytes", 4156 --len); 4157 } 4158 4159 ret = copy_to_user(arg, label, len); 4160 4161 return ret ? -EFAULT : 0; 4162 } 4163 4164 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4165 { 4166 struct inode *inode = file_inode(file); 4167 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4168 struct btrfs_root *root = BTRFS_I(inode)->root; 4169 struct btrfs_super_block *super_block = fs_info->super_copy; 4170 struct btrfs_trans_handle *trans; 4171 char label[BTRFS_LABEL_SIZE]; 4172 int ret; 4173 4174 if (!capable(CAP_SYS_ADMIN)) 4175 return -EPERM; 4176 4177 if (copy_from_user(label, arg, sizeof(label))) 4178 return -EFAULT; 4179 4180 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4181 btrfs_err(fs_info, 4182 "unable to set label with more than %d bytes", 4183 BTRFS_LABEL_SIZE - 1); 4184 return -EINVAL; 4185 } 4186 4187 ret = mnt_want_write_file(file); 4188 if (ret) 4189 return ret; 4190 4191 trans = btrfs_start_transaction(root, 0); 4192 if (IS_ERR(trans)) { 4193 ret = PTR_ERR(trans); 4194 goto out_unlock; 4195 } 4196 4197 spin_lock(&fs_info->super_lock); 4198 strcpy(super_block->label, label); 4199 spin_unlock(&fs_info->super_lock); 4200 ret = btrfs_commit_transaction(trans); 4201 4202 out_unlock: 4203 mnt_drop_write_file(file); 4204 return ret; 4205 } 4206 4207 #define INIT_FEATURE_FLAGS(suffix) \ 4208 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4209 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4210 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4211 4212 int btrfs_ioctl_get_supported_features(void __user *arg) 4213 { 4214 static const struct btrfs_ioctl_feature_flags features[3] = { 4215 INIT_FEATURE_FLAGS(SUPP), 4216 INIT_FEATURE_FLAGS(SAFE_SET), 4217 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4218 }; 4219 4220 if (copy_to_user(arg, &features, sizeof(features))) 4221 return -EFAULT; 4222 4223 return 0; 4224 } 4225 4226 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4227 void __user *arg) 4228 { 4229 struct btrfs_super_block *super_block = fs_info->super_copy; 4230 struct btrfs_ioctl_feature_flags features; 4231 4232 features.compat_flags = btrfs_super_compat_flags(super_block); 4233 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4234 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4235 4236 if (copy_to_user(arg, &features, sizeof(features))) 4237 return -EFAULT; 4238 4239 return 0; 4240 } 4241 4242 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4243 enum btrfs_feature_set set, 4244 u64 change_mask, u64 flags, u64 supported_flags, 4245 u64 safe_set, u64 safe_clear) 4246 { 4247 const char *type = btrfs_feature_set_name(set); 4248 char *names; 4249 u64 disallowed, unsupported; 4250 u64 set_mask = flags & change_mask; 4251 u64 clear_mask = ~flags & change_mask; 4252 4253 unsupported = set_mask & ~supported_flags; 4254 if (unsupported) { 4255 names = btrfs_printable_features(set, unsupported); 4256 if (names) { 4257 btrfs_warn(fs_info, 4258 "this kernel does not support the %s feature bit%s", 4259 names, strchr(names, ',') ? "s" : ""); 4260 kfree(names); 4261 } else 4262 btrfs_warn(fs_info, 4263 "this kernel does not support %s bits 0x%llx", 4264 type, unsupported); 4265 return -EOPNOTSUPP; 4266 } 4267 4268 disallowed = set_mask & ~safe_set; 4269 if (disallowed) { 4270 names = btrfs_printable_features(set, disallowed); 4271 if (names) { 4272 btrfs_warn(fs_info, 4273 "can't set the %s feature bit%s while mounted", 4274 names, strchr(names, ',') ? "s" : ""); 4275 kfree(names); 4276 } else 4277 btrfs_warn(fs_info, 4278 "can't set %s bits 0x%llx while mounted", 4279 type, disallowed); 4280 return -EPERM; 4281 } 4282 4283 disallowed = clear_mask & ~safe_clear; 4284 if (disallowed) { 4285 names = btrfs_printable_features(set, disallowed); 4286 if (names) { 4287 btrfs_warn(fs_info, 4288 "can't clear the %s feature bit%s while mounted", 4289 names, strchr(names, ',') ? "s" : ""); 4290 kfree(names); 4291 } else 4292 btrfs_warn(fs_info, 4293 "can't clear %s bits 0x%llx while mounted", 4294 type, disallowed); 4295 return -EPERM; 4296 } 4297 4298 return 0; 4299 } 4300 4301 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4302 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4303 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4304 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4305 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4306 4307 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4308 { 4309 struct inode *inode = file_inode(file); 4310 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4311 struct btrfs_root *root = BTRFS_I(inode)->root; 4312 struct btrfs_super_block *super_block = fs_info->super_copy; 4313 struct btrfs_ioctl_feature_flags flags[2]; 4314 struct btrfs_trans_handle *trans; 4315 u64 newflags; 4316 int ret; 4317 4318 if (!capable(CAP_SYS_ADMIN)) 4319 return -EPERM; 4320 4321 if (copy_from_user(flags, arg, sizeof(flags))) 4322 return -EFAULT; 4323 4324 /* Nothing to do */ 4325 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4326 !flags[0].incompat_flags) 4327 return 0; 4328 4329 ret = check_feature(fs_info, flags[0].compat_flags, 4330 flags[1].compat_flags, COMPAT); 4331 if (ret) 4332 return ret; 4333 4334 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4335 flags[1].compat_ro_flags, COMPAT_RO); 4336 if (ret) 4337 return ret; 4338 4339 ret = check_feature(fs_info, flags[0].incompat_flags, 4340 flags[1].incompat_flags, INCOMPAT); 4341 if (ret) 4342 return ret; 4343 4344 ret = mnt_want_write_file(file); 4345 if (ret) 4346 return ret; 4347 4348 trans = btrfs_start_transaction(root, 0); 4349 if (IS_ERR(trans)) { 4350 ret = PTR_ERR(trans); 4351 goto out_drop_write; 4352 } 4353 4354 spin_lock(&fs_info->super_lock); 4355 newflags = btrfs_super_compat_flags(super_block); 4356 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4357 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4358 btrfs_set_super_compat_flags(super_block, newflags); 4359 4360 newflags = btrfs_super_compat_ro_flags(super_block); 4361 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4362 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4363 btrfs_set_super_compat_ro_flags(super_block, newflags); 4364 4365 newflags = btrfs_super_incompat_flags(super_block); 4366 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4367 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4368 btrfs_set_super_incompat_flags(super_block, newflags); 4369 spin_unlock(&fs_info->super_lock); 4370 4371 ret = btrfs_commit_transaction(trans); 4372 out_drop_write: 4373 mnt_drop_write_file(file); 4374 4375 return ret; 4376 } 4377 4378 static int _btrfs_ioctl_send(struct btrfs_inode *inode, void __user *argp, bool compat) 4379 { 4380 struct btrfs_ioctl_send_args *arg; 4381 int ret; 4382 4383 if (compat) { 4384 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4385 struct btrfs_ioctl_send_args_32 args32 = { 0 }; 4386 4387 ret = copy_from_user(&args32, argp, sizeof(args32)); 4388 if (ret) 4389 return -EFAULT; 4390 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4391 if (!arg) 4392 return -ENOMEM; 4393 arg->send_fd = args32.send_fd; 4394 arg->clone_sources_count = args32.clone_sources_count; 4395 arg->clone_sources = compat_ptr(args32.clone_sources); 4396 arg->parent_root = args32.parent_root; 4397 arg->flags = args32.flags; 4398 arg->version = args32.version; 4399 memcpy(arg->reserved, args32.reserved, 4400 sizeof(args32.reserved)); 4401 #else 4402 return -ENOTTY; 4403 #endif 4404 } else { 4405 arg = memdup_user(argp, sizeof(*arg)); 4406 if (IS_ERR(arg)) 4407 return PTR_ERR(arg); 4408 } 4409 ret = btrfs_ioctl_send(inode, arg); 4410 kfree(arg); 4411 return ret; 4412 } 4413 4414 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 4415 bool compat) 4416 { 4417 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4418 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 4419 flags); 4420 size_t copy_end; 4421 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 4422 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4423 struct extent_io_tree *io_tree = &inode->io_tree; 4424 struct iovec iovstack[UIO_FASTIOV]; 4425 struct iovec *iov = iovstack; 4426 struct iov_iter iter; 4427 loff_t pos; 4428 struct kiocb kiocb; 4429 ssize_t ret; 4430 u64 disk_bytenr, disk_io_size; 4431 struct extent_state *cached_state = NULL; 4432 4433 if (!capable(CAP_SYS_ADMIN)) { 4434 ret = -EPERM; 4435 goto out_acct; 4436 } 4437 4438 if (compat) { 4439 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4440 struct btrfs_ioctl_encoded_io_args_32 args32; 4441 4442 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 4443 flags); 4444 if (copy_from_user(&args32, argp, copy_end)) { 4445 ret = -EFAULT; 4446 goto out_acct; 4447 } 4448 args.iov = compat_ptr(args32.iov); 4449 args.iovcnt = args32.iovcnt; 4450 args.offset = args32.offset; 4451 args.flags = args32.flags; 4452 #else 4453 return -ENOTTY; 4454 #endif 4455 } else { 4456 copy_end = copy_end_kernel; 4457 if (copy_from_user(&args, argp, copy_end)) { 4458 ret = -EFAULT; 4459 goto out_acct; 4460 } 4461 } 4462 if (args.flags != 0) { 4463 ret = -EINVAL; 4464 goto out_acct; 4465 } 4466 4467 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4468 &iov, &iter); 4469 if (ret < 0) 4470 goto out_acct; 4471 4472 if (iov_iter_count(&iter) == 0) { 4473 ret = 0; 4474 goto out_iov; 4475 } 4476 pos = args.offset; 4477 ret = rw_verify_area(READ, file, &pos, args.len); 4478 if (ret < 0) 4479 goto out_iov; 4480 4481 init_sync_kiocb(&kiocb, file); 4482 kiocb.ki_pos = pos; 4483 4484 ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state, 4485 &disk_bytenr, &disk_io_size); 4486 4487 if (ret == -EIOCBQUEUED) { 4488 bool unlocked = false; 4489 u64 start, lockend, count; 4490 4491 start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize); 4492 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 4493 4494 if (args.compression) 4495 count = disk_io_size; 4496 else 4497 count = args.len; 4498 4499 ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend, 4500 &cached_state, disk_bytenr, 4501 disk_io_size, count, 4502 args.compression, &unlocked); 4503 4504 if (!unlocked) { 4505 unlock_extent(io_tree, start, lockend, &cached_state); 4506 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4507 } 4508 } 4509 4510 if (ret >= 0) { 4511 fsnotify_access(file); 4512 if (copy_to_user(argp + copy_end, 4513 (char *)&args + copy_end_kernel, 4514 sizeof(args) - copy_end_kernel)) 4515 ret = -EFAULT; 4516 } 4517 4518 out_iov: 4519 kfree(iov); 4520 out_acct: 4521 if (ret > 0) 4522 add_rchar(current, ret); 4523 inc_syscr(current); 4524 return ret; 4525 } 4526 4527 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 4528 { 4529 struct btrfs_ioctl_encoded_io_args args; 4530 struct iovec iovstack[UIO_FASTIOV]; 4531 struct iovec *iov = iovstack; 4532 struct iov_iter iter; 4533 loff_t pos; 4534 struct kiocb kiocb; 4535 ssize_t ret; 4536 4537 if (!capable(CAP_SYS_ADMIN)) { 4538 ret = -EPERM; 4539 goto out_acct; 4540 } 4541 4542 if (!(file->f_mode & FMODE_WRITE)) { 4543 ret = -EBADF; 4544 goto out_acct; 4545 } 4546 4547 if (compat) { 4548 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4549 struct btrfs_ioctl_encoded_io_args_32 args32; 4550 4551 if (copy_from_user(&args32, argp, sizeof(args32))) { 4552 ret = -EFAULT; 4553 goto out_acct; 4554 } 4555 args.iov = compat_ptr(args32.iov); 4556 args.iovcnt = args32.iovcnt; 4557 args.offset = args32.offset; 4558 args.flags = args32.flags; 4559 args.len = args32.len; 4560 args.unencoded_len = args32.unencoded_len; 4561 args.unencoded_offset = args32.unencoded_offset; 4562 args.compression = args32.compression; 4563 args.encryption = args32.encryption; 4564 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 4565 #else 4566 return -ENOTTY; 4567 #endif 4568 } else { 4569 if (copy_from_user(&args, argp, sizeof(args))) { 4570 ret = -EFAULT; 4571 goto out_acct; 4572 } 4573 } 4574 4575 ret = -EINVAL; 4576 if (args.flags != 0) 4577 goto out_acct; 4578 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 4579 goto out_acct; 4580 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4581 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4582 goto out_acct; 4583 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4584 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4585 goto out_acct; 4586 if (args.unencoded_offset > args.unencoded_len) 4587 goto out_acct; 4588 if (args.len > args.unencoded_len - args.unencoded_offset) 4589 goto out_acct; 4590 4591 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4592 &iov, &iter); 4593 if (ret < 0) 4594 goto out_acct; 4595 4596 if (iov_iter_count(&iter) == 0) { 4597 ret = 0; 4598 goto out_iov; 4599 } 4600 pos = args.offset; 4601 ret = rw_verify_area(WRITE, file, &pos, args.len); 4602 if (ret < 0) 4603 goto out_iov; 4604 4605 init_sync_kiocb(&kiocb, file); 4606 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE); 4607 if (ret) 4608 goto out_iov; 4609 kiocb.ki_pos = pos; 4610 4611 file_start_write(file); 4612 4613 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 4614 if (ret > 0) 4615 fsnotify_modify(file); 4616 4617 file_end_write(file); 4618 out_iov: 4619 kfree(iov); 4620 out_acct: 4621 if (ret > 0) 4622 add_wchar(current, ret); 4623 inc_syscw(current); 4624 return ret; 4625 } 4626 4627 /* 4628 * Context that's attached to an encoded read io_uring command, in cmd->pdu. It 4629 * contains the fields in btrfs_uring_read_extent that are necessary to finish 4630 * off and cleanup the I/O in btrfs_uring_read_finished. 4631 */ 4632 struct btrfs_uring_priv { 4633 struct io_uring_cmd *cmd; 4634 struct page **pages; 4635 unsigned long nr_pages; 4636 struct kiocb iocb; 4637 struct iovec *iov; 4638 struct iov_iter iter; 4639 struct extent_state *cached_state; 4640 u64 count; 4641 u64 start; 4642 u64 lockend; 4643 int err; 4644 bool compressed; 4645 }; 4646 4647 struct io_btrfs_cmd { 4648 struct btrfs_uring_priv *priv; 4649 }; 4650 4651 static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags) 4652 { 4653 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd); 4654 struct btrfs_uring_priv *priv = bc->priv; 4655 struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp)); 4656 struct extent_io_tree *io_tree = &inode->io_tree; 4657 unsigned long index; 4658 u64 cur; 4659 size_t page_offset; 4660 ssize_t ret; 4661 4662 /* The inode lock has already been acquired in btrfs_uring_read_extent. */ 4663 btrfs_lockdep_inode_acquire(inode, i_rwsem); 4664 4665 if (priv->err) { 4666 ret = priv->err; 4667 goto out; 4668 } 4669 4670 if (priv->compressed) { 4671 index = 0; 4672 page_offset = 0; 4673 } else { 4674 index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT; 4675 page_offset = offset_in_page(priv->iocb.ki_pos - priv->start); 4676 } 4677 cur = 0; 4678 while (cur < priv->count) { 4679 size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset); 4680 4681 if (copy_page_to_iter(priv->pages[index], page_offset, bytes, 4682 &priv->iter) != bytes) { 4683 ret = -EFAULT; 4684 goto out; 4685 } 4686 4687 index++; 4688 cur += bytes; 4689 page_offset = 0; 4690 } 4691 ret = priv->count; 4692 4693 out: 4694 unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state); 4695 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4696 4697 io_uring_cmd_done(cmd, ret, 0, issue_flags); 4698 add_rchar(current, ret); 4699 4700 for (index = 0; index < priv->nr_pages; index++) 4701 __free_page(priv->pages[index]); 4702 4703 kfree(priv->pages); 4704 kfree(priv->iov); 4705 kfree(priv); 4706 } 4707 4708 void btrfs_uring_read_extent_endio(void *ctx, int err) 4709 { 4710 struct btrfs_uring_priv *priv = ctx; 4711 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd); 4712 4713 priv->err = err; 4714 bc->priv = priv; 4715 4716 io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished); 4717 } 4718 4719 static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter, 4720 u64 start, u64 lockend, 4721 struct extent_state *cached_state, 4722 u64 disk_bytenr, u64 disk_io_size, 4723 size_t count, bool compressed, 4724 struct iovec *iov, struct io_uring_cmd *cmd) 4725 { 4726 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 4727 struct extent_io_tree *io_tree = &inode->io_tree; 4728 struct page **pages; 4729 struct btrfs_uring_priv *priv = NULL; 4730 unsigned long nr_pages; 4731 int ret; 4732 4733 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 4734 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 4735 if (!pages) 4736 return -ENOMEM; 4737 ret = btrfs_alloc_page_array(nr_pages, pages, 0); 4738 if (ret) { 4739 ret = -ENOMEM; 4740 goto out_fail; 4741 } 4742 4743 priv = kmalloc(sizeof(*priv), GFP_NOFS); 4744 if (!priv) { 4745 ret = -ENOMEM; 4746 goto out_fail; 4747 } 4748 4749 priv->iocb = *iocb; 4750 priv->iov = iov; 4751 priv->iter = *iter; 4752 priv->count = count; 4753 priv->cmd = cmd; 4754 priv->cached_state = cached_state; 4755 priv->compressed = compressed; 4756 priv->nr_pages = nr_pages; 4757 priv->pages = pages; 4758 priv->start = start; 4759 priv->lockend = lockend; 4760 priv->err = 0; 4761 4762 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 4763 disk_io_size, pages, priv); 4764 if (ret && ret != -EIOCBQUEUED) 4765 goto out_fail; 4766 4767 /* 4768 * If we return -EIOCBQUEUED, we're deferring the cleanup to 4769 * btrfs_uring_read_finished(), which will handle unlocking the extent 4770 * and inode and freeing the allocations. 4771 */ 4772 4773 /* 4774 * We're returning to userspace with the inode lock held, and that's 4775 * okay - it'll get unlocked in a worker thread. Call 4776 * btrfs_lockdep_inode_release() to avoid confusing lockdep. 4777 */ 4778 btrfs_lockdep_inode_release(inode, i_rwsem); 4779 4780 return -EIOCBQUEUED; 4781 4782 out_fail: 4783 unlock_extent(io_tree, start, lockend, &cached_state); 4784 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4785 kfree(priv); 4786 return ret; 4787 } 4788 4789 struct btrfs_uring_encoded_data { 4790 struct btrfs_ioctl_encoded_io_args args; 4791 struct iovec iovstack[UIO_FASTIOV]; 4792 struct iovec *iov; 4793 struct iov_iter iter; 4794 }; 4795 4796 static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags) 4797 { 4798 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags); 4799 size_t copy_end; 4800 int ret; 4801 u64 disk_bytenr, disk_io_size; 4802 struct file *file; 4803 struct btrfs_inode *inode; 4804 struct btrfs_fs_info *fs_info; 4805 struct extent_io_tree *io_tree; 4806 loff_t pos; 4807 struct kiocb kiocb; 4808 struct extent_state *cached_state = NULL; 4809 u64 start, lockend; 4810 void __user *sqe_addr; 4811 struct btrfs_uring_encoded_data *data = io_uring_cmd_get_async_data(cmd)->op_data; 4812 4813 if (!capable(CAP_SYS_ADMIN)) { 4814 ret = -EPERM; 4815 goto out_acct; 4816 } 4817 file = cmd->file; 4818 inode = BTRFS_I(file->f_inode); 4819 fs_info = inode->root->fs_info; 4820 io_tree = &inode->io_tree; 4821 sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr)); 4822 4823 if (issue_flags & IO_URING_F_COMPAT) { 4824 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4825 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags); 4826 #else 4827 return -ENOTTY; 4828 #endif 4829 } else { 4830 copy_end = copy_end_kernel; 4831 } 4832 4833 if (!data) { 4834 data = kzalloc(sizeof(*data), GFP_NOFS); 4835 if (!data) { 4836 ret = -ENOMEM; 4837 goto out_acct; 4838 } 4839 4840 io_uring_cmd_get_async_data(cmd)->op_data = data; 4841 4842 if (issue_flags & IO_URING_F_COMPAT) { 4843 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4844 struct btrfs_ioctl_encoded_io_args_32 args32; 4845 4846 if (copy_from_user(&args32, sqe_addr, copy_end)) { 4847 ret = -EFAULT; 4848 goto out_acct; 4849 } 4850 4851 data->args.iov = compat_ptr(args32.iov); 4852 data->args.iovcnt = args32.iovcnt; 4853 data->args.offset = args32.offset; 4854 data->args.flags = args32.flags; 4855 #endif 4856 } else { 4857 if (copy_from_user(&data->args, sqe_addr, copy_end)) { 4858 ret = -EFAULT; 4859 goto out_acct; 4860 } 4861 } 4862 4863 if (data->args.flags != 0) { 4864 ret = -EINVAL; 4865 goto out_acct; 4866 } 4867 4868 data->iov = data->iovstack; 4869 ret = import_iovec(ITER_DEST, data->args.iov, data->args.iovcnt, 4870 ARRAY_SIZE(data->iovstack), &data->iov, 4871 &data->iter); 4872 if (ret < 0) 4873 goto out_acct; 4874 4875 if (iov_iter_count(&data->iter) == 0) { 4876 ret = 0; 4877 goto out_free; 4878 } 4879 } 4880 4881 pos = data->args.offset; 4882 ret = rw_verify_area(READ, file, &pos, data->args.len); 4883 if (ret < 0) 4884 goto out_free; 4885 4886 init_sync_kiocb(&kiocb, file); 4887 kiocb.ki_pos = pos; 4888 4889 if (issue_flags & IO_URING_F_NONBLOCK) 4890 kiocb.ki_flags |= IOCB_NOWAIT; 4891 4892 start = ALIGN_DOWN(pos, fs_info->sectorsize); 4893 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 4894 4895 ret = btrfs_encoded_read(&kiocb, &data->iter, &data->args, &cached_state, 4896 &disk_bytenr, &disk_io_size); 4897 if (ret < 0 && ret != -EIOCBQUEUED) 4898 goto out_free; 4899 4900 file_accessed(file); 4901 4902 if (copy_to_user(sqe_addr + copy_end, 4903 (const char *)&data->args + copy_end_kernel, 4904 sizeof(data->args) - copy_end_kernel)) { 4905 if (ret == -EIOCBQUEUED) { 4906 unlock_extent(io_tree, start, lockend, &cached_state); 4907 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4908 } 4909 ret = -EFAULT; 4910 goto out_free; 4911 } 4912 4913 if (ret == -EIOCBQUEUED) { 4914 u64 count = min_t(u64, iov_iter_count(&data->iter), disk_io_size); 4915 4916 /* Match ioctl by not returning past EOF if uncompressed. */ 4917 if (!data->args.compression) 4918 count = min_t(u64, count, data->args.len); 4919 4920 ret = btrfs_uring_read_extent(&kiocb, &data->iter, start, lockend, 4921 cached_state, disk_bytenr, disk_io_size, 4922 count, data->args.compression, 4923 data->iov, cmd); 4924 4925 goto out_acct; 4926 } 4927 4928 out_free: 4929 kfree(data->iov); 4930 4931 out_acct: 4932 if (ret > 0) 4933 add_rchar(current, ret); 4934 inc_syscr(current); 4935 4936 return ret; 4937 } 4938 4939 static int btrfs_uring_encoded_write(struct io_uring_cmd *cmd, unsigned int issue_flags) 4940 { 4941 loff_t pos; 4942 struct kiocb kiocb; 4943 struct file *file; 4944 ssize_t ret; 4945 void __user *sqe_addr; 4946 struct btrfs_uring_encoded_data *data = io_uring_cmd_get_async_data(cmd)->op_data; 4947 4948 if (!capable(CAP_SYS_ADMIN)) { 4949 ret = -EPERM; 4950 goto out_acct; 4951 } 4952 4953 file = cmd->file; 4954 sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr)); 4955 4956 if (!(file->f_mode & FMODE_WRITE)) { 4957 ret = -EBADF; 4958 goto out_acct; 4959 } 4960 4961 if (!data) { 4962 data = kzalloc(sizeof(*data), GFP_NOFS); 4963 if (!data) { 4964 ret = -ENOMEM; 4965 goto out_acct; 4966 } 4967 4968 io_uring_cmd_get_async_data(cmd)->op_data = data; 4969 4970 if (issue_flags & IO_URING_F_COMPAT) { 4971 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4972 struct btrfs_ioctl_encoded_io_args_32 args32; 4973 4974 if (copy_from_user(&args32, sqe_addr, sizeof(args32))) { 4975 ret = -EFAULT; 4976 goto out_acct; 4977 } 4978 data->args.iov = compat_ptr(args32.iov); 4979 data->args.iovcnt = args32.iovcnt; 4980 data->args.offset = args32.offset; 4981 data->args.flags = args32.flags; 4982 data->args.len = args32.len; 4983 data->args.unencoded_len = args32.unencoded_len; 4984 data->args.unencoded_offset = args32.unencoded_offset; 4985 data->args.compression = args32.compression; 4986 data->args.encryption = args32.encryption; 4987 memcpy(data->args.reserved, args32.reserved, 4988 sizeof(data->args.reserved)); 4989 #else 4990 ret = -ENOTTY; 4991 goto out_acct; 4992 #endif 4993 } else { 4994 if (copy_from_user(&data->args, sqe_addr, sizeof(data->args))) { 4995 ret = -EFAULT; 4996 goto out_acct; 4997 } 4998 } 4999 5000 ret = -EINVAL; 5001 if (data->args.flags != 0) 5002 goto out_acct; 5003 if (memchr_inv(data->args.reserved, 0, sizeof(data->args.reserved))) 5004 goto out_acct; 5005 if (data->args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 5006 data->args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 5007 goto out_acct; 5008 if (data->args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 5009 data->args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 5010 goto out_acct; 5011 if (data->args.unencoded_offset > data->args.unencoded_len) 5012 goto out_acct; 5013 if (data->args.len > data->args.unencoded_len - data->args.unencoded_offset) 5014 goto out_acct; 5015 5016 data->iov = data->iovstack; 5017 ret = import_iovec(ITER_SOURCE, data->args.iov, data->args.iovcnt, 5018 ARRAY_SIZE(data->iovstack), &data->iov, 5019 &data->iter); 5020 if (ret < 0) 5021 goto out_acct; 5022 5023 if (iov_iter_count(&data->iter) == 0) { 5024 ret = 0; 5025 goto out_iov; 5026 } 5027 } 5028 5029 if (issue_flags & IO_URING_F_NONBLOCK) { 5030 ret = -EAGAIN; 5031 goto out_acct; 5032 } 5033 5034 pos = data->args.offset; 5035 ret = rw_verify_area(WRITE, file, &pos, data->args.len); 5036 if (ret < 0) 5037 goto out_iov; 5038 5039 init_sync_kiocb(&kiocb, file); 5040 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE); 5041 if (ret) 5042 goto out_iov; 5043 kiocb.ki_pos = pos; 5044 5045 file_start_write(file); 5046 5047 ret = btrfs_do_write_iter(&kiocb, &data->iter, &data->args); 5048 if (ret > 0) 5049 fsnotify_modify(file); 5050 5051 file_end_write(file); 5052 out_iov: 5053 kfree(data->iov); 5054 out_acct: 5055 if (ret > 0) 5056 add_wchar(current, ret); 5057 inc_syscw(current); 5058 return ret; 5059 } 5060 5061 int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags) 5062 { 5063 switch (cmd->cmd_op) { 5064 case BTRFS_IOC_ENCODED_READ: 5065 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5066 case BTRFS_IOC_ENCODED_READ_32: 5067 #endif 5068 return btrfs_uring_encoded_read(cmd, issue_flags); 5069 5070 case BTRFS_IOC_ENCODED_WRITE: 5071 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5072 case BTRFS_IOC_ENCODED_WRITE_32: 5073 #endif 5074 return btrfs_uring_encoded_write(cmd, issue_flags); 5075 } 5076 5077 return -EINVAL; 5078 } 5079 5080 static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp) 5081 { 5082 struct btrfs_root *root; 5083 struct btrfs_ioctl_subvol_wait args = { 0 }; 5084 signed long sched_ret; 5085 int refs; 5086 u64 root_flags; 5087 bool wait_for_deletion = false; 5088 bool found = false; 5089 5090 if (copy_from_user(&args, argp, sizeof(args))) 5091 return -EFAULT; 5092 5093 switch (args.mode) { 5094 case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED: 5095 /* 5096 * Wait for the first one deleted that waits until all previous 5097 * are cleaned. 5098 */ 5099 spin_lock(&fs_info->trans_lock); 5100 if (!list_empty(&fs_info->dead_roots)) { 5101 root = list_last_entry(&fs_info->dead_roots, 5102 struct btrfs_root, root_list); 5103 args.subvolid = btrfs_root_id(root); 5104 found = true; 5105 } 5106 spin_unlock(&fs_info->trans_lock); 5107 if (!found) 5108 return -ENOENT; 5109 5110 fallthrough; 5111 case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE: 5112 if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) || 5113 BTRFS_LAST_FREE_OBJECTID < args.subvolid) 5114 return -EINVAL; 5115 break; 5116 case BTRFS_SUBVOL_SYNC_COUNT: 5117 spin_lock(&fs_info->trans_lock); 5118 args.count = list_count_nodes(&fs_info->dead_roots); 5119 spin_unlock(&fs_info->trans_lock); 5120 if (copy_to_user(argp, &args, sizeof(args))) 5121 return -EFAULT; 5122 return 0; 5123 case BTRFS_SUBVOL_SYNC_PEEK_FIRST: 5124 spin_lock(&fs_info->trans_lock); 5125 /* Last in the list was deleted first. */ 5126 if (!list_empty(&fs_info->dead_roots)) { 5127 root = list_last_entry(&fs_info->dead_roots, 5128 struct btrfs_root, root_list); 5129 args.subvolid = btrfs_root_id(root); 5130 } else { 5131 args.subvolid = 0; 5132 } 5133 spin_unlock(&fs_info->trans_lock); 5134 if (copy_to_user(argp, &args, sizeof(args))) 5135 return -EFAULT; 5136 return 0; 5137 case BTRFS_SUBVOL_SYNC_PEEK_LAST: 5138 spin_lock(&fs_info->trans_lock); 5139 /* First in the list was deleted last. */ 5140 if (!list_empty(&fs_info->dead_roots)) { 5141 root = list_first_entry(&fs_info->dead_roots, 5142 struct btrfs_root, root_list); 5143 args.subvolid = btrfs_root_id(root); 5144 } else { 5145 args.subvolid = 0; 5146 } 5147 spin_unlock(&fs_info->trans_lock); 5148 if (copy_to_user(argp, &args, sizeof(args))) 5149 return -EFAULT; 5150 return 0; 5151 default: 5152 return -EINVAL; 5153 } 5154 5155 /* 32bit limitation: fs_roots_radix key is not wide enough. */ 5156 if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX) 5157 return -EOVERFLOW; 5158 5159 while (1) { 5160 /* Wait for the specific one. */ 5161 if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR) 5162 return -EINTR; 5163 refs = -1; 5164 spin_lock(&fs_info->fs_roots_radix_lock); 5165 root = radix_tree_lookup(&fs_info->fs_roots_radix, 5166 (unsigned long)args.subvolid); 5167 if (root) { 5168 spin_lock(&root->root_item_lock); 5169 refs = btrfs_root_refs(&root->root_item); 5170 root_flags = btrfs_root_flags(&root->root_item); 5171 spin_unlock(&root->root_item_lock); 5172 } 5173 spin_unlock(&fs_info->fs_roots_radix_lock); 5174 up_read(&fs_info->subvol_sem); 5175 5176 /* Subvolume does not exist. */ 5177 if (!root) 5178 return -ENOENT; 5179 5180 /* Subvolume not deleted at all. */ 5181 if (refs > 0) 5182 return -EEXIST; 5183 /* We've waited and now the subvolume is gone. */ 5184 if (wait_for_deletion && refs == -1) { 5185 /* Return the one we waited for as the last one. */ 5186 if (copy_to_user(argp, &args, sizeof(args))) 5187 return -EFAULT; 5188 return 0; 5189 } 5190 5191 /* Subvolume not found on the first try (deleted or never existed). */ 5192 if (refs == -1) 5193 return -ENOENT; 5194 5195 wait_for_deletion = true; 5196 ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD); 5197 sched_ret = schedule_timeout_interruptible(HZ); 5198 /* Early wake up or error. */ 5199 if (sched_ret != 0) 5200 return -EINTR; 5201 } 5202 5203 return 0; 5204 } 5205 5206 long btrfs_ioctl(struct file *file, unsigned int 5207 cmd, unsigned long arg) 5208 { 5209 struct inode *inode = file_inode(file); 5210 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5211 struct btrfs_root *root = BTRFS_I(inode)->root; 5212 void __user *argp = (void __user *)arg; 5213 5214 switch (cmd) { 5215 case FS_IOC_GETVERSION: 5216 return btrfs_ioctl_getversion(inode, argp); 5217 case FS_IOC_GETFSLABEL: 5218 return btrfs_ioctl_get_fslabel(fs_info, argp); 5219 case FS_IOC_SETFSLABEL: 5220 return btrfs_ioctl_set_fslabel(file, argp); 5221 case FITRIM: 5222 return btrfs_ioctl_fitrim(fs_info, argp); 5223 case BTRFS_IOC_SNAP_CREATE: 5224 return btrfs_ioctl_snap_create(file, argp, 0); 5225 case BTRFS_IOC_SNAP_CREATE_V2: 5226 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5227 case BTRFS_IOC_SUBVOL_CREATE: 5228 return btrfs_ioctl_snap_create(file, argp, 1); 5229 case BTRFS_IOC_SUBVOL_CREATE_V2: 5230 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5231 case BTRFS_IOC_SNAP_DESTROY: 5232 return btrfs_ioctl_snap_destroy(file, argp, false); 5233 case BTRFS_IOC_SNAP_DESTROY_V2: 5234 return btrfs_ioctl_snap_destroy(file, argp, true); 5235 case BTRFS_IOC_SUBVOL_GETFLAGS: 5236 return btrfs_ioctl_subvol_getflags(inode, argp); 5237 case BTRFS_IOC_SUBVOL_SETFLAGS: 5238 return btrfs_ioctl_subvol_setflags(file, argp); 5239 case BTRFS_IOC_DEFAULT_SUBVOL: 5240 return btrfs_ioctl_default_subvol(file, argp); 5241 case BTRFS_IOC_DEFRAG: 5242 return btrfs_ioctl_defrag(file, NULL); 5243 case BTRFS_IOC_DEFRAG_RANGE: 5244 return btrfs_ioctl_defrag(file, argp); 5245 case BTRFS_IOC_RESIZE: 5246 return btrfs_ioctl_resize(file, argp); 5247 case BTRFS_IOC_ADD_DEV: 5248 return btrfs_ioctl_add_dev(fs_info, argp); 5249 case BTRFS_IOC_RM_DEV: 5250 return btrfs_ioctl_rm_dev(file, argp); 5251 case BTRFS_IOC_RM_DEV_V2: 5252 return btrfs_ioctl_rm_dev_v2(file, argp); 5253 case BTRFS_IOC_FS_INFO: 5254 return btrfs_ioctl_fs_info(fs_info, argp); 5255 case BTRFS_IOC_DEV_INFO: 5256 return btrfs_ioctl_dev_info(fs_info, argp); 5257 case BTRFS_IOC_TREE_SEARCH: 5258 return btrfs_ioctl_tree_search(inode, argp); 5259 case BTRFS_IOC_TREE_SEARCH_V2: 5260 return btrfs_ioctl_tree_search_v2(inode, argp); 5261 case BTRFS_IOC_INO_LOOKUP: 5262 return btrfs_ioctl_ino_lookup(root, argp); 5263 case BTRFS_IOC_INO_PATHS: 5264 return btrfs_ioctl_ino_to_path(root, argp); 5265 case BTRFS_IOC_LOGICAL_INO: 5266 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5267 case BTRFS_IOC_LOGICAL_INO_V2: 5268 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5269 case BTRFS_IOC_SPACE_INFO: 5270 return btrfs_ioctl_space_info(fs_info, argp); 5271 case BTRFS_IOC_SYNC: { 5272 int ret; 5273 5274 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 5275 if (ret) 5276 return ret; 5277 ret = btrfs_sync_fs(inode->i_sb, 1); 5278 /* 5279 * There may be work for the cleaner kthread to do (subvolume 5280 * deletion, delayed iputs, defrag inodes, etc), so wake it up. 5281 */ 5282 wake_up_process(fs_info->cleaner_kthread); 5283 return ret; 5284 } 5285 case BTRFS_IOC_START_SYNC: 5286 return btrfs_ioctl_start_sync(root, argp); 5287 case BTRFS_IOC_WAIT_SYNC: 5288 return btrfs_ioctl_wait_sync(fs_info, argp); 5289 case BTRFS_IOC_SCRUB: 5290 return btrfs_ioctl_scrub(file, argp); 5291 case BTRFS_IOC_SCRUB_CANCEL: 5292 return btrfs_ioctl_scrub_cancel(fs_info); 5293 case BTRFS_IOC_SCRUB_PROGRESS: 5294 return btrfs_ioctl_scrub_progress(fs_info, argp); 5295 case BTRFS_IOC_BALANCE_V2: 5296 return btrfs_ioctl_balance(file, argp); 5297 case BTRFS_IOC_BALANCE_CTL: 5298 return btrfs_ioctl_balance_ctl(fs_info, arg); 5299 case BTRFS_IOC_BALANCE_PROGRESS: 5300 return btrfs_ioctl_balance_progress(fs_info, argp); 5301 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5302 return btrfs_ioctl_set_received_subvol(file, argp); 5303 #ifdef CONFIG_64BIT 5304 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5305 return btrfs_ioctl_set_received_subvol_32(file, argp); 5306 #endif 5307 case BTRFS_IOC_SEND: 5308 return _btrfs_ioctl_send(BTRFS_I(inode), argp, false); 5309 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5310 case BTRFS_IOC_SEND_32: 5311 return _btrfs_ioctl_send(BTRFS_I(inode), argp, true); 5312 #endif 5313 case BTRFS_IOC_GET_DEV_STATS: 5314 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5315 case BTRFS_IOC_QUOTA_CTL: 5316 return btrfs_ioctl_quota_ctl(file, argp); 5317 case BTRFS_IOC_QGROUP_ASSIGN: 5318 return btrfs_ioctl_qgroup_assign(file, argp); 5319 case BTRFS_IOC_QGROUP_CREATE: 5320 return btrfs_ioctl_qgroup_create(file, argp); 5321 case BTRFS_IOC_QGROUP_LIMIT: 5322 return btrfs_ioctl_qgroup_limit(file, argp); 5323 case BTRFS_IOC_QUOTA_RESCAN: 5324 return btrfs_ioctl_quota_rescan(file, argp); 5325 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5326 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5327 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5328 return btrfs_ioctl_quota_rescan_wait(fs_info); 5329 case BTRFS_IOC_DEV_REPLACE: 5330 return btrfs_ioctl_dev_replace(fs_info, argp); 5331 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5332 return btrfs_ioctl_get_supported_features(argp); 5333 case BTRFS_IOC_GET_FEATURES: 5334 return btrfs_ioctl_get_features(fs_info, argp); 5335 case BTRFS_IOC_SET_FEATURES: 5336 return btrfs_ioctl_set_features(file, argp); 5337 case BTRFS_IOC_GET_SUBVOL_INFO: 5338 return btrfs_ioctl_get_subvol_info(inode, argp); 5339 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5340 return btrfs_ioctl_get_subvol_rootref(root, argp); 5341 case BTRFS_IOC_INO_LOOKUP_USER: 5342 return btrfs_ioctl_ino_lookup_user(file, argp); 5343 case FS_IOC_ENABLE_VERITY: 5344 return fsverity_ioctl_enable(file, (const void __user *)argp); 5345 case FS_IOC_MEASURE_VERITY: 5346 return fsverity_ioctl_measure(file, argp); 5347 case FS_IOC_READ_VERITY_METADATA: 5348 return fsverity_ioctl_read_metadata(file, argp); 5349 case BTRFS_IOC_ENCODED_READ: 5350 return btrfs_ioctl_encoded_read(file, argp, false); 5351 case BTRFS_IOC_ENCODED_WRITE: 5352 return btrfs_ioctl_encoded_write(file, argp, false); 5353 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5354 case BTRFS_IOC_ENCODED_READ_32: 5355 return btrfs_ioctl_encoded_read(file, argp, true); 5356 case BTRFS_IOC_ENCODED_WRITE_32: 5357 return btrfs_ioctl_encoded_write(file, argp, true); 5358 #endif 5359 case BTRFS_IOC_SUBVOL_SYNC_WAIT: 5360 return btrfs_ioctl_subvol_sync(fs_info, argp); 5361 } 5362 5363 return -ENOTTY; 5364 } 5365 5366 #ifdef CONFIG_COMPAT 5367 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5368 { 5369 /* 5370 * These all access 32-bit values anyway so no further 5371 * handling is necessary. 5372 */ 5373 switch (cmd) { 5374 case FS_IOC32_GETVERSION: 5375 cmd = FS_IOC_GETVERSION; 5376 break; 5377 } 5378 5379 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5380 } 5381 #endif 5382