xref: /linux/fs/btrfs/ioctl.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "print-tree.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "rcu-string.h"
42 #include "send.h"
43 #include "dev-replace.h"
44 #include "props.h"
45 #include "sysfs.h"
46 #include "qgroup.h"
47 #include "tree-log.h"
48 #include "compression.h"
49 #include "space-info.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "subpage.h"
53 
54 #ifdef CONFIG_64BIT
55 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
56  * structures are incorrect, as the timespec structure from userspace
57  * is 4 bytes too small. We define these alternatives here to teach
58  * the kernel about the 32-bit struct packing.
59  */
60 struct btrfs_ioctl_timespec_32 {
61 	__u64 sec;
62 	__u32 nsec;
63 } __attribute__ ((__packed__));
64 
65 struct btrfs_ioctl_received_subvol_args_32 {
66 	char	uuid[BTRFS_UUID_SIZE];	/* in */
67 	__u64	stransid;		/* in */
68 	__u64	rtransid;		/* out */
69 	struct btrfs_ioctl_timespec_32 stime; /* in */
70 	struct btrfs_ioctl_timespec_32 rtime; /* out */
71 	__u64	flags;			/* in */
72 	__u64	reserved[16];		/* in */
73 } __attribute__ ((__packed__));
74 
75 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
76 				struct btrfs_ioctl_received_subvol_args_32)
77 #endif
78 
79 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
80 struct btrfs_ioctl_send_args_32 {
81 	__s64 send_fd;			/* in */
82 	__u64 clone_sources_count;	/* in */
83 	compat_uptr_t clone_sources;	/* in */
84 	__u64 parent_root;		/* in */
85 	__u64 flags;			/* in */
86 	__u32 version;			/* in */
87 	__u8  reserved[28];		/* in */
88 } __attribute__ ((__packed__));
89 
90 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
91 			       struct btrfs_ioctl_send_args_32)
92 
93 struct btrfs_ioctl_encoded_io_args_32 {
94 	compat_uptr_t iov;
95 	compat_ulong_t iovcnt;
96 	__s64 offset;
97 	__u64 flags;
98 	__u64 len;
99 	__u64 unencoded_len;
100 	__u64 unencoded_offset;
101 	__u32 compression;
102 	__u32 encryption;
103 	__u8 reserved[64];
104 };
105 
106 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
107 				       struct btrfs_ioctl_encoded_io_args_32)
108 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
109 					struct btrfs_ioctl_encoded_io_args_32)
110 #endif
111 
112 /* Mask out flags that are inappropriate for the given type of inode. */
113 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
114 		unsigned int flags)
115 {
116 	if (S_ISDIR(inode->i_mode))
117 		return flags;
118 	else if (S_ISREG(inode->i_mode))
119 		return flags & ~FS_DIRSYNC_FL;
120 	else
121 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
122 }
123 
124 /*
125  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
126  * ioctl.
127  */
128 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
129 {
130 	unsigned int iflags = 0;
131 	u32 flags = binode->flags;
132 	u32 ro_flags = binode->ro_flags;
133 
134 	if (flags & BTRFS_INODE_SYNC)
135 		iflags |= FS_SYNC_FL;
136 	if (flags & BTRFS_INODE_IMMUTABLE)
137 		iflags |= FS_IMMUTABLE_FL;
138 	if (flags & BTRFS_INODE_APPEND)
139 		iflags |= FS_APPEND_FL;
140 	if (flags & BTRFS_INODE_NODUMP)
141 		iflags |= FS_NODUMP_FL;
142 	if (flags & BTRFS_INODE_NOATIME)
143 		iflags |= FS_NOATIME_FL;
144 	if (flags & BTRFS_INODE_DIRSYNC)
145 		iflags |= FS_DIRSYNC_FL;
146 	if (flags & BTRFS_INODE_NODATACOW)
147 		iflags |= FS_NOCOW_FL;
148 	if (ro_flags & BTRFS_INODE_RO_VERITY)
149 		iflags |= FS_VERITY_FL;
150 
151 	if (flags & BTRFS_INODE_NOCOMPRESS)
152 		iflags |= FS_NOCOMP_FL;
153 	else if (flags & BTRFS_INODE_COMPRESS)
154 		iflags |= FS_COMPR_FL;
155 
156 	return iflags;
157 }
158 
159 /*
160  * Update inode->i_flags based on the btrfs internal flags.
161  */
162 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
163 {
164 	struct btrfs_inode *binode = BTRFS_I(inode);
165 	unsigned int new_fl = 0;
166 
167 	if (binode->flags & BTRFS_INODE_SYNC)
168 		new_fl |= S_SYNC;
169 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
170 		new_fl |= S_IMMUTABLE;
171 	if (binode->flags & BTRFS_INODE_APPEND)
172 		new_fl |= S_APPEND;
173 	if (binode->flags & BTRFS_INODE_NOATIME)
174 		new_fl |= S_NOATIME;
175 	if (binode->flags & BTRFS_INODE_DIRSYNC)
176 		new_fl |= S_DIRSYNC;
177 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
178 		new_fl |= S_VERITY;
179 
180 	set_mask_bits(&inode->i_flags,
181 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
182 		      S_VERITY, new_fl);
183 }
184 
185 /*
186  * Check if @flags are a supported and valid set of FS_*_FL flags and that
187  * the old and new flags are not conflicting
188  */
189 static int check_fsflags(unsigned int old_flags, unsigned int flags)
190 {
191 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
192 		      FS_NOATIME_FL | FS_NODUMP_FL | \
193 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
194 		      FS_NOCOMP_FL | FS_COMPR_FL |
195 		      FS_NOCOW_FL))
196 		return -EOPNOTSUPP;
197 
198 	/* COMPR and NOCOMP on new/old are valid */
199 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
200 		return -EINVAL;
201 
202 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
203 		return -EINVAL;
204 
205 	/* NOCOW and compression options are mutually exclusive */
206 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
207 		return -EINVAL;
208 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
209 		return -EINVAL;
210 
211 	return 0;
212 }
213 
214 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
215 				    unsigned int flags)
216 {
217 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
218 		return -EPERM;
219 
220 	return 0;
221 }
222 
223 /*
224  * Set flags/xflags from the internal inode flags. The remaining items of
225  * fsxattr are zeroed.
226  */
227 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
228 {
229 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
230 
231 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
232 	return 0;
233 }
234 
235 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
236 		       struct dentry *dentry, struct fileattr *fa)
237 {
238 	struct inode *inode = d_inode(dentry);
239 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
240 	struct btrfs_inode *binode = BTRFS_I(inode);
241 	struct btrfs_root *root = binode->root;
242 	struct btrfs_trans_handle *trans;
243 	unsigned int fsflags, old_fsflags;
244 	int ret;
245 	const char *comp = NULL;
246 	u32 binode_flags;
247 
248 	if (btrfs_root_readonly(root))
249 		return -EROFS;
250 
251 	if (fileattr_has_fsx(fa))
252 		return -EOPNOTSUPP;
253 
254 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
255 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
256 	ret = check_fsflags(old_fsflags, fsflags);
257 	if (ret)
258 		return ret;
259 
260 	ret = check_fsflags_compatible(fs_info, fsflags);
261 	if (ret)
262 		return ret;
263 
264 	binode_flags = binode->flags;
265 	if (fsflags & FS_SYNC_FL)
266 		binode_flags |= BTRFS_INODE_SYNC;
267 	else
268 		binode_flags &= ~BTRFS_INODE_SYNC;
269 	if (fsflags & FS_IMMUTABLE_FL)
270 		binode_flags |= BTRFS_INODE_IMMUTABLE;
271 	else
272 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
273 	if (fsflags & FS_APPEND_FL)
274 		binode_flags |= BTRFS_INODE_APPEND;
275 	else
276 		binode_flags &= ~BTRFS_INODE_APPEND;
277 	if (fsflags & FS_NODUMP_FL)
278 		binode_flags |= BTRFS_INODE_NODUMP;
279 	else
280 		binode_flags &= ~BTRFS_INODE_NODUMP;
281 	if (fsflags & FS_NOATIME_FL)
282 		binode_flags |= BTRFS_INODE_NOATIME;
283 	else
284 		binode_flags &= ~BTRFS_INODE_NOATIME;
285 
286 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
287 	if (!fa->flags_valid) {
288 		/* 1 item for the inode */
289 		trans = btrfs_start_transaction(root, 1);
290 		if (IS_ERR(trans))
291 			return PTR_ERR(trans);
292 		goto update_flags;
293 	}
294 
295 	if (fsflags & FS_DIRSYNC_FL)
296 		binode_flags |= BTRFS_INODE_DIRSYNC;
297 	else
298 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
299 	if (fsflags & FS_NOCOW_FL) {
300 		if (S_ISREG(inode->i_mode)) {
301 			/*
302 			 * It's safe to turn csums off here, no extents exist.
303 			 * Otherwise we want the flag to reflect the real COW
304 			 * status of the file and will not set it.
305 			 */
306 			if (inode->i_size == 0)
307 				binode_flags |= BTRFS_INODE_NODATACOW |
308 						BTRFS_INODE_NODATASUM;
309 		} else {
310 			binode_flags |= BTRFS_INODE_NODATACOW;
311 		}
312 	} else {
313 		/*
314 		 * Revert back under same assumptions as above
315 		 */
316 		if (S_ISREG(inode->i_mode)) {
317 			if (inode->i_size == 0)
318 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
319 						  BTRFS_INODE_NODATASUM);
320 		} else {
321 			binode_flags &= ~BTRFS_INODE_NODATACOW;
322 		}
323 	}
324 
325 	/*
326 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
327 	 * flag may be changed automatically if compression code won't make
328 	 * things smaller.
329 	 */
330 	if (fsflags & FS_NOCOMP_FL) {
331 		binode_flags &= ~BTRFS_INODE_COMPRESS;
332 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
333 	} else if (fsflags & FS_COMPR_FL) {
334 
335 		if (IS_SWAPFILE(inode))
336 			return -ETXTBSY;
337 
338 		binode_flags |= BTRFS_INODE_COMPRESS;
339 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
340 
341 		comp = btrfs_compress_type2str(fs_info->compress_type);
342 		if (!comp || comp[0] == 0)
343 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
344 	} else {
345 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
346 	}
347 
348 	/*
349 	 * 1 for inode item
350 	 * 2 for properties
351 	 */
352 	trans = btrfs_start_transaction(root, 3);
353 	if (IS_ERR(trans))
354 		return PTR_ERR(trans);
355 
356 	if (comp) {
357 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
358 				     strlen(comp), 0);
359 		if (ret) {
360 			btrfs_abort_transaction(trans, ret);
361 			goto out_end_trans;
362 		}
363 	} else {
364 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
365 				     0, 0);
366 		if (ret && ret != -ENODATA) {
367 			btrfs_abort_transaction(trans, ret);
368 			goto out_end_trans;
369 		}
370 	}
371 
372 update_flags:
373 	binode->flags = binode_flags;
374 	btrfs_sync_inode_flags_to_i_flags(inode);
375 	inode_inc_iversion(inode);
376 	inode->i_ctime = current_time(inode);
377 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
378 
379  out_end_trans:
380 	btrfs_end_transaction(trans);
381 	return ret;
382 }
383 
384 /*
385  * Start exclusive operation @type, return true on success
386  */
387 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
388 			enum btrfs_exclusive_operation type)
389 {
390 	bool ret = false;
391 
392 	spin_lock(&fs_info->super_lock);
393 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
394 		fs_info->exclusive_operation = type;
395 		ret = true;
396 	}
397 	spin_unlock(&fs_info->super_lock);
398 
399 	return ret;
400 }
401 
402 /*
403  * Conditionally allow to enter the exclusive operation in case it's compatible
404  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
405  * btrfs_exclop_finish.
406  *
407  * Compatibility:
408  * - the same type is already running
409  * - when trying to add a device and balance has been paused
410  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
411  *   must check the condition first that would allow none -> @type
412  */
413 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
414 				 enum btrfs_exclusive_operation type)
415 {
416 	spin_lock(&fs_info->super_lock);
417 	if (fs_info->exclusive_operation == type ||
418 	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
419 	     type == BTRFS_EXCLOP_DEV_ADD))
420 		return true;
421 
422 	spin_unlock(&fs_info->super_lock);
423 	return false;
424 }
425 
426 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
427 {
428 	spin_unlock(&fs_info->super_lock);
429 }
430 
431 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
432 {
433 	spin_lock(&fs_info->super_lock);
434 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
435 	spin_unlock(&fs_info->super_lock);
436 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
437 }
438 
439 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
440 			  enum btrfs_exclusive_operation op)
441 {
442 	switch (op) {
443 	case BTRFS_EXCLOP_BALANCE_PAUSED:
444 		spin_lock(&fs_info->super_lock);
445 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
446 		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
447 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
448 		spin_unlock(&fs_info->super_lock);
449 		break;
450 	case BTRFS_EXCLOP_BALANCE:
451 		spin_lock(&fs_info->super_lock);
452 		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
453 		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
454 		spin_unlock(&fs_info->super_lock);
455 		break;
456 	default:
457 		btrfs_warn(fs_info,
458 			"invalid exclop balance operation %d requested", op);
459 	}
460 }
461 
462 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
463 {
464 	return put_user(inode->i_generation, arg);
465 }
466 
467 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
468 					void __user *arg)
469 {
470 	struct btrfs_device *device;
471 	struct fstrim_range range;
472 	u64 minlen = ULLONG_MAX;
473 	u64 num_devices = 0;
474 	int ret;
475 
476 	if (!capable(CAP_SYS_ADMIN))
477 		return -EPERM;
478 
479 	/*
480 	 * btrfs_trim_block_group() depends on space cache, which is not
481 	 * available in zoned filesystem. So, disallow fitrim on a zoned
482 	 * filesystem for now.
483 	 */
484 	if (btrfs_is_zoned(fs_info))
485 		return -EOPNOTSUPP;
486 
487 	/*
488 	 * If the fs is mounted with nologreplay, which requires it to be
489 	 * mounted in RO mode as well, we can not allow discard on free space
490 	 * inside block groups, because log trees refer to extents that are not
491 	 * pinned in a block group's free space cache (pinning the extents is
492 	 * precisely the first phase of replaying a log tree).
493 	 */
494 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
495 		return -EROFS;
496 
497 	rcu_read_lock();
498 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
499 				dev_list) {
500 		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
501 			continue;
502 		num_devices++;
503 		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
504 				    minlen);
505 	}
506 	rcu_read_unlock();
507 
508 	if (!num_devices)
509 		return -EOPNOTSUPP;
510 	if (copy_from_user(&range, arg, sizeof(range)))
511 		return -EFAULT;
512 
513 	/*
514 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
515 	 * block group is in the logical address space, which can be any
516 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
517 	 */
518 	if (range.len < fs_info->sb->s_blocksize)
519 		return -EINVAL;
520 
521 	range.minlen = max(range.minlen, minlen);
522 	ret = btrfs_trim_fs(fs_info, &range);
523 	if (ret < 0)
524 		return ret;
525 
526 	if (copy_to_user(arg, &range, sizeof(range)))
527 		return -EFAULT;
528 
529 	return 0;
530 }
531 
532 int __pure btrfs_is_empty_uuid(u8 *uuid)
533 {
534 	int i;
535 
536 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
537 		if (uuid[i])
538 			return 0;
539 	}
540 	return 1;
541 }
542 
543 /*
544  * Calculate the number of transaction items to reserve for creating a subvolume
545  * or snapshot, not including the inode, directory entries, or parent directory.
546  */
547 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
548 {
549 	/*
550 	 * 1 to add root block
551 	 * 1 to add root item
552 	 * 1 to add root ref
553 	 * 1 to add root backref
554 	 * 1 to add UUID item
555 	 * 1 to add qgroup info
556 	 * 1 to add qgroup limit
557 	 *
558 	 * Ideally the last two would only be accounted if qgroups are enabled,
559 	 * but that can change between now and the time we would insert them.
560 	 */
561 	unsigned int num_items = 7;
562 
563 	if (inherit) {
564 		/* 2 to add qgroup relations for each inherited qgroup */
565 		num_items += 2 * inherit->num_qgroups;
566 	}
567 	return num_items;
568 }
569 
570 static noinline int create_subvol(struct user_namespace *mnt_userns,
571 				  struct inode *dir, struct dentry *dentry,
572 				  struct btrfs_qgroup_inherit *inherit)
573 {
574 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
575 	struct btrfs_trans_handle *trans;
576 	struct btrfs_key key;
577 	struct btrfs_root_item *root_item;
578 	struct btrfs_inode_item *inode_item;
579 	struct extent_buffer *leaf;
580 	struct btrfs_root *root = BTRFS_I(dir)->root;
581 	struct btrfs_root *new_root;
582 	struct btrfs_block_rsv block_rsv;
583 	struct timespec64 cur_time = current_time(dir);
584 	struct btrfs_new_inode_args new_inode_args = {
585 		.dir = dir,
586 		.dentry = dentry,
587 		.subvol = true,
588 	};
589 	unsigned int trans_num_items;
590 	int ret;
591 	dev_t anon_dev;
592 	u64 objectid;
593 
594 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
595 	if (!root_item)
596 		return -ENOMEM;
597 
598 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
599 	if (ret)
600 		goto out_root_item;
601 
602 	/*
603 	 * Don't create subvolume whose level is not zero. Or qgroup will be
604 	 * screwed up since it assumes subvolume qgroup's level to be 0.
605 	 */
606 	if (btrfs_qgroup_level(objectid)) {
607 		ret = -ENOSPC;
608 		goto out_root_item;
609 	}
610 
611 	ret = get_anon_bdev(&anon_dev);
612 	if (ret < 0)
613 		goto out_root_item;
614 
615 	new_inode_args.inode = btrfs_new_subvol_inode(mnt_userns, dir);
616 	if (!new_inode_args.inode) {
617 		ret = -ENOMEM;
618 		goto out_anon_dev;
619 	}
620 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
621 	if (ret)
622 		goto out_inode;
623 	trans_num_items += create_subvol_num_items(inherit);
624 
625 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
626 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
627 					       trans_num_items, false);
628 	if (ret)
629 		goto out_new_inode_args;
630 
631 	trans = btrfs_start_transaction(root, 0);
632 	if (IS_ERR(trans)) {
633 		ret = PTR_ERR(trans);
634 		btrfs_subvolume_release_metadata(root, &block_rsv);
635 		goto out_new_inode_args;
636 	}
637 	trans->block_rsv = &block_rsv;
638 	trans->bytes_reserved = block_rsv.size;
639 
640 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
641 	if (ret)
642 		goto out;
643 
644 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
645 				      BTRFS_NESTING_NORMAL);
646 	if (IS_ERR(leaf)) {
647 		ret = PTR_ERR(leaf);
648 		goto out;
649 	}
650 
651 	btrfs_mark_buffer_dirty(leaf);
652 
653 	inode_item = &root_item->inode;
654 	btrfs_set_stack_inode_generation(inode_item, 1);
655 	btrfs_set_stack_inode_size(inode_item, 3);
656 	btrfs_set_stack_inode_nlink(inode_item, 1);
657 	btrfs_set_stack_inode_nbytes(inode_item,
658 				     fs_info->nodesize);
659 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
660 
661 	btrfs_set_root_flags(root_item, 0);
662 	btrfs_set_root_limit(root_item, 0);
663 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
664 
665 	btrfs_set_root_bytenr(root_item, leaf->start);
666 	btrfs_set_root_generation(root_item, trans->transid);
667 	btrfs_set_root_level(root_item, 0);
668 	btrfs_set_root_refs(root_item, 1);
669 	btrfs_set_root_used(root_item, leaf->len);
670 	btrfs_set_root_last_snapshot(root_item, 0);
671 
672 	btrfs_set_root_generation_v2(root_item,
673 			btrfs_root_generation(root_item));
674 	generate_random_guid(root_item->uuid);
675 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
676 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
677 	root_item->ctime = root_item->otime;
678 	btrfs_set_root_ctransid(root_item, trans->transid);
679 	btrfs_set_root_otransid(root_item, trans->transid);
680 
681 	btrfs_tree_unlock(leaf);
682 
683 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
684 
685 	key.objectid = objectid;
686 	key.offset = 0;
687 	key.type = BTRFS_ROOT_ITEM_KEY;
688 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
689 				root_item);
690 	if (ret) {
691 		/*
692 		 * Since we don't abort the transaction in this case, free the
693 		 * tree block so that we don't leak space and leave the
694 		 * filesystem in an inconsistent state (an extent item in the
695 		 * extent tree with a backreference for a root that does not
696 		 * exists).
697 		 */
698 		btrfs_tree_lock(leaf);
699 		btrfs_clean_tree_block(leaf);
700 		btrfs_tree_unlock(leaf);
701 		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
702 		free_extent_buffer(leaf);
703 		goto out;
704 	}
705 
706 	free_extent_buffer(leaf);
707 	leaf = NULL;
708 
709 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
710 	if (IS_ERR(new_root)) {
711 		ret = PTR_ERR(new_root);
712 		btrfs_abort_transaction(trans, ret);
713 		goto out;
714 	}
715 	/* anon_dev is owned by new_root now. */
716 	anon_dev = 0;
717 	BTRFS_I(new_inode_args.inode)->root = new_root;
718 	/* ... and new_root is owned by new_inode_args.inode now. */
719 
720 	ret = btrfs_record_root_in_trans(trans, new_root);
721 	if (ret) {
722 		btrfs_abort_transaction(trans, ret);
723 		goto out;
724 	}
725 
726 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
727 				  BTRFS_UUID_KEY_SUBVOL, objectid);
728 	if (ret) {
729 		btrfs_abort_transaction(trans, ret);
730 		goto out;
731 	}
732 
733 	ret = btrfs_create_new_inode(trans, &new_inode_args);
734 	if (ret) {
735 		btrfs_abort_transaction(trans, ret);
736 		goto out;
737 	}
738 
739 	d_instantiate_new(dentry, new_inode_args.inode);
740 	new_inode_args.inode = NULL;
741 
742 out:
743 	trans->block_rsv = NULL;
744 	trans->bytes_reserved = 0;
745 	btrfs_subvolume_release_metadata(root, &block_rsv);
746 
747 	if (ret)
748 		btrfs_end_transaction(trans);
749 	else
750 		ret = btrfs_commit_transaction(trans);
751 out_new_inode_args:
752 	btrfs_new_inode_args_destroy(&new_inode_args);
753 out_inode:
754 	iput(new_inode_args.inode);
755 out_anon_dev:
756 	if (anon_dev)
757 		free_anon_bdev(anon_dev);
758 out_root_item:
759 	kfree(root_item);
760 	return ret;
761 }
762 
763 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
764 			   struct dentry *dentry, bool readonly,
765 			   struct btrfs_qgroup_inherit *inherit)
766 {
767 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
768 	struct inode *inode;
769 	struct btrfs_pending_snapshot *pending_snapshot;
770 	unsigned int trans_num_items;
771 	struct btrfs_trans_handle *trans;
772 	int ret;
773 
774 	/* We do not support snapshotting right now. */
775 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
776 		btrfs_warn(fs_info,
777 			   "extent tree v2 doesn't support snapshotting yet");
778 		return -EOPNOTSUPP;
779 	}
780 
781 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
782 		return -EINVAL;
783 
784 	if (atomic_read(&root->nr_swapfiles)) {
785 		btrfs_warn(fs_info,
786 			   "cannot snapshot subvolume with active swapfile");
787 		return -ETXTBSY;
788 	}
789 
790 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
791 	if (!pending_snapshot)
792 		return -ENOMEM;
793 
794 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
795 	if (ret < 0)
796 		goto free_pending;
797 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
798 			GFP_KERNEL);
799 	pending_snapshot->path = btrfs_alloc_path();
800 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
801 		ret = -ENOMEM;
802 		goto free_pending;
803 	}
804 
805 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
806 			     BTRFS_BLOCK_RSV_TEMP);
807 	/*
808 	 * 1 to add dir item
809 	 * 1 to add dir index
810 	 * 1 to update parent inode item
811 	 */
812 	trans_num_items = create_subvol_num_items(inherit) + 3;
813 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
814 					       &pending_snapshot->block_rsv,
815 					       trans_num_items, false);
816 	if (ret)
817 		goto free_pending;
818 
819 	pending_snapshot->dentry = dentry;
820 	pending_snapshot->root = root;
821 	pending_snapshot->readonly = readonly;
822 	pending_snapshot->dir = dir;
823 	pending_snapshot->inherit = inherit;
824 
825 	trans = btrfs_start_transaction(root, 0);
826 	if (IS_ERR(trans)) {
827 		ret = PTR_ERR(trans);
828 		goto fail;
829 	}
830 
831 	trans->pending_snapshot = pending_snapshot;
832 
833 	ret = btrfs_commit_transaction(trans);
834 	if (ret)
835 		goto fail;
836 
837 	ret = pending_snapshot->error;
838 	if (ret)
839 		goto fail;
840 
841 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
842 	if (ret)
843 		goto fail;
844 
845 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
846 	if (IS_ERR(inode)) {
847 		ret = PTR_ERR(inode);
848 		goto fail;
849 	}
850 
851 	d_instantiate(dentry, inode);
852 	ret = 0;
853 	pending_snapshot->anon_dev = 0;
854 fail:
855 	/* Prevent double freeing of anon_dev */
856 	if (ret && pending_snapshot->snap)
857 		pending_snapshot->snap->anon_dev = 0;
858 	btrfs_put_root(pending_snapshot->snap);
859 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
860 free_pending:
861 	if (pending_snapshot->anon_dev)
862 		free_anon_bdev(pending_snapshot->anon_dev);
863 	kfree(pending_snapshot->root_item);
864 	btrfs_free_path(pending_snapshot->path);
865 	kfree(pending_snapshot);
866 
867 	return ret;
868 }
869 
870 /*  copy of may_delete in fs/namei.c()
871  *	Check whether we can remove a link victim from directory dir, check
872  *  whether the type of victim is right.
873  *  1. We can't do it if dir is read-only (done in permission())
874  *  2. We should have write and exec permissions on dir
875  *  3. We can't remove anything from append-only dir
876  *  4. We can't do anything with immutable dir (done in permission())
877  *  5. If the sticky bit on dir is set we should either
878  *	a. be owner of dir, or
879  *	b. be owner of victim, or
880  *	c. have CAP_FOWNER capability
881  *  6. If the victim is append-only or immutable we can't do anything with
882  *     links pointing to it.
883  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
884  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
885  *  9. We can't remove a root or mountpoint.
886  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
887  *     nfs_async_unlink().
888  */
889 
890 static int btrfs_may_delete(struct user_namespace *mnt_userns,
891 			    struct inode *dir, struct dentry *victim, int isdir)
892 {
893 	int error;
894 
895 	if (d_really_is_negative(victim))
896 		return -ENOENT;
897 
898 	BUG_ON(d_inode(victim->d_parent) != dir);
899 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
900 
901 	error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
902 	if (error)
903 		return error;
904 	if (IS_APPEND(dir))
905 		return -EPERM;
906 	if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
907 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
908 	    IS_SWAPFILE(d_inode(victim)))
909 		return -EPERM;
910 	if (isdir) {
911 		if (!d_is_dir(victim))
912 			return -ENOTDIR;
913 		if (IS_ROOT(victim))
914 			return -EBUSY;
915 	} else if (d_is_dir(victim))
916 		return -EISDIR;
917 	if (IS_DEADDIR(dir))
918 		return -ENOENT;
919 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
920 		return -EBUSY;
921 	return 0;
922 }
923 
924 /* copy of may_create in fs/namei.c() */
925 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
926 				   struct inode *dir, struct dentry *child)
927 {
928 	if (d_really_is_positive(child))
929 		return -EEXIST;
930 	if (IS_DEADDIR(dir))
931 		return -ENOENT;
932 	if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
933 		return -EOVERFLOW;
934 	return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
935 }
936 
937 /*
938  * Create a new subvolume below @parent.  This is largely modeled after
939  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
940  * inside this filesystem so it's quite a bit simpler.
941  */
942 static noinline int btrfs_mksubvol(const struct path *parent,
943 				   struct user_namespace *mnt_userns,
944 				   const char *name, int namelen,
945 				   struct btrfs_root *snap_src,
946 				   bool readonly,
947 				   struct btrfs_qgroup_inherit *inherit)
948 {
949 	struct inode *dir = d_inode(parent->dentry);
950 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
951 	struct dentry *dentry;
952 	int error;
953 
954 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
955 	if (error == -EINTR)
956 		return error;
957 
958 	dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
959 	error = PTR_ERR(dentry);
960 	if (IS_ERR(dentry))
961 		goto out_unlock;
962 
963 	error = btrfs_may_create(mnt_userns, dir, dentry);
964 	if (error)
965 		goto out_dput;
966 
967 	/*
968 	 * even if this name doesn't exist, we may get hash collisions.
969 	 * check for them now when we can safely fail
970 	 */
971 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
972 					       dir->i_ino, name,
973 					       namelen);
974 	if (error)
975 		goto out_dput;
976 
977 	down_read(&fs_info->subvol_sem);
978 
979 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
980 		goto out_up_read;
981 
982 	if (snap_src)
983 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
984 	else
985 		error = create_subvol(mnt_userns, dir, dentry, inherit);
986 
987 	if (!error)
988 		fsnotify_mkdir(dir, dentry);
989 out_up_read:
990 	up_read(&fs_info->subvol_sem);
991 out_dput:
992 	dput(dentry);
993 out_unlock:
994 	btrfs_inode_unlock(dir, 0);
995 	return error;
996 }
997 
998 static noinline int btrfs_mksnapshot(const struct path *parent,
999 				   struct user_namespace *mnt_userns,
1000 				   const char *name, int namelen,
1001 				   struct btrfs_root *root,
1002 				   bool readonly,
1003 				   struct btrfs_qgroup_inherit *inherit)
1004 {
1005 	int ret;
1006 	bool snapshot_force_cow = false;
1007 
1008 	/*
1009 	 * Force new buffered writes to reserve space even when NOCOW is
1010 	 * possible. This is to avoid later writeback (running dealloc) to
1011 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1012 	 */
1013 	btrfs_drew_read_lock(&root->snapshot_lock);
1014 
1015 	ret = btrfs_start_delalloc_snapshot(root, false);
1016 	if (ret)
1017 		goto out;
1018 
1019 	/*
1020 	 * All previous writes have started writeback in NOCOW mode, so now
1021 	 * we force future writes to fallback to COW mode during snapshot
1022 	 * creation.
1023 	 */
1024 	atomic_inc(&root->snapshot_force_cow);
1025 	snapshot_force_cow = true;
1026 
1027 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1028 
1029 	ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
1030 			     root, readonly, inherit);
1031 out:
1032 	if (snapshot_force_cow)
1033 		atomic_dec(&root->snapshot_force_cow);
1034 	btrfs_drew_read_unlock(&root->snapshot_lock);
1035 	return ret;
1036 }
1037 
1038 /*
1039  * Defrag specific helper to get an extent map.
1040  *
1041  * Differences between this and btrfs_get_extent() are:
1042  *
1043  * - No extent_map will be added to inode->extent_tree
1044  *   To reduce memory usage in the long run.
1045  *
1046  * - Extra optimization to skip file extents older than @newer_than
1047  *   By using btrfs_search_forward() we can skip entire file ranges that
1048  *   have extents created in past transactions, because btrfs_search_forward()
1049  *   will not visit leaves and nodes with a generation smaller than given
1050  *   minimal generation threshold (@newer_than).
1051  *
1052  * Return valid em if we find a file extent matching the requirement.
1053  * Return NULL if we can not find a file extent matching the requirement.
1054  *
1055  * Return ERR_PTR() for error.
1056  */
1057 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
1058 					    u64 start, u64 newer_than)
1059 {
1060 	struct btrfs_root *root = inode->root;
1061 	struct btrfs_file_extent_item *fi;
1062 	struct btrfs_path path = { 0 };
1063 	struct extent_map *em;
1064 	struct btrfs_key key;
1065 	u64 ino = btrfs_ino(inode);
1066 	int ret;
1067 
1068 	em = alloc_extent_map();
1069 	if (!em) {
1070 		ret = -ENOMEM;
1071 		goto err;
1072 	}
1073 
1074 	key.objectid = ino;
1075 	key.type = BTRFS_EXTENT_DATA_KEY;
1076 	key.offset = start;
1077 
1078 	if (newer_than) {
1079 		ret = btrfs_search_forward(root, &key, &path, newer_than);
1080 		if (ret < 0)
1081 			goto err;
1082 		/* Can't find anything newer */
1083 		if (ret > 0)
1084 			goto not_found;
1085 	} else {
1086 		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
1087 		if (ret < 0)
1088 			goto err;
1089 	}
1090 	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
1091 		/*
1092 		 * If btrfs_search_slot() makes path to point beyond nritems,
1093 		 * we should not have an empty leaf, as this inode must at
1094 		 * least have its INODE_ITEM.
1095 		 */
1096 		ASSERT(btrfs_header_nritems(path.nodes[0]));
1097 		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
1098 	}
1099 	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1100 	/* Perfect match, no need to go one slot back */
1101 	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
1102 	    key.offset == start)
1103 		goto iterate;
1104 
1105 	/* We didn't find a perfect match, needs to go one slot back */
1106 	if (path.slots[0] > 0) {
1107 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1108 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
1109 			path.slots[0]--;
1110 	}
1111 
1112 iterate:
1113 	/* Iterate through the path to find a file extent covering @start */
1114 	while (true) {
1115 		u64 extent_end;
1116 
1117 		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
1118 			goto next;
1119 
1120 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1121 
1122 		/*
1123 		 * We may go one slot back to INODE_REF/XATTR item, then
1124 		 * need to go forward until we reach an EXTENT_DATA.
1125 		 * But we should still has the correct ino as key.objectid.
1126 		 */
1127 		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
1128 			goto next;
1129 
1130 		/* It's beyond our target range, definitely not extent found */
1131 		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
1132 			goto not_found;
1133 
1134 		/*
1135 		 *	|	|<- File extent ->|
1136 		 *	\- start
1137 		 *
1138 		 * This means there is a hole between start and key.offset.
1139 		 */
1140 		if (key.offset > start) {
1141 			em->start = start;
1142 			em->orig_start = start;
1143 			em->block_start = EXTENT_MAP_HOLE;
1144 			em->len = key.offset - start;
1145 			break;
1146 		}
1147 
1148 		fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
1149 				    struct btrfs_file_extent_item);
1150 		extent_end = btrfs_file_extent_end(&path);
1151 
1152 		/*
1153 		 *	|<- file extent ->|	|
1154 		 *				\- start
1155 		 *
1156 		 * We haven't reached start, search next slot.
1157 		 */
1158 		if (extent_end <= start)
1159 			goto next;
1160 
1161 		/* Now this extent covers @start, convert it to em */
1162 		btrfs_extent_item_to_extent_map(inode, &path, fi, false, em);
1163 		break;
1164 next:
1165 		ret = btrfs_next_item(root, &path);
1166 		if (ret < 0)
1167 			goto err;
1168 		if (ret > 0)
1169 			goto not_found;
1170 	}
1171 	btrfs_release_path(&path);
1172 	return em;
1173 
1174 not_found:
1175 	btrfs_release_path(&path);
1176 	free_extent_map(em);
1177 	return NULL;
1178 
1179 err:
1180 	btrfs_release_path(&path);
1181 	free_extent_map(em);
1182 	return ERR_PTR(ret);
1183 }
1184 
1185 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
1186 					       u64 newer_than, bool locked)
1187 {
1188 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1189 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1190 	struct extent_map *em;
1191 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
1192 
1193 	/*
1194 	 * hopefully we have this extent in the tree already, try without
1195 	 * the full extent lock
1196 	 */
1197 	read_lock(&em_tree->lock);
1198 	em = lookup_extent_mapping(em_tree, start, sectorsize);
1199 	read_unlock(&em_tree->lock);
1200 
1201 	/*
1202 	 * We can get a merged extent, in that case, we need to re-search
1203 	 * tree to get the original em for defrag.
1204 	 *
1205 	 * If @newer_than is 0 or em::generation < newer_than, we can trust
1206 	 * this em, as either we don't care about the generation, or the
1207 	 * merged extent map will be rejected anyway.
1208 	 */
1209 	if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
1210 	    newer_than && em->generation >= newer_than) {
1211 		free_extent_map(em);
1212 		em = NULL;
1213 	}
1214 
1215 	if (!em) {
1216 		struct extent_state *cached = NULL;
1217 		u64 end = start + sectorsize - 1;
1218 
1219 		/* get the big lock and read metadata off disk */
1220 		if (!locked)
1221 			lock_extent_bits(io_tree, start, end, &cached);
1222 		em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
1223 		if (!locked)
1224 			unlock_extent_cached(io_tree, start, end, &cached);
1225 
1226 		if (IS_ERR(em))
1227 			return NULL;
1228 	}
1229 
1230 	return em;
1231 }
1232 
1233 static u32 get_extent_max_capacity(const struct extent_map *em)
1234 {
1235 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1236 		return BTRFS_MAX_COMPRESSED;
1237 	return BTRFS_MAX_EXTENT_SIZE;
1238 }
1239 
1240 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
1241 				     u32 extent_thresh, u64 newer_than, bool locked)
1242 {
1243 	struct extent_map *next;
1244 	bool ret = false;
1245 
1246 	/* this is the last extent */
1247 	if (em->start + em->len >= i_size_read(inode))
1248 		return false;
1249 
1250 	/*
1251 	 * Here we need to pass @newer_then when checking the next extent, or
1252 	 * we will hit a case we mark current extent for defrag, but the next
1253 	 * one will not be a target.
1254 	 * This will just cause extra IO without really reducing the fragments.
1255 	 */
1256 	next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
1257 	/* No more em or hole */
1258 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1259 		goto out;
1260 	if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
1261 		goto out;
1262 	/*
1263 	 * If the next extent is at its max capacity, defragging current extent
1264 	 * makes no sense, as the total number of extents won't change.
1265 	 */
1266 	if (next->len >= get_extent_max_capacity(em))
1267 		goto out;
1268 	/* Skip older extent */
1269 	if (next->generation < newer_than)
1270 		goto out;
1271 	/* Also check extent size */
1272 	if (next->len >= extent_thresh)
1273 		goto out;
1274 
1275 	ret = true;
1276 out:
1277 	free_extent_map(next);
1278 	return ret;
1279 }
1280 
1281 /*
1282  * Prepare one page to be defragged.
1283  *
1284  * This will ensure:
1285  *
1286  * - Returned page is locked and has been set up properly.
1287  * - No ordered extent exists in the page.
1288  * - The page is uptodate.
1289  *
1290  * NOTE: Caller should also wait for page writeback after the cluster is
1291  * prepared, here we don't do writeback wait for each page.
1292  */
1293 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
1294 					    pgoff_t index)
1295 {
1296 	struct address_space *mapping = inode->vfs_inode.i_mapping;
1297 	gfp_t mask = btrfs_alloc_write_mask(mapping);
1298 	u64 page_start = (u64)index << PAGE_SHIFT;
1299 	u64 page_end = page_start + PAGE_SIZE - 1;
1300 	struct extent_state *cached_state = NULL;
1301 	struct page *page;
1302 	int ret;
1303 
1304 again:
1305 	page = find_or_create_page(mapping, index, mask);
1306 	if (!page)
1307 		return ERR_PTR(-ENOMEM);
1308 
1309 	/*
1310 	 * Since we can defragment files opened read-only, we can encounter
1311 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
1312 	 * can't do I/O using huge pages yet, so return an error for now.
1313 	 * Filesystem transparent huge pages are typically only used for
1314 	 * executables that explicitly enable them, so this isn't very
1315 	 * restrictive.
1316 	 */
1317 	if (PageCompound(page)) {
1318 		unlock_page(page);
1319 		put_page(page);
1320 		return ERR_PTR(-ETXTBSY);
1321 	}
1322 
1323 	ret = set_page_extent_mapped(page);
1324 	if (ret < 0) {
1325 		unlock_page(page);
1326 		put_page(page);
1327 		return ERR_PTR(ret);
1328 	}
1329 
1330 	/* Wait for any existing ordered extent in the range */
1331 	while (1) {
1332 		struct btrfs_ordered_extent *ordered;
1333 
1334 		lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
1335 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
1336 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
1337 				     &cached_state);
1338 		if (!ordered)
1339 			break;
1340 
1341 		unlock_page(page);
1342 		btrfs_start_ordered_extent(ordered, 1);
1343 		btrfs_put_ordered_extent(ordered);
1344 		lock_page(page);
1345 		/*
1346 		 * We unlocked the page above, so we need check if it was
1347 		 * released or not.
1348 		 */
1349 		if (page->mapping != mapping || !PagePrivate(page)) {
1350 			unlock_page(page);
1351 			put_page(page);
1352 			goto again;
1353 		}
1354 	}
1355 
1356 	/*
1357 	 * Now the page range has no ordered extent any more.  Read the page to
1358 	 * make it uptodate.
1359 	 */
1360 	if (!PageUptodate(page)) {
1361 		btrfs_read_folio(NULL, page_folio(page));
1362 		lock_page(page);
1363 		if (page->mapping != mapping || !PagePrivate(page)) {
1364 			unlock_page(page);
1365 			put_page(page);
1366 			goto again;
1367 		}
1368 		if (!PageUptodate(page)) {
1369 			unlock_page(page);
1370 			put_page(page);
1371 			return ERR_PTR(-EIO);
1372 		}
1373 	}
1374 	return page;
1375 }
1376 
1377 struct defrag_target_range {
1378 	struct list_head list;
1379 	u64 start;
1380 	u64 len;
1381 };
1382 
1383 /*
1384  * Collect all valid target extents.
1385  *
1386  * @start:	   file offset to lookup
1387  * @len:	   length to lookup
1388  * @extent_thresh: file extent size threshold, any extent size >= this value
1389  *		   will be ignored
1390  * @newer_than:    only defrag extents newer than this value
1391  * @do_compress:   whether the defrag is doing compression
1392  *		   if true, @extent_thresh will be ignored and all regular
1393  *		   file extents meeting @newer_than will be targets.
1394  * @locked:	   if the range has already held extent lock
1395  * @target_list:   list of targets file extents
1396  */
1397 static int defrag_collect_targets(struct btrfs_inode *inode,
1398 				  u64 start, u64 len, u32 extent_thresh,
1399 				  u64 newer_than, bool do_compress,
1400 				  bool locked, struct list_head *target_list,
1401 				  u64 *last_scanned_ret)
1402 {
1403 	bool last_is_target = false;
1404 	u64 cur = start;
1405 	int ret = 0;
1406 
1407 	while (cur < start + len) {
1408 		struct extent_map *em;
1409 		struct defrag_target_range *new;
1410 		bool next_mergeable = true;
1411 		u64 range_len;
1412 
1413 		last_is_target = false;
1414 		em = defrag_lookup_extent(&inode->vfs_inode, cur,
1415 					  newer_than, locked);
1416 		if (!em)
1417 			break;
1418 
1419 		/*
1420 		 * If the file extent is an inlined one, we may still want to
1421 		 * defrag it (fallthrough) if it will cause a regular extent.
1422 		 * This is for users who want to convert inline extents to
1423 		 * regular ones through max_inline= mount option.
1424 		 */
1425 		if (em->block_start == EXTENT_MAP_INLINE &&
1426 		    em->len <= inode->root->fs_info->max_inline)
1427 			goto next;
1428 
1429 		/* Skip hole/delalloc/preallocated extents */
1430 		if (em->block_start == EXTENT_MAP_HOLE ||
1431 		    em->block_start == EXTENT_MAP_DELALLOC ||
1432 		    test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1433 			goto next;
1434 
1435 		/* Skip older extent */
1436 		if (em->generation < newer_than)
1437 			goto next;
1438 
1439 		/* This em is under writeback, no need to defrag */
1440 		if (em->generation == (u64)-1)
1441 			goto next;
1442 
1443 		/*
1444 		 * Our start offset might be in the middle of an existing extent
1445 		 * map, so take that into account.
1446 		 */
1447 		range_len = em->len - (cur - em->start);
1448 		/*
1449 		 * If this range of the extent map is already flagged for delalloc,
1450 		 * skip it, because:
1451 		 *
1452 		 * 1) We could deadlock later, when trying to reserve space for
1453 		 *    delalloc, because in case we can't immediately reserve space
1454 		 *    the flusher can start delalloc and wait for the respective
1455 		 *    ordered extents to complete. The deadlock would happen
1456 		 *    because we do the space reservation while holding the range
1457 		 *    locked, and starting writeback, or finishing an ordered
1458 		 *    extent, requires locking the range;
1459 		 *
1460 		 * 2) If there's delalloc there, it means there's dirty pages for
1461 		 *    which writeback has not started yet (we clean the delalloc
1462 		 *    flag when starting writeback and after creating an ordered
1463 		 *    extent). If we mark pages in an adjacent range for defrag,
1464 		 *    then we will have a larger contiguous range for delalloc,
1465 		 *    very likely resulting in a larger extent after writeback is
1466 		 *    triggered (except in a case of free space fragmentation).
1467 		 */
1468 		if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
1469 				   EXTENT_DELALLOC, 0, NULL))
1470 			goto next;
1471 
1472 		/*
1473 		 * For do_compress case, we want to compress all valid file
1474 		 * extents, thus no @extent_thresh or mergeable check.
1475 		 */
1476 		if (do_compress)
1477 			goto add;
1478 
1479 		/* Skip too large extent */
1480 		if (range_len >= extent_thresh)
1481 			goto next;
1482 
1483 		/*
1484 		 * Skip extents already at its max capacity, this is mostly for
1485 		 * compressed extents, which max cap is only 128K.
1486 		 */
1487 		if (em->len >= get_extent_max_capacity(em))
1488 			goto next;
1489 
1490 		/*
1491 		 * Normally there are no more extents after an inline one, thus
1492 		 * @next_mergeable will normally be false and not defragged.
1493 		 * So if an inline extent passed all above checks, just add it
1494 		 * for defrag, and be converted to regular extents.
1495 		 */
1496 		if (em->block_start == EXTENT_MAP_INLINE)
1497 			goto add;
1498 
1499 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1500 						extent_thresh, newer_than, locked);
1501 		if (!next_mergeable) {
1502 			struct defrag_target_range *last;
1503 
1504 			/* Empty target list, no way to merge with last entry */
1505 			if (list_empty(target_list))
1506 				goto next;
1507 			last = list_entry(target_list->prev,
1508 					  struct defrag_target_range, list);
1509 			/* Not mergeable with last entry */
1510 			if (last->start + last->len != cur)
1511 				goto next;
1512 
1513 			/* Mergeable, fall through to add it to @target_list. */
1514 		}
1515 
1516 add:
1517 		last_is_target = true;
1518 		range_len = min(extent_map_end(em), start + len) - cur;
1519 		/*
1520 		 * This one is a good target, check if it can be merged into
1521 		 * last range of the target list.
1522 		 */
1523 		if (!list_empty(target_list)) {
1524 			struct defrag_target_range *last;
1525 
1526 			last = list_entry(target_list->prev,
1527 					  struct defrag_target_range, list);
1528 			ASSERT(last->start + last->len <= cur);
1529 			if (last->start + last->len == cur) {
1530 				/* Mergeable, enlarge the last entry */
1531 				last->len += range_len;
1532 				goto next;
1533 			}
1534 			/* Fall through to allocate a new entry */
1535 		}
1536 
1537 		/* Allocate new defrag_target_range */
1538 		new = kmalloc(sizeof(*new), GFP_NOFS);
1539 		if (!new) {
1540 			free_extent_map(em);
1541 			ret = -ENOMEM;
1542 			break;
1543 		}
1544 		new->start = cur;
1545 		new->len = range_len;
1546 		list_add_tail(&new->list, target_list);
1547 
1548 next:
1549 		cur = extent_map_end(em);
1550 		free_extent_map(em);
1551 	}
1552 	if (ret < 0) {
1553 		struct defrag_target_range *entry;
1554 		struct defrag_target_range *tmp;
1555 
1556 		list_for_each_entry_safe(entry, tmp, target_list, list) {
1557 			list_del_init(&entry->list);
1558 			kfree(entry);
1559 		}
1560 	}
1561 	if (!ret && last_scanned_ret) {
1562 		/*
1563 		 * If the last extent is not a target, the caller can skip to
1564 		 * the end of that extent.
1565 		 * Otherwise, we can only go the end of the specified range.
1566 		 */
1567 		if (!last_is_target)
1568 			*last_scanned_ret = max(cur, *last_scanned_ret);
1569 		else
1570 			*last_scanned_ret = max(start + len, *last_scanned_ret);
1571 	}
1572 	return ret;
1573 }
1574 
1575 #define CLUSTER_SIZE	(SZ_256K)
1576 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1577 
1578 /*
1579  * Defrag one contiguous target range.
1580  *
1581  * @inode:	target inode
1582  * @target:	target range to defrag
1583  * @pages:	locked pages covering the defrag range
1584  * @nr_pages:	number of locked pages
1585  *
1586  * Caller should ensure:
1587  *
1588  * - Pages are prepared
1589  *   Pages should be locked, no ordered extent in the pages range,
1590  *   no writeback.
1591  *
1592  * - Extent bits are locked
1593  */
1594 static int defrag_one_locked_target(struct btrfs_inode *inode,
1595 				    struct defrag_target_range *target,
1596 				    struct page **pages, int nr_pages,
1597 				    struct extent_state **cached_state)
1598 {
1599 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1600 	struct extent_changeset *data_reserved = NULL;
1601 	const u64 start = target->start;
1602 	const u64 len = target->len;
1603 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1604 	unsigned long start_index = start >> PAGE_SHIFT;
1605 	unsigned long first_index = page_index(pages[0]);
1606 	int ret = 0;
1607 	int i;
1608 
1609 	ASSERT(last_index - first_index + 1 <= nr_pages);
1610 
1611 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1612 	if (ret < 0)
1613 		return ret;
1614 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1615 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1616 			 EXTENT_DEFRAG, 0, 0, cached_state);
1617 	set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1618 
1619 	/* Update the page status */
1620 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1621 		ClearPageChecked(pages[i]);
1622 		btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1623 	}
1624 	btrfs_delalloc_release_extents(inode, len);
1625 	extent_changeset_free(data_reserved);
1626 
1627 	return ret;
1628 }
1629 
1630 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1631 			    u32 extent_thresh, u64 newer_than, bool do_compress,
1632 			    u64 *last_scanned_ret)
1633 {
1634 	struct extent_state *cached_state = NULL;
1635 	struct defrag_target_range *entry;
1636 	struct defrag_target_range *tmp;
1637 	LIST_HEAD(target_list);
1638 	struct page **pages;
1639 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1640 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1641 	u64 start_index = start >> PAGE_SHIFT;
1642 	unsigned int nr_pages = last_index - start_index + 1;
1643 	int ret = 0;
1644 	int i;
1645 
1646 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1647 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1648 
1649 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1650 	if (!pages)
1651 		return -ENOMEM;
1652 
1653 	/* Prepare all pages */
1654 	for (i = 0; i < nr_pages; i++) {
1655 		pages[i] = defrag_prepare_one_page(inode, start_index + i);
1656 		if (IS_ERR(pages[i])) {
1657 			ret = PTR_ERR(pages[i]);
1658 			pages[i] = NULL;
1659 			goto free_pages;
1660 		}
1661 	}
1662 	for (i = 0; i < nr_pages; i++)
1663 		wait_on_page_writeback(pages[i]);
1664 
1665 	/* Lock the pages range */
1666 	lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT,
1667 			 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1668 			 &cached_state);
1669 	/*
1670 	 * Now we have a consistent view about the extent map, re-check
1671 	 * which range really needs to be defragged.
1672 	 *
1673 	 * And this time we have extent locked already, pass @locked = true
1674 	 * so that we won't relock the extent range and cause deadlock.
1675 	 */
1676 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1677 				     newer_than, do_compress, true,
1678 				     &target_list, last_scanned_ret);
1679 	if (ret < 0)
1680 		goto unlock_extent;
1681 
1682 	list_for_each_entry(entry, &target_list, list) {
1683 		ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1684 					       &cached_state);
1685 		if (ret < 0)
1686 			break;
1687 	}
1688 
1689 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1690 		list_del_init(&entry->list);
1691 		kfree(entry);
1692 	}
1693 unlock_extent:
1694 	unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT,
1695 			     (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1696 			     &cached_state);
1697 free_pages:
1698 	for (i = 0; i < nr_pages; i++) {
1699 		if (pages[i]) {
1700 			unlock_page(pages[i]);
1701 			put_page(pages[i]);
1702 		}
1703 	}
1704 	kfree(pages);
1705 	return ret;
1706 }
1707 
1708 static int defrag_one_cluster(struct btrfs_inode *inode,
1709 			      struct file_ra_state *ra,
1710 			      u64 start, u32 len, u32 extent_thresh,
1711 			      u64 newer_than, bool do_compress,
1712 			      unsigned long *sectors_defragged,
1713 			      unsigned long max_sectors,
1714 			      u64 *last_scanned_ret)
1715 {
1716 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1717 	struct defrag_target_range *entry;
1718 	struct defrag_target_range *tmp;
1719 	LIST_HEAD(target_list);
1720 	int ret;
1721 
1722 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1723 				     newer_than, do_compress, false,
1724 				     &target_list, NULL);
1725 	if (ret < 0)
1726 		goto out;
1727 
1728 	list_for_each_entry(entry, &target_list, list) {
1729 		u32 range_len = entry->len;
1730 
1731 		/* Reached or beyond the limit */
1732 		if (max_sectors && *sectors_defragged >= max_sectors) {
1733 			ret = 1;
1734 			break;
1735 		}
1736 
1737 		if (max_sectors)
1738 			range_len = min_t(u32, range_len,
1739 				(max_sectors - *sectors_defragged) * sectorsize);
1740 
1741 		/*
1742 		 * If defrag_one_range() has updated last_scanned_ret,
1743 		 * our range may already be invalid (e.g. hole punched).
1744 		 * Skip if our range is before last_scanned_ret, as there is
1745 		 * no need to defrag the range anymore.
1746 		 */
1747 		if (entry->start + range_len <= *last_scanned_ret)
1748 			continue;
1749 
1750 		if (ra)
1751 			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1752 				ra, NULL, entry->start >> PAGE_SHIFT,
1753 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1754 				(entry->start >> PAGE_SHIFT) + 1);
1755 		/*
1756 		 * Here we may not defrag any range if holes are punched before
1757 		 * we locked the pages.
1758 		 * But that's fine, it only affects the @sectors_defragged
1759 		 * accounting.
1760 		 */
1761 		ret = defrag_one_range(inode, entry->start, range_len,
1762 				       extent_thresh, newer_than, do_compress,
1763 				       last_scanned_ret);
1764 		if (ret < 0)
1765 			break;
1766 		*sectors_defragged += range_len >>
1767 				      inode->root->fs_info->sectorsize_bits;
1768 	}
1769 out:
1770 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1771 		list_del_init(&entry->list);
1772 		kfree(entry);
1773 	}
1774 	if (ret >= 0)
1775 		*last_scanned_ret = max(*last_scanned_ret, start + len);
1776 	return ret;
1777 }
1778 
1779 /*
1780  * Entry point to file defragmentation.
1781  *
1782  * @inode:	   inode to be defragged
1783  * @ra:		   readahead state (can be NUL)
1784  * @range:	   defrag options including range and flags
1785  * @newer_than:	   minimum transid to defrag
1786  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1787  *		   will be defragged.
1788  *
1789  * Return <0 for error.
1790  * Return >=0 for the number of sectors defragged, and range->start will be updated
1791  * to indicate the file offset where next defrag should be started at.
1792  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1793  *  defragging all the range).
1794  */
1795 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1796 		      struct btrfs_ioctl_defrag_range_args *range,
1797 		      u64 newer_than, unsigned long max_to_defrag)
1798 {
1799 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1800 	unsigned long sectors_defragged = 0;
1801 	u64 isize = i_size_read(inode);
1802 	u64 cur;
1803 	u64 last_byte;
1804 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1805 	bool ra_allocated = false;
1806 	int compress_type = BTRFS_COMPRESS_ZLIB;
1807 	int ret = 0;
1808 	u32 extent_thresh = range->extent_thresh;
1809 	pgoff_t start_index;
1810 
1811 	if (isize == 0)
1812 		return 0;
1813 
1814 	if (range->start >= isize)
1815 		return -EINVAL;
1816 
1817 	if (do_compress) {
1818 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1819 			return -EINVAL;
1820 		if (range->compress_type)
1821 			compress_type = range->compress_type;
1822 	}
1823 
1824 	if (extent_thresh == 0)
1825 		extent_thresh = SZ_256K;
1826 
1827 	if (range->start + range->len > range->start) {
1828 		/* Got a specific range */
1829 		last_byte = min(isize, range->start + range->len);
1830 	} else {
1831 		/* Defrag until file end */
1832 		last_byte = isize;
1833 	}
1834 
1835 	/* Align the range */
1836 	cur = round_down(range->start, fs_info->sectorsize);
1837 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1838 
1839 	/*
1840 	 * If we were not given a ra, allocate a readahead context. As
1841 	 * readahead is just an optimization, defrag will work without it so
1842 	 * we don't error out.
1843 	 */
1844 	if (!ra) {
1845 		ra_allocated = true;
1846 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1847 		if (ra)
1848 			file_ra_state_init(ra, inode->i_mapping);
1849 	}
1850 
1851 	/*
1852 	 * Make writeback start from the beginning of the range, so that the
1853 	 * defrag range can be written sequentially.
1854 	 */
1855 	start_index = cur >> PAGE_SHIFT;
1856 	if (start_index < inode->i_mapping->writeback_index)
1857 		inode->i_mapping->writeback_index = start_index;
1858 
1859 	while (cur < last_byte) {
1860 		const unsigned long prev_sectors_defragged = sectors_defragged;
1861 		u64 last_scanned = cur;
1862 		u64 cluster_end;
1863 
1864 		if (btrfs_defrag_cancelled(fs_info)) {
1865 			ret = -EAGAIN;
1866 			break;
1867 		}
1868 
1869 		/* We want the cluster end at page boundary when possible */
1870 		cluster_end = (((cur >> PAGE_SHIFT) +
1871 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1872 		cluster_end = min(cluster_end, last_byte);
1873 
1874 		btrfs_inode_lock(inode, 0);
1875 		if (IS_SWAPFILE(inode)) {
1876 			ret = -ETXTBSY;
1877 			btrfs_inode_unlock(inode, 0);
1878 			break;
1879 		}
1880 		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1881 			btrfs_inode_unlock(inode, 0);
1882 			break;
1883 		}
1884 		if (do_compress)
1885 			BTRFS_I(inode)->defrag_compress = compress_type;
1886 		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1887 				cluster_end + 1 - cur, extent_thresh,
1888 				newer_than, do_compress, &sectors_defragged,
1889 				max_to_defrag, &last_scanned);
1890 
1891 		if (sectors_defragged > prev_sectors_defragged)
1892 			balance_dirty_pages_ratelimited(inode->i_mapping);
1893 
1894 		btrfs_inode_unlock(inode, 0);
1895 		if (ret < 0)
1896 			break;
1897 		cur = max(cluster_end + 1, last_scanned);
1898 		if (ret > 0) {
1899 			ret = 0;
1900 			break;
1901 		}
1902 		cond_resched();
1903 	}
1904 
1905 	if (ra_allocated)
1906 		kfree(ra);
1907 	/*
1908 	 * Update range.start for autodefrag, this will indicate where to start
1909 	 * in next run.
1910 	 */
1911 	range->start = cur;
1912 	if (sectors_defragged) {
1913 		/*
1914 		 * We have defragged some sectors, for compression case they
1915 		 * need to be written back immediately.
1916 		 */
1917 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1918 			filemap_flush(inode->i_mapping);
1919 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1920 				     &BTRFS_I(inode)->runtime_flags))
1921 				filemap_flush(inode->i_mapping);
1922 		}
1923 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1924 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1925 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1926 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1927 		ret = sectors_defragged;
1928 	}
1929 	if (do_compress) {
1930 		btrfs_inode_lock(inode, 0);
1931 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1932 		btrfs_inode_unlock(inode, 0);
1933 	}
1934 	return ret;
1935 }
1936 
1937 /*
1938  * Try to start exclusive operation @type or cancel it if it's running.
1939  *
1940  * Return:
1941  *   0        - normal mode, newly claimed op started
1942  *  >0        - normal mode, something else is running,
1943  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1944  * ECANCELED  - cancel mode, successful cancel
1945  * ENOTCONN   - cancel mode, operation not running anymore
1946  */
1947 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1948 			enum btrfs_exclusive_operation type, bool cancel)
1949 {
1950 	if (!cancel) {
1951 		/* Start normal op */
1952 		if (!btrfs_exclop_start(fs_info, type))
1953 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1954 		/* Exclusive operation is now claimed */
1955 		return 0;
1956 	}
1957 
1958 	/* Cancel running op */
1959 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1960 		/*
1961 		 * This blocks any exclop finish from setting it to NONE, so we
1962 		 * request cancellation. Either it runs and we will wait for it,
1963 		 * or it has finished and no waiting will happen.
1964 		 */
1965 		atomic_inc(&fs_info->reloc_cancel_req);
1966 		btrfs_exclop_start_unlock(fs_info);
1967 
1968 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1969 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1970 				    TASK_INTERRUPTIBLE);
1971 
1972 		return -ECANCELED;
1973 	}
1974 
1975 	/* Something else is running or none */
1976 	return -ENOTCONN;
1977 }
1978 
1979 static noinline int btrfs_ioctl_resize(struct file *file,
1980 					void __user *arg)
1981 {
1982 	BTRFS_DEV_LOOKUP_ARGS(args);
1983 	struct inode *inode = file_inode(file);
1984 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1985 	u64 new_size;
1986 	u64 old_size;
1987 	u64 devid = 1;
1988 	struct btrfs_root *root = BTRFS_I(inode)->root;
1989 	struct btrfs_ioctl_vol_args *vol_args;
1990 	struct btrfs_trans_handle *trans;
1991 	struct btrfs_device *device = NULL;
1992 	char *sizestr;
1993 	char *retptr;
1994 	char *devstr = NULL;
1995 	int ret = 0;
1996 	int mod = 0;
1997 	bool cancel;
1998 
1999 	if (!capable(CAP_SYS_ADMIN))
2000 		return -EPERM;
2001 
2002 	ret = mnt_want_write_file(file);
2003 	if (ret)
2004 		return ret;
2005 
2006 	/*
2007 	 * Read the arguments before checking exclusivity to be able to
2008 	 * distinguish regular resize and cancel
2009 	 */
2010 	vol_args = memdup_user(arg, sizeof(*vol_args));
2011 	if (IS_ERR(vol_args)) {
2012 		ret = PTR_ERR(vol_args);
2013 		goto out_drop;
2014 	}
2015 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2016 	sizestr = vol_args->name;
2017 	cancel = (strcmp("cancel", sizestr) == 0);
2018 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
2019 	if (ret)
2020 		goto out_free;
2021 	/* Exclusive operation is now claimed */
2022 
2023 	devstr = strchr(sizestr, ':');
2024 	if (devstr) {
2025 		sizestr = devstr + 1;
2026 		*devstr = '\0';
2027 		devstr = vol_args->name;
2028 		ret = kstrtoull(devstr, 10, &devid);
2029 		if (ret)
2030 			goto out_finish;
2031 		if (!devid) {
2032 			ret = -EINVAL;
2033 			goto out_finish;
2034 		}
2035 		btrfs_info(fs_info, "resizing devid %llu", devid);
2036 	}
2037 
2038 	args.devid = devid;
2039 	device = btrfs_find_device(fs_info->fs_devices, &args);
2040 	if (!device) {
2041 		btrfs_info(fs_info, "resizer unable to find device %llu",
2042 			   devid);
2043 		ret = -ENODEV;
2044 		goto out_finish;
2045 	}
2046 
2047 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2048 		btrfs_info(fs_info,
2049 			   "resizer unable to apply on readonly device %llu",
2050 		       devid);
2051 		ret = -EPERM;
2052 		goto out_finish;
2053 	}
2054 
2055 	if (!strcmp(sizestr, "max"))
2056 		new_size = bdev_nr_bytes(device->bdev);
2057 	else {
2058 		if (sizestr[0] == '-') {
2059 			mod = -1;
2060 			sizestr++;
2061 		} else if (sizestr[0] == '+') {
2062 			mod = 1;
2063 			sizestr++;
2064 		}
2065 		new_size = memparse(sizestr, &retptr);
2066 		if (*retptr != '\0' || new_size == 0) {
2067 			ret = -EINVAL;
2068 			goto out_finish;
2069 		}
2070 	}
2071 
2072 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2073 		ret = -EPERM;
2074 		goto out_finish;
2075 	}
2076 
2077 	old_size = btrfs_device_get_total_bytes(device);
2078 
2079 	if (mod < 0) {
2080 		if (new_size > old_size) {
2081 			ret = -EINVAL;
2082 			goto out_finish;
2083 		}
2084 		new_size = old_size - new_size;
2085 	} else if (mod > 0) {
2086 		if (new_size > ULLONG_MAX - old_size) {
2087 			ret = -ERANGE;
2088 			goto out_finish;
2089 		}
2090 		new_size = old_size + new_size;
2091 	}
2092 
2093 	if (new_size < SZ_256M) {
2094 		ret = -EINVAL;
2095 		goto out_finish;
2096 	}
2097 	if (new_size > bdev_nr_bytes(device->bdev)) {
2098 		ret = -EFBIG;
2099 		goto out_finish;
2100 	}
2101 
2102 	new_size = round_down(new_size, fs_info->sectorsize);
2103 
2104 	if (new_size > old_size) {
2105 		trans = btrfs_start_transaction(root, 0);
2106 		if (IS_ERR(trans)) {
2107 			ret = PTR_ERR(trans);
2108 			goto out_finish;
2109 		}
2110 		ret = btrfs_grow_device(trans, device, new_size);
2111 		btrfs_commit_transaction(trans);
2112 	} else if (new_size < old_size) {
2113 		ret = btrfs_shrink_device(device, new_size);
2114 	} /* equal, nothing need to do */
2115 
2116 	if (ret == 0 && new_size != old_size)
2117 		btrfs_info_in_rcu(fs_info,
2118 			"resize device %s (devid %llu) from %llu to %llu",
2119 			rcu_str_deref(device->name), device->devid,
2120 			old_size, new_size);
2121 out_finish:
2122 	btrfs_exclop_finish(fs_info);
2123 out_free:
2124 	kfree(vol_args);
2125 out_drop:
2126 	mnt_drop_write_file(file);
2127 	return ret;
2128 }
2129 
2130 static noinline int __btrfs_ioctl_snap_create(struct file *file,
2131 				struct user_namespace *mnt_userns,
2132 				const char *name, unsigned long fd, int subvol,
2133 				bool readonly,
2134 				struct btrfs_qgroup_inherit *inherit)
2135 {
2136 	int namelen;
2137 	int ret = 0;
2138 
2139 	if (!S_ISDIR(file_inode(file)->i_mode))
2140 		return -ENOTDIR;
2141 
2142 	ret = mnt_want_write_file(file);
2143 	if (ret)
2144 		goto out;
2145 
2146 	namelen = strlen(name);
2147 	if (strchr(name, '/')) {
2148 		ret = -EINVAL;
2149 		goto out_drop_write;
2150 	}
2151 
2152 	if (name[0] == '.' &&
2153 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
2154 		ret = -EEXIST;
2155 		goto out_drop_write;
2156 	}
2157 
2158 	if (subvol) {
2159 		ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
2160 				     namelen, NULL, readonly, inherit);
2161 	} else {
2162 		struct fd src = fdget(fd);
2163 		struct inode *src_inode;
2164 		if (!src.file) {
2165 			ret = -EINVAL;
2166 			goto out_drop_write;
2167 		}
2168 
2169 		src_inode = file_inode(src.file);
2170 		if (src_inode->i_sb != file_inode(file)->i_sb) {
2171 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
2172 				   "Snapshot src from another FS");
2173 			ret = -EXDEV;
2174 		} else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
2175 			/*
2176 			 * Subvolume creation is not restricted, but snapshots
2177 			 * are limited to own subvolumes only
2178 			 */
2179 			ret = -EPERM;
2180 		} else {
2181 			ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
2182 					       name, namelen,
2183 					       BTRFS_I(src_inode)->root,
2184 					       readonly, inherit);
2185 		}
2186 		fdput(src);
2187 	}
2188 out_drop_write:
2189 	mnt_drop_write_file(file);
2190 out:
2191 	return ret;
2192 }
2193 
2194 static noinline int btrfs_ioctl_snap_create(struct file *file,
2195 					    void __user *arg, int subvol)
2196 {
2197 	struct btrfs_ioctl_vol_args *vol_args;
2198 	int ret;
2199 
2200 	if (!S_ISDIR(file_inode(file)->i_mode))
2201 		return -ENOTDIR;
2202 
2203 	vol_args = memdup_user(arg, sizeof(*vol_args));
2204 	if (IS_ERR(vol_args))
2205 		return PTR_ERR(vol_args);
2206 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2207 
2208 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2209 					vol_args->name, vol_args->fd, subvol,
2210 					false, NULL);
2211 
2212 	kfree(vol_args);
2213 	return ret;
2214 }
2215 
2216 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
2217 					       void __user *arg, int subvol)
2218 {
2219 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2220 	int ret;
2221 	bool readonly = false;
2222 	struct btrfs_qgroup_inherit *inherit = NULL;
2223 
2224 	if (!S_ISDIR(file_inode(file)->i_mode))
2225 		return -ENOTDIR;
2226 
2227 	vol_args = memdup_user(arg, sizeof(*vol_args));
2228 	if (IS_ERR(vol_args))
2229 		return PTR_ERR(vol_args);
2230 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2231 
2232 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
2233 		ret = -EOPNOTSUPP;
2234 		goto free_args;
2235 	}
2236 
2237 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
2238 		readonly = true;
2239 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
2240 		u64 nums;
2241 
2242 		if (vol_args->size < sizeof(*inherit) ||
2243 		    vol_args->size > PAGE_SIZE) {
2244 			ret = -EINVAL;
2245 			goto free_args;
2246 		}
2247 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
2248 		if (IS_ERR(inherit)) {
2249 			ret = PTR_ERR(inherit);
2250 			goto free_args;
2251 		}
2252 
2253 		if (inherit->num_qgroups > PAGE_SIZE ||
2254 		    inherit->num_ref_copies > PAGE_SIZE ||
2255 		    inherit->num_excl_copies > PAGE_SIZE) {
2256 			ret = -EINVAL;
2257 			goto free_inherit;
2258 		}
2259 
2260 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
2261 		       2 * inherit->num_excl_copies;
2262 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
2263 			ret = -EINVAL;
2264 			goto free_inherit;
2265 		}
2266 	}
2267 
2268 	ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
2269 					vol_args->name, vol_args->fd, subvol,
2270 					readonly, inherit);
2271 	if (ret)
2272 		goto free_inherit;
2273 free_inherit:
2274 	kfree(inherit);
2275 free_args:
2276 	kfree(vol_args);
2277 	return ret;
2278 }
2279 
2280 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
2281 						void __user *arg)
2282 {
2283 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2284 	struct btrfs_root *root = BTRFS_I(inode)->root;
2285 	int ret = 0;
2286 	u64 flags = 0;
2287 
2288 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
2289 		return -EINVAL;
2290 
2291 	down_read(&fs_info->subvol_sem);
2292 	if (btrfs_root_readonly(root))
2293 		flags |= BTRFS_SUBVOL_RDONLY;
2294 	up_read(&fs_info->subvol_sem);
2295 
2296 	if (copy_to_user(arg, &flags, sizeof(flags)))
2297 		ret = -EFAULT;
2298 
2299 	return ret;
2300 }
2301 
2302 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
2303 					      void __user *arg)
2304 {
2305 	struct inode *inode = file_inode(file);
2306 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2307 	struct btrfs_root *root = BTRFS_I(inode)->root;
2308 	struct btrfs_trans_handle *trans;
2309 	u64 root_flags;
2310 	u64 flags;
2311 	int ret = 0;
2312 
2313 	if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
2314 		return -EPERM;
2315 
2316 	ret = mnt_want_write_file(file);
2317 	if (ret)
2318 		goto out;
2319 
2320 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2321 		ret = -EINVAL;
2322 		goto out_drop_write;
2323 	}
2324 
2325 	if (copy_from_user(&flags, arg, sizeof(flags))) {
2326 		ret = -EFAULT;
2327 		goto out_drop_write;
2328 	}
2329 
2330 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
2331 		ret = -EOPNOTSUPP;
2332 		goto out_drop_write;
2333 	}
2334 
2335 	down_write(&fs_info->subvol_sem);
2336 
2337 	/* nothing to do */
2338 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2339 		goto out_drop_sem;
2340 
2341 	root_flags = btrfs_root_flags(&root->root_item);
2342 	if (flags & BTRFS_SUBVOL_RDONLY) {
2343 		btrfs_set_root_flags(&root->root_item,
2344 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2345 	} else {
2346 		/*
2347 		 * Block RO -> RW transition if this subvolume is involved in
2348 		 * send
2349 		 */
2350 		spin_lock(&root->root_item_lock);
2351 		if (root->send_in_progress == 0) {
2352 			btrfs_set_root_flags(&root->root_item,
2353 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2354 			spin_unlock(&root->root_item_lock);
2355 		} else {
2356 			spin_unlock(&root->root_item_lock);
2357 			btrfs_warn(fs_info,
2358 				   "Attempt to set subvolume %llu read-write during send",
2359 				   root->root_key.objectid);
2360 			ret = -EPERM;
2361 			goto out_drop_sem;
2362 		}
2363 	}
2364 
2365 	trans = btrfs_start_transaction(root, 1);
2366 	if (IS_ERR(trans)) {
2367 		ret = PTR_ERR(trans);
2368 		goto out_reset;
2369 	}
2370 
2371 	ret = btrfs_update_root(trans, fs_info->tree_root,
2372 				&root->root_key, &root->root_item);
2373 	if (ret < 0) {
2374 		btrfs_end_transaction(trans);
2375 		goto out_reset;
2376 	}
2377 
2378 	ret = btrfs_commit_transaction(trans);
2379 
2380 out_reset:
2381 	if (ret)
2382 		btrfs_set_root_flags(&root->root_item, root_flags);
2383 out_drop_sem:
2384 	up_write(&fs_info->subvol_sem);
2385 out_drop_write:
2386 	mnt_drop_write_file(file);
2387 out:
2388 	return ret;
2389 }
2390 
2391 static noinline int key_in_sk(struct btrfs_key *key,
2392 			      struct btrfs_ioctl_search_key *sk)
2393 {
2394 	struct btrfs_key test;
2395 	int ret;
2396 
2397 	test.objectid = sk->min_objectid;
2398 	test.type = sk->min_type;
2399 	test.offset = sk->min_offset;
2400 
2401 	ret = btrfs_comp_cpu_keys(key, &test);
2402 	if (ret < 0)
2403 		return 0;
2404 
2405 	test.objectid = sk->max_objectid;
2406 	test.type = sk->max_type;
2407 	test.offset = sk->max_offset;
2408 
2409 	ret = btrfs_comp_cpu_keys(key, &test);
2410 	if (ret > 0)
2411 		return 0;
2412 	return 1;
2413 }
2414 
2415 static noinline int copy_to_sk(struct btrfs_path *path,
2416 			       struct btrfs_key *key,
2417 			       struct btrfs_ioctl_search_key *sk,
2418 			       size_t *buf_size,
2419 			       char __user *ubuf,
2420 			       unsigned long *sk_offset,
2421 			       int *num_found)
2422 {
2423 	u64 found_transid;
2424 	struct extent_buffer *leaf;
2425 	struct btrfs_ioctl_search_header sh;
2426 	struct btrfs_key test;
2427 	unsigned long item_off;
2428 	unsigned long item_len;
2429 	int nritems;
2430 	int i;
2431 	int slot;
2432 	int ret = 0;
2433 
2434 	leaf = path->nodes[0];
2435 	slot = path->slots[0];
2436 	nritems = btrfs_header_nritems(leaf);
2437 
2438 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2439 		i = nritems;
2440 		goto advance_key;
2441 	}
2442 	found_transid = btrfs_header_generation(leaf);
2443 
2444 	for (i = slot; i < nritems; i++) {
2445 		item_off = btrfs_item_ptr_offset(leaf, i);
2446 		item_len = btrfs_item_size(leaf, i);
2447 
2448 		btrfs_item_key_to_cpu(leaf, key, i);
2449 		if (!key_in_sk(key, sk))
2450 			continue;
2451 
2452 		if (sizeof(sh) + item_len > *buf_size) {
2453 			if (*num_found) {
2454 				ret = 1;
2455 				goto out;
2456 			}
2457 
2458 			/*
2459 			 * return one empty item back for v1, which does not
2460 			 * handle -EOVERFLOW
2461 			 */
2462 
2463 			*buf_size = sizeof(sh) + item_len;
2464 			item_len = 0;
2465 			ret = -EOVERFLOW;
2466 		}
2467 
2468 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2469 			ret = 1;
2470 			goto out;
2471 		}
2472 
2473 		sh.objectid = key->objectid;
2474 		sh.offset = key->offset;
2475 		sh.type = key->type;
2476 		sh.len = item_len;
2477 		sh.transid = found_transid;
2478 
2479 		/*
2480 		 * Copy search result header. If we fault then loop again so we
2481 		 * can fault in the pages and -EFAULT there if there's a
2482 		 * problem. Otherwise we'll fault and then copy the buffer in
2483 		 * properly this next time through
2484 		 */
2485 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2486 			ret = 0;
2487 			goto out;
2488 		}
2489 
2490 		*sk_offset += sizeof(sh);
2491 
2492 		if (item_len) {
2493 			char __user *up = ubuf + *sk_offset;
2494 			/*
2495 			 * Copy the item, same behavior as above, but reset the
2496 			 * * sk_offset so we copy the full thing again.
2497 			 */
2498 			if (read_extent_buffer_to_user_nofault(leaf, up,
2499 						item_off, item_len)) {
2500 				ret = 0;
2501 				*sk_offset -= sizeof(sh);
2502 				goto out;
2503 			}
2504 
2505 			*sk_offset += item_len;
2506 		}
2507 		(*num_found)++;
2508 
2509 		if (ret) /* -EOVERFLOW from above */
2510 			goto out;
2511 
2512 		if (*num_found >= sk->nr_items) {
2513 			ret = 1;
2514 			goto out;
2515 		}
2516 	}
2517 advance_key:
2518 	ret = 0;
2519 	test.objectid = sk->max_objectid;
2520 	test.type = sk->max_type;
2521 	test.offset = sk->max_offset;
2522 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2523 		ret = 1;
2524 	else if (key->offset < (u64)-1)
2525 		key->offset++;
2526 	else if (key->type < (u8)-1) {
2527 		key->offset = 0;
2528 		key->type++;
2529 	} else if (key->objectid < (u64)-1) {
2530 		key->offset = 0;
2531 		key->type = 0;
2532 		key->objectid++;
2533 	} else
2534 		ret = 1;
2535 out:
2536 	/*
2537 	 *  0: all items from this leaf copied, continue with next
2538 	 *  1: * more items can be copied, but unused buffer is too small
2539 	 *     * all items were found
2540 	 *     Either way, it will stops the loop which iterates to the next
2541 	 *     leaf
2542 	 *  -EOVERFLOW: item was to large for buffer
2543 	 *  -EFAULT: could not copy extent buffer back to userspace
2544 	 */
2545 	return ret;
2546 }
2547 
2548 static noinline int search_ioctl(struct inode *inode,
2549 				 struct btrfs_ioctl_search_key *sk,
2550 				 size_t *buf_size,
2551 				 char __user *ubuf)
2552 {
2553 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2554 	struct btrfs_root *root;
2555 	struct btrfs_key key;
2556 	struct btrfs_path *path;
2557 	int ret;
2558 	int num_found = 0;
2559 	unsigned long sk_offset = 0;
2560 
2561 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2562 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2563 		return -EOVERFLOW;
2564 	}
2565 
2566 	path = btrfs_alloc_path();
2567 	if (!path)
2568 		return -ENOMEM;
2569 
2570 	if (sk->tree_id == 0) {
2571 		/* search the root of the inode that was passed */
2572 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2573 	} else {
2574 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2575 		if (IS_ERR(root)) {
2576 			btrfs_free_path(path);
2577 			return PTR_ERR(root);
2578 		}
2579 	}
2580 
2581 	key.objectid = sk->min_objectid;
2582 	key.type = sk->min_type;
2583 	key.offset = sk->min_offset;
2584 
2585 	while (1) {
2586 		ret = -EFAULT;
2587 		/*
2588 		 * Ensure that the whole user buffer is faulted in at sub-page
2589 		 * granularity, otherwise the loop may live-lock.
2590 		 */
2591 		if (fault_in_subpage_writeable(ubuf + sk_offset,
2592 					       *buf_size - sk_offset))
2593 			break;
2594 
2595 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2596 		if (ret != 0) {
2597 			if (ret > 0)
2598 				ret = 0;
2599 			goto err;
2600 		}
2601 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2602 				 &sk_offset, &num_found);
2603 		btrfs_release_path(path);
2604 		if (ret)
2605 			break;
2606 
2607 	}
2608 	if (ret > 0)
2609 		ret = 0;
2610 err:
2611 	sk->nr_items = num_found;
2612 	btrfs_put_root(root);
2613 	btrfs_free_path(path);
2614 	return ret;
2615 }
2616 
2617 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
2618 					    void __user *argp)
2619 {
2620 	struct btrfs_ioctl_search_args __user *uargs = argp;
2621 	struct btrfs_ioctl_search_key sk;
2622 	int ret;
2623 	size_t buf_size;
2624 
2625 	if (!capable(CAP_SYS_ADMIN))
2626 		return -EPERM;
2627 
2628 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2629 		return -EFAULT;
2630 
2631 	buf_size = sizeof(uargs->buf);
2632 
2633 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2634 
2635 	/*
2636 	 * In the origin implementation an overflow is handled by returning a
2637 	 * search header with a len of zero, so reset ret.
2638 	 */
2639 	if (ret == -EOVERFLOW)
2640 		ret = 0;
2641 
2642 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2643 		ret = -EFAULT;
2644 	return ret;
2645 }
2646 
2647 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
2648 					       void __user *argp)
2649 {
2650 	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
2651 	struct btrfs_ioctl_search_args_v2 args;
2652 	int ret;
2653 	size_t buf_size;
2654 	const size_t buf_limit = SZ_16M;
2655 
2656 	if (!capable(CAP_SYS_ADMIN))
2657 		return -EPERM;
2658 
2659 	/* copy search header and buffer size */
2660 	if (copy_from_user(&args, uarg, sizeof(args)))
2661 		return -EFAULT;
2662 
2663 	buf_size = args.buf_size;
2664 
2665 	/* limit result size to 16MB */
2666 	if (buf_size > buf_limit)
2667 		buf_size = buf_limit;
2668 
2669 	ret = search_ioctl(inode, &args.key, &buf_size,
2670 			   (char __user *)(&uarg->buf[0]));
2671 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2672 		ret = -EFAULT;
2673 	else if (ret == -EOVERFLOW &&
2674 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2675 		ret = -EFAULT;
2676 
2677 	return ret;
2678 }
2679 
2680 /*
2681  * Search INODE_REFs to identify path name of 'dirid' directory
2682  * in a 'tree_id' tree. and sets path name to 'name'.
2683  */
2684 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2685 				u64 tree_id, u64 dirid, char *name)
2686 {
2687 	struct btrfs_root *root;
2688 	struct btrfs_key key;
2689 	char *ptr;
2690 	int ret = -1;
2691 	int slot;
2692 	int len;
2693 	int total_len = 0;
2694 	struct btrfs_inode_ref *iref;
2695 	struct extent_buffer *l;
2696 	struct btrfs_path *path;
2697 
2698 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2699 		name[0]='\0';
2700 		return 0;
2701 	}
2702 
2703 	path = btrfs_alloc_path();
2704 	if (!path)
2705 		return -ENOMEM;
2706 
2707 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2708 
2709 	root = btrfs_get_fs_root(info, tree_id, true);
2710 	if (IS_ERR(root)) {
2711 		ret = PTR_ERR(root);
2712 		root = NULL;
2713 		goto out;
2714 	}
2715 
2716 	key.objectid = dirid;
2717 	key.type = BTRFS_INODE_REF_KEY;
2718 	key.offset = (u64)-1;
2719 
2720 	while (1) {
2721 		ret = btrfs_search_backwards(root, &key, path);
2722 		if (ret < 0)
2723 			goto out;
2724 		else if (ret > 0) {
2725 			ret = -ENOENT;
2726 			goto out;
2727 		}
2728 
2729 		l = path->nodes[0];
2730 		slot = path->slots[0];
2731 
2732 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2733 		len = btrfs_inode_ref_name_len(l, iref);
2734 		ptr -= len + 1;
2735 		total_len += len + 1;
2736 		if (ptr < name) {
2737 			ret = -ENAMETOOLONG;
2738 			goto out;
2739 		}
2740 
2741 		*(ptr + len) = '/';
2742 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2743 
2744 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2745 			break;
2746 
2747 		btrfs_release_path(path);
2748 		key.objectid = key.offset;
2749 		key.offset = (u64)-1;
2750 		dirid = key.objectid;
2751 	}
2752 	memmove(name, ptr, total_len);
2753 	name[total_len] = '\0';
2754 	ret = 0;
2755 out:
2756 	btrfs_put_root(root);
2757 	btrfs_free_path(path);
2758 	return ret;
2759 }
2760 
2761 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2762 				struct inode *inode,
2763 				struct btrfs_ioctl_ino_lookup_user_args *args)
2764 {
2765 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2766 	struct super_block *sb = inode->i_sb;
2767 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2768 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2769 	u64 dirid = args->dirid;
2770 	unsigned long item_off;
2771 	unsigned long item_len;
2772 	struct btrfs_inode_ref *iref;
2773 	struct btrfs_root_ref *rref;
2774 	struct btrfs_root *root = NULL;
2775 	struct btrfs_path *path;
2776 	struct btrfs_key key, key2;
2777 	struct extent_buffer *leaf;
2778 	struct inode *temp_inode;
2779 	char *ptr;
2780 	int slot;
2781 	int len;
2782 	int total_len = 0;
2783 	int ret;
2784 
2785 	path = btrfs_alloc_path();
2786 	if (!path)
2787 		return -ENOMEM;
2788 
2789 	/*
2790 	 * If the bottom subvolume does not exist directly under upper_limit,
2791 	 * construct the path in from the bottom up.
2792 	 */
2793 	if (dirid != upper_limit.objectid) {
2794 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2795 
2796 		root = btrfs_get_fs_root(fs_info, treeid, true);
2797 		if (IS_ERR(root)) {
2798 			ret = PTR_ERR(root);
2799 			goto out;
2800 		}
2801 
2802 		key.objectid = dirid;
2803 		key.type = BTRFS_INODE_REF_KEY;
2804 		key.offset = (u64)-1;
2805 		while (1) {
2806 			ret = btrfs_search_backwards(root, &key, path);
2807 			if (ret < 0)
2808 				goto out_put;
2809 			else if (ret > 0) {
2810 				ret = -ENOENT;
2811 				goto out_put;
2812 			}
2813 
2814 			leaf = path->nodes[0];
2815 			slot = path->slots[0];
2816 
2817 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2818 			len = btrfs_inode_ref_name_len(leaf, iref);
2819 			ptr -= len + 1;
2820 			total_len += len + 1;
2821 			if (ptr < args->path) {
2822 				ret = -ENAMETOOLONG;
2823 				goto out_put;
2824 			}
2825 
2826 			*(ptr + len) = '/';
2827 			read_extent_buffer(leaf, ptr,
2828 					(unsigned long)(iref + 1), len);
2829 
2830 			/* Check the read+exec permission of this directory */
2831 			ret = btrfs_previous_item(root, path, dirid,
2832 						  BTRFS_INODE_ITEM_KEY);
2833 			if (ret < 0) {
2834 				goto out_put;
2835 			} else if (ret > 0) {
2836 				ret = -ENOENT;
2837 				goto out_put;
2838 			}
2839 
2840 			leaf = path->nodes[0];
2841 			slot = path->slots[0];
2842 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2843 			if (key2.objectid != dirid) {
2844 				ret = -ENOENT;
2845 				goto out_put;
2846 			}
2847 
2848 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2849 			if (IS_ERR(temp_inode)) {
2850 				ret = PTR_ERR(temp_inode);
2851 				goto out_put;
2852 			}
2853 			ret = inode_permission(mnt_userns, temp_inode,
2854 					       MAY_READ | MAY_EXEC);
2855 			iput(temp_inode);
2856 			if (ret) {
2857 				ret = -EACCES;
2858 				goto out_put;
2859 			}
2860 
2861 			if (key.offset == upper_limit.objectid)
2862 				break;
2863 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2864 				ret = -EACCES;
2865 				goto out_put;
2866 			}
2867 
2868 			btrfs_release_path(path);
2869 			key.objectid = key.offset;
2870 			key.offset = (u64)-1;
2871 			dirid = key.objectid;
2872 		}
2873 
2874 		memmove(args->path, ptr, total_len);
2875 		args->path[total_len] = '\0';
2876 		btrfs_put_root(root);
2877 		root = NULL;
2878 		btrfs_release_path(path);
2879 	}
2880 
2881 	/* Get the bottom subvolume's name from ROOT_REF */
2882 	key.objectid = treeid;
2883 	key.type = BTRFS_ROOT_REF_KEY;
2884 	key.offset = args->treeid;
2885 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2886 	if (ret < 0) {
2887 		goto out;
2888 	} else if (ret > 0) {
2889 		ret = -ENOENT;
2890 		goto out;
2891 	}
2892 
2893 	leaf = path->nodes[0];
2894 	slot = path->slots[0];
2895 	btrfs_item_key_to_cpu(leaf, &key, slot);
2896 
2897 	item_off = btrfs_item_ptr_offset(leaf, slot);
2898 	item_len = btrfs_item_size(leaf, slot);
2899 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2900 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2901 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2902 		ret = -EINVAL;
2903 		goto out;
2904 	}
2905 
2906 	/* Copy subvolume's name */
2907 	item_off += sizeof(struct btrfs_root_ref);
2908 	item_len -= sizeof(struct btrfs_root_ref);
2909 	read_extent_buffer(leaf, args->name, item_off, item_len);
2910 	args->name[item_len] = 0;
2911 
2912 out_put:
2913 	btrfs_put_root(root);
2914 out:
2915 	btrfs_free_path(path);
2916 	return ret;
2917 }
2918 
2919 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2920 					   void __user *argp)
2921 {
2922 	struct btrfs_ioctl_ino_lookup_args *args;
2923 	int ret = 0;
2924 
2925 	args = memdup_user(argp, sizeof(*args));
2926 	if (IS_ERR(args))
2927 		return PTR_ERR(args);
2928 
2929 	/*
2930 	 * Unprivileged query to obtain the containing subvolume root id. The
2931 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2932 	 */
2933 	if (args->treeid == 0)
2934 		args->treeid = root->root_key.objectid;
2935 
2936 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2937 		args->name[0] = 0;
2938 		goto out;
2939 	}
2940 
2941 	if (!capable(CAP_SYS_ADMIN)) {
2942 		ret = -EPERM;
2943 		goto out;
2944 	}
2945 
2946 	ret = btrfs_search_path_in_tree(root->fs_info,
2947 					args->treeid, args->objectid,
2948 					args->name);
2949 
2950 out:
2951 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2952 		ret = -EFAULT;
2953 
2954 	kfree(args);
2955 	return ret;
2956 }
2957 
2958 /*
2959  * Version of ino_lookup ioctl (unprivileged)
2960  *
2961  * The main differences from ino_lookup ioctl are:
2962  *
2963  *   1. Read + Exec permission will be checked using inode_permission() during
2964  *      path construction. -EACCES will be returned in case of failure.
2965  *   2. Path construction will be stopped at the inode number which corresponds
2966  *      to the fd with which this ioctl is called. If constructed path does not
2967  *      exist under fd's inode, -EACCES will be returned.
2968  *   3. The name of bottom subvolume is also searched and filled.
2969  */
2970 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2971 {
2972 	struct btrfs_ioctl_ino_lookup_user_args *args;
2973 	struct inode *inode;
2974 	int ret;
2975 
2976 	args = memdup_user(argp, sizeof(*args));
2977 	if (IS_ERR(args))
2978 		return PTR_ERR(args);
2979 
2980 	inode = file_inode(file);
2981 
2982 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2983 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2984 		/*
2985 		 * The subvolume does not exist under fd with which this is
2986 		 * called
2987 		 */
2988 		kfree(args);
2989 		return -EACCES;
2990 	}
2991 
2992 	ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2993 
2994 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2995 		ret = -EFAULT;
2996 
2997 	kfree(args);
2998 	return ret;
2999 }
3000 
3001 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
3002 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
3003 {
3004 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
3005 	struct btrfs_fs_info *fs_info;
3006 	struct btrfs_root *root;
3007 	struct btrfs_path *path;
3008 	struct btrfs_key key;
3009 	struct btrfs_root_item *root_item;
3010 	struct btrfs_root_ref *rref;
3011 	struct extent_buffer *leaf;
3012 	unsigned long item_off;
3013 	unsigned long item_len;
3014 	int slot;
3015 	int ret = 0;
3016 
3017 	path = btrfs_alloc_path();
3018 	if (!path)
3019 		return -ENOMEM;
3020 
3021 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
3022 	if (!subvol_info) {
3023 		btrfs_free_path(path);
3024 		return -ENOMEM;
3025 	}
3026 
3027 	fs_info = BTRFS_I(inode)->root->fs_info;
3028 
3029 	/* Get root_item of inode's subvolume */
3030 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
3031 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
3032 	if (IS_ERR(root)) {
3033 		ret = PTR_ERR(root);
3034 		goto out_free;
3035 	}
3036 	root_item = &root->root_item;
3037 
3038 	subvol_info->treeid = key.objectid;
3039 
3040 	subvol_info->generation = btrfs_root_generation(root_item);
3041 	subvol_info->flags = btrfs_root_flags(root_item);
3042 
3043 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
3044 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
3045 						    BTRFS_UUID_SIZE);
3046 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
3047 						    BTRFS_UUID_SIZE);
3048 
3049 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
3050 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
3051 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
3052 
3053 	subvol_info->otransid = btrfs_root_otransid(root_item);
3054 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
3055 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
3056 
3057 	subvol_info->stransid = btrfs_root_stransid(root_item);
3058 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
3059 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
3060 
3061 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
3062 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
3063 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
3064 
3065 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
3066 		/* Search root tree for ROOT_BACKREF of this subvolume */
3067 		key.type = BTRFS_ROOT_BACKREF_KEY;
3068 		key.offset = 0;
3069 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3070 		if (ret < 0) {
3071 			goto out;
3072 		} else if (path->slots[0] >=
3073 			   btrfs_header_nritems(path->nodes[0])) {
3074 			ret = btrfs_next_leaf(fs_info->tree_root, path);
3075 			if (ret < 0) {
3076 				goto out;
3077 			} else if (ret > 0) {
3078 				ret = -EUCLEAN;
3079 				goto out;
3080 			}
3081 		}
3082 
3083 		leaf = path->nodes[0];
3084 		slot = path->slots[0];
3085 		btrfs_item_key_to_cpu(leaf, &key, slot);
3086 		if (key.objectid == subvol_info->treeid &&
3087 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
3088 			subvol_info->parent_id = key.offset;
3089 
3090 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3091 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
3092 
3093 			item_off = btrfs_item_ptr_offset(leaf, slot)
3094 					+ sizeof(struct btrfs_root_ref);
3095 			item_len = btrfs_item_size(leaf, slot)
3096 					- sizeof(struct btrfs_root_ref);
3097 			read_extent_buffer(leaf, subvol_info->name,
3098 					   item_off, item_len);
3099 		} else {
3100 			ret = -ENOENT;
3101 			goto out;
3102 		}
3103 	}
3104 
3105 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
3106 		ret = -EFAULT;
3107 
3108 out:
3109 	btrfs_put_root(root);
3110 out_free:
3111 	btrfs_free_path(path);
3112 	kfree(subvol_info);
3113 	return ret;
3114 }
3115 
3116 /*
3117  * Return ROOT_REF information of the subvolume containing this inode
3118  * except the subvolume name.
3119  */
3120 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
3121 					  void __user *argp)
3122 {
3123 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
3124 	struct btrfs_root_ref *rref;
3125 	struct btrfs_path *path;
3126 	struct btrfs_key key;
3127 	struct extent_buffer *leaf;
3128 	u64 objectid;
3129 	int slot;
3130 	int ret;
3131 	u8 found;
3132 
3133 	path = btrfs_alloc_path();
3134 	if (!path)
3135 		return -ENOMEM;
3136 
3137 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
3138 	if (IS_ERR(rootrefs)) {
3139 		btrfs_free_path(path);
3140 		return PTR_ERR(rootrefs);
3141 	}
3142 
3143 	objectid = root->root_key.objectid;
3144 	key.objectid = objectid;
3145 	key.type = BTRFS_ROOT_REF_KEY;
3146 	key.offset = rootrefs->min_treeid;
3147 	found = 0;
3148 
3149 	root = root->fs_info->tree_root;
3150 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3151 	if (ret < 0) {
3152 		goto out;
3153 	} else if (path->slots[0] >=
3154 		   btrfs_header_nritems(path->nodes[0])) {
3155 		ret = btrfs_next_leaf(root, path);
3156 		if (ret < 0) {
3157 			goto out;
3158 		} else if (ret > 0) {
3159 			ret = -EUCLEAN;
3160 			goto out;
3161 		}
3162 	}
3163 	while (1) {
3164 		leaf = path->nodes[0];
3165 		slot = path->slots[0];
3166 
3167 		btrfs_item_key_to_cpu(leaf, &key, slot);
3168 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
3169 			ret = 0;
3170 			goto out;
3171 		}
3172 
3173 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
3174 			ret = -EOVERFLOW;
3175 			goto out;
3176 		}
3177 
3178 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
3179 		rootrefs->rootref[found].treeid = key.offset;
3180 		rootrefs->rootref[found].dirid =
3181 				  btrfs_root_ref_dirid(leaf, rref);
3182 		found++;
3183 
3184 		ret = btrfs_next_item(root, path);
3185 		if (ret < 0) {
3186 			goto out;
3187 		} else if (ret > 0) {
3188 			ret = -EUCLEAN;
3189 			goto out;
3190 		}
3191 	}
3192 
3193 out:
3194 	if (!ret || ret == -EOVERFLOW) {
3195 		rootrefs->num_items = found;
3196 		/* update min_treeid for next search */
3197 		if (found)
3198 			rootrefs->min_treeid =
3199 				rootrefs->rootref[found - 1].treeid + 1;
3200 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
3201 			ret = -EFAULT;
3202 	}
3203 
3204 	kfree(rootrefs);
3205 	btrfs_free_path(path);
3206 
3207 	return ret;
3208 }
3209 
3210 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
3211 					     void __user *arg,
3212 					     bool destroy_v2)
3213 {
3214 	struct dentry *parent = file->f_path.dentry;
3215 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
3216 	struct dentry *dentry;
3217 	struct inode *dir = d_inode(parent);
3218 	struct inode *inode;
3219 	struct btrfs_root *root = BTRFS_I(dir)->root;
3220 	struct btrfs_root *dest = NULL;
3221 	struct btrfs_ioctl_vol_args *vol_args = NULL;
3222 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
3223 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
3224 	char *subvol_name, *subvol_name_ptr = NULL;
3225 	int subvol_namelen;
3226 	int err = 0;
3227 	bool destroy_parent = false;
3228 
3229 	/* We don't support snapshots with extent tree v2 yet. */
3230 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3231 		btrfs_err(fs_info,
3232 			  "extent tree v2 doesn't support snapshot deletion yet");
3233 		return -EOPNOTSUPP;
3234 	}
3235 
3236 	if (destroy_v2) {
3237 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
3238 		if (IS_ERR(vol_args2))
3239 			return PTR_ERR(vol_args2);
3240 
3241 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
3242 			err = -EOPNOTSUPP;
3243 			goto out;
3244 		}
3245 
3246 		/*
3247 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
3248 		 * name, same as v1 currently does.
3249 		 */
3250 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
3251 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
3252 			subvol_name = vol_args2->name;
3253 
3254 			err = mnt_want_write_file(file);
3255 			if (err)
3256 				goto out;
3257 		} else {
3258 			struct inode *old_dir;
3259 
3260 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
3261 				err = -EINVAL;
3262 				goto out;
3263 			}
3264 
3265 			err = mnt_want_write_file(file);
3266 			if (err)
3267 				goto out;
3268 
3269 			dentry = btrfs_get_dentry(fs_info->sb,
3270 					BTRFS_FIRST_FREE_OBJECTID,
3271 					vol_args2->subvolid, 0, 0);
3272 			if (IS_ERR(dentry)) {
3273 				err = PTR_ERR(dentry);
3274 				goto out_drop_write;
3275 			}
3276 
3277 			/*
3278 			 * Change the default parent since the subvolume being
3279 			 * deleted can be outside of the current mount point.
3280 			 */
3281 			parent = btrfs_get_parent(dentry);
3282 
3283 			/*
3284 			 * At this point dentry->d_name can point to '/' if the
3285 			 * subvolume we want to destroy is outsite of the
3286 			 * current mount point, so we need to release the
3287 			 * current dentry and execute the lookup to return a new
3288 			 * one with ->d_name pointing to the
3289 			 * <mount point>/subvol_name.
3290 			 */
3291 			dput(dentry);
3292 			if (IS_ERR(parent)) {
3293 				err = PTR_ERR(parent);
3294 				goto out_drop_write;
3295 			}
3296 			old_dir = dir;
3297 			dir = d_inode(parent);
3298 
3299 			/*
3300 			 * If v2 was used with SPEC_BY_ID, a new parent was
3301 			 * allocated since the subvolume can be outside of the
3302 			 * current mount point. Later on we need to release this
3303 			 * new parent dentry.
3304 			 */
3305 			destroy_parent = true;
3306 
3307 			/*
3308 			 * On idmapped mounts, deletion via subvolid is
3309 			 * restricted to subvolumes that are immediate
3310 			 * ancestors of the inode referenced by the file
3311 			 * descriptor in the ioctl. Otherwise the idmapping
3312 			 * could potentially be abused to delete subvolumes
3313 			 * anywhere in the filesystem the user wouldn't be able
3314 			 * to delete without an idmapped mount.
3315 			 */
3316 			if (old_dir != dir && mnt_userns != &init_user_ns) {
3317 				err = -EOPNOTSUPP;
3318 				goto free_parent;
3319 			}
3320 
3321 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3322 						fs_info, vol_args2->subvolid);
3323 			if (IS_ERR(subvol_name_ptr)) {
3324 				err = PTR_ERR(subvol_name_ptr);
3325 				goto free_parent;
3326 			}
3327 			/* subvol_name_ptr is already nul terminated */
3328 			subvol_name = (char *)kbasename(subvol_name_ptr);
3329 		}
3330 	} else {
3331 		vol_args = memdup_user(arg, sizeof(*vol_args));
3332 		if (IS_ERR(vol_args))
3333 			return PTR_ERR(vol_args);
3334 
3335 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3336 		subvol_name = vol_args->name;
3337 
3338 		err = mnt_want_write_file(file);
3339 		if (err)
3340 			goto out;
3341 	}
3342 
3343 	subvol_namelen = strlen(subvol_name);
3344 
3345 	if (strchr(subvol_name, '/') ||
3346 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3347 		err = -EINVAL;
3348 		goto free_subvol_name;
3349 	}
3350 
3351 	if (!S_ISDIR(dir->i_mode)) {
3352 		err = -ENOTDIR;
3353 		goto free_subvol_name;
3354 	}
3355 
3356 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3357 	if (err == -EINTR)
3358 		goto free_subvol_name;
3359 	dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3360 	if (IS_ERR(dentry)) {
3361 		err = PTR_ERR(dentry);
3362 		goto out_unlock_dir;
3363 	}
3364 
3365 	if (d_really_is_negative(dentry)) {
3366 		err = -ENOENT;
3367 		goto out_dput;
3368 	}
3369 
3370 	inode = d_inode(dentry);
3371 	dest = BTRFS_I(inode)->root;
3372 	if (!capable(CAP_SYS_ADMIN)) {
3373 		/*
3374 		 * Regular user.  Only allow this with a special mount
3375 		 * option, when the user has write+exec access to the
3376 		 * subvol root, and when rmdir(2) would have been
3377 		 * allowed.
3378 		 *
3379 		 * Note that this is _not_ check that the subvol is
3380 		 * empty or doesn't contain data that we wouldn't
3381 		 * otherwise be able to delete.
3382 		 *
3383 		 * Users who want to delete empty subvols should try
3384 		 * rmdir(2).
3385 		 */
3386 		err = -EPERM;
3387 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3388 			goto out_dput;
3389 
3390 		/*
3391 		 * Do not allow deletion if the parent dir is the same
3392 		 * as the dir to be deleted.  That means the ioctl
3393 		 * must be called on the dentry referencing the root
3394 		 * of the subvol, not a random directory contained
3395 		 * within it.
3396 		 */
3397 		err = -EINVAL;
3398 		if (root == dest)
3399 			goto out_dput;
3400 
3401 		err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3402 		if (err)
3403 			goto out_dput;
3404 	}
3405 
3406 	/* check if subvolume may be deleted by a user */
3407 	err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3408 	if (err)
3409 		goto out_dput;
3410 
3411 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3412 		err = -EINVAL;
3413 		goto out_dput;
3414 	}
3415 
3416 	btrfs_inode_lock(inode, 0);
3417 	err = btrfs_delete_subvolume(dir, dentry);
3418 	btrfs_inode_unlock(inode, 0);
3419 	if (!err)
3420 		d_delete_notify(dir, dentry);
3421 
3422 out_dput:
3423 	dput(dentry);
3424 out_unlock_dir:
3425 	btrfs_inode_unlock(dir, 0);
3426 free_subvol_name:
3427 	kfree(subvol_name_ptr);
3428 free_parent:
3429 	if (destroy_parent)
3430 		dput(parent);
3431 out_drop_write:
3432 	mnt_drop_write_file(file);
3433 out:
3434 	kfree(vol_args2);
3435 	kfree(vol_args);
3436 	return err;
3437 }
3438 
3439 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3440 {
3441 	struct inode *inode = file_inode(file);
3442 	struct btrfs_root *root = BTRFS_I(inode)->root;
3443 	struct btrfs_ioctl_defrag_range_args range = {0};
3444 	int ret;
3445 
3446 	ret = mnt_want_write_file(file);
3447 	if (ret)
3448 		return ret;
3449 
3450 	if (btrfs_root_readonly(root)) {
3451 		ret = -EROFS;
3452 		goto out;
3453 	}
3454 
3455 	switch (inode->i_mode & S_IFMT) {
3456 	case S_IFDIR:
3457 		if (!capable(CAP_SYS_ADMIN)) {
3458 			ret = -EPERM;
3459 			goto out;
3460 		}
3461 		ret = btrfs_defrag_root(root);
3462 		break;
3463 	case S_IFREG:
3464 		/*
3465 		 * Note that this does not check the file descriptor for write
3466 		 * access. This prevents defragmenting executables that are
3467 		 * running and allows defrag on files open in read-only mode.
3468 		 */
3469 		if (!capable(CAP_SYS_ADMIN) &&
3470 		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3471 			ret = -EPERM;
3472 			goto out;
3473 		}
3474 
3475 		if (argp) {
3476 			if (copy_from_user(&range, argp, sizeof(range))) {
3477 				ret = -EFAULT;
3478 				goto out;
3479 			}
3480 			/* compression requires us to start the IO */
3481 			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3482 				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3483 				range.extent_thresh = (u32)-1;
3484 			}
3485 		} else {
3486 			/* the rest are all set to zero by kzalloc */
3487 			range.len = (u64)-1;
3488 		}
3489 		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
3490 					&range, BTRFS_OLDEST_GENERATION, 0);
3491 		if (ret > 0)
3492 			ret = 0;
3493 		break;
3494 	default:
3495 		ret = -EINVAL;
3496 	}
3497 out:
3498 	mnt_drop_write_file(file);
3499 	return ret;
3500 }
3501 
3502 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3503 {
3504 	struct btrfs_ioctl_vol_args *vol_args;
3505 	bool restore_op = false;
3506 	int ret;
3507 
3508 	if (!capable(CAP_SYS_ADMIN))
3509 		return -EPERM;
3510 
3511 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3512 		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
3513 		return -EINVAL;
3514 	}
3515 
3516 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
3517 		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
3518 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3519 
3520 		/*
3521 		 * We can do the device add because we have a paused balanced,
3522 		 * change the exclusive op type and remember we should bring
3523 		 * back the paused balance
3524 		 */
3525 		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
3526 		btrfs_exclop_start_unlock(fs_info);
3527 		restore_op = true;
3528 	}
3529 
3530 	vol_args = memdup_user(arg, sizeof(*vol_args));
3531 	if (IS_ERR(vol_args)) {
3532 		ret = PTR_ERR(vol_args);
3533 		goto out;
3534 	}
3535 
3536 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3537 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3538 
3539 	if (!ret)
3540 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3541 
3542 	kfree(vol_args);
3543 out:
3544 	if (restore_op)
3545 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
3546 	else
3547 		btrfs_exclop_finish(fs_info);
3548 	return ret;
3549 }
3550 
3551 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3552 {
3553 	BTRFS_DEV_LOOKUP_ARGS(args);
3554 	struct inode *inode = file_inode(file);
3555 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3556 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3557 	struct block_device *bdev = NULL;
3558 	fmode_t mode;
3559 	int ret;
3560 	bool cancel = false;
3561 
3562 	if (!capable(CAP_SYS_ADMIN))
3563 		return -EPERM;
3564 
3565 	vol_args = memdup_user(arg, sizeof(*vol_args));
3566 	if (IS_ERR(vol_args))
3567 		return PTR_ERR(vol_args);
3568 
3569 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3570 		ret = -EOPNOTSUPP;
3571 		goto out;
3572 	}
3573 
3574 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3575 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3576 		args.devid = vol_args->devid;
3577 	} else if (!strcmp("cancel", vol_args->name)) {
3578 		cancel = true;
3579 	} else {
3580 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3581 		if (ret)
3582 			goto out;
3583 	}
3584 
3585 	ret = mnt_want_write_file(file);
3586 	if (ret)
3587 		goto out;
3588 
3589 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3590 					   cancel);
3591 	if (ret)
3592 		goto err_drop;
3593 
3594 	/* Exclusive operation is now claimed */
3595 	ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3596 
3597 	btrfs_exclop_finish(fs_info);
3598 
3599 	if (!ret) {
3600 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3601 			btrfs_info(fs_info, "device deleted: id %llu",
3602 					vol_args->devid);
3603 		else
3604 			btrfs_info(fs_info, "device deleted: %s",
3605 					vol_args->name);
3606 	}
3607 err_drop:
3608 	mnt_drop_write_file(file);
3609 	if (bdev)
3610 		blkdev_put(bdev, mode);
3611 out:
3612 	btrfs_put_dev_args_from_path(&args);
3613 	kfree(vol_args);
3614 	return ret;
3615 }
3616 
3617 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3618 {
3619 	BTRFS_DEV_LOOKUP_ARGS(args);
3620 	struct inode *inode = file_inode(file);
3621 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3622 	struct btrfs_ioctl_vol_args *vol_args;
3623 	struct block_device *bdev = NULL;
3624 	fmode_t mode;
3625 	int ret;
3626 	bool cancel = false;
3627 
3628 	if (!capable(CAP_SYS_ADMIN))
3629 		return -EPERM;
3630 
3631 	vol_args = memdup_user(arg, sizeof(*vol_args));
3632 	if (IS_ERR(vol_args))
3633 		return PTR_ERR(vol_args);
3634 
3635 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3636 	if (!strcmp("cancel", vol_args->name)) {
3637 		cancel = true;
3638 	} else {
3639 		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
3640 		if (ret)
3641 			goto out;
3642 	}
3643 
3644 	ret = mnt_want_write_file(file);
3645 	if (ret)
3646 		goto out;
3647 
3648 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3649 					   cancel);
3650 	if (ret == 0) {
3651 		ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
3652 		if (!ret)
3653 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3654 		btrfs_exclop_finish(fs_info);
3655 	}
3656 
3657 	mnt_drop_write_file(file);
3658 	if (bdev)
3659 		blkdev_put(bdev, mode);
3660 out:
3661 	btrfs_put_dev_args_from_path(&args);
3662 	kfree(vol_args);
3663 	return ret;
3664 }
3665 
3666 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3667 				void __user *arg)
3668 {
3669 	struct btrfs_ioctl_fs_info_args *fi_args;
3670 	struct btrfs_device *device;
3671 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3672 	u64 flags_in;
3673 	int ret = 0;
3674 
3675 	fi_args = memdup_user(arg, sizeof(*fi_args));
3676 	if (IS_ERR(fi_args))
3677 		return PTR_ERR(fi_args);
3678 
3679 	flags_in = fi_args->flags;
3680 	memset(fi_args, 0, sizeof(*fi_args));
3681 
3682 	rcu_read_lock();
3683 	fi_args->num_devices = fs_devices->num_devices;
3684 
3685 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3686 		if (device->devid > fi_args->max_id)
3687 			fi_args->max_id = device->devid;
3688 	}
3689 	rcu_read_unlock();
3690 
3691 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3692 	fi_args->nodesize = fs_info->nodesize;
3693 	fi_args->sectorsize = fs_info->sectorsize;
3694 	fi_args->clone_alignment = fs_info->sectorsize;
3695 
3696 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3697 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3698 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3699 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3700 	}
3701 
3702 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3703 		fi_args->generation = fs_info->generation;
3704 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3705 	}
3706 
3707 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3708 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3709 		       sizeof(fi_args->metadata_uuid));
3710 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3711 	}
3712 
3713 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3714 		ret = -EFAULT;
3715 
3716 	kfree(fi_args);
3717 	return ret;
3718 }
3719 
3720 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3721 				 void __user *arg)
3722 {
3723 	BTRFS_DEV_LOOKUP_ARGS(args);
3724 	struct btrfs_ioctl_dev_info_args *di_args;
3725 	struct btrfs_device *dev;
3726 	int ret = 0;
3727 
3728 	di_args = memdup_user(arg, sizeof(*di_args));
3729 	if (IS_ERR(di_args))
3730 		return PTR_ERR(di_args);
3731 
3732 	args.devid = di_args->devid;
3733 	if (!btrfs_is_empty_uuid(di_args->uuid))
3734 		args.uuid = di_args->uuid;
3735 
3736 	rcu_read_lock();
3737 	dev = btrfs_find_device(fs_info->fs_devices, &args);
3738 	if (!dev) {
3739 		ret = -ENODEV;
3740 		goto out;
3741 	}
3742 
3743 	di_args->devid = dev->devid;
3744 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3745 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3746 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3747 	if (dev->name) {
3748 		strncpy(di_args->path, rcu_str_deref(dev->name),
3749 				sizeof(di_args->path) - 1);
3750 		di_args->path[sizeof(di_args->path) - 1] = 0;
3751 	} else {
3752 		di_args->path[0] = '\0';
3753 	}
3754 
3755 out:
3756 	rcu_read_unlock();
3757 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3758 		ret = -EFAULT;
3759 
3760 	kfree(di_args);
3761 	return ret;
3762 }
3763 
3764 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3765 {
3766 	struct inode *inode = file_inode(file);
3767 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3768 	struct btrfs_root *root = BTRFS_I(inode)->root;
3769 	struct btrfs_root *new_root;
3770 	struct btrfs_dir_item *di;
3771 	struct btrfs_trans_handle *trans;
3772 	struct btrfs_path *path = NULL;
3773 	struct btrfs_disk_key disk_key;
3774 	u64 objectid = 0;
3775 	u64 dir_id;
3776 	int ret;
3777 
3778 	if (!capable(CAP_SYS_ADMIN))
3779 		return -EPERM;
3780 
3781 	ret = mnt_want_write_file(file);
3782 	if (ret)
3783 		return ret;
3784 
3785 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3786 		ret = -EFAULT;
3787 		goto out;
3788 	}
3789 
3790 	if (!objectid)
3791 		objectid = BTRFS_FS_TREE_OBJECTID;
3792 
3793 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3794 	if (IS_ERR(new_root)) {
3795 		ret = PTR_ERR(new_root);
3796 		goto out;
3797 	}
3798 	if (!is_fstree(new_root->root_key.objectid)) {
3799 		ret = -ENOENT;
3800 		goto out_free;
3801 	}
3802 
3803 	path = btrfs_alloc_path();
3804 	if (!path) {
3805 		ret = -ENOMEM;
3806 		goto out_free;
3807 	}
3808 
3809 	trans = btrfs_start_transaction(root, 1);
3810 	if (IS_ERR(trans)) {
3811 		ret = PTR_ERR(trans);
3812 		goto out_free;
3813 	}
3814 
3815 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3816 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3817 				   dir_id, "default", 7, 1);
3818 	if (IS_ERR_OR_NULL(di)) {
3819 		btrfs_release_path(path);
3820 		btrfs_end_transaction(trans);
3821 		btrfs_err(fs_info,
3822 			  "Umm, you don't have the default diritem, this isn't going to work");
3823 		ret = -ENOENT;
3824 		goto out_free;
3825 	}
3826 
3827 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3828 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3829 	btrfs_mark_buffer_dirty(path->nodes[0]);
3830 	btrfs_release_path(path);
3831 
3832 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3833 	btrfs_end_transaction(trans);
3834 out_free:
3835 	btrfs_put_root(new_root);
3836 	btrfs_free_path(path);
3837 out:
3838 	mnt_drop_write_file(file);
3839 	return ret;
3840 }
3841 
3842 static void get_block_group_info(struct list_head *groups_list,
3843 				 struct btrfs_ioctl_space_info *space)
3844 {
3845 	struct btrfs_block_group *block_group;
3846 
3847 	space->total_bytes = 0;
3848 	space->used_bytes = 0;
3849 	space->flags = 0;
3850 	list_for_each_entry(block_group, groups_list, list) {
3851 		space->flags = block_group->flags;
3852 		space->total_bytes += block_group->length;
3853 		space->used_bytes += block_group->used;
3854 	}
3855 }
3856 
3857 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3858 				   void __user *arg)
3859 {
3860 	struct btrfs_ioctl_space_args space_args;
3861 	struct btrfs_ioctl_space_info space;
3862 	struct btrfs_ioctl_space_info *dest;
3863 	struct btrfs_ioctl_space_info *dest_orig;
3864 	struct btrfs_ioctl_space_info __user *user_dest;
3865 	struct btrfs_space_info *info;
3866 	static const u64 types[] = {
3867 		BTRFS_BLOCK_GROUP_DATA,
3868 		BTRFS_BLOCK_GROUP_SYSTEM,
3869 		BTRFS_BLOCK_GROUP_METADATA,
3870 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3871 	};
3872 	int num_types = 4;
3873 	int alloc_size;
3874 	int ret = 0;
3875 	u64 slot_count = 0;
3876 	int i, c;
3877 
3878 	if (copy_from_user(&space_args,
3879 			   (struct btrfs_ioctl_space_args __user *)arg,
3880 			   sizeof(space_args)))
3881 		return -EFAULT;
3882 
3883 	for (i = 0; i < num_types; i++) {
3884 		struct btrfs_space_info *tmp;
3885 
3886 		info = NULL;
3887 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3888 			if (tmp->flags == types[i]) {
3889 				info = tmp;
3890 				break;
3891 			}
3892 		}
3893 
3894 		if (!info)
3895 			continue;
3896 
3897 		down_read(&info->groups_sem);
3898 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3899 			if (!list_empty(&info->block_groups[c]))
3900 				slot_count++;
3901 		}
3902 		up_read(&info->groups_sem);
3903 	}
3904 
3905 	/*
3906 	 * Global block reserve, exported as a space_info
3907 	 */
3908 	slot_count++;
3909 
3910 	/* space_slots == 0 means they are asking for a count */
3911 	if (space_args.space_slots == 0) {
3912 		space_args.total_spaces = slot_count;
3913 		goto out;
3914 	}
3915 
3916 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3917 
3918 	alloc_size = sizeof(*dest) * slot_count;
3919 
3920 	/* we generally have at most 6 or so space infos, one for each raid
3921 	 * level.  So, a whole page should be more than enough for everyone
3922 	 */
3923 	if (alloc_size > PAGE_SIZE)
3924 		return -ENOMEM;
3925 
3926 	space_args.total_spaces = 0;
3927 	dest = kmalloc(alloc_size, GFP_KERNEL);
3928 	if (!dest)
3929 		return -ENOMEM;
3930 	dest_orig = dest;
3931 
3932 	/* now we have a buffer to copy into */
3933 	for (i = 0; i < num_types; i++) {
3934 		struct btrfs_space_info *tmp;
3935 
3936 		if (!slot_count)
3937 			break;
3938 
3939 		info = NULL;
3940 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3941 			if (tmp->flags == types[i]) {
3942 				info = tmp;
3943 				break;
3944 			}
3945 		}
3946 
3947 		if (!info)
3948 			continue;
3949 		down_read(&info->groups_sem);
3950 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3951 			if (!list_empty(&info->block_groups[c])) {
3952 				get_block_group_info(&info->block_groups[c],
3953 						     &space);
3954 				memcpy(dest, &space, sizeof(space));
3955 				dest++;
3956 				space_args.total_spaces++;
3957 				slot_count--;
3958 			}
3959 			if (!slot_count)
3960 				break;
3961 		}
3962 		up_read(&info->groups_sem);
3963 	}
3964 
3965 	/*
3966 	 * Add global block reserve
3967 	 */
3968 	if (slot_count) {
3969 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3970 
3971 		spin_lock(&block_rsv->lock);
3972 		space.total_bytes = block_rsv->size;
3973 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3974 		spin_unlock(&block_rsv->lock);
3975 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3976 		memcpy(dest, &space, sizeof(space));
3977 		space_args.total_spaces++;
3978 	}
3979 
3980 	user_dest = (struct btrfs_ioctl_space_info __user *)
3981 		(arg + sizeof(struct btrfs_ioctl_space_args));
3982 
3983 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3984 		ret = -EFAULT;
3985 
3986 	kfree(dest_orig);
3987 out:
3988 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3989 		ret = -EFAULT;
3990 
3991 	return ret;
3992 }
3993 
3994 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3995 					    void __user *argp)
3996 {
3997 	struct btrfs_trans_handle *trans;
3998 	u64 transid;
3999 
4000 	trans = btrfs_attach_transaction_barrier(root);
4001 	if (IS_ERR(trans)) {
4002 		if (PTR_ERR(trans) != -ENOENT)
4003 			return PTR_ERR(trans);
4004 
4005 		/* No running transaction, don't bother */
4006 		transid = root->fs_info->last_trans_committed;
4007 		goto out;
4008 	}
4009 	transid = trans->transid;
4010 	btrfs_commit_transaction_async(trans);
4011 out:
4012 	if (argp)
4013 		if (copy_to_user(argp, &transid, sizeof(transid)))
4014 			return -EFAULT;
4015 	return 0;
4016 }
4017 
4018 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4019 					   void __user *argp)
4020 {
4021 	u64 transid;
4022 
4023 	if (argp) {
4024 		if (copy_from_user(&transid, argp, sizeof(transid)))
4025 			return -EFAULT;
4026 	} else {
4027 		transid = 0;  /* current trans */
4028 	}
4029 	return btrfs_wait_for_commit(fs_info, transid);
4030 }
4031 
4032 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4033 {
4034 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4035 	struct btrfs_ioctl_scrub_args *sa;
4036 	int ret;
4037 
4038 	if (!capable(CAP_SYS_ADMIN))
4039 		return -EPERM;
4040 
4041 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4042 		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
4043 		return -EINVAL;
4044 	}
4045 
4046 	sa = memdup_user(arg, sizeof(*sa));
4047 	if (IS_ERR(sa))
4048 		return PTR_ERR(sa);
4049 
4050 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4051 		ret = mnt_want_write_file(file);
4052 		if (ret)
4053 			goto out;
4054 	}
4055 
4056 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4057 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4058 			      0);
4059 
4060 	/*
4061 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
4062 	 * error. This is important as it allows user space to know how much
4063 	 * progress scrub has done. For example, if scrub is canceled we get
4064 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
4065 	 * space. Later user space can inspect the progress from the structure
4066 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
4067 	 * previously (btrfs-progs does this).
4068 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
4069 	 * then return -EFAULT to signal the structure was not copied or it may
4070 	 * be corrupt and unreliable due to a partial copy.
4071 	 */
4072 	if (copy_to_user(arg, sa, sizeof(*sa)))
4073 		ret = -EFAULT;
4074 
4075 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4076 		mnt_drop_write_file(file);
4077 out:
4078 	kfree(sa);
4079 	return ret;
4080 }
4081 
4082 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4083 {
4084 	if (!capable(CAP_SYS_ADMIN))
4085 		return -EPERM;
4086 
4087 	return btrfs_scrub_cancel(fs_info);
4088 }
4089 
4090 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4091 				       void __user *arg)
4092 {
4093 	struct btrfs_ioctl_scrub_args *sa;
4094 	int ret;
4095 
4096 	if (!capable(CAP_SYS_ADMIN))
4097 		return -EPERM;
4098 
4099 	sa = memdup_user(arg, sizeof(*sa));
4100 	if (IS_ERR(sa))
4101 		return PTR_ERR(sa);
4102 
4103 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4104 
4105 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4106 		ret = -EFAULT;
4107 
4108 	kfree(sa);
4109 	return ret;
4110 }
4111 
4112 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4113 				      void __user *arg)
4114 {
4115 	struct btrfs_ioctl_get_dev_stats *sa;
4116 	int ret;
4117 
4118 	sa = memdup_user(arg, sizeof(*sa));
4119 	if (IS_ERR(sa))
4120 		return PTR_ERR(sa);
4121 
4122 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4123 		kfree(sa);
4124 		return -EPERM;
4125 	}
4126 
4127 	ret = btrfs_get_dev_stats(fs_info, sa);
4128 
4129 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
4130 		ret = -EFAULT;
4131 
4132 	kfree(sa);
4133 	return ret;
4134 }
4135 
4136 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4137 				    void __user *arg)
4138 {
4139 	struct btrfs_ioctl_dev_replace_args *p;
4140 	int ret;
4141 
4142 	if (!capable(CAP_SYS_ADMIN))
4143 		return -EPERM;
4144 
4145 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
4146 		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
4147 		return -EINVAL;
4148 	}
4149 
4150 	p = memdup_user(arg, sizeof(*p));
4151 	if (IS_ERR(p))
4152 		return PTR_ERR(p);
4153 
4154 	switch (p->cmd) {
4155 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4156 		if (sb_rdonly(fs_info->sb)) {
4157 			ret = -EROFS;
4158 			goto out;
4159 		}
4160 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
4161 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4162 		} else {
4163 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4164 			btrfs_exclop_finish(fs_info);
4165 		}
4166 		break;
4167 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4168 		btrfs_dev_replace_status(fs_info, p);
4169 		ret = 0;
4170 		break;
4171 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4172 		p->result = btrfs_dev_replace_cancel(fs_info);
4173 		ret = 0;
4174 		break;
4175 	default:
4176 		ret = -EINVAL;
4177 		break;
4178 	}
4179 
4180 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
4181 		ret = -EFAULT;
4182 out:
4183 	kfree(p);
4184 	return ret;
4185 }
4186 
4187 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4188 {
4189 	int ret = 0;
4190 	int i;
4191 	u64 rel_ptr;
4192 	int size;
4193 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4194 	struct inode_fs_paths *ipath = NULL;
4195 	struct btrfs_path *path;
4196 
4197 	if (!capable(CAP_DAC_READ_SEARCH))
4198 		return -EPERM;
4199 
4200 	path = btrfs_alloc_path();
4201 	if (!path) {
4202 		ret = -ENOMEM;
4203 		goto out;
4204 	}
4205 
4206 	ipa = memdup_user(arg, sizeof(*ipa));
4207 	if (IS_ERR(ipa)) {
4208 		ret = PTR_ERR(ipa);
4209 		ipa = NULL;
4210 		goto out;
4211 	}
4212 
4213 	size = min_t(u32, ipa->size, 4096);
4214 	ipath = init_ipath(size, root, path);
4215 	if (IS_ERR(ipath)) {
4216 		ret = PTR_ERR(ipath);
4217 		ipath = NULL;
4218 		goto out;
4219 	}
4220 
4221 	ret = paths_from_inode(ipa->inum, ipath);
4222 	if (ret < 0)
4223 		goto out;
4224 
4225 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4226 		rel_ptr = ipath->fspath->val[i] -
4227 			  (u64)(unsigned long)ipath->fspath->val;
4228 		ipath->fspath->val[i] = rel_ptr;
4229 	}
4230 
4231 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4232 			   ipath->fspath, size);
4233 	if (ret) {
4234 		ret = -EFAULT;
4235 		goto out;
4236 	}
4237 
4238 out:
4239 	btrfs_free_path(path);
4240 	free_ipath(ipath);
4241 	kfree(ipa);
4242 
4243 	return ret;
4244 }
4245 
4246 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4247 {
4248 	struct btrfs_data_container *inodes = ctx;
4249 	const size_t c = 3 * sizeof(u64);
4250 
4251 	if (inodes->bytes_left >= c) {
4252 		inodes->bytes_left -= c;
4253 		inodes->val[inodes->elem_cnt] = inum;
4254 		inodes->val[inodes->elem_cnt + 1] = offset;
4255 		inodes->val[inodes->elem_cnt + 2] = root;
4256 		inodes->elem_cnt += 3;
4257 	} else {
4258 		inodes->bytes_missing += c - inodes->bytes_left;
4259 		inodes->bytes_left = 0;
4260 		inodes->elem_missed += 3;
4261 	}
4262 
4263 	return 0;
4264 }
4265 
4266 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4267 					void __user *arg, int version)
4268 {
4269 	int ret = 0;
4270 	int size;
4271 	struct btrfs_ioctl_logical_ino_args *loi;
4272 	struct btrfs_data_container *inodes = NULL;
4273 	struct btrfs_path *path = NULL;
4274 	bool ignore_offset;
4275 
4276 	if (!capable(CAP_SYS_ADMIN))
4277 		return -EPERM;
4278 
4279 	loi = memdup_user(arg, sizeof(*loi));
4280 	if (IS_ERR(loi))
4281 		return PTR_ERR(loi);
4282 
4283 	if (version == 1) {
4284 		ignore_offset = false;
4285 		size = min_t(u32, loi->size, SZ_64K);
4286 	} else {
4287 		/* All reserved bits must be 0 for now */
4288 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4289 			ret = -EINVAL;
4290 			goto out_loi;
4291 		}
4292 		/* Only accept flags we have defined so far */
4293 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4294 			ret = -EINVAL;
4295 			goto out_loi;
4296 		}
4297 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4298 		size = min_t(u32, loi->size, SZ_16M);
4299 	}
4300 
4301 	path = btrfs_alloc_path();
4302 	if (!path) {
4303 		ret = -ENOMEM;
4304 		goto out;
4305 	}
4306 
4307 	inodes = init_data_container(size);
4308 	if (IS_ERR(inodes)) {
4309 		ret = PTR_ERR(inodes);
4310 		inodes = NULL;
4311 		goto out;
4312 	}
4313 
4314 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4315 					  build_ino_list, inodes, ignore_offset);
4316 	if (ret == -EINVAL)
4317 		ret = -ENOENT;
4318 	if (ret < 0)
4319 		goto out;
4320 
4321 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4322 			   size);
4323 	if (ret)
4324 		ret = -EFAULT;
4325 
4326 out:
4327 	btrfs_free_path(path);
4328 	kvfree(inodes);
4329 out_loi:
4330 	kfree(loi);
4331 
4332 	return ret;
4333 }
4334 
4335 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4336 			       struct btrfs_ioctl_balance_args *bargs)
4337 {
4338 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4339 
4340 	bargs->flags = bctl->flags;
4341 
4342 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4343 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4344 	if (atomic_read(&fs_info->balance_pause_req))
4345 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4346 	if (atomic_read(&fs_info->balance_cancel_req))
4347 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4348 
4349 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4350 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4351 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4352 
4353 	spin_lock(&fs_info->balance_lock);
4354 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4355 	spin_unlock(&fs_info->balance_lock);
4356 }
4357 
4358 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4359 {
4360 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4361 	struct btrfs_fs_info *fs_info = root->fs_info;
4362 	struct btrfs_ioctl_balance_args *bargs;
4363 	struct btrfs_balance_control *bctl;
4364 	bool need_unlock; /* for mut. excl. ops lock */
4365 	int ret;
4366 
4367 	if (!capable(CAP_SYS_ADMIN))
4368 		return -EPERM;
4369 
4370 	ret = mnt_want_write_file(file);
4371 	if (ret)
4372 		return ret;
4373 
4374 	bargs = memdup_user(arg, sizeof(*bargs));
4375 	if (IS_ERR(bargs)) {
4376 		ret = PTR_ERR(bargs);
4377 		bargs = NULL;
4378 		goto out;
4379 	}
4380 
4381 again:
4382 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4383 		mutex_lock(&fs_info->balance_mutex);
4384 		need_unlock = true;
4385 		goto locked;
4386 	}
4387 
4388 	/*
4389 	 * mut. excl. ops lock is locked.  Three possibilities:
4390 	 *   (1) some other op is running
4391 	 *   (2) balance is running
4392 	 *   (3) balance is paused -- special case (think resume)
4393 	 */
4394 	mutex_lock(&fs_info->balance_mutex);
4395 	if (fs_info->balance_ctl) {
4396 		/* this is either (2) or (3) */
4397 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4398 			mutex_unlock(&fs_info->balance_mutex);
4399 			/*
4400 			 * Lock released to allow other waiters to continue,
4401 			 * we'll reexamine the status again.
4402 			 */
4403 			mutex_lock(&fs_info->balance_mutex);
4404 
4405 			if (fs_info->balance_ctl &&
4406 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4407 				/* this is (3) */
4408 				need_unlock = false;
4409 				goto locked;
4410 			}
4411 
4412 			mutex_unlock(&fs_info->balance_mutex);
4413 			goto again;
4414 		} else {
4415 			/* this is (2) */
4416 			mutex_unlock(&fs_info->balance_mutex);
4417 			ret = -EINPROGRESS;
4418 			goto out;
4419 		}
4420 	} else {
4421 		/* this is (1) */
4422 		mutex_unlock(&fs_info->balance_mutex);
4423 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4424 		goto out;
4425 	}
4426 
4427 locked:
4428 	if (bargs->flags & BTRFS_BALANCE_RESUME) {
4429 		if (!fs_info->balance_ctl) {
4430 			ret = -ENOTCONN;
4431 			goto out_unlock;
4432 		}
4433 
4434 		bctl = fs_info->balance_ctl;
4435 		spin_lock(&fs_info->balance_lock);
4436 		bctl->flags |= BTRFS_BALANCE_RESUME;
4437 		spin_unlock(&fs_info->balance_lock);
4438 		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
4439 
4440 		goto do_balance;
4441 	}
4442 
4443 	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4444 		ret = -EINVAL;
4445 		goto out_unlock;
4446 	}
4447 
4448 	if (fs_info->balance_ctl) {
4449 		ret = -EINPROGRESS;
4450 		goto out_unlock;
4451 	}
4452 
4453 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4454 	if (!bctl) {
4455 		ret = -ENOMEM;
4456 		goto out_unlock;
4457 	}
4458 
4459 	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4460 	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4461 	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4462 
4463 	bctl->flags = bargs->flags;
4464 do_balance:
4465 	/*
4466 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4467 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4468 	 * all the way until unmount, in free_fs_info.  The flag should be
4469 	 * cleared after reset_balance_state.
4470 	 */
4471 	need_unlock = false;
4472 
4473 	ret = btrfs_balance(fs_info, bctl, bargs);
4474 	bctl = NULL;
4475 
4476 	if (ret == 0 || ret == -ECANCELED) {
4477 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4478 			ret = -EFAULT;
4479 	}
4480 
4481 	kfree(bctl);
4482 out_unlock:
4483 	mutex_unlock(&fs_info->balance_mutex);
4484 	if (need_unlock)
4485 		btrfs_exclop_finish(fs_info);
4486 out:
4487 	mnt_drop_write_file(file);
4488 	kfree(bargs);
4489 	return ret;
4490 }
4491 
4492 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4493 {
4494 	if (!capable(CAP_SYS_ADMIN))
4495 		return -EPERM;
4496 
4497 	switch (cmd) {
4498 	case BTRFS_BALANCE_CTL_PAUSE:
4499 		return btrfs_pause_balance(fs_info);
4500 	case BTRFS_BALANCE_CTL_CANCEL:
4501 		return btrfs_cancel_balance(fs_info);
4502 	}
4503 
4504 	return -EINVAL;
4505 }
4506 
4507 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4508 					 void __user *arg)
4509 {
4510 	struct btrfs_ioctl_balance_args *bargs;
4511 	int ret = 0;
4512 
4513 	if (!capable(CAP_SYS_ADMIN))
4514 		return -EPERM;
4515 
4516 	mutex_lock(&fs_info->balance_mutex);
4517 	if (!fs_info->balance_ctl) {
4518 		ret = -ENOTCONN;
4519 		goto out;
4520 	}
4521 
4522 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4523 	if (!bargs) {
4524 		ret = -ENOMEM;
4525 		goto out;
4526 	}
4527 
4528 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4529 
4530 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4531 		ret = -EFAULT;
4532 
4533 	kfree(bargs);
4534 out:
4535 	mutex_unlock(&fs_info->balance_mutex);
4536 	return ret;
4537 }
4538 
4539 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4540 {
4541 	struct inode *inode = file_inode(file);
4542 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4543 	struct btrfs_ioctl_quota_ctl_args *sa;
4544 	int ret;
4545 
4546 	if (!capable(CAP_SYS_ADMIN))
4547 		return -EPERM;
4548 
4549 	ret = mnt_want_write_file(file);
4550 	if (ret)
4551 		return ret;
4552 
4553 	sa = memdup_user(arg, sizeof(*sa));
4554 	if (IS_ERR(sa)) {
4555 		ret = PTR_ERR(sa);
4556 		goto drop_write;
4557 	}
4558 
4559 	down_write(&fs_info->subvol_sem);
4560 
4561 	switch (sa->cmd) {
4562 	case BTRFS_QUOTA_CTL_ENABLE:
4563 		ret = btrfs_quota_enable(fs_info);
4564 		break;
4565 	case BTRFS_QUOTA_CTL_DISABLE:
4566 		ret = btrfs_quota_disable(fs_info);
4567 		break;
4568 	default:
4569 		ret = -EINVAL;
4570 		break;
4571 	}
4572 
4573 	kfree(sa);
4574 	up_write(&fs_info->subvol_sem);
4575 drop_write:
4576 	mnt_drop_write_file(file);
4577 	return ret;
4578 }
4579 
4580 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4581 {
4582 	struct inode *inode = file_inode(file);
4583 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4584 	struct btrfs_root *root = BTRFS_I(inode)->root;
4585 	struct btrfs_ioctl_qgroup_assign_args *sa;
4586 	struct btrfs_trans_handle *trans;
4587 	int ret;
4588 	int err;
4589 
4590 	if (!capable(CAP_SYS_ADMIN))
4591 		return -EPERM;
4592 
4593 	ret = mnt_want_write_file(file);
4594 	if (ret)
4595 		return ret;
4596 
4597 	sa = memdup_user(arg, sizeof(*sa));
4598 	if (IS_ERR(sa)) {
4599 		ret = PTR_ERR(sa);
4600 		goto drop_write;
4601 	}
4602 
4603 	trans = btrfs_join_transaction(root);
4604 	if (IS_ERR(trans)) {
4605 		ret = PTR_ERR(trans);
4606 		goto out;
4607 	}
4608 
4609 	if (sa->assign) {
4610 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4611 	} else {
4612 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4613 	}
4614 
4615 	/* update qgroup status and info */
4616 	err = btrfs_run_qgroups(trans);
4617 	if (err < 0)
4618 		btrfs_handle_fs_error(fs_info, err,
4619 				      "failed to update qgroup status and info");
4620 	err = btrfs_end_transaction(trans);
4621 	if (err && !ret)
4622 		ret = err;
4623 
4624 out:
4625 	kfree(sa);
4626 drop_write:
4627 	mnt_drop_write_file(file);
4628 	return ret;
4629 }
4630 
4631 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4632 {
4633 	struct inode *inode = file_inode(file);
4634 	struct btrfs_root *root = BTRFS_I(inode)->root;
4635 	struct btrfs_ioctl_qgroup_create_args *sa;
4636 	struct btrfs_trans_handle *trans;
4637 	int ret;
4638 	int err;
4639 
4640 	if (!capable(CAP_SYS_ADMIN))
4641 		return -EPERM;
4642 
4643 	ret = mnt_want_write_file(file);
4644 	if (ret)
4645 		return ret;
4646 
4647 	sa = memdup_user(arg, sizeof(*sa));
4648 	if (IS_ERR(sa)) {
4649 		ret = PTR_ERR(sa);
4650 		goto drop_write;
4651 	}
4652 
4653 	if (!sa->qgroupid) {
4654 		ret = -EINVAL;
4655 		goto out;
4656 	}
4657 
4658 	trans = btrfs_join_transaction(root);
4659 	if (IS_ERR(trans)) {
4660 		ret = PTR_ERR(trans);
4661 		goto out;
4662 	}
4663 
4664 	if (sa->create) {
4665 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4666 	} else {
4667 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4668 	}
4669 
4670 	err = btrfs_end_transaction(trans);
4671 	if (err && !ret)
4672 		ret = err;
4673 
4674 out:
4675 	kfree(sa);
4676 drop_write:
4677 	mnt_drop_write_file(file);
4678 	return ret;
4679 }
4680 
4681 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4682 {
4683 	struct inode *inode = file_inode(file);
4684 	struct btrfs_root *root = BTRFS_I(inode)->root;
4685 	struct btrfs_ioctl_qgroup_limit_args *sa;
4686 	struct btrfs_trans_handle *trans;
4687 	int ret;
4688 	int err;
4689 	u64 qgroupid;
4690 
4691 	if (!capable(CAP_SYS_ADMIN))
4692 		return -EPERM;
4693 
4694 	ret = mnt_want_write_file(file);
4695 	if (ret)
4696 		return ret;
4697 
4698 	sa = memdup_user(arg, sizeof(*sa));
4699 	if (IS_ERR(sa)) {
4700 		ret = PTR_ERR(sa);
4701 		goto drop_write;
4702 	}
4703 
4704 	trans = btrfs_join_transaction(root);
4705 	if (IS_ERR(trans)) {
4706 		ret = PTR_ERR(trans);
4707 		goto out;
4708 	}
4709 
4710 	qgroupid = sa->qgroupid;
4711 	if (!qgroupid) {
4712 		/* take the current subvol as qgroup */
4713 		qgroupid = root->root_key.objectid;
4714 	}
4715 
4716 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4717 
4718 	err = btrfs_end_transaction(trans);
4719 	if (err && !ret)
4720 		ret = err;
4721 
4722 out:
4723 	kfree(sa);
4724 drop_write:
4725 	mnt_drop_write_file(file);
4726 	return ret;
4727 }
4728 
4729 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4730 {
4731 	struct inode *inode = file_inode(file);
4732 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4733 	struct btrfs_ioctl_quota_rescan_args *qsa;
4734 	int ret;
4735 
4736 	if (!capable(CAP_SYS_ADMIN))
4737 		return -EPERM;
4738 
4739 	ret = mnt_want_write_file(file);
4740 	if (ret)
4741 		return ret;
4742 
4743 	qsa = memdup_user(arg, sizeof(*qsa));
4744 	if (IS_ERR(qsa)) {
4745 		ret = PTR_ERR(qsa);
4746 		goto drop_write;
4747 	}
4748 
4749 	if (qsa->flags) {
4750 		ret = -EINVAL;
4751 		goto out;
4752 	}
4753 
4754 	ret = btrfs_qgroup_rescan(fs_info);
4755 
4756 out:
4757 	kfree(qsa);
4758 drop_write:
4759 	mnt_drop_write_file(file);
4760 	return ret;
4761 }
4762 
4763 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4764 						void __user *arg)
4765 {
4766 	struct btrfs_ioctl_quota_rescan_args qsa = {0};
4767 
4768 	if (!capable(CAP_SYS_ADMIN))
4769 		return -EPERM;
4770 
4771 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4772 		qsa.flags = 1;
4773 		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4774 	}
4775 
4776 	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4777 		return -EFAULT;
4778 
4779 	return 0;
4780 }
4781 
4782 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4783 						void __user *arg)
4784 {
4785 	if (!capable(CAP_SYS_ADMIN))
4786 		return -EPERM;
4787 
4788 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4789 }
4790 
4791 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4792 					    struct user_namespace *mnt_userns,
4793 					    struct btrfs_ioctl_received_subvol_args *sa)
4794 {
4795 	struct inode *inode = file_inode(file);
4796 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4797 	struct btrfs_root *root = BTRFS_I(inode)->root;
4798 	struct btrfs_root_item *root_item = &root->root_item;
4799 	struct btrfs_trans_handle *trans;
4800 	struct timespec64 ct = current_time(inode);
4801 	int ret = 0;
4802 	int received_uuid_changed;
4803 
4804 	if (!inode_owner_or_capable(mnt_userns, inode))
4805 		return -EPERM;
4806 
4807 	ret = mnt_want_write_file(file);
4808 	if (ret < 0)
4809 		return ret;
4810 
4811 	down_write(&fs_info->subvol_sem);
4812 
4813 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4814 		ret = -EINVAL;
4815 		goto out;
4816 	}
4817 
4818 	if (btrfs_root_readonly(root)) {
4819 		ret = -EROFS;
4820 		goto out;
4821 	}
4822 
4823 	/*
4824 	 * 1 - root item
4825 	 * 2 - uuid items (received uuid + subvol uuid)
4826 	 */
4827 	trans = btrfs_start_transaction(root, 3);
4828 	if (IS_ERR(trans)) {
4829 		ret = PTR_ERR(trans);
4830 		trans = NULL;
4831 		goto out;
4832 	}
4833 
4834 	sa->rtransid = trans->transid;
4835 	sa->rtime.sec = ct.tv_sec;
4836 	sa->rtime.nsec = ct.tv_nsec;
4837 
4838 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4839 				       BTRFS_UUID_SIZE);
4840 	if (received_uuid_changed &&
4841 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4842 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4843 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4844 					  root->root_key.objectid);
4845 		if (ret && ret != -ENOENT) {
4846 		        btrfs_abort_transaction(trans, ret);
4847 		        btrfs_end_transaction(trans);
4848 		        goto out;
4849 		}
4850 	}
4851 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4852 	btrfs_set_root_stransid(root_item, sa->stransid);
4853 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4854 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4855 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4856 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4857 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4858 
4859 	ret = btrfs_update_root(trans, fs_info->tree_root,
4860 				&root->root_key, &root->root_item);
4861 	if (ret < 0) {
4862 		btrfs_end_transaction(trans);
4863 		goto out;
4864 	}
4865 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4866 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4867 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4868 					  root->root_key.objectid);
4869 		if (ret < 0 && ret != -EEXIST) {
4870 			btrfs_abort_transaction(trans, ret);
4871 			btrfs_end_transaction(trans);
4872 			goto out;
4873 		}
4874 	}
4875 	ret = btrfs_commit_transaction(trans);
4876 out:
4877 	up_write(&fs_info->subvol_sem);
4878 	mnt_drop_write_file(file);
4879 	return ret;
4880 }
4881 
4882 #ifdef CONFIG_64BIT
4883 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4884 						void __user *arg)
4885 {
4886 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4887 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4888 	int ret = 0;
4889 
4890 	args32 = memdup_user(arg, sizeof(*args32));
4891 	if (IS_ERR(args32))
4892 		return PTR_ERR(args32);
4893 
4894 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4895 	if (!args64) {
4896 		ret = -ENOMEM;
4897 		goto out;
4898 	}
4899 
4900 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4901 	args64->stransid = args32->stransid;
4902 	args64->rtransid = args32->rtransid;
4903 	args64->stime.sec = args32->stime.sec;
4904 	args64->stime.nsec = args32->stime.nsec;
4905 	args64->rtime.sec = args32->rtime.sec;
4906 	args64->rtime.nsec = args32->rtime.nsec;
4907 	args64->flags = args32->flags;
4908 
4909 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4910 	if (ret)
4911 		goto out;
4912 
4913 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4914 	args32->stransid = args64->stransid;
4915 	args32->rtransid = args64->rtransid;
4916 	args32->stime.sec = args64->stime.sec;
4917 	args32->stime.nsec = args64->stime.nsec;
4918 	args32->rtime.sec = args64->rtime.sec;
4919 	args32->rtime.nsec = args64->rtime.nsec;
4920 	args32->flags = args64->flags;
4921 
4922 	ret = copy_to_user(arg, args32, sizeof(*args32));
4923 	if (ret)
4924 		ret = -EFAULT;
4925 
4926 out:
4927 	kfree(args32);
4928 	kfree(args64);
4929 	return ret;
4930 }
4931 #endif
4932 
4933 static long btrfs_ioctl_set_received_subvol(struct file *file,
4934 					    void __user *arg)
4935 {
4936 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4937 	int ret = 0;
4938 
4939 	sa = memdup_user(arg, sizeof(*sa));
4940 	if (IS_ERR(sa))
4941 		return PTR_ERR(sa);
4942 
4943 	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4944 
4945 	if (ret)
4946 		goto out;
4947 
4948 	ret = copy_to_user(arg, sa, sizeof(*sa));
4949 	if (ret)
4950 		ret = -EFAULT;
4951 
4952 out:
4953 	kfree(sa);
4954 	return ret;
4955 }
4956 
4957 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4958 					void __user *arg)
4959 {
4960 	size_t len;
4961 	int ret;
4962 	char label[BTRFS_LABEL_SIZE];
4963 
4964 	spin_lock(&fs_info->super_lock);
4965 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4966 	spin_unlock(&fs_info->super_lock);
4967 
4968 	len = strnlen(label, BTRFS_LABEL_SIZE);
4969 
4970 	if (len == BTRFS_LABEL_SIZE) {
4971 		btrfs_warn(fs_info,
4972 			   "label is too long, return the first %zu bytes",
4973 			   --len);
4974 	}
4975 
4976 	ret = copy_to_user(arg, label, len);
4977 
4978 	return ret ? -EFAULT : 0;
4979 }
4980 
4981 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4982 {
4983 	struct inode *inode = file_inode(file);
4984 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4985 	struct btrfs_root *root = BTRFS_I(inode)->root;
4986 	struct btrfs_super_block *super_block = fs_info->super_copy;
4987 	struct btrfs_trans_handle *trans;
4988 	char label[BTRFS_LABEL_SIZE];
4989 	int ret;
4990 
4991 	if (!capable(CAP_SYS_ADMIN))
4992 		return -EPERM;
4993 
4994 	if (copy_from_user(label, arg, sizeof(label)))
4995 		return -EFAULT;
4996 
4997 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4998 		btrfs_err(fs_info,
4999 			  "unable to set label with more than %d bytes",
5000 			  BTRFS_LABEL_SIZE - 1);
5001 		return -EINVAL;
5002 	}
5003 
5004 	ret = mnt_want_write_file(file);
5005 	if (ret)
5006 		return ret;
5007 
5008 	trans = btrfs_start_transaction(root, 0);
5009 	if (IS_ERR(trans)) {
5010 		ret = PTR_ERR(trans);
5011 		goto out_unlock;
5012 	}
5013 
5014 	spin_lock(&fs_info->super_lock);
5015 	strcpy(super_block->label, label);
5016 	spin_unlock(&fs_info->super_lock);
5017 	ret = btrfs_commit_transaction(trans);
5018 
5019 out_unlock:
5020 	mnt_drop_write_file(file);
5021 	return ret;
5022 }
5023 
5024 #define INIT_FEATURE_FLAGS(suffix) \
5025 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5026 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5027 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5028 
5029 int btrfs_ioctl_get_supported_features(void __user *arg)
5030 {
5031 	static const struct btrfs_ioctl_feature_flags features[3] = {
5032 		INIT_FEATURE_FLAGS(SUPP),
5033 		INIT_FEATURE_FLAGS(SAFE_SET),
5034 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5035 	};
5036 
5037 	if (copy_to_user(arg, &features, sizeof(features)))
5038 		return -EFAULT;
5039 
5040 	return 0;
5041 }
5042 
5043 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
5044 					void __user *arg)
5045 {
5046 	struct btrfs_super_block *super_block = fs_info->super_copy;
5047 	struct btrfs_ioctl_feature_flags features;
5048 
5049 	features.compat_flags = btrfs_super_compat_flags(super_block);
5050 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5051 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5052 
5053 	if (copy_to_user(arg, &features, sizeof(features)))
5054 		return -EFAULT;
5055 
5056 	return 0;
5057 }
5058 
5059 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5060 			      enum btrfs_feature_set set,
5061 			      u64 change_mask, u64 flags, u64 supported_flags,
5062 			      u64 safe_set, u64 safe_clear)
5063 {
5064 	const char *type = btrfs_feature_set_name(set);
5065 	char *names;
5066 	u64 disallowed, unsupported;
5067 	u64 set_mask = flags & change_mask;
5068 	u64 clear_mask = ~flags & change_mask;
5069 
5070 	unsupported = set_mask & ~supported_flags;
5071 	if (unsupported) {
5072 		names = btrfs_printable_features(set, unsupported);
5073 		if (names) {
5074 			btrfs_warn(fs_info,
5075 				   "this kernel does not support the %s feature bit%s",
5076 				   names, strchr(names, ',') ? "s" : "");
5077 			kfree(names);
5078 		} else
5079 			btrfs_warn(fs_info,
5080 				   "this kernel does not support %s bits 0x%llx",
5081 				   type, unsupported);
5082 		return -EOPNOTSUPP;
5083 	}
5084 
5085 	disallowed = set_mask & ~safe_set;
5086 	if (disallowed) {
5087 		names = btrfs_printable_features(set, disallowed);
5088 		if (names) {
5089 			btrfs_warn(fs_info,
5090 				   "can't set the %s feature bit%s while mounted",
5091 				   names, strchr(names, ',') ? "s" : "");
5092 			kfree(names);
5093 		} else
5094 			btrfs_warn(fs_info,
5095 				   "can't set %s bits 0x%llx while mounted",
5096 				   type, disallowed);
5097 		return -EPERM;
5098 	}
5099 
5100 	disallowed = clear_mask & ~safe_clear;
5101 	if (disallowed) {
5102 		names = btrfs_printable_features(set, disallowed);
5103 		if (names) {
5104 			btrfs_warn(fs_info,
5105 				   "can't clear the %s feature bit%s while mounted",
5106 				   names, strchr(names, ',') ? "s" : "");
5107 			kfree(names);
5108 		} else
5109 			btrfs_warn(fs_info,
5110 				   "can't clear %s bits 0x%llx while mounted",
5111 				   type, disallowed);
5112 		return -EPERM;
5113 	}
5114 
5115 	return 0;
5116 }
5117 
5118 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5119 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5120 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5121 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5122 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5123 
5124 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5125 {
5126 	struct inode *inode = file_inode(file);
5127 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5128 	struct btrfs_root *root = BTRFS_I(inode)->root;
5129 	struct btrfs_super_block *super_block = fs_info->super_copy;
5130 	struct btrfs_ioctl_feature_flags flags[2];
5131 	struct btrfs_trans_handle *trans;
5132 	u64 newflags;
5133 	int ret;
5134 
5135 	if (!capable(CAP_SYS_ADMIN))
5136 		return -EPERM;
5137 
5138 	if (copy_from_user(flags, arg, sizeof(flags)))
5139 		return -EFAULT;
5140 
5141 	/* Nothing to do */
5142 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5143 	    !flags[0].incompat_flags)
5144 		return 0;
5145 
5146 	ret = check_feature(fs_info, flags[0].compat_flags,
5147 			    flags[1].compat_flags, COMPAT);
5148 	if (ret)
5149 		return ret;
5150 
5151 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5152 			    flags[1].compat_ro_flags, COMPAT_RO);
5153 	if (ret)
5154 		return ret;
5155 
5156 	ret = check_feature(fs_info, flags[0].incompat_flags,
5157 			    flags[1].incompat_flags, INCOMPAT);
5158 	if (ret)
5159 		return ret;
5160 
5161 	ret = mnt_want_write_file(file);
5162 	if (ret)
5163 		return ret;
5164 
5165 	trans = btrfs_start_transaction(root, 0);
5166 	if (IS_ERR(trans)) {
5167 		ret = PTR_ERR(trans);
5168 		goto out_drop_write;
5169 	}
5170 
5171 	spin_lock(&fs_info->super_lock);
5172 	newflags = btrfs_super_compat_flags(super_block);
5173 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5174 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5175 	btrfs_set_super_compat_flags(super_block, newflags);
5176 
5177 	newflags = btrfs_super_compat_ro_flags(super_block);
5178 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5179 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5180 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5181 
5182 	newflags = btrfs_super_incompat_flags(super_block);
5183 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5184 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5185 	btrfs_set_super_incompat_flags(super_block, newflags);
5186 	spin_unlock(&fs_info->super_lock);
5187 
5188 	ret = btrfs_commit_transaction(trans);
5189 out_drop_write:
5190 	mnt_drop_write_file(file);
5191 
5192 	return ret;
5193 }
5194 
5195 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
5196 {
5197 	struct btrfs_ioctl_send_args *arg;
5198 	int ret;
5199 
5200 	if (compat) {
5201 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5202 		struct btrfs_ioctl_send_args_32 args32;
5203 
5204 		ret = copy_from_user(&args32, argp, sizeof(args32));
5205 		if (ret)
5206 			return -EFAULT;
5207 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5208 		if (!arg)
5209 			return -ENOMEM;
5210 		arg->send_fd = args32.send_fd;
5211 		arg->clone_sources_count = args32.clone_sources_count;
5212 		arg->clone_sources = compat_ptr(args32.clone_sources);
5213 		arg->parent_root = args32.parent_root;
5214 		arg->flags = args32.flags;
5215 		memcpy(arg->reserved, args32.reserved,
5216 		       sizeof(args32.reserved));
5217 #else
5218 		return -ENOTTY;
5219 #endif
5220 	} else {
5221 		arg = memdup_user(argp, sizeof(*arg));
5222 		if (IS_ERR(arg))
5223 			return PTR_ERR(arg);
5224 	}
5225 	ret = btrfs_ioctl_send(inode, arg);
5226 	kfree(arg);
5227 	return ret;
5228 }
5229 
5230 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
5231 				    bool compat)
5232 {
5233 	struct btrfs_ioctl_encoded_io_args args = { 0 };
5234 	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
5235 					     flags);
5236 	size_t copy_end;
5237 	struct iovec iovstack[UIO_FASTIOV];
5238 	struct iovec *iov = iovstack;
5239 	struct iov_iter iter;
5240 	loff_t pos;
5241 	struct kiocb kiocb;
5242 	ssize_t ret;
5243 
5244 	if (!capable(CAP_SYS_ADMIN)) {
5245 		ret = -EPERM;
5246 		goto out_acct;
5247 	}
5248 
5249 	if (compat) {
5250 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5251 		struct btrfs_ioctl_encoded_io_args_32 args32;
5252 
5253 		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
5254 				       flags);
5255 		if (copy_from_user(&args32, argp, copy_end)) {
5256 			ret = -EFAULT;
5257 			goto out_acct;
5258 		}
5259 		args.iov = compat_ptr(args32.iov);
5260 		args.iovcnt = args32.iovcnt;
5261 		args.offset = args32.offset;
5262 		args.flags = args32.flags;
5263 #else
5264 		return -ENOTTY;
5265 #endif
5266 	} else {
5267 		copy_end = copy_end_kernel;
5268 		if (copy_from_user(&args, argp, copy_end)) {
5269 			ret = -EFAULT;
5270 			goto out_acct;
5271 		}
5272 	}
5273 	if (args.flags != 0) {
5274 		ret = -EINVAL;
5275 		goto out_acct;
5276 	}
5277 
5278 	ret = import_iovec(READ, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5279 			   &iov, &iter);
5280 	if (ret < 0)
5281 		goto out_acct;
5282 
5283 	if (iov_iter_count(&iter) == 0) {
5284 		ret = 0;
5285 		goto out_iov;
5286 	}
5287 	pos = args.offset;
5288 	ret = rw_verify_area(READ, file, &pos, args.len);
5289 	if (ret < 0)
5290 		goto out_iov;
5291 
5292 	init_sync_kiocb(&kiocb, file);
5293 	kiocb.ki_pos = pos;
5294 
5295 	ret = btrfs_encoded_read(&kiocb, &iter, &args);
5296 	if (ret >= 0) {
5297 		fsnotify_access(file);
5298 		if (copy_to_user(argp + copy_end,
5299 				 (char *)&args + copy_end_kernel,
5300 				 sizeof(args) - copy_end_kernel))
5301 			ret = -EFAULT;
5302 	}
5303 
5304 out_iov:
5305 	kfree(iov);
5306 out_acct:
5307 	if (ret > 0)
5308 		add_rchar(current, ret);
5309 	inc_syscr(current);
5310 	return ret;
5311 }
5312 
5313 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
5314 {
5315 	struct btrfs_ioctl_encoded_io_args args;
5316 	struct iovec iovstack[UIO_FASTIOV];
5317 	struct iovec *iov = iovstack;
5318 	struct iov_iter iter;
5319 	loff_t pos;
5320 	struct kiocb kiocb;
5321 	ssize_t ret;
5322 
5323 	if (!capable(CAP_SYS_ADMIN)) {
5324 		ret = -EPERM;
5325 		goto out_acct;
5326 	}
5327 
5328 	if (!(file->f_mode & FMODE_WRITE)) {
5329 		ret = -EBADF;
5330 		goto out_acct;
5331 	}
5332 
5333 	if (compat) {
5334 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5335 		struct btrfs_ioctl_encoded_io_args_32 args32;
5336 
5337 		if (copy_from_user(&args32, argp, sizeof(args32))) {
5338 			ret = -EFAULT;
5339 			goto out_acct;
5340 		}
5341 		args.iov = compat_ptr(args32.iov);
5342 		args.iovcnt = args32.iovcnt;
5343 		args.offset = args32.offset;
5344 		args.flags = args32.flags;
5345 		args.len = args32.len;
5346 		args.unencoded_len = args32.unencoded_len;
5347 		args.unencoded_offset = args32.unencoded_offset;
5348 		args.compression = args32.compression;
5349 		args.encryption = args32.encryption;
5350 		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
5351 #else
5352 		return -ENOTTY;
5353 #endif
5354 	} else {
5355 		if (copy_from_user(&args, argp, sizeof(args))) {
5356 			ret = -EFAULT;
5357 			goto out_acct;
5358 		}
5359 	}
5360 
5361 	ret = -EINVAL;
5362 	if (args.flags != 0)
5363 		goto out_acct;
5364 	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
5365 		goto out_acct;
5366 	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5367 	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5368 		goto out_acct;
5369 	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5370 	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5371 		goto out_acct;
5372 	if (args.unencoded_offset > args.unencoded_len)
5373 		goto out_acct;
5374 	if (args.len > args.unencoded_len - args.unencoded_offset)
5375 		goto out_acct;
5376 
5377 	ret = import_iovec(WRITE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
5378 			   &iov, &iter);
5379 	if (ret < 0)
5380 		goto out_acct;
5381 
5382 	file_start_write(file);
5383 
5384 	if (iov_iter_count(&iter) == 0) {
5385 		ret = 0;
5386 		goto out_end_write;
5387 	}
5388 	pos = args.offset;
5389 	ret = rw_verify_area(WRITE, file, &pos, args.len);
5390 	if (ret < 0)
5391 		goto out_end_write;
5392 
5393 	init_sync_kiocb(&kiocb, file);
5394 	ret = kiocb_set_rw_flags(&kiocb, 0);
5395 	if (ret)
5396 		goto out_end_write;
5397 	kiocb.ki_pos = pos;
5398 
5399 	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
5400 	if (ret > 0)
5401 		fsnotify_modify(file);
5402 
5403 out_end_write:
5404 	file_end_write(file);
5405 	kfree(iov);
5406 out_acct:
5407 	if (ret > 0)
5408 		add_wchar(current, ret);
5409 	inc_syscw(current);
5410 	return ret;
5411 }
5412 
5413 long btrfs_ioctl(struct file *file, unsigned int
5414 		cmd, unsigned long arg)
5415 {
5416 	struct inode *inode = file_inode(file);
5417 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5418 	struct btrfs_root *root = BTRFS_I(inode)->root;
5419 	void __user *argp = (void __user *)arg;
5420 
5421 	switch (cmd) {
5422 	case FS_IOC_GETVERSION:
5423 		return btrfs_ioctl_getversion(inode, argp);
5424 	case FS_IOC_GETFSLABEL:
5425 		return btrfs_ioctl_get_fslabel(fs_info, argp);
5426 	case FS_IOC_SETFSLABEL:
5427 		return btrfs_ioctl_set_fslabel(file, argp);
5428 	case FITRIM:
5429 		return btrfs_ioctl_fitrim(fs_info, argp);
5430 	case BTRFS_IOC_SNAP_CREATE:
5431 		return btrfs_ioctl_snap_create(file, argp, 0);
5432 	case BTRFS_IOC_SNAP_CREATE_V2:
5433 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5434 	case BTRFS_IOC_SUBVOL_CREATE:
5435 		return btrfs_ioctl_snap_create(file, argp, 1);
5436 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5437 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5438 	case BTRFS_IOC_SNAP_DESTROY:
5439 		return btrfs_ioctl_snap_destroy(file, argp, false);
5440 	case BTRFS_IOC_SNAP_DESTROY_V2:
5441 		return btrfs_ioctl_snap_destroy(file, argp, true);
5442 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5443 		return btrfs_ioctl_subvol_getflags(inode, argp);
5444 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5445 		return btrfs_ioctl_subvol_setflags(file, argp);
5446 	case BTRFS_IOC_DEFAULT_SUBVOL:
5447 		return btrfs_ioctl_default_subvol(file, argp);
5448 	case BTRFS_IOC_DEFRAG:
5449 		return btrfs_ioctl_defrag(file, NULL);
5450 	case BTRFS_IOC_DEFRAG_RANGE:
5451 		return btrfs_ioctl_defrag(file, argp);
5452 	case BTRFS_IOC_RESIZE:
5453 		return btrfs_ioctl_resize(file, argp);
5454 	case BTRFS_IOC_ADD_DEV:
5455 		return btrfs_ioctl_add_dev(fs_info, argp);
5456 	case BTRFS_IOC_RM_DEV:
5457 		return btrfs_ioctl_rm_dev(file, argp);
5458 	case BTRFS_IOC_RM_DEV_V2:
5459 		return btrfs_ioctl_rm_dev_v2(file, argp);
5460 	case BTRFS_IOC_FS_INFO:
5461 		return btrfs_ioctl_fs_info(fs_info, argp);
5462 	case BTRFS_IOC_DEV_INFO:
5463 		return btrfs_ioctl_dev_info(fs_info, argp);
5464 	case BTRFS_IOC_TREE_SEARCH:
5465 		return btrfs_ioctl_tree_search(inode, argp);
5466 	case BTRFS_IOC_TREE_SEARCH_V2:
5467 		return btrfs_ioctl_tree_search_v2(inode, argp);
5468 	case BTRFS_IOC_INO_LOOKUP:
5469 		return btrfs_ioctl_ino_lookup(root, argp);
5470 	case BTRFS_IOC_INO_PATHS:
5471 		return btrfs_ioctl_ino_to_path(root, argp);
5472 	case BTRFS_IOC_LOGICAL_INO:
5473 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5474 	case BTRFS_IOC_LOGICAL_INO_V2:
5475 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5476 	case BTRFS_IOC_SPACE_INFO:
5477 		return btrfs_ioctl_space_info(fs_info, argp);
5478 	case BTRFS_IOC_SYNC: {
5479 		int ret;
5480 
5481 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5482 		if (ret)
5483 			return ret;
5484 		ret = btrfs_sync_fs(inode->i_sb, 1);
5485 		/*
5486 		 * The transaction thread may want to do more work,
5487 		 * namely it pokes the cleaner kthread that will start
5488 		 * processing uncleaned subvols.
5489 		 */
5490 		wake_up_process(fs_info->transaction_kthread);
5491 		return ret;
5492 	}
5493 	case BTRFS_IOC_START_SYNC:
5494 		return btrfs_ioctl_start_sync(root, argp);
5495 	case BTRFS_IOC_WAIT_SYNC:
5496 		return btrfs_ioctl_wait_sync(fs_info, argp);
5497 	case BTRFS_IOC_SCRUB:
5498 		return btrfs_ioctl_scrub(file, argp);
5499 	case BTRFS_IOC_SCRUB_CANCEL:
5500 		return btrfs_ioctl_scrub_cancel(fs_info);
5501 	case BTRFS_IOC_SCRUB_PROGRESS:
5502 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5503 	case BTRFS_IOC_BALANCE_V2:
5504 		return btrfs_ioctl_balance(file, argp);
5505 	case BTRFS_IOC_BALANCE_CTL:
5506 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5507 	case BTRFS_IOC_BALANCE_PROGRESS:
5508 		return btrfs_ioctl_balance_progress(fs_info, argp);
5509 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5510 		return btrfs_ioctl_set_received_subvol(file, argp);
5511 #ifdef CONFIG_64BIT
5512 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5513 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5514 #endif
5515 	case BTRFS_IOC_SEND:
5516 		return _btrfs_ioctl_send(inode, argp, false);
5517 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5518 	case BTRFS_IOC_SEND_32:
5519 		return _btrfs_ioctl_send(inode, argp, true);
5520 #endif
5521 	case BTRFS_IOC_GET_DEV_STATS:
5522 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5523 	case BTRFS_IOC_QUOTA_CTL:
5524 		return btrfs_ioctl_quota_ctl(file, argp);
5525 	case BTRFS_IOC_QGROUP_ASSIGN:
5526 		return btrfs_ioctl_qgroup_assign(file, argp);
5527 	case BTRFS_IOC_QGROUP_CREATE:
5528 		return btrfs_ioctl_qgroup_create(file, argp);
5529 	case BTRFS_IOC_QGROUP_LIMIT:
5530 		return btrfs_ioctl_qgroup_limit(file, argp);
5531 	case BTRFS_IOC_QUOTA_RESCAN:
5532 		return btrfs_ioctl_quota_rescan(file, argp);
5533 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5534 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5535 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5536 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5537 	case BTRFS_IOC_DEV_REPLACE:
5538 		return btrfs_ioctl_dev_replace(fs_info, argp);
5539 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5540 		return btrfs_ioctl_get_supported_features(argp);
5541 	case BTRFS_IOC_GET_FEATURES:
5542 		return btrfs_ioctl_get_features(fs_info, argp);
5543 	case BTRFS_IOC_SET_FEATURES:
5544 		return btrfs_ioctl_set_features(file, argp);
5545 	case BTRFS_IOC_GET_SUBVOL_INFO:
5546 		return btrfs_ioctl_get_subvol_info(inode, argp);
5547 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5548 		return btrfs_ioctl_get_subvol_rootref(root, argp);
5549 	case BTRFS_IOC_INO_LOOKUP_USER:
5550 		return btrfs_ioctl_ino_lookup_user(file, argp);
5551 	case FS_IOC_ENABLE_VERITY:
5552 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5553 	case FS_IOC_MEASURE_VERITY:
5554 		return fsverity_ioctl_measure(file, argp);
5555 	case BTRFS_IOC_ENCODED_READ:
5556 		return btrfs_ioctl_encoded_read(file, argp, false);
5557 	case BTRFS_IOC_ENCODED_WRITE:
5558 		return btrfs_ioctl_encoded_write(file, argp, false);
5559 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5560 	case BTRFS_IOC_ENCODED_READ_32:
5561 		return btrfs_ioctl_encoded_read(file, argp, true);
5562 	case BTRFS_IOC_ENCODED_WRITE_32:
5563 		return btrfs_ioctl_encoded_write(file, argp, true);
5564 #endif
5565 	}
5566 
5567 	return -ENOTTY;
5568 }
5569 
5570 #ifdef CONFIG_COMPAT
5571 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5572 {
5573 	/*
5574 	 * These all access 32-bit values anyway so no further
5575 	 * handling is necessary.
5576 	 */
5577 	switch (cmd) {
5578 	case FS_IOC32_GETVERSION:
5579 		cmd = FS_IOC_GETVERSION;
5580 		break;
5581 	}
5582 
5583 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5584 }
5585 #endif
5586