1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/compat.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/security.h> 39 #include <linux/xattr.h> 40 #include <linux/mm.h> 41 #include <linux/slab.h> 42 #include <linux/blkdev.h> 43 #include <linux/uuid.h> 44 #include <linux/btrfs.h> 45 #include <linux/uaccess.h> 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "volumes.h" 52 #include "locking.h" 53 #include "inode-map.h" 54 #include "backref.h" 55 #include "rcu-string.h" 56 #include "send.h" 57 #include "dev-replace.h" 58 #include "props.h" 59 #include "sysfs.h" 60 #include "qgroup.h" 61 #include "tree-log.h" 62 #include "compression.h" 63 64 #ifdef CONFIG_64BIT 65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 66 * structures are incorrect, as the timespec structure from userspace 67 * is 4 bytes too small. We define these alternatives here to teach 68 * the kernel about the 32-bit struct packing. 69 */ 70 struct btrfs_ioctl_timespec_32 { 71 __u64 sec; 72 __u32 nsec; 73 } __attribute__ ((__packed__)); 74 75 struct btrfs_ioctl_received_subvol_args_32 { 76 char uuid[BTRFS_UUID_SIZE]; /* in */ 77 __u64 stransid; /* in */ 78 __u64 rtransid; /* out */ 79 struct btrfs_ioctl_timespec_32 stime; /* in */ 80 struct btrfs_ioctl_timespec_32 rtime; /* out */ 81 __u64 flags; /* in */ 82 __u64 reserved[16]; /* in */ 83 } __attribute__ ((__packed__)); 84 85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 86 struct btrfs_ioctl_received_subvol_args_32) 87 #endif 88 89 90 static int btrfs_clone(struct inode *src, struct inode *inode, 91 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 92 int no_time_update); 93 94 /* Mask out flags that are inappropriate for the given type of inode. */ 95 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 96 { 97 if (S_ISDIR(mode)) 98 return flags; 99 else if (S_ISREG(mode)) 100 return flags & ~FS_DIRSYNC_FL; 101 else 102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 103 } 104 105 /* 106 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 107 */ 108 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 109 { 110 unsigned int iflags = 0; 111 112 if (flags & BTRFS_INODE_SYNC) 113 iflags |= FS_SYNC_FL; 114 if (flags & BTRFS_INODE_IMMUTABLE) 115 iflags |= FS_IMMUTABLE_FL; 116 if (flags & BTRFS_INODE_APPEND) 117 iflags |= FS_APPEND_FL; 118 if (flags & BTRFS_INODE_NODUMP) 119 iflags |= FS_NODUMP_FL; 120 if (flags & BTRFS_INODE_NOATIME) 121 iflags |= FS_NOATIME_FL; 122 if (flags & BTRFS_INODE_DIRSYNC) 123 iflags |= FS_DIRSYNC_FL; 124 if (flags & BTRFS_INODE_NODATACOW) 125 iflags |= FS_NOCOW_FL; 126 127 if (flags & BTRFS_INODE_NOCOMPRESS) 128 iflags |= FS_NOCOMP_FL; 129 else if (flags & BTRFS_INODE_COMPRESS) 130 iflags |= FS_COMPR_FL; 131 132 return iflags; 133 } 134 135 /* 136 * Update inode->i_flags based on the btrfs internal flags. 137 */ 138 void btrfs_update_iflags(struct inode *inode) 139 { 140 struct btrfs_inode *ip = BTRFS_I(inode); 141 unsigned int new_fl = 0; 142 143 if (ip->flags & BTRFS_INODE_SYNC) 144 new_fl |= S_SYNC; 145 if (ip->flags & BTRFS_INODE_IMMUTABLE) 146 new_fl |= S_IMMUTABLE; 147 if (ip->flags & BTRFS_INODE_APPEND) 148 new_fl |= S_APPEND; 149 if (ip->flags & BTRFS_INODE_NOATIME) 150 new_fl |= S_NOATIME; 151 if (ip->flags & BTRFS_INODE_DIRSYNC) 152 new_fl |= S_DIRSYNC; 153 154 set_mask_bits(&inode->i_flags, 155 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 156 new_fl); 157 } 158 159 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 160 { 161 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 162 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 163 164 if (copy_to_user(arg, &flags, sizeof(flags))) 165 return -EFAULT; 166 return 0; 167 } 168 169 static int check_flags(unsigned int flags) 170 { 171 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 172 FS_NOATIME_FL | FS_NODUMP_FL | \ 173 FS_SYNC_FL | FS_DIRSYNC_FL | \ 174 FS_NOCOMP_FL | FS_COMPR_FL | 175 FS_NOCOW_FL)) 176 return -EOPNOTSUPP; 177 178 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 179 return -EINVAL; 180 181 return 0; 182 } 183 184 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 185 { 186 struct inode *inode = file_inode(file); 187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 188 struct btrfs_inode *ip = BTRFS_I(inode); 189 struct btrfs_root *root = ip->root; 190 struct btrfs_trans_handle *trans; 191 unsigned int flags, oldflags; 192 int ret; 193 u64 ip_oldflags; 194 unsigned int i_oldflags; 195 umode_t mode; 196 197 if (!inode_owner_or_capable(inode)) 198 return -EPERM; 199 200 if (btrfs_root_readonly(root)) 201 return -EROFS; 202 203 if (copy_from_user(&flags, arg, sizeof(flags))) 204 return -EFAULT; 205 206 ret = check_flags(flags); 207 if (ret) 208 return ret; 209 210 ret = mnt_want_write_file(file); 211 if (ret) 212 return ret; 213 214 inode_lock(inode); 215 216 ip_oldflags = ip->flags; 217 i_oldflags = inode->i_flags; 218 mode = inode->i_mode; 219 220 flags = btrfs_mask_flags(inode->i_mode, flags); 221 oldflags = btrfs_flags_to_ioctl(ip->flags); 222 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 223 if (!capable(CAP_LINUX_IMMUTABLE)) { 224 ret = -EPERM; 225 goto out_unlock; 226 } 227 } 228 229 if (flags & FS_SYNC_FL) 230 ip->flags |= BTRFS_INODE_SYNC; 231 else 232 ip->flags &= ~BTRFS_INODE_SYNC; 233 if (flags & FS_IMMUTABLE_FL) 234 ip->flags |= BTRFS_INODE_IMMUTABLE; 235 else 236 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 237 if (flags & FS_APPEND_FL) 238 ip->flags |= BTRFS_INODE_APPEND; 239 else 240 ip->flags &= ~BTRFS_INODE_APPEND; 241 if (flags & FS_NODUMP_FL) 242 ip->flags |= BTRFS_INODE_NODUMP; 243 else 244 ip->flags &= ~BTRFS_INODE_NODUMP; 245 if (flags & FS_NOATIME_FL) 246 ip->flags |= BTRFS_INODE_NOATIME; 247 else 248 ip->flags &= ~BTRFS_INODE_NOATIME; 249 if (flags & FS_DIRSYNC_FL) 250 ip->flags |= BTRFS_INODE_DIRSYNC; 251 else 252 ip->flags &= ~BTRFS_INODE_DIRSYNC; 253 if (flags & FS_NOCOW_FL) { 254 if (S_ISREG(mode)) { 255 /* 256 * It's safe to turn csums off here, no extents exist. 257 * Otherwise we want the flag to reflect the real COW 258 * status of the file and will not set it. 259 */ 260 if (inode->i_size == 0) 261 ip->flags |= BTRFS_INODE_NODATACOW 262 | BTRFS_INODE_NODATASUM; 263 } else { 264 ip->flags |= BTRFS_INODE_NODATACOW; 265 } 266 } else { 267 /* 268 * Revert back under same assumptions as above 269 */ 270 if (S_ISREG(mode)) { 271 if (inode->i_size == 0) 272 ip->flags &= ~(BTRFS_INODE_NODATACOW 273 | BTRFS_INODE_NODATASUM); 274 } else { 275 ip->flags &= ~BTRFS_INODE_NODATACOW; 276 } 277 } 278 279 /* 280 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 281 * flag may be changed automatically if compression code won't make 282 * things smaller. 283 */ 284 if (flags & FS_NOCOMP_FL) { 285 ip->flags &= ~BTRFS_INODE_COMPRESS; 286 ip->flags |= BTRFS_INODE_NOCOMPRESS; 287 288 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 289 if (ret && ret != -ENODATA) 290 goto out_drop; 291 } else if (flags & FS_COMPR_FL) { 292 const char *comp; 293 294 ip->flags |= BTRFS_INODE_COMPRESS; 295 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 296 297 if (fs_info->compress_type == BTRFS_COMPRESS_LZO) 298 comp = "lzo"; 299 else if (fs_info->compress_type == BTRFS_COMPRESS_ZLIB) 300 comp = "zlib"; 301 else 302 comp = "zstd"; 303 ret = btrfs_set_prop(inode, "btrfs.compression", 304 comp, strlen(comp), 0); 305 if (ret) 306 goto out_drop; 307 308 } else { 309 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 310 if (ret && ret != -ENODATA) 311 goto out_drop; 312 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 313 } 314 315 trans = btrfs_start_transaction(root, 1); 316 if (IS_ERR(trans)) { 317 ret = PTR_ERR(trans); 318 goto out_drop; 319 } 320 321 btrfs_update_iflags(inode); 322 inode_inc_iversion(inode); 323 inode->i_ctime = current_time(inode); 324 ret = btrfs_update_inode(trans, root, inode); 325 326 btrfs_end_transaction(trans); 327 out_drop: 328 if (ret) { 329 ip->flags = ip_oldflags; 330 inode->i_flags = i_oldflags; 331 } 332 333 out_unlock: 334 inode_unlock(inode); 335 mnt_drop_write_file(file); 336 return ret; 337 } 338 339 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 340 { 341 struct inode *inode = file_inode(file); 342 343 return put_user(inode->i_generation, arg); 344 } 345 346 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 347 { 348 struct inode *inode = file_inode(file); 349 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 350 struct btrfs_device *device; 351 struct request_queue *q; 352 struct fstrim_range range; 353 u64 minlen = ULLONG_MAX; 354 u64 num_devices = 0; 355 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 356 int ret; 357 358 if (!capable(CAP_SYS_ADMIN)) 359 return -EPERM; 360 361 rcu_read_lock(); 362 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 363 dev_list) { 364 if (!device->bdev) 365 continue; 366 q = bdev_get_queue(device->bdev); 367 if (blk_queue_discard(q)) { 368 num_devices++; 369 minlen = min_t(u64, q->limits.discard_granularity, 370 minlen); 371 } 372 } 373 rcu_read_unlock(); 374 375 if (!num_devices) 376 return -EOPNOTSUPP; 377 if (copy_from_user(&range, arg, sizeof(range))) 378 return -EFAULT; 379 if (range.start > total_bytes || 380 range.len < fs_info->sb->s_blocksize) 381 return -EINVAL; 382 383 range.len = min(range.len, total_bytes - range.start); 384 range.minlen = max(range.minlen, minlen); 385 ret = btrfs_trim_fs(fs_info, &range); 386 if (ret < 0) 387 return ret; 388 389 if (copy_to_user(arg, &range, sizeof(range))) 390 return -EFAULT; 391 392 return 0; 393 } 394 395 int btrfs_is_empty_uuid(u8 *uuid) 396 { 397 int i; 398 399 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 400 if (uuid[i]) 401 return 0; 402 } 403 return 1; 404 } 405 406 static noinline int create_subvol(struct inode *dir, 407 struct dentry *dentry, 408 const char *name, int namelen, 409 u64 *async_transid, 410 struct btrfs_qgroup_inherit *inherit) 411 { 412 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 413 struct btrfs_trans_handle *trans; 414 struct btrfs_key key; 415 struct btrfs_root_item *root_item; 416 struct btrfs_inode_item *inode_item; 417 struct extent_buffer *leaf; 418 struct btrfs_root *root = BTRFS_I(dir)->root; 419 struct btrfs_root *new_root; 420 struct btrfs_block_rsv block_rsv; 421 struct timespec cur_time = current_time(dir); 422 struct inode *inode; 423 int ret; 424 int err; 425 u64 objectid; 426 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 427 u64 index = 0; 428 u64 qgroup_reserved; 429 uuid_le new_uuid; 430 431 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 432 if (!root_item) 433 return -ENOMEM; 434 435 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 436 if (ret) 437 goto fail_free; 438 439 /* 440 * Don't create subvolume whose level is not zero. Or qgroup will be 441 * screwed up since it assumes subvolume qgroup's level to be 0. 442 */ 443 if (btrfs_qgroup_level(objectid)) { 444 ret = -ENOSPC; 445 goto fail_free; 446 } 447 448 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 449 /* 450 * The same as the snapshot creation, please see the comment 451 * of create_snapshot(). 452 */ 453 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 454 8, &qgroup_reserved, false); 455 if (ret) 456 goto fail_free; 457 458 trans = btrfs_start_transaction(root, 0); 459 if (IS_ERR(trans)) { 460 ret = PTR_ERR(trans); 461 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 462 goto fail_free; 463 } 464 trans->block_rsv = &block_rsv; 465 trans->bytes_reserved = block_rsv.size; 466 467 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit); 468 if (ret) 469 goto fail; 470 471 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 472 if (IS_ERR(leaf)) { 473 ret = PTR_ERR(leaf); 474 goto fail; 475 } 476 477 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); 478 btrfs_set_header_bytenr(leaf, leaf->start); 479 btrfs_set_header_generation(leaf, trans->transid); 480 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 481 btrfs_set_header_owner(leaf, objectid); 482 483 write_extent_buffer_fsid(leaf, fs_info->fsid); 484 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); 485 btrfs_mark_buffer_dirty(leaf); 486 487 inode_item = &root_item->inode; 488 btrfs_set_stack_inode_generation(inode_item, 1); 489 btrfs_set_stack_inode_size(inode_item, 3); 490 btrfs_set_stack_inode_nlink(inode_item, 1); 491 btrfs_set_stack_inode_nbytes(inode_item, 492 fs_info->nodesize); 493 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 494 495 btrfs_set_root_flags(root_item, 0); 496 btrfs_set_root_limit(root_item, 0); 497 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 498 499 btrfs_set_root_bytenr(root_item, leaf->start); 500 btrfs_set_root_generation(root_item, trans->transid); 501 btrfs_set_root_level(root_item, 0); 502 btrfs_set_root_refs(root_item, 1); 503 btrfs_set_root_used(root_item, leaf->len); 504 btrfs_set_root_last_snapshot(root_item, 0); 505 506 btrfs_set_root_generation_v2(root_item, 507 btrfs_root_generation(root_item)); 508 uuid_le_gen(&new_uuid); 509 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 510 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 511 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 512 root_item->ctime = root_item->otime; 513 btrfs_set_root_ctransid(root_item, trans->transid); 514 btrfs_set_root_otransid(root_item, trans->transid); 515 516 btrfs_tree_unlock(leaf); 517 free_extent_buffer(leaf); 518 leaf = NULL; 519 520 btrfs_set_root_dirid(root_item, new_dirid); 521 522 key.objectid = objectid; 523 key.offset = 0; 524 key.type = BTRFS_ROOT_ITEM_KEY; 525 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 526 root_item); 527 if (ret) 528 goto fail; 529 530 key.offset = (u64)-1; 531 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 532 if (IS_ERR(new_root)) { 533 ret = PTR_ERR(new_root); 534 btrfs_abort_transaction(trans, ret); 535 goto fail; 536 } 537 538 btrfs_record_root_in_trans(trans, new_root); 539 540 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 541 if (ret) { 542 /* We potentially lose an unused inode item here */ 543 btrfs_abort_transaction(trans, ret); 544 goto fail; 545 } 546 547 mutex_lock(&new_root->objectid_mutex); 548 new_root->highest_objectid = new_dirid; 549 mutex_unlock(&new_root->objectid_mutex); 550 551 /* 552 * insert the directory item 553 */ 554 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 555 if (ret) { 556 btrfs_abort_transaction(trans, ret); 557 goto fail; 558 } 559 560 ret = btrfs_insert_dir_item(trans, root, 561 name, namelen, BTRFS_I(dir), &key, 562 BTRFS_FT_DIR, index); 563 if (ret) { 564 btrfs_abort_transaction(trans, ret); 565 goto fail; 566 } 567 568 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 569 ret = btrfs_update_inode(trans, root, dir); 570 BUG_ON(ret); 571 572 ret = btrfs_add_root_ref(trans, fs_info, 573 objectid, root->root_key.objectid, 574 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 575 BUG_ON(ret); 576 577 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid, 578 BTRFS_UUID_KEY_SUBVOL, objectid); 579 if (ret) 580 btrfs_abort_transaction(trans, ret); 581 582 fail: 583 kfree(root_item); 584 trans->block_rsv = NULL; 585 trans->bytes_reserved = 0; 586 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 587 588 if (async_transid) { 589 *async_transid = trans->transid; 590 err = btrfs_commit_transaction_async(trans, 1); 591 if (err) 592 err = btrfs_commit_transaction(trans); 593 } else { 594 err = btrfs_commit_transaction(trans); 595 } 596 if (err && !ret) 597 ret = err; 598 599 if (!ret) { 600 inode = btrfs_lookup_dentry(dir, dentry); 601 if (IS_ERR(inode)) 602 return PTR_ERR(inode); 603 d_instantiate(dentry, inode); 604 } 605 return ret; 606 607 fail_free: 608 kfree(root_item); 609 return ret; 610 } 611 612 static void btrfs_wait_for_no_snapshotting_writes(struct btrfs_root *root) 613 { 614 s64 writers; 615 DEFINE_WAIT(wait); 616 617 do { 618 prepare_to_wait(&root->subv_writers->wait, &wait, 619 TASK_UNINTERRUPTIBLE); 620 621 writers = percpu_counter_sum(&root->subv_writers->counter); 622 if (writers) 623 schedule(); 624 625 finish_wait(&root->subv_writers->wait, &wait); 626 } while (writers); 627 } 628 629 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 630 struct dentry *dentry, 631 u64 *async_transid, bool readonly, 632 struct btrfs_qgroup_inherit *inherit) 633 { 634 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 635 struct inode *inode; 636 struct btrfs_pending_snapshot *pending_snapshot; 637 struct btrfs_trans_handle *trans; 638 int ret; 639 640 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 641 return -EINVAL; 642 643 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 644 if (!pending_snapshot) 645 return -ENOMEM; 646 647 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 648 GFP_KERNEL); 649 pending_snapshot->path = btrfs_alloc_path(); 650 if (!pending_snapshot->root_item || !pending_snapshot->path) { 651 ret = -ENOMEM; 652 goto free_pending; 653 } 654 655 atomic_inc(&root->will_be_snapshotted); 656 smp_mb__after_atomic(); 657 btrfs_wait_for_no_snapshotting_writes(root); 658 659 ret = btrfs_start_delalloc_inodes(root, 0); 660 if (ret) 661 goto dec_and_free; 662 663 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 664 665 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 666 BTRFS_BLOCK_RSV_TEMP); 667 /* 668 * 1 - parent dir inode 669 * 2 - dir entries 670 * 1 - root item 671 * 2 - root ref/backref 672 * 1 - root of snapshot 673 * 1 - UUID item 674 */ 675 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 676 &pending_snapshot->block_rsv, 8, 677 &pending_snapshot->qgroup_reserved, 678 false); 679 if (ret) 680 goto dec_and_free; 681 682 pending_snapshot->dentry = dentry; 683 pending_snapshot->root = root; 684 pending_snapshot->readonly = readonly; 685 pending_snapshot->dir = dir; 686 pending_snapshot->inherit = inherit; 687 688 trans = btrfs_start_transaction(root, 0); 689 if (IS_ERR(trans)) { 690 ret = PTR_ERR(trans); 691 goto fail; 692 } 693 694 spin_lock(&fs_info->trans_lock); 695 list_add(&pending_snapshot->list, 696 &trans->transaction->pending_snapshots); 697 spin_unlock(&fs_info->trans_lock); 698 if (async_transid) { 699 *async_transid = trans->transid; 700 ret = btrfs_commit_transaction_async(trans, 1); 701 if (ret) 702 ret = btrfs_commit_transaction(trans); 703 } else { 704 ret = btrfs_commit_transaction(trans); 705 } 706 if (ret) 707 goto fail; 708 709 ret = pending_snapshot->error; 710 if (ret) 711 goto fail; 712 713 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 714 if (ret) 715 goto fail; 716 717 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 718 if (IS_ERR(inode)) { 719 ret = PTR_ERR(inode); 720 goto fail; 721 } 722 723 d_instantiate(dentry, inode); 724 ret = 0; 725 fail: 726 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 727 dec_and_free: 728 if (atomic_dec_and_test(&root->will_be_snapshotted)) 729 wake_up_atomic_t(&root->will_be_snapshotted); 730 free_pending: 731 kfree(pending_snapshot->root_item); 732 btrfs_free_path(pending_snapshot->path); 733 kfree(pending_snapshot); 734 735 return ret; 736 } 737 738 /* copy of may_delete in fs/namei.c() 739 * Check whether we can remove a link victim from directory dir, check 740 * whether the type of victim is right. 741 * 1. We can't do it if dir is read-only (done in permission()) 742 * 2. We should have write and exec permissions on dir 743 * 3. We can't remove anything from append-only dir 744 * 4. We can't do anything with immutable dir (done in permission()) 745 * 5. If the sticky bit on dir is set we should either 746 * a. be owner of dir, or 747 * b. be owner of victim, or 748 * c. have CAP_FOWNER capability 749 * 6. If the victim is append-only or immutable we can't do anything with 750 * links pointing to it. 751 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 752 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 753 * 9. We can't remove a root or mountpoint. 754 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 755 * nfs_async_unlink(). 756 */ 757 758 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 759 { 760 int error; 761 762 if (d_really_is_negative(victim)) 763 return -ENOENT; 764 765 BUG_ON(d_inode(victim->d_parent) != dir); 766 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 767 768 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 769 if (error) 770 return error; 771 if (IS_APPEND(dir)) 772 return -EPERM; 773 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 774 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 775 return -EPERM; 776 if (isdir) { 777 if (!d_is_dir(victim)) 778 return -ENOTDIR; 779 if (IS_ROOT(victim)) 780 return -EBUSY; 781 } else if (d_is_dir(victim)) 782 return -EISDIR; 783 if (IS_DEADDIR(dir)) 784 return -ENOENT; 785 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 786 return -EBUSY; 787 return 0; 788 } 789 790 /* copy of may_create in fs/namei.c() */ 791 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 792 { 793 if (d_really_is_positive(child)) 794 return -EEXIST; 795 if (IS_DEADDIR(dir)) 796 return -ENOENT; 797 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 798 } 799 800 /* 801 * Create a new subvolume below @parent. This is largely modeled after 802 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 803 * inside this filesystem so it's quite a bit simpler. 804 */ 805 static noinline int btrfs_mksubvol(const struct path *parent, 806 const char *name, int namelen, 807 struct btrfs_root *snap_src, 808 u64 *async_transid, bool readonly, 809 struct btrfs_qgroup_inherit *inherit) 810 { 811 struct inode *dir = d_inode(parent->dentry); 812 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 813 struct dentry *dentry; 814 int error; 815 816 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 817 if (error == -EINTR) 818 return error; 819 820 dentry = lookup_one_len(name, parent->dentry, namelen); 821 error = PTR_ERR(dentry); 822 if (IS_ERR(dentry)) 823 goto out_unlock; 824 825 error = btrfs_may_create(dir, dentry); 826 if (error) 827 goto out_dput; 828 829 /* 830 * even if this name doesn't exist, we may get hash collisions. 831 * check for them now when we can safely fail 832 */ 833 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 834 dir->i_ino, name, 835 namelen); 836 if (error) 837 goto out_dput; 838 839 down_read(&fs_info->subvol_sem); 840 841 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 842 goto out_up_read; 843 844 if (snap_src) { 845 error = create_snapshot(snap_src, dir, dentry, 846 async_transid, readonly, inherit); 847 } else { 848 error = create_subvol(dir, dentry, name, namelen, 849 async_transid, inherit); 850 } 851 if (!error) 852 fsnotify_mkdir(dir, dentry); 853 out_up_read: 854 up_read(&fs_info->subvol_sem); 855 out_dput: 856 dput(dentry); 857 out_unlock: 858 inode_unlock(dir); 859 return error; 860 } 861 862 /* 863 * When we're defragging a range, we don't want to kick it off again 864 * if it is really just waiting for delalloc to send it down. 865 * If we find a nice big extent or delalloc range for the bytes in the 866 * file you want to defrag, we return 0 to let you know to skip this 867 * part of the file 868 */ 869 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 870 { 871 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 872 struct extent_map *em = NULL; 873 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 874 u64 end; 875 876 read_lock(&em_tree->lock); 877 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 878 read_unlock(&em_tree->lock); 879 880 if (em) { 881 end = extent_map_end(em); 882 free_extent_map(em); 883 if (end - offset > thresh) 884 return 0; 885 } 886 /* if we already have a nice delalloc here, just stop */ 887 thresh /= 2; 888 end = count_range_bits(io_tree, &offset, offset + thresh, 889 thresh, EXTENT_DELALLOC, 1); 890 if (end >= thresh) 891 return 0; 892 return 1; 893 } 894 895 /* 896 * helper function to walk through a file and find extents 897 * newer than a specific transid, and smaller than thresh. 898 * 899 * This is used by the defragging code to find new and small 900 * extents 901 */ 902 static int find_new_extents(struct btrfs_root *root, 903 struct inode *inode, u64 newer_than, 904 u64 *off, u32 thresh) 905 { 906 struct btrfs_path *path; 907 struct btrfs_key min_key; 908 struct extent_buffer *leaf; 909 struct btrfs_file_extent_item *extent; 910 int type; 911 int ret; 912 u64 ino = btrfs_ino(BTRFS_I(inode)); 913 914 path = btrfs_alloc_path(); 915 if (!path) 916 return -ENOMEM; 917 918 min_key.objectid = ino; 919 min_key.type = BTRFS_EXTENT_DATA_KEY; 920 min_key.offset = *off; 921 922 while (1) { 923 ret = btrfs_search_forward(root, &min_key, path, newer_than); 924 if (ret != 0) 925 goto none; 926 process_slot: 927 if (min_key.objectid != ino) 928 goto none; 929 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 930 goto none; 931 932 leaf = path->nodes[0]; 933 extent = btrfs_item_ptr(leaf, path->slots[0], 934 struct btrfs_file_extent_item); 935 936 type = btrfs_file_extent_type(leaf, extent); 937 if (type == BTRFS_FILE_EXTENT_REG && 938 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 939 check_defrag_in_cache(inode, min_key.offset, thresh)) { 940 *off = min_key.offset; 941 btrfs_free_path(path); 942 return 0; 943 } 944 945 path->slots[0]++; 946 if (path->slots[0] < btrfs_header_nritems(leaf)) { 947 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 948 goto process_slot; 949 } 950 951 if (min_key.offset == (u64)-1) 952 goto none; 953 954 min_key.offset++; 955 btrfs_release_path(path); 956 } 957 none: 958 btrfs_free_path(path); 959 return -ENOENT; 960 } 961 962 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 963 { 964 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 965 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 966 struct extent_map *em; 967 u64 len = PAGE_SIZE; 968 969 /* 970 * hopefully we have this extent in the tree already, try without 971 * the full extent lock 972 */ 973 read_lock(&em_tree->lock); 974 em = lookup_extent_mapping(em_tree, start, len); 975 read_unlock(&em_tree->lock); 976 977 if (!em) { 978 struct extent_state *cached = NULL; 979 u64 end = start + len - 1; 980 981 /* get the big lock and read metadata off disk */ 982 lock_extent_bits(io_tree, start, end, &cached); 983 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 984 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 985 986 if (IS_ERR(em)) 987 return NULL; 988 } 989 990 return em; 991 } 992 993 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 994 { 995 struct extent_map *next; 996 bool ret = true; 997 998 /* this is the last extent */ 999 if (em->start + em->len >= i_size_read(inode)) 1000 return false; 1001 1002 next = defrag_lookup_extent(inode, em->start + em->len); 1003 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1004 ret = false; 1005 else if ((em->block_start + em->block_len == next->block_start) && 1006 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1007 ret = false; 1008 1009 free_extent_map(next); 1010 return ret; 1011 } 1012 1013 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1014 u64 *last_len, u64 *skip, u64 *defrag_end, 1015 int compress) 1016 { 1017 struct extent_map *em; 1018 int ret = 1; 1019 bool next_mergeable = true; 1020 bool prev_mergeable = true; 1021 1022 /* 1023 * make sure that once we start defragging an extent, we keep on 1024 * defragging it 1025 */ 1026 if (start < *defrag_end) 1027 return 1; 1028 1029 *skip = 0; 1030 1031 em = defrag_lookup_extent(inode, start); 1032 if (!em) 1033 return 0; 1034 1035 /* this will cover holes, and inline extents */ 1036 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1037 ret = 0; 1038 goto out; 1039 } 1040 1041 if (!*defrag_end) 1042 prev_mergeable = false; 1043 1044 next_mergeable = defrag_check_next_extent(inode, em); 1045 /* 1046 * we hit a real extent, if it is big or the next extent is not a 1047 * real extent, don't bother defragging it 1048 */ 1049 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1050 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1051 ret = 0; 1052 out: 1053 /* 1054 * last_len ends up being a counter of how many bytes we've defragged. 1055 * every time we choose not to defrag an extent, we reset *last_len 1056 * so that the next tiny extent will force a defrag. 1057 * 1058 * The end result of this is that tiny extents before a single big 1059 * extent will force at least part of that big extent to be defragged. 1060 */ 1061 if (ret) { 1062 *defrag_end = extent_map_end(em); 1063 } else { 1064 *last_len = 0; 1065 *skip = extent_map_end(em); 1066 *defrag_end = 0; 1067 } 1068 1069 free_extent_map(em); 1070 return ret; 1071 } 1072 1073 /* 1074 * it doesn't do much good to defrag one or two pages 1075 * at a time. This pulls in a nice chunk of pages 1076 * to COW and defrag. 1077 * 1078 * It also makes sure the delalloc code has enough 1079 * dirty data to avoid making new small extents as part 1080 * of the defrag 1081 * 1082 * It's a good idea to start RA on this range 1083 * before calling this. 1084 */ 1085 static int cluster_pages_for_defrag(struct inode *inode, 1086 struct page **pages, 1087 unsigned long start_index, 1088 unsigned long num_pages) 1089 { 1090 unsigned long file_end; 1091 u64 isize = i_size_read(inode); 1092 u64 page_start; 1093 u64 page_end; 1094 u64 page_cnt; 1095 int ret; 1096 int i; 1097 int i_done; 1098 struct btrfs_ordered_extent *ordered; 1099 struct extent_state *cached_state = NULL; 1100 struct extent_io_tree *tree; 1101 struct extent_changeset *data_reserved = NULL; 1102 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1103 1104 file_end = (isize - 1) >> PAGE_SHIFT; 1105 if (!isize || start_index > file_end) 1106 return 0; 1107 1108 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1109 1110 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1111 start_index << PAGE_SHIFT, 1112 page_cnt << PAGE_SHIFT); 1113 if (ret) 1114 return ret; 1115 i_done = 0; 1116 tree = &BTRFS_I(inode)->io_tree; 1117 1118 /* step one, lock all the pages */ 1119 for (i = 0; i < page_cnt; i++) { 1120 struct page *page; 1121 again: 1122 page = find_or_create_page(inode->i_mapping, 1123 start_index + i, mask); 1124 if (!page) 1125 break; 1126 1127 page_start = page_offset(page); 1128 page_end = page_start + PAGE_SIZE - 1; 1129 while (1) { 1130 lock_extent_bits(tree, page_start, page_end, 1131 &cached_state); 1132 ordered = btrfs_lookup_ordered_extent(inode, 1133 page_start); 1134 unlock_extent_cached(tree, page_start, page_end, 1135 &cached_state, GFP_NOFS); 1136 if (!ordered) 1137 break; 1138 1139 unlock_page(page); 1140 btrfs_start_ordered_extent(inode, ordered, 1); 1141 btrfs_put_ordered_extent(ordered); 1142 lock_page(page); 1143 /* 1144 * we unlocked the page above, so we need check if 1145 * it was released or not. 1146 */ 1147 if (page->mapping != inode->i_mapping) { 1148 unlock_page(page); 1149 put_page(page); 1150 goto again; 1151 } 1152 } 1153 1154 if (!PageUptodate(page)) { 1155 btrfs_readpage(NULL, page); 1156 lock_page(page); 1157 if (!PageUptodate(page)) { 1158 unlock_page(page); 1159 put_page(page); 1160 ret = -EIO; 1161 break; 1162 } 1163 } 1164 1165 if (page->mapping != inode->i_mapping) { 1166 unlock_page(page); 1167 put_page(page); 1168 goto again; 1169 } 1170 1171 pages[i] = page; 1172 i_done++; 1173 } 1174 if (!i_done || ret) 1175 goto out; 1176 1177 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1178 goto out; 1179 1180 /* 1181 * so now we have a nice long stream of locked 1182 * and up to date pages, lets wait on them 1183 */ 1184 for (i = 0; i < i_done; i++) 1185 wait_on_page_writeback(pages[i]); 1186 1187 page_start = page_offset(pages[0]); 1188 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1189 1190 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1191 page_start, page_end - 1, &cached_state); 1192 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1193 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1194 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1195 &cached_state, GFP_NOFS); 1196 1197 if (i_done != page_cnt) { 1198 spin_lock(&BTRFS_I(inode)->lock); 1199 BTRFS_I(inode)->outstanding_extents++; 1200 spin_unlock(&BTRFS_I(inode)->lock); 1201 btrfs_delalloc_release_space(inode, data_reserved, 1202 start_index << PAGE_SHIFT, 1203 (page_cnt - i_done) << PAGE_SHIFT); 1204 } 1205 1206 1207 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1208 &cached_state); 1209 1210 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1211 page_start, page_end - 1, &cached_state, 1212 GFP_NOFS); 1213 1214 for (i = 0; i < i_done; i++) { 1215 clear_page_dirty_for_io(pages[i]); 1216 ClearPageChecked(pages[i]); 1217 set_page_extent_mapped(pages[i]); 1218 set_page_dirty(pages[i]); 1219 unlock_page(pages[i]); 1220 put_page(pages[i]); 1221 } 1222 extent_changeset_free(data_reserved); 1223 return i_done; 1224 out: 1225 for (i = 0; i < i_done; i++) { 1226 unlock_page(pages[i]); 1227 put_page(pages[i]); 1228 } 1229 btrfs_delalloc_release_space(inode, data_reserved, 1230 start_index << PAGE_SHIFT, 1231 page_cnt << PAGE_SHIFT); 1232 extent_changeset_free(data_reserved); 1233 return ret; 1234 1235 } 1236 1237 int btrfs_defrag_file(struct inode *inode, struct file *file, 1238 struct btrfs_ioctl_defrag_range_args *range, 1239 u64 newer_than, unsigned long max_to_defrag) 1240 { 1241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1242 struct btrfs_root *root = BTRFS_I(inode)->root; 1243 struct file_ra_state *ra = NULL; 1244 unsigned long last_index; 1245 u64 isize = i_size_read(inode); 1246 u64 last_len = 0; 1247 u64 skip = 0; 1248 u64 defrag_end = 0; 1249 u64 newer_off = range->start; 1250 unsigned long i; 1251 unsigned long ra_index = 0; 1252 int ret; 1253 int defrag_count = 0; 1254 int compress_type = BTRFS_COMPRESS_ZLIB; 1255 u32 extent_thresh = range->extent_thresh; 1256 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1257 unsigned long cluster = max_cluster; 1258 u64 new_align = ~((u64)SZ_128K - 1); 1259 struct page **pages = NULL; 1260 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1261 1262 if (isize == 0) 1263 return 0; 1264 1265 if (range->start >= isize) 1266 return -EINVAL; 1267 1268 if (do_compress) { 1269 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1270 return -EINVAL; 1271 if (range->compress_type) 1272 compress_type = range->compress_type; 1273 } 1274 1275 if (extent_thresh == 0) 1276 extent_thresh = SZ_256K; 1277 1278 /* 1279 * If we were not given a file, allocate a readahead context. As 1280 * readahead is just an optimization, defrag will work without it so 1281 * we don't error out. 1282 */ 1283 if (!file) { 1284 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1285 if (ra) 1286 file_ra_state_init(ra, inode->i_mapping); 1287 } else { 1288 ra = &file->f_ra; 1289 } 1290 1291 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1292 if (!pages) { 1293 ret = -ENOMEM; 1294 goto out_ra; 1295 } 1296 1297 /* find the last page to defrag */ 1298 if (range->start + range->len > range->start) { 1299 last_index = min_t(u64, isize - 1, 1300 range->start + range->len - 1) >> PAGE_SHIFT; 1301 } else { 1302 last_index = (isize - 1) >> PAGE_SHIFT; 1303 } 1304 1305 if (newer_than) { 1306 ret = find_new_extents(root, inode, newer_than, 1307 &newer_off, SZ_64K); 1308 if (!ret) { 1309 range->start = newer_off; 1310 /* 1311 * we always align our defrag to help keep 1312 * the extents in the file evenly spaced 1313 */ 1314 i = (newer_off & new_align) >> PAGE_SHIFT; 1315 } else 1316 goto out_ra; 1317 } else { 1318 i = range->start >> PAGE_SHIFT; 1319 } 1320 if (!max_to_defrag) 1321 max_to_defrag = last_index - i + 1; 1322 1323 /* 1324 * make writeback starts from i, so the defrag range can be 1325 * written sequentially. 1326 */ 1327 if (i < inode->i_mapping->writeback_index) 1328 inode->i_mapping->writeback_index = i; 1329 1330 while (i <= last_index && defrag_count < max_to_defrag && 1331 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1332 /* 1333 * make sure we stop running if someone unmounts 1334 * the FS 1335 */ 1336 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1337 break; 1338 1339 if (btrfs_defrag_cancelled(fs_info)) { 1340 btrfs_debug(fs_info, "defrag_file cancelled"); 1341 ret = -EAGAIN; 1342 break; 1343 } 1344 1345 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1346 extent_thresh, &last_len, &skip, 1347 &defrag_end, do_compress)){ 1348 unsigned long next; 1349 /* 1350 * the should_defrag function tells us how much to skip 1351 * bump our counter by the suggested amount 1352 */ 1353 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1354 i = max(i + 1, next); 1355 continue; 1356 } 1357 1358 if (!newer_than) { 1359 cluster = (PAGE_ALIGN(defrag_end) >> 1360 PAGE_SHIFT) - i; 1361 cluster = min(cluster, max_cluster); 1362 } else { 1363 cluster = max_cluster; 1364 } 1365 1366 if (i + cluster > ra_index) { 1367 ra_index = max(i, ra_index); 1368 if (ra) 1369 page_cache_sync_readahead(inode->i_mapping, ra, 1370 file, ra_index, cluster); 1371 ra_index += cluster; 1372 } 1373 1374 inode_lock(inode); 1375 if (do_compress) 1376 BTRFS_I(inode)->defrag_compress = compress_type; 1377 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1378 if (ret < 0) { 1379 inode_unlock(inode); 1380 goto out_ra; 1381 } 1382 1383 defrag_count += ret; 1384 balance_dirty_pages_ratelimited(inode->i_mapping); 1385 inode_unlock(inode); 1386 1387 if (newer_than) { 1388 if (newer_off == (u64)-1) 1389 break; 1390 1391 if (ret > 0) 1392 i += ret; 1393 1394 newer_off = max(newer_off + 1, 1395 (u64)i << PAGE_SHIFT); 1396 1397 ret = find_new_extents(root, inode, newer_than, 1398 &newer_off, SZ_64K); 1399 if (!ret) { 1400 range->start = newer_off; 1401 i = (newer_off & new_align) >> PAGE_SHIFT; 1402 } else { 1403 break; 1404 } 1405 } else { 1406 if (ret > 0) { 1407 i += ret; 1408 last_len += ret << PAGE_SHIFT; 1409 } else { 1410 i++; 1411 last_len = 0; 1412 } 1413 } 1414 } 1415 1416 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1417 filemap_flush(inode->i_mapping); 1418 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1419 &BTRFS_I(inode)->runtime_flags)) 1420 filemap_flush(inode->i_mapping); 1421 } 1422 1423 if (do_compress) { 1424 /* the filemap_flush will queue IO into the worker threads, but 1425 * we have to make sure the IO is actually started and that 1426 * ordered extents get created before we return 1427 */ 1428 atomic_inc(&fs_info->async_submit_draining); 1429 while (atomic_read(&fs_info->nr_async_submits) || 1430 atomic_read(&fs_info->async_delalloc_pages)) { 1431 wait_event(fs_info->async_submit_wait, 1432 (atomic_read(&fs_info->nr_async_submits) == 0 && 1433 atomic_read(&fs_info->async_delalloc_pages) == 0)); 1434 } 1435 atomic_dec(&fs_info->async_submit_draining); 1436 } 1437 1438 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1439 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1440 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1441 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1442 } 1443 1444 ret = defrag_count; 1445 1446 out_ra: 1447 if (do_compress) { 1448 inode_lock(inode); 1449 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1450 inode_unlock(inode); 1451 } 1452 if (!file) 1453 kfree(ra); 1454 kfree(pages); 1455 return ret; 1456 } 1457 1458 static noinline int btrfs_ioctl_resize(struct file *file, 1459 void __user *arg) 1460 { 1461 struct inode *inode = file_inode(file); 1462 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1463 u64 new_size; 1464 u64 old_size; 1465 u64 devid = 1; 1466 struct btrfs_root *root = BTRFS_I(inode)->root; 1467 struct btrfs_ioctl_vol_args *vol_args; 1468 struct btrfs_trans_handle *trans; 1469 struct btrfs_device *device = NULL; 1470 char *sizestr; 1471 char *retptr; 1472 char *devstr = NULL; 1473 int ret = 0; 1474 int mod = 0; 1475 1476 if (!capable(CAP_SYS_ADMIN)) 1477 return -EPERM; 1478 1479 ret = mnt_want_write_file(file); 1480 if (ret) 1481 return ret; 1482 1483 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1484 mnt_drop_write_file(file); 1485 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1486 } 1487 1488 mutex_lock(&fs_info->volume_mutex); 1489 vol_args = memdup_user(arg, sizeof(*vol_args)); 1490 if (IS_ERR(vol_args)) { 1491 ret = PTR_ERR(vol_args); 1492 goto out; 1493 } 1494 1495 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1496 1497 sizestr = vol_args->name; 1498 devstr = strchr(sizestr, ':'); 1499 if (devstr) { 1500 sizestr = devstr + 1; 1501 *devstr = '\0'; 1502 devstr = vol_args->name; 1503 ret = kstrtoull(devstr, 10, &devid); 1504 if (ret) 1505 goto out_free; 1506 if (!devid) { 1507 ret = -EINVAL; 1508 goto out_free; 1509 } 1510 btrfs_info(fs_info, "resizing devid %llu", devid); 1511 } 1512 1513 device = btrfs_find_device(fs_info, devid, NULL, NULL); 1514 if (!device) { 1515 btrfs_info(fs_info, "resizer unable to find device %llu", 1516 devid); 1517 ret = -ENODEV; 1518 goto out_free; 1519 } 1520 1521 if (!device->writeable) { 1522 btrfs_info(fs_info, 1523 "resizer unable to apply on readonly device %llu", 1524 devid); 1525 ret = -EPERM; 1526 goto out_free; 1527 } 1528 1529 if (!strcmp(sizestr, "max")) 1530 new_size = device->bdev->bd_inode->i_size; 1531 else { 1532 if (sizestr[0] == '-') { 1533 mod = -1; 1534 sizestr++; 1535 } else if (sizestr[0] == '+') { 1536 mod = 1; 1537 sizestr++; 1538 } 1539 new_size = memparse(sizestr, &retptr); 1540 if (*retptr != '\0' || new_size == 0) { 1541 ret = -EINVAL; 1542 goto out_free; 1543 } 1544 } 1545 1546 if (device->is_tgtdev_for_dev_replace) { 1547 ret = -EPERM; 1548 goto out_free; 1549 } 1550 1551 old_size = btrfs_device_get_total_bytes(device); 1552 1553 if (mod < 0) { 1554 if (new_size > old_size) { 1555 ret = -EINVAL; 1556 goto out_free; 1557 } 1558 new_size = old_size - new_size; 1559 } else if (mod > 0) { 1560 if (new_size > ULLONG_MAX - old_size) { 1561 ret = -ERANGE; 1562 goto out_free; 1563 } 1564 new_size = old_size + new_size; 1565 } 1566 1567 if (new_size < SZ_256M) { 1568 ret = -EINVAL; 1569 goto out_free; 1570 } 1571 if (new_size > device->bdev->bd_inode->i_size) { 1572 ret = -EFBIG; 1573 goto out_free; 1574 } 1575 1576 new_size = round_down(new_size, fs_info->sectorsize); 1577 1578 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1579 rcu_str_deref(device->name), new_size); 1580 1581 if (new_size > old_size) { 1582 trans = btrfs_start_transaction(root, 0); 1583 if (IS_ERR(trans)) { 1584 ret = PTR_ERR(trans); 1585 goto out_free; 1586 } 1587 ret = btrfs_grow_device(trans, device, new_size); 1588 btrfs_commit_transaction(trans); 1589 } else if (new_size < old_size) { 1590 ret = btrfs_shrink_device(device, new_size); 1591 } /* equal, nothing need to do */ 1592 1593 out_free: 1594 kfree(vol_args); 1595 out: 1596 mutex_unlock(&fs_info->volume_mutex); 1597 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1598 mnt_drop_write_file(file); 1599 return ret; 1600 } 1601 1602 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1603 const char *name, unsigned long fd, int subvol, 1604 u64 *transid, bool readonly, 1605 struct btrfs_qgroup_inherit *inherit) 1606 { 1607 int namelen; 1608 int ret = 0; 1609 1610 if (!S_ISDIR(file_inode(file)->i_mode)) 1611 return -ENOTDIR; 1612 1613 ret = mnt_want_write_file(file); 1614 if (ret) 1615 goto out; 1616 1617 namelen = strlen(name); 1618 if (strchr(name, '/')) { 1619 ret = -EINVAL; 1620 goto out_drop_write; 1621 } 1622 1623 if (name[0] == '.' && 1624 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1625 ret = -EEXIST; 1626 goto out_drop_write; 1627 } 1628 1629 if (subvol) { 1630 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1631 NULL, transid, readonly, inherit); 1632 } else { 1633 struct fd src = fdget(fd); 1634 struct inode *src_inode; 1635 if (!src.file) { 1636 ret = -EINVAL; 1637 goto out_drop_write; 1638 } 1639 1640 src_inode = file_inode(src.file); 1641 if (src_inode->i_sb != file_inode(file)->i_sb) { 1642 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1643 "Snapshot src from another FS"); 1644 ret = -EXDEV; 1645 } else if (!inode_owner_or_capable(src_inode)) { 1646 /* 1647 * Subvolume creation is not restricted, but snapshots 1648 * are limited to own subvolumes only 1649 */ 1650 ret = -EPERM; 1651 } else { 1652 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1653 BTRFS_I(src_inode)->root, 1654 transid, readonly, inherit); 1655 } 1656 fdput(src); 1657 } 1658 out_drop_write: 1659 mnt_drop_write_file(file); 1660 out: 1661 return ret; 1662 } 1663 1664 static noinline int btrfs_ioctl_snap_create(struct file *file, 1665 void __user *arg, int subvol) 1666 { 1667 struct btrfs_ioctl_vol_args *vol_args; 1668 int ret; 1669 1670 if (!S_ISDIR(file_inode(file)->i_mode)) 1671 return -ENOTDIR; 1672 1673 vol_args = memdup_user(arg, sizeof(*vol_args)); 1674 if (IS_ERR(vol_args)) 1675 return PTR_ERR(vol_args); 1676 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1677 1678 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1679 vol_args->fd, subvol, 1680 NULL, false, NULL); 1681 1682 kfree(vol_args); 1683 return ret; 1684 } 1685 1686 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1687 void __user *arg, int subvol) 1688 { 1689 struct btrfs_ioctl_vol_args_v2 *vol_args; 1690 int ret; 1691 u64 transid = 0; 1692 u64 *ptr = NULL; 1693 bool readonly = false; 1694 struct btrfs_qgroup_inherit *inherit = NULL; 1695 1696 if (!S_ISDIR(file_inode(file)->i_mode)) 1697 return -ENOTDIR; 1698 1699 vol_args = memdup_user(arg, sizeof(*vol_args)); 1700 if (IS_ERR(vol_args)) 1701 return PTR_ERR(vol_args); 1702 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1703 1704 if (vol_args->flags & 1705 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1706 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1707 ret = -EOPNOTSUPP; 1708 goto free_args; 1709 } 1710 1711 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1712 ptr = &transid; 1713 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1714 readonly = true; 1715 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1716 if (vol_args->size > PAGE_SIZE) { 1717 ret = -EINVAL; 1718 goto free_args; 1719 } 1720 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1721 if (IS_ERR(inherit)) { 1722 ret = PTR_ERR(inherit); 1723 goto free_args; 1724 } 1725 } 1726 1727 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1728 vol_args->fd, subvol, ptr, 1729 readonly, inherit); 1730 if (ret) 1731 goto free_inherit; 1732 1733 if (ptr && copy_to_user(arg + 1734 offsetof(struct btrfs_ioctl_vol_args_v2, 1735 transid), 1736 ptr, sizeof(*ptr))) 1737 ret = -EFAULT; 1738 1739 free_inherit: 1740 kfree(inherit); 1741 free_args: 1742 kfree(vol_args); 1743 return ret; 1744 } 1745 1746 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1747 void __user *arg) 1748 { 1749 struct inode *inode = file_inode(file); 1750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1751 struct btrfs_root *root = BTRFS_I(inode)->root; 1752 int ret = 0; 1753 u64 flags = 0; 1754 1755 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1756 return -EINVAL; 1757 1758 down_read(&fs_info->subvol_sem); 1759 if (btrfs_root_readonly(root)) 1760 flags |= BTRFS_SUBVOL_RDONLY; 1761 up_read(&fs_info->subvol_sem); 1762 1763 if (copy_to_user(arg, &flags, sizeof(flags))) 1764 ret = -EFAULT; 1765 1766 return ret; 1767 } 1768 1769 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1770 void __user *arg) 1771 { 1772 struct inode *inode = file_inode(file); 1773 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1774 struct btrfs_root *root = BTRFS_I(inode)->root; 1775 struct btrfs_trans_handle *trans; 1776 u64 root_flags; 1777 u64 flags; 1778 int ret = 0; 1779 1780 if (!inode_owner_or_capable(inode)) 1781 return -EPERM; 1782 1783 ret = mnt_want_write_file(file); 1784 if (ret) 1785 goto out; 1786 1787 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1788 ret = -EINVAL; 1789 goto out_drop_write; 1790 } 1791 1792 if (copy_from_user(&flags, arg, sizeof(flags))) { 1793 ret = -EFAULT; 1794 goto out_drop_write; 1795 } 1796 1797 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1798 ret = -EINVAL; 1799 goto out_drop_write; 1800 } 1801 1802 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1803 ret = -EOPNOTSUPP; 1804 goto out_drop_write; 1805 } 1806 1807 down_write(&fs_info->subvol_sem); 1808 1809 /* nothing to do */ 1810 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1811 goto out_drop_sem; 1812 1813 root_flags = btrfs_root_flags(&root->root_item); 1814 if (flags & BTRFS_SUBVOL_RDONLY) { 1815 btrfs_set_root_flags(&root->root_item, 1816 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1817 } else { 1818 /* 1819 * Block RO -> RW transition if this subvolume is involved in 1820 * send 1821 */ 1822 spin_lock(&root->root_item_lock); 1823 if (root->send_in_progress == 0) { 1824 btrfs_set_root_flags(&root->root_item, 1825 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1826 spin_unlock(&root->root_item_lock); 1827 } else { 1828 spin_unlock(&root->root_item_lock); 1829 btrfs_warn(fs_info, 1830 "Attempt to set subvolume %llu read-write during send", 1831 root->root_key.objectid); 1832 ret = -EPERM; 1833 goto out_drop_sem; 1834 } 1835 } 1836 1837 trans = btrfs_start_transaction(root, 1); 1838 if (IS_ERR(trans)) { 1839 ret = PTR_ERR(trans); 1840 goto out_reset; 1841 } 1842 1843 ret = btrfs_update_root(trans, fs_info->tree_root, 1844 &root->root_key, &root->root_item); 1845 1846 btrfs_commit_transaction(trans); 1847 out_reset: 1848 if (ret) 1849 btrfs_set_root_flags(&root->root_item, root_flags); 1850 out_drop_sem: 1851 up_write(&fs_info->subvol_sem); 1852 out_drop_write: 1853 mnt_drop_write_file(file); 1854 out: 1855 return ret; 1856 } 1857 1858 /* 1859 * helper to check if the subvolume references other subvolumes 1860 */ 1861 static noinline int may_destroy_subvol(struct btrfs_root *root) 1862 { 1863 struct btrfs_fs_info *fs_info = root->fs_info; 1864 struct btrfs_path *path; 1865 struct btrfs_dir_item *di; 1866 struct btrfs_key key; 1867 u64 dir_id; 1868 int ret; 1869 1870 path = btrfs_alloc_path(); 1871 if (!path) 1872 return -ENOMEM; 1873 1874 /* Make sure this root isn't set as the default subvol */ 1875 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1876 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 1877 dir_id, "default", 7, 0); 1878 if (di && !IS_ERR(di)) { 1879 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1880 if (key.objectid == root->root_key.objectid) { 1881 ret = -EPERM; 1882 btrfs_err(fs_info, 1883 "deleting default subvolume %llu is not allowed", 1884 key.objectid); 1885 goto out; 1886 } 1887 btrfs_release_path(path); 1888 } 1889 1890 key.objectid = root->root_key.objectid; 1891 key.type = BTRFS_ROOT_REF_KEY; 1892 key.offset = (u64)-1; 1893 1894 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1895 if (ret < 0) 1896 goto out; 1897 BUG_ON(ret == 0); 1898 1899 ret = 0; 1900 if (path->slots[0] > 0) { 1901 path->slots[0]--; 1902 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1903 if (key.objectid == root->root_key.objectid && 1904 key.type == BTRFS_ROOT_REF_KEY) 1905 ret = -ENOTEMPTY; 1906 } 1907 out: 1908 btrfs_free_path(path); 1909 return ret; 1910 } 1911 1912 static noinline int key_in_sk(struct btrfs_key *key, 1913 struct btrfs_ioctl_search_key *sk) 1914 { 1915 struct btrfs_key test; 1916 int ret; 1917 1918 test.objectid = sk->min_objectid; 1919 test.type = sk->min_type; 1920 test.offset = sk->min_offset; 1921 1922 ret = btrfs_comp_cpu_keys(key, &test); 1923 if (ret < 0) 1924 return 0; 1925 1926 test.objectid = sk->max_objectid; 1927 test.type = sk->max_type; 1928 test.offset = sk->max_offset; 1929 1930 ret = btrfs_comp_cpu_keys(key, &test); 1931 if (ret > 0) 1932 return 0; 1933 return 1; 1934 } 1935 1936 static noinline int copy_to_sk(struct btrfs_path *path, 1937 struct btrfs_key *key, 1938 struct btrfs_ioctl_search_key *sk, 1939 size_t *buf_size, 1940 char __user *ubuf, 1941 unsigned long *sk_offset, 1942 int *num_found) 1943 { 1944 u64 found_transid; 1945 struct extent_buffer *leaf; 1946 struct btrfs_ioctl_search_header sh; 1947 struct btrfs_key test; 1948 unsigned long item_off; 1949 unsigned long item_len; 1950 int nritems; 1951 int i; 1952 int slot; 1953 int ret = 0; 1954 1955 leaf = path->nodes[0]; 1956 slot = path->slots[0]; 1957 nritems = btrfs_header_nritems(leaf); 1958 1959 if (btrfs_header_generation(leaf) > sk->max_transid) { 1960 i = nritems; 1961 goto advance_key; 1962 } 1963 found_transid = btrfs_header_generation(leaf); 1964 1965 for (i = slot; i < nritems; i++) { 1966 item_off = btrfs_item_ptr_offset(leaf, i); 1967 item_len = btrfs_item_size_nr(leaf, i); 1968 1969 btrfs_item_key_to_cpu(leaf, key, i); 1970 if (!key_in_sk(key, sk)) 1971 continue; 1972 1973 if (sizeof(sh) + item_len > *buf_size) { 1974 if (*num_found) { 1975 ret = 1; 1976 goto out; 1977 } 1978 1979 /* 1980 * return one empty item back for v1, which does not 1981 * handle -EOVERFLOW 1982 */ 1983 1984 *buf_size = sizeof(sh) + item_len; 1985 item_len = 0; 1986 ret = -EOVERFLOW; 1987 } 1988 1989 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1990 ret = 1; 1991 goto out; 1992 } 1993 1994 sh.objectid = key->objectid; 1995 sh.offset = key->offset; 1996 sh.type = key->type; 1997 sh.len = item_len; 1998 sh.transid = found_transid; 1999 2000 /* copy search result header */ 2001 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2002 ret = -EFAULT; 2003 goto out; 2004 } 2005 2006 *sk_offset += sizeof(sh); 2007 2008 if (item_len) { 2009 char __user *up = ubuf + *sk_offset; 2010 /* copy the item */ 2011 if (read_extent_buffer_to_user(leaf, up, 2012 item_off, item_len)) { 2013 ret = -EFAULT; 2014 goto out; 2015 } 2016 2017 *sk_offset += item_len; 2018 } 2019 (*num_found)++; 2020 2021 if (ret) /* -EOVERFLOW from above */ 2022 goto out; 2023 2024 if (*num_found >= sk->nr_items) { 2025 ret = 1; 2026 goto out; 2027 } 2028 } 2029 advance_key: 2030 ret = 0; 2031 test.objectid = sk->max_objectid; 2032 test.type = sk->max_type; 2033 test.offset = sk->max_offset; 2034 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2035 ret = 1; 2036 else if (key->offset < (u64)-1) 2037 key->offset++; 2038 else if (key->type < (u8)-1) { 2039 key->offset = 0; 2040 key->type++; 2041 } else if (key->objectid < (u64)-1) { 2042 key->offset = 0; 2043 key->type = 0; 2044 key->objectid++; 2045 } else 2046 ret = 1; 2047 out: 2048 /* 2049 * 0: all items from this leaf copied, continue with next 2050 * 1: * more items can be copied, but unused buffer is too small 2051 * * all items were found 2052 * Either way, it will stops the loop which iterates to the next 2053 * leaf 2054 * -EOVERFLOW: item was to large for buffer 2055 * -EFAULT: could not copy extent buffer back to userspace 2056 */ 2057 return ret; 2058 } 2059 2060 static noinline int search_ioctl(struct inode *inode, 2061 struct btrfs_ioctl_search_key *sk, 2062 size_t *buf_size, 2063 char __user *ubuf) 2064 { 2065 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2066 struct btrfs_root *root; 2067 struct btrfs_key key; 2068 struct btrfs_path *path; 2069 int ret; 2070 int num_found = 0; 2071 unsigned long sk_offset = 0; 2072 2073 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2074 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2075 return -EOVERFLOW; 2076 } 2077 2078 path = btrfs_alloc_path(); 2079 if (!path) 2080 return -ENOMEM; 2081 2082 if (sk->tree_id == 0) { 2083 /* search the root of the inode that was passed */ 2084 root = BTRFS_I(inode)->root; 2085 } else { 2086 key.objectid = sk->tree_id; 2087 key.type = BTRFS_ROOT_ITEM_KEY; 2088 key.offset = (u64)-1; 2089 root = btrfs_read_fs_root_no_name(info, &key); 2090 if (IS_ERR(root)) { 2091 btrfs_free_path(path); 2092 return -ENOENT; 2093 } 2094 } 2095 2096 key.objectid = sk->min_objectid; 2097 key.type = sk->min_type; 2098 key.offset = sk->min_offset; 2099 2100 while (1) { 2101 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2102 if (ret != 0) { 2103 if (ret > 0) 2104 ret = 0; 2105 goto err; 2106 } 2107 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2108 &sk_offset, &num_found); 2109 btrfs_release_path(path); 2110 if (ret) 2111 break; 2112 2113 } 2114 if (ret > 0) 2115 ret = 0; 2116 err: 2117 sk->nr_items = num_found; 2118 btrfs_free_path(path); 2119 return ret; 2120 } 2121 2122 static noinline int btrfs_ioctl_tree_search(struct file *file, 2123 void __user *argp) 2124 { 2125 struct btrfs_ioctl_search_args __user *uargs; 2126 struct btrfs_ioctl_search_key sk; 2127 struct inode *inode; 2128 int ret; 2129 size_t buf_size; 2130 2131 if (!capable(CAP_SYS_ADMIN)) 2132 return -EPERM; 2133 2134 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2135 2136 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2137 return -EFAULT; 2138 2139 buf_size = sizeof(uargs->buf); 2140 2141 inode = file_inode(file); 2142 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2143 2144 /* 2145 * In the origin implementation an overflow is handled by returning a 2146 * search header with a len of zero, so reset ret. 2147 */ 2148 if (ret == -EOVERFLOW) 2149 ret = 0; 2150 2151 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2152 ret = -EFAULT; 2153 return ret; 2154 } 2155 2156 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2157 void __user *argp) 2158 { 2159 struct btrfs_ioctl_search_args_v2 __user *uarg; 2160 struct btrfs_ioctl_search_args_v2 args; 2161 struct inode *inode; 2162 int ret; 2163 size_t buf_size; 2164 const size_t buf_limit = SZ_16M; 2165 2166 if (!capable(CAP_SYS_ADMIN)) 2167 return -EPERM; 2168 2169 /* copy search header and buffer size */ 2170 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2171 if (copy_from_user(&args, uarg, sizeof(args))) 2172 return -EFAULT; 2173 2174 buf_size = args.buf_size; 2175 2176 /* limit result size to 16MB */ 2177 if (buf_size > buf_limit) 2178 buf_size = buf_limit; 2179 2180 inode = file_inode(file); 2181 ret = search_ioctl(inode, &args.key, &buf_size, 2182 (char *)(&uarg->buf[0])); 2183 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2184 ret = -EFAULT; 2185 else if (ret == -EOVERFLOW && 2186 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2187 ret = -EFAULT; 2188 2189 return ret; 2190 } 2191 2192 /* 2193 * Search INODE_REFs to identify path name of 'dirid' directory 2194 * in a 'tree_id' tree. and sets path name to 'name'. 2195 */ 2196 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2197 u64 tree_id, u64 dirid, char *name) 2198 { 2199 struct btrfs_root *root; 2200 struct btrfs_key key; 2201 char *ptr; 2202 int ret = -1; 2203 int slot; 2204 int len; 2205 int total_len = 0; 2206 struct btrfs_inode_ref *iref; 2207 struct extent_buffer *l; 2208 struct btrfs_path *path; 2209 2210 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2211 name[0]='\0'; 2212 return 0; 2213 } 2214 2215 path = btrfs_alloc_path(); 2216 if (!path) 2217 return -ENOMEM; 2218 2219 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2220 2221 key.objectid = tree_id; 2222 key.type = BTRFS_ROOT_ITEM_KEY; 2223 key.offset = (u64)-1; 2224 root = btrfs_read_fs_root_no_name(info, &key); 2225 if (IS_ERR(root)) { 2226 btrfs_err(info, "could not find root %llu", tree_id); 2227 ret = -ENOENT; 2228 goto out; 2229 } 2230 2231 key.objectid = dirid; 2232 key.type = BTRFS_INODE_REF_KEY; 2233 key.offset = (u64)-1; 2234 2235 while (1) { 2236 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2237 if (ret < 0) 2238 goto out; 2239 else if (ret > 0) { 2240 ret = btrfs_previous_item(root, path, dirid, 2241 BTRFS_INODE_REF_KEY); 2242 if (ret < 0) 2243 goto out; 2244 else if (ret > 0) { 2245 ret = -ENOENT; 2246 goto out; 2247 } 2248 } 2249 2250 l = path->nodes[0]; 2251 slot = path->slots[0]; 2252 btrfs_item_key_to_cpu(l, &key, slot); 2253 2254 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2255 len = btrfs_inode_ref_name_len(l, iref); 2256 ptr -= len + 1; 2257 total_len += len + 1; 2258 if (ptr < name) { 2259 ret = -ENAMETOOLONG; 2260 goto out; 2261 } 2262 2263 *(ptr + len) = '/'; 2264 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2265 2266 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2267 break; 2268 2269 btrfs_release_path(path); 2270 key.objectid = key.offset; 2271 key.offset = (u64)-1; 2272 dirid = key.objectid; 2273 } 2274 memmove(name, ptr, total_len); 2275 name[total_len] = '\0'; 2276 ret = 0; 2277 out: 2278 btrfs_free_path(path); 2279 return ret; 2280 } 2281 2282 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2283 void __user *argp) 2284 { 2285 struct btrfs_ioctl_ino_lookup_args *args; 2286 struct inode *inode; 2287 int ret = 0; 2288 2289 args = memdup_user(argp, sizeof(*args)); 2290 if (IS_ERR(args)) 2291 return PTR_ERR(args); 2292 2293 inode = file_inode(file); 2294 2295 /* 2296 * Unprivileged query to obtain the containing subvolume root id. The 2297 * path is reset so it's consistent with btrfs_search_path_in_tree. 2298 */ 2299 if (args->treeid == 0) 2300 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2301 2302 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2303 args->name[0] = 0; 2304 goto out; 2305 } 2306 2307 if (!capable(CAP_SYS_ADMIN)) { 2308 ret = -EPERM; 2309 goto out; 2310 } 2311 2312 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2313 args->treeid, args->objectid, 2314 args->name); 2315 2316 out: 2317 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2318 ret = -EFAULT; 2319 2320 kfree(args); 2321 return ret; 2322 } 2323 2324 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2325 void __user *arg) 2326 { 2327 struct dentry *parent = file->f_path.dentry; 2328 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2329 struct dentry *dentry; 2330 struct inode *dir = d_inode(parent); 2331 struct inode *inode; 2332 struct btrfs_root *root = BTRFS_I(dir)->root; 2333 struct btrfs_root *dest = NULL; 2334 struct btrfs_ioctl_vol_args *vol_args; 2335 struct btrfs_trans_handle *trans; 2336 struct btrfs_block_rsv block_rsv; 2337 u64 root_flags; 2338 u64 qgroup_reserved; 2339 int namelen; 2340 int ret; 2341 int err = 0; 2342 2343 if (!S_ISDIR(dir->i_mode)) 2344 return -ENOTDIR; 2345 2346 vol_args = memdup_user(arg, sizeof(*vol_args)); 2347 if (IS_ERR(vol_args)) 2348 return PTR_ERR(vol_args); 2349 2350 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2351 namelen = strlen(vol_args->name); 2352 if (strchr(vol_args->name, '/') || 2353 strncmp(vol_args->name, "..", namelen) == 0) { 2354 err = -EINVAL; 2355 goto out; 2356 } 2357 2358 err = mnt_want_write_file(file); 2359 if (err) 2360 goto out; 2361 2362 2363 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2364 if (err == -EINTR) 2365 goto out_drop_write; 2366 dentry = lookup_one_len(vol_args->name, parent, namelen); 2367 if (IS_ERR(dentry)) { 2368 err = PTR_ERR(dentry); 2369 goto out_unlock_dir; 2370 } 2371 2372 if (d_really_is_negative(dentry)) { 2373 err = -ENOENT; 2374 goto out_dput; 2375 } 2376 2377 inode = d_inode(dentry); 2378 dest = BTRFS_I(inode)->root; 2379 if (!capable(CAP_SYS_ADMIN)) { 2380 /* 2381 * Regular user. Only allow this with a special mount 2382 * option, when the user has write+exec access to the 2383 * subvol root, and when rmdir(2) would have been 2384 * allowed. 2385 * 2386 * Note that this is _not_ check that the subvol is 2387 * empty or doesn't contain data that we wouldn't 2388 * otherwise be able to delete. 2389 * 2390 * Users who want to delete empty subvols should try 2391 * rmdir(2). 2392 */ 2393 err = -EPERM; 2394 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2395 goto out_dput; 2396 2397 /* 2398 * Do not allow deletion if the parent dir is the same 2399 * as the dir to be deleted. That means the ioctl 2400 * must be called on the dentry referencing the root 2401 * of the subvol, not a random directory contained 2402 * within it. 2403 */ 2404 err = -EINVAL; 2405 if (root == dest) 2406 goto out_dput; 2407 2408 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2409 if (err) 2410 goto out_dput; 2411 } 2412 2413 /* check if subvolume may be deleted by a user */ 2414 err = btrfs_may_delete(dir, dentry, 1); 2415 if (err) 2416 goto out_dput; 2417 2418 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2419 err = -EINVAL; 2420 goto out_dput; 2421 } 2422 2423 inode_lock(inode); 2424 2425 /* 2426 * Don't allow to delete a subvolume with send in progress. This is 2427 * inside the i_mutex so the error handling that has to drop the bit 2428 * again is not run concurrently. 2429 */ 2430 spin_lock(&dest->root_item_lock); 2431 root_flags = btrfs_root_flags(&dest->root_item); 2432 if (dest->send_in_progress == 0) { 2433 btrfs_set_root_flags(&dest->root_item, 2434 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2435 spin_unlock(&dest->root_item_lock); 2436 } else { 2437 spin_unlock(&dest->root_item_lock); 2438 btrfs_warn(fs_info, 2439 "Attempt to delete subvolume %llu during send", 2440 dest->root_key.objectid); 2441 err = -EPERM; 2442 goto out_unlock_inode; 2443 } 2444 2445 down_write(&fs_info->subvol_sem); 2446 2447 err = may_destroy_subvol(dest); 2448 if (err) 2449 goto out_up_write; 2450 2451 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2452 /* 2453 * One for dir inode, two for dir entries, two for root 2454 * ref/backref. 2455 */ 2456 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2457 5, &qgroup_reserved, true); 2458 if (err) 2459 goto out_up_write; 2460 2461 trans = btrfs_start_transaction(root, 0); 2462 if (IS_ERR(trans)) { 2463 err = PTR_ERR(trans); 2464 goto out_release; 2465 } 2466 trans->block_rsv = &block_rsv; 2467 trans->bytes_reserved = block_rsv.size; 2468 2469 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 2470 2471 ret = btrfs_unlink_subvol(trans, root, dir, 2472 dest->root_key.objectid, 2473 dentry->d_name.name, 2474 dentry->d_name.len); 2475 if (ret) { 2476 err = ret; 2477 btrfs_abort_transaction(trans, ret); 2478 goto out_end_trans; 2479 } 2480 2481 btrfs_record_root_in_trans(trans, dest); 2482 2483 memset(&dest->root_item.drop_progress, 0, 2484 sizeof(dest->root_item.drop_progress)); 2485 dest->root_item.drop_level = 0; 2486 btrfs_set_root_refs(&dest->root_item, 0); 2487 2488 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2489 ret = btrfs_insert_orphan_item(trans, 2490 fs_info->tree_root, 2491 dest->root_key.objectid); 2492 if (ret) { 2493 btrfs_abort_transaction(trans, ret); 2494 err = ret; 2495 goto out_end_trans; 2496 } 2497 } 2498 2499 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid, 2500 BTRFS_UUID_KEY_SUBVOL, 2501 dest->root_key.objectid); 2502 if (ret && ret != -ENOENT) { 2503 btrfs_abort_transaction(trans, ret); 2504 err = ret; 2505 goto out_end_trans; 2506 } 2507 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2508 ret = btrfs_uuid_tree_rem(trans, fs_info, 2509 dest->root_item.received_uuid, 2510 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2511 dest->root_key.objectid); 2512 if (ret && ret != -ENOENT) { 2513 btrfs_abort_transaction(trans, ret); 2514 err = ret; 2515 goto out_end_trans; 2516 } 2517 } 2518 2519 out_end_trans: 2520 trans->block_rsv = NULL; 2521 trans->bytes_reserved = 0; 2522 ret = btrfs_end_transaction(trans); 2523 if (ret && !err) 2524 err = ret; 2525 inode->i_flags |= S_DEAD; 2526 out_release: 2527 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 2528 out_up_write: 2529 up_write(&fs_info->subvol_sem); 2530 if (err) { 2531 spin_lock(&dest->root_item_lock); 2532 root_flags = btrfs_root_flags(&dest->root_item); 2533 btrfs_set_root_flags(&dest->root_item, 2534 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2535 spin_unlock(&dest->root_item_lock); 2536 } 2537 out_unlock_inode: 2538 inode_unlock(inode); 2539 if (!err) { 2540 d_invalidate(dentry); 2541 btrfs_invalidate_inodes(dest); 2542 d_delete(dentry); 2543 ASSERT(dest->send_in_progress == 0); 2544 2545 /* the last ref */ 2546 if (dest->ino_cache_inode) { 2547 iput(dest->ino_cache_inode); 2548 dest->ino_cache_inode = NULL; 2549 } 2550 } 2551 out_dput: 2552 dput(dentry); 2553 out_unlock_dir: 2554 inode_unlock(dir); 2555 out_drop_write: 2556 mnt_drop_write_file(file); 2557 out: 2558 kfree(vol_args); 2559 return err; 2560 } 2561 2562 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2563 { 2564 struct inode *inode = file_inode(file); 2565 struct btrfs_root *root = BTRFS_I(inode)->root; 2566 struct btrfs_ioctl_defrag_range_args *range; 2567 int ret; 2568 2569 ret = mnt_want_write_file(file); 2570 if (ret) 2571 return ret; 2572 2573 if (btrfs_root_readonly(root)) { 2574 ret = -EROFS; 2575 goto out; 2576 } 2577 2578 switch (inode->i_mode & S_IFMT) { 2579 case S_IFDIR: 2580 if (!capable(CAP_SYS_ADMIN)) { 2581 ret = -EPERM; 2582 goto out; 2583 } 2584 ret = btrfs_defrag_root(root); 2585 break; 2586 case S_IFREG: 2587 if (!(file->f_mode & FMODE_WRITE)) { 2588 ret = -EINVAL; 2589 goto out; 2590 } 2591 2592 range = kzalloc(sizeof(*range), GFP_KERNEL); 2593 if (!range) { 2594 ret = -ENOMEM; 2595 goto out; 2596 } 2597 2598 if (argp) { 2599 if (copy_from_user(range, argp, 2600 sizeof(*range))) { 2601 ret = -EFAULT; 2602 kfree(range); 2603 goto out; 2604 } 2605 /* compression requires us to start the IO */ 2606 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2607 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2608 range->extent_thresh = (u32)-1; 2609 } 2610 } else { 2611 /* the rest are all set to zero by kzalloc */ 2612 range->len = (u64)-1; 2613 } 2614 ret = btrfs_defrag_file(file_inode(file), file, 2615 range, 0, 0); 2616 if (ret > 0) 2617 ret = 0; 2618 kfree(range); 2619 break; 2620 default: 2621 ret = -EINVAL; 2622 } 2623 out: 2624 mnt_drop_write_file(file); 2625 return ret; 2626 } 2627 2628 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2629 { 2630 struct btrfs_ioctl_vol_args *vol_args; 2631 int ret; 2632 2633 if (!capable(CAP_SYS_ADMIN)) 2634 return -EPERM; 2635 2636 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 2637 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2638 2639 mutex_lock(&fs_info->volume_mutex); 2640 vol_args = memdup_user(arg, sizeof(*vol_args)); 2641 if (IS_ERR(vol_args)) { 2642 ret = PTR_ERR(vol_args); 2643 goto out; 2644 } 2645 2646 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2647 ret = btrfs_init_new_device(fs_info, vol_args->name); 2648 2649 if (!ret) 2650 btrfs_info(fs_info, "disk added %s", vol_args->name); 2651 2652 kfree(vol_args); 2653 out: 2654 mutex_unlock(&fs_info->volume_mutex); 2655 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 2656 return ret; 2657 } 2658 2659 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2660 { 2661 struct inode *inode = file_inode(file); 2662 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2663 struct btrfs_ioctl_vol_args_v2 *vol_args; 2664 int ret; 2665 2666 if (!capable(CAP_SYS_ADMIN)) 2667 return -EPERM; 2668 2669 ret = mnt_want_write_file(file); 2670 if (ret) 2671 return ret; 2672 2673 vol_args = memdup_user(arg, sizeof(*vol_args)); 2674 if (IS_ERR(vol_args)) { 2675 ret = PTR_ERR(vol_args); 2676 goto err_drop; 2677 } 2678 2679 /* Check for compatibility reject unknown flags */ 2680 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) 2681 return -EOPNOTSUPP; 2682 2683 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 2684 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2685 goto out; 2686 } 2687 2688 mutex_lock(&fs_info->volume_mutex); 2689 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2690 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 2691 } else { 2692 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2693 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 2694 } 2695 mutex_unlock(&fs_info->volume_mutex); 2696 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 2697 2698 if (!ret) { 2699 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2700 btrfs_info(fs_info, "device deleted: id %llu", 2701 vol_args->devid); 2702 else 2703 btrfs_info(fs_info, "device deleted: %s", 2704 vol_args->name); 2705 } 2706 out: 2707 kfree(vol_args); 2708 err_drop: 2709 mnt_drop_write_file(file); 2710 return ret; 2711 } 2712 2713 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2714 { 2715 struct inode *inode = file_inode(file); 2716 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2717 struct btrfs_ioctl_vol_args *vol_args; 2718 int ret; 2719 2720 if (!capable(CAP_SYS_ADMIN)) 2721 return -EPERM; 2722 2723 ret = mnt_want_write_file(file); 2724 if (ret) 2725 return ret; 2726 2727 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 2728 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2729 goto out_drop_write; 2730 } 2731 2732 vol_args = memdup_user(arg, sizeof(*vol_args)); 2733 if (IS_ERR(vol_args)) { 2734 ret = PTR_ERR(vol_args); 2735 goto out; 2736 } 2737 2738 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2739 mutex_lock(&fs_info->volume_mutex); 2740 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 2741 mutex_unlock(&fs_info->volume_mutex); 2742 2743 if (!ret) 2744 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2745 kfree(vol_args); 2746 out: 2747 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 2748 out_drop_write: 2749 mnt_drop_write_file(file); 2750 2751 return ret; 2752 } 2753 2754 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2755 void __user *arg) 2756 { 2757 struct btrfs_ioctl_fs_info_args *fi_args; 2758 struct btrfs_device *device; 2759 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2760 int ret = 0; 2761 2762 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2763 if (!fi_args) 2764 return -ENOMEM; 2765 2766 mutex_lock(&fs_devices->device_list_mutex); 2767 fi_args->num_devices = fs_devices->num_devices; 2768 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid)); 2769 2770 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2771 if (device->devid > fi_args->max_id) 2772 fi_args->max_id = device->devid; 2773 } 2774 mutex_unlock(&fs_devices->device_list_mutex); 2775 2776 fi_args->nodesize = fs_info->nodesize; 2777 fi_args->sectorsize = fs_info->sectorsize; 2778 fi_args->clone_alignment = fs_info->sectorsize; 2779 2780 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2781 ret = -EFAULT; 2782 2783 kfree(fi_args); 2784 return ret; 2785 } 2786 2787 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2788 void __user *arg) 2789 { 2790 struct btrfs_ioctl_dev_info_args *di_args; 2791 struct btrfs_device *dev; 2792 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2793 int ret = 0; 2794 char *s_uuid = NULL; 2795 2796 di_args = memdup_user(arg, sizeof(*di_args)); 2797 if (IS_ERR(di_args)) 2798 return PTR_ERR(di_args); 2799 2800 if (!btrfs_is_empty_uuid(di_args->uuid)) 2801 s_uuid = di_args->uuid; 2802 2803 mutex_lock(&fs_devices->device_list_mutex); 2804 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL); 2805 2806 if (!dev) { 2807 ret = -ENODEV; 2808 goto out; 2809 } 2810 2811 di_args->devid = dev->devid; 2812 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2813 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2814 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2815 if (dev->name) { 2816 struct rcu_string *name; 2817 2818 rcu_read_lock(); 2819 name = rcu_dereference(dev->name); 2820 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2821 rcu_read_unlock(); 2822 di_args->path[sizeof(di_args->path) - 1] = 0; 2823 } else { 2824 di_args->path[0] = '\0'; 2825 } 2826 2827 out: 2828 mutex_unlock(&fs_devices->device_list_mutex); 2829 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2830 ret = -EFAULT; 2831 2832 kfree(di_args); 2833 return ret; 2834 } 2835 2836 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 2837 { 2838 struct page *page; 2839 2840 page = grab_cache_page(inode->i_mapping, index); 2841 if (!page) 2842 return ERR_PTR(-ENOMEM); 2843 2844 if (!PageUptodate(page)) { 2845 int ret; 2846 2847 ret = btrfs_readpage(NULL, page); 2848 if (ret) 2849 return ERR_PTR(ret); 2850 lock_page(page); 2851 if (!PageUptodate(page)) { 2852 unlock_page(page); 2853 put_page(page); 2854 return ERR_PTR(-EIO); 2855 } 2856 if (page->mapping != inode->i_mapping) { 2857 unlock_page(page); 2858 put_page(page); 2859 return ERR_PTR(-EAGAIN); 2860 } 2861 } 2862 2863 return page; 2864 } 2865 2866 static int gather_extent_pages(struct inode *inode, struct page **pages, 2867 int num_pages, u64 off) 2868 { 2869 int i; 2870 pgoff_t index = off >> PAGE_SHIFT; 2871 2872 for (i = 0; i < num_pages; i++) { 2873 again: 2874 pages[i] = extent_same_get_page(inode, index + i); 2875 if (IS_ERR(pages[i])) { 2876 int err = PTR_ERR(pages[i]); 2877 2878 if (err == -EAGAIN) 2879 goto again; 2880 pages[i] = NULL; 2881 return err; 2882 } 2883 } 2884 return 0; 2885 } 2886 2887 static int lock_extent_range(struct inode *inode, u64 off, u64 len, 2888 bool retry_range_locking) 2889 { 2890 /* 2891 * Do any pending delalloc/csum calculations on inode, one way or 2892 * another, and lock file content. 2893 * The locking order is: 2894 * 2895 * 1) pages 2896 * 2) range in the inode's io tree 2897 */ 2898 while (1) { 2899 struct btrfs_ordered_extent *ordered; 2900 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2901 ordered = btrfs_lookup_first_ordered_extent(inode, 2902 off + len - 1); 2903 if ((!ordered || 2904 ordered->file_offset + ordered->len <= off || 2905 ordered->file_offset >= off + len) && 2906 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2907 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2908 if (ordered) 2909 btrfs_put_ordered_extent(ordered); 2910 break; 2911 } 2912 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2913 if (ordered) 2914 btrfs_put_ordered_extent(ordered); 2915 if (!retry_range_locking) 2916 return -EAGAIN; 2917 btrfs_wait_ordered_range(inode, off, len); 2918 } 2919 return 0; 2920 } 2921 2922 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 2923 { 2924 inode_unlock(inode1); 2925 inode_unlock(inode2); 2926 } 2927 2928 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 2929 { 2930 if (inode1 < inode2) 2931 swap(inode1, inode2); 2932 2933 inode_lock_nested(inode1, I_MUTEX_PARENT); 2934 inode_lock_nested(inode2, I_MUTEX_CHILD); 2935 } 2936 2937 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 2938 struct inode *inode2, u64 loff2, u64 len) 2939 { 2940 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2941 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2942 } 2943 2944 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 2945 struct inode *inode2, u64 loff2, u64 len, 2946 bool retry_range_locking) 2947 { 2948 int ret; 2949 2950 if (inode1 < inode2) { 2951 swap(inode1, inode2); 2952 swap(loff1, loff2); 2953 } 2954 ret = lock_extent_range(inode1, loff1, len, retry_range_locking); 2955 if (ret) 2956 return ret; 2957 ret = lock_extent_range(inode2, loff2, len, retry_range_locking); 2958 if (ret) 2959 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, 2960 loff1 + len - 1); 2961 return ret; 2962 } 2963 2964 struct cmp_pages { 2965 int num_pages; 2966 struct page **src_pages; 2967 struct page **dst_pages; 2968 }; 2969 2970 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 2971 { 2972 int i; 2973 struct page *pg; 2974 2975 for (i = 0; i < cmp->num_pages; i++) { 2976 pg = cmp->src_pages[i]; 2977 if (pg) { 2978 unlock_page(pg); 2979 put_page(pg); 2980 } 2981 pg = cmp->dst_pages[i]; 2982 if (pg) { 2983 unlock_page(pg); 2984 put_page(pg); 2985 } 2986 } 2987 kfree(cmp->src_pages); 2988 kfree(cmp->dst_pages); 2989 } 2990 2991 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 2992 struct inode *dst, u64 dst_loff, 2993 u64 len, struct cmp_pages *cmp) 2994 { 2995 int ret; 2996 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT; 2997 struct page **src_pgarr, **dst_pgarr; 2998 2999 /* 3000 * We must gather up all the pages before we initiate our 3001 * extent locking. We use an array for the page pointers. Size 3002 * of the array is bounded by len, which is in turn bounded by 3003 * BTRFS_MAX_DEDUPE_LEN. 3004 */ 3005 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3006 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3007 if (!src_pgarr || !dst_pgarr) { 3008 kfree(src_pgarr); 3009 kfree(dst_pgarr); 3010 return -ENOMEM; 3011 } 3012 cmp->num_pages = num_pages; 3013 cmp->src_pages = src_pgarr; 3014 cmp->dst_pages = dst_pgarr; 3015 3016 /* 3017 * If deduping ranges in the same inode, locking rules make it mandatory 3018 * to always lock pages in ascending order to avoid deadlocks with 3019 * concurrent tasks (such as starting writeback/delalloc). 3020 */ 3021 if (src == dst && dst_loff < loff) { 3022 swap(src_pgarr, dst_pgarr); 3023 swap(loff, dst_loff); 3024 } 3025 3026 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff); 3027 if (ret) 3028 goto out; 3029 3030 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff); 3031 3032 out: 3033 if (ret) 3034 btrfs_cmp_data_free(cmp); 3035 return ret; 3036 } 3037 3038 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp) 3039 { 3040 int ret = 0; 3041 int i; 3042 struct page *src_page, *dst_page; 3043 unsigned int cmp_len = PAGE_SIZE; 3044 void *addr, *dst_addr; 3045 3046 i = 0; 3047 while (len) { 3048 if (len < PAGE_SIZE) 3049 cmp_len = len; 3050 3051 BUG_ON(i >= cmp->num_pages); 3052 3053 src_page = cmp->src_pages[i]; 3054 dst_page = cmp->dst_pages[i]; 3055 ASSERT(PageLocked(src_page)); 3056 ASSERT(PageLocked(dst_page)); 3057 3058 addr = kmap_atomic(src_page); 3059 dst_addr = kmap_atomic(dst_page); 3060 3061 flush_dcache_page(src_page); 3062 flush_dcache_page(dst_page); 3063 3064 if (memcmp(addr, dst_addr, cmp_len)) 3065 ret = -EBADE; 3066 3067 kunmap_atomic(addr); 3068 kunmap_atomic(dst_addr); 3069 3070 if (ret) 3071 break; 3072 3073 len -= cmp_len; 3074 i++; 3075 } 3076 3077 return ret; 3078 } 3079 3080 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 3081 u64 olen) 3082 { 3083 u64 len = *plen; 3084 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 3085 3086 if (off + olen > inode->i_size || off + olen < off) 3087 return -EINVAL; 3088 3089 /* if we extend to eof, continue to block boundary */ 3090 if (off + len == inode->i_size) 3091 *plen = len = ALIGN(inode->i_size, bs) - off; 3092 3093 /* Check that we are block aligned - btrfs_clone() requires this */ 3094 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 3095 return -EINVAL; 3096 3097 return 0; 3098 } 3099 3100 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3101 struct inode *dst, u64 dst_loff) 3102 { 3103 int ret; 3104 u64 len = olen; 3105 struct cmp_pages cmp; 3106 bool same_inode = (src == dst); 3107 u64 same_lock_start = 0; 3108 u64 same_lock_len = 0; 3109 3110 if (len == 0) 3111 return 0; 3112 3113 if (same_inode) 3114 inode_lock(src); 3115 else 3116 btrfs_double_inode_lock(src, dst); 3117 3118 ret = extent_same_check_offsets(src, loff, &len, olen); 3119 if (ret) 3120 goto out_unlock; 3121 3122 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3123 if (ret) 3124 goto out_unlock; 3125 3126 if (same_inode) { 3127 /* 3128 * Single inode case wants the same checks, except we 3129 * don't want our length pushed out past i_size as 3130 * comparing that data range makes no sense. 3131 * 3132 * extent_same_check_offsets() will do this for an 3133 * unaligned length at i_size, so catch it here and 3134 * reject the request. 3135 * 3136 * This effectively means we require aligned extents 3137 * for the single-inode case, whereas the other cases 3138 * allow an unaligned length so long as it ends at 3139 * i_size. 3140 */ 3141 if (len != olen) { 3142 ret = -EINVAL; 3143 goto out_unlock; 3144 } 3145 3146 /* Check for overlapping ranges */ 3147 if (dst_loff + len > loff && dst_loff < loff + len) { 3148 ret = -EINVAL; 3149 goto out_unlock; 3150 } 3151 3152 same_lock_start = min_t(u64, loff, dst_loff); 3153 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3154 } 3155 3156 /* don't make the dst file partly checksummed */ 3157 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3158 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3159 ret = -EINVAL; 3160 goto out_unlock; 3161 } 3162 3163 again: 3164 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp); 3165 if (ret) 3166 goto out_unlock; 3167 3168 if (same_inode) 3169 ret = lock_extent_range(src, same_lock_start, same_lock_len, 3170 false); 3171 else 3172 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, 3173 false); 3174 /* 3175 * If one of the inodes has dirty pages in the respective range or 3176 * ordered extents, we need to flush dellaloc and wait for all ordered 3177 * extents in the range. We must unlock the pages and the ranges in the 3178 * io trees to avoid deadlocks when flushing delalloc (requires locking 3179 * pages) and when waiting for ordered extents to complete (they require 3180 * range locking). 3181 */ 3182 if (ret == -EAGAIN) { 3183 /* 3184 * Ranges in the io trees already unlocked. Now unlock all 3185 * pages before waiting for all IO to complete. 3186 */ 3187 btrfs_cmp_data_free(&cmp); 3188 if (same_inode) { 3189 btrfs_wait_ordered_range(src, same_lock_start, 3190 same_lock_len); 3191 } else { 3192 btrfs_wait_ordered_range(src, loff, len); 3193 btrfs_wait_ordered_range(dst, dst_loff, len); 3194 } 3195 goto again; 3196 } 3197 ASSERT(ret == 0); 3198 if (WARN_ON(ret)) { 3199 /* ranges in the io trees already unlocked */ 3200 btrfs_cmp_data_free(&cmp); 3201 return ret; 3202 } 3203 3204 /* pass original length for comparison so we stay within i_size */ 3205 ret = btrfs_cmp_data(olen, &cmp); 3206 if (ret == 0) 3207 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3208 3209 if (same_inode) 3210 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3211 same_lock_start + same_lock_len - 1); 3212 else 3213 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3214 3215 btrfs_cmp_data_free(&cmp); 3216 out_unlock: 3217 if (same_inode) 3218 inode_unlock(src); 3219 else 3220 btrfs_double_inode_unlock(src, dst); 3221 3222 return ret; 3223 } 3224 3225 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3226 3227 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen, 3228 struct file *dst_file, u64 dst_loff) 3229 { 3230 struct inode *src = file_inode(src_file); 3231 struct inode *dst = file_inode(dst_file); 3232 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3233 ssize_t res; 3234 3235 if (olen > BTRFS_MAX_DEDUPE_LEN) 3236 olen = BTRFS_MAX_DEDUPE_LEN; 3237 3238 if (WARN_ON_ONCE(bs < PAGE_SIZE)) { 3239 /* 3240 * Btrfs does not support blocksize < page_size. As a 3241 * result, btrfs_cmp_data() won't correctly handle 3242 * this situation without an update. 3243 */ 3244 return -EINVAL; 3245 } 3246 3247 res = btrfs_extent_same(src, loff, olen, dst, dst_loff); 3248 if (res) 3249 return res; 3250 return olen; 3251 } 3252 3253 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3254 struct inode *inode, 3255 u64 endoff, 3256 const u64 destoff, 3257 const u64 olen, 3258 int no_time_update) 3259 { 3260 struct btrfs_root *root = BTRFS_I(inode)->root; 3261 int ret; 3262 3263 inode_inc_iversion(inode); 3264 if (!no_time_update) 3265 inode->i_mtime = inode->i_ctime = current_time(inode); 3266 /* 3267 * We round up to the block size at eof when determining which 3268 * extents to clone above, but shouldn't round up the file size. 3269 */ 3270 if (endoff > destoff + olen) 3271 endoff = destoff + olen; 3272 if (endoff > inode->i_size) 3273 btrfs_i_size_write(BTRFS_I(inode), endoff); 3274 3275 ret = btrfs_update_inode(trans, root, inode); 3276 if (ret) { 3277 btrfs_abort_transaction(trans, ret); 3278 btrfs_end_transaction(trans); 3279 goto out; 3280 } 3281 ret = btrfs_end_transaction(trans); 3282 out: 3283 return ret; 3284 } 3285 3286 static void clone_update_extent_map(struct btrfs_inode *inode, 3287 const struct btrfs_trans_handle *trans, 3288 const struct btrfs_path *path, 3289 const u64 hole_offset, 3290 const u64 hole_len) 3291 { 3292 struct extent_map_tree *em_tree = &inode->extent_tree; 3293 struct extent_map *em; 3294 int ret; 3295 3296 em = alloc_extent_map(); 3297 if (!em) { 3298 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3299 return; 3300 } 3301 3302 if (path) { 3303 struct btrfs_file_extent_item *fi; 3304 3305 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3306 struct btrfs_file_extent_item); 3307 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3308 em->generation = -1; 3309 if (btrfs_file_extent_type(path->nodes[0], fi) == 3310 BTRFS_FILE_EXTENT_INLINE) 3311 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3312 &inode->runtime_flags); 3313 } else { 3314 em->start = hole_offset; 3315 em->len = hole_len; 3316 em->ram_bytes = em->len; 3317 em->orig_start = hole_offset; 3318 em->block_start = EXTENT_MAP_HOLE; 3319 em->block_len = 0; 3320 em->orig_block_len = 0; 3321 em->compress_type = BTRFS_COMPRESS_NONE; 3322 em->generation = trans->transid; 3323 } 3324 3325 while (1) { 3326 write_lock(&em_tree->lock); 3327 ret = add_extent_mapping(em_tree, em, 1); 3328 write_unlock(&em_tree->lock); 3329 if (ret != -EEXIST) { 3330 free_extent_map(em); 3331 break; 3332 } 3333 btrfs_drop_extent_cache(inode, em->start, 3334 em->start + em->len - 1, 0); 3335 } 3336 3337 if (ret) 3338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3339 } 3340 3341 /* 3342 * Make sure we do not end up inserting an inline extent into a file that has 3343 * already other (non-inline) extents. If a file has an inline extent it can 3344 * not have any other extents and the (single) inline extent must start at the 3345 * file offset 0. Failing to respect these rules will lead to file corruption, 3346 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3347 * 3348 * We can have extents that have been already written to disk or we can have 3349 * dirty ranges still in delalloc, in which case the extent maps and items are 3350 * created only when we run delalloc, and the delalloc ranges might fall outside 3351 * the range we are currently locking in the inode's io tree. So we check the 3352 * inode's i_size because of that (i_size updates are done while holding the 3353 * i_mutex, which we are holding here). 3354 * We also check to see if the inode has a size not greater than "datal" but has 3355 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3356 * protected against such concurrent fallocate calls by the i_mutex). 3357 * 3358 * If the file has no extents but a size greater than datal, do not allow the 3359 * copy because we would need turn the inline extent into a non-inline one (even 3360 * with NO_HOLES enabled). If we find our destination inode only has one inline 3361 * extent, just overwrite it with the source inline extent if its size is less 3362 * than the source extent's size, or we could copy the source inline extent's 3363 * data into the destination inode's inline extent if the later is greater then 3364 * the former. 3365 */ 3366 static int clone_copy_inline_extent(struct inode *dst, 3367 struct btrfs_trans_handle *trans, 3368 struct btrfs_path *path, 3369 struct btrfs_key *new_key, 3370 const u64 drop_start, 3371 const u64 datal, 3372 const u64 skip, 3373 const u64 size, 3374 char *inline_data) 3375 { 3376 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3377 struct btrfs_root *root = BTRFS_I(dst)->root; 3378 const u64 aligned_end = ALIGN(new_key->offset + datal, 3379 fs_info->sectorsize); 3380 int ret; 3381 struct btrfs_key key; 3382 3383 if (new_key->offset > 0) 3384 return -EOPNOTSUPP; 3385 3386 key.objectid = btrfs_ino(BTRFS_I(dst)); 3387 key.type = BTRFS_EXTENT_DATA_KEY; 3388 key.offset = 0; 3389 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3390 if (ret < 0) { 3391 return ret; 3392 } else if (ret > 0) { 3393 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3394 ret = btrfs_next_leaf(root, path); 3395 if (ret < 0) 3396 return ret; 3397 else if (ret > 0) 3398 goto copy_inline_extent; 3399 } 3400 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3401 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3402 key.type == BTRFS_EXTENT_DATA_KEY) { 3403 ASSERT(key.offset > 0); 3404 return -EOPNOTSUPP; 3405 } 3406 } else if (i_size_read(dst) <= datal) { 3407 struct btrfs_file_extent_item *ei; 3408 u64 ext_len; 3409 3410 /* 3411 * If the file size is <= datal, make sure there are no other 3412 * extents following (can happen do to an fallocate call with 3413 * the flag FALLOC_FL_KEEP_SIZE). 3414 */ 3415 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3416 struct btrfs_file_extent_item); 3417 /* 3418 * If it's an inline extent, it can not have other extents 3419 * following it. 3420 */ 3421 if (btrfs_file_extent_type(path->nodes[0], ei) == 3422 BTRFS_FILE_EXTENT_INLINE) 3423 goto copy_inline_extent; 3424 3425 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3426 if (ext_len > aligned_end) 3427 return -EOPNOTSUPP; 3428 3429 ret = btrfs_next_item(root, path); 3430 if (ret < 0) { 3431 return ret; 3432 } else if (ret == 0) { 3433 btrfs_item_key_to_cpu(path->nodes[0], &key, 3434 path->slots[0]); 3435 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3436 key.type == BTRFS_EXTENT_DATA_KEY) 3437 return -EOPNOTSUPP; 3438 } 3439 } 3440 3441 copy_inline_extent: 3442 /* 3443 * We have no extent items, or we have an extent at offset 0 which may 3444 * or may not be inlined. All these cases are dealt the same way. 3445 */ 3446 if (i_size_read(dst) > datal) { 3447 /* 3448 * If the destination inode has an inline extent... 3449 * This would require copying the data from the source inline 3450 * extent into the beginning of the destination's inline extent. 3451 * But this is really complex, both extents can be compressed 3452 * or just one of them, which would require decompressing and 3453 * re-compressing data (which could increase the new compressed 3454 * size, not allowing the compressed data to fit anymore in an 3455 * inline extent). 3456 * So just don't support this case for now (it should be rare, 3457 * we are not really saving space when cloning inline extents). 3458 */ 3459 return -EOPNOTSUPP; 3460 } 3461 3462 btrfs_release_path(path); 3463 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3464 if (ret) 3465 return ret; 3466 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3467 if (ret) 3468 return ret; 3469 3470 if (skip) { 3471 const u32 start = btrfs_file_extent_calc_inline_size(0); 3472 3473 memmove(inline_data + start, inline_data + start + skip, datal); 3474 } 3475 3476 write_extent_buffer(path->nodes[0], inline_data, 3477 btrfs_item_ptr_offset(path->nodes[0], 3478 path->slots[0]), 3479 size); 3480 inode_add_bytes(dst, datal); 3481 3482 return 0; 3483 } 3484 3485 /** 3486 * btrfs_clone() - clone a range from inode file to another 3487 * 3488 * @src: Inode to clone from 3489 * @inode: Inode to clone to 3490 * @off: Offset within source to start clone from 3491 * @olen: Original length, passed by user, of range to clone 3492 * @olen_aligned: Block-aligned value of olen 3493 * @destoff: Offset within @inode to start clone 3494 * @no_time_update: Whether to update mtime/ctime on the target inode 3495 */ 3496 static int btrfs_clone(struct inode *src, struct inode *inode, 3497 const u64 off, const u64 olen, const u64 olen_aligned, 3498 const u64 destoff, int no_time_update) 3499 { 3500 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3501 struct btrfs_root *root = BTRFS_I(inode)->root; 3502 struct btrfs_path *path = NULL; 3503 struct extent_buffer *leaf; 3504 struct btrfs_trans_handle *trans; 3505 char *buf = NULL; 3506 struct btrfs_key key; 3507 u32 nritems; 3508 int slot; 3509 int ret; 3510 const u64 len = olen_aligned; 3511 u64 last_dest_end = destoff; 3512 3513 ret = -ENOMEM; 3514 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3515 if (!buf) 3516 return ret; 3517 3518 path = btrfs_alloc_path(); 3519 if (!path) { 3520 kvfree(buf); 3521 return ret; 3522 } 3523 3524 path->reada = READA_FORWARD; 3525 /* clone data */ 3526 key.objectid = btrfs_ino(BTRFS_I(src)); 3527 key.type = BTRFS_EXTENT_DATA_KEY; 3528 key.offset = off; 3529 3530 while (1) { 3531 u64 next_key_min_offset = key.offset + 1; 3532 3533 /* 3534 * note the key will change type as we walk through the 3535 * tree. 3536 */ 3537 path->leave_spinning = 1; 3538 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3539 0, 0); 3540 if (ret < 0) 3541 goto out; 3542 /* 3543 * First search, if no extent item that starts at offset off was 3544 * found but the previous item is an extent item, it's possible 3545 * it might overlap our target range, therefore process it. 3546 */ 3547 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3548 btrfs_item_key_to_cpu(path->nodes[0], &key, 3549 path->slots[0] - 1); 3550 if (key.type == BTRFS_EXTENT_DATA_KEY) 3551 path->slots[0]--; 3552 } 3553 3554 nritems = btrfs_header_nritems(path->nodes[0]); 3555 process_slot: 3556 if (path->slots[0] >= nritems) { 3557 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3558 if (ret < 0) 3559 goto out; 3560 if (ret > 0) 3561 break; 3562 nritems = btrfs_header_nritems(path->nodes[0]); 3563 } 3564 leaf = path->nodes[0]; 3565 slot = path->slots[0]; 3566 3567 btrfs_item_key_to_cpu(leaf, &key, slot); 3568 if (key.type > BTRFS_EXTENT_DATA_KEY || 3569 key.objectid != btrfs_ino(BTRFS_I(src))) 3570 break; 3571 3572 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3573 struct btrfs_file_extent_item *extent; 3574 int type; 3575 u32 size; 3576 struct btrfs_key new_key; 3577 u64 disko = 0, diskl = 0; 3578 u64 datao = 0, datal = 0; 3579 u8 comp; 3580 u64 drop_start; 3581 3582 extent = btrfs_item_ptr(leaf, slot, 3583 struct btrfs_file_extent_item); 3584 comp = btrfs_file_extent_compression(leaf, extent); 3585 type = btrfs_file_extent_type(leaf, extent); 3586 if (type == BTRFS_FILE_EXTENT_REG || 3587 type == BTRFS_FILE_EXTENT_PREALLOC) { 3588 disko = btrfs_file_extent_disk_bytenr(leaf, 3589 extent); 3590 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3591 extent); 3592 datao = btrfs_file_extent_offset(leaf, extent); 3593 datal = btrfs_file_extent_num_bytes(leaf, 3594 extent); 3595 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3596 /* take upper bound, may be compressed */ 3597 datal = btrfs_file_extent_ram_bytes(leaf, 3598 extent); 3599 } 3600 3601 /* 3602 * The first search might have left us at an extent 3603 * item that ends before our target range's start, can 3604 * happen if we have holes and NO_HOLES feature enabled. 3605 */ 3606 if (key.offset + datal <= off) { 3607 path->slots[0]++; 3608 goto process_slot; 3609 } else if (key.offset >= off + len) { 3610 break; 3611 } 3612 next_key_min_offset = key.offset + datal; 3613 size = btrfs_item_size_nr(leaf, slot); 3614 read_extent_buffer(leaf, buf, 3615 btrfs_item_ptr_offset(leaf, slot), 3616 size); 3617 3618 btrfs_release_path(path); 3619 path->leave_spinning = 0; 3620 3621 memcpy(&new_key, &key, sizeof(new_key)); 3622 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3623 if (off <= key.offset) 3624 new_key.offset = key.offset + destoff - off; 3625 else 3626 new_key.offset = destoff; 3627 3628 /* 3629 * Deal with a hole that doesn't have an extent item 3630 * that represents it (NO_HOLES feature enabled). 3631 * This hole is either in the middle of the cloning 3632 * range or at the beginning (fully overlaps it or 3633 * partially overlaps it). 3634 */ 3635 if (new_key.offset != last_dest_end) 3636 drop_start = last_dest_end; 3637 else 3638 drop_start = new_key.offset; 3639 3640 /* 3641 * 1 - adjusting old extent (we may have to split it) 3642 * 1 - add new extent 3643 * 1 - inode update 3644 */ 3645 trans = btrfs_start_transaction(root, 3); 3646 if (IS_ERR(trans)) { 3647 ret = PTR_ERR(trans); 3648 goto out; 3649 } 3650 3651 if (type == BTRFS_FILE_EXTENT_REG || 3652 type == BTRFS_FILE_EXTENT_PREALLOC) { 3653 /* 3654 * a | --- range to clone ---| b 3655 * | ------------- extent ------------- | 3656 */ 3657 3658 /* subtract range b */ 3659 if (key.offset + datal > off + len) 3660 datal = off + len - key.offset; 3661 3662 /* subtract range a */ 3663 if (off > key.offset) { 3664 datao += off - key.offset; 3665 datal -= off - key.offset; 3666 } 3667 3668 ret = btrfs_drop_extents(trans, root, inode, 3669 drop_start, 3670 new_key.offset + datal, 3671 1); 3672 if (ret) { 3673 if (ret != -EOPNOTSUPP) 3674 btrfs_abort_transaction(trans, 3675 ret); 3676 btrfs_end_transaction(trans); 3677 goto out; 3678 } 3679 3680 ret = btrfs_insert_empty_item(trans, root, path, 3681 &new_key, size); 3682 if (ret) { 3683 btrfs_abort_transaction(trans, ret); 3684 btrfs_end_transaction(trans); 3685 goto out; 3686 } 3687 3688 leaf = path->nodes[0]; 3689 slot = path->slots[0]; 3690 write_extent_buffer(leaf, buf, 3691 btrfs_item_ptr_offset(leaf, slot), 3692 size); 3693 3694 extent = btrfs_item_ptr(leaf, slot, 3695 struct btrfs_file_extent_item); 3696 3697 /* disko == 0 means it's a hole */ 3698 if (!disko) 3699 datao = 0; 3700 3701 btrfs_set_file_extent_offset(leaf, extent, 3702 datao); 3703 btrfs_set_file_extent_num_bytes(leaf, extent, 3704 datal); 3705 3706 if (disko) { 3707 inode_add_bytes(inode, datal); 3708 ret = btrfs_inc_extent_ref(trans, 3709 fs_info, 3710 disko, diskl, 0, 3711 root->root_key.objectid, 3712 btrfs_ino(BTRFS_I(inode)), 3713 new_key.offset - datao); 3714 if (ret) { 3715 btrfs_abort_transaction(trans, 3716 ret); 3717 btrfs_end_transaction(trans); 3718 goto out; 3719 3720 } 3721 } 3722 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3723 u64 skip = 0; 3724 u64 trim = 0; 3725 3726 if (off > key.offset) { 3727 skip = off - key.offset; 3728 new_key.offset += skip; 3729 } 3730 3731 if (key.offset + datal > off + len) 3732 trim = key.offset + datal - (off + len); 3733 3734 if (comp && (skip || trim)) { 3735 ret = -EINVAL; 3736 btrfs_end_transaction(trans); 3737 goto out; 3738 } 3739 size -= skip + trim; 3740 datal -= skip + trim; 3741 3742 ret = clone_copy_inline_extent(inode, 3743 trans, path, 3744 &new_key, 3745 drop_start, 3746 datal, 3747 skip, size, buf); 3748 if (ret) { 3749 if (ret != -EOPNOTSUPP) 3750 btrfs_abort_transaction(trans, 3751 ret); 3752 btrfs_end_transaction(trans); 3753 goto out; 3754 } 3755 leaf = path->nodes[0]; 3756 slot = path->slots[0]; 3757 } 3758 3759 /* If we have an implicit hole (NO_HOLES feature). */ 3760 if (drop_start < new_key.offset) 3761 clone_update_extent_map(BTRFS_I(inode), trans, 3762 NULL, drop_start, 3763 new_key.offset - drop_start); 3764 3765 clone_update_extent_map(BTRFS_I(inode), trans, 3766 path, 0, 0); 3767 3768 btrfs_mark_buffer_dirty(leaf); 3769 btrfs_release_path(path); 3770 3771 last_dest_end = ALIGN(new_key.offset + datal, 3772 fs_info->sectorsize); 3773 ret = clone_finish_inode_update(trans, inode, 3774 last_dest_end, 3775 destoff, olen, 3776 no_time_update); 3777 if (ret) 3778 goto out; 3779 if (new_key.offset + datal >= destoff + len) 3780 break; 3781 } 3782 btrfs_release_path(path); 3783 key.offset = next_key_min_offset; 3784 3785 if (fatal_signal_pending(current)) { 3786 ret = -EINTR; 3787 goto out; 3788 } 3789 } 3790 ret = 0; 3791 3792 if (last_dest_end < destoff + len) { 3793 /* 3794 * We have an implicit hole (NO_HOLES feature is enabled) that 3795 * fully or partially overlaps our cloning range at its end. 3796 */ 3797 btrfs_release_path(path); 3798 3799 /* 3800 * 1 - remove extent(s) 3801 * 1 - inode update 3802 */ 3803 trans = btrfs_start_transaction(root, 2); 3804 if (IS_ERR(trans)) { 3805 ret = PTR_ERR(trans); 3806 goto out; 3807 } 3808 ret = btrfs_drop_extents(trans, root, inode, 3809 last_dest_end, destoff + len, 1); 3810 if (ret) { 3811 if (ret != -EOPNOTSUPP) 3812 btrfs_abort_transaction(trans, ret); 3813 btrfs_end_transaction(trans); 3814 goto out; 3815 } 3816 clone_update_extent_map(BTRFS_I(inode), trans, NULL, 3817 last_dest_end, 3818 destoff + len - last_dest_end); 3819 ret = clone_finish_inode_update(trans, inode, destoff + len, 3820 destoff, olen, no_time_update); 3821 } 3822 3823 out: 3824 btrfs_free_path(path); 3825 kvfree(buf); 3826 return ret; 3827 } 3828 3829 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3830 u64 off, u64 olen, u64 destoff) 3831 { 3832 struct inode *inode = file_inode(file); 3833 struct inode *src = file_inode(file_src); 3834 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3835 struct btrfs_root *root = BTRFS_I(inode)->root; 3836 int ret; 3837 u64 len = olen; 3838 u64 bs = fs_info->sb->s_blocksize; 3839 int same_inode = src == inode; 3840 3841 /* 3842 * TODO: 3843 * - split compressed inline extents. annoying: we need to 3844 * decompress into destination's address_space (the file offset 3845 * may change, so source mapping won't do), then recompress (or 3846 * otherwise reinsert) a subrange. 3847 * 3848 * - split destination inode's inline extents. The inline extents can 3849 * be either compressed or non-compressed. 3850 */ 3851 3852 if (btrfs_root_readonly(root)) 3853 return -EROFS; 3854 3855 if (file_src->f_path.mnt != file->f_path.mnt || 3856 src->i_sb != inode->i_sb) 3857 return -EXDEV; 3858 3859 /* don't make the dst file partly checksummed */ 3860 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3861 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3862 return -EINVAL; 3863 3864 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3865 return -EISDIR; 3866 3867 if (!same_inode) { 3868 btrfs_double_inode_lock(src, inode); 3869 } else { 3870 inode_lock(src); 3871 } 3872 3873 /* determine range to clone */ 3874 ret = -EINVAL; 3875 if (off + len > src->i_size || off + len < off) 3876 goto out_unlock; 3877 if (len == 0) 3878 olen = len = src->i_size - off; 3879 /* if we extend to eof, continue to block boundary */ 3880 if (off + len == src->i_size) 3881 len = ALIGN(src->i_size, bs) - off; 3882 3883 if (len == 0) { 3884 ret = 0; 3885 goto out_unlock; 3886 } 3887 3888 /* verify the end result is block aligned */ 3889 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3890 !IS_ALIGNED(destoff, bs)) 3891 goto out_unlock; 3892 3893 /* verify if ranges are overlapped within the same file */ 3894 if (same_inode) { 3895 if (destoff + len > off && destoff < off + len) 3896 goto out_unlock; 3897 } 3898 3899 if (destoff > inode->i_size) { 3900 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3901 if (ret) 3902 goto out_unlock; 3903 } 3904 3905 /* 3906 * Lock the target range too. Right after we replace the file extent 3907 * items in the fs tree (which now point to the cloned data), we might 3908 * have a worker replace them with extent items relative to a write 3909 * operation that was issued before this clone operation (i.e. confront 3910 * with inode.c:btrfs_finish_ordered_io). 3911 */ 3912 if (same_inode) { 3913 u64 lock_start = min_t(u64, off, destoff); 3914 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3915 3916 ret = lock_extent_range(src, lock_start, lock_len, true); 3917 } else { 3918 ret = btrfs_double_extent_lock(src, off, inode, destoff, len, 3919 true); 3920 } 3921 ASSERT(ret == 0); 3922 if (WARN_ON(ret)) { 3923 /* ranges in the io trees already unlocked */ 3924 goto out_unlock; 3925 } 3926 3927 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3928 3929 if (same_inode) { 3930 u64 lock_start = min_t(u64, off, destoff); 3931 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3932 3933 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3934 } else { 3935 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3936 } 3937 /* 3938 * Truncate page cache pages so that future reads will see the cloned 3939 * data immediately and not the previous data. 3940 */ 3941 truncate_inode_pages_range(&inode->i_data, 3942 round_down(destoff, PAGE_SIZE), 3943 round_up(destoff + len, PAGE_SIZE) - 1); 3944 out_unlock: 3945 if (!same_inode) 3946 btrfs_double_inode_unlock(src, inode); 3947 else 3948 inode_unlock(src); 3949 return ret; 3950 } 3951 3952 int btrfs_clone_file_range(struct file *src_file, loff_t off, 3953 struct file *dst_file, loff_t destoff, u64 len) 3954 { 3955 return btrfs_clone_files(dst_file, src_file, off, len, destoff); 3956 } 3957 3958 /* 3959 * there are many ways the trans_start and trans_end ioctls can lead 3960 * to deadlocks. They should only be used by applications that 3961 * basically own the machine, and have a very in depth understanding 3962 * of all the possible deadlocks and enospc problems. 3963 */ 3964 static long btrfs_ioctl_trans_start(struct file *file) 3965 { 3966 struct inode *inode = file_inode(file); 3967 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3968 struct btrfs_root *root = BTRFS_I(inode)->root; 3969 struct btrfs_trans_handle *trans; 3970 struct btrfs_file_private *private; 3971 int ret; 3972 static bool warned = false; 3973 3974 ret = -EPERM; 3975 if (!capable(CAP_SYS_ADMIN)) 3976 goto out; 3977 3978 if (!warned) { 3979 btrfs_warn(fs_info, 3980 "Userspace transaction mechanism is considered " 3981 "deprecated and slated to be removed in 4.17. " 3982 "If you have a valid use case please " 3983 "speak up on the mailing list"); 3984 WARN_ON(1); 3985 warned = true; 3986 } 3987 3988 ret = -EINPROGRESS; 3989 private = file->private_data; 3990 if (private && private->trans) 3991 goto out; 3992 if (!private) { 3993 private = kzalloc(sizeof(struct btrfs_file_private), 3994 GFP_KERNEL); 3995 if (!private) 3996 return -ENOMEM; 3997 file->private_data = private; 3998 } 3999 4000 ret = -EROFS; 4001 if (btrfs_root_readonly(root)) 4002 goto out; 4003 4004 ret = mnt_want_write_file(file); 4005 if (ret) 4006 goto out; 4007 4008 atomic_inc(&fs_info->open_ioctl_trans); 4009 4010 ret = -ENOMEM; 4011 trans = btrfs_start_ioctl_transaction(root); 4012 if (IS_ERR(trans)) 4013 goto out_drop; 4014 4015 private->trans = trans; 4016 return 0; 4017 4018 out_drop: 4019 atomic_dec(&fs_info->open_ioctl_trans); 4020 mnt_drop_write_file(file); 4021 out: 4022 return ret; 4023 } 4024 4025 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4026 { 4027 struct inode *inode = file_inode(file); 4028 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4029 struct btrfs_root *root = BTRFS_I(inode)->root; 4030 struct btrfs_root *new_root; 4031 struct btrfs_dir_item *di; 4032 struct btrfs_trans_handle *trans; 4033 struct btrfs_path *path; 4034 struct btrfs_key location; 4035 struct btrfs_disk_key disk_key; 4036 u64 objectid = 0; 4037 u64 dir_id; 4038 int ret; 4039 4040 if (!capable(CAP_SYS_ADMIN)) 4041 return -EPERM; 4042 4043 ret = mnt_want_write_file(file); 4044 if (ret) 4045 return ret; 4046 4047 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4048 ret = -EFAULT; 4049 goto out; 4050 } 4051 4052 if (!objectid) 4053 objectid = BTRFS_FS_TREE_OBJECTID; 4054 4055 location.objectid = objectid; 4056 location.type = BTRFS_ROOT_ITEM_KEY; 4057 location.offset = (u64)-1; 4058 4059 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 4060 if (IS_ERR(new_root)) { 4061 ret = PTR_ERR(new_root); 4062 goto out; 4063 } 4064 if (!is_fstree(new_root->objectid)) { 4065 ret = -ENOENT; 4066 goto out; 4067 } 4068 4069 path = btrfs_alloc_path(); 4070 if (!path) { 4071 ret = -ENOMEM; 4072 goto out; 4073 } 4074 path->leave_spinning = 1; 4075 4076 trans = btrfs_start_transaction(root, 1); 4077 if (IS_ERR(trans)) { 4078 btrfs_free_path(path); 4079 ret = PTR_ERR(trans); 4080 goto out; 4081 } 4082 4083 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4084 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4085 dir_id, "default", 7, 1); 4086 if (IS_ERR_OR_NULL(di)) { 4087 btrfs_free_path(path); 4088 btrfs_end_transaction(trans); 4089 btrfs_err(fs_info, 4090 "Umm, you don't have the default diritem, this isn't going to work"); 4091 ret = -ENOENT; 4092 goto out; 4093 } 4094 4095 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4096 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4097 btrfs_mark_buffer_dirty(path->nodes[0]); 4098 btrfs_free_path(path); 4099 4100 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4101 btrfs_end_transaction(trans); 4102 out: 4103 mnt_drop_write_file(file); 4104 return ret; 4105 } 4106 4107 void btrfs_get_block_group_info(struct list_head *groups_list, 4108 struct btrfs_ioctl_space_info *space) 4109 { 4110 struct btrfs_block_group_cache *block_group; 4111 4112 space->total_bytes = 0; 4113 space->used_bytes = 0; 4114 space->flags = 0; 4115 list_for_each_entry(block_group, groups_list, list) { 4116 space->flags = block_group->flags; 4117 space->total_bytes += block_group->key.offset; 4118 space->used_bytes += 4119 btrfs_block_group_used(&block_group->item); 4120 } 4121 } 4122 4123 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4124 void __user *arg) 4125 { 4126 struct btrfs_ioctl_space_args space_args; 4127 struct btrfs_ioctl_space_info space; 4128 struct btrfs_ioctl_space_info *dest; 4129 struct btrfs_ioctl_space_info *dest_orig; 4130 struct btrfs_ioctl_space_info __user *user_dest; 4131 struct btrfs_space_info *info; 4132 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 4133 BTRFS_BLOCK_GROUP_SYSTEM, 4134 BTRFS_BLOCK_GROUP_METADATA, 4135 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 4136 int num_types = 4; 4137 int alloc_size; 4138 int ret = 0; 4139 u64 slot_count = 0; 4140 int i, c; 4141 4142 if (copy_from_user(&space_args, 4143 (struct btrfs_ioctl_space_args __user *)arg, 4144 sizeof(space_args))) 4145 return -EFAULT; 4146 4147 for (i = 0; i < num_types; i++) { 4148 struct btrfs_space_info *tmp; 4149 4150 info = NULL; 4151 rcu_read_lock(); 4152 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4153 list) { 4154 if (tmp->flags == types[i]) { 4155 info = tmp; 4156 break; 4157 } 4158 } 4159 rcu_read_unlock(); 4160 4161 if (!info) 4162 continue; 4163 4164 down_read(&info->groups_sem); 4165 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4166 if (!list_empty(&info->block_groups[c])) 4167 slot_count++; 4168 } 4169 up_read(&info->groups_sem); 4170 } 4171 4172 /* 4173 * Global block reserve, exported as a space_info 4174 */ 4175 slot_count++; 4176 4177 /* space_slots == 0 means they are asking for a count */ 4178 if (space_args.space_slots == 0) { 4179 space_args.total_spaces = slot_count; 4180 goto out; 4181 } 4182 4183 slot_count = min_t(u64, space_args.space_slots, slot_count); 4184 4185 alloc_size = sizeof(*dest) * slot_count; 4186 4187 /* we generally have at most 6 or so space infos, one for each raid 4188 * level. So, a whole page should be more than enough for everyone 4189 */ 4190 if (alloc_size > PAGE_SIZE) 4191 return -ENOMEM; 4192 4193 space_args.total_spaces = 0; 4194 dest = kmalloc(alloc_size, GFP_KERNEL); 4195 if (!dest) 4196 return -ENOMEM; 4197 dest_orig = dest; 4198 4199 /* now we have a buffer to copy into */ 4200 for (i = 0; i < num_types; i++) { 4201 struct btrfs_space_info *tmp; 4202 4203 if (!slot_count) 4204 break; 4205 4206 info = NULL; 4207 rcu_read_lock(); 4208 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4209 list) { 4210 if (tmp->flags == types[i]) { 4211 info = tmp; 4212 break; 4213 } 4214 } 4215 rcu_read_unlock(); 4216 4217 if (!info) 4218 continue; 4219 down_read(&info->groups_sem); 4220 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4221 if (!list_empty(&info->block_groups[c])) { 4222 btrfs_get_block_group_info( 4223 &info->block_groups[c], &space); 4224 memcpy(dest, &space, sizeof(space)); 4225 dest++; 4226 space_args.total_spaces++; 4227 slot_count--; 4228 } 4229 if (!slot_count) 4230 break; 4231 } 4232 up_read(&info->groups_sem); 4233 } 4234 4235 /* 4236 * Add global block reserve 4237 */ 4238 if (slot_count) { 4239 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4240 4241 spin_lock(&block_rsv->lock); 4242 space.total_bytes = block_rsv->size; 4243 space.used_bytes = block_rsv->size - block_rsv->reserved; 4244 spin_unlock(&block_rsv->lock); 4245 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4246 memcpy(dest, &space, sizeof(space)); 4247 space_args.total_spaces++; 4248 } 4249 4250 user_dest = (struct btrfs_ioctl_space_info __user *) 4251 (arg + sizeof(struct btrfs_ioctl_space_args)); 4252 4253 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4254 ret = -EFAULT; 4255 4256 kfree(dest_orig); 4257 out: 4258 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4259 ret = -EFAULT; 4260 4261 return ret; 4262 } 4263 4264 /* 4265 * there are many ways the trans_start and trans_end ioctls can lead 4266 * to deadlocks. They should only be used by applications that 4267 * basically own the machine, and have a very in depth understanding 4268 * of all the possible deadlocks and enospc problems. 4269 */ 4270 long btrfs_ioctl_trans_end(struct file *file) 4271 { 4272 struct inode *inode = file_inode(file); 4273 struct btrfs_root *root = BTRFS_I(inode)->root; 4274 struct btrfs_file_private *private = file->private_data; 4275 4276 if (!private || !private->trans) 4277 return -EINVAL; 4278 4279 btrfs_end_transaction(private->trans); 4280 private->trans = NULL; 4281 4282 atomic_dec(&root->fs_info->open_ioctl_trans); 4283 4284 mnt_drop_write_file(file); 4285 return 0; 4286 } 4287 4288 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4289 void __user *argp) 4290 { 4291 struct btrfs_trans_handle *trans; 4292 u64 transid; 4293 int ret; 4294 4295 trans = btrfs_attach_transaction_barrier(root); 4296 if (IS_ERR(trans)) { 4297 if (PTR_ERR(trans) != -ENOENT) 4298 return PTR_ERR(trans); 4299 4300 /* No running transaction, don't bother */ 4301 transid = root->fs_info->last_trans_committed; 4302 goto out; 4303 } 4304 transid = trans->transid; 4305 ret = btrfs_commit_transaction_async(trans, 0); 4306 if (ret) { 4307 btrfs_end_transaction(trans); 4308 return ret; 4309 } 4310 out: 4311 if (argp) 4312 if (copy_to_user(argp, &transid, sizeof(transid))) 4313 return -EFAULT; 4314 return 0; 4315 } 4316 4317 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4318 void __user *argp) 4319 { 4320 u64 transid; 4321 4322 if (argp) { 4323 if (copy_from_user(&transid, argp, sizeof(transid))) 4324 return -EFAULT; 4325 } else { 4326 transid = 0; /* current trans */ 4327 } 4328 return btrfs_wait_for_commit(fs_info, transid); 4329 } 4330 4331 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4332 { 4333 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4334 struct btrfs_ioctl_scrub_args *sa; 4335 int ret; 4336 4337 if (!capable(CAP_SYS_ADMIN)) 4338 return -EPERM; 4339 4340 sa = memdup_user(arg, sizeof(*sa)); 4341 if (IS_ERR(sa)) 4342 return PTR_ERR(sa); 4343 4344 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4345 ret = mnt_want_write_file(file); 4346 if (ret) 4347 goto out; 4348 } 4349 4350 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4351 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4352 0); 4353 4354 if (copy_to_user(arg, sa, sizeof(*sa))) 4355 ret = -EFAULT; 4356 4357 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4358 mnt_drop_write_file(file); 4359 out: 4360 kfree(sa); 4361 return ret; 4362 } 4363 4364 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4365 { 4366 if (!capable(CAP_SYS_ADMIN)) 4367 return -EPERM; 4368 4369 return btrfs_scrub_cancel(fs_info); 4370 } 4371 4372 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4373 void __user *arg) 4374 { 4375 struct btrfs_ioctl_scrub_args *sa; 4376 int ret; 4377 4378 if (!capable(CAP_SYS_ADMIN)) 4379 return -EPERM; 4380 4381 sa = memdup_user(arg, sizeof(*sa)); 4382 if (IS_ERR(sa)) 4383 return PTR_ERR(sa); 4384 4385 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4386 4387 if (copy_to_user(arg, sa, sizeof(*sa))) 4388 ret = -EFAULT; 4389 4390 kfree(sa); 4391 return ret; 4392 } 4393 4394 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4395 void __user *arg) 4396 { 4397 struct btrfs_ioctl_get_dev_stats *sa; 4398 int ret; 4399 4400 sa = memdup_user(arg, sizeof(*sa)); 4401 if (IS_ERR(sa)) 4402 return PTR_ERR(sa); 4403 4404 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4405 kfree(sa); 4406 return -EPERM; 4407 } 4408 4409 ret = btrfs_get_dev_stats(fs_info, sa); 4410 4411 if (copy_to_user(arg, sa, sizeof(*sa))) 4412 ret = -EFAULT; 4413 4414 kfree(sa); 4415 return ret; 4416 } 4417 4418 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4419 void __user *arg) 4420 { 4421 struct btrfs_ioctl_dev_replace_args *p; 4422 int ret; 4423 4424 if (!capable(CAP_SYS_ADMIN)) 4425 return -EPERM; 4426 4427 p = memdup_user(arg, sizeof(*p)); 4428 if (IS_ERR(p)) 4429 return PTR_ERR(p); 4430 4431 switch (p->cmd) { 4432 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4433 if (sb_rdonly(fs_info->sb)) { 4434 ret = -EROFS; 4435 goto out; 4436 } 4437 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4438 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4439 } else { 4440 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4441 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4442 } 4443 break; 4444 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4445 btrfs_dev_replace_status(fs_info, p); 4446 ret = 0; 4447 break; 4448 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4449 ret = btrfs_dev_replace_cancel(fs_info, p); 4450 break; 4451 default: 4452 ret = -EINVAL; 4453 break; 4454 } 4455 4456 if (copy_to_user(arg, p, sizeof(*p))) 4457 ret = -EFAULT; 4458 out: 4459 kfree(p); 4460 return ret; 4461 } 4462 4463 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4464 { 4465 int ret = 0; 4466 int i; 4467 u64 rel_ptr; 4468 int size; 4469 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4470 struct inode_fs_paths *ipath = NULL; 4471 struct btrfs_path *path; 4472 4473 if (!capable(CAP_DAC_READ_SEARCH)) 4474 return -EPERM; 4475 4476 path = btrfs_alloc_path(); 4477 if (!path) { 4478 ret = -ENOMEM; 4479 goto out; 4480 } 4481 4482 ipa = memdup_user(arg, sizeof(*ipa)); 4483 if (IS_ERR(ipa)) { 4484 ret = PTR_ERR(ipa); 4485 ipa = NULL; 4486 goto out; 4487 } 4488 4489 size = min_t(u32, ipa->size, 4096); 4490 ipath = init_ipath(size, root, path); 4491 if (IS_ERR(ipath)) { 4492 ret = PTR_ERR(ipath); 4493 ipath = NULL; 4494 goto out; 4495 } 4496 4497 ret = paths_from_inode(ipa->inum, ipath); 4498 if (ret < 0) 4499 goto out; 4500 4501 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4502 rel_ptr = ipath->fspath->val[i] - 4503 (u64)(unsigned long)ipath->fspath->val; 4504 ipath->fspath->val[i] = rel_ptr; 4505 } 4506 4507 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4508 (void *)(unsigned long)ipath->fspath, size); 4509 if (ret) { 4510 ret = -EFAULT; 4511 goto out; 4512 } 4513 4514 out: 4515 btrfs_free_path(path); 4516 free_ipath(ipath); 4517 kfree(ipa); 4518 4519 return ret; 4520 } 4521 4522 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4523 { 4524 struct btrfs_data_container *inodes = ctx; 4525 const size_t c = 3 * sizeof(u64); 4526 4527 if (inodes->bytes_left >= c) { 4528 inodes->bytes_left -= c; 4529 inodes->val[inodes->elem_cnt] = inum; 4530 inodes->val[inodes->elem_cnt + 1] = offset; 4531 inodes->val[inodes->elem_cnt + 2] = root; 4532 inodes->elem_cnt += 3; 4533 } else { 4534 inodes->bytes_missing += c - inodes->bytes_left; 4535 inodes->bytes_left = 0; 4536 inodes->elem_missed += 3; 4537 } 4538 4539 return 0; 4540 } 4541 4542 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4543 void __user *arg) 4544 { 4545 int ret = 0; 4546 int size; 4547 struct btrfs_ioctl_logical_ino_args *loi; 4548 struct btrfs_data_container *inodes = NULL; 4549 struct btrfs_path *path = NULL; 4550 4551 if (!capable(CAP_SYS_ADMIN)) 4552 return -EPERM; 4553 4554 loi = memdup_user(arg, sizeof(*loi)); 4555 if (IS_ERR(loi)) 4556 return PTR_ERR(loi); 4557 4558 path = btrfs_alloc_path(); 4559 if (!path) { 4560 ret = -ENOMEM; 4561 goto out; 4562 } 4563 4564 size = min_t(u32, loi->size, SZ_64K); 4565 inodes = init_data_container(size); 4566 if (IS_ERR(inodes)) { 4567 ret = PTR_ERR(inodes); 4568 inodes = NULL; 4569 goto out; 4570 } 4571 4572 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4573 build_ino_list, inodes); 4574 if (ret == -EINVAL) 4575 ret = -ENOENT; 4576 if (ret < 0) 4577 goto out; 4578 4579 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4580 (void *)(unsigned long)inodes, size); 4581 if (ret) 4582 ret = -EFAULT; 4583 4584 out: 4585 btrfs_free_path(path); 4586 kvfree(inodes); 4587 kfree(loi); 4588 4589 return ret; 4590 } 4591 4592 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4593 struct btrfs_ioctl_balance_args *bargs) 4594 { 4595 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4596 4597 bargs->flags = bctl->flags; 4598 4599 if (atomic_read(&fs_info->balance_running)) 4600 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4601 if (atomic_read(&fs_info->balance_pause_req)) 4602 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4603 if (atomic_read(&fs_info->balance_cancel_req)) 4604 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4605 4606 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4607 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4608 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4609 4610 if (lock) { 4611 spin_lock(&fs_info->balance_lock); 4612 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4613 spin_unlock(&fs_info->balance_lock); 4614 } else { 4615 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4616 } 4617 } 4618 4619 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4620 { 4621 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4622 struct btrfs_fs_info *fs_info = root->fs_info; 4623 struct btrfs_ioctl_balance_args *bargs; 4624 struct btrfs_balance_control *bctl; 4625 bool need_unlock; /* for mut. excl. ops lock */ 4626 int ret; 4627 4628 if (!capable(CAP_SYS_ADMIN)) 4629 return -EPERM; 4630 4631 ret = mnt_want_write_file(file); 4632 if (ret) 4633 return ret; 4634 4635 again: 4636 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4637 mutex_lock(&fs_info->volume_mutex); 4638 mutex_lock(&fs_info->balance_mutex); 4639 need_unlock = true; 4640 goto locked; 4641 } 4642 4643 /* 4644 * mut. excl. ops lock is locked. Three possibilities: 4645 * (1) some other op is running 4646 * (2) balance is running 4647 * (3) balance is paused -- special case (think resume) 4648 */ 4649 mutex_lock(&fs_info->balance_mutex); 4650 if (fs_info->balance_ctl) { 4651 /* this is either (2) or (3) */ 4652 if (!atomic_read(&fs_info->balance_running)) { 4653 mutex_unlock(&fs_info->balance_mutex); 4654 if (!mutex_trylock(&fs_info->volume_mutex)) 4655 goto again; 4656 mutex_lock(&fs_info->balance_mutex); 4657 4658 if (fs_info->balance_ctl && 4659 !atomic_read(&fs_info->balance_running)) { 4660 /* this is (3) */ 4661 need_unlock = false; 4662 goto locked; 4663 } 4664 4665 mutex_unlock(&fs_info->balance_mutex); 4666 mutex_unlock(&fs_info->volume_mutex); 4667 goto again; 4668 } else { 4669 /* this is (2) */ 4670 mutex_unlock(&fs_info->balance_mutex); 4671 ret = -EINPROGRESS; 4672 goto out; 4673 } 4674 } else { 4675 /* this is (1) */ 4676 mutex_unlock(&fs_info->balance_mutex); 4677 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4678 goto out; 4679 } 4680 4681 locked: 4682 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4683 4684 if (arg) { 4685 bargs = memdup_user(arg, sizeof(*bargs)); 4686 if (IS_ERR(bargs)) { 4687 ret = PTR_ERR(bargs); 4688 goto out_unlock; 4689 } 4690 4691 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4692 if (!fs_info->balance_ctl) { 4693 ret = -ENOTCONN; 4694 goto out_bargs; 4695 } 4696 4697 bctl = fs_info->balance_ctl; 4698 spin_lock(&fs_info->balance_lock); 4699 bctl->flags |= BTRFS_BALANCE_RESUME; 4700 spin_unlock(&fs_info->balance_lock); 4701 4702 goto do_balance; 4703 } 4704 } else { 4705 bargs = NULL; 4706 } 4707 4708 if (fs_info->balance_ctl) { 4709 ret = -EINPROGRESS; 4710 goto out_bargs; 4711 } 4712 4713 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4714 if (!bctl) { 4715 ret = -ENOMEM; 4716 goto out_bargs; 4717 } 4718 4719 bctl->fs_info = fs_info; 4720 if (arg) { 4721 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4722 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4723 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4724 4725 bctl->flags = bargs->flags; 4726 } else { 4727 /* balance everything - no filters */ 4728 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4729 } 4730 4731 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4732 ret = -EINVAL; 4733 goto out_bctl; 4734 } 4735 4736 do_balance: 4737 /* 4738 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP 4739 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4740 * or, if restriper was paused all the way until unmount, in 4741 * free_fs_info. The flag is cleared in __cancel_balance. 4742 */ 4743 need_unlock = false; 4744 4745 ret = btrfs_balance(bctl, bargs); 4746 bctl = NULL; 4747 4748 if (arg) { 4749 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4750 ret = -EFAULT; 4751 } 4752 4753 out_bctl: 4754 kfree(bctl); 4755 out_bargs: 4756 kfree(bargs); 4757 out_unlock: 4758 mutex_unlock(&fs_info->balance_mutex); 4759 mutex_unlock(&fs_info->volume_mutex); 4760 if (need_unlock) 4761 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4762 out: 4763 mnt_drop_write_file(file); 4764 return ret; 4765 } 4766 4767 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4768 { 4769 if (!capable(CAP_SYS_ADMIN)) 4770 return -EPERM; 4771 4772 switch (cmd) { 4773 case BTRFS_BALANCE_CTL_PAUSE: 4774 return btrfs_pause_balance(fs_info); 4775 case BTRFS_BALANCE_CTL_CANCEL: 4776 return btrfs_cancel_balance(fs_info); 4777 } 4778 4779 return -EINVAL; 4780 } 4781 4782 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4783 void __user *arg) 4784 { 4785 struct btrfs_ioctl_balance_args *bargs; 4786 int ret = 0; 4787 4788 if (!capable(CAP_SYS_ADMIN)) 4789 return -EPERM; 4790 4791 mutex_lock(&fs_info->balance_mutex); 4792 if (!fs_info->balance_ctl) { 4793 ret = -ENOTCONN; 4794 goto out; 4795 } 4796 4797 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4798 if (!bargs) { 4799 ret = -ENOMEM; 4800 goto out; 4801 } 4802 4803 update_ioctl_balance_args(fs_info, 1, bargs); 4804 4805 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4806 ret = -EFAULT; 4807 4808 kfree(bargs); 4809 out: 4810 mutex_unlock(&fs_info->balance_mutex); 4811 return ret; 4812 } 4813 4814 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4815 { 4816 struct inode *inode = file_inode(file); 4817 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4818 struct btrfs_ioctl_quota_ctl_args *sa; 4819 struct btrfs_trans_handle *trans = NULL; 4820 int ret; 4821 int err; 4822 4823 if (!capable(CAP_SYS_ADMIN)) 4824 return -EPERM; 4825 4826 ret = mnt_want_write_file(file); 4827 if (ret) 4828 return ret; 4829 4830 sa = memdup_user(arg, sizeof(*sa)); 4831 if (IS_ERR(sa)) { 4832 ret = PTR_ERR(sa); 4833 goto drop_write; 4834 } 4835 4836 down_write(&fs_info->subvol_sem); 4837 trans = btrfs_start_transaction(fs_info->tree_root, 2); 4838 if (IS_ERR(trans)) { 4839 ret = PTR_ERR(trans); 4840 goto out; 4841 } 4842 4843 switch (sa->cmd) { 4844 case BTRFS_QUOTA_CTL_ENABLE: 4845 ret = btrfs_quota_enable(trans, fs_info); 4846 break; 4847 case BTRFS_QUOTA_CTL_DISABLE: 4848 ret = btrfs_quota_disable(trans, fs_info); 4849 break; 4850 default: 4851 ret = -EINVAL; 4852 break; 4853 } 4854 4855 err = btrfs_commit_transaction(trans); 4856 if (err && !ret) 4857 ret = err; 4858 out: 4859 kfree(sa); 4860 up_write(&fs_info->subvol_sem); 4861 drop_write: 4862 mnt_drop_write_file(file); 4863 return ret; 4864 } 4865 4866 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4867 { 4868 struct inode *inode = file_inode(file); 4869 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4870 struct btrfs_root *root = BTRFS_I(inode)->root; 4871 struct btrfs_ioctl_qgroup_assign_args *sa; 4872 struct btrfs_trans_handle *trans; 4873 int ret; 4874 int err; 4875 4876 if (!capable(CAP_SYS_ADMIN)) 4877 return -EPERM; 4878 4879 ret = mnt_want_write_file(file); 4880 if (ret) 4881 return ret; 4882 4883 sa = memdup_user(arg, sizeof(*sa)); 4884 if (IS_ERR(sa)) { 4885 ret = PTR_ERR(sa); 4886 goto drop_write; 4887 } 4888 4889 trans = btrfs_join_transaction(root); 4890 if (IS_ERR(trans)) { 4891 ret = PTR_ERR(trans); 4892 goto out; 4893 } 4894 4895 if (sa->assign) { 4896 ret = btrfs_add_qgroup_relation(trans, fs_info, 4897 sa->src, sa->dst); 4898 } else { 4899 ret = btrfs_del_qgroup_relation(trans, fs_info, 4900 sa->src, sa->dst); 4901 } 4902 4903 /* update qgroup status and info */ 4904 err = btrfs_run_qgroups(trans, fs_info); 4905 if (err < 0) 4906 btrfs_handle_fs_error(fs_info, err, 4907 "failed to update qgroup status and info"); 4908 err = btrfs_end_transaction(trans); 4909 if (err && !ret) 4910 ret = err; 4911 4912 out: 4913 kfree(sa); 4914 drop_write: 4915 mnt_drop_write_file(file); 4916 return ret; 4917 } 4918 4919 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4920 { 4921 struct inode *inode = file_inode(file); 4922 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4923 struct btrfs_root *root = BTRFS_I(inode)->root; 4924 struct btrfs_ioctl_qgroup_create_args *sa; 4925 struct btrfs_trans_handle *trans; 4926 int ret; 4927 int err; 4928 4929 if (!capable(CAP_SYS_ADMIN)) 4930 return -EPERM; 4931 4932 ret = mnt_want_write_file(file); 4933 if (ret) 4934 return ret; 4935 4936 sa = memdup_user(arg, sizeof(*sa)); 4937 if (IS_ERR(sa)) { 4938 ret = PTR_ERR(sa); 4939 goto drop_write; 4940 } 4941 4942 if (!sa->qgroupid) { 4943 ret = -EINVAL; 4944 goto out; 4945 } 4946 4947 trans = btrfs_join_transaction(root); 4948 if (IS_ERR(trans)) { 4949 ret = PTR_ERR(trans); 4950 goto out; 4951 } 4952 4953 if (sa->create) { 4954 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid); 4955 } else { 4956 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid); 4957 } 4958 4959 err = btrfs_end_transaction(trans); 4960 if (err && !ret) 4961 ret = err; 4962 4963 out: 4964 kfree(sa); 4965 drop_write: 4966 mnt_drop_write_file(file); 4967 return ret; 4968 } 4969 4970 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4971 { 4972 struct inode *inode = file_inode(file); 4973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4974 struct btrfs_root *root = BTRFS_I(inode)->root; 4975 struct btrfs_ioctl_qgroup_limit_args *sa; 4976 struct btrfs_trans_handle *trans; 4977 int ret; 4978 int err; 4979 u64 qgroupid; 4980 4981 if (!capable(CAP_SYS_ADMIN)) 4982 return -EPERM; 4983 4984 ret = mnt_want_write_file(file); 4985 if (ret) 4986 return ret; 4987 4988 sa = memdup_user(arg, sizeof(*sa)); 4989 if (IS_ERR(sa)) { 4990 ret = PTR_ERR(sa); 4991 goto drop_write; 4992 } 4993 4994 trans = btrfs_join_transaction(root); 4995 if (IS_ERR(trans)) { 4996 ret = PTR_ERR(trans); 4997 goto out; 4998 } 4999 5000 qgroupid = sa->qgroupid; 5001 if (!qgroupid) { 5002 /* take the current subvol as qgroup */ 5003 qgroupid = root->root_key.objectid; 5004 } 5005 5006 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim); 5007 5008 err = btrfs_end_transaction(trans); 5009 if (err && !ret) 5010 ret = err; 5011 5012 out: 5013 kfree(sa); 5014 drop_write: 5015 mnt_drop_write_file(file); 5016 return ret; 5017 } 5018 5019 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5020 { 5021 struct inode *inode = file_inode(file); 5022 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5023 struct btrfs_ioctl_quota_rescan_args *qsa; 5024 int ret; 5025 5026 if (!capable(CAP_SYS_ADMIN)) 5027 return -EPERM; 5028 5029 ret = mnt_want_write_file(file); 5030 if (ret) 5031 return ret; 5032 5033 qsa = memdup_user(arg, sizeof(*qsa)); 5034 if (IS_ERR(qsa)) { 5035 ret = PTR_ERR(qsa); 5036 goto drop_write; 5037 } 5038 5039 if (qsa->flags) { 5040 ret = -EINVAL; 5041 goto out; 5042 } 5043 5044 ret = btrfs_qgroup_rescan(fs_info); 5045 5046 out: 5047 kfree(qsa); 5048 drop_write: 5049 mnt_drop_write_file(file); 5050 return ret; 5051 } 5052 5053 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5054 { 5055 struct inode *inode = file_inode(file); 5056 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5057 struct btrfs_ioctl_quota_rescan_args *qsa; 5058 int ret = 0; 5059 5060 if (!capable(CAP_SYS_ADMIN)) 5061 return -EPERM; 5062 5063 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5064 if (!qsa) 5065 return -ENOMEM; 5066 5067 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5068 qsa->flags = 1; 5069 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 5070 } 5071 5072 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5073 ret = -EFAULT; 5074 5075 kfree(qsa); 5076 return ret; 5077 } 5078 5079 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5080 { 5081 struct inode *inode = file_inode(file); 5082 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5083 5084 if (!capable(CAP_SYS_ADMIN)) 5085 return -EPERM; 5086 5087 return btrfs_qgroup_wait_for_completion(fs_info, true); 5088 } 5089 5090 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5091 struct btrfs_ioctl_received_subvol_args *sa) 5092 { 5093 struct inode *inode = file_inode(file); 5094 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5095 struct btrfs_root *root = BTRFS_I(inode)->root; 5096 struct btrfs_root_item *root_item = &root->root_item; 5097 struct btrfs_trans_handle *trans; 5098 struct timespec ct = current_time(inode); 5099 int ret = 0; 5100 int received_uuid_changed; 5101 5102 if (!inode_owner_or_capable(inode)) 5103 return -EPERM; 5104 5105 ret = mnt_want_write_file(file); 5106 if (ret < 0) 5107 return ret; 5108 5109 down_write(&fs_info->subvol_sem); 5110 5111 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5112 ret = -EINVAL; 5113 goto out; 5114 } 5115 5116 if (btrfs_root_readonly(root)) { 5117 ret = -EROFS; 5118 goto out; 5119 } 5120 5121 /* 5122 * 1 - root item 5123 * 2 - uuid items (received uuid + subvol uuid) 5124 */ 5125 trans = btrfs_start_transaction(root, 3); 5126 if (IS_ERR(trans)) { 5127 ret = PTR_ERR(trans); 5128 trans = NULL; 5129 goto out; 5130 } 5131 5132 sa->rtransid = trans->transid; 5133 sa->rtime.sec = ct.tv_sec; 5134 sa->rtime.nsec = ct.tv_nsec; 5135 5136 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5137 BTRFS_UUID_SIZE); 5138 if (received_uuid_changed && 5139 !btrfs_is_empty_uuid(root_item->received_uuid)) 5140 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid, 5141 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5142 root->root_key.objectid); 5143 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5144 btrfs_set_root_stransid(root_item, sa->stransid); 5145 btrfs_set_root_rtransid(root_item, sa->rtransid); 5146 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5147 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5148 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5149 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5150 5151 ret = btrfs_update_root(trans, fs_info->tree_root, 5152 &root->root_key, &root->root_item); 5153 if (ret < 0) { 5154 btrfs_end_transaction(trans); 5155 goto out; 5156 } 5157 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5158 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid, 5159 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5160 root->root_key.objectid); 5161 if (ret < 0 && ret != -EEXIST) { 5162 btrfs_abort_transaction(trans, ret); 5163 goto out; 5164 } 5165 } 5166 ret = btrfs_commit_transaction(trans); 5167 if (ret < 0) { 5168 btrfs_abort_transaction(trans, ret); 5169 goto out; 5170 } 5171 5172 out: 5173 up_write(&fs_info->subvol_sem); 5174 mnt_drop_write_file(file); 5175 return ret; 5176 } 5177 5178 #ifdef CONFIG_64BIT 5179 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5180 void __user *arg) 5181 { 5182 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5183 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5184 int ret = 0; 5185 5186 args32 = memdup_user(arg, sizeof(*args32)); 5187 if (IS_ERR(args32)) 5188 return PTR_ERR(args32); 5189 5190 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5191 if (!args64) { 5192 ret = -ENOMEM; 5193 goto out; 5194 } 5195 5196 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5197 args64->stransid = args32->stransid; 5198 args64->rtransid = args32->rtransid; 5199 args64->stime.sec = args32->stime.sec; 5200 args64->stime.nsec = args32->stime.nsec; 5201 args64->rtime.sec = args32->rtime.sec; 5202 args64->rtime.nsec = args32->rtime.nsec; 5203 args64->flags = args32->flags; 5204 5205 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5206 if (ret) 5207 goto out; 5208 5209 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5210 args32->stransid = args64->stransid; 5211 args32->rtransid = args64->rtransid; 5212 args32->stime.sec = args64->stime.sec; 5213 args32->stime.nsec = args64->stime.nsec; 5214 args32->rtime.sec = args64->rtime.sec; 5215 args32->rtime.nsec = args64->rtime.nsec; 5216 args32->flags = args64->flags; 5217 5218 ret = copy_to_user(arg, args32, sizeof(*args32)); 5219 if (ret) 5220 ret = -EFAULT; 5221 5222 out: 5223 kfree(args32); 5224 kfree(args64); 5225 return ret; 5226 } 5227 #endif 5228 5229 static long btrfs_ioctl_set_received_subvol(struct file *file, 5230 void __user *arg) 5231 { 5232 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5233 int ret = 0; 5234 5235 sa = memdup_user(arg, sizeof(*sa)); 5236 if (IS_ERR(sa)) 5237 return PTR_ERR(sa); 5238 5239 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5240 5241 if (ret) 5242 goto out; 5243 5244 ret = copy_to_user(arg, sa, sizeof(*sa)); 5245 if (ret) 5246 ret = -EFAULT; 5247 5248 out: 5249 kfree(sa); 5250 return ret; 5251 } 5252 5253 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5254 { 5255 struct inode *inode = file_inode(file); 5256 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5257 size_t len; 5258 int ret; 5259 char label[BTRFS_LABEL_SIZE]; 5260 5261 spin_lock(&fs_info->super_lock); 5262 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5263 spin_unlock(&fs_info->super_lock); 5264 5265 len = strnlen(label, BTRFS_LABEL_SIZE); 5266 5267 if (len == BTRFS_LABEL_SIZE) { 5268 btrfs_warn(fs_info, 5269 "label is too long, return the first %zu bytes", 5270 --len); 5271 } 5272 5273 ret = copy_to_user(arg, label, len); 5274 5275 return ret ? -EFAULT : 0; 5276 } 5277 5278 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5279 { 5280 struct inode *inode = file_inode(file); 5281 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5282 struct btrfs_root *root = BTRFS_I(inode)->root; 5283 struct btrfs_super_block *super_block = fs_info->super_copy; 5284 struct btrfs_trans_handle *trans; 5285 char label[BTRFS_LABEL_SIZE]; 5286 int ret; 5287 5288 if (!capable(CAP_SYS_ADMIN)) 5289 return -EPERM; 5290 5291 if (copy_from_user(label, arg, sizeof(label))) 5292 return -EFAULT; 5293 5294 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5295 btrfs_err(fs_info, 5296 "unable to set label with more than %d bytes", 5297 BTRFS_LABEL_SIZE - 1); 5298 return -EINVAL; 5299 } 5300 5301 ret = mnt_want_write_file(file); 5302 if (ret) 5303 return ret; 5304 5305 trans = btrfs_start_transaction(root, 0); 5306 if (IS_ERR(trans)) { 5307 ret = PTR_ERR(trans); 5308 goto out_unlock; 5309 } 5310 5311 spin_lock(&fs_info->super_lock); 5312 strcpy(super_block->label, label); 5313 spin_unlock(&fs_info->super_lock); 5314 ret = btrfs_commit_transaction(trans); 5315 5316 out_unlock: 5317 mnt_drop_write_file(file); 5318 return ret; 5319 } 5320 5321 #define INIT_FEATURE_FLAGS(suffix) \ 5322 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5323 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5324 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5325 5326 int btrfs_ioctl_get_supported_features(void __user *arg) 5327 { 5328 static const struct btrfs_ioctl_feature_flags features[3] = { 5329 INIT_FEATURE_FLAGS(SUPP), 5330 INIT_FEATURE_FLAGS(SAFE_SET), 5331 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5332 }; 5333 5334 if (copy_to_user(arg, &features, sizeof(features))) 5335 return -EFAULT; 5336 5337 return 0; 5338 } 5339 5340 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5341 { 5342 struct inode *inode = file_inode(file); 5343 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5344 struct btrfs_super_block *super_block = fs_info->super_copy; 5345 struct btrfs_ioctl_feature_flags features; 5346 5347 features.compat_flags = btrfs_super_compat_flags(super_block); 5348 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5349 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5350 5351 if (copy_to_user(arg, &features, sizeof(features))) 5352 return -EFAULT; 5353 5354 return 0; 5355 } 5356 5357 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5358 enum btrfs_feature_set set, 5359 u64 change_mask, u64 flags, u64 supported_flags, 5360 u64 safe_set, u64 safe_clear) 5361 { 5362 const char *type = btrfs_feature_set_names[set]; 5363 char *names; 5364 u64 disallowed, unsupported; 5365 u64 set_mask = flags & change_mask; 5366 u64 clear_mask = ~flags & change_mask; 5367 5368 unsupported = set_mask & ~supported_flags; 5369 if (unsupported) { 5370 names = btrfs_printable_features(set, unsupported); 5371 if (names) { 5372 btrfs_warn(fs_info, 5373 "this kernel does not support the %s feature bit%s", 5374 names, strchr(names, ',') ? "s" : ""); 5375 kfree(names); 5376 } else 5377 btrfs_warn(fs_info, 5378 "this kernel does not support %s bits 0x%llx", 5379 type, unsupported); 5380 return -EOPNOTSUPP; 5381 } 5382 5383 disallowed = set_mask & ~safe_set; 5384 if (disallowed) { 5385 names = btrfs_printable_features(set, disallowed); 5386 if (names) { 5387 btrfs_warn(fs_info, 5388 "can't set the %s feature bit%s while mounted", 5389 names, strchr(names, ',') ? "s" : ""); 5390 kfree(names); 5391 } else 5392 btrfs_warn(fs_info, 5393 "can't set %s bits 0x%llx while mounted", 5394 type, disallowed); 5395 return -EPERM; 5396 } 5397 5398 disallowed = clear_mask & ~safe_clear; 5399 if (disallowed) { 5400 names = btrfs_printable_features(set, disallowed); 5401 if (names) { 5402 btrfs_warn(fs_info, 5403 "can't clear the %s feature bit%s while mounted", 5404 names, strchr(names, ',') ? "s" : ""); 5405 kfree(names); 5406 } else 5407 btrfs_warn(fs_info, 5408 "can't clear %s bits 0x%llx while mounted", 5409 type, disallowed); 5410 return -EPERM; 5411 } 5412 5413 return 0; 5414 } 5415 5416 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5417 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5418 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5419 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5420 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5421 5422 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5423 { 5424 struct inode *inode = file_inode(file); 5425 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5426 struct btrfs_root *root = BTRFS_I(inode)->root; 5427 struct btrfs_super_block *super_block = fs_info->super_copy; 5428 struct btrfs_ioctl_feature_flags flags[2]; 5429 struct btrfs_trans_handle *trans; 5430 u64 newflags; 5431 int ret; 5432 5433 if (!capable(CAP_SYS_ADMIN)) 5434 return -EPERM; 5435 5436 if (copy_from_user(flags, arg, sizeof(flags))) 5437 return -EFAULT; 5438 5439 /* Nothing to do */ 5440 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5441 !flags[0].incompat_flags) 5442 return 0; 5443 5444 ret = check_feature(fs_info, flags[0].compat_flags, 5445 flags[1].compat_flags, COMPAT); 5446 if (ret) 5447 return ret; 5448 5449 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5450 flags[1].compat_ro_flags, COMPAT_RO); 5451 if (ret) 5452 return ret; 5453 5454 ret = check_feature(fs_info, flags[0].incompat_flags, 5455 flags[1].incompat_flags, INCOMPAT); 5456 if (ret) 5457 return ret; 5458 5459 ret = mnt_want_write_file(file); 5460 if (ret) 5461 return ret; 5462 5463 trans = btrfs_start_transaction(root, 0); 5464 if (IS_ERR(trans)) { 5465 ret = PTR_ERR(trans); 5466 goto out_drop_write; 5467 } 5468 5469 spin_lock(&fs_info->super_lock); 5470 newflags = btrfs_super_compat_flags(super_block); 5471 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5472 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5473 btrfs_set_super_compat_flags(super_block, newflags); 5474 5475 newflags = btrfs_super_compat_ro_flags(super_block); 5476 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5477 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5478 btrfs_set_super_compat_ro_flags(super_block, newflags); 5479 5480 newflags = btrfs_super_incompat_flags(super_block); 5481 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5482 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5483 btrfs_set_super_incompat_flags(super_block, newflags); 5484 spin_unlock(&fs_info->super_lock); 5485 5486 ret = btrfs_commit_transaction(trans); 5487 out_drop_write: 5488 mnt_drop_write_file(file); 5489 5490 return ret; 5491 } 5492 5493 long btrfs_ioctl(struct file *file, unsigned int 5494 cmd, unsigned long arg) 5495 { 5496 struct inode *inode = file_inode(file); 5497 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5498 struct btrfs_root *root = BTRFS_I(inode)->root; 5499 void __user *argp = (void __user *)arg; 5500 5501 switch (cmd) { 5502 case FS_IOC_GETFLAGS: 5503 return btrfs_ioctl_getflags(file, argp); 5504 case FS_IOC_SETFLAGS: 5505 return btrfs_ioctl_setflags(file, argp); 5506 case FS_IOC_GETVERSION: 5507 return btrfs_ioctl_getversion(file, argp); 5508 case FITRIM: 5509 return btrfs_ioctl_fitrim(file, argp); 5510 case BTRFS_IOC_SNAP_CREATE: 5511 return btrfs_ioctl_snap_create(file, argp, 0); 5512 case BTRFS_IOC_SNAP_CREATE_V2: 5513 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5514 case BTRFS_IOC_SUBVOL_CREATE: 5515 return btrfs_ioctl_snap_create(file, argp, 1); 5516 case BTRFS_IOC_SUBVOL_CREATE_V2: 5517 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5518 case BTRFS_IOC_SNAP_DESTROY: 5519 return btrfs_ioctl_snap_destroy(file, argp); 5520 case BTRFS_IOC_SUBVOL_GETFLAGS: 5521 return btrfs_ioctl_subvol_getflags(file, argp); 5522 case BTRFS_IOC_SUBVOL_SETFLAGS: 5523 return btrfs_ioctl_subvol_setflags(file, argp); 5524 case BTRFS_IOC_DEFAULT_SUBVOL: 5525 return btrfs_ioctl_default_subvol(file, argp); 5526 case BTRFS_IOC_DEFRAG: 5527 return btrfs_ioctl_defrag(file, NULL); 5528 case BTRFS_IOC_DEFRAG_RANGE: 5529 return btrfs_ioctl_defrag(file, argp); 5530 case BTRFS_IOC_RESIZE: 5531 return btrfs_ioctl_resize(file, argp); 5532 case BTRFS_IOC_ADD_DEV: 5533 return btrfs_ioctl_add_dev(fs_info, argp); 5534 case BTRFS_IOC_RM_DEV: 5535 return btrfs_ioctl_rm_dev(file, argp); 5536 case BTRFS_IOC_RM_DEV_V2: 5537 return btrfs_ioctl_rm_dev_v2(file, argp); 5538 case BTRFS_IOC_FS_INFO: 5539 return btrfs_ioctl_fs_info(fs_info, argp); 5540 case BTRFS_IOC_DEV_INFO: 5541 return btrfs_ioctl_dev_info(fs_info, argp); 5542 case BTRFS_IOC_BALANCE: 5543 return btrfs_ioctl_balance(file, NULL); 5544 case BTRFS_IOC_TRANS_START: 5545 return btrfs_ioctl_trans_start(file); 5546 case BTRFS_IOC_TRANS_END: 5547 return btrfs_ioctl_trans_end(file); 5548 case BTRFS_IOC_TREE_SEARCH: 5549 return btrfs_ioctl_tree_search(file, argp); 5550 case BTRFS_IOC_TREE_SEARCH_V2: 5551 return btrfs_ioctl_tree_search_v2(file, argp); 5552 case BTRFS_IOC_INO_LOOKUP: 5553 return btrfs_ioctl_ino_lookup(file, argp); 5554 case BTRFS_IOC_INO_PATHS: 5555 return btrfs_ioctl_ino_to_path(root, argp); 5556 case BTRFS_IOC_LOGICAL_INO: 5557 return btrfs_ioctl_logical_to_ino(fs_info, argp); 5558 case BTRFS_IOC_SPACE_INFO: 5559 return btrfs_ioctl_space_info(fs_info, argp); 5560 case BTRFS_IOC_SYNC: { 5561 int ret; 5562 5563 ret = btrfs_start_delalloc_roots(fs_info, 0, -1); 5564 if (ret) 5565 return ret; 5566 ret = btrfs_sync_fs(inode->i_sb, 1); 5567 /* 5568 * The transaction thread may want to do more work, 5569 * namely it pokes the cleaner kthread that will start 5570 * processing uncleaned subvols. 5571 */ 5572 wake_up_process(fs_info->transaction_kthread); 5573 return ret; 5574 } 5575 case BTRFS_IOC_START_SYNC: 5576 return btrfs_ioctl_start_sync(root, argp); 5577 case BTRFS_IOC_WAIT_SYNC: 5578 return btrfs_ioctl_wait_sync(fs_info, argp); 5579 case BTRFS_IOC_SCRUB: 5580 return btrfs_ioctl_scrub(file, argp); 5581 case BTRFS_IOC_SCRUB_CANCEL: 5582 return btrfs_ioctl_scrub_cancel(fs_info); 5583 case BTRFS_IOC_SCRUB_PROGRESS: 5584 return btrfs_ioctl_scrub_progress(fs_info, argp); 5585 case BTRFS_IOC_BALANCE_V2: 5586 return btrfs_ioctl_balance(file, argp); 5587 case BTRFS_IOC_BALANCE_CTL: 5588 return btrfs_ioctl_balance_ctl(fs_info, arg); 5589 case BTRFS_IOC_BALANCE_PROGRESS: 5590 return btrfs_ioctl_balance_progress(fs_info, argp); 5591 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5592 return btrfs_ioctl_set_received_subvol(file, argp); 5593 #ifdef CONFIG_64BIT 5594 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5595 return btrfs_ioctl_set_received_subvol_32(file, argp); 5596 #endif 5597 case BTRFS_IOC_SEND: 5598 return btrfs_ioctl_send(file, argp); 5599 case BTRFS_IOC_GET_DEV_STATS: 5600 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5601 case BTRFS_IOC_QUOTA_CTL: 5602 return btrfs_ioctl_quota_ctl(file, argp); 5603 case BTRFS_IOC_QGROUP_ASSIGN: 5604 return btrfs_ioctl_qgroup_assign(file, argp); 5605 case BTRFS_IOC_QGROUP_CREATE: 5606 return btrfs_ioctl_qgroup_create(file, argp); 5607 case BTRFS_IOC_QGROUP_LIMIT: 5608 return btrfs_ioctl_qgroup_limit(file, argp); 5609 case BTRFS_IOC_QUOTA_RESCAN: 5610 return btrfs_ioctl_quota_rescan(file, argp); 5611 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5612 return btrfs_ioctl_quota_rescan_status(file, argp); 5613 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5614 return btrfs_ioctl_quota_rescan_wait(file, argp); 5615 case BTRFS_IOC_DEV_REPLACE: 5616 return btrfs_ioctl_dev_replace(fs_info, argp); 5617 case BTRFS_IOC_GET_FSLABEL: 5618 return btrfs_ioctl_get_fslabel(file, argp); 5619 case BTRFS_IOC_SET_FSLABEL: 5620 return btrfs_ioctl_set_fslabel(file, argp); 5621 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5622 return btrfs_ioctl_get_supported_features(argp); 5623 case BTRFS_IOC_GET_FEATURES: 5624 return btrfs_ioctl_get_features(file, argp); 5625 case BTRFS_IOC_SET_FEATURES: 5626 return btrfs_ioctl_set_features(file, argp); 5627 } 5628 5629 return -ENOTTY; 5630 } 5631 5632 #ifdef CONFIG_COMPAT 5633 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5634 { 5635 /* 5636 * These all access 32-bit values anyway so no further 5637 * handling is necessary. 5638 */ 5639 switch (cmd) { 5640 case FS_IOC32_GETFLAGS: 5641 cmd = FS_IOC_GETFLAGS; 5642 break; 5643 case FS_IOC32_SETFLAGS: 5644 cmd = FS_IOC_SETFLAGS; 5645 break; 5646 case FS_IOC32_GETVERSION: 5647 cmd = FS_IOC_GETVERSION; 5648 break; 5649 } 5650 5651 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5652 } 5653 #endif 5654