1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "export.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "rcu-string.h" 42 #include "send.h" 43 #include "dev-replace.h" 44 #include "props.h" 45 #include "sysfs.h" 46 #include "qgroup.h" 47 #include "tree-log.h" 48 #include "compression.h" 49 #include "space-info.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "subpage.h" 53 #include "fs.h" 54 #include "accessors.h" 55 #include "extent-tree.h" 56 #include "root-tree.h" 57 #include "defrag.h" 58 #include "dir-item.h" 59 #include "uuid-tree.h" 60 #include "ioctl.h" 61 #include "file.h" 62 #include "scrub.h" 63 #include "super.h" 64 65 #ifdef CONFIG_64BIT 66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 67 * structures are incorrect, as the timespec structure from userspace 68 * is 4 bytes too small. We define these alternatives here to teach 69 * the kernel about the 32-bit struct packing. 70 */ 71 struct btrfs_ioctl_timespec_32 { 72 __u64 sec; 73 __u32 nsec; 74 } __attribute__ ((__packed__)); 75 76 struct btrfs_ioctl_received_subvol_args_32 { 77 char uuid[BTRFS_UUID_SIZE]; /* in */ 78 __u64 stransid; /* in */ 79 __u64 rtransid; /* out */ 80 struct btrfs_ioctl_timespec_32 stime; /* in */ 81 struct btrfs_ioctl_timespec_32 rtime; /* out */ 82 __u64 flags; /* in */ 83 __u64 reserved[16]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 87 struct btrfs_ioctl_received_subvol_args_32) 88 #endif 89 90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 91 struct btrfs_ioctl_send_args_32 { 92 __s64 send_fd; /* in */ 93 __u64 clone_sources_count; /* in */ 94 compat_uptr_t clone_sources; /* in */ 95 __u64 parent_root; /* in */ 96 __u64 flags; /* in */ 97 __u32 version; /* in */ 98 __u8 reserved[28]; /* in */ 99 } __attribute__ ((__packed__)); 100 101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 102 struct btrfs_ioctl_send_args_32) 103 104 struct btrfs_ioctl_encoded_io_args_32 { 105 compat_uptr_t iov; 106 compat_ulong_t iovcnt; 107 __s64 offset; 108 __u64 flags; 109 __u64 len; 110 __u64 unencoded_len; 111 __u64 unencoded_offset; 112 __u32 compression; 113 __u32 encryption; 114 __u8 reserved[64]; 115 }; 116 117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 118 struct btrfs_ioctl_encoded_io_args_32) 119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 120 struct btrfs_ioctl_encoded_io_args_32) 121 #endif 122 123 /* Mask out flags that are inappropriate for the given type of inode. */ 124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 125 unsigned int flags) 126 { 127 if (S_ISDIR(inode->i_mode)) 128 return flags; 129 else if (S_ISREG(inode->i_mode)) 130 return flags & ~FS_DIRSYNC_FL; 131 else 132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 133 } 134 135 /* 136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 137 * ioctl. 138 */ 139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 140 { 141 unsigned int iflags = 0; 142 u32 flags = binode->flags; 143 u32 ro_flags = binode->ro_flags; 144 145 if (flags & BTRFS_INODE_SYNC) 146 iflags |= FS_SYNC_FL; 147 if (flags & BTRFS_INODE_IMMUTABLE) 148 iflags |= FS_IMMUTABLE_FL; 149 if (flags & BTRFS_INODE_APPEND) 150 iflags |= FS_APPEND_FL; 151 if (flags & BTRFS_INODE_NODUMP) 152 iflags |= FS_NODUMP_FL; 153 if (flags & BTRFS_INODE_NOATIME) 154 iflags |= FS_NOATIME_FL; 155 if (flags & BTRFS_INODE_DIRSYNC) 156 iflags |= FS_DIRSYNC_FL; 157 if (flags & BTRFS_INODE_NODATACOW) 158 iflags |= FS_NOCOW_FL; 159 if (ro_flags & BTRFS_INODE_RO_VERITY) 160 iflags |= FS_VERITY_FL; 161 162 if (flags & BTRFS_INODE_NOCOMPRESS) 163 iflags |= FS_NOCOMP_FL; 164 else if (flags & BTRFS_INODE_COMPRESS) 165 iflags |= FS_COMPR_FL; 166 167 return iflags; 168 } 169 170 /* 171 * Update inode->i_flags based on the btrfs internal flags. 172 */ 173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 174 { 175 struct btrfs_inode *binode = BTRFS_I(inode); 176 unsigned int new_fl = 0; 177 178 if (binode->flags & BTRFS_INODE_SYNC) 179 new_fl |= S_SYNC; 180 if (binode->flags & BTRFS_INODE_IMMUTABLE) 181 new_fl |= S_IMMUTABLE; 182 if (binode->flags & BTRFS_INODE_APPEND) 183 new_fl |= S_APPEND; 184 if (binode->flags & BTRFS_INODE_NOATIME) 185 new_fl |= S_NOATIME; 186 if (binode->flags & BTRFS_INODE_DIRSYNC) 187 new_fl |= S_DIRSYNC; 188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 189 new_fl |= S_VERITY; 190 191 set_mask_bits(&inode->i_flags, 192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 193 S_VERITY, new_fl); 194 } 195 196 /* 197 * Check if @flags are a supported and valid set of FS_*_FL flags and that 198 * the old and new flags are not conflicting 199 */ 200 static int check_fsflags(unsigned int old_flags, unsigned int flags) 201 { 202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 203 FS_NOATIME_FL | FS_NODUMP_FL | \ 204 FS_SYNC_FL | FS_DIRSYNC_FL | \ 205 FS_NOCOMP_FL | FS_COMPR_FL | 206 FS_NOCOW_FL)) 207 return -EOPNOTSUPP; 208 209 /* COMPR and NOCOMP on new/old are valid */ 210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 211 return -EINVAL; 212 213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 214 return -EINVAL; 215 216 /* NOCOW and compression options are mutually exclusive */ 217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 218 return -EINVAL; 219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 220 return -EINVAL; 221 222 return 0; 223 } 224 225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 226 unsigned int flags) 227 { 228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 229 return -EPERM; 230 231 return 0; 232 } 233 234 /* 235 * Set flags/xflags from the internal inode flags. The remaining items of 236 * fsxattr are zeroed. 237 */ 238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 239 { 240 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 241 242 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 243 return 0; 244 } 245 246 int btrfs_fileattr_set(struct mnt_idmap *idmap, 247 struct dentry *dentry, struct fileattr *fa) 248 { 249 struct inode *inode = d_inode(dentry); 250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 251 struct btrfs_inode *binode = BTRFS_I(inode); 252 struct btrfs_root *root = binode->root; 253 struct btrfs_trans_handle *trans; 254 unsigned int fsflags, old_fsflags; 255 int ret; 256 const char *comp = NULL; 257 u32 binode_flags; 258 259 if (btrfs_root_readonly(root)) 260 return -EROFS; 261 262 if (fileattr_has_fsx(fa)) 263 return -EOPNOTSUPP; 264 265 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 266 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 267 ret = check_fsflags(old_fsflags, fsflags); 268 if (ret) 269 return ret; 270 271 ret = check_fsflags_compatible(fs_info, fsflags); 272 if (ret) 273 return ret; 274 275 binode_flags = binode->flags; 276 if (fsflags & FS_SYNC_FL) 277 binode_flags |= BTRFS_INODE_SYNC; 278 else 279 binode_flags &= ~BTRFS_INODE_SYNC; 280 if (fsflags & FS_IMMUTABLE_FL) 281 binode_flags |= BTRFS_INODE_IMMUTABLE; 282 else 283 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 284 if (fsflags & FS_APPEND_FL) 285 binode_flags |= BTRFS_INODE_APPEND; 286 else 287 binode_flags &= ~BTRFS_INODE_APPEND; 288 if (fsflags & FS_NODUMP_FL) 289 binode_flags |= BTRFS_INODE_NODUMP; 290 else 291 binode_flags &= ~BTRFS_INODE_NODUMP; 292 if (fsflags & FS_NOATIME_FL) 293 binode_flags |= BTRFS_INODE_NOATIME; 294 else 295 binode_flags &= ~BTRFS_INODE_NOATIME; 296 297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 298 if (!fa->flags_valid) { 299 /* 1 item for the inode */ 300 trans = btrfs_start_transaction(root, 1); 301 if (IS_ERR(trans)) 302 return PTR_ERR(trans); 303 goto update_flags; 304 } 305 306 if (fsflags & FS_DIRSYNC_FL) 307 binode_flags |= BTRFS_INODE_DIRSYNC; 308 else 309 binode_flags &= ~BTRFS_INODE_DIRSYNC; 310 if (fsflags & FS_NOCOW_FL) { 311 if (S_ISREG(inode->i_mode)) { 312 /* 313 * It's safe to turn csums off here, no extents exist. 314 * Otherwise we want the flag to reflect the real COW 315 * status of the file and will not set it. 316 */ 317 if (inode->i_size == 0) 318 binode_flags |= BTRFS_INODE_NODATACOW | 319 BTRFS_INODE_NODATASUM; 320 } else { 321 binode_flags |= BTRFS_INODE_NODATACOW; 322 } 323 } else { 324 /* 325 * Revert back under same assumptions as above 326 */ 327 if (S_ISREG(inode->i_mode)) { 328 if (inode->i_size == 0) 329 binode_flags &= ~(BTRFS_INODE_NODATACOW | 330 BTRFS_INODE_NODATASUM); 331 } else { 332 binode_flags &= ~BTRFS_INODE_NODATACOW; 333 } 334 } 335 336 /* 337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 338 * flag may be changed automatically if compression code won't make 339 * things smaller. 340 */ 341 if (fsflags & FS_NOCOMP_FL) { 342 binode_flags &= ~BTRFS_INODE_COMPRESS; 343 binode_flags |= BTRFS_INODE_NOCOMPRESS; 344 } else if (fsflags & FS_COMPR_FL) { 345 346 if (IS_SWAPFILE(inode)) 347 return -ETXTBSY; 348 349 binode_flags |= BTRFS_INODE_COMPRESS; 350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 351 352 comp = btrfs_compress_type2str(fs_info->compress_type); 353 if (!comp || comp[0] == 0) 354 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 355 } else { 356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 357 } 358 359 /* 360 * 1 for inode item 361 * 2 for properties 362 */ 363 trans = btrfs_start_transaction(root, 3); 364 if (IS_ERR(trans)) 365 return PTR_ERR(trans); 366 367 if (comp) { 368 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 369 strlen(comp), 0); 370 if (ret) { 371 btrfs_abort_transaction(trans, ret); 372 goto out_end_trans; 373 } 374 } else { 375 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 376 0, 0); 377 if (ret && ret != -ENODATA) { 378 btrfs_abort_transaction(trans, ret); 379 goto out_end_trans; 380 } 381 } 382 383 update_flags: 384 binode->flags = binode_flags; 385 btrfs_sync_inode_flags_to_i_flags(inode); 386 inode_inc_iversion(inode); 387 inode_set_ctime_current(inode); 388 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 389 390 out_end_trans: 391 btrfs_end_transaction(trans); 392 return ret; 393 } 394 395 /* 396 * Start exclusive operation @type, return true on success 397 */ 398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 399 enum btrfs_exclusive_operation type) 400 { 401 bool ret = false; 402 403 spin_lock(&fs_info->super_lock); 404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 405 fs_info->exclusive_operation = type; 406 ret = true; 407 } 408 spin_unlock(&fs_info->super_lock); 409 410 return ret; 411 } 412 413 /* 414 * Conditionally allow to enter the exclusive operation in case it's compatible 415 * with the running one. This must be paired with btrfs_exclop_start_unlock and 416 * btrfs_exclop_finish. 417 * 418 * Compatibility: 419 * - the same type is already running 420 * - when trying to add a device and balance has been paused 421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 422 * must check the condition first that would allow none -> @type 423 */ 424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 425 enum btrfs_exclusive_operation type) 426 { 427 spin_lock(&fs_info->super_lock); 428 if (fs_info->exclusive_operation == type || 429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 430 type == BTRFS_EXCLOP_DEV_ADD)) 431 return true; 432 433 spin_unlock(&fs_info->super_lock); 434 return false; 435 } 436 437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 438 { 439 spin_unlock(&fs_info->super_lock); 440 } 441 442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 443 { 444 spin_lock(&fs_info->super_lock); 445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 446 spin_unlock(&fs_info->super_lock); 447 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 448 } 449 450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 451 enum btrfs_exclusive_operation op) 452 { 453 switch (op) { 454 case BTRFS_EXCLOP_BALANCE_PAUSED: 455 spin_lock(&fs_info->super_lock); 456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || 458 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE || 459 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 460 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 461 spin_unlock(&fs_info->super_lock); 462 break; 463 case BTRFS_EXCLOP_BALANCE: 464 spin_lock(&fs_info->super_lock); 465 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 466 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 467 spin_unlock(&fs_info->super_lock); 468 break; 469 default: 470 btrfs_warn(fs_info, 471 "invalid exclop balance operation %d requested", op); 472 } 473 } 474 475 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 476 { 477 return put_user(inode->i_generation, arg); 478 } 479 480 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 481 void __user *arg) 482 { 483 struct btrfs_device *device; 484 struct fstrim_range range; 485 u64 minlen = ULLONG_MAX; 486 u64 num_devices = 0; 487 int ret; 488 489 if (!capable(CAP_SYS_ADMIN)) 490 return -EPERM; 491 492 /* 493 * btrfs_trim_block_group() depends on space cache, which is not 494 * available in zoned filesystem. So, disallow fitrim on a zoned 495 * filesystem for now. 496 */ 497 if (btrfs_is_zoned(fs_info)) 498 return -EOPNOTSUPP; 499 500 /* 501 * If the fs is mounted with nologreplay, which requires it to be 502 * mounted in RO mode as well, we can not allow discard on free space 503 * inside block groups, because log trees refer to extents that are not 504 * pinned in a block group's free space cache (pinning the extents is 505 * precisely the first phase of replaying a log tree). 506 */ 507 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 508 return -EROFS; 509 510 rcu_read_lock(); 511 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 512 dev_list) { 513 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 514 continue; 515 num_devices++; 516 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 517 minlen); 518 } 519 rcu_read_unlock(); 520 521 if (!num_devices) 522 return -EOPNOTSUPP; 523 if (copy_from_user(&range, arg, sizeof(range))) 524 return -EFAULT; 525 526 /* 527 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 528 * block group is in the logical address space, which can be any 529 * sectorsize aligned bytenr in the range [0, U64_MAX]. 530 */ 531 if (range.len < fs_info->sb->s_blocksize) 532 return -EINVAL; 533 534 range.minlen = max(range.minlen, minlen); 535 ret = btrfs_trim_fs(fs_info, &range); 536 if (ret < 0) 537 return ret; 538 539 if (copy_to_user(arg, &range, sizeof(range))) 540 return -EFAULT; 541 542 return 0; 543 } 544 545 int __pure btrfs_is_empty_uuid(u8 *uuid) 546 { 547 int i; 548 549 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 550 if (uuid[i]) 551 return 0; 552 } 553 return 1; 554 } 555 556 /* 557 * Calculate the number of transaction items to reserve for creating a subvolume 558 * or snapshot, not including the inode, directory entries, or parent directory. 559 */ 560 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) 561 { 562 /* 563 * 1 to add root block 564 * 1 to add root item 565 * 1 to add root ref 566 * 1 to add root backref 567 * 1 to add UUID item 568 * 1 to add qgroup info 569 * 1 to add qgroup limit 570 * 571 * Ideally the last two would only be accounted if qgroups are enabled, 572 * but that can change between now and the time we would insert them. 573 */ 574 unsigned int num_items = 7; 575 576 if (inherit) { 577 /* 2 to add qgroup relations for each inherited qgroup */ 578 num_items += 2 * inherit->num_qgroups; 579 } 580 return num_items; 581 } 582 583 static noinline int create_subvol(struct mnt_idmap *idmap, 584 struct inode *dir, struct dentry *dentry, 585 struct btrfs_qgroup_inherit *inherit) 586 { 587 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 588 struct btrfs_trans_handle *trans; 589 struct btrfs_key key; 590 struct btrfs_root_item *root_item; 591 struct btrfs_inode_item *inode_item; 592 struct extent_buffer *leaf; 593 struct btrfs_root *root = BTRFS_I(dir)->root; 594 struct btrfs_root *new_root; 595 struct btrfs_block_rsv block_rsv; 596 struct timespec64 cur_time = current_time(dir); 597 struct btrfs_new_inode_args new_inode_args = { 598 .dir = dir, 599 .dentry = dentry, 600 .subvol = true, 601 }; 602 unsigned int trans_num_items; 603 int ret; 604 dev_t anon_dev; 605 u64 objectid; 606 607 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 608 if (!root_item) 609 return -ENOMEM; 610 611 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 612 if (ret) 613 goto out_root_item; 614 615 /* 616 * Don't create subvolume whose level is not zero. Or qgroup will be 617 * screwed up since it assumes subvolume qgroup's level to be 0. 618 */ 619 if (btrfs_qgroup_level(objectid)) { 620 ret = -ENOSPC; 621 goto out_root_item; 622 } 623 624 ret = get_anon_bdev(&anon_dev); 625 if (ret < 0) 626 goto out_root_item; 627 628 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir); 629 if (!new_inode_args.inode) { 630 ret = -ENOMEM; 631 goto out_anon_dev; 632 } 633 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 634 if (ret) 635 goto out_inode; 636 trans_num_items += create_subvol_num_items(inherit); 637 638 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 639 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 640 trans_num_items, false); 641 if (ret) 642 goto out_new_inode_args; 643 644 trans = btrfs_start_transaction(root, 0); 645 if (IS_ERR(trans)) { 646 ret = PTR_ERR(trans); 647 btrfs_subvolume_release_metadata(root, &block_rsv); 648 goto out_new_inode_args; 649 } 650 trans->block_rsv = &block_rsv; 651 trans->bytes_reserved = block_rsv.size; 652 /* Tree log can't currently deal with an inode which is a new root. */ 653 btrfs_set_log_full_commit(trans); 654 655 ret = btrfs_qgroup_inherit(trans, 0, objectid, root->root_key.objectid, inherit); 656 if (ret) 657 goto out; 658 659 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 660 0, BTRFS_NESTING_NORMAL); 661 if (IS_ERR(leaf)) { 662 ret = PTR_ERR(leaf); 663 goto out; 664 } 665 666 btrfs_mark_buffer_dirty(trans, leaf); 667 668 inode_item = &root_item->inode; 669 btrfs_set_stack_inode_generation(inode_item, 1); 670 btrfs_set_stack_inode_size(inode_item, 3); 671 btrfs_set_stack_inode_nlink(inode_item, 1); 672 btrfs_set_stack_inode_nbytes(inode_item, 673 fs_info->nodesize); 674 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 675 676 btrfs_set_root_flags(root_item, 0); 677 btrfs_set_root_limit(root_item, 0); 678 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 679 680 btrfs_set_root_bytenr(root_item, leaf->start); 681 btrfs_set_root_generation(root_item, trans->transid); 682 btrfs_set_root_level(root_item, 0); 683 btrfs_set_root_refs(root_item, 1); 684 btrfs_set_root_used(root_item, leaf->len); 685 btrfs_set_root_last_snapshot(root_item, 0); 686 687 btrfs_set_root_generation_v2(root_item, 688 btrfs_root_generation(root_item)); 689 generate_random_guid(root_item->uuid); 690 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 691 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 692 root_item->ctime = root_item->otime; 693 btrfs_set_root_ctransid(root_item, trans->transid); 694 btrfs_set_root_otransid(root_item, trans->transid); 695 696 btrfs_tree_unlock(leaf); 697 698 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 699 700 key.objectid = objectid; 701 key.offset = 0; 702 key.type = BTRFS_ROOT_ITEM_KEY; 703 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 704 root_item); 705 if (ret) { 706 /* 707 * Since we don't abort the transaction in this case, free the 708 * tree block so that we don't leak space and leave the 709 * filesystem in an inconsistent state (an extent item in the 710 * extent tree with a backreference for a root that does not 711 * exists). 712 */ 713 btrfs_tree_lock(leaf); 714 btrfs_clear_buffer_dirty(trans, leaf); 715 btrfs_tree_unlock(leaf); 716 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 717 free_extent_buffer(leaf); 718 goto out; 719 } 720 721 free_extent_buffer(leaf); 722 leaf = NULL; 723 724 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 725 if (IS_ERR(new_root)) { 726 ret = PTR_ERR(new_root); 727 btrfs_abort_transaction(trans, ret); 728 goto out; 729 } 730 /* anon_dev is owned by new_root now. */ 731 anon_dev = 0; 732 BTRFS_I(new_inode_args.inode)->root = new_root; 733 /* ... and new_root is owned by new_inode_args.inode now. */ 734 735 ret = btrfs_record_root_in_trans(trans, new_root); 736 if (ret) { 737 btrfs_abort_transaction(trans, ret); 738 goto out; 739 } 740 741 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 742 BTRFS_UUID_KEY_SUBVOL, objectid); 743 if (ret) { 744 btrfs_abort_transaction(trans, ret); 745 goto out; 746 } 747 748 ret = btrfs_create_new_inode(trans, &new_inode_args); 749 if (ret) { 750 btrfs_abort_transaction(trans, ret); 751 goto out; 752 } 753 754 d_instantiate_new(dentry, new_inode_args.inode); 755 new_inode_args.inode = NULL; 756 757 out: 758 trans->block_rsv = NULL; 759 trans->bytes_reserved = 0; 760 btrfs_subvolume_release_metadata(root, &block_rsv); 761 762 btrfs_end_transaction(trans); 763 out_new_inode_args: 764 btrfs_new_inode_args_destroy(&new_inode_args); 765 out_inode: 766 iput(new_inode_args.inode); 767 out_anon_dev: 768 if (anon_dev) 769 free_anon_bdev(anon_dev); 770 out_root_item: 771 kfree(root_item); 772 return ret; 773 } 774 775 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 776 struct dentry *dentry, bool readonly, 777 struct btrfs_qgroup_inherit *inherit) 778 { 779 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 780 struct inode *inode; 781 struct btrfs_pending_snapshot *pending_snapshot; 782 unsigned int trans_num_items; 783 struct btrfs_trans_handle *trans; 784 int ret; 785 786 /* We do not support snapshotting right now. */ 787 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 788 btrfs_warn(fs_info, 789 "extent tree v2 doesn't support snapshotting yet"); 790 return -EOPNOTSUPP; 791 } 792 793 if (btrfs_root_refs(&root->root_item) == 0) 794 return -ENOENT; 795 796 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 797 return -EINVAL; 798 799 if (atomic_read(&root->nr_swapfiles)) { 800 btrfs_warn(fs_info, 801 "cannot snapshot subvolume with active swapfile"); 802 return -ETXTBSY; 803 } 804 805 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 806 if (!pending_snapshot) 807 return -ENOMEM; 808 809 ret = get_anon_bdev(&pending_snapshot->anon_dev); 810 if (ret < 0) 811 goto free_pending; 812 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 813 GFP_KERNEL); 814 pending_snapshot->path = btrfs_alloc_path(); 815 if (!pending_snapshot->root_item || !pending_snapshot->path) { 816 ret = -ENOMEM; 817 goto free_pending; 818 } 819 820 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 821 BTRFS_BLOCK_RSV_TEMP); 822 /* 823 * 1 to add dir item 824 * 1 to add dir index 825 * 1 to update parent inode item 826 */ 827 trans_num_items = create_subvol_num_items(inherit) + 3; 828 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 829 &pending_snapshot->block_rsv, 830 trans_num_items, false); 831 if (ret) 832 goto free_pending; 833 834 pending_snapshot->dentry = dentry; 835 pending_snapshot->root = root; 836 pending_snapshot->readonly = readonly; 837 pending_snapshot->dir = dir; 838 pending_snapshot->inherit = inherit; 839 840 trans = btrfs_start_transaction(root, 0); 841 if (IS_ERR(trans)) { 842 ret = PTR_ERR(trans); 843 goto fail; 844 } 845 846 trans->pending_snapshot = pending_snapshot; 847 848 ret = btrfs_commit_transaction(trans); 849 if (ret) 850 goto fail; 851 852 ret = pending_snapshot->error; 853 if (ret) 854 goto fail; 855 856 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 857 if (ret) 858 goto fail; 859 860 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 861 if (IS_ERR(inode)) { 862 ret = PTR_ERR(inode); 863 goto fail; 864 } 865 866 d_instantiate(dentry, inode); 867 ret = 0; 868 pending_snapshot->anon_dev = 0; 869 fail: 870 /* Prevent double freeing of anon_dev */ 871 if (ret && pending_snapshot->snap) 872 pending_snapshot->snap->anon_dev = 0; 873 btrfs_put_root(pending_snapshot->snap); 874 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 875 free_pending: 876 if (pending_snapshot->anon_dev) 877 free_anon_bdev(pending_snapshot->anon_dev); 878 kfree(pending_snapshot->root_item); 879 btrfs_free_path(pending_snapshot->path); 880 kfree(pending_snapshot); 881 882 return ret; 883 } 884 885 /* copy of may_delete in fs/namei.c() 886 * Check whether we can remove a link victim from directory dir, check 887 * whether the type of victim is right. 888 * 1. We can't do it if dir is read-only (done in permission()) 889 * 2. We should have write and exec permissions on dir 890 * 3. We can't remove anything from append-only dir 891 * 4. We can't do anything with immutable dir (done in permission()) 892 * 5. If the sticky bit on dir is set we should either 893 * a. be owner of dir, or 894 * b. be owner of victim, or 895 * c. have CAP_FOWNER capability 896 * 6. If the victim is append-only or immutable we can't do anything with 897 * links pointing to it. 898 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 899 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 900 * 9. We can't remove a root or mountpoint. 901 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 902 * nfs_async_unlink(). 903 */ 904 905 static int btrfs_may_delete(struct mnt_idmap *idmap, 906 struct inode *dir, struct dentry *victim, int isdir) 907 { 908 int error; 909 910 if (d_really_is_negative(victim)) 911 return -ENOENT; 912 913 BUG_ON(d_inode(victim->d_parent) != dir); 914 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 915 916 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 917 if (error) 918 return error; 919 if (IS_APPEND(dir)) 920 return -EPERM; 921 if (check_sticky(idmap, dir, d_inode(victim)) || 922 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 923 IS_SWAPFILE(d_inode(victim))) 924 return -EPERM; 925 if (isdir) { 926 if (!d_is_dir(victim)) 927 return -ENOTDIR; 928 if (IS_ROOT(victim)) 929 return -EBUSY; 930 } else if (d_is_dir(victim)) 931 return -EISDIR; 932 if (IS_DEADDIR(dir)) 933 return -ENOENT; 934 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 935 return -EBUSY; 936 return 0; 937 } 938 939 /* copy of may_create in fs/namei.c() */ 940 static inline int btrfs_may_create(struct mnt_idmap *idmap, 941 struct inode *dir, struct dentry *child) 942 { 943 if (d_really_is_positive(child)) 944 return -EEXIST; 945 if (IS_DEADDIR(dir)) 946 return -ENOENT; 947 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 948 return -EOVERFLOW; 949 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 950 } 951 952 /* 953 * Create a new subvolume below @parent. This is largely modeled after 954 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 955 * inside this filesystem so it's quite a bit simpler. 956 */ 957 static noinline int btrfs_mksubvol(const struct path *parent, 958 struct mnt_idmap *idmap, 959 const char *name, int namelen, 960 struct btrfs_root *snap_src, 961 bool readonly, 962 struct btrfs_qgroup_inherit *inherit) 963 { 964 struct inode *dir = d_inode(parent->dentry); 965 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 966 struct dentry *dentry; 967 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen); 968 int error; 969 970 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 971 if (error == -EINTR) 972 return error; 973 974 dentry = lookup_one(idmap, name, parent->dentry, namelen); 975 error = PTR_ERR(dentry); 976 if (IS_ERR(dentry)) 977 goto out_unlock; 978 979 error = btrfs_may_create(idmap, dir, dentry); 980 if (error) 981 goto out_dput; 982 983 /* 984 * even if this name doesn't exist, we may get hash collisions. 985 * check for them now when we can safely fail 986 */ 987 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 988 dir->i_ino, &name_str); 989 if (error) 990 goto out_dput; 991 992 down_read(&fs_info->subvol_sem); 993 994 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 995 goto out_up_read; 996 997 if (snap_src) 998 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 999 else 1000 error = create_subvol(idmap, dir, dentry, inherit); 1001 1002 if (!error) 1003 fsnotify_mkdir(dir, dentry); 1004 out_up_read: 1005 up_read(&fs_info->subvol_sem); 1006 out_dput: 1007 dput(dentry); 1008 out_unlock: 1009 btrfs_inode_unlock(BTRFS_I(dir), 0); 1010 return error; 1011 } 1012 1013 static noinline int btrfs_mksnapshot(const struct path *parent, 1014 struct mnt_idmap *idmap, 1015 const char *name, int namelen, 1016 struct btrfs_root *root, 1017 bool readonly, 1018 struct btrfs_qgroup_inherit *inherit) 1019 { 1020 int ret; 1021 bool snapshot_force_cow = false; 1022 1023 /* 1024 * Force new buffered writes to reserve space even when NOCOW is 1025 * possible. This is to avoid later writeback (running dealloc) to 1026 * fallback to COW mode and unexpectedly fail with ENOSPC. 1027 */ 1028 btrfs_drew_read_lock(&root->snapshot_lock); 1029 1030 ret = btrfs_start_delalloc_snapshot(root, false); 1031 if (ret) 1032 goto out; 1033 1034 /* 1035 * All previous writes have started writeback in NOCOW mode, so now 1036 * we force future writes to fallback to COW mode during snapshot 1037 * creation. 1038 */ 1039 atomic_inc(&root->snapshot_force_cow); 1040 snapshot_force_cow = true; 1041 1042 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1043 1044 ret = btrfs_mksubvol(parent, idmap, name, namelen, 1045 root, readonly, inherit); 1046 out: 1047 if (snapshot_force_cow) 1048 atomic_dec(&root->snapshot_force_cow); 1049 btrfs_drew_read_unlock(&root->snapshot_lock); 1050 return ret; 1051 } 1052 1053 /* 1054 * Try to start exclusive operation @type or cancel it if it's running. 1055 * 1056 * Return: 1057 * 0 - normal mode, newly claimed op started 1058 * >0 - normal mode, something else is running, 1059 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1060 * ECANCELED - cancel mode, successful cancel 1061 * ENOTCONN - cancel mode, operation not running anymore 1062 */ 1063 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1064 enum btrfs_exclusive_operation type, bool cancel) 1065 { 1066 if (!cancel) { 1067 /* Start normal op */ 1068 if (!btrfs_exclop_start(fs_info, type)) 1069 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1070 /* Exclusive operation is now claimed */ 1071 return 0; 1072 } 1073 1074 /* Cancel running op */ 1075 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1076 /* 1077 * This blocks any exclop finish from setting it to NONE, so we 1078 * request cancellation. Either it runs and we will wait for it, 1079 * or it has finished and no waiting will happen. 1080 */ 1081 atomic_inc(&fs_info->reloc_cancel_req); 1082 btrfs_exclop_start_unlock(fs_info); 1083 1084 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1085 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1086 TASK_INTERRUPTIBLE); 1087 1088 return -ECANCELED; 1089 } 1090 1091 /* Something else is running or none */ 1092 return -ENOTCONN; 1093 } 1094 1095 static noinline int btrfs_ioctl_resize(struct file *file, 1096 void __user *arg) 1097 { 1098 BTRFS_DEV_LOOKUP_ARGS(args); 1099 struct inode *inode = file_inode(file); 1100 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1101 u64 new_size; 1102 u64 old_size; 1103 u64 devid = 1; 1104 struct btrfs_root *root = BTRFS_I(inode)->root; 1105 struct btrfs_ioctl_vol_args *vol_args; 1106 struct btrfs_trans_handle *trans; 1107 struct btrfs_device *device = NULL; 1108 char *sizestr; 1109 char *retptr; 1110 char *devstr = NULL; 1111 int ret = 0; 1112 int mod = 0; 1113 bool cancel; 1114 1115 if (!capable(CAP_SYS_ADMIN)) 1116 return -EPERM; 1117 1118 ret = mnt_want_write_file(file); 1119 if (ret) 1120 return ret; 1121 1122 /* 1123 * Read the arguments before checking exclusivity to be able to 1124 * distinguish regular resize and cancel 1125 */ 1126 vol_args = memdup_user(arg, sizeof(*vol_args)); 1127 if (IS_ERR(vol_args)) { 1128 ret = PTR_ERR(vol_args); 1129 goto out_drop; 1130 } 1131 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1132 sizestr = vol_args->name; 1133 cancel = (strcmp("cancel", sizestr) == 0); 1134 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1135 if (ret) 1136 goto out_free; 1137 /* Exclusive operation is now claimed */ 1138 1139 devstr = strchr(sizestr, ':'); 1140 if (devstr) { 1141 sizestr = devstr + 1; 1142 *devstr = '\0'; 1143 devstr = vol_args->name; 1144 ret = kstrtoull(devstr, 10, &devid); 1145 if (ret) 1146 goto out_finish; 1147 if (!devid) { 1148 ret = -EINVAL; 1149 goto out_finish; 1150 } 1151 btrfs_info(fs_info, "resizing devid %llu", devid); 1152 } 1153 1154 args.devid = devid; 1155 device = btrfs_find_device(fs_info->fs_devices, &args); 1156 if (!device) { 1157 btrfs_info(fs_info, "resizer unable to find device %llu", 1158 devid); 1159 ret = -ENODEV; 1160 goto out_finish; 1161 } 1162 1163 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1164 btrfs_info(fs_info, 1165 "resizer unable to apply on readonly device %llu", 1166 devid); 1167 ret = -EPERM; 1168 goto out_finish; 1169 } 1170 1171 if (!strcmp(sizestr, "max")) 1172 new_size = bdev_nr_bytes(device->bdev); 1173 else { 1174 if (sizestr[0] == '-') { 1175 mod = -1; 1176 sizestr++; 1177 } else if (sizestr[0] == '+') { 1178 mod = 1; 1179 sizestr++; 1180 } 1181 new_size = memparse(sizestr, &retptr); 1182 if (*retptr != '\0' || new_size == 0) { 1183 ret = -EINVAL; 1184 goto out_finish; 1185 } 1186 } 1187 1188 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1189 ret = -EPERM; 1190 goto out_finish; 1191 } 1192 1193 old_size = btrfs_device_get_total_bytes(device); 1194 1195 if (mod < 0) { 1196 if (new_size > old_size) { 1197 ret = -EINVAL; 1198 goto out_finish; 1199 } 1200 new_size = old_size - new_size; 1201 } else if (mod > 0) { 1202 if (new_size > ULLONG_MAX - old_size) { 1203 ret = -ERANGE; 1204 goto out_finish; 1205 } 1206 new_size = old_size + new_size; 1207 } 1208 1209 if (new_size < SZ_256M) { 1210 ret = -EINVAL; 1211 goto out_finish; 1212 } 1213 if (new_size > bdev_nr_bytes(device->bdev)) { 1214 ret = -EFBIG; 1215 goto out_finish; 1216 } 1217 1218 new_size = round_down(new_size, fs_info->sectorsize); 1219 1220 if (new_size > old_size) { 1221 trans = btrfs_start_transaction(root, 0); 1222 if (IS_ERR(trans)) { 1223 ret = PTR_ERR(trans); 1224 goto out_finish; 1225 } 1226 ret = btrfs_grow_device(trans, device, new_size); 1227 btrfs_commit_transaction(trans); 1228 } else if (new_size < old_size) { 1229 ret = btrfs_shrink_device(device, new_size); 1230 } /* equal, nothing need to do */ 1231 1232 if (ret == 0 && new_size != old_size) 1233 btrfs_info_in_rcu(fs_info, 1234 "resize device %s (devid %llu) from %llu to %llu", 1235 btrfs_dev_name(device), device->devid, 1236 old_size, new_size); 1237 out_finish: 1238 btrfs_exclop_finish(fs_info); 1239 out_free: 1240 kfree(vol_args); 1241 out_drop: 1242 mnt_drop_write_file(file); 1243 return ret; 1244 } 1245 1246 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1247 struct mnt_idmap *idmap, 1248 const char *name, unsigned long fd, int subvol, 1249 bool readonly, 1250 struct btrfs_qgroup_inherit *inherit) 1251 { 1252 int namelen; 1253 int ret = 0; 1254 1255 if (!S_ISDIR(file_inode(file)->i_mode)) 1256 return -ENOTDIR; 1257 1258 ret = mnt_want_write_file(file); 1259 if (ret) 1260 goto out; 1261 1262 namelen = strlen(name); 1263 if (strchr(name, '/')) { 1264 ret = -EINVAL; 1265 goto out_drop_write; 1266 } 1267 1268 if (name[0] == '.' && 1269 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1270 ret = -EEXIST; 1271 goto out_drop_write; 1272 } 1273 1274 if (subvol) { 1275 ret = btrfs_mksubvol(&file->f_path, idmap, name, 1276 namelen, NULL, readonly, inherit); 1277 } else { 1278 struct fd src = fdget(fd); 1279 struct inode *src_inode; 1280 if (!src.file) { 1281 ret = -EINVAL; 1282 goto out_drop_write; 1283 } 1284 1285 src_inode = file_inode(src.file); 1286 if (src_inode->i_sb != file_inode(file)->i_sb) { 1287 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1288 "Snapshot src from another FS"); 1289 ret = -EXDEV; 1290 } else if (!inode_owner_or_capable(idmap, src_inode)) { 1291 /* 1292 * Subvolume creation is not restricted, but snapshots 1293 * are limited to own subvolumes only 1294 */ 1295 ret = -EPERM; 1296 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1297 /* 1298 * Snapshots must be made with the src_inode referring 1299 * to the subvolume inode, otherwise the permission 1300 * checking above is useless because we may have 1301 * permission on a lower directory but not the subvol 1302 * itself. 1303 */ 1304 ret = -EINVAL; 1305 } else { 1306 ret = btrfs_mksnapshot(&file->f_path, idmap, 1307 name, namelen, 1308 BTRFS_I(src_inode)->root, 1309 readonly, inherit); 1310 } 1311 fdput(src); 1312 } 1313 out_drop_write: 1314 mnt_drop_write_file(file); 1315 out: 1316 return ret; 1317 } 1318 1319 static noinline int btrfs_ioctl_snap_create(struct file *file, 1320 void __user *arg, int subvol) 1321 { 1322 struct btrfs_ioctl_vol_args *vol_args; 1323 int ret; 1324 1325 if (!S_ISDIR(file_inode(file)->i_mode)) 1326 return -ENOTDIR; 1327 1328 vol_args = memdup_user(arg, sizeof(*vol_args)); 1329 if (IS_ERR(vol_args)) 1330 return PTR_ERR(vol_args); 1331 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1332 1333 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1334 vol_args->name, vol_args->fd, subvol, 1335 false, NULL); 1336 1337 kfree(vol_args); 1338 return ret; 1339 } 1340 1341 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1342 void __user *arg, int subvol) 1343 { 1344 struct btrfs_ioctl_vol_args_v2 *vol_args; 1345 int ret; 1346 bool readonly = false; 1347 struct btrfs_qgroup_inherit *inherit = NULL; 1348 1349 if (!S_ISDIR(file_inode(file)->i_mode)) 1350 return -ENOTDIR; 1351 1352 vol_args = memdup_user(arg, sizeof(*vol_args)); 1353 if (IS_ERR(vol_args)) 1354 return PTR_ERR(vol_args); 1355 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1356 1357 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1358 ret = -EOPNOTSUPP; 1359 goto free_args; 1360 } 1361 1362 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1363 readonly = true; 1364 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1365 u64 nums; 1366 1367 if (vol_args->size < sizeof(*inherit) || 1368 vol_args->size > PAGE_SIZE) { 1369 ret = -EINVAL; 1370 goto free_args; 1371 } 1372 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1373 if (IS_ERR(inherit)) { 1374 ret = PTR_ERR(inherit); 1375 goto free_args; 1376 } 1377 1378 if (inherit->num_qgroups > PAGE_SIZE || 1379 inherit->num_ref_copies > PAGE_SIZE || 1380 inherit->num_excl_copies > PAGE_SIZE) { 1381 ret = -EINVAL; 1382 goto free_inherit; 1383 } 1384 1385 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1386 2 * inherit->num_excl_copies; 1387 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1388 ret = -EINVAL; 1389 goto free_inherit; 1390 } 1391 } 1392 1393 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1394 vol_args->name, vol_args->fd, subvol, 1395 readonly, inherit); 1396 if (ret) 1397 goto free_inherit; 1398 free_inherit: 1399 kfree(inherit); 1400 free_args: 1401 kfree(vol_args); 1402 return ret; 1403 } 1404 1405 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 1406 void __user *arg) 1407 { 1408 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1409 struct btrfs_root *root = BTRFS_I(inode)->root; 1410 int ret = 0; 1411 u64 flags = 0; 1412 1413 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1414 return -EINVAL; 1415 1416 down_read(&fs_info->subvol_sem); 1417 if (btrfs_root_readonly(root)) 1418 flags |= BTRFS_SUBVOL_RDONLY; 1419 up_read(&fs_info->subvol_sem); 1420 1421 if (copy_to_user(arg, &flags, sizeof(flags))) 1422 ret = -EFAULT; 1423 1424 return ret; 1425 } 1426 1427 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1428 void __user *arg) 1429 { 1430 struct inode *inode = file_inode(file); 1431 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1432 struct btrfs_root *root = BTRFS_I(inode)->root; 1433 struct btrfs_trans_handle *trans; 1434 u64 root_flags; 1435 u64 flags; 1436 int ret = 0; 1437 1438 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 1439 return -EPERM; 1440 1441 ret = mnt_want_write_file(file); 1442 if (ret) 1443 goto out; 1444 1445 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1446 ret = -EINVAL; 1447 goto out_drop_write; 1448 } 1449 1450 if (copy_from_user(&flags, arg, sizeof(flags))) { 1451 ret = -EFAULT; 1452 goto out_drop_write; 1453 } 1454 1455 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1456 ret = -EOPNOTSUPP; 1457 goto out_drop_write; 1458 } 1459 1460 down_write(&fs_info->subvol_sem); 1461 1462 /* nothing to do */ 1463 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1464 goto out_drop_sem; 1465 1466 root_flags = btrfs_root_flags(&root->root_item); 1467 if (flags & BTRFS_SUBVOL_RDONLY) { 1468 btrfs_set_root_flags(&root->root_item, 1469 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1470 } else { 1471 /* 1472 * Block RO -> RW transition if this subvolume is involved in 1473 * send 1474 */ 1475 spin_lock(&root->root_item_lock); 1476 if (root->send_in_progress == 0) { 1477 btrfs_set_root_flags(&root->root_item, 1478 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1479 spin_unlock(&root->root_item_lock); 1480 } else { 1481 spin_unlock(&root->root_item_lock); 1482 btrfs_warn(fs_info, 1483 "Attempt to set subvolume %llu read-write during send", 1484 root->root_key.objectid); 1485 ret = -EPERM; 1486 goto out_drop_sem; 1487 } 1488 } 1489 1490 trans = btrfs_start_transaction(root, 1); 1491 if (IS_ERR(trans)) { 1492 ret = PTR_ERR(trans); 1493 goto out_reset; 1494 } 1495 1496 ret = btrfs_update_root(trans, fs_info->tree_root, 1497 &root->root_key, &root->root_item); 1498 if (ret < 0) { 1499 btrfs_end_transaction(trans); 1500 goto out_reset; 1501 } 1502 1503 ret = btrfs_commit_transaction(trans); 1504 1505 out_reset: 1506 if (ret) 1507 btrfs_set_root_flags(&root->root_item, root_flags); 1508 out_drop_sem: 1509 up_write(&fs_info->subvol_sem); 1510 out_drop_write: 1511 mnt_drop_write_file(file); 1512 out: 1513 return ret; 1514 } 1515 1516 static noinline int key_in_sk(struct btrfs_key *key, 1517 struct btrfs_ioctl_search_key *sk) 1518 { 1519 struct btrfs_key test; 1520 int ret; 1521 1522 test.objectid = sk->min_objectid; 1523 test.type = sk->min_type; 1524 test.offset = sk->min_offset; 1525 1526 ret = btrfs_comp_cpu_keys(key, &test); 1527 if (ret < 0) 1528 return 0; 1529 1530 test.objectid = sk->max_objectid; 1531 test.type = sk->max_type; 1532 test.offset = sk->max_offset; 1533 1534 ret = btrfs_comp_cpu_keys(key, &test); 1535 if (ret > 0) 1536 return 0; 1537 return 1; 1538 } 1539 1540 static noinline int copy_to_sk(struct btrfs_path *path, 1541 struct btrfs_key *key, 1542 struct btrfs_ioctl_search_key *sk, 1543 u64 *buf_size, 1544 char __user *ubuf, 1545 unsigned long *sk_offset, 1546 int *num_found) 1547 { 1548 u64 found_transid; 1549 struct extent_buffer *leaf; 1550 struct btrfs_ioctl_search_header sh; 1551 struct btrfs_key test; 1552 unsigned long item_off; 1553 unsigned long item_len; 1554 int nritems; 1555 int i; 1556 int slot; 1557 int ret = 0; 1558 1559 leaf = path->nodes[0]; 1560 slot = path->slots[0]; 1561 nritems = btrfs_header_nritems(leaf); 1562 1563 if (btrfs_header_generation(leaf) > sk->max_transid) { 1564 i = nritems; 1565 goto advance_key; 1566 } 1567 found_transid = btrfs_header_generation(leaf); 1568 1569 for (i = slot; i < nritems; i++) { 1570 item_off = btrfs_item_ptr_offset(leaf, i); 1571 item_len = btrfs_item_size(leaf, i); 1572 1573 btrfs_item_key_to_cpu(leaf, key, i); 1574 if (!key_in_sk(key, sk)) 1575 continue; 1576 1577 if (sizeof(sh) + item_len > *buf_size) { 1578 if (*num_found) { 1579 ret = 1; 1580 goto out; 1581 } 1582 1583 /* 1584 * return one empty item back for v1, which does not 1585 * handle -EOVERFLOW 1586 */ 1587 1588 *buf_size = sizeof(sh) + item_len; 1589 item_len = 0; 1590 ret = -EOVERFLOW; 1591 } 1592 1593 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1594 ret = 1; 1595 goto out; 1596 } 1597 1598 sh.objectid = key->objectid; 1599 sh.offset = key->offset; 1600 sh.type = key->type; 1601 sh.len = item_len; 1602 sh.transid = found_transid; 1603 1604 /* 1605 * Copy search result header. If we fault then loop again so we 1606 * can fault in the pages and -EFAULT there if there's a 1607 * problem. Otherwise we'll fault and then copy the buffer in 1608 * properly this next time through 1609 */ 1610 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 1611 ret = 0; 1612 goto out; 1613 } 1614 1615 *sk_offset += sizeof(sh); 1616 1617 if (item_len) { 1618 char __user *up = ubuf + *sk_offset; 1619 /* 1620 * Copy the item, same behavior as above, but reset the 1621 * * sk_offset so we copy the full thing again. 1622 */ 1623 if (read_extent_buffer_to_user_nofault(leaf, up, 1624 item_off, item_len)) { 1625 ret = 0; 1626 *sk_offset -= sizeof(sh); 1627 goto out; 1628 } 1629 1630 *sk_offset += item_len; 1631 } 1632 (*num_found)++; 1633 1634 if (ret) /* -EOVERFLOW from above */ 1635 goto out; 1636 1637 if (*num_found >= sk->nr_items) { 1638 ret = 1; 1639 goto out; 1640 } 1641 } 1642 advance_key: 1643 ret = 0; 1644 test.objectid = sk->max_objectid; 1645 test.type = sk->max_type; 1646 test.offset = sk->max_offset; 1647 if (btrfs_comp_cpu_keys(key, &test) >= 0) 1648 ret = 1; 1649 else if (key->offset < (u64)-1) 1650 key->offset++; 1651 else if (key->type < (u8)-1) { 1652 key->offset = 0; 1653 key->type++; 1654 } else if (key->objectid < (u64)-1) { 1655 key->offset = 0; 1656 key->type = 0; 1657 key->objectid++; 1658 } else 1659 ret = 1; 1660 out: 1661 /* 1662 * 0: all items from this leaf copied, continue with next 1663 * 1: * more items can be copied, but unused buffer is too small 1664 * * all items were found 1665 * Either way, it will stops the loop which iterates to the next 1666 * leaf 1667 * -EOVERFLOW: item was to large for buffer 1668 * -EFAULT: could not copy extent buffer back to userspace 1669 */ 1670 return ret; 1671 } 1672 1673 static noinline int search_ioctl(struct inode *inode, 1674 struct btrfs_ioctl_search_key *sk, 1675 u64 *buf_size, 1676 char __user *ubuf) 1677 { 1678 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 1679 struct btrfs_root *root; 1680 struct btrfs_key key; 1681 struct btrfs_path *path; 1682 int ret; 1683 int num_found = 0; 1684 unsigned long sk_offset = 0; 1685 1686 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 1687 *buf_size = sizeof(struct btrfs_ioctl_search_header); 1688 return -EOVERFLOW; 1689 } 1690 1691 path = btrfs_alloc_path(); 1692 if (!path) 1693 return -ENOMEM; 1694 1695 if (sk->tree_id == 0) { 1696 /* search the root of the inode that was passed */ 1697 root = btrfs_grab_root(BTRFS_I(inode)->root); 1698 } else { 1699 root = btrfs_get_fs_root(info, sk->tree_id, true); 1700 if (IS_ERR(root)) { 1701 btrfs_free_path(path); 1702 return PTR_ERR(root); 1703 } 1704 } 1705 1706 key.objectid = sk->min_objectid; 1707 key.type = sk->min_type; 1708 key.offset = sk->min_offset; 1709 1710 while (1) { 1711 ret = -EFAULT; 1712 /* 1713 * Ensure that the whole user buffer is faulted in at sub-page 1714 * granularity, otherwise the loop may live-lock. 1715 */ 1716 if (fault_in_subpage_writeable(ubuf + sk_offset, 1717 *buf_size - sk_offset)) 1718 break; 1719 1720 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1721 if (ret != 0) { 1722 if (ret > 0) 1723 ret = 0; 1724 goto err; 1725 } 1726 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 1727 &sk_offset, &num_found); 1728 btrfs_release_path(path); 1729 if (ret) 1730 break; 1731 1732 } 1733 if (ret > 0) 1734 ret = 0; 1735 err: 1736 sk->nr_items = num_found; 1737 btrfs_put_root(root); 1738 btrfs_free_path(path); 1739 return ret; 1740 } 1741 1742 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 1743 void __user *argp) 1744 { 1745 struct btrfs_ioctl_search_args __user *uargs = argp; 1746 struct btrfs_ioctl_search_key sk; 1747 int ret; 1748 u64 buf_size; 1749 1750 if (!capable(CAP_SYS_ADMIN)) 1751 return -EPERM; 1752 1753 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 1754 return -EFAULT; 1755 1756 buf_size = sizeof(uargs->buf); 1757 1758 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 1759 1760 /* 1761 * In the origin implementation an overflow is handled by returning a 1762 * search header with a len of zero, so reset ret. 1763 */ 1764 if (ret == -EOVERFLOW) 1765 ret = 0; 1766 1767 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 1768 ret = -EFAULT; 1769 return ret; 1770 } 1771 1772 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 1773 void __user *argp) 1774 { 1775 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 1776 struct btrfs_ioctl_search_args_v2 args; 1777 int ret; 1778 u64 buf_size; 1779 const u64 buf_limit = SZ_16M; 1780 1781 if (!capable(CAP_SYS_ADMIN)) 1782 return -EPERM; 1783 1784 /* copy search header and buffer size */ 1785 if (copy_from_user(&args, uarg, sizeof(args))) 1786 return -EFAULT; 1787 1788 buf_size = args.buf_size; 1789 1790 /* limit result size to 16MB */ 1791 if (buf_size > buf_limit) 1792 buf_size = buf_limit; 1793 1794 ret = search_ioctl(inode, &args.key, &buf_size, 1795 (char __user *)(&uarg->buf[0])); 1796 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 1797 ret = -EFAULT; 1798 else if (ret == -EOVERFLOW && 1799 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 1800 ret = -EFAULT; 1801 1802 return ret; 1803 } 1804 1805 /* 1806 * Search INODE_REFs to identify path name of 'dirid' directory 1807 * in a 'tree_id' tree. and sets path name to 'name'. 1808 */ 1809 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1810 u64 tree_id, u64 dirid, char *name) 1811 { 1812 struct btrfs_root *root; 1813 struct btrfs_key key; 1814 char *ptr; 1815 int ret = -1; 1816 int slot; 1817 int len; 1818 int total_len = 0; 1819 struct btrfs_inode_ref *iref; 1820 struct extent_buffer *l; 1821 struct btrfs_path *path; 1822 1823 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1824 name[0]='\0'; 1825 return 0; 1826 } 1827 1828 path = btrfs_alloc_path(); 1829 if (!path) 1830 return -ENOMEM; 1831 1832 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 1833 1834 root = btrfs_get_fs_root(info, tree_id, true); 1835 if (IS_ERR(root)) { 1836 ret = PTR_ERR(root); 1837 root = NULL; 1838 goto out; 1839 } 1840 1841 key.objectid = dirid; 1842 key.type = BTRFS_INODE_REF_KEY; 1843 key.offset = (u64)-1; 1844 1845 while (1) { 1846 ret = btrfs_search_backwards(root, &key, path); 1847 if (ret < 0) 1848 goto out; 1849 else if (ret > 0) { 1850 ret = -ENOENT; 1851 goto out; 1852 } 1853 1854 l = path->nodes[0]; 1855 slot = path->slots[0]; 1856 1857 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1858 len = btrfs_inode_ref_name_len(l, iref); 1859 ptr -= len + 1; 1860 total_len += len + 1; 1861 if (ptr < name) { 1862 ret = -ENAMETOOLONG; 1863 goto out; 1864 } 1865 1866 *(ptr + len) = '/'; 1867 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 1868 1869 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1870 break; 1871 1872 btrfs_release_path(path); 1873 key.objectid = key.offset; 1874 key.offset = (u64)-1; 1875 dirid = key.objectid; 1876 } 1877 memmove(name, ptr, total_len); 1878 name[total_len] = '\0'; 1879 ret = 0; 1880 out: 1881 btrfs_put_root(root); 1882 btrfs_free_path(path); 1883 return ret; 1884 } 1885 1886 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap, 1887 struct inode *inode, 1888 struct btrfs_ioctl_ino_lookup_user_args *args) 1889 { 1890 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1891 struct super_block *sb = inode->i_sb; 1892 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 1893 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 1894 u64 dirid = args->dirid; 1895 unsigned long item_off; 1896 unsigned long item_len; 1897 struct btrfs_inode_ref *iref; 1898 struct btrfs_root_ref *rref; 1899 struct btrfs_root *root = NULL; 1900 struct btrfs_path *path; 1901 struct btrfs_key key, key2; 1902 struct extent_buffer *leaf; 1903 struct inode *temp_inode; 1904 char *ptr; 1905 int slot; 1906 int len; 1907 int total_len = 0; 1908 int ret; 1909 1910 path = btrfs_alloc_path(); 1911 if (!path) 1912 return -ENOMEM; 1913 1914 /* 1915 * If the bottom subvolume does not exist directly under upper_limit, 1916 * construct the path in from the bottom up. 1917 */ 1918 if (dirid != upper_limit.objectid) { 1919 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 1920 1921 root = btrfs_get_fs_root(fs_info, treeid, true); 1922 if (IS_ERR(root)) { 1923 ret = PTR_ERR(root); 1924 goto out; 1925 } 1926 1927 key.objectid = dirid; 1928 key.type = BTRFS_INODE_REF_KEY; 1929 key.offset = (u64)-1; 1930 while (1) { 1931 ret = btrfs_search_backwards(root, &key, path); 1932 if (ret < 0) 1933 goto out_put; 1934 else if (ret > 0) { 1935 ret = -ENOENT; 1936 goto out_put; 1937 } 1938 1939 leaf = path->nodes[0]; 1940 slot = path->slots[0]; 1941 1942 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 1943 len = btrfs_inode_ref_name_len(leaf, iref); 1944 ptr -= len + 1; 1945 total_len += len + 1; 1946 if (ptr < args->path) { 1947 ret = -ENAMETOOLONG; 1948 goto out_put; 1949 } 1950 1951 *(ptr + len) = '/'; 1952 read_extent_buffer(leaf, ptr, 1953 (unsigned long)(iref + 1), len); 1954 1955 /* Check the read+exec permission of this directory */ 1956 ret = btrfs_previous_item(root, path, dirid, 1957 BTRFS_INODE_ITEM_KEY); 1958 if (ret < 0) { 1959 goto out_put; 1960 } else if (ret > 0) { 1961 ret = -ENOENT; 1962 goto out_put; 1963 } 1964 1965 leaf = path->nodes[0]; 1966 slot = path->slots[0]; 1967 btrfs_item_key_to_cpu(leaf, &key2, slot); 1968 if (key2.objectid != dirid) { 1969 ret = -ENOENT; 1970 goto out_put; 1971 } 1972 1973 /* 1974 * We don't need the path anymore, so release it and 1975 * avoid deadlocks and lockdep warnings in case 1976 * btrfs_iget() needs to lookup the inode from its root 1977 * btree and lock the same leaf. 1978 */ 1979 btrfs_release_path(path); 1980 temp_inode = btrfs_iget(sb, key2.objectid, root); 1981 if (IS_ERR(temp_inode)) { 1982 ret = PTR_ERR(temp_inode); 1983 goto out_put; 1984 } 1985 ret = inode_permission(idmap, temp_inode, 1986 MAY_READ | MAY_EXEC); 1987 iput(temp_inode); 1988 if (ret) { 1989 ret = -EACCES; 1990 goto out_put; 1991 } 1992 1993 if (key.offset == upper_limit.objectid) 1994 break; 1995 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 1996 ret = -EACCES; 1997 goto out_put; 1998 } 1999 2000 key.objectid = key.offset; 2001 key.offset = (u64)-1; 2002 dirid = key.objectid; 2003 } 2004 2005 memmove(args->path, ptr, total_len); 2006 args->path[total_len] = '\0'; 2007 btrfs_put_root(root); 2008 root = NULL; 2009 btrfs_release_path(path); 2010 } 2011 2012 /* Get the bottom subvolume's name from ROOT_REF */ 2013 key.objectid = treeid; 2014 key.type = BTRFS_ROOT_REF_KEY; 2015 key.offset = args->treeid; 2016 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2017 if (ret < 0) { 2018 goto out; 2019 } else if (ret > 0) { 2020 ret = -ENOENT; 2021 goto out; 2022 } 2023 2024 leaf = path->nodes[0]; 2025 slot = path->slots[0]; 2026 btrfs_item_key_to_cpu(leaf, &key, slot); 2027 2028 item_off = btrfs_item_ptr_offset(leaf, slot); 2029 item_len = btrfs_item_size(leaf, slot); 2030 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2031 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2032 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2033 ret = -EINVAL; 2034 goto out; 2035 } 2036 2037 /* Copy subvolume's name */ 2038 item_off += sizeof(struct btrfs_root_ref); 2039 item_len -= sizeof(struct btrfs_root_ref); 2040 read_extent_buffer(leaf, args->name, item_off, item_len); 2041 args->name[item_len] = 0; 2042 2043 out_put: 2044 btrfs_put_root(root); 2045 out: 2046 btrfs_free_path(path); 2047 return ret; 2048 } 2049 2050 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2051 void __user *argp) 2052 { 2053 struct btrfs_ioctl_ino_lookup_args *args; 2054 int ret = 0; 2055 2056 args = memdup_user(argp, sizeof(*args)); 2057 if (IS_ERR(args)) 2058 return PTR_ERR(args); 2059 2060 /* 2061 * Unprivileged query to obtain the containing subvolume root id. The 2062 * path is reset so it's consistent with btrfs_search_path_in_tree. 2063 */ 2064 if (args->treeid == 0) 2065 args->treeid = root->root_key.objectid; 2066 2067 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2068 args->name[0] = 0; 2069 goto out; 2070 } 2071 2072 if (!capable(CAP_SYS_ADMIN)) { 2073 ret = -EPERM; 2074 goto out; 2075 } 2076 2077 ret = btrfs_search_path_in_tree(root->fs_info, 2078 args->treeid, args->objectid, 2079 args->name); 2080 2081 out: 2082 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2083 ret = -EFAULT; 2084 2085 kfree(args); 2086 return ret; 2087 } 2088 2089 /* 2090 * Version of ino_lookup ioctl (unprivileged) 2091 * 2092 * The main differences from ino_lookup ioctl are: 2093 * 2094 * 1. Read + Exec permission will be checked using inode_permission() during 2095 * path construction. -EACCES will be returned in case of failure. 2096 * 2. Path construction will be stopped at the inode number which corresponds 2097 * to the fd with which this ioctl is called. If constructed path does not 2098 * exist under fd's inode, -EACCES will be returned. 2099 * 3. The name of bottom subvolume is also searched and filled. 2100 */ 2101 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2102 { 2103 struct btrfs_ioctl_ino_lookup_user_args *args; 2104 struct inode *inode; 2105 int ret; 2106 2107 args = memdup_user(argp, sizeof(*args)); 2108 if (IS_ERR(args)) 2109 return PTR_ERR(args); 2110 2111 inode = file_inode(file); 2112 2113 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2114 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2115 /* 2116 * The subvolume does not exist under fd with which this is 2117 * called 2118 */ 2119 kfree(args); 2120 return -EACCES; 2121 } 2122 2123 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args); 2124 2125 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2126 ret = -EFAULT; 2127 2128 kfree(args); 2129 return ret; 2130 } 2131 2132 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2133 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2134 { 2135 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2136 struct btrfs_fs_info *fs_info; 2137 struct btrfs_root *root; 2138 struct btrfs_path *path; 2139 struct btrfs_key key; 2140 struct btrfs_root_item *root_item; 2141 struct btrfs_root_ref *rref; 2142 struct extent_buffer *leaf; 2143 unsigned long item_off; 2144 unsigned long item_len; 2145 int slot; 2146 int ret = 0; 2147 2148 path = btrfs_alloc_path(); 2149 if (!path) 2150 return -ENOMEM; 2151 2152 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2153 if (!subvol_info) { 2154 btrfs_free_path(path); 2155 return -ENOMEM; 2156 } 2157 2158 fs_info = BTRFS_I(inode)->root->fs_info; 2159 2160 /* Get root_item of inode's subvolume */ 2161 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2162 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2163 if (IS_ERR(root)) { 2164 ret = PTR_ERR(root); 2165 goto out_free; 2166 } 2167 root_item = &root->root_item; 2168 2169 subvol_info->treeid = key.objectid; 2170 2171 subvol_info->generation = btrfs_root_generation(root_item); 2172 subvol_info->flags = btrfs_root_flags(root_item); 2173 2174 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2175 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2176 BTRFS_UUID_SIZE); 2177 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2178 BTRFS_UUID_SIZE); 2179 2180 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2181 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2182 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2183 2184 subvol_info->otransid = btrfs_root_otransid(root_item); 2185 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2186 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2187 2188 subvol_info->stransid = btrfs_root_stransid(root_item); 2189 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2190 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2191 2192 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2193 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2194 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2195 2196 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2197 /* Search root tree for ROOT_BACKREF of this subvolume */ 2198 key.type = BTRFS_ROOT_BACKREF_KEY; 2199 key.offset = 0; 2200 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2201 if (ret < 0) { 2202 goto out; 2203 } else if (path->slots[0] >= 2204 btrfs_header_nritems(path->nodes[0])) { 2205 ret = btrfs_next_leaf(fs_info->tree_root, path); 2206 if (ret < 0) { 2207 goto out; 2208 } else if (ret > 0) { 2209 ret = -EUCLEAN; 2210 goto out; 2211 } 2212 } 2213 2214 leaf = path->nodes[0]; 2215 slot = path->slots[0]; 2216 btrfs_item_key_to_cpu(leaf, &key, slot); 2217 if (key.objectid == subvol_info->treeid && 2218 key.type == BTRFS_ROOT_BACKREF_KEY) { 2219 subvol_info->parent_id = key.offset; 2220 2221 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2222 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2223 2224 item_off = btrfs_item_ptr_offset(leaf, slot) 2225 + sizeof(struct btrfs_root_ref); 2226 item_len = btrfs_item_size(leaf, slot) 2227 - sizeof(struct btrfs_root_ref); 2228 read_extent_buffer(leaf, subvol_info->name, 2229 item_off, item_len); 2230 } else { 2231 ret = -ENOENT; 2232 goto out; 2233 } 2234 } 2235 2236 btrfs_free_path(path); 2237 path = NULL; 2238 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2239 ret = -EFAULT; 2240 2241 out: 2242 btrfs_put_root(root); 2243 out_free: 2244 btrfs_free_path(path); 2245 kfree(subvol_info); 2246 return ret; 2247 } 2248 2249 /* 2250 * Return ROOT_REF information of the subvolume containing this inode 2251 * except the subvolume name. 2252 */ 2253 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 2254 void __user *argp) 2255 { 2256 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2257 struct btrfs_root_ref *rref; 2258 struct btrfs_path *path; 2259 struct btrfs_key key; 2260 struct extent_buffer *leaf; 2261 u64 objectid; 2262 int slot; 2263 int ret; 2264 u8 found; 2265 2266 path = btrfs_alloc_path(); 2267 if (!path) 2268 return -ENOMEM; 2269 2270 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2271 if (IS_ERR(rootrefs)) { 2272 btrfs_free_path(path); 2273 return PTR_ERR(rootrefs); 2274 } 2275 2276 objectid = root->root_key.objectid; 2277 key.objectid = objectid; 2278 key.type = BTRFS_ROOT_REF_KEY; 2279 key.offset = rootrefs->min_treeid; 2280 found = 0; 2281 2282 root = root->fs_info->tree_root; 2283 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2284 if (ret < 0) { 2285 goto out; 2286 } else if (path->slots[0] >= 2287 btrfs_header_nritems(path->nodes[0])) { 2288 ret = btrfs_next_leaf(root, path); 2289 if (ret < 0) { 2290 goto out; 2291 } else if (ret > 0) { 2292 ret = -EUCLEAN; 2293 goto out; 2294 } 2295 } 2296 while (1) { 2297 leaf = path->nodes[0]; 2298 slot = path->slots[0]; 2299 2300 btrfs_item_key_to_cpu(leaf, &key, slot); 2301 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2302 ret = 0; 2303 goto out; 2304 } 2305 2306 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2307 ret = -EOVERFLOW; 2308 goto out; 2309 } 2310 2311 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2312 rootrefs->rootref[found].treeid = key.offset; 2313 rootrefs->rootref[found].dirid = 2314 btrfs_root_ref_dirid(leaf, rref); 2315 found++; 2316 2317 ret = btrfs_next_item(root, path); 2318 if (ret < 0) { 2319 goto out; 2320 } else if (ret > 0) { 2321 ret = -EUCLEAN; 2322 goto out; 2323 } 2324 } 2325 2326 out: 2327 btrfs_free_path(path); 2328 2329 if (!ret || ret == -EOVERFLOW) { 2330 rootrefs->num_items = found; 2331 /* update min_treeid for next search */ 2332 if (found) 2333 rootrefs->min_treeid = 2334 rootrefs->rootref[found - 1].treeid + 1; 2335 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2336 ret = -EFAULT; 2337 } 2338 2339 kfree(rootrefs); 2340 2341 return ret; 2342 } 2343 2344 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2345 void __user *arg, 2346 bool destroy_v2) 2347 { 2348 struct dentry *parent = file->f_path.dentry; 2349 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2350 struct dentry *dentry; 2351 struct inode *dir = d_inode(parent); 2352 struct inode *inode; 2353 struct btrfs_root *root = BTRFS_I(dir)->root; 2354 struct btrfs_root *dest = NULL; 2355 struct btrfs_ioctl_vol_args *vol_args = NULL; 2356 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2357 struct mnt_idmap *idmap = file_mnt_idmap(file); 2358 char *subvol_name, *subvol_name_ptr = NULL; 2359 int subvol_namelen; 2360 int err = 0; 2361 bool destroy_parent = false; 2362 2363 /* We don't support snapshots with extent tree v2 yet. */ 2364 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2365 btrfs_err(fs_info, 2366 "extent tree v2 doesn't support snapshot deletion yet"); 2367 return -EOPNOTSUPP; 2368 } 2369 2370 if (destroy_v2) { 2371 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2372 if (IS_ERR(vol_args2)) 2373 return PTR_ERR(vol_args2); 2374 2375 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2376 err = -EOPNOTSUPP; 2377 goto out; 2378 } 2379 2380 /* 2381 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2382 * name, same as v1 currently does. 2383 */ 2384 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2385 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2386 subvol_name = vol_args2->name; 2387 2388 err = mnt_want_write_file(file); 2389 if (err) 2390 goto out; 2391 } else { 2392 struct inode *old_dir; 2393 2394 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2395 err = -EINVAL; 2396 goto out; 2397 } 2398 2399 err = mnt_want_write_file(file); 2400 if (err) 2401 goto out; 2402 2403 dentry = btrfs_get_dentry(fs_info->sb, 2404 BTRFS_FIRST_FREE_OBJECTID, 2405 vol_args2->subvolid, 0); 2406 if (IS_ERR(dentry)) { 2407 err = PTR_ERR(dentry); 2408 goto out_drop_write; 2409 } 2410 2411 /* 2412 * Change the default parent since the subvolume being 2413 * deleted can be outside of the current mount point. 2414 */ 2415 parent = btrfs_get_parent(dentry); 2416 2417 /* 2418 * At this point dentry->d_name can point to '/' if the 2419 * subvolume we want to destroy is outsite of the 2420 * current mount point, so we need to release the 2421 * current dentry and execute the lookup to return a new 2422 * one with ->d_name pointing to the 2423 * <mount point>/subvol_name. 2424 */ 2425 dput(dentry); 2426 if (IS_ERR(parent)) { 2427 err = PTR_ERR(parent); 2428 goto out_drop_write; 2429 } 2430 old_dir = dir; 2431 dir = d_inode(parent); 2432 2433 /* 2434 * If v2 was used with SPEC_BY_ID, a new parent was 2435 * allocated since the subvolume can be outside of the 2436 * current mount point. Later on we need to release this 2437 * new parent dentry. 2438 */ 2439 destroy_parent = true; 2440 2441 /* 2442 * On idmapped mounts, deletion via subvolid is 2443 * restricted to subvolumes that are immediate 2444 * ancestors of the inode referenced by the file 2445 * descriptor in the ioctl. Otherwise the idmapping 2446 * could potentially be abused to delete subvolumes 2447 * anywhere in the filesystem the user wouldn't be able 2448 * to delete without an idmapped mount. 2449 */ 2450 if (old_dir != dir && idmap != &nop_mnt_idmap) { 2451 err = -EOPNOTSUPP; 2452 goto free_parent; 2453 } 2454 2455 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2456 fs_info, vol_args2->subvolid); 2457 if (IS_ERR(subvol_name_ptr)) { 2458 err = PTR_ERR(subvol_name_ptr); 2459 goto free_parent; 2460 } 2461 /* subvol_name_ptr is already nul terminated */ 2462 subvol_name = (char *)kbasename(subvol_name_ptr); 2463 } 2464 } else { 2465 vol_args = memdup_user(arg, sizeof(*vol_args)); 2466 if (IS_ERR(vol_args)) 2467 return PTR_ERR(vol_args); 2468 2469 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2470 subvol_name = vol_args->name; 2471 2472 err = mnt_want_write_file(file); 2473 if (err) 2474 goto out; 2475 } 2476 2477 subvol_namelen = strlen(subvol_name); 2478 2479 if (strchr(subvol_name, '/') || 2480 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2481 err = -EINVAL; 2482 goto free_subvol_name; 2483 } 2484 2485 if (!S_ISDIR(dir->i_mode)) { 2486 err = -ENOTDIR; 2487 goto free_subvol_name; 2488 } 2489 2490 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2491 if (err == -EINTR) 2492 goto free_subvol_name; 2493 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen); 2494 if (IS_ERR(dentry)) { 2495 err = PTR_ERR(dentry); 2496 goto out_unlock_dir; 2497 } 2498 2499 if (d_really_is_negative(dentry)) { 2500 err = -ENOENT; 2501 goto out_dput; 2502 } 2503 2504 inode = d_inode(dentry); 2505 dest = BTRFS_I(inode)->root; 2506 if (!capable(CAP_SYS_ADMIN)) { 2507 /* 2508 * Regular user. Only allow this with a special mount 2509 * option, when the user has write+exec access to the 2510 * subvol root, and when rmdir(2) would have been 2511 * allowed. 2512 * 2513 * Note that this is _not_ check that the subvol is 2514 * empty or doesn't contain data that we wouldn't 2515 * otherwise be able to delete. 2516 * 2517 * Users who want to delete empty subvols should try 2518 * rmdir(2). 2519 */ 2520 err = -EPERM; 2521 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2522 goto out_dput; 2523 2524 /* 2525 * Do not allow deletion if the parent dir is the same 2526 * as the dir to be deleted. That means the ioctl 2527 * must be called on the dentry referencing the root 2528 * of the subvol, not a random directory contained 2529 * within it. 2530 */ 2531 err = -EINVAL; 2532 if (root == dest) 2533 goto out_dput; 2534 2535 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC); 2536 if (err) 2537 goto out_dput; 2538 } 2539 2540 /* check if subvolume may be deleted by a user */ 2541 err = btrfs_may_delete(idmap, dir, dentry, 1); 2542 if (err) 2543 goto out_dput; 2544 2545 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2546 err = -EINVAL; 2547 goto out_dput; 2548 } 2549 2550 btrfs_inode_lock(BTRFS_I(inode), 0); 2551 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry); 2552 btrfs_inode_unlock(BTRFS_I(inode), 0); 2553 if (!err) 2554 d_delete_notify(dir, dentry); 2555 2556 out_dput: 2557 dput(dentry); 2558 out_unlock_dir: 2559 btrfs_inode_unlock(BTRFS_I(dir), 0); 2560 free_subvol_name: 2561 kfree(subvol_name_ptr); 2562 free_parent: 2563 if (destroy_parent) 2564 dput(parent); 2565 out_drop_write: 2566 mnt_drop_write_file(file); 2567 out: 2568 kfree(vol_args2); 2569 kfree(vol_args); 2570 return err; 2571 } 2572 2573 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2574 { 2575 struct inode *inode = file_inode(file); 2576 struct btrfs_root *root = BTRFS_I(inode)->root; 2577 struct btrfs_ioctl_defrag_range_args range = {0}; 2578 int ret; 2579 2580 ret = mnt_want_write_file(file); 2581 if (ret) 2582 return ret; 2583 2584 if (btrfs_root_readonly(root)) { 2585 ret = -EROFS; 2586 goto out; 2587 } 2588 2589 switch (inode->i_mode & S_IFMT) { 2590 case S_IFDIR: 2591 if (!capable(CAP_SYS_ADMIN)) { 2592 ret = -EPERM; 2593 goto out; 2594 } 2595 ret = btrfs_defrag_root(root); 2596 break; 2597 case S_IFREG: 2598 /* 2599 * Note that this does not check the file descriptor for write 2600 * access. This prevents defragmenting executables that are 2601 * running and allows defrag on files open in read-only mode. 2602 */ 2603 if (!capable(CAP_SYS_ADMIN) && 2604 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) { 2605 ret = -EPERM; 2606 goto out; 2607 } 2608 2609 if (argp) { 2610 if (copy_from_user(&range, argp, sizeof(range))) { 2611 ret = -EFAULT; 2612 goto out; 2613 } 2614 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) { 2615 ret = -EOPNOTSUPP; 2616 goto out; 2617 } 2618 /* compression requires us to start the IO */ 2619 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2620 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 2621 range.extent_thresh = (u32)-1; 2622 } 2623 } else { 2624 /* the rest are all set to zero by kzalloc */ 2625 range.len = (u64)-1; 2626 } 2627 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 2628 &range, BTRFS_OLDEST_GENERATION, 0); 2629 if (ret > 0) 2630 ret = 0; 2631 break; 2632 default: 2633 ret = -EINVAL; 2634 } 2635 out: 2636 mnt_drop_write_file(file); 2637 return ret; 2638 } 2639 2640 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2641 { 2642 struct btrfs_ioctl_vol_args *vol_args; 2643 bool restore_op = false; 2644 int ret; 2645 2646 if (!capable(CAP_SYS_ADMIN)) 2647 return -EPERM; 2648 2649 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2650 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 2651 return -EINVAL; 2652 } 2653 2654 if (fs_info->fs_devices->temp_fsid) { 2655 btrfs_err(fs_info, 2656 "device add not supported on cloned temp-fsid mount"); 2657 return -EINVAL; 2658 } 2659 2660 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 2661 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 2662 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2663 2664 /* 2665 * We can do the device add because we have a paused balanced, 2666 * change the exclusive op type and remember we should bring 2667 * back the paused balance 2668 */ 2669 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 2670 btrfs_exclop_start_unlock(fs_info); 2671 restore_op = true; 2672 } 2673 2674 vol_args = memdup_user(arg, sizeof(*vol_args)); 2675 if (IS_ERR(vol_args)) { 2676 ret = PTR_ERR(vol_args); 2677 goto out; 2678 } 2679 2680 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2681 ret = btrfs_init_new_device(fs_info, vol_args->name); 2682 2683 if (!ret) 2684 btrfs_info(fs_info, "disk added %s", vol_args->name); 2685 2686 kfree(vol_args); 2687 out: 2688 if (restore_op) 2689 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 2690 else 2691 btrfs_exclop_finish(fs_info); 2692 return ret; 2693 } 2694 2695 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2696 { 2697 BTRFS_DEV_LOOKUP_ARGS(args); 2698 struct inode *inode = file_inode(file); 2699 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2700 struct btrfs_ioctl_vol_args_v2 *vol_args; 2701 struct bdev_handle *bdev_handle = NULL; 2702 int ret; 2703 bool cancel = false; 2704 2705 if (!capable(CAP_SYS_ADMIN)) 2706 return -EPERM; 2707 2708 vol_args = memdup_user(arg, sizeof(*vol_args)); 2709 if (IS_ERR(vol_args)) 2710 return PTR_ERR(vol_args); 2711 2712 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 2713 ret = -EOPNOTSUPP; 2714 goto out; 2715 } 2716 2717 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2718 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2719 args.devid = vol_args->devid; 2720 } else if (!strcmp("cancel", vol_args->name)) { 2721 cancel = true; 2722 } else { 2723 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2724 if (ret) 2725 goto out; 2726 } 2727 2728 ret = mnt_want_write_file(file); 2729 if (ret) 2730 goto out; 2731 2732 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2733 cancel); 2734 if (ret) 2735 goto err_drop; 2736 2737 /* Exclusive operation is now claimed */ 2738 ret = btrfs_rm_device(fs_info, &args, &bdev_handle); 2739 2740 btrfs_exclop_finish(fs_info); 2741 2742 if (!ret) { 2743 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2744 btrfs_info(fs_info, "device deleted: id %llu", 2745 vol_args->devid); 2746 else 2747 btrfs_info(fs_info, "device deleted: %s", 2748 vol_args->name); 2749 } 2750 err_drop: 2751 mnt_drop_write_file(file); 2752 if (bdev_handle) 2753 bdev_release(bdev_handle); 2754 out: 2755 btrfs_put_dev_args_from_path(&args); 2756 kfree(vol_args); 2757 return ret; 2758 } 2759 2760 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2761 { 2762 BTRFS_DEV_LOOKUP_ARGS(args); 2763 struct inode *inode = file_inode(file); 2764 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2765 struct btrfs_ioctl_vol_args *vol_args; 2766 struct bdev_handle *bdev_handle = NULL; 2767 int ret; 2768 bool cancel = false; 2769 2770 if (!capable(CAP_SYS_ADMIN)) 2771 return -EPERM; 2772 2773 vol_args = memdup_user(arg, sizeof(*vol_args)); 2774 if (IS_ERR(vol_args)) 2775 return PTR_ERR(vol_args); 2776 2777 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2778 if (!strcmp("cancel", vol_args->name)) { 2779 cancel = true; 2780 } else { 2781 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2782 if (ret) 2783 goto out; 2784 } 2785 2786 ret = mnt_want_write_file(file); 2787 if (ret) 2788 goto out; 2789 2790 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2791 cancel); 2792 if (ret == 0) { 2793 ret = btrfs_rm_device(fs_info, &args, &bdev_handle); 2794 if (!ret) 2795 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2796 btrfs_exclop_finish(fs_info); 2797 } 2798 2799 mnt_drop_write_file(file); 2800 if (bdev_handle) 2801 bdev_release(bdev_handle); 2802 out: 2803 btrfs_put_dev_args_from_path(&args); 2804 kfree(vol_args); 2805 return ret; 2806 } 2807 2808 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2809 void __user *arg) 2810 { 2811 struct btrfs_ioctl_fs_info_args *fi_args; 2812 struct btrfs_device *device; 2813 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2814 u64 flags_in; 2815 int ret = 0; 2816 2817 fi_args = memdup_user(arg, sizeof(*fi_args)); 2818 if (IS_ERR(fi_args)) 2819 return PTR_ERR(fi_args); 2820 2821 flags_in = fi_args->flags; 2822 memset(fi_args, 0, sizeof(*fi_args)); 2823 2824 rcu_read_lock(); 2825 fi_args->num_devices = fs_devices->num_devices; 2826 2827 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2828 if (device->devid > fi_args->max_id) 2829 fi_args->max_id = device->devid; 2830 } 2831 rcu_read_unlock(); 2832 2833 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 2834 fi_args->nodesize = fs_info->nodesize; 2835 fi_args->sectorsize = fs_info->sectorsize; 2836 fi_args->clone_alignment = fs_info->sectorsize; 2837 2838 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 2839 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 2840 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 2841 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 2842 } 2843 2844 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 2845 fi_args->generation = btrfs_get_fs_generation(fs_info); 2846 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 2847 } 2848 2849 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 2850 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 2851 sizeof(fi_args->metadata_uuid)); 2852 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 2853 } 2854 2855 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2856 ret = -EFAULT; 2857 2858 kfree(fi_args); 2859 return ret; 2860 } 2861 2862 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2863 void __user *arg) 2864 { 2865 BTRFS_DEV_LOOKUP_ARGS(args); 2866 struct btrfs_ioctl_dev_info_args *di_args; 2867 struct btrfs_device *dev; 2868 int ret = 0; 2869 2870 di_args = memdup_user(arg, sizeof(*di_args)); 2871 if (IS_ERR(di_args)) 2872 return PTR_ERR(di_args); 2873 2874 args.devid = di_args->devid; 2875 if (!btrfs_is_empty_uuid(di_args->uuid)) 2876 args.uuid = di_args->uuid; 2877 2878 rcu_read_lock(); 2879 dev = btrfs_find_device(fs_info->fs_devices, &args); 2880 if (!dev) { 2881 ret = -ENODEV; 2882 goto out; 2883 } 2884 2885 di_args->devid = dev->devid; 2886 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2887 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2888 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2889 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2890 if (dev->name) 2891 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path)); 2892 else 2893 di_args->path[0] = '\0'; 2894 2895 out: 2896 rcu_read_unlock(); 2897 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2898 ret = -EFAULT; 2899 2900 kfree(di_args); 2901 return ret; 2902 } 2903 2904 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2905 { 2906 struct inode *inode = file_inode(file); 2907 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2908 struct btrfs_root *root = BTRFS_I(inode)->root; 2909 struct btrfs_root *new_root; 2910 struct btrfs_dir_item *di; 2911 struct btrfs_trans_handle *trans; 2912 struct btrfs_path *path = NULL; 2913 struct btrfs_disk_key disk_key; 2914 struct fscrypt_str name = FSTR_INIT("default", 7); 2915 u64 objectid = 0; 2916 u64 dir_id; 2917 int ret; 2918 2919 if (!capable(CAP_SYS_ADMIN)) 2920 return -EPERM; 2921 2922 ret = mnt_want_write_file(file); 2923 if (ret) 2924 return ret; 2925 2926 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2927 ret = -EFAULT; 2928 goto out; 2929 } 2930 2931 if (!objectid) 2932 objectid = BTRFS_FS_TREE_OBJECTID; 2933 2934 new_root = btrfs_get_fs_root(fs_info, objectid, true); 2935 if (IS_ERR(new_root)) { 2936 ret = PTR_ERR(new_root); 2937 goto out; 2938 } 2939 if (!is_fstree(new_root->root_key.objectid)) { 2940 ret = -ENOENT; 2941 goto out_free; 2942 } 2943 2944 path = btrfs_alloc_path(); 2945 if (!path) { 2946 ret = -ENOMEM; 2947 goto out_free; 2948 } 2949 2950 trans = btrfs_start_transaction(root, 1); 2951 if (IS_ERR(trans)) { 2952 ret = PTR_ERR(trans); 2953 goto out_free; 2954 } 2955 2956 dir_id = btrfs_super_root_dir(fs_info->super_copy); 2957 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 2958 dir_id, &name, 1); 2959 if (IS_ERR_OR_NULL(di)) { 2960 btrfs_release_path(path); 2961 btrfs_end_transaction(trans); 2962 btrfs_err(fs_info, 2963 "Umm, you don't have the default diritem, this isn't going to work"); 2964 ret = -ENOENT; 2965 goto out_free; 2966 } 2967 2968 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2969 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2970 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 2971 btrfs_release_path(path); 2972 2973 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 2974 btrfs_end_transaction(trans); 2975 out_free: 2976 btrfs_put_root(new_root); 2977 btrfs_free_path(path); 2978 out: 2979 mnt_drop_write_file(file); 2980 return ret; 2981 } 2982 2983 static void get_block_group_info(struct list_head *groups_list, 2984 struct btrfs_ioctl_space_info *space) 2985 { 2986 struct btrfs_block_group *block_group; 2987 2988 space->total_bytes = 0; 2989 space->used_bytes = 0; 2990 space->flags = 0; 2991 list_for_each_entry(block_group, groups_list, list) { 2992 space->flags = block_group->flags; 2993 space->total_bytes += block_group->length; 2994 space->used_bytes += block_group->used; 2995 } 2996 } 2997 2998 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 2999 void __user *arg) 3000 { 3001 struct btrfs_ioctl_space_args space_args = { 0 }; 3002 struct btrfs_ioctl_space_info space; 3003 struct btrfs_ioctl_space_info *dest; 3004 struct btrfs_ioctl_space_info *dest_orig; 3005 struct btrfs_ioctl_space_info __user *user_dest; 3006 struct btrfs_space_info *info; 3007 static const u64 types[] = { 3008 BTRFS_BLOCK_GROUP_DATA, 3009 BTRFS_BLOCK_GROUP_SYSTEM, 3010 BTRFS_BLOCK_GROUP_METADATA, 3011 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3012 }; 3013 int num_types = 4; 3014 int alloc_size; 3015 int ret = 0; 3016 u64 slot_count = 0; 3017 int i, c; 3018 3019 if (copy_from_user(&space_args, 3020 (struct btrfs_ioctl_space_args __user *)arg, 3021 sizeof(space_args))) 3022 return -EFAULT; 3023 3024 for (i = 0; i < num_types; i++) { 3025 struct btrfs_space_info *tmp; 3026 3027 info = NULL; 3028 list_for_each_entry(tmp, &fs_info->space_info, list) { 3029 if (tmp->flags == types[i]) { 3030 info = tmp; 3031 break; 3032 } 3033 } 3034 3035 if (!info) 3036 continue; 3037 3038 down_read(&info->groups_sem); 3039 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3040 if (!list_empty(&info->block_groups[c])) 3041 slot_count++; 3042 } 3043 up_read(&info->groups_sem); 3044 } 3045 3046 /* 3047 * Global block reserve, exported as a space_info 3048 */ 3049 slot_count++; 3050 3051 /* space_slots == 0 means they are asking for a count */ 3052 if (space_args.space_slots == 0) { 3053 space_args.total_spaces = slot_count; 3054 goto out; 3055 } 3056 3057 slot_count = min_t(u64, space_args.space_slots, slot_count); 3058 3059 alloc_size = sizeof(*dest) * slot_count; 3060 3061 /* we generally have at most 6 or so space infos, one for each raid 3062 * level. So, a whole page should be more than enough for everyone 3063 */ 3064 if (alloc_size > PAGE_SIZE) 3065 return -ENOMEM; 3066 3067 space_args.total_spaces = 0; 3068 dest = kmalloc(alloc_size, GFP_KERNEL); 3069 if (!dest) 3070 return -ENOMEM; 3071 dest_orig = dest; 3072 3073 /* now we have a buffer to copy into */ 3074 for (i = 0; i < num_types; i++) { 3075 struct btrfs_space_info *tmp; 3076 3077 if (!slot_count) 3078 break; 3079 3080 info = NULL; 3081 list_for_each_entry(tmp, &fs_info->space_info, list) { 3082 if (tmp->flags == types[i]) { 3083 info = tmp; 3084 break; 3085 } 3086 } 3087 3088 if (!info) 3089 continue; 3090 down_read(&info->groups_sem); 3091 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3092 if (!list_empty(&info->block_groups[c])) { 3093 get_block_group_info(&info->block_groups[c], 3094 &space); 3095 memcpy(dest, &space, sizeof(space)); 3096 dest++; 3097 space_args.total_spaces++; 3098 slot_count--; 3099 } 3100 if (!slot_count) 3101 break; 3102 } 3103 up_read(&info->groups_sem); 3104 } 3105 3106 /* 3107 * Add global block reserve 3108 */ 3109 if (slot_count) { 3110 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3111 3112 spin_lock(&block_rsv->lock); 3113 space.total_bytes = block_rsv->size; 3114 space.used_bytes = block_rsv->size - block_rsv->reserved; 3115 spin_unlock(&block_rsv->lock); 3116 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3117 memcpy(dest, &space, sizeof(space)); 3118 space_args.total_spaces++; 3119 } 3120 3121 user_dest = (struct btrfs_ioctl_space_info __user *) 3122 (arg + sizeof(struct btrfs_ioctl_space_args)); 3123 3124 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3125 ret = -EFAULT; 3126 3127 kfree(dest_orig); 3128 out: 3129 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3130 ret = -EFAULT; 3131 3132 return ret; 3133 } 3134 3135 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3136 void __user *argp) 3137 { 3138 struct btrfs_trans_handle *trans; 3139 u64 transid; 3140 3141 /* 3142 * Start orphan cleanup here for the given root in case it hasn't been 3143 * started already by other means. Errors are handled in the other 3144 * functions during transaction commit. 3145 */ 3146 btrfs_orphan_cleanup(root); 3147 3148 trans = btrfs_attach_transaction_barrier(root); 3149 if (IS_ERR(trans)) { 3150 if (PTR_ERR(trans) != -ENOENT) 3151 return PTR_ERR(trans); 3152 3153 /* No running transaction, don't bother */ 3154 transid = btrfs_get_last_trans_committed(root->fs_info); 3155 goto out; 3156 } 3157 transid = trans->transid; 3158 btrfs_commit_transaction_async(trans); 3159 out: 3160 if (argp) 3161 if (copy_to_user(argp, &transid, sizeof(transid))) 3162 return -EFAULT; 3163 return 0; 3164 } 3165 3166 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3167 void __user *argp) 3168 { 3169 /* By default wait for the current transaction. */ 3170 u64 transid = 0; 3171 3172 if (argp) 3173 if (copy_from_user(&transid, argp, sizeof(transid))) 3174 return -EFAULT; 3175 3176 return btrfs_wait_for_commit(fs_info, transid); 3177 } 3178 3179 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3180 { 3181 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3182 struct btrfs_ioctl_scrub_args *sa; 3183 int ret; 3184 3185 if (!capable(CAP_SYS_ADMIN)) 3186 return -EPERM; 3187 3188 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3189 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 3190 return -EINVAL; 3191 } 3192 3193 sa = memdup_user(arg, sizeof(*sa)); 3194 if (IS_ERR(sa)) 3195 return PTR_ERR(sa); 3196 3197 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) { 3198 ret = -EOPNOTSUPP; 3199 goto out; 3200 } 3201 3202 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3203 ret = mnt_want_write_file(file); 3204 if (ret) 3205 goto out; 3206 } 3207 3208 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3209 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3210 0); 3211 3212 /* 3213 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3214 * error. This is important as it allows user space to know how much 3215 * progress scrub has done. For example, if scrub is canceled we get 3216 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3217 * space. Later user space can inspect the progress from the structure 3218 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3219 * previously (btrfs-progs does this). 3220 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3221 * then return -EFAULT to signal the structure was not copied or it may 3222 * be corrupt and unreliable due to a partial copy. 3223 */ 3224 if (copy_to_user(arg, sa, sizeof(*sa))) 3225 ret = -EFAULT; 3226 3227 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3228 mnt_drop_write_file(file); 3229 out: 3230 kfree(sa); 3231 return ret; 3232 } 3233 3234 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3235 { 3236 if (!capable(CAP_SYS_ADMIN)) 3237 return -EPERM; 3238 3239 return btrfs_scrub_cancel(fs_info); 3240 } 3241 3242 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3243 void __user *arg) 3244 { 3245 struct btrfs_ioctl_scrub_args *sa; 3246 int ret; 3247 3248 if (!capable(CAP_SYS_ADMIN)) 3249 return -EPERM; 3250 3251 sa = memdup_user(arg, sizeof(*sa)); 3252 if (IS_ERR(sa)) 3253 return PTR_ERR(sa); 3254 3255 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3256 3257 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3258 ret = -EFAULT; 3259 3260 kfree(sa); 3261 return ret; 3262 } 3263 3264 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3265 void __user *arg) 3266 { 3267 struct btrfs_ioctl_get_dev_stats *sa; 3268 int ret; 3269 3270 sa = memdup_user(arg, sizeof(*sa)); 3271 if (IS_ERR(sa)) 3272 return PTR_ERR(sa); 3273 3274 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3275 kfree(sa); 3276 return -EPERM; 3277 } 3278 3279 ret = btrfs_get_dev_stats(fs_info, sa); 3280 3281 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3282 ret = -EFAULT; 3283 3284 kfree(sa); 3285 return ret; 3286 } 3287 3288 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3289 void __user *arg) 3290 { 3291 struct btrfs_ioctl_dev_replace_args *p; 3292 int ret; 3293 3294 if (!capable(CAP_SYS_ADMIN)) 3295 return -EPERM; 3296 3297 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3298 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 3299 return -EINVAL; 3300 } 3301 3302 p = memdup_user(arg, sizeof(*p)); 3303 if (IS_ERR(p)) 3304 return PTR_ERR(p); 3305 3306 switch (p->cmd) { 3307 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3308 if (sb_rdonly(fs_info->sb)) { 3309 ret = -EROFS; 3310 goto out; 3311 } 3312 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3313 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3314 } else { 3315 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3316 btrfs_exclop_finish(fs_info); 3317 } 3318 break; 3319 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3320 btrfs_dev_replace_status(fs_info, p); 3321 ret = 0; 3322 break; 3323 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3324 p->result = btrfs_dev_replace_cancel(fs_info); 3325 ret = 0; 3326 break; 3327 default: 3328 ret = -EINVAL; 3329 break; 3330 } 3331 3332 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3333 ret = -EFAULT; 3334 out: 3335 kfree(p); 3336 return ret; 3337 } 3338 3339 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3340 { 3341 int ret = 0; 3342 int i; 3343 u64 rel_ptr; 3344 int size; 3345 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3346 struct inode_fs_paths *ipath = NULL; 3347 struct btrfs_path *path; 3348 3349 if (!capable(CAP_DAC_READ_SEARCH)) 3350 return -EPERM; 3351 3352 path = btrfs_alloc_path(); 3353 if (!path) { 3354 ret = -ENOMEM; 3355 goto out; 3356 } 3357 3358 ipa = memdup_user(arg, sizeof(*ipa)); 3359 if (IS_ERR(ipa)) { 3360 ret = PTR_ERR(ipa); 3361 ipa = NULL; 3362 goto out; 3363 } 3364 3365 size = min_t(u32, ipa->size, 4096); 3366 ipath = init_ipath(size, root, path); 3367 if (IS_ERR(ipath)) { 3368 ret = PTR_ERR(ipath); 3369 ipath = NULL; 3370 goto out; 3371 } 3372 3373 ret = paths_from_inode(ipa->inum, ipath); 3374 if (ret < 0) 3375 goto out; 3376 3377 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3378 rel_ptr = ipath->fspath->val[i] - 3379 (u64)(unsigned long)ipath->fspath->val; 3380 ipath->fspath->val[i] = rel_ptr; 3381 } 3382 3383 btrfs_free_path(path); 3384 path = NULL; 3385 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3386 ipath->fspath, size); 3387 if (ret) { 3388 ret = -EFAULT; 3389 goto out; 3390 } 3391 3392 out: 3393 btrfs_free_path(path); 3394 free_ipath(ipath); 3395 kfree(ipa); 3396 3397 return ret; 3398 } 3399 3400 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3401 void __user *arg, int version) 3402 { 3403 int ret = 0; 3404 int size; 3405 struct btrfs_ioctl_logical_ino_args *loi; 3406 struct btrfs_data_container *inodes = NULL; 3407 struct btrfs_path *path = NULL; 3408 bool ignore_offset; 3409 3410 if (!capable(CAP_SYS_ADMIN)) 3411 return -EPERM; 3412 3413 loi = memdup_user(arg, sizeof(*loi)); 3414 if (IS_ERR(loi)) 3415 return PTR_ERR(loi); 3416 3417 if (version == 1) { 3418 ignore_offset = false; 3419 size = min_t(u32, loi->size, SZ_64K); 3420 } else { 3421 /* All reserved bits must be 0 for now */ 3422 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3423 ret = -EINVAL; 3424 goto out_loi; 3425 } 3426 /* Only accept flags we have defined so far */ 3427 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3428 ret = -EINVAL; 3429 goto out_loi; 3430 } 3431 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3432 size = min_t(u32, loi->size, SZ_16M); 3433 } 3434 3435 inodes = init_data_container(size); 3436 if (IS_ERR(inodes)) { 3437 ret = PTR_ERR(inodes); 3438 goto out_loi; 3439 } 3440 3441 path = btrfs_alloc_path(); 3442 if (!path) { 3443 ret = -ENOMEM; 3444 goto out; 3445 } 3446 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3447 inodes, ignore_offset); 3448 btrfs_free_path(path); 3449 if (ret == -EINVAL) 3450 ret = -ENOENT; 3451 if (ret < 0) 3452 goto out; 3453 3454 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3455 size); 3456 if (ret) 3457 ret = -EFAULT; 3458 3459 out: 3460 kvfree(inodes); 3461 out_loi: 3462 kfree(loi); 3463 3464 return ret; 3465 } 3466 3467 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3468 struct btrfs_ioctl_balance_args *bargs) 3469 { 3470 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3471 3472 bargs->flags = bctl->flags; 3473 3474 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3475 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3476 if (atomic_read(&fs_info->balance_pause_req)) 3477 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3478 if (atomic_read(&fs_info->balance_cancel_req)) 3479 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3480 3481 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3482 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3483 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3484 3485 spin_lock(&fs_info->balance_lock); 3486 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3487 spin_unlock(&fs_info->balance_lock); 3488 } 3489 3490 /* 3491 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 3492 * required. 3493 * 3494 * @fs_info: the filesystem 3495 * @excl_acquired: ptr to boolean value which is set to false in case balance 3496 * is being resumed 3497 * 3498 * Return 0 on success in which case both fs_info::balance is acquired as well 3499 * as exclusive ops are blocked. In case of failure return an error code. 3500 */ 3501 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 3502 { 3503 int ret; 3504 3505 /* 3506 * Exclusive operation is locked. Three possibilities: 3507 * (1) some other op is running 3508 * (2) balance is running 3509 * (3) balance is paused -- special case (think resume) 3510 */ 3511 while (1) { 3512 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3513 *excl_acquired = true; 3514 mutex_lock(&fs_info->balance_mutex); 3515 return 0; 3516 } 3517 3518 mutex_lock(&fs_info->balance_mutex); 3519 if (fs_info->balance_ctl) { 3520 /* This is either (2) or (3) */ 3521 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3522 /* This is (2) */ 3523 ret = -EINPROGRESS; 3524 goto out_failure; 3525 3526 } else { 3527 mutex_unlock(&fs_info->balance_mutex); 3528 /* 3529 * Lock released to allow other waiters to 3530 * continue, we'll reexamine the status again. 3531 */ 3532 mutex_lock(&fs_info->balance_mutex); 3533 3534 if (fs_info->balance_ctl && 3535 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3536 /* This is (3) */ 3537 *excl_acquired = false; 3538 return 0; 3539 } 3540 } 3541 } else { 3542 /* This is (1) */ 3543 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3544 goto out_failure; 3545 } 3546 3547 mutex_unlock(&fs_info->balance_mutex); 3548 } 3549 3550 out_failure: 3551 mutex_unlock(&fs_info->balance_mutex); 3552 *excl_acquired = false; 3553 return ret; 3554 } 3555 3556 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3557 { 3558 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3559 struct btrfs_fs_info *fs_info = root->fs_info; 3560 struct btrfs_ioctl_balance_args *bargs; 3561 struct btrfs_balance_control *bctl; 3562 bool need_unlock = true; 3563 int ret; 3564 3565 if (!capable(CAP_SYS_ADMIN)) 3566 return -EPERM; 3567 3568 ret = mnt_want_write_file(file); 3569 if (ret) 3570 return ret; 3571 3572 bargs = memdup_user(arg, sizeof(*bargs)); 3573 if (IS_ERR(bargs)) { 3574 ret = PTR_ERR(bargs); 3575 bargs = NULL; 3576 goto out; 3577 } 3578 3579 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 3580 if (ret) 3581 goto out; 3582 3583 lockdep_assert_held(&fs_info->balance_mutex); 3584 3585 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3586 if (!fs_info->balance_ctl) { 3587 ret = -ENOTCONN; 3588 goto out_unlock; 3589 } 3590 3591 bctl = fs_info->balance_ctl; 3592 spin_lock(&fs_info->balance_lock); 3593 bctl->flags |= BTRFS_BALANCE_RESUME; 3594 spin_unlock(&fs_info->balance_lock); 3595 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 3596 3597 goto do_balance; 3598 } 3599 3600 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3601 ret = -EINVAL; 3602 goto out_unlock; 3603 } 3604 3605 if (fs_info->balance_ctl) { 3606 ret = -EINPROGRESS; 3607 goto out_unlock; 3608 } 3609 3610 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3611 if (!bctl) { 3612 ret = -ENOMEM; 3613 goto out_unlock; 3614 } 3615 3616 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3617 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3618 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3619 3620 bctl->flags = bargs->flags; 3621 do_balance: 3622 /* 3623 * Ownership of bctl and exclusive operation goes to btrfs_balance. 3624 * bctl is freed in reset_balance_state, or, if restriper was paused 3625 * all the way until unmount, in free_fs_info. The flag should be 3626 * cleared after reset_balance_state. 3627 */ 3628 need_unlock = false; 3629 3630 ret = btrfs_balance(fs_info, bctl, bargs); 3631 bctl = NULL; 3632 3633 if (ret == 0 || ret == -ECANCELED) { 3634 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3635 ret = -EFAULT; 3636 } 3637 3638 kfree(bctl); 3639 out_unlock: 3640 mutex_unlock(&fs_info->balance_mutex); 3641 if (need_unlock) 3642 btrfs_exclop_finish(fs_info); 3643 out: 3644 mnt_drop_write_file(file); 3645 kfree(bargs); 3646 return ret; 3647 } 3648 3649 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 3650 { 3651 if (!capable(CAP_SYS_ADMIN)) 3652 return -EPERM; 3653 3654 switch (cmd) { 3655 case BTRFS_BALANCE_CTL_PAUSE: 3656 return btrfs_pause_balance(fs_info); 3657 case BTRFS_BALANCE_CTL_CANCEL: 3658 return btrfs_cancel_balance(fs_info); 3659 } 3660 3661 return -EINVAL; 3662 } 3663 3664 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 3665 void __user *arg) 3666 { 3667 struct btrfs_ioctl_balance_args *bargs; 3668 int ret = 0; 3669 3670 if (!capable(CAP_SYS_ADMIN)) 3671 return -EPERM; 3672 3673 mutex_lock(&fs_info->balance_mutex); 3674 if (!fs_info->balance_ctl) { 3675 ret = -ENOTCONN; 3676 goto out; 3677 } 3678 3679 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 3680 if (!bargs) { 3681 ret = -ENOMEM; 3682 goto out; 3683 } 3684 3685 btrfs_update_ioctl_balance_args(fs_info, bargs); 3686 3687 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3688 ret = -EFAULT; 3689 3690 kfree(bargs); 3691 out: 3692 mutex_unlock(&fs_info->balance_mutex); 3693 return ret; 3694 } 3695 3696 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3697 { 3698 struct inode *inode = file_inode(file); 3699 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3700 struct btrfs_ioctl_quota_ctl_args *sa; 3701 int ret; 3702 3703 if (!capable(CAP_SYS_ADMIN)) 3704 return -EPERM; 3705 3706 ret = mnt_want_write_file(file); 3707 if (ret) 3708 return ret; 3709 3710 sa = memdup_user(arg, sizeof(*sa)); 3711 if (IS_ERR(sa)) { 3712 ret = PTR_ERR(sa); 3713 goto drop_write; 3714 } 3715 3716 down_write(&fs_info->subvol_sem); 3717 3718 switch (sa->cmd) { 3719 case BTRFS_QUOTA_CTL_ENABLE: 3720 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA: 3721 ret = btrfs_quota_enable(fs_info, sa); 3722 break; 3723 case BTRFS_QUOTA_CTL_DISABLE: 3724 ret = btrfs_quota_disable(fs_info); 3725 break; 3726 default: 3727 ret = -EINVAL; 3728 break; 3729 } 3730 3731 kfree(sa); 3732 up_write(&fs_info->subvol_sem); 3733 drop_write: 3734 mnt_drop_write_file(file); 3735 return ret; 3736 } 3737 3738 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3739 { 3740 struct inode *inode = file_inode(file); 3741 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3742 struct btrfs_root *root = BTRFS_I(inode)->root; 3743 struct btrfs_ioctl_qgroup_assign_args *sa; 3744 struct btrfs_trans_handle *trans; 3745 int ret; 3746 int err; 3747 3748 if (!capable(CAP_SYS_ADMIN)) 3749 return -EPERM; 3750 3751 ret = mnt_want_write_file(file); 3752 if (ret) 3753 return ret; 3754 3755 sa = memdup_user(arg, sizeof(*sa)); 3756 if (IS_ERR(sa)) { 3757 ret = PTR_ERR(sa); 3758 goto drop_write; 3759 } 3760 3761 trans = btrfs_join_transaction(root); 3762 if (IS_ERR(trans)) { 3763 ret = PTR_ERR(trans); 3764 goto out; 3765 } 3766 3767 if (sa->assign) { 3768 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 3769 } else { 3770 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 3771 } 3772 3773 /* update qgroup status and info */ 3774 mutex_lock(&fs_info->qgroup_ioctl_lock); 3775 err = btrfs_run_qgroups(trans); 3776 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3777 if (err < 0) 3778 btrfs_handle_fs_error(fs_info, err, 3779 "failed to update qgroup status and info"); 3780 err = btrfs_end_transaction(trans); 3781 if (err && !ret) 3782 ret = err; 3783 3784 out: 3785 kfree(sa); 3786 drop_write: 3787 mnt_drop_write_file(file); 3788 return ret; 3789 } 3790 3791 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3792 { 3793 struct inode *inode = file_inode(file); 3794 struct btrfs_root *root = BTRFS_I(inode)->root; 3795 struct btrfs_ioctl_qgroup_create_args *sa; 3796 struct btrfs_trans_handle *trans; 3797 int ret; 3798 int err; 3799 3800 if (!capable(CAP_SYS_ADMIN)) 3801 return -EPERM; 3802 3803 ret = mnt_want_write_file(file); 3804 if (ret) 3805 return ret; 3806 3807 sa = memdup_user(arg, sizeof(*sa)); 3808 if (IS_ERR(sa)) { 3809 ret = PTR_ERR(sa); 3810 goto drop_write; 3811 } 3812 3813 if (!sa->qgroupid) { 3814 ret = -EINVAL; 3815 goto out; 3816 } 3817 3818 if (sa->create && is_fstree(sa->qgroupid)) { 3819 ret = -EINVAL; 3820 goto out; 3821 } 3822 3823 trans = btrfs_join_transaction(root); 3824 if (IS_ERR(trans)) { 3825 ret = PTR_ERR(trans); 3826 goto out; 3827 } 3828 3829 if (sa->create) { 3830 ret = btrfs_create_qgroup(trans, sa->qgroupid); 3831 } else { 3832 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 3833 } 3834 3835 err = btrfs_end_transaction(trans); 3836 if (err && !ret) 3837 ret = err; 3838 3839 out: 3840 kfree(sa); 3841 drop_write: 3842 mnt_drop_write_file(file); 3843 return ret; 3844 } 3845 3846 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3847 { 3848 struct inode *inode = file_inode(file); 3849 struct btrfs_root *root = BTRFS_I(inode)->root; 3850 struct btrfs_ioctl_qgroup_limit_args *sa; 3851 struct btrfs_trans_handle *trans; 3852 int ret; 3853 int err; 3854 u64 qgroupid; 3855 3856 if (!capable(CAP_SYS_ADMIN)) 3857 return -EPERM; 3858 3859 ret = mnt_want_write_file(file); 3860 if (ret) 3861 return ret; 3862 3863 sa = memdup_user(arg, sizeof(*sa)); 3864 if (IS_ERR(sa)) { 3865 ret = PTR_ERR(sa); 3866 goto drop_write; 3867 } 3868 3869 trans = btrfs_join_transaction(root); 3870 if (IS_ERR(trans)) { 3871 ret = PTR_ERR(trans); 3872 goto out; 3873 } 3874 3875 qgroupid = sa->qgroupid; 3876 if (!qgroupid) { 3877 /* take the current subvol as qgroup */ 3878 qgroupid = root->root_key.objectid; 3879 } 3880 3881 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 3882 3883 err = btrfs_end_transaction(trans); 3884 if (err && !ret) 3885 ret = err; 3886 3887 out: 3888 kfree(sa); 3889 drop_write: 3890 mnt_drop_write_file(file); 3891 return ret; 3892 } 3893 3894 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 3895 { 3896 struct inode *inode = file_inode(file); 3897 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3898 struct btrfs_ioctl_quota_rescan_args *qsa; 3899 int ret; 3900 3901 if (!capable(CAP_SYS_ADMIN)) 3902 return -EPERM; 3903 3904 ret = mnt_want_write_file(file); 3905 if (ret) 3906 return ret; 3907 3908 qsa = memdup_user(arg, sizeof(*qsa)); 3909 if (IS_ERR(qsa)) { 3910 ret = PTR_ERR(qsa); 3911 goto drop_write; 3912 } 3913 3914 if (qsa->flags) { 3915 ret = -EINVAL; 3916 goto out; 3917 } 3918 3919 ret = btrfs_qgroup_rescan(fs_info); 3920 3921 out: 3922 kfree(qsa); 3923 drop_write: 3924 mnt_drop_write_file(file); 3925 return ret; 3926 } 3927 3928 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 3929 void __user *arg) 3930 { 3931 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 3932 3933 if (!capable(CAP_SYS_ADMIN)) 3934 return -EPERM; 3935 3936 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 3937 qsa.flags = 1; 3938 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 3939 } 3940 3941 if (copy_to_user(arg, &qsa, sizeof(qsa))) 3942 return -EFAULT; 3943 3944 return 0; 3945 } 3946 3947 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 3948 void __user *arg) 3949 { 3950 if (!capable(CAP_SYS_ADMIN)) 3951 return -EPERM; 3952 3953 return btrfs_qgroup_wait_for_completion(fs_info, true); 3954 } 3955 3956 static long _btrfs_ioctl_set_received_subvol(struct file *file, 3957 struct mnt_idmap *idmap, 3958 struct btrfs_ioctl_received_subvol_args *sa) 3959 { 3960 struct inode *inode = file_inode(file); 3961 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3962 struct btrfs_root *root = BTRFS_I(inode)->root; 3963 struct btrfs_root_item *root_item = &root->root_item; 3964 struct btrfs_trans_handle *trans; 3965 struct timespec64 ct = current_time(inode); 3966 int ret = 0; 3967 int received_uuid_changed; 3968 3969 if (!inode_owner_or_capable(idmap, inode)) 3970 return -EPERM; 3971 3972 ret = mnt_want_write_file(file); 3973 if (ret < 0) 3974 return ret; 3975 3976 down_write(&fs_info->subvol_sem); 3977 3978 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3979 ret = -EINVAL; 3980 goto out; 3981 } 3982 3983 if (btrfs_root_readonly(root)) { 3984 ret = -EROFS; 3985 goto out; 3986 } 3987 3988 /* 3989 * 1 - root item 3990 * 2 - uuid items (received uuid + subvol uuid) 3991 */ 3992 trans = btrfs_start_transaction(root, 3); 3993 if (IS_ERR(trans)) { 3994 ret = PTR_ERR(trans); 3995 trans = NULL; 3996 goto out; 3997 } 3998 3999 sa->rtransid = trans->transid; 4000 sa->rtime.sec = ct.tv_sec; 4001 sa->rtime.nsec = ct.tv_nsec; 4002 4003 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4004 BTRFS_UUID_SIZE); 4005 if (received_uuid_changed && 4006 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4007 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4008 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4009 root->root_key.objectid); 4010 if (ret && ret != -ENOENT) { 4011 btrfs_abort_transaction(trans, ret); 4012 btrfs_end_transaction(trans); 4013 goto out; 4014 } 4015 } 4016 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4017 btrfs_set_root_stransid(root_item, sa->stransid); 4018 btrfs_set_root_rtransid(root_item, sa->rtransid); 4019 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4020 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4021 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4022 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4023 4024 ret = btrfs_update_root(trans, fs_info->tree_root, 4025 &root->root_key, &root->root_item); 4026 if (ret < 0) { 4027 btrfs_end_transaction(trans); 4028 goto out; 4029 } 4030 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4031 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4032 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4033 root->root_key.objectid); 4034 if (ret < 0 && ret != -EEXIST) { 4035 btrfs_abort_transaction(trans, ret); 4036 btrfs_end_transaction(trans); 4037 goto out; 4038 } 4039 } 4040 ret = btrfs_commit_transaction(trans); 4041 out: 4042 up_write(&fs_info->subvol_sem); 4043 mnt_drop_write_file(file); 4044 return ret; 4045 } 4046 4047 #ifdef CONFIG_64BIT 4048 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4049 void __user *arg) 4050 { 4051 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4052 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4053 int ret = 0; 4054 4055 args32 = memdup_user(arg, sizeof(*args32)); 4056 if (IS_ERR(args32)) 4057 return PTR_ERR(args32); 4058 4059 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4060 if (!args64) { 4061 ret = -ENOMEM; 4062 goto out; 4063 } 4064 4065 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4066 args64->stransid = args32->stransid; 4067 args64->rtransid = args32->rtransid; 4068 args64->stime.sec = args32->stime.sec; 4069 args64->stime.nsec = args32->stime.nsec; 4070 args64->rtime.sec = args32->rtime.sec; 4071 args64->rtime.nsec = args32->rtime.nsec; 4072 args64->flags = args32->flags; 4073 4074 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64); 4075 if (ret) 4076 goto out; 4077 4078 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4079 args32->stransid = args64->stransid; 4080 args32->rtransid = args64->rtransid; 4081 args32->stime.sec = args64->stime.sec; 4082 args32->stime.nsec = args64->stime.nsec; 4083 args32->rtime.sec = args64->rtime.sec; 4084 args32->rtime.nsec = args64->rtime.nsec; 4085 args32->flags = args64->flags; 4086 4087 ret = copy_to_user(arg, args32, sizeof(*args32)); 4088 if (ret) 4089 ret = -EFAULT; 4090 4091 out: 4092 kfree(args32); 4093 kfree(args64); 4094 return ret; 4095 } 4096 #endif 4097 4098 static long btrfs_ioctl_set_received_subvol(struct file *file, 4099 void __user *arg) 4100 { 4101 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4102 int ret = 0; 4103 4104 sa = memdup_user(arg, sizeof(*sa)); 4105 if (IS_ERR(sa)) 4106 return PTR_ERR(sa); 4107 4108 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa); 4109 4110 if (ret) 4111 goto out; 4112 4113 ret = copy_to_user(arg, sa, sizeof(*sa)); 4114 if (ret) 4115 ret = -EFAULT; 4116 4117 out: 4118 kfree(sa); 4119 return ret; 4120 } 4121 4122 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4123 void __user *arg) 4124 { 4125 size_t len; 4126 int ret; 4127 char label[BTRFS_LABEL_SIZE]; 4128 4129 spin_lock(&fs_info->super_lock); 4130 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4131 spin_unlock(&fs_info->super_lock); 4132 4133 len = strnlen(label, BTRFS_LABEL_SIZE); 4134 4135 if (len == BTRFS_LABEL_SIZE) { 4136 btrfs_warn(fs_info, 4137 "label is too long, return the first %zu bytes", 4138 --len); 4139 } 4140 4141 ret = copy_to_user(arg, label, len); 4142 4143 return ret ? -EFAULT : 0; 4144 } 4145 4146 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4147 { 4148 struct inode *inode = file_inode(file); 4149 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4150 struct btrfs_root *root = BTRFS_I(inode)->root; 4151 struct btrfs_super_block *super_block = fs_info->super_copy; 4152 struct btrfs_trans_handle *trans; 4153 char label[BTRFS_LABEL_SIZE]; 4154 int ret; 4155 4156 if (!capable(CAP_SYS_ADMIN)) 4157 return -EPERM; 4158 4159 if (copy_from_user(label, arg, sizeof(label))) 4160 return -EFAULT; 4161 4162 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4163 btrfs_err(fs_info, 4164 "unable to set label with more than %d bytes", 4165 BTRFS_LABEL_SIZE - 1); 4166 return -EINVAL; 4167 } 4168 4169 ret = mnt_want_write_file(file); 4170 if (ret) 4171 return ret; 4172 4173 trans = btrfs_start_transaction(root, 0); 4174 if (IS_ERR(trans)) { 4175 ret = PTR_ERR(trans); 4176 goto out_unlock; 4177 } 4178 4179 spin_lock(&fs_info->super_lock); 4180 strcpy(super_block->label, label); 4181 spin_unlock(&fs_info->super_lock); 4182 ret = btrfs_commit_transaction(trans); 4183 4184 out_unlock: 4185 mnt_drop_write_file(file); 4186 return ret; 4187 } 4188 4189 #define INIT_FEATURE_FLAGS(suffix) \ 4190 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4191 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4192 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4193 4194 int btrfs_ioctl_get_supported_features(void __user *arg) 4195 { 4196 static const struct btrfs_ioctl_feature_flags features[3] = { 4197 INIT_FEATURE_FLAGS(SUPP), 4198 INIT_FEATURE_FLAGS(SAFE_SET), 4199 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4200 }; 4201 4202 if (copy_to_user(arg, &features, sizeof(features))) 4203 return -EFAULT; 4204 4205 return 0; 4206 } 4207 4208 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4209 void __user *arg) 4210 { 4211 struct btrfs_super_block *super_block = fs_info->super_copy; 4212 struct btrfs_ioctl_feature_flags features; 4213 4214 features.compat_flags = btrfs_super_compat_flags(super_block); 4215 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4216 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4217 4218 if (copy_to_user(arg, &features, sizeof(features))) 4219 return -EFAULT; 4220 4221 return 0; 4222 } 4223 4224 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4225 enum btrfs_feature_set set, 4226 u64 change_mask, u64 flags, u64 supported_flags, 4227 u64 safe_set, u64 safe_clear) 4228 { 4229 const char *type = btrfs_feature_set_name(set); 4230 char *names; 4231 u64 disallowed, unsupported; 4232 u64 set_mask = flags & change_mask; 4233 u64 clear_mask = ~flags & change_mask; 4234 4235 unsupported = set_mask & ~supported_flags; 4236 if (unsupported) { 4237 names = btrfs_printable_features(set, unsupported); 4238 if (names) { 4239 btrfs_warn(fs_info, 4240 "this kernel does not support the %s feature bit%s", 4241 names, strchr(names, ',') ? "s" : ""); 4242 kfree(names); 4243 } else 4244 btrfs_warn(fs_info, 4245 "this kernel does not support %s bits 0x%llx", 4246 type, unsupported); 4247 return -EOPNOTSUPP; 4248 } 4249 4250 disallowed = set_mask & ~safe_set; 4251 if (disallowed) { 4252 names = btrfs_printable_features(set, disallowed); 4253 if (names) { 4254 btrfs_warn(fs_info, 4255 "can't set the %s feature bit%s while mounted", 4256 names, strchr(names, ',') ? "s" : ""); 4257 kfree(names); 4258 } else 4259 btrfs_warn(fs_info, 4260 "can't set %s bits 0x%llx while mounted", 4261 type, disallowed); 4262 return -EPERM; 4263 } 4264 4265 disallowed = clear_mask & ~safe_clear; 4266 if (disallowed) { 4267 names = btrfs_printable_features(set, disallowed); 4268 if (names) { 4269 btrfs_warn(fs_info, 4270 "can't clear the %s feature bit%s while mounted", 4271 names, strchr(names, ',') ? "s" : ""); 4272 kfree(names); 4273 } else 4274 btrfs_warn(fs_info, 4275 "can't clear %s bits 0x%llx while mounted", 4276 type, disallowed); 4277 return -EPERM; 4278 } 4279 4280 return 0; 4281 } 4282 4283 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4284 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4285 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4286 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4287 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4288 4289 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4290 { 4291 struct inode *inode = file_inode(file); 4292 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4293 struct btrfs_root *root = BTRFS_I(inode)->root; 4294 struct btrfs_super_block *super_block = fs_info->super_copy; 4295 struct btrfs_ioctl_feature_flags flags[2]; 4296 struct btrfs_trans_handle *trans; 4297 u64 newflags; 4298 int ret; 4299 4300 if (!capable(CAP_SYS_ADMIN)) 4301 return -EPERM; 4302 4303 if (copy_from_user(flags, arg, sizeof(flags))) 4304 return -EFAULT; 4305 4306 /* Nothing to do */ 4307 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4308 !flags[0].incompat_flags) 4309 return 0; 4310 4311 ret = check_feature(fs_info, flags[0].compat_flags, 4312 flags[1].compat_flags, COMPAT); 4313 if (ret) 4314 return ret; 4315 4316 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4317 flags[1].compat_ro_flags, COMPAT_RO); 4318 if (ret) 4319 return ret; 4320 4321 ret = check_feature(fs_info, flags[0].incompat_flags, 4322 flags[1].incompat_flags, INCOMPAT); 4323 if (ret) 4324 return ret; 4325 4326 ret = mnt_want_write_file(file); 4327 if (ret) 4328 return ret; 4329 4330 trans = btrfs_start_transaction(root, 0); 4331 if (IS_ERR(trans)) { 4332 ret = PTR_ERR(trans); 4333 goto out_drop_write; 4334 } 4335 4336 spin_lock(&fs_info->super_lock); 4337 newflags = btrfs_super_compat_flags(super_block); 4338 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4339 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4340 btrfs_set_super_compat_flags(super_block, newflags); 4341 4342 newflags = btrfs_super_compat_ro_flags(super_block); 4343 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4344 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4345 btrfs_set_super_compat_ro_flags(super_block, newflags); 4346 4347 newflags = btrfs_super_incompat_flags(super_block); 4348 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4349 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4350 btrfs_set_super_incompat_flags(super_block, newflags); 4351 spin_unlock(&fs_info->super_lock); 4352 4353 ret = btrfs_commit_transaction(trans); 4354 out_drop_write: 4355 mnt_drop_write_file(file); 4356 4357 return ret; 4358 } 4359 4360 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) 4361 { 4362 struct btrfs_ioctl_send_args *arg; 4363 int ret; 4364 4365 if (compat) { 4366 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4367 struct btrfs_ioctl_send_args_32 args32 = { 0 }; 4368 4369 ret = copy_from_user(&args32, argp, sizeof(args32)); 4370 if (ret) 4371 return -EFAULT; 4372 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4373 if (!arg) 4374 return -ENOMEM; 4375 arg->send_fd = args32.send_fd; 4376 arg->clone_sources_count = args32.clone_sources_count; 4377 arg->clone_sources = compat_ptr(args32.clone_sources); 4378 arg->parent_root = args32.parent_root; 4379 arg->flags = args32.flags; 4380 arg->version = args32.version; 4381 memcpy(arg->reserved, args32.reserved, 4382 sizeof(args32.reserved)); 4383 #else 4384 return -ENOTTY; 4385 #endif 4386 } else { 4387 arg = memdup_user(argp, sizeof(*arg)); 4388 if (IS_ERR(arg)) 4389 return PTR_ERR(arg); 4390 } 4391 ret = btrfs_ioctl_send(inode, arg); 4392 kfree(arg); 4393 return ret; 4394 } 4395 4396 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 4397 bool compat) 4398 { 4399 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4400 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 4401 flags); 4402 size_t copy_end; 4403 struct iovec iovstack[UIO_FASTIOV]; 4404 struct iovec *iov = iovstack; 4405 struct iov_iter iter; 4406 loff_t pos; 4407 struct kiocb kiocb; 4408 ssize_t ret; 4409 4410 if (!capable(CAP_SYS_ADMIN)) { 4411 ret = -EPERM; 4412 goto out_acct; 4413 } 4414 4415 if (compat) { 4416 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4417 struct btrfs_ioctl_encoded_io_args_32 args32; 4418 4419 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 4420 flags); 4421 if (copy_from_user(&args32, argp, copy_end)) { 4422 ret = -EFAULT; 4423 goto out_acct; 4424 } 4425 args.iov = compat_ptr(args32.iov); 4426 args.iovcnt = args32.iovcnt; 4427 args.offset = args32.offset; 4428 args.flags = args32.flags; 4429 #else 4430 return -ENOTTY; 4431 #endif 4432 } else { 4433 copy_end = copy_end_kernel; 4434 if (copy_from_user(&args, argp, copy_end)) { 4435 ret = -EFAULT; 4436 goto out_acct; 4437 } 4438 } 4439 if (args.flags != 0) { 4440 ret = -EINVAL; 4441 goto out_acct; 4442 } 4443 4444 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4445 &iov, &iter); 4446 if (ret < 0) 4447 goto out_acct; 4448 4449 if (iov_iter_count(&iter) == 0) { 4450 ret = 0; 4451 goto out_iov; 4452 } 4453 pos = args.offset; 4454 ret = rw_verify_area(READ, file, &pos, args.len); 4455 if (ret < 0) 4456 goto out_iov; 4457 4458 init_sync_kiocb(&kiocb, file); 4459 kiocb.ki_pos = pos; 4460 4461 ret = btrfs_encoded_read(&kiocb, &iter, &args); 4462 if (ret >= 0) { 4463 fsnotify_access(file); 4464 if (copy_to_user(argp + copy_end, 4465 (char *)&args + copy_end_kernel, 4466 sizeof(args) - copy_end_kernel)) 4467 ret = -EFAULT; 4468 } 4469 4470 out_iov: 4471 kfree(iov); 4472 out_acct: 4473 if (ret > 0) 4474 add_rchar(current, ret); 4475 inc_syscr(current); 4476 return ret; 4477 } 4478 4479 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 4480 { 4481 struct btrfs_ioctl_encoded_io_args args; 4482 struct iovec iovstack[UIO_FASTIOV]; 4483 struct iovec *iov = iovstack; 4484 struct iov_iter iter; 4485 loff_t pos; 4486 struct kiocb kiocb; 4487 ssize_t ret; 4488 4489 if (!capable(CAP_SYS_ADMIN)) { 4490 ret = -EPERM; 4491 goto out_acct; 4492 } 4493 4494 if (!(file->f_mode & FMODE_WRITE)) { 4495 ret = -EBADF; 4496 goto out_acct; 4497 } 4498 4499 if (compat) { 4500 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4501 struct btrfs_ioctl_encoded_io_args_32 args32; 4502 4503 if (copy_from_user(&args32, argp, sizeof(args32))) { 4504 ret = -EFAULT; 4505 goto out_acct; 4506 } 4507 args.iov = compat_ptr(args32.iov); 4508 args.iovcnt = args32.iovcnt; 4509 args.offset = args32.offset; 4510 args.flags = args32.flags; 4511 args.len = args32.len; 4512 args.unencoded_len = args32.unencoded_len; 4513 args.unencoded_offset = args32.unencoded_offset; 4514 args.compression = args32.compression; 4515 args.encryption = args32.encryption; 4516 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 4517 #else 4518 return -ENOTTY; 4519 #endif 4520 } else { 4521 if (copy_from_user(&args, argp, sizeof(args))) { 4522 ret = -EFAULT; 4523 goto out_acct; 4524 } 4525 } 4526 4527 ret = -EINVAL; 4528 if (args.flags != 0) 4529 goto out_acct; 4530 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 4531 goto out_acct; 4532 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4533 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4534 goto out_acct; 4535 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4536 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4537 goto out_acct; 4538 if (args.unencoded_offset > args.unencoded_len) 4539 goto out_acct; 4540 if (args.len > args.unencoded_len - args.unencoded_offset) 4541 goto out_acct; 4542 4543 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4544 &iov, &iter); 4545 if (ret < 0) 4546 goto out_acct; 4547 4548 if (iov_iter_count(&iter) == 0) { 4549 ret = 0; 4550 goto out_iov; 4551 } 4552 pos = args.offset; 4553 ret = rw_verify_area(WRITE, file, &pos, args.len); 4554 if (ret < 0) 4555 goto out_iov; 4556 4557 init_sync_kiocb(&kiocb, file); 4558 ret = kiocb_set_rw_flags(&kiocb, 0); 4559 if (ret) 4560 goto out_iov; 4561 kiocb.ki_pos = pos; 4562 4563 file_start_write(file); 4564 4565 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 4566 if (ret > 0) 4567 fsnotify_modify(file); 4568 4569 file_end_write(file); 4570 out_iov: 4571 kfree(iov); 4572 out_acct: 4573 if (ret > 0) 4574 add_wchar(current, ret); 4575 inc_syscw(current); 4576 return ret; 4577 } 4578 4579 long btrfs_ioctl(struct file *file, unsigned int 4580 cmd, unsigned long arg) 4581 { 4582 struct inode *inode = file_inode(file); 4583 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4584 struct btrfs_root *root = BTRFS_I(inode)->root; 4585 void __user *argp = (void __user *)arg; 4586 4587 switch (cmd) { 4588 case FS_IOC_GETVERSION: 4589 return btrfs_ioctl_getversion(inode, argp); 4590 case FS_IOC_GETFSLABEL: 4591 return btrfs_ioctl_get_fslabel(fs_info, argp); 4592 case FS_IOC_SETFSLABEL: 4593 return btrfs_ioctl_set_fslabel(file, argp); 4594 case FITRIM: 4595 return btrfs_ioctl_fitrim(fs_info, argp); 4596 case BTRFS_IOC_SNAP_CREATE: 4597 return btrfs_ioctl_snap_create(file, argp, 0); 4598 case BTRFS_IOC_SNAP_CREATE_V2: 4599 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4600 case BTRFS_IOC_SUBVOL_CREATE: 4601 return btrfs_ioctl_snap_create(file, argp, 1); 4602 case BTRFS_IOC_SUBVOL_CREATE_V2: 4603 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4604 case BTRFS_IOC_SNAP_DESTROY: 4605 return btrfs_ioctl_snap_destroy(file, argp, false); 4606 case BTRFS_IOC_SNAP_DESTROY_V2: 4607 return btrfs_ioctl_snap_destroy(file, argp, true); 4608 case BTRFS_IOC_SUBVOL_GETFLAGS: 4609 return btrfs_ioctl_subvol_getflags(inode, argp); 4610 case BTRFS_IOC_SUBVOL_SETFLAGS: 4611 return btrfs_ioctl_subvol_setflags(file, argp); 4612 case BTRFS_IOC_DEFAULT_SUBVOL: 4613 return btrfs_ioctl_default_subvol(file, argp); 4614 case BTRFS_IOC_DEFRAG: 4615 return btrfs_ioctl_defrag(file, NULL); 4616 case BTRFS_IOC_DEFRAG_RANGE: 4617 return btrfs_ioctl_defrag(file, argp); 4618 case BTRFS_IOC_RESIZE: 4619 return btrfs_ioctl_resize(file, argp); 4620 case BTRFS_IOC_ADD_DEV: 4621 return btrfs_ioctl_add_dev(fs_info, argp); 4622 case BTRFS_IOC_RM_DEV: 4623 return btrfs_ioctl_rm_dev(file, argp); 4624 case BTRFS_IOC_RM_DEV_V2: 4625 return btrfs_ioctl_rm_dev_v2(file, argp); 4626 case BTRFS_IOC_FS_INFO: 4627 return btrfs_ioctl_fs_info(fs_info, argp); 4628 case BTRFS_IOC_DEV_INFO: 4629 return btrfs_ioctl_dev_info(fs_info, argp); 4630 case BTRFS_IOC_TREE_SEARCH: 4631 return btrfs_ioctl_tree_search(inode, argp); 4632 case BTRFS_IOC_TREE_SEARCH_V2: 4633 return btrfs_ioctl_tree_search_v2(inode, argp); 4634 case BTRFS_IOC_INO_LOOKUP: 4635 return btrfs_ioctl_ino_lookup(root, argp); 4636 case BTRFS_IOC_INO_PATHS: 4637 return btrfs_ioctl_ino_to_path(root, argp); 4638 case BTRFS_IOC_LOGICAL_INO: 4639 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4640 case BTRFS_IOC_LOGICAL_INO_V2: 4641 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4642 case BTRFS_IOC_SPACE_INFO: 4643 return btrfs_ioctl_space_info(fs_info, argp); 4644 case BTRFS_IOC_SYNC: { 4645 int ret; 4646 4647 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4648 if (ret) 4649 return ret; 4650 ret = btrfs_sync_fs(inode->i_sb, 1); 4651 /* 4652 * The transaction thread may want to do more work, 4653 * namely it pokes the cleaner kthread that will start 4654 * processing uncleaned subvols. 4655 */ 4656 wake_up_process(fs_info->transaction_kthread); 4657 return ret; 4658 } 4659 case BTRFS_IOC_START_SYNC: 4660 return btrfs_ioctl_start_sync(root, argp); 4661 case BTRFS_IOC_WAIT_SYNC: 4662 return btrfs_ioctl_wait_sync(fs_info, argp); 4663 case BTRFS_IOC_SCRUB: 4664 return btrfs_ioctl_scrub(file, argp); 4665 case BTRFS_IOC_SCRUB_CANCEL: 4666 return btrfs_ioctl_scrub_cancel(fs_info); 4667 case BTRFS_IOC_SCRUB_PROGRESS: 4668 return btrfs_ioctl_scrub_progress(fs_info, argp); 4669 case BTRFS_IOC_BALANCE_V2: 4670 return btrfs_ioctl_balance(file, argp); 4671 case BTRFS_IOC_BALANCE_CTL: 4672 return btrfs_ioctl_balance_ctl(fs_info, arg); 4673 case BTRFS_IOC_BALANCE_PROGRESS: 4674 return btrfs_ioctl_balance_progress(fs_info, argp); 4675 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4676 return btrfs_ioctl_set_received_subvol(file, argp); 4677 #ifdef CONFIG_64BIT 4678 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4679 return btrfs_ioctl_set_received_subvol_32(file, argp); 4680 #endif 4681 case BTRFS_IOC_SEND: 4682 return _btrfs_ioctl_send(inode, argp, false); 4683 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4684 case BTRFS_IOC_SEND_32: 4685 return _btrfs_ioctl_send(inode, argp, true); 4686 #endif 4687 case BTRFS_IOC_GET_DEV_STATS: 4688 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4689 case BTRFS_IOC_QUOTA_CTL: 4690 return btrfs_ioctl_quota_ctl(file, argp); 4691 case BTRFS_IOC_QGROUP_ASSIGN: 4692 return btrfs_ioctl_qgroup_assign(file, argp); 4693 case BTRFS_IOC_QGROUP_CREATE: 4694 return btrfs_ioctl_qgroup_create(file, argp); 4695 case BTRFS_IOC_QGROUP_LIMIT: 4696 return btrfs_ioctl_qgroup_limit(file, argp); 4697 case BTRFS_IOC_QUOTA_RESCAN: 4698 return btrfs_ioctl_quota_rescan(file, argp); 4699 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4700 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4701 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4702 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4703 case BTRFS_IOC_DEV_REPLACE: 4704 return btrfs_ioctl_dev_replace(fs_info, argp); 4705 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4706 return btrfs_ioctl_get_supported_features(argp); 4707 case BTRFS_IOC_GET_FEATURES: 4708 return btrfs_ioctl_get_features(fs_info, argp); 4709 case BTRFS_IOC_SET_FEATURES: 4710 return btrfs_ioctl_set_features(file, argp); 4711 case BTRFS_IOC_GET_SUBVOL_INFO: 4712 return btrfs_ioctl_get_subvol_info(inode, argp); 4713 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4714 return btrfs_ioctl_get_subvol_rootref(root, argp); 4715 case BTRFS_IOC_INO_LOOKUP_USER: 4716 return btrfs_ioctl_ino_lookup_user(file, argp); 4717 case FS_IOC_ENABLE_VERITY: 4718 return fsverity_ioctl_enable(file, (const void __user *)argp); 4719 case FS_IOC_MEASURE_VERITY: 4720 return fsverity_ioctl_measure(file, argp); 4721 case BTRFS_IOC_ENCODED_READ: 4722 return btrfs_ioctl_encoded_read(file, argp, false); 4723 case BTRFS_IOC_ENCODED_WRITE: 4724 return btrfs_ioctl_encoded_write(file, argp, false); 4725 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4726 case BTRFS_IOC_ENCODED_READ_32: 4727 return btrfs_ioctl_encoded_read(file, argp, true); 4728 case BTRFS_IOC_ENCODED_WRITE_32: 4729 return btrfs_ioctl_encoded_write(file, argp, true); 4730 #endif 4731 } 4732 4733 return -ENOTTY; 4734 } 4735 4736 #ifdef CONFIG_COMPAT 4737 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4738 { 4739 /* 4740 * These all access 32-bit values anyway so no further 4741 * handling is necessary. 4742 */ 4743 switch (cmd) { 4744 case FS_IOC32_GETVERSION: 4745 cmd = FS_IOC_GETVERSION; 4746 break; 4747 } 4748 4749 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4750 } 4751 #endif 4752