1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include "compat.h" 45 #include "ctree.h" 46 #include "disk-io.h" 47 #include "transaction.h" 48 #include "btrfs_inode.h" 49 #include "ioctl.h" 50 #include "print-tree.h" 51 #include "volumes.h" 52 #include "locking.h" 53 #include "inode-map.h" 54 #include "backref.h" 55 #include "rcu-string.h" 56 57 /* Mask out flags that are inappropriate for the given type of inode. */ 58 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 59 { 60 if (S_ISDIR(mode)) 61 return flags; 62 else if (S_ISREG(mode)) 63 return flags & ~FS_DIRSYNC_FL; 64 else 65 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 66 } 67 68 /* 69 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 70 */ 71 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 72 { 73 unsigned int iflags = 0; 74 75 if (flags & BTRFS_INODE_SYNC) 76 iflags |= FS_SYNC_FL; 77 if (flags & BTRFS_INODE_IMMUTABLE) 78 iflags |= FS_IMMUTABLE_FL; 79 if (flags & BTRFS_INODE_APPEND) 80 iflags |= FS_APPEND_FL; 81 if (flags & BTRFS_INODE_NODUMP) 82 iflags |= FS_NODUMP_FL; 83 if (flags & BTRFS_INODE_NOATIME) 84 iflags |= FS_NOATIME_FL; 85 if (flags & BTRFS_INODE_DIRSYNC) 86 iflags |= FS_DIRSYNC_FL; 87 if (flags & BTRFS_INODE_NODATACOW) 88 iflags |= FS_NOCOW_FL; 89 90 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 91 iflags |= FS_COMPR_FL; 92 else if (flags & BTRFS_INODE_NOCOMPRESS) 93 iflags |= FS_NOCOMP_FL; 94 95 return iflags; 96 } 97 98 /* 99 * Update inode->i_flags based on the btrfs internal flags. 100 */ 101 void btrfs_update_iflags(struct inode *inode) 102 { 103 struct btrfs_inode *ip = BTRFS_I(inode); 104 105 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 106 107 if (ip->flags & BTRFS_INODE_SYNC) 108 inode->i_flags |= S_SYNC; 109 if (ip->flags & BTRFS_INODE_IMMUTABLE) 110 inode->i_flags |= S_IMMUTABLE; 111 if (ip->flags & BTRFS_INODE_APPEND) 112 inode->i_flags |= S_APPEND; 113 if (ip->flags & BTRFS_INODE_NOATIME) 114 inode->i_flags |= S_NOATIME; 115 if (ip->flags & BTRFS_INODE_DIRSYNC) 116 inode->i_flags |= S_DIRSYNC; 117 } 118 119 /* 120 * Inherit flags from the parent inode. 121 * 122 * Currently only the compression flags and the cow flags are inherited. 123 */ 124 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 125 { 126 unsigned int flags; 127 128 if (!dir) 129 return; 130 131 flags = BTRFS_I(dir)->flags; 132 133 if (flags & BTRFS_INODE_NOCOMPRESS) { 134 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 135 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 136 } else if (flags & BTRFS_INODE_COMPRESS) { 137 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 138 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 139 } 140 141 if (flags & BTRFS_INODE_NODATACOW) 142 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 143 144 btrfs_update_iflags(inode); 145 } 146 147 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 148 { 149 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode); 150 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 151 152 if (copy_to_user(arg, &flags, sizeof(flags))) 153 return -EFAULT; 154 return 0; 155 } 156 157 static int check_flags(unsigned int flags) 158 { 159 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 160 FS_NOATIME_FL | FS_NODUMP_FL | \ 161 FS_SYNC_FL | FS_DIRSYNC_FL | \ 162 FS_NOCOMP_FL | FS_COMPR_FL | 163 FS_NOCOW_FL)) 164 return -EOPNOTSUPP; 165 166 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 167 return -EINVAL; 168 169 return 0; 170 } 171 172 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 173 { 174 struct inode *inode = file->f_path.dentry->d_inode; 175 struct btrfs_inode *ip = BTRFS_I(inode); 176 struct btrfs_root *root = ip->root; 177 struct btrfs_trans_handle *trans; 178 unsigned int flags, oldflags; 179 int ret; 180 u64 ip_oldflags; 181 unsigned int i_oldflags; 182 183 if (btrfs_root_readonly(root)) 184 return -EROFS; 185 186 if (copy_from_user(&flags, arg, sizeof(flags))) 187 return -EFAULT; 188 189 ret = check_flags(flags); 190 if (ret) 191 return ret; 192 193 if (!inode_owner_or_capable(inode)) 194 return -EACCES; 195 196 mutex_lock(&inode->i_mutex); 197 198 ip_oldflags = ip->flags; 199 i_oldflags = inode->i_flags; 200 201 flags = btrfs_mask_flags(inode->i_mode, flags); 202 oldflags = btrfs_flags_to_ioctl(ip->flags); 203 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 204 if (!capable(CAP_LINUX_IMMUTABLE)) { 205 ret = -EPERM; 206 goto out_unlock; 207 } 208 } 209 210 ret = mnt_want_write_file(file); 211 if (ret) 212 goto out_unlock; 213 214 if (flags & FS_SYNC_FL) 215 ip->flags |= BTRFS_INODE_SYNC; 216 else 217 ip->flags &= ~BTRFS_INODE_SYNC; 218 if (flags & FS_IMMUTABLE_FL) 219 ip->flags |= BTRFS_INODE_IMMUTABLE; 220 else 221 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 222 if (flags & FS_APPEND_FL) 223 ip->flags |= BTRFS_INODE_APPEND; 224 else 225 ip->flags &= ~BTRFS_INODE_APPEND; 226 if (flags & FS_NODUMP_FL) 227 ip->flags |= BTRFS_INODE_NODUMP; 228 else 229 ip->flags &= ~BTRFS_INODE_NODUMP; 230 if (flags & FS_NOATIME_FL) 231 ip->flags |= BTRFS_INODE_NOATIME; 232 else 233 ip->flags &= ~BTRFS_INODE_NOATIME; 234 if (flags & FS_DIRSYNC_FL) 235 ip->flags |= BTRFS_INODE_DIRSYNC; 236 else 237 ip->flags &= ~BTRFS_INODE_DIRSYNC; 238 if (flags & FS_NOCOW_FL) 239 ip->flags |= BTRFS_INODE_NODATACOW; 240 else 241 ip->flags &= ~BTRFS_INODE_NODATACOW; 242 243 /* 244 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 245 * flag may be changed automatically if compression code won't make 246 * things smaller. 247 */ 248 if (flags & FS_NOCOMP_FL) { 249 ip->flags &= ~BTRFS_INODE_COMPRESS; 250 ip->flags |= BTRFS_INODE_NOCOMPRESS; 251 } else if (flags & FS_COMPR_FL) { 252 ip->flags |= BTRFS_INODE_COMPRESS; 253 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 254 } else { 255 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 256 } 257 258 trans = btrfs_start_transaction(root, 1); 259 if (IS_ERR(trans)) { 260 ret = PTR_ERR(trans); 261 goto out_drop; 262 } 263 264 btrfs_update_iflags(inode); 265 inode_inc_iversion(inode); 266 inode->i_ctime = CURRENT_TIME; 267 ret = btrfs_update_inode(trans, root, inode); 268 269 btrfs_end_transaction(trans, root); 270 out_drop: 271 if (ret) { 272 ip->flags = ip_oldflags; 273 inode->i_flags = i_oldflags; 274 } 275 276 mnt_drop_write_file(file); 277 out_unlock: 278 mutex_unlock(&inode->i_mutex); 279 return ret; 280 } 281 282 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 283 { 284 struct inode *inode = file->f_path.dentry->d_inode; 285 286 return put_user(inode->i_generation, arg); 287 } 288 289 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 290 { 291 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb); 292 struct btrfs_device *device; 293 struct request_queue *q; 294 struct fstrim_range range; 295 u64 minlen = ULLONG_MAX; 296 u64 num_devices = 0; 297 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 298 int ret; 299 300 if (!capable(CAP_SYS_ADMIN)) 301 return -EPERM; 302 303 rcu_read_lock(); 304 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 305 dev_list) { 306 if (!device->bdev) 307 continue; 308 q = bdev_get_queue(device->bdev); 309 if (blk_queue_discard(q)) { 310 num_devices++; 311 minlen = min((u64)q->limits.discard_granularity, 312 minlen); 313 } 314 } 315 rcu_read_unlock(); 316 317 if (!num_devices) 318 return -EOPNOTSUPP; 319 if (copy_from_user(&range, arg, sizeof(range))) 320 return -EFAULT; 321 if (range.start > total_bytes) 322 return -EINVAL; 323 324 range.len = min(range.len, total_bytes - range.start); 325 range.minlen = max(range.minlen, minlen); 326 ret = btrfs_trim_fs(fs_info->tree_root, &range); 327 if (ret < 0) 328 return ret; 329 330 if (copy_to_user(arg, &range, sizeof(range))) 331 return -EFAULT; 332 333 return 0; 334 } 335 336 static noinline int create_subvol(struct btrfs_root *root, 337 struct dentry *dentry, 338 char *name, int namelen, 339 u64 *async_transid) 340 { 341 struct btrfs_trans_handle *trans; 342 struct btrfs_key key; 343 struct btrfs_root_item root_item; 344 struct btrfs_inode_item *inode_item; 345 struct extent_buffer *leaf; 346 struct btrfs_root *new_root; 347 struct dentry *parent = dentry->d_parent; 348 struct inode *dir; 349 int ret; 350 int err; 351 u64 objectid; 352 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 353 u64 index = 0; 354 355 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 356 if (ret) 357 return ret; 358 359 dir = parent->d_inode; 360 361 /* 362 * 1 - inode item 363 * 2 - refs 364 * 1 - root item 365 * 2 - dir items 366 */ 367 trans = btrfs_start_transaction(root, 6); 368 if (IS_ERR(trans)) 369 return PTR_ERR(trans); 370 371 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 372 0, objectid, NULL, 0, 0, 0); 373 if (IS_ERR(leaf)) { 374 ret = PTR_ERR(leaf); 375 goto fail; 376 } 377 378 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 379 btrfs_set_header_bytenr(leaf, leaf->start); 380 btrfs_set_header_generation(leaf, trans->transid); 381 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 382 btrfs_set_header_owner(leaf, objectid); 383 384 write_extent_buffer(leaf, root->fs_info->fsid, 385 (unsigned long)btrfs_header_fsid(leaf), 386 BTRFS_FSID_SIZE); 387 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 388 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 389 BTRFS_UUID_SIZE); 390 btrfs_mark_buffer_dirty(leaf); 391 392 inode_item = &root_item.inode; 393 memset(inode_item, 0, sizeof(*inode_item)); 394 inode_item->generation = cpu_to_le64(1); 395 inode_item->size = cpu_to_le64(3); 396 inode_item->nlink = cpu_to_le32(1); 397 inode_item->nbytes = cpu_to_le64(root->leafsize); 398 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 399 400 root_item.flags = 0; 401 root_item.byte_limit = 0; 402 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT); 403 404 btrfs_set_root_bytenr(&root_item, leaf->start); 405 btrfs_set_root_generation(&root_item, trans->transid); 406 btrfs_set_root_level(&root_item, 0); 407 btrfs_set_root_refs(&root_item, 1); 408 btrfs_set_root_used(&root_item, leaf->len); 409 btrfs_set_root_last_snapshot(&root_item, 0); 410 411 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress)); 412 root_item.drop_level = 0; 413 414 btrfs_tree_unlock(leaf); 415 free_extent_buffer(leaf); 416 leaf = NULL; 417 418 btrfs_set_root_dirid(&root_item, new_dirid); 419 420 key.objectid = objectid; 421 key.offset = 0; 422 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 423 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 424 &root_item); 425 if (ret) 426 goto fail; 427 428 key.offset = (u64)-1; 429 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 430 if (IS_ERR(new_root)) { 431 btrfs_abort_transaction(trans, root, PTR_ERR(new_root)); 432 ret = PTR_ERR(new_root); 433 goto fail; 434 } 435 436 btrfs_record_root_in_trans(trans, new_root); 437 438 ret = btrfs_create_subvol_root(trans, new_root, new_dirid); 439 if (ret) { 440 /* We potentially lose an unused inode item here */ 441 btrfs_abort_transaction(trans, root, ret); 442 goto fail; 443 } 444 445 /* 446 * insert the directory item 447 */ 448 ret = btrfs_set_inode_index(dir, &index); 449 if (ret) { 450 btrfs_abort_transaction(trans, root, ret); 451 goto fail; 452 } 453 454 ret = btrfs_insert_dir_item(trans, root, 455 name, namelen, dir, &key, 456 BTRFS_FT_DIR, index); 457 if (ret) { 458 btrfs_abort_transaction(trans, root, ret); 459 goto fail; 460 } 461 462 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 463 ret = btrfs_update_inode(trans, root, dir); 464 BUG_ON(ret); 465 466 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 467 objectid, root->root_key.objectid, 468 btrfs_ino(dir), index, name, namelen); 469 470 BUG_ON(ret); 471 472 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry)); 473 fail: 474 if (async_transid) { 475 *async_transid = trans->transid; 476 err = btrfs_commit_transaction_async(trans, root, 1); 477 } else { 478 err = btrfs_commit_transaction(trans, root); 479 } 480 if (err && !ret) 481 ret = err; 482 return ret; 483 } 484 485 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry, 486 char *name, int namelen, u64 *async_transid, 487 bool readonly) 488 { 489 struct inode *inode; 490 struct btrfs_pending_snapshot *pending_snapshot; 491 struct btrfs_trans_handle *trans; 492 int ret; 493 494 if (!root->ref_cows) 495 return -EINVAL; 496 497 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 498 if (!pending_snapshot) 499 return -ENOMEM; 500 501 btrfs_init_block_rsv(&pending_snapshot->block_rsv); 502 pending_snapshot->dentry = dentry; 503 pending_snapshot->root = root; 504 pending_snapshot->readonly = readonly; 505 506 trans = btrfs_start_transaction(root->fs_info->extent_root, 5); 507 if (IS_ERR(trans)) { 508 ret = PTR_ERR(trans); 509 goto fail; 510 } 511 512 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot); 513 BUG_ON(ret); 514 515 spin_lock(&root->fs_info->trans_lock); 516 list_add(&pending_snapshot->list, 517 &trans->transaction->pending_snapshots); 518 spin_unlock(&root->fs_info->trans_lock); 519 if (async_transid) { 520 *async_transid = trans->transid; 521 ret = btrfs_commit_transaction_async(trans, 522 root->fs_info->extent_root, 1); 523 } else { 524 ret = btrfs_commit_transaction(trans, 525 root->fs_info->extent_root); 526 } 527 BUG_ON(ret); 528 529 ret = pending_snapshot->error; 530 if (ret) 531 goto fail; 532 533 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 534 if (ret) 535 goto fail; 536 537 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry); 538 if (IS_ERR(inode)) { 539 ret = PTR_ERR(inode); 540 goto fail; 541 } 542 BUG_ON(!inode); 543 d_instantiate(dentry, inode); 544 ret = 0; 545 fail: 546 kfree(pending_snapshot); 547 return ret; 548 } 549 550 /* copy of check_sticky in fs/namei.c() 551 * It's inline, so penalty for filesystems that don't use sticky bit is 552 * minimal. 553 */ 554 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode) 555 { 556 uid_t fsuid = current_fsuid(); 557 558 if (!(dir->i_mode & S_ISVTX)) 559 return 0; 560 if (inode->i_uid == fsuid) 561 return 0; 562 if (dir->i_uid == fsuid) 563 return 0; 564 return !capable(CAP_FOWNER); 565 } 566 567 /* copy of may_delete in fs/namei.c() 568 * Check whether we can remove a link victim from directory dir, check 569 * whether the type of victim is right. 570 * 1. We can't do it if dir is read-only (done in permission()) 571 * 2. We should have write and exec permissions on dir 572 * 3. We can't remove anything from append-only dir 573 * 4. We can't do anything with immutable dir (done in permission()) 574 * 5. If the sticky bit on dir is set we should either 575 * a. be owner of dir, or 576 * b. be owner of victim, or 577 * c. have CAP_FOWNER capability 578 * 6. If the victim is append-only or immutable we can't do antyhing with 579 * links pointing to it. 580 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 581 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 582 * 9. We can't remove a root or mountpoint. 583 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 584 * nfs_async_unlink(). 585 */ 586 587 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir) 588 { 589 int error; 590 591 if (!victim->d_inode) 592 return -ENOENT; 593 594 BUG_ON(victim->d_parent->d_inode != dir); 595 audit_inode_child(victim, dir); 596 597 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 598 if (error) 599 return error; 600 if (IS_APPEND(dir)) 601 return -EPERM; 602 if (btrfs_check_sticky(dir, victim->d_inode)|| 603 IS_APPEND(victim->d_inode)|| 604 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 605 return -EPERM; 606 if (isdir) { 607 if (!S_ISDIR(victim->d_inode->i_mode)) 608 return -ENOTDIR; 609 if (IS_ROOT(victim)) 610 return -EBUSY; 611 } else if (S_ISDIR(victim->d_inode->i_mode)) 612 return -EISDIR; 613 if (IS_DEADDIR(dir)) 614 return -ENOENT; 615 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 616 return -EBUSY; 617 return 0; 618 } 619 620 /* copy of may_create in fs/namei.c() */ 621 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 622 { 623 if (child->d_inode) 624 return -EEXIST; 625 if (IS_DEADDIR(dir)) 626 return -ENOENT; 627 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 628 } 629 630 /* 631 * Create a new subvolume below @parent. This is largely modeled after 632 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 633 * inside this filesystem so it's quite a bit simpler. 634 */ 635 static noinline int btrfs_mksubvol(struct path *parent, 636 char *name, int namelen, 637 struct btrfs_root *snap_src, 638 u64 *async_transid, bool readonly) 639 { 640 struct inode *dir = parent->dentry->d_inode; 641 struct dentry *dentry; 642 int error; 643 644 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 645 646 dentry = lookup_one_len(name, parent->dentry, namelen); 647 error = PTR_ERR(dentry); 648 if (IS_ERR(dentry)) 649 goto out_unlock; 650 651 error = -EEXIST; 652 if (dentry->d_inode) 653 goto out_dput; 654 655 error = mnt_want_write(parent->mnt); 656 if (error) 657 goto out_dput; 658 659 error = btrfs_may_create(dir, dentry); 660 if (error) 661 goto out_drop_write; 662 663 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 664 665 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 666 goto out_up_read; 667 668 if (snap_src) { 669 error = create_snapshot(snap_src, dentry, 670 name, namelen, async_transid, readonly); 671 } else { 672 error = create_subvol(BTRFS_I(dir)->root, dentry, 673 name, namelen, async_transid); 674 } 675 if (!error) 676 fsnotify_mkdir(dir, dentry); 677 out_up_read: 678 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 679 out_drop_write: 680 mnt_drop_write(parent->mnt); 681 out_dput: 682 dput(dentry); 683 out_unlock: 684 mutex_unlock(&dir->i_mutex); 685 return error; 686 } 687 688 /* 689 * When we're defragging a range, we don't want to kick it off again 690 * if it is really just waiting for delalloc to send it down. 691 * If we find a nice big extent or delalloc range for the bytes in the 692 * file you want to defrag, we return 0 to let you know to skip this 693 * part of the file 694 */ 695 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh) 696 { 697 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 698 struct extent_map *em = NULL; 699 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 700 u64 end; 701 702 read_lock(&em_tree->lock); 703 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 704 read_unlock(&em_tree->lock); 705 706 if (em) { 707 end = extent_map_end(em); 708 free_extent_map(em); 709 if (end - offset > thresh) 710 return 0; 711 } 712 /* if we already have a nice delalloc here, just stop */ 713 thresh /= 2; 714 end = count_range_bits(io_tree, &offset, offset + thresh, 715 thresh, EXTENT_DELALLOC, 1); 716 if (end >= thresh) 717 return 0; 718 return 1; 719 } 720 721 /* 722 * helper function to walk through a file and find extents 723 * newer than a specific transid, and smaller than thresh. 724 * 725 * This is used by the defragging code to find new and small 726 * extents 727 */ 728 static int find_new_extents(struct btrfs_root *root, 729 struct inode *inode, u64 newer_than, 730 u64 *off, int thresh) 731 { 732 struct btrfs_path *path; 733 struct btrfs_key min_key; 734 struct btrfs_key max_key; 735 struct extent_buffer *leaf; 736 struct btrfs_file_extent_item *extent; 737 int type; 738 int ret; 739 u64 ino = btrfs_ino(inode); 740 741 path = btrfs_alloc_path(); 742 if (!path) 743 return -ENOMEM; 744 745 min_key.objectid = ino; 746 min_key.type = BTRFS_EXTENT_DATA_KEY; 747 min_key.offset = *off; 748 749 max_key.objectid = ino; 750 max_key.type = (u8)-1; 751 max_key.offset = (u64)-1; 752 753 path->keep_locks = 1; 754 755 while(1) { 756 ret = btrfs_search_forward(root, &min_key, &max_key, 757 path, 0, newer_than); 758 if (ret != 0) 759 goto none; 760 if (min_key.objectid != ino) 761 goto none; 762 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 763 goto none; 764 765 leaf = path->nodes[0]; 766 extent = btrfs_item_ptr(leaf, path->slots[0], 767 struct btrfs_file_extent_item); 768 769 type = btrfs_file_extent_type(leaf, extent); 770 if (type == BTRFS_FILE_EXTENT_REG && 771 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 772 check_defrag_in_cache(inode, min_key.offset, thresh)) { 773 *off = min_key.offset; 774 btrfs_free_path(path); 775 return 0; 776 } 777 778 if (min_key.offset == (u64)-1) 779 goto none; 780 781 min_key.offset++; 782 btrfs_release_path(path); 783 } 784 none: 785 btrfs_free_path(path); 786 return -ENOENT; 787 } 788 789 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 790 { 791 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 792 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 793 struct extent_map *em; 794 u64 len = PAGE_CACHE_SIZE; 795 796 /* 797 * hopefully we have this extent in the tree already, try without 798 * the full extent lock 799 */ 800 read_lock(&em_tree->lock); 801 em = lookup_extent_mapping(em_tree, start, len); 802 read_unlock(&em_tree->lock); 803 804 if (!em) { 805 /* get the big lock and read metadata off disk */ 806 lock_extent(io_tree, start, start + len - 1); 807 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 808 unlock_extent(io_tree, start, start + len - 1); 809 810 if (IS_ERR(em)) 811 return NULL; 812 } 813 814 return em; 815 } 816 817 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 818 { 819 struct extent_map *next; 820 bool ret = true; 821 822 /* this is the last extent */ 823 if (em->start + em->len >= i_size_read(inode)) 824 return false; 825 826 next = defrag_lookup_extent(inode, em->start + em->len); 827 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 828 ret = false; 829 830 free_extent_map(next); 831 return ret; 832 } 833 834 static int should_defrag_range(struct inode *inode, u64 start, int thresh, 835 u64 *last_len, u64 *skip, u64 *defrag_end) 836 { 837 struct extent_map *em; 838 int ret = 1; 839 bool next_mergeable = true; 840 841 /* 842 * make sure that once we start defragging an extent, we keep on 843 * defragging it 844 */ 845 if (start < *defrag_end) 846 return 1; 847 848 *skip = 0; 849 850 em = defrag_lookup_extent(inode, start); 851 if (!em) 852 return 0; 853 854 /* this will cover holes, and inline extents */ 855 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 856 ret = 0; 857 goto out; 858 } 859 860 next_mergeable = defrag_check_next_extent(inode, em); 861 862 /* 863 * we hit a real extent, if it is big or the next extent is not a 864 * real extent, don't bother defragging it 865 */ 866 if ((*last_len == 0 || *last_len >= thresh) && 867 (em->len >= thresh || !next_mergeable)) 868 ret = 0; 869 out: 870 /* 871 * last_len ends up being a counter of how many bytes we've defragged. 872 * every time we choose not to defrag an extent, we reset *last_len 873 * so that the next tiny extent will force a defrag. 874 * 875 * The end result of this is that tiny extents before a single big 876 * extent will force at least part of that big extent to be defragged. 877 */ 878 if (ret) { 879 *defrag_end = extent_map_end(em); 880 } else { 881 *last_len = 0; 882 *skip = extent_map_end(em); 883 *defrag_end = 0; 884 } 885 886 free_extent_map(em); 887 return ret; 888 } 889 890 /* 891 * it doesn't do much good to defrag one or two pages 892 * at a time. This pulls in a nice chunk of pages 893 * to COW and defrag. 894 * 895 * It also makes sure the delalloc code has enough 896 * dirty data to avoid making new small extents as part 897 * of the defrag 898 * 899 * It's a good idea to start RA on this range 900 * before calling this. 901 */ 902 static int cluster_pages_for_defrag(struct inode *inode, 903 struct page **pages, 904 unsigned long start_index, 905 int num_pages) 906 { 907 unsigned long file_end; 908 u64 isize = i_size_read(inode); 909 u64 page_start; 910 u64 page_end; 911 u64 page_cnt; 912 int ret; 913 int i; 914 int i_done; 915 struct btrfs_ordered_extent *ordered; 916 struct extent_state *cached_state = NULL; 917 struct extent_io_tree *tree; 918 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 919 920 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 921 if (!isize || start_index > file_end) 922 return 0; 923 924 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 925 926 ret = btrfs_delalloc_reserve_space(inode, 927 page_cnt << PAGE_CACHE_SHIFT); 928 if (ret) 929 return ret; 930 i_done = 0; 931 tree = &BTRFS_I(inode)->io_tree; 932 933 /* step one, lock all the pages */ 934 for (i = 0; i < page_cnt; i++) { 935 struct page *page; 936 again: 937 page = find_or_create_page(inode->i_mapping, 938 start_index + i, mask); 939 if (!page) 940 break; 941 942 page_start = page_offset(page); 943 page_end = page_start + PAGE_CACHE_SIZE - 1; 944 while (1) { 945 lock_extent(tree, page_start, page_end); 946 ordered = btrfs_lookup_ordered_extent(inode, 947 page_start); 948 unlock_extent(tree, page_start, page_end); 949 if (!ordered) 950 break; 951 952 unlock_page(page); 953 btrfs_start_ordered_extent(inode, ordered, 1); 954 btrfs_put_ordered_extent(ordered); 955 lock_page(page); 956 /* 957 * we unlocked the page above, so we need check if 958 * it was released or not. 959 */ 960 if (page->mapping != inode->i_mapping) { 961 unlock_page(page); 962 page_cache_release(page); 963 goto again; 964 } 965 } 966 967 if (!PageUptodate(page)) { 968 btrfs_readpage(NULL, page); 969 lock_page(page); 970 if (!PageUptodate(page)) { 971 unlock_page(page); 972 page_cache_release(page); 973 ret = -EIO; 974 break; 975 } 976 } 977 978 if (page->mapping != inode->i_mapping) { 979 unlock_page(page); 980 page_cache_release(page); 981 goto again; 982 } 983 984 pages[i] = page; 985 i_done++; 986 } 987 if (!i_done || ret) 988 goto out; 989 990 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 991 goto out; 992 993 /* 994 * so now we have a nice long stream of locked 995 * and up to date pages, lets wait on them 996 */ 997 for (i = 0; i < i_done; i++) 998 wait_on_page_writeback(pages[i]); 999 1000 page_start = page_offset(pages[0]); 1001 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 1002 1003 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1004 page_start, page_end - 1, 0, &cached_state); 1005 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1006 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1007 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state, 1008 GFP_NOFS); 1009 1010 if (i_done != page_cnt) { 1011 spin_lock(&BTRFS_I(inode)->lock); 1012 BTRFS_I(inode)->outstanding_extents++; 1013 spin_unlock(&BTRFS_I(inode)->lock); 1014 btrfs_delalloc_release_space(inode, 1015 (page_cnt - i_done) << PAGE_CACHE_SHIFT); 1016 } 1017 1018 1019 btrfs_set_extent_delalloc(inode, page_start, page_end - 1, 1020 &cached_state); 1021 1022 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1023 page_start, page_end - 1, &cached_state, 1024 GFP_NOFS); 1025 1026 for (i = 0; i < i_done; i++) { 1027 clear_page_dirty_for_io(pages[i]); 1028 ClearPageChecked(pages[i]); 1029 set_page_extent_mapped(pages[i]); 1030 set_page_dirty(pages[i]); 1031 unlock_page(pages[i]); 1032 page_cache_release(pages[i]); 1033 } 1034 return i_done; 1035 out: 1036 for (i = 0; i < i_done; i++) { 1037 unlock_page(pages[i]); 1038 page_cache_release(pages[i]); 1039 } 1040 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT); 1041 return ret; 1042 1043 } 1044 1045 int btrfs_defrag_file(struct inode *inode, struct file *file, 1046 struct btrfs_ioctl_defrag_range_args *range, 1047 u64 newer_than, unsigned long max_to_defrag) 1048 { 1049 struct btrfs_root *root = BTRFS_I(inode)->root; 1050 struct btrfs_super_block *disk_super; 1051 struct file_ra_state *ra = NULL; 1052 unsigned long last_index; 1053 u64 isize = i_size_read(inode); 1054 u64 features; 1055 u64 last_len = 0; 1056 u64 skip = 0; 1057 u64 defrag_end = 0; 1058 u64 newer_off = range->start; 1059 unsigned long i; 1060 unsigned long ra_index = 0; 1061 int ret; 1062 int defrag_count = 0; 1063 int compress_type = BTRFS_COMPRESS_ZLIB; 1064 int extent_thresh = range->extent_thresh; 1065 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 1066 int cluster = max_cluster; 1067 u64 new_align = ~((u64)128 * 1024 - 1); 1068 struct page **pages = NULL; 1069 1070 if (extent_thresh == 0) 1071 extent_thresh = 256 * 1024; 1072 1073 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1074 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1075 return -EINVAL; 1076 if (range->compress_type) 1077 compress_type = range->compress_type; 1078 } 1079 1080 if (isize == 0) 1081 return 0; 1082 1083 /* 1084 * if we were not given a file, allocate a readahead 1085 * context 1086 */ 1087 if (!file) { 1088 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1089 if (!ra) 1090 return -ENOMEM; 1091 file_ra_state_init(ra, inode->i_mapping); 1092 } else { 1093 ra = &file->f_ra; 1094 } 1095 1096 pages = kmalloc(sizeof(struct page *) * max_cluster, 1097 GFP_NOFS); 1098 if (!pages) { 1099 ret = -ENOMEM; 1100 goto out_ra; 1101 } 1102 1103 /* find the last page to defrag */ 1104 if (range->start + range->len > range->start) { 1105 last_index = min_t(u64, isize - 1, 1106 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1107 } else { 1108 last_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1109 } 1110 1111 if (newer_than) { 1112 ret = find_new_extents(root, inode, newer_than, 1113 &newer_off, 64 * 1024); 1114 if (!ret) { 1115 range->start = newer_off; 1116 /* 1117 * we always align our defrag to help keep 1118 * the extents in the file evenly spaced 1119 */ 1120 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1121 } else 1122 goto out_ra; 1123 } else { 1124 i = range->start >> PAGE_CACHE_SHIFT; 1125 } 1126 if (!max_to_defrag) 1127 max_to_defrag = last_index + 1; 1128 1129 /* 1130 * make writeback starts from i, so the defrag range can be 1131 * written sequentially. 1132 */ 1133 if (i < inode->i_mapping->writeback_index) 1134 inode->i_mapping->writeback_index = i; 1135 1136 while (i <= last_index && defrag_count < max_to_defrag && 1137 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> 1138 PAGE_CACHE_SHIFT)) { 1139 /* 1140 * make sure we stop running if someone unmounts 1141 * the FS 1142 */ 1143 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1144 break; 1145 1146 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1147 extent_thresh, &last_len, &skip, 1148 &defrag_end)) { 1149 unsigned long next; 1150 /* 1151 * the should_defrag function tells us how much to skip 1152 * bump our counter by the suggested amount 1153 */ 1154 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1155 i = max(i + 1, next); 1156 continue; 1157 } 1158 1159 if (!newer_than) { 1160 cluster = (PAGE_CACHE_ALIGN(defrag_end) >> 1161 PAGE_CACHE_SHIFT) - i; 1162 cluster = min(cluster, max_cluster); 1163 } else { 1164 cluster = max_cluster; 1165 } 1166 1167 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1168 BTRFS_I(inode)->force_compress = compress_type; 1169 1170 if (i + cluster > ra_index) { 1171 ra_index = max(i, ra_index); 1172 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1173 cluster); 1174 ra_index += max_cluster; 1175 } 1176 1177 mutex_lock(&inode->i_mutex); 1178 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1179 if (ret < 0) { 1180 mutex_unlock(&inode->i_mutex); 1181 goto out_ra; 1182 } 1183 1184 defrag_count += ret; 1185 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret); 1186 mutex_unlock(&inode->i_mutex); 1187 1188 if (newer_than) { 1189 if (newer_off == (u64)-1) 1190 break; 1191 1192 if (ret > 0) 1193 i += ret; 1194 1195 newer_off = max(newer_off + 1, 1196 (u64)i << PAGE_CACHE_SHIFT); 1197 1198 ret = find_new_extents(root, inode, 1199 newer_than, &newer_off, 1200 64 * 1024); 1201 if (!ret) { 1202 range->start = newer_off; 1203 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1204 } else { 1205 break; 1206 } 1207 } else { 1208 if (ret > 0) { 1209 i += ret; 1210 last_len += ret << PAGE_CACHE_SHIFT; 1211 } else { 1212 i++; 1213 last_len = 0; 1214 } 1215 } 1216 } 1217 1218 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) 1219 filemap_flush(inode->i_mapping); 1220 1221 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1222 /* the filemap_flush will queue IO into the worker threads, but 1223 * we have to make sure the IO is actually started and that 1224 * ordered extents get created before we return 1225 */ 1226 atomic_inc(&root->fs_info->async_submit_draining); 1227 while (atomic_read(&root->fs_info->nr_async_submits) || 1228 atomic_read(&root->fs_info->async_delalloc_pages)) { 1229 wait_event(root->fs_info->async_submit_wait, 1230 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1231 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1232 } 1233 atomic_dec(&root->fs_info->async_submit_draining); 1234 1235 mutex_lock(&inode->i_mutex); 1236 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1237 mutex_unlock(&inode->i_mutex); 1238 } 1239 1240 disk_super = root->fs_info->super_copy; 1241 features = btrfs_super_incompat_flags(disk_super); 1242 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1243 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 1244 btrfs_set_super_incompat_flags(disk_super, features); 1245 } 1246 1247 ret = defrag_count; 1248 1249 out_ra: 1250 if (!file) 1251 kfree(ra); 1252 kfree(pages); 1253 return ret; 1254 } 1255 1256 static noinline int btrfs_ioctl_resize(struct btrfs_root *root, 1257 void __user *arg) 1258 { 1259 u64 new_size; 1260 u64 old_size; 1261 u64 devid = 1; 1262 struct btrfs_ioctl_vol_args *vol_args; 1263 struct btrfs_trans_handle *trans; 1264 struct btrfs_device *device = NULL; 1265 char *sizestr; 1266 char *devstr = NULL; 1267 int ret = 0; 1268 int mod = 0; 1269 1270 if (root->fs_info->sb->s_flags & MS_RDONLY) 1271 return -EROFS; 1272 1273 if (!capable(CAP_SYS_ADMIN)) 1274 return -EPERM; 1275 1276 mutex_lock(&root->fs_info->volume_mutex); 1277 if (root->fs_info->balance_ctl) { 1278 printk(KERN_INFO "btrfs: balance in progress\n"); 1279 ret = -EINVAL; 1280 goto out; 1281 } 1282 1283 vol_args = memdup_user(arg, sizeof(*vol_args)); 1284 if (IS_ERR(vol_args)) { 1285 ret = PTR_ERR(vol_args); 1286 goto out; 1287 } 1288 1289 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1290 1291 sizestr = vol_args->name; 1292 devstr = strchr(sizestr, ':'); 1293 if (devstr) { 1294 char *end; 1295 sizestr = devstr + 1; 1296 *devstr = '\0'; 1297 devstr = vol_args->name; 1298 devid = simple_strtoull(devstr, &end, 10); 1299 printk(KERN_INFO "btrfs: resizing devid %llu\n", 1300 (unsigned long long)devid); 1301 } 1302 device = btrfs_find_device(root, devid, NULL, NULL); 1303 if (!device) { 1304 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n", 1305 (unsigned long long)devid); 1306 ret = -EINVAL; 1307 goto out_free; 1308 } 1309 if (device->fs_devices && device->fs_devices->seeding) { 1310 printk(KERN_INFO "btrfs: resizer unable to apply on " 1311 "seeding device %llu\n", 1312 (unsigned long long)devid); 1313 ret = -EINVAL; 1314 goto out_free; 1315 } 1316 1317 if (!strcmp(sizestr, "max")) 1318 new_size = device->bdev->bd_inode->i_size; 1319 else { 1320 if (sizestr[0] == '-') { 1321 mod = -1; 1322 sizestr++; 1323 } else if (sizestr[0] == '+') { 1324 mod = 1; 1325 sizestr++; 1326 } 1327 new_size = memparse(sizestr, NULL); 1328 if (new_size == 0) { 1329 ret = -EINVAL; 1330 goto out_free; 1331 } 1332 } 1333 1334 old_size = device->total_bytes; 1335 1336 if (mod < 0) { 1337 if (new_size > old_size) { 1338 ret = -EINVAL; 1339 goto out_free; 1340 } 1341 new_size = old_size - new_size; 1342 } else if (mod > 0) { 1343 new_size = old_size + new_size; 1344 } 1345 1346 if (new_size < 256 * 1024 * 1024) { 1347 ret = -EINVAL; 1348 goto out_free; 1349 } 1350 if (new_size > device->bdev->bd_inode->i_size) { 1351 ret = -EFBIG; 1352 goto out_free; 1353 } 1354 1355 do_div(new_size, root->sectorsize); 1356 new_size *= root->sectorsize; 1357 1358 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n", 1359 rcu_str_deref(device->name), 1360 (unsigned long long)new_size); 1361 1362 if (new_size > old_size) { 1363 trans = btrfs_start_transaction(root, 0); 1364 if (IS_ERR(trans)) { 1365 ret = PTR_ERR(trans); 1366 goto out_free; 1367 } 1368 ret = btrfs_grow_device(trans, device, new_size); 1369 btrfs_commit_transaction(trans, root); 1370 } else if (new_size < old_size) { 1371 ret = btrfs_shrink_device(device, new_size); 1372 } 1373 1374 out_free: 1375 kfree(vol_args); 1376 out: 1377 mutex_unlock(&root->fs_info->volume_mutex); 1378 return ret; 1379 } 1380 1381 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1382 char *name, 1383 unsigned long fd, 1384 int subvol, 1385 u64 *transid, 1386 bool readonly) 1387 { 1388 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 1389 struct file *src_file; 1390 int namelen; 1391 int ret = 0; 1392 1393 if (root->fs_info->sb->s_flags & MS_RDONLY) 1394 return -EROFS; 1395 1396 namelen = strlen(name); 1397 if (strchr(name, '/')) { 1398 ret = -EINVAL; 1399 goto out; 1400 } 1401 1402 if (name[0] == '.' && 1403 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1404 ret = -EEXIST; 1405 goto out; 1406 } 1407 1408 if (subvol) { 1409 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1410 NULL, transid, readonly); 1411 } else { 1412 struct inode *src_inode; 1413 src_file = fget(fd); 1414 if (!src_file) { 1415 ret = -EINVAL; 1416 goto out; 1417 } 1418 1419 src_inode = src_file->f_path.dentry->d_inode; 1420 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) { 1421 printk(KERN_INFO "btrfs: Snapshot src from " 1422 "another FS\n"); 1423 ret = -EINVAL; 1424 fput(src_file); 1425 goto out; 1426 } 1427 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1428 BTRFS_I(src_inode)->root, 1429 transid, readonly); 1430 fput(src_file); 1431 } 1432 out: 1433 return ret; 1434 } 1435 1436 static noinline int btrfs_ioctl_snap_create(struct file *file, 1437 void __user *arg, int subvol) 1438 { 1439 struct btrfs_ioctl_vol_args *vol_args; 1440 int ret; 1441 1442 vol_args = memdup_user(arg, sizeof(*vol_args)); 1443 if (IS_ERR(vol_args)) 1444 return PTR_ERR(vol_args); 1445 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1446 1447 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1448 vol_args->fd, subvol, 1449 NULL, false); 1450 1451 kfree(vol_args); 1452 return ret; 1453 } 1454 1455 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1456 void __user *arg, int subvol) 1457 { 1458 struct btrfs_ioctl_vol_args_v2 *vol_args; 1459 int ret; 1460 u64 transid = 0; 1461 u64 *ptr = NULL; 1462 bool readonly = false; 1463 1464 vol_args = memdup_user(arg, sizeof(*vol_args)); 1465 if (IS_ERR(vol_args)) 1466 return PTR_ERR(vol_args); 1467 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1468 1469 if (vol_args->flags & 1470 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) { 1471 ret = -EOPNOTSUPP; 1472 goto out; 1473 } 1474 1475 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1476 ptr = &transid; 1477 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1478 readonly = true; 1479 1480 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1481 vol_args->fd, subvol, 1482 ptr, readonly); 1483 1484 if (ret == 0 && ptr && 1485 copy_to_user(arg + 1486 offsetof(struct btrfs_ioctl_vol_args_v2, 1487 transid), ptr, sizeof(*ptr))) 1488 ret = -EFAULT; 1489 out: 1490 kfree(vol_args); 1491 return ret; 1492 } 1493 1494 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1495 void __user *arg) 1496 { 1497 struct inode *inode = fdentry(file)->d_inode; 1498 struct btrfs_root *root = BTRFS_I(inode)->root; 1499 int ret = 0; 1500 u64 flags = 0; 1501 1502 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1503 return -EINVAL; 1504 1505 down_read(&root->fs_info->subvol_sem); 1506 if (btrfs_root_readonly(root)) 1507 flags |= BTRFS_SUBVOL_RDONLY; 1508 up_read(&root->fs_info->subvol_sem); 1509 1510 if (copy_to_user(arg, &flags, sizeof(flags))) 1511 ret = -EFAULT; 1512 1513 return ret; 1514 } 1515 1516 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1517 void __user *arg) 1518 { 1519 struct inode *inode = fdentry(file)->d_inode; 1520 struct btrfs_root *root = BTRFS_I(inode)->root; 1521 struct btrfs_trans_handle *trans; 1522 u64 root_flags; 1523 u64 flags; 1524 int ret = 0; 1525 1526 if (root->fs_info->sb->s_flags & MS_RDONLY) 1527 return -EROFS; 1528 1529 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1530 return -EINVAL; 1531 1532 if (copy_from_user(&flags, arg, sizeof(flags))) 1533 return -EFAULT; 1534 1535 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) 1536 return -EINVAL; 1537 1538 if (flags & ~BTRFS_SUBVOL_RDONLY) 1539 return -EOPNOTSUPP; 1540 1541 if (!inode_owner_or_capable(inode)) 1542 return -EACCES; 1543 1544 down_write(&root->fs_info->subvol_sem); 1545 1546 /* nothing to do */ 1547 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1548 goto out; 1549 1550 root_flags = btrfs_root_flags(&root->root_item); 1551 if (flags & BTRFS_SUBVOL_RDONLY) 1552 btrfs_set_root_flags(&root->root_item, 1553 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1554 else 1555 btrfs_set_root_flags(&root->root_item, 1556 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1557 1558 trans = btrfs_start_transaction(root, 1); 1559 if (IS_ERR(trans)) { 1560 ret = PTR_ERR(trans); 1561 goto out_reset; 1562 } 1563 1564 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1565 &root->root_key, &root->root_item); 1566 1567 btrfs_commit_transaction(trans, root); 1568 out_reset: 1569 if (ret) 1570 btrfs_set_root_flags(&root->root_item, root_flags); 1571 out: 1572 up_write(&root->fs_info->subvol_sem); 1573 return ret; 1574 } 1575 1576 /* 1577 * helper to check if the subvolume references other subvolumes 1578 */ 1579 static noinline int may_destroy_subvol(struct btrfs_root *root) 1580 { 1581 struct btrfs_path *path; 1582 struct btrfs_key key; 1583 int ret; 1584 1585 path = btrfs_alloc_path(); 1586 if (!path) 1587 return -ENOMEM; 1588 1589 key.objectid = root->root_key.objectid; 1590 key.type = BTRFS_ROOT_REF_KEY; 1591 key.offset = (u64)-1; 1592 1593 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1594 &key, path, 0, 0); 1595 if (ret < 0) 1596 goto out; 1597 BUG_ON(ret == 0); 1598 1599 ret = 0; 1600 if (path->slots[0] > 0) { 1601 path->slots[0]--; 1602 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1603 if (key.objectid == root->root_key.objectid && 1604 key.type == BTRFS_ROOT_REF_KEY) 1605 ret = -ENOTEMPTY; 1606 } 1607 out: 1608 btrfs_free_path(path); 1609 return ret; 1610 } 1611 1612 static noinline int key_in_sk(struct btrfs_key *key, 1613 struct btrfs_ioctl_search_key *sk) 1614 { 1615 struct btrfs_key test; 1616 int ret; 1617 1618 test.objectid = sk->min_objectid; 1619 test.type = sk->min_type; 1620 test.offset = sk->min_offset; 1621 1622 ret = btrfs_comp_cpu_keys(key, &test); 1623 if (ret < 0) 1624 return 0; 1625 1626 test.objectid = sk->max_objectid; 1627 test.type = sk->max_type; 1628 test.offset = sk->max_offset; 1629 1630 ret = btrfs_comp_cpu_keys(key, &test); 1631 if (ret > 0) 1632 return 0; 1633 return 1; 1634 } 1635 1636 static noinline int copy_to_sk(struct btrfs_root *root, 1637 struct btrfs_path *path, 1638 struct btrfs_key *key, 1639 struct btrfs_ioctl_search_key *sk, 1640 char *buf, 1641 unsigned long *sk_offset, 1642 int *num_found) 1643 { 1644 u64 found_transid; 1645 struct extent_buffer *leaf; 1646 struct btrfs_ioctl_search_header sh; 1647 unsigned long item_off; 1648 unsigned long item_len; 1649 int nritems; 1650 int i; 1651 int slot; 1652 int ret = 0; 1653 1654 leaf = path->nodes[0]; 1655 slot = path->slots[0]; 1656 nritems = btrfs_header_nritems(leaf); 1657 1658 if (btrfs_header_generation(leaf) > sk->max_transid) { 1659 i = nritems; 1660 goto advance_key; 1661 } 1662 found_transid = btrfs_header_generation(leaf); 1663 1664 for (i = slot; i < nritems; i++) { 1665 item_off = btrfs_item_ptr_offset(leaf, i); 1666 item_len = btrfs_item_size_nr(leaf, i); 1667 1668 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE) 1669 item_len = 0; 1670 1671 if (sizeof(sh) + item_len + *sk_offset > 1672 BTRFS_SEARCH_ARGS_BUFSIZE) { 1673 ret = 1; 1674 goto overflow; 1675 } 1676 1677 btrfs_item_key_to_cpu(leaf, key, i); 1678 if (!key_in_sk(key, sk)) 1679 continue; 1680 1681 sh.objectid = key->objectid; 1682 sh.offset = key->offset; 1683 sh.type = key->type; 1684 sh.len = item_len; 1685 sh.transid = found_transid; 1686 1687 /* copy search result header */ 1688 memcpy(buf + *sk_offset, &sh, sizeof(sh)); 1689 *sk_offset += sizeof(sh); 1690 1691 if (item_len) { 1692 char *p = buf + *sk_offset; 1693 /* copy the item */ 1694 read_extent_buffer(leaf, p, 1695 item_off, item_len); 1696 *sk_offset += item_len; 1697 } 1698 (*num_found)++; 1699 1700 if (*num_found >= sk->nr_items) 1701 break; 1702 } 1703 advance_key: 1704 ret = 0; 1705 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 1706 key->offset++; 1707 else if (key->type < (u8)-1 && key->type < sk->max_type) { 1708 key->offset = 0; 1709 key->type++; 1710 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 1711 key->offset = 0; 1712 key->type = 0; 1713 key->objectid++; 1714 } else 1715 ret = 1; 1716 overflow: 1717 return ret; 1718 } 1719 1720 static noinline int search_ioctl(struct inode *inode, 1721 struct btrfs_ioctl_search_args *args) 1722 { 1723 struct btrfs_root *root; 1724 struct btrfs_key key; 1725 struct btrfs_key max_key; 1726 struct btrfs_path *path; 1727 struct btrfs_ioctl_search_key *sk = &args->key; 1728 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 1729 int ret; 1730 int num_found = 0; 1731 unsigned long sk_offset = 0; 1732 1733 path = btrfs_alloc_path(); 1734 if (!path) 1735 return -ENOMEM; 1736 1737 if (sk->tree_id == 0) { 1738 /* search the root of the inode that was passed */ 1739 root = BTRFS_I(inode)->root; 1740 } else { 1741 key.objectid = sk->tree_id; 1742 key.type = BTRFS_ROOT_ITEM_KEY; 1743 key.offset = (u64)-1; 1744 root = btrfs_read_fs_root_no_name(info, &key); 1745 if (IS_ERR(root)) { 1746 printk(KERN_ERR "could not find root %llu\n", 1747 sk->tree_id); 1748 btrfs_free_path(path); 1749 return -ENOENT; 1750 } 1751 } 1752 1753 key.objectid = sk->min_objectid; 1754 key.type = sk->min_type; 1755 key.offset = sk->min_offset; 1756 1757 max_key.objectid = sk->max_objectid; 1758 max_key.type = sk->max_type; 1759 max_key.offset = sk->max_offset; 1760 1761 path->keep_locks = 1; 1762 1763 while(1) { 1764 ret = btrfs_search_forward(root, &key, &max_key, path, 0, 1765 sk->min_transid); 1766 if (ret != 0) { 1767 if (ret > 0) 1768 ret = 0; 1769 goto err; 1770 } 1771 ret = copy_to_sk(root, path, &key, sk, args->buf, 1772 &sk_offset, &num_found); 1773 btrfs_release_path(path); 1774 if (ret || num_found >= sk->nr_items) 1775 break; 1776 1777 } 1778 ret = 0; 1779 err: 1780 sk->nr_items = num_found; 1781 btrfs_free_path(path); 1782 return ret; 1783 } 1784 1785 static noinline int btrfs_ioctl_tree_search(struct file *file, 1786 void __user *argp) 1787 { 1788 struct btrfs_ioctl_search_args *args; 1789 struct inode *inode; 1790 int ret; 1791 1792 if (!capable(CAP_SYS_ADMIN)) 1793 return -EPERM; 1794 1795 args = memdup_user(argp, sizeof(*args)); 1796 if (IS_ERR(args)) 1797 return PTR_ERR(args); 1798 1799 inode = fdentry(file)->d_inode; 1800 ret = search_ioctl(inode, args); 1801 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1802 ret = -EFAULT; 1803 kfree(args); 1804 return ret; 1805 } 1806 1807 /* 1808 * Search INODE_REFs to identify path name of 'dirid' directory 1809 * in a 'tree_id' tree. and sets path name to 'name'. 1810 */ 1811 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1812 u64 tree_id, u64 dirid, char *name) 1813 { 1814 struct btrfs_root *root; 1815 struct btrfs_key key; 1816 char *ptr; 1817 int ret = -1; 1818 int slot; 1819 int len; 1820 int total_len = 0; 1821 struct btrfs_inode_ref *iref; 1822 struct extent_buffer *l; 1823 struct btrfs_path *path; 1824 1825 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1826 name[0]='\0'; 1827 return 0; 1828 } 1829 1830 path = btrfs_alloc_path(); 1831 if (!path) 1832 return -ENOMEM; 1833 1834 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 1835 1836 key.objectid = tree_id; 1837 key.type = BTRFS_ROOT_ITEM_KEY; 1838 key.offset = (u64)-1; 1839 root = btrfs_read_fs_root_no_name(info, &key); 1840 if (IS_ERR(root)) { 1841 printk(KERN_ERR "could not find root %llu\n", tree_id); 1842 ret = -ENOENT; 1843 goto out; 1844 } 1845 1846 key.objectid = dirid; 1847 key.type = BTRFS_INODE_REF_KEY; 1848 key.offset = (u64)-1; 1849 1850 while(1) { 1851 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1852 if (ret < 0) 1853 goto out; 1854 1855 l = path->nodes[0]; 1856 slot = path->slots[0]; 1857 if (ret > 0 && slot > 0) 1858 slot--; 1859 btrfs_item_key_to_cpu(l, &key, slot); 1860 1861 if (ret > 0 && (key.objectid != dirid || 1862 key.type != BTRFS_INODE_REF_KEY)) { 1863 ret = -ENOENT; 1864 goto out; 1865 } 1866 1867 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1868 len = btrfs_inode_ref_name_len(l, iref); 1869 ptr -= len + 1; 1870 total_len += len + 1; 1871 if (ptr < name) 1872 goto out; 1873 1874 *(ptr + len) = '/'; 1875 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len); 1876 1877 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1878 break; 1879 1880 btrfs_release_path(path); 1881 key.objectid = key.offset; 1882 key.offset = (u64)-1; 1883 dirid = key.objectid; 1884 } 1885 if (ptr < name) 1886 goto out; 1887 memmove(name, ptr, total_len); 1888 name[total_len]='\0'; 1889 ret = 0; 1890 out: 1891 btrfs_free_path(path); 1892 return ret; 1893 } 1894 1895 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 1896 void __user *argp) 1897 { 1898 struct btrfs_ioctl_ino_lookup_args *args; 1899 struct inode *inode; 1900 int ret; 1901 1902 if (!capable(CAP_SYS_ADMIN)) 1903 return -EPERM; 1904 1905 args = memdup_user(argp, sizeof(*args)); 1906 if (IS_ERR(args)) 1907 return PTR_ERR(args); 1908 1909 inode = fdentry(file)->d_inode; 1910 1911 if (args->treeid == 0) 1912 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 1913 1914 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 1915 args->treeid, args->objectid, 1916 args->name); 1917 1918 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1919 ret = -EFAULT; 1920 1921 kfree(args); 1922 return ret; 1923 } 1924 1925 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 1926 void __user *arg) 1927 { 1928 struct dentry *parent = fdentry(file); 1929 struct dentry *dentry; 1930 struct inode *dir = parent->d_inode; 1931 struct inode *inode; 1932 struct btrfs_root *root = BTRFS_I(dir)->root; 1933 struct btrfs_root *dest = NULL; 1934 struct btrfs_ioctl_vol_args *vol_args; 1935 struct btrfs_trans_handle *trans; 1936 int namelen; 1937 int ret; 1938 int err = 0; 1939 1940 vol_args = memdup_user(arg, sizeof(*vol_args)); 1941 if (IS_ERR(vol_args)) 1942 return PTR_ERR(vol_args); 1943 1944 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1945 namelen = strlen(vol_args->name); 1946 if (strchr(vol_args->name, '/') || 1947 strncmp(vol_args->name, "..", namelen) == 0) { 1948 err = -EINVAL; 1949 goto out; 1950 } 1951 1952 err = mnt_want_write_file(file); 1953 if (err) 1954 goto out; 1955 1956 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 1957 dentry = lookup_one_len(vol_args->name, parent, namelen); 1958 if (IS_ERR(dentry)) { 1959 err = PTR_ERR(dentry); 1960 goto out_unlock_dir; 1961 } 1962 1963 if (!dentry->d_inode) { 1964 err = -ENOENT; 1965 goto out_dput; 1966 } 1967 1968 inode = dentry->d_inode; 1969 dest = BTRFS_I(inode)->root; 1970 if (!capable(CAP_SYS_ADMIN)){ 1971 /* 1972 * Regular user. Only allow this with a special mount 1973 * option, when the user has write+exec access to the 1974 * subvol root, and when rmdir(2) would have been 1975 * allowed. 1976 * 1977 * Note that this is _not_ check that the subvol is 1978 * empty or doesn't contain data that we wouldn't 1979 * otherwise be able to delete. 1980 * 1981 * Users who want to delete empty subvols should try 1982 * rmdir(2). 1983 */ 1984 err = -EPERM; 1985 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 1986 goto out_dput; 1987 1988 /* 1989 * Do not allow deletion if the parent dir is the same 1990 * as the dir to be deleted. That means the ioctl 1991 * must be called on the dentry referencing the root 1992 * of the subvol, not a random directory contained 1993 * within it. 1994 */ 1995 err = -EINVAL; 1996 if (root == dest) 1997 goto out_dput; 1998 1999 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2000 if (err) 2001 goto out_dput; 2002 2003 /* check if subvolume may be deleted by a non-root user */ 2004 err = btrfs_may_delete(dir, dentry, 1); 2005 if (err) 2006 goto out_dput; 2007 } 2008 2009 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2010 err = -EINVAL; 2011 goto out_dput; 2012 } 2013 2014 mutex_lock(&inode->i_mutex); 2015 err = d_invalidate(dentry); 2016 if (err) 2017 goto out_unlock; 2018 2019 down_write(&root->fs_info->subvol_sem); 2020 2021 err = may_destroy_subvol(dest); 2022 if (err) 2023 goto out_up_write; 2024 2025 trans = btrfs_start_transaction(root, 0); 2026 if (IS_ERR(trans)) { 2027 err = PTR_ERR(trans); 2028 goto out_up_write; 2029 } 2030 trans->block_rsv = &root->fs_info->global_block_rsv; 2031 2032 ret = btrfs_unlink_subvol(trans, root, dir, 2033 dest->root_key.objectid, 2034 dentry->d_name.name, 2035 dentry->d_name.len); 2036 if (ret) { 2037 err = ret; 2038 btrfs_abort_transaction(trans, root, ret); 2039 goto out_end_trans; 2040 } 2041 2042 btrfs_record_root_in_trans(trans, dest); 2043 2044 memset(&dest->root_item.drop_progress, 0, 2045 sizeof(dest->root_item.drop_progress)); 2046 dest->root_item.drop_level = 0; 2047 btrfs_set_root_refs(&dest->root_item, 0); 2048 2049 if (!xchg(&dest->orphan_item_inserted, 1)) { 2050 ret = btrfs_insert_orphan_item(trans, 2051 root->fs_info->tree_root, 2052 dest->root_key.objectid); 2053 if (ret) { 2054 btrfs_abort_transaction(trans, root, ret); 2055 err = ret; 2056 goto out_end_trans; 2057 } 2058 } 2059 out_end_trans: 2060 ret = btrfs_end_transaction(trans, root); 2061 if (ret && !err) 2062 err = ret; 2063 inode->i_flags |= S_DEAD; 2064 out_up_write: 2065 up_write(&root->fs_info->subvol_sem); 2066 out_unlock: 2067 mutex_unlock(&inode->i_mutex); 2068 if (!err) { 2069 shrink_dcache_sb(root->fs_info->sb); 2070 btrfs_invalidate_inodes(dest); 2071 d_delete(dentry); 2072 } 2073 out_dput: 2074 dput(dentry); 2075 out_unlock_dir: 2076 mutex_unlock(&dir->i_mutex); 2077 mnt_drop_write_file(file); 2078 out: 2079 kfree(vol_args); 2080 return err; 2081 } 2082 2083 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2084 { 2085 struct inode *inode = fdentry(file)->d_inode; 2086 struct btrfs_root *root = BTRFS_I(inode)->root; 2087 struct btrfs_ioctl_defrag_range_args *range; 2088 int ret; 2089 2090 if (btrfs_root_readonly(root)) 2091 return -EROFS; 2092 2093 ret = mnt_want_write_file(file); 2094 if (ret) 2095 return ret; 2096 2097 switch (inode->i_mode & S_IFMT) { 2098 case S_IFDIR: 2099 if (!capable(CAP_SYS_ADMIN)) { 2100 ret = -EPERM; 2101 goto out; 2102 } 2103 ret = btrfs_defrag_root(root, 0); 2104 if (ret) 2105 goto out; 2106 ret = btrfs_defrag_root(root->fs_info->extent_root, 0); 2107 break; 2108 case S_IFREG: 2109 if (!(file->f_mode & FMODE_WRITE)) { 2110 ret = -EINVAL; 2111 goto out; 2112 } 2113 2114 range = kzalloc(sizeof(*range), GFP_KERNEL); 2115 if (!range) { 2116 ret = -ENOMEM; 2117 goto out; 2118 } 2119 2120 if (argp) { 2121 if (copy_from_user(range, argp, 2122 sizeof(*range))) { 2123 ret = -EFAULT; 2124 kfree(range); 2125 goto out; 2126 } 2127 /* compression requires us to start the IO */ 2128 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2129 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2130 range->extent_thresh = (u32)-1; 2131 } 2132 } else { 2133 /* the rest are all set to zero by kzalloc */ 2134 range->len = (u64)-1; 2135 } 2136 ret = btrfs_defrag_file(fdentry(file)->d_inode, file, 2137 range, 0, 0); 2138 if (ret > 0) 2139 ret = 0; 2140 kfree(range); 2141 break; 2142 default: 2143 ret = -EINVAL; 2144 } 2145 out: 2146 mnt_drop_write_file(file); 2147 return ret; 2148 } 2149 2150 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2151 { 2152 struct btrfs_ioctl_vol_args *vol_args; 2153 int ret; 2154 2155 if (!capable(CAP_SYS_ADMIN)) 2156 return -EPERM; 2157 2158 mutex_lock(&root->fs_info->volume_mutex); 2159 if (root->fs_info->balance_ctl) { 2160 printk(KERN_INFO "btrfs: balance in progress\n"); 2161 ret = -EINVAL; 2162 goto out; 2163 } 2164 2165 vol_args = memdup_user(arg, sizeof(*vol_args)); 2166 if (IS_ERR(vol_args)) { 2167 ret = PTR_ERR(vol_args); 2168 goto out; 2169 } 2170 2171 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2172 ret = btrfs_init_new_device(root, vol_args->name); 2173 2174 kfree(vol_args); 2175 out: 2176 mutex_unlock(&root->fs_info->volume_mutex); 2177 return ret; 2178 } 2179 2180 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg) 2181 { 2182 struct btrfs_ioctl_vol_args *vol_args; 2183 int ret; 2184 2185 if (!capable(CAP_SYS_ADMIN)) 2186 return -EPERM; 2187 2188 if (root->fs_info->sb->s_flags & MS_RDONLY) 2189 return -EROFS; 2190 2191 mutex_lock(&root->fs_info->volume_mutex); 2192 if (root->fs_info->balance_ctl) { 2193 printk(KERN_INFO "btrfs: balance in progress\n"); 2194 ret = -EINVAL; 2195 goto out; 2196 } 2197 2198 vol_args = memdup_user(arg, sizeof(*vol_args)); 2199 if (IS_ERR(vol_args)) { 2200 ret = PTR_ERR(vol_args); 2201 goto out; 2202 } 2203 2204 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2205 ret = btrfs_rm_device(root, vol_args->name); 2206 2207 kfree(vol_args); 2208 out: 2209 mutex_unlock(&root->fs_info->volume_mutex); 2210 return ret; 2211 } 2212 2213 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2214 { 2215 struct btrfs_ioctl_fs_info_args *fi_args; 2216 struct btrfs_device *device; 2217 struct btrfs_device *next; 2218 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2219 int ret = 0; 2220 2221 if (!capable(CAP_SYS_ADMIN)) 2222 return -EPERM; 2223 2224 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2225 if (!fi_args) 2226 return -ENOMEM; 2227 2228 fi_args->num_devices = fs_devices->num_devices; 2229 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2230 2231 mutex_lock(&fs_devices->device_list_mutex); 2232 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2233 if (device->devid > fi_args->max_id) 2234 fi_args->max_id = device->devid; 2235 } 2236 mutex_unlock(&fs_devices->device_list_mutex); 2237 2238 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2239 ret = -EFAULT; 2240 2241 kfree(fi_args); 2242 return ret; 2243 } 2244 2245 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2246 { 2247 struct btrfs_ioctl_dev_info_args *di_args; 2248 struct btrfs_device *dev; 2249 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2250 int ret = 0; 2251 char *s_uuid = NULL; 2252 char empty_uuid[BTRFS_UUID_SIZE] = {0}; 2253 2254 if (!capable(CAP_SYS_ADMIN)) 2255 return -EPERM; 2256 2257 di_args = memdup_user(arg, sizeof(*di_args)); 2258 if (IS_ERR(di_args)) 2259 return PTR_ERR(di_args); 2260 2261 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0) 2262 s_uuid = di_args->uuid; 2263 2264 mutex_lock(&fs_devices->device_list_mutex); 2265 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL); 2266 mutex_unlock(&fs_devices->device_list_mutex); 2267 2268 if (!dev) { 2269 ret = -ENODEV; 2270 goto out; 2271 } 2272 2273 di_args->devid = dev->devid; 2274 di_args->bytes_used = dev->bytes_used; 2275 di_args->total_bytes = dev->total_bytes; 2276 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2277 if (dev->name) { 2278 struct rcu_string *name; 2279 2280 rcu_read_lock(); 2281 name = rcu_dereference(dev->name); 2282 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2283 rcu_read_unlock(); 2284 di_args->path[sizeof(di_args->path) - 1] = 0; 2285 } else { 2286 di_args->path[0] = '\0'; 2287 } 2288 2289 out: 2290 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2291 ret = -EFAULT; 2292 2293 kfree(di_args); 2294 return ret; 2295 } 2296 2297 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 2298 u64 off, u64 olen, u64 destoff) 2299 { 2300 struct inode *inode = fdentry(file)->d_inode; 2301 struct btrfs_root *root = BTRFS_I(inode)->root; 2302 struct file *src_file; 2303 struct inode *src; 2304 struct btrfs_trans_handle *trans; 2305 struct btrfs_path *path; 2306 struct extent_buffer *leaf; 2307 char *buf; 2308 struct btrfs_key key; 2309 u32 nritems; 2310 int slot; 2311 int ret; 2312 u64 len = olen; 2313 u64 bs = root->fs_info->sb->s_blocksize; 2314 u64 hint_byte; 2315 2316 /* 2317 * TODO: 2318 * - split compressed inline extents. annoying: we need to 2319 * decompress into destination's address_space (the file offset 2320 * may change, so source mapping won't do), then recompress (or 2321 * otherwise reinsert) a subrange. 2322 * - allow ranges within the same file to be cloned (provided 2323 * they don't overlap)? 2324 */ 2325 2326 /* the destination must be opened for writing */ 2327 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 2328 return -EINVAL; 2329 2330 if (btrfs_root_readonly(root)) 2331 return -EROFS; 2332 2333 ret = mnt_want_write_file(file); 2334 if (ret) 2335 return ret; 2336 2337 src_file = fget(srcfd); 2338 if (!src_file) { 2339 ret = -EBADF; 2340 goto out_drop_write; 2341 } 2342 2343 src = src_file->f_dentry->d_inode; 2344 2345 ret = -EINVAL; 2346 if (src == inode) 2347 goto out_fput; 2348 2349 /* the src must be open for reading */ 2350 if (!(src_file->f_mode & FMODE_READ)) 2351 goto out_fput; 2352 2353 /* don't make the dst file partly checksummed */ 2354 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 2355 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 2356 goto out_fput; 2357 2358 ret = -EISDIR; 2359 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 2360 goto out_fput; 2361 2362 ret = -EXDEV; 2363 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root) 2364 goto out_fput; 2365 2366 ret = -ENOMEM; 2367 buf = vmalloc(btrfs_level_size(root, 0)); 2368 if (!buf) 2369 goto out_fput; 2370 2371 path = btrfs_alloc_path(); 2372 if (!path) { 2373 vfree(buf); 2374 goto out_fput; 2375 } 2376 path->reada = 2; 2377 2378 if (inode < src) { 2379 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 2380 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 2381 } else { 2382 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 2383 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 2384 } 2385 2386 /* determine range to clone */ 2387 ret = -EINVAL; 2388 if (off + len > src->i_size || off + len < off) 2389 goto out_unlock; 2390 if (len == 0) 2391 olen = len = src->i_size - off; 2392 /* if we extend to eof, continue to block boundary */ 2393 if (off + len == src->i_size) 2394 len = ALIGN(src->i_size, bs) - off; 2395 2396 /* verify the end result is block aligned */ 2397 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 2398 !IS_ALIGNED(destoff, bs)) 2399 goto out_unlock; 2400 2401 if (destoff > inode->i_size) { 2402 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 2403 if (ret) 2404 goto out_unlock; 2405 } 2406 2407 /* truncate page cache pages from target inode range */ 2408 truncate_inode_pages_range(&inode->i_data, destoff, 2409 PAGE_CACHE_ALIGN(destoff + len) - 1); 2410 2411 /* do any pending delalloc/csum calc on src, one way or 2412 another, and lock file content */ 2413 while (1) { 2414 struct btrfs_ordered_extent *ordered; 2415 lock_extent(&BTRFS_I(src)->io_tree, off, off+len); 2416 ordered = btrfs_lookup_first_ordered_extent(src, off+len); 2417 if (!ordered && 2418 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len, 2419 EXTENT_DELALLOC, 0, NULL)) 2420 break; 2421 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len); 2422 if (ordered) 2423 btrfs_put_ordered_extent(ordered); 2424 btrfs_wait_ordered_range(src, off, len); 2425 } 2426 2427 /* clone data */ 2428 key.objectid = btrfs_ino(src); 2429 key.type = BTRFS_EXTENT_DATA_KEY; 2430 key.offset = 0; 2431 2432 while (1) { 2433 /* 2434 * note the key will change type as we walk through the 2435 * tree. 2436 */ 2437 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2438 if (ret < 0) 2439 goto out; 2440 2441 nritems = btrfs_header_nritems(path->nodes[0]); 2442 if (path->slots[0] >= nritems) { 2443 ret = btrfs_next_leaf(root, path); 2444 if (ret < 0) 2445 goto out; 2446 if (ret > 0) 2447 break; 2448 nritems = btrfs_header_nritems(path->nodes[0]); 2449 } 2450 leaf = path->nodes[0]; 2451 slot = path->slots[0]; 2452 2453 btrfs_item_key_to_cpu(leaf, &key, slot); 2454 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || 2455 key.objectid != btrfs_ino(src)) 2456 break; 2457 2458 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { 2459 struct btrfs_file_extent_item *extent; 2460 int type; 2461 u32 size; 2462 struct btrfs_key new_key; 2463 u64 disko = 0, diskl = 0; 2464 u64 datao = 0, datal = 0; 2465 u8 comp; 2466 u64 endoff; 2467 2468 size = btrfs_item_size_nr(leaf, slot); 2469 read_extent_buffer(leaf, buf, 2470 btrfs_item_ptr_offset(leaf, slot), 2471 size); 2472 2473 extent = btrfs_item_ptr(leaf, slot, 2474 struct btrfs_file_extent_item); 2475 comp = btrfs_file_extent_compression(leaf, extent); 2476 type = btrfs_file_extent_type(leaf, extent); 2477 if (type == BTRFS_FILE_EXTENT_REG || 2478 type == BTRFS_FILE_EXTENT_PREALLOC) { 2479 disko = btrfs_file_extent_disk_bytenr(leaf, 2480 extent); 2481 diskl = btrfs_file_extent_disk_num_bytes(leaf, 2482 extent); 2483 datao = btrfs_file_extent_offset(leaf, extent); 2484 datal = btrfs_file_extent_num_bytes(leaf, 2485 extent); 2486 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2487 /* take upper bound, may be compressed */ 2488 datal = btrfs_file_extent_ram_bytes(leaf, 2489 extent); 2490 } 2491 btrfs_release_path(path); 2492 2493 if (key.offset + datal <= off || 2494 key.offset >= off+len) 2495 goto next; 2496 2497 memcpy(&new_key, &key, sizeof(new_key)); 2498 new_key.objectid = btrfs_ino(inode); 2499 if (off <= key.offset) 2500 new_key.offset = key.offset + destoff - off; 2501 else 2502 new_key.offset = destoff; 2503 2504 /* 2505 * 1 - adjusting old extent (we may have to split it) 2506 * 1 - add new extent 2507 * 1 - inode update 2508 */ 2509 trans = btrfs_start_transaction(root, 3); 2510 if (IS_ERR(trans)) { 2511 ret = PTR_ERR(trans); 2512 goto out; 2513 } 2514 2515 if (type == BTRFS_FILE_EXTENT_REG || 2516 type == BTRFS_FILE_EXTENT_PREALLOC) { 2517 /* 2518 * a | --- range to clone ---| b 2519 * | ------------- extent ------------- | 2520 */ 2521 2522 /* substract range b */ 2523 if (key.offset + datal > off + len) 2524 datal = off + len - key.offset; 2525 2526 /* substract range a */ 2527 if (off > key.offset) { 2528 datao += off - key.offset; 2529 datal -= off - key.offset; 2530 } 2531 2532 ret = btrfs_drop_extents(trans, inode, 2533 new_key.offset, 2534 new_key.offset + datal, 2535 &hint_byte, 1); 2536 if (ret) { 2537 btrfs_abort_transaction(trans, root, 2538 ret); 2539 btrfs_end_transaction(trans, root); 2540 goto out; 2541 } 2542 2543 ret = btrfs_insert_empty_item(trans, root, path, 2544 &new_key, size); 2545 if (ret) { 2546 btrfs_abort_transaction(trans, root, 2547 ret); 2548 btrfs_end_transaction(trans, root); 2549 goto out; 2550 } 2551 2552 leaf = path->nodes[0]; 2553 slot = path->slots[0]; 2554 write_extent_buffer(leaf, buf, 2555 btrfs_item_ptr_offset(leaf, slot), 2556 size); 2557 2558 extent = btrfs_item_ptr(leaf, slot, 2559 struct btrfs_file_extent_item); 2560 2561 /* disko == 0 means it's a hole */ 2562 if (!disko) 2563 datao = 0; 2564 2565 btrfs_set_file_extent_offset(leaf, extent, 2566 datao); 2567 btrfs_set_file_extent_num_bytes(leaf, extent, 2568 datal); 2569 if (disko) { 2570 inode_add_bytes(inode, datal); 2571 ret = btrfs_inc_extent_ref(trans, root, 2572 disko, diskl, 0, 2573 root->root_key.objectid, 2574 btrfs_ino(inode), 2575 new_key.offset - datao, 2576 0); 2577 if (ret) { 2578 btrfs_abort_transaction(trans, 2579 root, 2580 ret); 2581 btrfs_end_transaction(trans, 2582 root); 2583 goto out; 2584 2585 } 2586 } 2587 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2588 u64 skip = 0; 2589 u64 trim = 0; 2590 if (off > key.offset) { 2591 skip = off - key.offset; 2592 new_key.offset += skip; 2593 } 2594 2595 if (key.offset + datal > off+len) 2596 trim = key.offset + datal - (off+len); 2597 2598 if (comp && (skip || trim)) { 2599 ret = -EINVAL; 2600 btrfs_end_transaction(trans, root); 2601 goto out; 2602 } 2603 size -= skip + trim; 2604 datal -= skip + trim; 2605 2606 ret = btrfs_drop_extents(trans, inode, 2607 new_key.offset, 2608 new_key.offset + datal, 2609 &hint_byte, 1); 2610 if (ret) { 2611 btrfs_abort_transaction(trans, root, 2612 ret); 2613 btrfs_end_transaction(trans, root); 2614 goto out; 2615 } 2616 2617 ret = btrfs_insert_empty_item(trans, root, path, 2618 &new_key, size); 2619 if (ret) { 2620 btrfs_abort_transaction(trans, root, 2621 ret); 2622 btrfs_end_transaction(trans, root); 2623 goto out; 2624 } 2625 2626 if (skip) { 2627 u32 start = 2628 btrfs_file_extent_calc_inline_size(0); 2629 memmove(buf+start, buf+start+skip, 2630 datal); 2631 } 2632 2633 leaf = path->nodes[0]; 2634 slot = path->slots[0]; 2635 write_extent_buffer(leaf, buf, 2636 btrfs_item_ptr_offset(leaf, slot), 2637 size); 2638 inode_add_bytes(inode, datal); 2639 } 2640 2641 btrfs_mark_buffer_dirty(leaf); 2642 btrfs_release_path(path); 2643 2644 inode_inc_iversion(inode); 2645 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2646 2647 /* 2648 * we round up to the block size at eof when 2649 * determining which extents to clone above, 2650 * but shouldn't round up the file size 2651 */ 2652 endoff = new_key.offset + datal; 2653 if (endoff > destoff+olen) 2654 endoff = destoff+olen; 2655 if (endoff > inode->i_size) 2656 btrfs_i_size_write(inode, endoff); 2657 2658 ret = btrfs_update_inode(trans, root, inode); 2659 if (ret) { 2660 btrfs_abort_transaction(trans, root, ret); 2661 btrfs_end_transaction(trans, root); 2662 goto out; 2663 } 2664 ret = btrfs_end_transaction(trans, root); 2665 } 2666 next: 2667 btrfs_release_path(path); 2668 key.offset++; 2669 } 2670 ret = 0; 2671 out: 2672 btrfs_release_path(path); 2673 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len); 2674 out_unlock: 2675 mutex_unlock(&src->i_mutex); 2676 mutex_unlock(&inode->i_mutex); 2677 vfree(buf); 2678 btrfs_free_path(path); 2679 out_fput: 2680 fput(src_file); 2681 out_drop_write: 2682 mnt_drop_write_file(file); 2683 return ret; 2684 } 2685 2686 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 2687 { 2688 struct btrfs_ioctl_clone_range_args args; 2689 2690 if (copy_from_user(&args, argp, sizeof(args))) 2691 return -EFAULT; 2692 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 2693 args.src_length, args.dest_offset); 2694 } 2695 2696 /* 2697 * there are many ways the trans_start and trans_end ioctls can lead 2698 * to deadlocks. They should only be used by applications that 2699 * basically own the machine, and have a very in depth understanding 2700 * of all the possible deadlocks and enospc problems. 2701 */ 2702 static long btrfs_ioctl_trans_start(struct file *file) 2703 { 2704 struct inode *inode = fdentry(file)->d_inode; 2705 struct btrfs_root *root = BTRFS_I(inode)->root; 2706 struct btrfs_trans_handle *trans; 2707 int ret; 2708 2709 ret = -EPERM; 2710 if (!capable(CAP_SYS_ADMIN)) 2711 goto out; 2712 2713 ret = -EINPROGRESS; 2714 if (file->private_data) 2715 goto out; 2716 2717 ret = -EROFS; 2718 if (btrfs_root_readonly(root)) 2719 goto out; 2720 2721 ret = mnt_want_write_file(file); 2722 if (ret) 2723 goto out; 2724 2725 atomic_inc(&root->fs_info->open_ioctl_trans); 2726 2727 ret = -ENOMEM; 2728 trans = btrfs_start_ioctl_transaction(root); 2729 if (IS_ERR(trans)) 2730 goto out_drop; 2731 2732 file->private_data = trans; 2733 return 0; 2734 2735 out_drop: 2736 atomic_dec(&root->fs_info->open_ioctl_trans); 2737 mnt_drop_write_file(file); 2738 out: 2739 return ret; 2740 } 2741 2742 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2743 { 2744 struct inode *inode = fdentry(file)->d_inode; 2745 struct btrfs_root *root = BTRFS_I(inode)->root; 2746 struct btrfs_root *new_root; 2747 struct btrfs_dir_item *di; 2748 struct btrfs_trans_handle *trans; 2749 struct btrfs_path *path; 2750 struct btrfs_key location; 2751 struct btrfs_disk_key disk_key; 2752 struct btrfs_super_block *disk_super; 2753 u64 features; 2754 u64 objectid = 0; 2755 u64 dir_id; 2756 2757 if (!capable(CAP_SYS_ADMIN)) 2758 return -EPERM; 2759 2760 if (copy_from_user(&objectid, argp, sizeof(objectid))) 2761 return -EFAULT; 2762 2763 if (!objectid) 2764 objectid = root->root_key.objectid; 2765 2766 location.objectid = objectid; 2767 location.type = BTRFS_ROOT_ITEM_KEY; 2768 location.offset = (u64)-1; 2769 2770 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 2771 if (IS_ERR(new_root)) 2772 return PTR_ERR(new_root); 2773 2774 if (btrfs_root_refs(&new_root->root_item) == 0) 2775 return -ENOENT; 2776 2777 path = btrfs_alloc_path(); 2778 if (!path) 2779 return -ENOMEM; 2780 path->leave_spinning = 1; 2781 2782 trans = btrfs_start_transaction(root, 1); 2783 if (IS_ERR(trans)) { 2784 btrfs_free_path(path); 2785 return PTR_ERR(trans); 2786 } 2787 2788 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 2789 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 2790 dir_id, "default", 7, 1); 2791 if (IS_ERR_OR_NULL(di)) { 2792 btrfs_free_path(path); 2793 btrfs_end_transaction(trans, root); 2794 printk(KERN_ERR "Umm, you don't have the default dir item, " 2795 "this isn't going to work\n"); 2796 return -ENOENT; 2797 } 2798 2799 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2800 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2801 btrfs_mark_buffer_dirty(path->nodes[0]); 2802 btrfs_free_path(path); 2803 2804 disk_super = root->fs_info->super_copy; 2805 features = btrfs_super_incompat_flags(disk_super); 2806 if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) { 2807 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL; 2808 btrfs_set_super_incompat_flags(disk_super, features); 2809 } 2810 btrfs_end_transaction(trans, root); 2811 2812 return 0; 2813 } 2814 2815 static void get_block_group_info(struct list_head *groups_list, 2816 struct btrfs_ioctl_space_info *space) 2817 { 2818 struct btrfs_block_group_cache *block_group; 2819 2820 space->total_bytes = 0; 2821 space->used_bytes = 0; 2822 space->flags = 0; 2823 list_for_each_entry(block_group, groups_list, list) { 2824 space->flags = block_group->flags; 2825 space->total_bytes += block_group->key.offset; 2826 space->used_bytes += 2827 btrfs_block_group_used(&block_group->item); 2828 } 2829 } 2830 2831 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 2832 { 2833 struct btrfs_ioctl_space_args space_args; 2834 struct btrfs_ioctl_space_info space; 2835 struct btrfs_ioctl_space_info *dest; 2836 struct btrfs_ioctl_space_info *dest_orig; 2837 struct btrfs_ioctl_space_info __user *user_dest; 2838 struct btrfs_space_info *info; 2839 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 2840 BTRFS_BLOCK_GROUP_SYSTEM, 2841 BTRFS_BLOCK_GROUP_METADATA, 2842 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 2843 int num_types = 4; 2844 int alloc_size; 2845 int ret = 0; 2846 u64 slot_count = 0; 2847 int i, c; 2848 2849 if (copy_from_user(&space_args, 2850 (struct btrfs_ioctl_space_args __user *)arg, 2851 sizeof(space_args))) 2852 return -EFAULT; 2853 2854 for (i = 0; i < num_types; i++) { 2855 struct btrfs_space_info *tmp; 2856 2857 info = NULL; 2858 rcu_read_lock(); 2859 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2860 list) { 2861 if (tmp->flags == types[i]) { 2862 info = tmp; 2863 break; 2864 } 2865 } 2866 rcu_read_unlock(); 2867 2868 if (!info) 2869 continue; 2870 2871 down_read(&info->groups_sem); 2872 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2873 if (!list_empty(&info->block_groups[c])) 2874 slot_count++; 2875 } 2876 up_read(&info->groups_sem); 2877 } 2878 2879 /* space_slots == 0 means they are asking for a count */ 2880 if (space_args.space_slots == 0) { 2881 space_args.total_spaces = slot_count; 2882 goto out; 2883 } 2884 2885 slot_count = min_t(u64, space_args.space_slots, slot_count); 2886 2887 alloc_size = sizeof(*dest) * slot_count; 2888 2889 /* we generally have at most 6 or so space infos, one for each raid 2890 * level. So, a whole page should be more than enough for everyone 2891 */ 2892 if (alloc_size > PAGE_CACHE_SIZE) 2893 return -ENOMEM; 2894 2895 space_args.total_spaces = 0; 2896 dest = kmalloc(alloc_size, GFP_NOFS); 2897 if (!dest) 2898 return -ENOMEM; 2899 dest_orig = dest; 2900 2901 /* now we have a buffer to copy into */ 2902 for (i = 0; i < num_types; i++) { 2903 struct btrfs_space_info *tmp; 2904 2905 if (!slot_count) 2906 break; 2907 2908 info = NULL; 2909 rcu_read_lock(); 2910 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2911 list) { 2912 if (tmp->flags == types[i]) { 2913 info = tmp; 2914 break; 2915 } 2916 } 2917 rcu_read_unlock(); 2918 2919 if (!info) 2920 continue; 2921 down_read(&info->groups_sem); 2922 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2923 if (!list_empty(&info->block_groups[c])) { 2924 get_block_group_info(&info->block_groups[c], 2925 &space); 2926 memcpy(dest, &space, sizeof(space)); 2927 dest++; 2928 space_args.total_spaces++; 2929 slot_count--; 2930 } 2931 if (!slot_count) 2932 break; 2933 } 2934 up_read(&info->groups_sem); 2935 } 2936 2937 user_dest = (struct btrfs_ioctl_space_info __user *) 2938 (arg + sizeof(struct btrfs_ioctl_space_args)); 2939 2940 if (copy_to_user(user_dest, dest_orig, alloc_size)) 2941 ret = -EFAULT; 2942 2943 kfree(dest_orig); 2944 out: 2945 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 2946 ret = -EFAULT; 2947 2948 return ret; 2949 } 2950 2951 /* 2952 * there are many ways the trans_start and trans_end ioctls can lead 2953 * to deadlocks. They should only be used by applications that 2954 * basically own the machine, and have a very in depth understanding 2955 * of all the possible deadlocks and enospc problems. 2956 */ 2957 long btrfs_ioctl_trans_end(struct file *file) 2958 { 2959 struct inode *inode = fdentry(file)->d_inode; 2960 struct btrfs_root *root = BTRFS_I(inode)->root; 2961 struct btrfs_trans_handle *trans; 2962 2963 trans = file->private_data; 2964 if (!trans) 2965 return -EINVAL; 2966 file->private_data = NULL; 2967 2968 btrfs_end_transaction(trans, root); 2969 2970 atomic_dec(&root->fs_info->open_ioctl_trans); 2971 2972 mnt_drop_write_file(file); 2973 return 0; 2974 } 2975 2976 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp) 2977 { 2978 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 2979 struct btrfs_trans_handle *trans; 2980 u64 transid; 2981 int ret; 2982 2983 trans = btrfs_start_transaction(root, 0); 2984 if (IS_ERR(trans)) 2985 return PTR_ERR(trans); 2986 transid = trans->transid; 2987 ret = btrfs_commit_transaction_async(trans, root, 0); 2988 if (ret) { 2989 btrfs_end_transaction(trans, root); 2990 return ret; 2991 } 2992 2993 if (argp) 2994 if (copy_to_user(argp, &transid, sizeof(transid))) 2995 return -EFAULT; 2996 return 0; 2997 } 2998 2999 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp) 3000 { 3001 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 3002 u64 transid; 3003 3004 if (argp) { 3005 if (copy_from_user(&transid, argp, sizeof(transid))) 3006 return -EFAULT; 3007 } else { 3008 transid = 0; /* current trans */ 3009 } 3010 return btrfs_wait_for_commit(root, transid); 3011 } 3012 3013 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg) 3014 { 3015 int ret; 3016 struct btrfs_ioctl_scrub_args *sa; 3017 3018 if (!capable(CAP_SYS_ADMIN)) 3019 return -EPERM; 3020 3021 sa = memdup_user(arg, sizeof(*sa)); 3022 if (IS_ERR(sa)) 3023 return PTR_ERR(sa); 3024 3025 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end, 3026 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY); 3027 3028 if (copy_to_user(arg, sa, sizeof(*sa))) 3029 ret = -EFAULT; 3030 3031 kfree(sa); 3032 return ret; 3033 } 3034 3035 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 3036 { 3037 if (!capable(CAP_SYS_ADMIN)) 3038 return -EPERM; 3039 3040 return btrfs_scrub_cancel(root); 3041 } 3042 3043 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 3044 void __user *arg) 3045 { 3046 struct btrfs_ioctl_scrub_args *sa; 3047 int ret; 3048 3049 if (!capable(CAP_SYS_ADMIN)) 3050 return -EPERM; 3051 3052 sa = memdup_user(arg, sizeof(*sa)); 3053 if (IS_ERR(sa)) 3054 return PTR_ERR(sa); 3055 3056 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 3057 3058 if (copy_to_user(arg, sa, sizeof(*sa))) 3059 ret = -EFAULT; 3060 3061 kfree(sa); 3062 return ret; 3063 } 3064 3065 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 3066 void __user *arg, int reset_after_read) 3067 { 3068 struct btrfs_ioctl_get_dev_stats *sa; 3069 int ret; 3070 3071 if (reset_after_read && !capable(CAP_SYS_ADMIN)) 3072 return -EPERM; 3073 3074 sa = memdup_user(arg, sizeof(*sa)); 3075 if (IS_ERR(sa)) 3076 return PTR_ERR(sa); 3077 3078 ret = btrfs_get_dev_stats(root, sa, reset_after_read); 3079 3080 if (copy_to_user(arg, sa, sizeof(*sa))) 3081 ret = -EFAULT; 3082 3083 kfree(sa); 3084 return ret; 3085 } 3086 3087 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3088 { 3089 int ret = 0; 3090 int i; 3091 u64 rel_ptr; 3092 int size; 3093 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3094 struct inode_fs_paths *ipath = NULL; 3095 struct btrfs_path *path; 3096 3097 if (!capable(CAP_SYS_ADMIN)) 3098 return -EPERM; 3099 3100 path = btrfs_alloc_path(); 3101 if (!path) { 3102 ret = -ENOMEM; 3103 goto out; 3104 } 3105 3106 ipa = memdup_user(arg, sizeof(*ipa)); 3107 if (IS_ERR(ipa)) { 3108 ret = PTR_ERR(ipa); 3109 ipa = NULL; 3110 goto out; 3111 } 3112 3113 size = min_t(u32, ipa->size, 4096); 3114 ipath = init_ipath(size, root, path); 3115 if (IS_ERR(ipath)) { 3116 ret = PTR_ERR(ipath); 3117 ipath = NULL; 3118 goto out; 3119 } 3120 3121 ret = paths_from_inode(ipa->inum, ipath); 3122 if (ret < 0) 3123 goto out; 3124 3125 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3126 rel_ptr = ipath->fspath->val[i] - 3127 (u64)(unsigned long)ipath->fspath->val; 3128 ipath->fspath->val[i] = rel_ptr; 3129 } 3130 3131 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 3132 (void *)(unsigned long)ipath->fspath, size); 3133 if (ret) { 3134 ret = -EFAULT; 3135 goto out; 3136 } 3137 3138 out: 3139 btrfs_free_path(path); 3140 free_ipath(ipath); 3141 kfree(ipa); 3142 3143 return ret; 3144 } 3145 3146 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3147 { 3148 struct btrfs_data_container *inodes = ctx; 3149 const size_t c = 3 * sizeof(u64); 3150 3151 if (inodes->bytes_left >= c) { 3152 inodes->bytes_left -= c; 3153 inodes->val[inodes->elem_cnt] = inum; 3154 inodes->val[inodes->elem_cnt + 1] = offset; 3155 inodes->val[inodes->elem_cnt + 2] = root; 3156 inodes->elem_cnt += 3; 3157 } else { 3158 inodes->bytes_missing += c - inodes->bytes_left; 3159 inodes->bytes_left = 0; 3160 inodes->elem_missed += 3; 3161 } 3162 3163 return 0; 3164 } 3165 3166 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 3167 void __user *arg) 3168 { 3169 int ret = 0; 3170 int size; 3171 u64 extent_item_pos; 3172 struct btrfs_ioctl_logical_ino_args *loi; 3173 struct btrfs_data_container *inodes = NULL; 3174 struct btrfs_path *path = NULL; 3175 struct btrfs_key key; 3176 3177 if (!capable(CAP_SYS_ADMIN)) 3178 return -EPERM; 3179 3180 loi = memdup_user(arg, sizeof(*loi)); 3181 if (IS_ERR(loi)) { 3182 ret = PTR_ERR(loi); 3183 loi = NULL; 3184 goto out; 3185 } 3186 3187 path = btrfs_alloc_path(); 3188 if (!path) { 3189 ret = -ENOMEM; 3190 goto out; 3191 } 3192 3193 size = min_t(u32, loi->size, 4096); 3194 inodes = init_data_container(size); 3195 if (IS_ERR(inodes)) { 3196 ret = PTR_ERR(inodes); 3197 inodes = NULL; 3198 goto out; 3199 } 3200 3201 ret = extent_from_logical(root->fs_info, loi->logical, path, &key); 3202 btrfs_release_path(path); 3203 3204 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) 3205 ret = -ENOENT; 3206 if (ret < 0) 3207 goto out; 3208 3209 extent_item_pos = loi->logical - key.objectid; 3210 ret = iterate_extent_inodes(root->fs_info, key.objectid, 3211 extent_item_pos, 0, build_ino_list, 3212 inodes); 3213 3214 if (ret < 0) 3215 goto out; 3216 3217 ret = copy_to_user((void *)(unsigned long)loi->inodes, 3218 (void *)(unsigned long)inodes, size); 3219 if (ret) 3220 ret = -EFAULT; 3221 3222 out: 3223 btrfs_free_path(path); 3224 kfree(inodes); 3225 kfree(loi); 3226 3227 return ret; 3228 } 3229 3230 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 3231 struct btrfs_ioctl_balance_args *bargs) 3232 { 3233 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3234 3235 bargs->flags = bctl->flags; 3236 3237 if (atomic_read(&fs_info->balance_running)) 3238 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3239 if (atomic_read(&fs_info->balance_pause_req)) 3240 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3241 if (atomic_read(&fs_info->balance_cancel_req)) 3242 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3243 3244 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3245 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3246 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3247 3248 if (lock) { 3249 spin_lock(&fs_info->balance_lock); 3250 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3251 spin_unlock(&fs_info->balance_lock); 3252 } else { 3253 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3254 } 3255 } 3256 3257 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3258 { 3259 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3260 struct btrfs_fs_info *fs_info = root->fs_info; 3261 struct btrfs_ioctl_balance_args *bargs; 3262 struct btrfs_balance_control *bctl; 3263 int ret; 3264 3265 if (!capable(CAP_SYS_ADMIN)) 3266 return -EPERM; 3267 3268 if (fs_info->sb->s_flags & MS_RDONLY) 3269 return -EROFS; 3270 3271 ret = mnt_want_write(file->f_path.mnt); 3272 if (ret) 3273 return ret; 3274 3275 mutex_lock(&fs_info->volume_mutex); 3276 mutex_lock(&fs_info->balance_mutex); 3277 3278 if (arg) { 3279 bargs = memdup_user(arg, sizeof(*bargs)); 3280 if (IS_ERR(bargs)) { 3281 ret = PTR_ERR(bargs); 3282 goto out; 3283 } 3284 3285 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3286 if (!fs_info->balance_ctl) { 3287 ret = -ENOTCONN; 3288 goto out_bargs; 3289 } 3290 3291 bctl = fs_info->balance_ctl; 3292 spin_lock(&fs_info->balance_lock); 3293 bctl->flags |= BTRFS_BALANCE_RESUME; 3294 spin_unlock(&fs_info->balance_lock); 3295 3296 goto do_balance; 3297 } 3298 } else { 3299 bargs = NULL; 3300 } 3301 3302 if (fs_info->balance_ctl) { 3303 ret = -EINPROGRESS; 3304 goto out_bargs; 3305 } 3306 3307 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3308 if (!bctl) { 3309 ret = -ENOMEM; 3310 goto out_bargs; 3311 } 3312 3313 bctl->fs_info = fs_info; 3314 if (arg) { 3315 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3316 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3317 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3318 3319 bctl->flags = bargs->flags; 3320 } else { 3321 /* balance everything - no filters */ 3322 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 3323 } 3324 3325 do_balance: 3326 ret = btrfs_balance(bctl, bargs); 3327 /* 3328 * bctl is freed in __cancel_balance or in free_fs_info if 3329 * restriper was paused all the way until unmount 3330 */ 3331 if (arg) { 3332 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3333 ret = -EFAULT; 3334 } 3335 3336 out_bargs: 3337 kfree(bargs); 3338 out: 3339 mutex_unlock(&fs_info->balance_mutex); 3340 mutex_unlock(&fs_info->volume_mutex); 3341 mnt_drop_write(file->f_path.mnt); 3342 return ret; 3343 } 3344 3345 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 3346 { 3347 if (!capable(CAP_SYS_ADMIN)) 3348 return -EPERM; 3349 3350 switch (cmd) { 3351 case BTRFS_BALANCE_CTL_PAUSE: 3352 return btrfs_pause_balance(root->fs_info); 3353 case BTRFS_BALANCE_CTL_CANCEL: 3354 return btrfs_cancel_balance(root->fs_info); 3355 } 3356 3357 return -EINVAL; 3358 } 3359 3360 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 3361 void __user *arg) 3362 { 3363 struct btrfs_fs_info *fs_info = root->fs_info; 3364 struct btrfs_ioctl_balance_args *bargs; 3365 int ret = 0; 3366 3367 if (!capable(CAP_SYS_ADMIN)) 3368 return -EPERM; 3369 3370 mutex_lock(&fs_info->balance_mutex); 3371 if (!fs_info->balance_ctl) { 3372 ret = -ENOTCONN; 3373 goto out; 3374 } 3375 3376 bargs = kzalloc(sizeof(*bargs), GFP_NOFS); 3377 if (!bargs) { 3378 ret = -ENOMEM; 3379 goto out; 3380 } 3381 3382 update_ioctl_balance_args(fs_info, 1, bargs); 3383 3384 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3385 ret = -EFAULT; 3386 3387 kfree(bargs); 3388 out: 3389 mutex_unlock(&fs_info->balance_mutex); 3390 return ret; 3391 } 3392 3393 long btrfs_ioctl(struct file *file, unsigned int 3394 cmd, unsigned long arg) 3395 { 3396 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3397 void __user *argp = (void __user *)arg; 3398 3399 switch (cmd) { 3400 case FS_IOC_GETFLAGS: 3401 return btrfs_ioctl_getflags(file, argp); 3402 case FS_IOC_SETFLAGS: 3403 return btrfs_ioctl_setflags(file, argp); 3404 case FS_IOC_GETVERSION: 3405 return btrfs_ioctl_getversion(file, argp); 3406 case FITRIM: 3407 return btrfs_ioctl_fitrim(file, argp); 3408 case BTRFS_IOC_SNAP_CREATE: 3409 return btrfs_ioctl_snap_create(file, argp, 0); 3410 case BTRFS_IOC_SNAP_CREATE_V2: 3411 return btrfs_ioctl_snap_create_v2(file, argp, 0); 3412 case BTRFS_IOC_SUBVOL_CREATE: 3413 return btrfs_ioctl_snap_create(file, argp, 1); 3414 case BTRFS_IOC_SNAP_DESTROY: 3415 return btrfs_ioctl_snap_destroy(file, argp); 3416 case BTRFS_IOC_SUBVOL_GETFLAGS: 3417 return btrfs_ioctl_subvol_getflags(file, argp); 3418 case BTRFS_IOC_SUBVOL_SETFLAGS: 3419 return btrfs_ioctl_subvol_setflags(file, argp); 3420 case BTRFS_IOC_DEFAULT_SUBVOL: 3421 return btrfs_ioctl_default_subvol(file, argp); 3422 case BTRFS_IOC_DEFRAG: 3423 return btrfs_ioctl_defrag(file, NULL); 3424 case BTRFS_IOC_DEFRAG_RANGE: 3425 return btrfs_ioctl_defrag(file, argp); 3426 case BTRFS_IOC_RESIZE: 3427 return btrfs_ioctl_resize(root, argp); 3428 case BTRFS_IOC_ADD_DEV: 3429 return btrfs_ioctl_add_dev(root, argp); 3430 case BTRFS_IOC_RM_DEV: 3431 return btrfs_ioctl_rm_dev(root, argp); 3432 case BTRFS_IOC_FS_INFO: 3433 return btrfs_ioctl_fs_info(root, argp); 3434 case BTRFS_IOC_DEV_INFO: 3435 return btrfs_ioctl_dev_info(root, argp); 3436 case BTRFS_IOC_BALANCE: 3437 return btrfs_ioctl_balance(file, NULL); 3438 case BTRFS_IOC_CLONE: 3439 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 3440 case BTRFS_IOC_CLONE_RANGE: 3441 return btrfs_ioctl_clone_range(file, argp); 3442 case BTRFS_IOC_TRANS_START: 3443 return btrfs_ioctl_trans_start(file); 3444 case BTRFS_IOC_TRANS_END: 3445 return btrfs_ioctl_trans_end(file); 3446 case BTRFS_IOC_TREE_SEARCH: 3447 return btrfs_ioctl_tree_search(file, argp); 3448 case BTRFS_IOC_INO_LOOKUP: 3449 return btrfs_ioctl_ino_lookup(file, argp); 3450 case BTRFS_IOC_INO_PATHS: 3451 return btrfs_ioctl_ino_to_path(root, argp); 3452 case BTRFS_IOC_LOGICAL_INO: 3453 return btrfs_ioctl_logical_to_ino(root, argp); 3454 case BTRFS_IOC_SPACE_INFO: 3455 return btrfs_ioctl_space_info(root, argp); 3456 case BTRFS_IOC_SYNC: 3457 btrfs_sync_fs(file->f_dentry->d_sb, 1); 3458 return 0; 3459 case BTRFS_IOC_START_SYNC: 3460 return btrfs_ioctl_start_sync(file, argp); 3461 case BTRFS_IOC_WAIT_SYNC: 3462 return btrfs_ioctl_wait_sync(file, argp); 3463 case BTRFS_IOC_SCRUB: 3464 return btrfs_ioctl_scrub(root, argp); 3465 case BTRFS_IOC_SCRUB_CANCEL: 3466 return btrfs_ioctl_scrub_cancel(root, argp); 3467 case BTRFS_IOC_SCRUB_PROGRESS: 3468 return btrfs_ioctl_scrub_progress(root, argp); 3469 case BTRFS_IOC_BALANCE_V2: 3470 return btrfs_ioctl_balance(file, argp); 3471 case BTRFS_IOC_BALANCE_CTL: 3472 return btrfs_ioctl_balance_ctl(root, arg); 3473 case BTRFS_IOC_BALANCE_PROGRESS: 3474 return btrfs_ioctl_balance_progress(root, argp); 3475 case BTRFS_IOC_GET_DEV_STATS: 3476 return btrfs_ioctl_get_dev_stats(root, argp, 0); 3477 case BTRFS_IOC_GET_AND_RESET_DEV_STATS: 3478 return btrfs_ioctl_get_dev_stats(root, argp, 1); 3479 } 3480 3481 return -ENOTTY; 3482 } 3483