xref: /linux/fs/btrfs/ioctl.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include "compat.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 
59 /* Mask out flags that are inappropriate for the given type of inode. */
60 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
61 {
62 	if (S_ISDIR(mode))
63 		return flags;
64 	else if (S_ISREG(mode))
65 		return flags & ~FS_DIRSYNC_FL;
66 	else
67 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
68 }
69 
70 /*
71  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
72  */
73 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
74 {
75 	unsigned int iflags = 0;
76 
77 	if (flags & BTRFS_INODE_SYNC)
78 		iflags |= FS_SYNC_FL;
79 	if (flags & BTRFS_INODE_IMMUTABLE)
80 		iflags |= FS_IMMUTABLE_FL;
81 	if (flags & BTRFS_INODE_APPEND)
82 		iflags |= FS_APPEND_FL;
83 	if (flags & BTRFS_INODE_NODUMP)
84 		iflags |= FS_NODUMP_FL;
85 	if (flags & BTRFS_INODE_NOATIME)
86 		iflags |= FS_NOATIME_FL;
87 	if (flags & BTRFS_INODE_DIRSYNC)
88 		iflags |= FS_DIRSYNC_FL;
89 	if (flags & BTRFS_INODE_NODATACOW)
90 		iflags |= FS_NOCOW_FL;
91 
92 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
93 		iflags |= FS_COMPR_FL;
94 	else if (flags & BTRFS_INODE_NOCOMPRESS)
95 		iflags |= FS_NOCOMP_FL;
96 
97 	return iflags;
98 }
99 
100 /*
101  * Update inode->i_flags based on the btrfs internal flags.
102  */
103 void btrfs_update_iflags(struct inode *inode)
104 {
105 	struct btrfs_inode *ip = BTRFS_I(inode);
106 
107 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
108 
109 	if (ip->flags & BTRFS_INODE_SYNC)
110 		inode->i_flags |= S_SYNC;
111 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
112 		inode->i_flags |= S_IMMUTABLE;
113 	if (ip->flags & BTRFS_INODE_APPEND)
114 		inode->i_flags |= S_APPEND;
115 	if (ip->flags & BTRFS_INODE_NOATIME)
116 		inode->i_flags |= S_NOATIME;
117 	if (ip->flags & BTRFS_INODE_DIRSYNC)
118 		inode->i_flags |= S_DIRSYNC;
119 }
120 
121 /*
122  * Inherit flags from the parent inode.
123  *
124  * Currently only the compression flags and the cow flags are inherited.
125  */
126 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
127 {
128 	unsigned int flags;
129 
130 	if (!dir)
131 		return;
132 
133 	flags = BTRFS_I(dir)->flags;
134 
135 	if (flags & BTRFS_INODE_NOCOMPRESS) {
136 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
137 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
138 	} else if (flags & BTRFS_INODE_COMPRESS) {
139 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
140 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
141 	}
142 
143 	if (flags & BTRFS_INODE_NODATACOW)
144 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
145 
146 	btrfs_update_iflags(inode);
147 }
148 
149 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
150 {
151 	struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
152 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
153 
154 	if (copy_to_user(arg, &flags, sizeof(flags)))
155 		return -EFAULT;
156 	return 0;
157 }
158 
159 static int check_flags(unsigned int flags)
160 {
161 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
162 		      FS_NOATIME_FL | FS_NODUMP_FL | \
163 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
164 		      FS_NOCOMP_FL | FS_COMPR_FL |
165 		      FS_NOCOW_FL))
166 		return -EOPNOTSUPP;
167 
168 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
169 		return -EINVAL;
170 
171 	return 0;
172 }
173 
174 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
175 {
176 	struct inode *inode = file->f_path.dentry->d_inode;
177 	struct btrfs_inode *ip = BTRFS_I(inode);
178 	struct btrfs_root *root = ip->root;
179 	struct btrfs_trans_handle *trans;
180 	unsigned int flags, oldflags;
181 	int ret;
182 	u64 ip_oldflags;
183 	unsigned int i_oldflags;
184 
185 	if (btrfs_root_readonly(root))
186 		return -EROFS;
187 
188 	if (copy_from_user(&flags, arg, sizeof(flags)))
189 		return -EFAULT;
190 
191 	ret = check_flags(flags);
192 	if (ret)
193 		return ret;
194 
195 	if (!inode_owner_or_capable(inode))
196 		return -EACCES;
197 
198 	ret = mnt_want_write_file(file);
199 	if (ret)
200 		return ret;
201 
202 	mutex_lock(&inode->i_mutex);
203 
204 	ip_oldflags = ip->flags;
205 	i_oldflags = inode->i_flags;
206 
207 	flags = btrfs_mask_flags(inode->i_mode, flags);
208 	oldflags = btrfs_flags_to_ioctl(ip->flags);
209 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
210 		if (!capable(CAP_LINUX_IMMUTABLE)) {
211 			ret = -EPERM;
212 			goto out_unlock;
213 		}
214 	}
215 
216 	if (flags & FS_SYNC_FL)
217 		ip->flags |= BTRFS_INODE_SYNC;
218 	else
219 		ip->flags &= ~BTRFS_INODE_SYNC;
220 	if (flags & FS_IMMUTABLE_FL)
221 		ip->flags |= BTRFS_INODE_IMMUTABLE;
222 	else
223 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
224 	if (flags & FS_APPEND_FL)
225 		ip->flags |= BTRFS_INODE_APPEND;
226 	else
227 		ip->flags &= ~BTRFS_INODE_APPEND;
228 	if (flags & FS_NODUMP_FL)
229 		ip->flags |= BTRFS_INODE_NODUMP;
230 	else
231 		ip->flags &= ~BTRFS_INODE_NODUMP;
232 	if (flags & FS_NOATIME_FL)
233 		ip->flags |= BTRFS_INODE_NOATIME;
234 	else
235 		ip->flags &= ~BTRFS_INODE_NOATIME;
236 	if (flags & FS_DIRSYNC_FL)
237 		ip->flags |= BTRFS_INODE_DIRSYNC;
238 	else
239 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
240 	if (flags & FS_NOCOW_FL)
241 		ip->flags |= BTRFS_INODE_NODATACOW;
242 	else
243 		ip->flags &= ~BTRFS_INODE_NODATACOW;
244 
245 	/*
246 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
247 	 * flag may be changed automatically if compression code won't make
248 	 * things smaller.
249 	 */
250 	if (flags & FS_NOCOMP_FL) {
251 		ip->flags &= ~BTRFS_INODE_COMPRESS;
252 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
253 	} else if (flags & FS_COMPR_FL) {
254 		ip->flags |= BTRFS_INODE_COMPRESS;
255 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
256 	} else {
257 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
258 	}
259 
260 	trans = btrfs_start_transaction(root, 1);
261 	if (IS_ERR(trans)) {
262 		ret = PTR_ERR(trans);
263 		goto out_drop;
264 	}
265 
266 	btrfs_update_iflags(inode);
267 	inode_inc_iversion(inode);
268 	inode->i_ctime = CURRENT_TIME;
269 	ret = btrfs_update_inode(trans, root, inode);
270 
271 	btrfs_end_transaction(trans, root);
272  out_drop:
273 	if (ret) {
274 		ip->flags = ip_oldflags;
275 		inode->i_flags = i_oldflags;
276 	}
277 
278  out_unlock:
279 	mutex_unlock(&inode->i_mutex);
280 	mnt_drop_write_file(file);
281 	return ret;
282 }
283 
284 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
285 {
286 	struct inode *inode = file->f_path.dentry->d_inode;
287 
288 	return put_user(inode->i_generation, arg);
289 }
290 
291 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
292 {
293 	struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
294 	struct btrfs_device *device;
295 	struct request_queue *q;
296 	struct fstrim_range range;
297 	u64 minlen = ULLONG_MAX;
298 	u64 num_devices = 0;
299 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
300 	int ret;
301 
302 	if (!capable(CAP_SYS_ADMIN))
303 		return -EPERM;
304 
305 	rcu_read_lock();
306 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
307 				dev_list) {
308 		if (!device->bdev)
309 			continue;
310 		q = bdev_get_queue(device->bdev);
311 		if (blk_queue_discard(q)) {
312 			num_devices++;
313 			minlen = min((u64)q->limits.discard_granularity,
314 				     minlen);
315 		}
316 	}
317 	rcu_read_unlock();
318 
319 	if (!num_devices)
320 		return -EOPNOTSUPP;
321 	if (copy_from_user(&range, arg, sizeof(range)))
322 		return -EFAULT;
323 	if (range.start > total_bytes)
324 		return -EINVAL;
325 
326 	range.len = min(range.len, total_bytes - range.start);
327 	range.minlen = max(range.minlen, minlen);
328 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
329 	if (ret < 0)
330 		return ret;
331 
332 	if (copy_to_user(arg, &range, sizeof(range)))
333 		return -EFAULT;
334 
335 	return 0;
336 }
337 
338 static noinline int create_subvol(struct btrfs_root *root,
339 				  struct dentry *dentry,
340 				  char *name, int namelen,
341 				  u64 *async_transid,
342 				  struct btrfs_qgroup_inherit **inherit)
343 {
344 	struct btrfs_trans_handle *trans;
345 	struct btrfs_key key;
346 	struct btrfs_root_item root_item;
347 	struct btrfs_inode_item *inode_item;
348 	struct extent_buffer *leaf;
349 	struct btrfs_root *new_root;
350 	struct dentry *parent = dentry->d_parent;
351 	struct inode *dir;
352 	struct timespec cur_time = CURRENT_TIME;
353 	int ret;
354 	int err;
355 	u64 objectid;
356 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
357 	u64 index = 0;
358 	uuid_le new_uuid;
359 
360 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
361 	if (ret)
362 		return ret;
363 
364 	dir = parent->d_inode;
365 
366 	/*
367 	 * 1 - inode item
368 	 * 2 - refs
369 	 * 1 - root item
370 	 * 2 - dir items
371 	 */
372 	trans = btrfs_start_transaction(root, 6);
373 	if (IS_ERR(trans))
374 		return PTR_ERR(trans);
375 
376 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid,
377 				   inherit ? *inherit : NULL);
378 	if (ret)
379 		goto fail;
380 
381 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
382 				      0, objectid, NULL, 0, 0, 0);
383 	if (IS_ERR(leaf)) {
384 		ret = PTR_ERR(leaf);
385 		goto fail;
386 	}
387 
388 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
389 	btrfs_set_header_bytenr(leaf, leaf->start);
390 	btrfs_set_header_generation(leaf, trans->transid);
391 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
392 	btrfs_set_header_owner(leaf, objectid);
393 
394 	write_extent_buffer(leaf, root->fs_info->fsid,
395 			    (unsigned long)btrfs_header_fsid(leaf),
396 			    BTRFS_FSID_SIZE);
397 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
398 			    (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
399 			    BTRFS_UUID_SIZE);
400 	btrfs_mark_buffer_dirty(leaf);
401 
402 	memset(&root_item, 0, sizeof(root_item));
403 
404 	inode_item = &root_item.inode;
405 	inode_item->generation = cpu_to_le64(1);
406 	inode_item->size = cpu_to_le64(3);
407 	inode_item->nlink = cpu_to_le32(1);
408 	inode_item->nbytes = cpu_to_le64(root->leafsize);
409 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
410 
411 	root_item.flags = 0;
412 	root_item.byte_limit = 0;
413 	inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
414 
415 	btrfs_set_root_bytenr(&root_item, leaf->start);
416 	btrfs_set_root_generation(&root_item, trans->transid);
417 	btrfs_set_root_level(&root_item, 0);
418 	btrfs_set_root_refs(&root_item, 1);
419 	btrfs_set_root_used(&root_item, leaf->len);
420 	btrfs_set_root_last_snapshot(&root_item, 0);
421 
422 	btrfs_set_root_generation_v2(&root_item,
423 			btrfs_root_generation(&root_item));
424 	uuid_le_gen(&new_uuid);
425 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
426 	root_item.otime.sec = cpu_to_le64(cur_time.tv_sec);
427 	root_item.otime.nsec = cpu_to_le64(cur_time.tv_nsec);
428 	root_item.ctime = root_item.otime;
429 	btrfs_set_root_ctransid(&root_item, trans->transid);
430 	btrfs_set_root_otransid(&root_item, trans->transid);
431 
432 	btrfs_tree_unlock(leaf);
433 	free_extent_buffer(leaf);
434 	leaf = NULL;
435 
436 	btrfs_set_root_dirid(&root_item, new_dirid);
437 
438 	key.objectid = objectid;
439 	key.offset = 0;
440 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
441 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
442 				&root_item);
443 	if (ret)
444 		goto fail;
445 
446 	key.offset = (u64)-1;
447 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
448 	if (IS_ERR(new_root)) {
449 		btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
450 		ret = PTR_ERR(new_root);
451 		goto fail;
452 	}
453 
454 	btrfs_record_root_in_trans(trans, new_root);
455 
456 	ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
457 	if (ret) {
458 		/* We potentially lose an unused inode item here */
459 		btrfs_abort_transaction(trans, root, ret);
460 		goto fail;
461 	}
462 
463 	/*
464 	 * insert the directory item
465 	 */
466 	ret = btrfs_set_inode_index(dir, &index);
467 	if (ret) {
468 		btrfs_abort_transaction(trans, root, ret);
469 		goto fail;
470 	}
471 
472 	ret = btrfs_insert_dir_item(trans, root,
473 				    name, namelen, dir, &key,
474 				    BTRFS_FT_DIR, index);
475 	if (ret) {
476 		btrfs_abort_transaction(trans, root, ret);
477 		goto fail;
478 	}
479 
480 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
481 	ret = btrfs_update_inode(trans, root, dir);
482 	BUG_ON(ret);
483 
484 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
485 				 objectid, root->root_key.objectid,
486 				 btrfs_ino(dir), index, name, namelen);
487 
488 	BUG_ON(ret);
489 
490 	d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
491 fail:
492 	if (async_transid) {
493 		*async_transid = trans->transid;
494 		err = btrfs_commit_transaction_async(trans, root, 1);
495 	} else {
496 		err = btrfs_commit_transaction(trans, root);
497 	}
498 	if (err && !ret)
499 		ret = err;
500 	return ret;
501 }
502 
503 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
504 			   char *name, int namelen, u64 *async_transid,
505 			   bool readonly, struct btrfs_qgroup_inherit **inherit)
506 {
507 	struct inode *inode;
508 	struct btrfs_pending_snapshot *pending_snapshot;
509 	struct btrfs_trans_handle *trans;
510 	int ret;
511 
512 	if (!root->ref_cows)
513 		return -EINVAL;
514 
515 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
516 	if (!pending_snapshot)
517 		return -ENOMEM;
518 
519 	btrfs_init_block_rsv(&pending_snapshot->block_rsv);
520 	pending_snapshot->dentry = dentry;
521 	pending_snapshot->root = root;
522 	pending_snapshot->readonly = readonly;
523 	if (inherit) {
524 		pending_snapshot->inherit = *inherit;
525 		*inherit = NULL;	/* take responsibility to free it */
526 	}
527 
528 	trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
529 	if (IS_ERR(trans)) {
530 		ret = PTR_ERR(trans);
531 		goto fail;
532 	}
533 
534 	ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
535 	BUG_ON(ret);
536 
537 	spin_lock(&root->fs_info->trans_lock);
538 	list_add(&pending_snapshot->list,
539 		 &trans->transaction->pending_snapshots);
540 	spin_unlock(&root->fs_info->trans_lock);
541 	if (async_transid) {
542 		*async_transid = trans->transid;
543 		ret = btrfs_commit_transaction_async(trans,
544 				     root->fs_info->extent_root, 1);
545 	} else {
546 		ret = btrfs_commit_transaction(trans,
547 					       root->fs_info->extent_root);
548 	}
549 	BUG_ON(ret);
550 
551 	ret = pending_snapshot->error;
552 	if (ret)
553 		goto fail;
554 
555 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
556 	if (ret)
557 		goto fail;
558 
559 	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
560 	if (IS_ERR(inode)) {
561 		ret = PTR_ERR(inode);
562 		goto fail;
563 	}
564 	BUG_ON(!inode);
565 	d_instantiate(dentry, inode);
566 	ret = 0;
567 fail:
568 	kfree(pending_snapshot);
569 	return ret;
570 }
571 
572 /*  copy of check_sticky in fs/namei.c()
573 * It's inline, so penalty for filesystems that don't use sticky bit is
574 * minimal.
575 */
576 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
577 {
578 	uid_t fsuid = current_fsuid();
579 
580 	if (!(dir->i_mode & S_ISVTX))
581 		return 0;
582 	if (inode->i_uid == fsuid)
583 		return 0;
584 	if (dir->i_uid == fsuid)
585 		return 0;
586 	return !capable(CAP_FOWNER);
587 }
588 
589 /*  copy of may_delete in fs/namei.c()
590  *	Check whether we can remove a link victim from directory dir, check
591  *  whether the type of victim is right.
592  *  1. We can't do it if dir is read-only (done in permission())
593  *  2. We should have write and exec permissions on dir
594  *  3. We can't remove anything from append-only dir
595  *  4. We can't do anything with immutable dir (done in permission())
596  *  5. If the sticky bit on dir is set we should either
597  *	a. be owner of dir, or
598  *	b. be owner of victim, or
599  *	c. have CAP_FOWNER capability
600  *  6. If the victim is append-only or immutable we can't do antyhing with
601  *     links pointing to it.
602  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
603  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
604  *  9. We can't remove a root or mountpoint.
605  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
606  *     nfs_async_unlink().
607  */
608 
609 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
610 {
611 	int error;
612 
613 	if (!victim->d_inode)
614 		return -ENOENT;
615 
616 	BUG_ON(victim->d_parent->d_inode != dir);
617 	audit_inode_child(victim, dir);
618 
619 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
620 	if (error)
621 		return error;
622 	if (IS_APPEND(dir))
623 		return -EPERM;
624 	if (btrfs_check_sticky(dir, victim->d_inode)||
625 		IS_APPEND(victim->d_inode)||
626 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
627 		return -EPERM;
628 	if (isdir) {
629 		if (!S_ISDIR(victim->d_inode->i_mode))
630 			return -ENOTDIR;
631 		if (IS_ROOT(victim))
632 			return -EBUSY;
633 	} else if (S_ISDIR(victim->d_inode->i_mode))
634 		return -EISDIR;
635 	if (IS_DEADDIR(dir))
636 		return -ENOENT;
637 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
638 		return -EBUSY;
639 	return 0;
640 }
641 
642 /* copy of may_create in fs/namei.c() */
643 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
644 {
645 	if (child->d_inode)
646 		return -EEXIST;
647 	if (IS_DEADDIR(dir))
648 		return -ENOENT;
649 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
650 }
651 
652 /*
653  * Create a new subvolume below @parent.  This is largely modeled after
654  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
655  * inside this filesystem so it's quite a bit simpler.
656  */
657 static noinline int btrfs_mksubvol(struct path *parent,
658 				   char *name, int namelen,
659 				   struct btrfs_root *snap_src,
660 				   u64 *async_transid, bool readonly,
661 				   struct btrfs_qgroup_inherit **inherit)
662 {
663 	struct inode *dir  = parent->dentry->d_inode;
664 	struct dentry *dentry;
665 	int error;
666 
667 	error = mnt_want_write(parent->mnt);
668 	if (error)
669 		return error;
670 
671 	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
672 
673 	dentry = lookup_one_len(name, parent->dentry, namelen);
674 	error = PTR_ERR(dentry);
675 	if (IS_ERR(dentry))
676 		goto out_unlock;
677 
678 	error = -EEXIST;
679 	if (dentry->d_inode)
680 		goto out_dput;
681 
682 	error = btrfs_may_create(dir, dentry);
683 	if (error)
684 		goto out_dput;
685 
686 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
687 
688 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
689 		goto out_up_read;
690 
691 	if (snap_src) {
692 		error = create_snapshot(snap_src, dentry, name, namelen,
693 					async_transid, readonly, inherit);
694 	} else {
695 		error = create_subvol(BTRFS_I(dir)->root, dentry,
696 				      name, namelen, async_transid, inherit);
697 	}
698 	if (!error)
699 		fsnotify_mkdir(dir, dentry);
700 out_up_read:
701 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
702 out_dput:
703 	dput(dentry);
704 out_unlock:
705 	mutex_unlock(&dir->i_mutex);
706 	mnt_drop_write(parent->mnt);
707 	return error;
708 }
709 
710 /*
711  * When we're defragging a range, we don't want to kick it off again
712  * if it is really just waiting for delalloc to send it down.
713  * If we find a nice big extent or delalloc range for the bytes in the
714  * file you want to defrag, we return 0 to let you know to skip this
715  * part of the file
716  */
717 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
718 {
719 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
720 	struct extent_map *em = NULL;
721 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
722 	u64 end;
723 
724 	read_lock(&em_tree->lock);
725 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
726 	read_unlock(&em_tree->lock);
727 
728 	if (em) {
729 		end = extent_map_end(em);
730 		free_extent_map(em);
731 		if (end - offset > thresh)
732 			return 0;
733 	}
734 	/* if we already have a nice delalloc here, just stop */
735 	thresh /= 2;
736 	end = count_range_bits(io_tree, &offset, offset + thresh,
737 			       thresh, EXTENT_DELALLOC, 1);
738 	if (end >= thresh)
739 		return 0;
740 	return 1;
741 }
742 
743 /*
744  * helper function to walk through a file and find extents
745  * newer than a specific transid, and smaller than thresh.
746  *
747  * This is used by the defragging code to find new and small
748  * extents
749  */
750 static int find_new_extents(struct btrfs_root *root,
751 			    struct inode *inode, u64 newer_than,
752 			    u64 *off, int thresh)
753 {
754 	struct btrfs_path *path;
755 	struct btrfs_key min_key;
756 	struct btrfs_key max_key;
757 	struct extent_buffer *leaf;
758 	struct btrfs_file_extent_item *extent;
759 	int type;
760 	int ret;
761 	u64 ino = btrfs_ino(inode);
762 
763 	path = btrfs_alloc_path();
764 	if (!path)
765 		return -ENOMEM;
766 
767 	min_key.objectid = ino;
768 	min_key.type = BTRFS_EXTENT_DATA_KEY;
769 	min_key.offset = *off;
770 
771 	max_key.objectid = ino;
772 	max_key.type = (u8)-1;
773 	max_key.offset = (u64)-1;
774 
775 	path->keep_locks = 1;
776 
777 	while(1) {
778 		ret = btrfs_search_forward(root, &min_key, &max_key,
779 					   path, 0, newer_than);
780 		if (ret != 0)
781 			goto none;
782 		if (min_key.objectid != ino)
783 			goto none;
784 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
785 			goto none;
786 
787 		leaf = path->nodes[0];
788 		extent = btrfs_item_ptr(leaf, path->slots[0],
789 					struct btrfs_file_extent_item);
790 
791 		type = btrfs_file_extent_type(leaf, extent);
792 		if (type == BTRFS_FILE_EXTENT_REG &&
793 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
794 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
795 			*off = min_key.offset;
796 			btrfs_free_path(path);
797 			return 0;
798 		}
799 
800 		if (min_key.offset == (u64)-1)
801 			goto none;
802 
803 		min_key.offset++;
804 		btrfs_release_path(path);
805 	}
806 none:
807 	btrfs_free_path(path);
808 	return -ENOENT;
809 }
810 
811 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
812 {
813 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
814 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
815 	struct extent_map *em;
816 	u64 len = PAGE_CACHE_SIZE;
817 
818 	/*
819 	 * hopefully we have this extent in the tree already, try without
820 	 * the full extent lock
821 	 */
822 	read_lock(&em_tree->lock);
823 	em = lookup_extent_mapping(em_tree, start, len);
824 	read_unlock(&em_tree->lock);
825 
826 	if (!em) {
827 		/* get the big lock and read metadata off disk */
828 		lock_extent(io_tree, start, start + len - 1);
829 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
830 		unlock_extent(io_tree, start, start + len - 1);
831 
832 		if (IS_ERR(em))
833 			return NULL;
834 	}
835 
836 	return em;
837 }
838 
839 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
840 {
841 	struct extent_map *next;
842 	bool ret = true;
843 
844 	/* this is the last extent */
845 	if (em->start + em->len >= i_size_read(inode))
846 		return false;
847 
848 	next = defrag_lookup_extent(inode, em->start + em->len);
849 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
850 		ret = false;
851 
852 	free_extent_map(next);
853 	return ret;
854 }
855 
856 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
857 			       u64 *last_len, u64 *skip, u64 *defrag_end,
858 			       int compress)
859 {
860 	struct extent_map *em;
861 	int ret = 1;
862 	bool next_mergeable = true;
863 
864 	/*
865 	 * make sure that once we start defragging an extent, we keep on
866 	 * defragging it
867 	 */
868 	if (start < *defrag_end)
869 		return 1;
870 
871 	*skip = 0;
872 
873 	em = defrag_lookup_extent(inode, start);
874 	if (!em)
875 		return 0;
876 
877 	/* this will cover holes, and inline extents */
878 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
879 		ret = 0;
880 		goto out;
881 	}
882 
883 	next_mergeable = defrag_check_next_extent(inode, em);
884 
885 	/*
886 	 * we hit a real extent, if it is big or the next extent is not a
887 	 * real extent, don't bother defragging it
888 	 */
889 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
890 	    (em->len >= thresh || !next_mergeable))
891 		ret = 0;
892 out:
893 	/*
894 	 * last_len ends up being a counter of how many bytes we've defragged.
895 	 * every time we choose not to defrag an extent, we reset *last_len
896 	 * so that the next tiny extent will force a defrag.
897 	 *
898 	 * The end result of this is that tiny extents before a single big
899 	 * extent will force at least part of that big extent to be defragged.
900 	 */
901 	if (ret) {
902 		*defrag_end = extent_map_end(em);
903 	} else {
904 		*last_len = 0;
905 		*skip = extent_map_end(em);
906 		*defrag_end = 0;
907 	}
908 
909 	free_extent_map(em);
910 	return ret;
911 }
912 
913 /*
914  * it doesn't do much good to defrag one or two pages
915  * at a time.  This pulls in a nice chunk of pages
916  * to COW and defrag.
917  *
918  * It also makes sure the delalloc code has enough
919  * dirty data to avoid making new small extents as part
920  * of the defrag
921  *
922  * It's a good idea to start RA on this range
923  * before calling this.
924  */
925 static int cluster_pages_for_defrag(struct inode *inode,
926 				    struct page **pages,
927 				    unsigned long start_index,
928 				    int num_pages)
929 {
930 	unsigned long file_end;
931 	u64 isize = i_size_read(inode);
932 	u64 page_start;
933 	u64 page_end;
934 	u64 page_cnt;
935 	int ret;
936 	int i;
937 	int i_done;
938 	struct btrfs_ordered_extent *ordered;
939 	struct extent_state *cached_state = NULL;
940 	struct extent_io_tree *tree;
941 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
942 
943 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
944 	if (!isize || start_index > file_end)
945 		return 0;
946 
947 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
948 
949 	ret = btrfs_delalloc_reserve_space(inode,
950 					   page_cnt << PAGE_CACHE_SHIFT);
951 	if (ret)
952 		return ret;
953 	i_done = 0;
954 	tree = &BTRFS_I(inode)->io_tree;
955 
956 	/* step one, lock all the pages */
957 	for (i = 0; i < page_cnt; i++) {
958 		struct page *page;
959 again:
960 		page = find_or_create_page(inode->i_mapping,
961 					   start_index + i, mask);
962 		if (!page)
963 			break;
964 
965 		page_start = page_offset(page);
966 		page_end = page_start + PAGE_CACHE_SIZE - 1;
967 		while (1) {
968 			lock_extent(tree, page_start, page_end);
969 			ordered = btrfs_lookup_ordered_extent(inode,
970 							      page_start);
971 			unlock_extent(tree, page_start, page_end);
972 			if (!ordered)
973 				break;
974 
975 			unlock_page(page);
976 			btrfs_start_ordered_extent(inode, ordered, 1);
977 			btrfs_put_ordered_extent(ordered);
978 			lock_page(page);
979 			/*
980 			 * we unlocked the page above, so we need check if
981 			 * it was released or not.
982 			 */
983 			if (page->mapping != inode->i_mapping) {
984 				unlock_page(page);
985 				page_cache_release(page);
986 				goto again;
987 			}
988 		}
989 
990 		if (!PageUptodate(page)) {
991 			btrfs_readpage(NULL, page);
992 			lock_page(page);
993 			if (!PageUptodate(page)) {
994 				unlock_page(page);
995 				page_cache_release(page);
996 				ret = -EIO;
997 				break;
998 			}
999 		}
1000 
1001 		if (page->mapping != inode->i_mapping) {
1002 			unlock_page(page);
1003 			page_cache_release(page);
1004 			goto again;
1005 		}
1006 
1007 		pages[i] = page;
1008 		i_done++;
1009 	}
1010 	if (!i_done || ret)
1011 		goto out;
1012 
1013 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1014 		goto out;
1015 
1016 	/*
1017 	 * so now we have a nice long stream of locked
1018 	 * and up to date pages, lets wait on them
1019 	 */
1020 	for (i = 0; i < i_done; i++)
1021 		wait_on_page_writeback(pages[i]);
1022 
1023 	page_start = page_offset(pages[0]);
1024 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1025 
1026 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1027 			 page_start, page_end - 1, 0, &cached_state);
1028 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1029 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1030 			  EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1031 			  GFP_NOFS);
1032 
1033 	if (i_done != page_cnt) {
1034 		spin_lock(&BTRFS_I(inode)->lock);
1035 		BTRFS_I(inode)->outstanding_extents++;
1036 		spin_unlock(&BTRFS_I(inode)->lock);
1037 		btrfs_delalloc_release_space(inode,
1038 				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1039 	}
1040 
1041 
1042 	btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
1043 				  &cached_state);
1044 
1045 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1046 			     page_start, page_end - 1, &cached_state,
1047 			     GFP_NOFS);
1048 
1049 	for (i = 0; i < i_done; i++) {
1050 		clear_page_dirty_for_io(pages[i]);
1051 		ClearPageChecked(pages[i]);
1052 		set_page_extent_mapped(pages[i]);
1053 		set_page_dirty(pages[i]);
1054 		unlock_page(pages[i]);
1055 		page_cache_release(pages[i]);
1056 	}
1057 	return i_done;
1058 out:
1059 	for (i = 0; i < i_done; i++) {
1060 		unlock_page(pages[i]);
1061 		page_cache_release(pages[i]);
1062 	}
1063 	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1064 	return ret;
1065 
1066 }
1067 
1068 int btrfs_defrag_file(struct inode *inode, struct file *file,
1069 		      struct btrfs_ioctl_defrag_range_args *range,
1070 		      u64 newer_than, unsigned long max_to_defrag)
1071 {
1072 	struct btrfs_root *root = BTRFS_I(inode)->root;
1073 	struct file_ra_state *ra = NULL;
1074 	unsigned long last_index;
1075 	u64 isize = i_size_read(inode);
1076 	u64 last_len = 0;
1077 	u64 skip = 0;
1078 	u64 defrag_end = 0;
1079 	u64 newer_off = range->start;
1080 	unsigned long i;
1081 	unsigned long ra_index = 0;
1082 	int ret;
1083 	int defrag_count = 0;
1084 	int compress_type = BTRFS_COMPRESS_ZLIB;
1085 	int extent_thresh = range->extent_thresh;
1086 	int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1087 	int cluster = max_cluster;
1088 	u64 new_align = ~((u64)128 * 1024 - 1);
1089 	struct page **pages = NULL;
1090 
1091 	if (extent_thresh == 0)
1092 		extent_thresh = 256 * 1024;
1093 
1094 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1095 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1096 			return -EINVAL;
1097 		if (range->compress_type)
1098 			compress_type = range->compress_type;
1099 	}
1100 
1101 	if (isize == 0)
1102 		return 0;
1103 
1104 	/*
1105 	 * if we were not given a file, allocate a readahead
1106 	 * context
1107 	 */
1108 	if (!file) {
1109 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1110 		if (!ra)
1111 			return -ENOMEM;
1112 		file_ra_state_init(ra, inode->i_mapping);
1113 	} else {
1114 		ra = &file->f_ra;
1115 	}
1116 
1117 	pages = kmalloc(sizeof(struct page *) * max_cluster,
1118 			GFP_NOFS);
1119 	if (!pages) {
1120 		ret = -ENOMEM;
1121 		goto out_ra;
1122 	}
1123 
1124 	/* find the last page to defrag */
1125 	if (range->start + range->len > range->start) {
1126 		last_index = min_t(u64, isize - 1,
1127 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1128 	} else {
1129 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1130 	}
1131 
1132 	if (newer_than) {
1133 		ret = find_new_extents(root, inode, newer_than,
1134 				       &newer_off, 64 * 1024);
1135 		if (!ret) {
1136 			range->start = newer_off;
1137 			/*
1138 			 * we always align our defrag to help keep
1139 			 * the extents in the file evenly spaced
1140 			 */
1141 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1142 		} else
1143 			goto out_ra;
1144 	} else {
1145 		i = range->start >> PAGE_CACHE_SHIFT;
1146 	}
1147 	if (!max_to_defrag)
1148 		max_to_defrag = last_index + 1;
1149 
1150 	/*
1151 	 * make writeback starts from i, so the defrag range can be
1152 	 * written sequentially.
1153 	 */
1154 	if (i < inode->i_mapping->writeback_index)
1155 		inode->i_mapping->writeback_index = i;
1156 
1157 	while (i <= last_index && defrag_count < max_to_defrag &&
1158 	       (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1159 		PAGE_CACHE_SHIFT)) {
1160 		/*
1161 		 * make sure we stop running if someone unmounts
1162 		 * the FS
1163 		 */
1164 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1165 			break;
1166 
1167 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1168 					 extent_thresh, &last_len, &skip,
1169 					 &defrag_end, range->flags &
1170 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1171 			unsigned long next;
1172 			/*
1173 			 * the should_defrag function tells us how much to skip
1174 			 * bump our counter by the suggested amount
1175 			 */
1176 			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1177 			i = max(i + 1, next);
1178 			continue;
1179 		}
1180 
1181 		if (!newer_than) {
1182 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1183 				   PAGE_CACHE_SHIFT) - i;
1184 			cluster = min(cluster, max_cluster);
1185 		} else {
1186 			cluster = max_cluster;
1187 		}
1188 
1189 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1190 			BTRFS_I(inode)->force_compress = compress_type;
1191 
1192 		if (i + cluster > ra_index) {
1193 			ra_index = max(i, ra_index);
1194 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1195 				       cluster);
1196 			ra_index += max_cluster;
1197 		}
1198 
1199 		mutex_lock(&inode->i_mutex);
1200 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1201 		if (ret < 0) {
1202 			mutex_unlock(&inode->i_mutex);
1203 			goto out_ra;
1204 		}
1205 
1206 		defrag_count += ret;
1207 		balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1208 		mutex_unlock(&inode->i_mutex);
1209 
1210 		if (newer_than) {
1211 			if (newer_off == (u64)-1)
1212 				break;
1213 
1214 			if (ret > 0)
1215 				i += ret;
1216 
1217 			newer_off = max(newer_off + 1,
1218 					(u64)i << PAGE_CACHE_SHIFT);
1219 
1220 			ret = find_new_extents(root, inode,
1221 					       newer_than, &newer_off,
1222 					       64 * 1024);
1223 			if (!ret) {
1224 				range->start = newer_off;
1225 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1226 			} else {
1227 				break;
1228 			}
1229 		} else {
1230 			if (ret > 0) {
1231 				i += ret;
1232 				last_len += ret << PAGE_CACHE_SHIFT;
1233 			} else {
1234 				i++;
1235 				last_len = 0;
1236 			}
1237 		}
1238 	}
1239 
1240 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1241 		filemap_flush(inode->i_mapping);
1242 
1243 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1244 		/* the filemap_flush will queue IO into the worker threads, but
1245 		 * we have to make sure the IO is actually started and that
1246 		 * ordered extents get created before we return
1247 		 */
1248 		atomic_inc(&root->fs_info->async_submit_draining);
1249 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1250 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1251 			wait_event(root->fs_info->async_submit_wait,
1252 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1253 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1254 		}
1255 		atomic_dec(&root->fs_info->async_submit_draining);
1256 
1257 		mutex_lock(&inode->i_mutex);
1258 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1259 		mutex_unlock(&inode->i_mutex);
1260 	}
1261 
1262 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1263 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1264 	}
1265 
1266 	ret = defrag_count;
1267 
1268 out_ra:
1269 	if (!file)
1270 		kfree(ra);
1271 	kfree(pages);
1272 	return ret;
1273 }
1274 
1275 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1276 					void __user *arg)
1277 {
1278 	u64 new_size;
1279 	u64 old_size;
1280 	u64 devid = 1;
1281 	struct btrfs_ioctl_vol_args *vol_args;
1282 	struct btrfs_trans_handle *trans;
1283 	struct btrfs_device *device = NULL;
1284 	char *sizestr;
1285 	char *devstr = NULL;
1286 	int ret = 0;
1287 	int mod = 0;
1288 
1289 	if (root->fs_info->sb->s_flags & MS_RDONLY)
1290 		return -EROFS;
1291 
1292 	if (!capable(CAP_SYS_ADMIN))
1293 		return -EPERM;
1294 
1295 	mutex_lock(&root->fs_info->volume_mutex);
1296 	if (root->fs_info->balance_ctl) {
1297 		printk(KERN_INFO "btrfs: balance in progress\n");
1298 		ret = -EINVAL;
1299 		goto out;
1300 	}
1301 
1302 	vol_args = memdup_user(arg, sizeof(*vol_args));
1303 	if (IS_ERR(vol_args)) {
1304 		ret = PTR_ERR(vol_args);
1305 		goto out;
1306 	}
1307 
1308 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1309 
1310 	sizestr = vol_args->name;
1311 	devstr = strchr(sizestr, ':');
1312 	if (devstr) {
1313 		char *end;
1314 		sizestr = devstr + 1;
1315 		*devstr = '\0';
1316 		devstr = vol_args->name;
1317 		devid = simple_strtoull(devstr, &end, 10);
1318 		printk(KERN_INFO "btrfs: resizing devid %llu\n",
1319 		       (unsigned long long)devid);
1320 	}
1321 	device = btrfs_find_device(root, devid, NULL, NULL);
1322 	if (!device) {
1323 		printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1324 		       (unsigned long long)devid);
1325 		ret = -EINVAL;
1326 		goto out_free;
1327 	}
1328 	if (device->fs_devices && device->fs_devices->seeding) {
1329 		printk(KERN_INFO "btrfs: resizer unable to apply on "
1330 		       "seeding device %llu\n",
1331 		       (unsigned long long)devid);
1332 		ret = -EINVAL;
1333 		goto out_free;
1334 	}
1335 
1336 	if (!strcmp(sizestr, "max"))
1337 		new_size = device->bdev->bd_inode->i_size;
1338 	else {
1339 		if (sizestr[0] == '-') {
1340 			mod = -1;
1341 			sizestr++;
1342 		} else if (sizestr[0] == '+') {
1343 			mod = 1;
1344 			sizestr++;
1345 		}
1346 		new_size = memparse(sizestr, NULL);
1347 		if (new_size == 0) {
1348 			ret = -EINVAL;
1349 			goto out_free;
1350 		}
1351 	}
1352 
1353 	old_size = device->total_bytes;
1354 
1355 	if (mod < 0) {
1356 		if (new_size > old_size) {
1357 			ret = -EINVAL;
1358 			goto out_free;
1359 		}
1360 		new_size = old_size - new_size;
1361 	} else if (mod > 0) {
1362 		new_size = old_size + new_size;
1363 	}
1364 
1365 	if (new_size < 256 * 1024 * 1024) {
1366 		ret = -EINVAL;
1367 		goto out_free;
1368 	}
1369 	if (new_size > device->bdev->bd_inode->i_size) {
1370 		ret = -EFBIG;
1371 		goto out_free;
1372 	}
1373 
1374 	do_div(new_size, root->sectorsize);
1375 	new_size *= root->sectorsize;
1376 
1377 	printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1378 		      rcu_str_deref(device->name),
1379 		      (unsigned long long)new_size);
1380 
1381 	if (new_size > old_size) {
1382 		trans = btrfs_start_transaction(root, 0);
1383 		if (IS_ERR(trans)) {
1384 			ret = PTR_ERR(trans);
1385 			goto out_free;
1386 		}
1387 		ret = btrfs_grow_device(trans, device, new_size);
1388 		btrfs_commit_transaction(trans, root);
1389 	} else if (new_size < old_size) {
1390 		ret = btrfs_shrink_device(device, new_size);
1391 	}
1392 
1393 out_free:
1394 	kfree(vol_args);
1395 out:
1396 	mutex_unlock(&root->fs_info->volume_mutex);
1397 	return ret;
1398 }
1399 
1400 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1401 				char *name, unsigned long fd, int subvol,
1402 				u64 *transid, bool readonly,
1403 				struct btrfs_qgroup_inherit **inherit)
1404 {
1405 	struct file *src_file;
1406 	int namelen;
1407 	int ret = 0;
1408 
1409 	ret = mnt_want_write_file(file);
1410 	if (ret)
1411 		goto out;
1412 
1413 	namelen = strlen(name);
1414 	if (strchr(name, '/')) {
1415 		ret = -EINVAL;
1416 		goto out_drop_write;
1417 	}
1418 
1419 	if (name[0] == '.' &&
1420 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1421 		ret = -EEXIST;
1422 		goto out_drop_write;
1423 	}
1424 
1425 	if (subvol) {
1426 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1427 				     NULL, transid, readonly, inherit);
1428 	} else {
1429 		struct inode *src_inode;
1430 		src_file = fget(fd);
1431 		if (!src_file) {
1432 			ret = -EINVAL;
1433 			goto out_drop_write;
1434 		}
1435 
1436 		src_inode = src_file->f_path.dentry->d_inode;
1437 		if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1438 			printk(KERN_INFO "btrfs: Snapshot src from "
1439 			       "another FS\n");
1440 			ret = -EINVAL;
1441 			fput(src_file);
1442 			goto out_drop_write;
1443 		}
1444 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1445 				     BTRFS_I(src_inode)->root,
1446 				     transid, readonly, inherit);
1447 		fput(src_file);
1448 	}
1449 out_drop_write:
1450 	mnt_drop_write_file(file);
1451 out:
1452 	return ret;
1453 }
1454 
1455 static noinline int btrfs_ioctl_snap_create(struct file *file,
1456 					    void __user *arg, int subvol)
1457 {
1458 	struct btrfs_ioctl_vol_args *vol_args;
1459 	int ret;
1460 
1461 	vol_args = memdup_user(arg, sizeof(*vol_args));
1462 	if (IS_ERR(vol_args))
1463 		return PTR_ERR(vol_args);
1464 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1465 
1466 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1467 					      vol_args->fd, subvol,
1468 					      NULL, false, NULL);
1469 
1470 	kfree(vol_args);
1471 	return ret;
1472 }
1473 
1474 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1475 					       void __user *arg, int subvol)
1476 {
1477 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1478 	int ret;
1479 	u64 transid = 0;
1480 	u64 *ptr = NULL;
1481 	bool readonly = false;
1482 	struct btrfs_qgroup_inherit *inherit = NULL;
1483 
1484 	vol_args = memdup_user(arg, sizeof(*vol_args));
1485 	if (IS_ERR(vol_args))
1486 		return PTR_ERR(vol_args);
1487 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1488 
1489 	if (vol_args->flags &
1490 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1491 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1492 		ret = -EOPNOTSUPP;
1493 		goto out;
1494 	}
1495 
1496 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1497 		ptr = &transid;
1498 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1499 		readonly = true;
1500 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1501 		if (vol_args->size > PAGE_CACHE_SIZE) {
1502 			ret = -EINVAL;
1503 			goto out;
1504 		}
1505 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1506 		if (IS_ERR(inherit)) {
1507 			ret = PTR_ERR(inherit);
1508 			goto out;
1509 		}
1510 	}
1511 
1512 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1513 					      vol_args->fd, subvol, ptr,
1514 					      readonly, &inherit);
1515 
1516 	if (ret == 0 && ptr &&
1517 	    copy_to_user(arg +
1518 			 offsetof(struct btrfs_ioctl_vol_args_v2,
1519 				  transid), ptr, sizeof(*ptr)))
1520 		ret = -EFAULT;
1521 out:
1522 	kfree(vol_args);
1523 	kfree(inherit);
1524 	return ret;
1525 }
1526 
1527 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1528 						void __user *arg)
1529 {
1530 	struct inode *inode = fdentry(file)->d_inode;
1531 	struct btrfs_root *root = BTRFS_I(inode)->root;
1532 	int ret = 0;
1533 	u64 flags = 0;
1534 
1535 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1536 		return -EINVAL;
1537 
1538 	down_read(&root->fs_info->subvol_sem);
1539 	if (btrfs_root_readonly(root))
1540 		flags |= BTRFS_SUBVOL_RDONLY;
1541 	up_read(&root->fs_info->subvol_sem);
1542 
1543 	if (copy_to_user(arg, &flags, sizeof(flags)))
1544 		ret = -EFAULT;
1545 
1546 	return ret;
1547 }
1548 
1549 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1550 					      void __user *arg)
1551 {
1552 	struct inode *inode = fdentry(file)->d_inode;
1553 	struct btrfs_root *root = BTRFS_I(inode)->root;
1554 	struct btrfs_trans_handle *trans;
1555 	u64 root_flags;
1556 	u64 flags;
1557 	int ret = 0;
1558 
1559 	ret = mnt_want_write_file(file);
1560 	if (ret)
1561 		goto out;
1562 
1563 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1564 		ret = -EINVAL;
1565 		goto out_drop_write;
1566 	}
1567 
1568 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1569 		ret = -EFAULT;
1570 		goto out_drop_write;
1571 	}
1572 
1573 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1574 		ret = -EINVAL;
1575 		goto out_drop_write;
1576 	}
1577 
1578 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1579 		ret = -EOPNOTSUPP;
1580 		goto out_drop_write;
1581 	}
1582 
1583 	if (!inode_owner_or_capable(inode)) {
1584 		ret = -EACCES;
1585 		goto out_drop_write;
1586 	}
1587 
1588 	down_write(&root->fs_info->subvol_sem);
1589 
1590 	/* nothing to do */
1591 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1592 		goto out_drop_sem;
1593 
1594 	root_flags = btrfs_root_flags(&root->root_item);
1595 	if (flags & BTRFS_SUBVOL_RDONLY)
1596 		btrfs_set_root_flags(&root->root_item,
1597 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1598 	else
1599 		btrfs_set_root_flags(&root->root_item,
1600 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1601 
1602 	trans = btrfs_start_transaction(root, 1);
1603 	if (IS_ERR(trans)) {
1604 		ret = PTR_ERR(trans);
1605 		goto out_reset;
1606 	}
1607 
1608 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1609 				&root->root_key, &root->root_item);
1610 
1611 	btrfs_commit_transaction(trans, root);
1612 out_reset:
1613 	if (ret)
1614 		btrfs_set_root_flags(&root->root_item, root_flags);
1615 out_drop_sem:
1616 	up_write(&root->fs_info->subvol_sem);
1617 out_drop_write:
1618 	mnt_drop_write_file(file);
1619 out:
1620 	return ret;
1621 }
1622 
1623 /*
1624  * helper to check if the subvolume references other subvolumes
1625  */
1626 static noinline int may_destroy_subvol(struct btrfs_root *root)
1627 {
1628 	struct btrfs_path *path;
1629 	struct btrfs_key key;
1630 	int ret;
1631 
1632 	path = btrfs_alloc_path();
1633 	if (!path)
1634 		return -ENOMEM;
1635 
1636 	key.objectid = root->root_key.objectid;
1637 	key.type = BTRFS_ROOT_REF_KEY;
1638 	key.offset = (u64)-1;
1639 
1640 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1641 				&key, path, 0, 0);
1642 	if (ret < 0)
1643 		goto out;
1644 	BUG_ON(ret == 0);
1645 
1646 	ret = 0;
1647 	if (path->slots[0] > 0) {
1648 		path->slots[0]--;
1649 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1650 		if (key.objectid == root->root_key.objectid &&
1651 		    key.type == BTRFS_ROOT_REF_KEY)
1652 			ret = -ENOTEMPTY;
1653 	}
1654 out:
1655 	btrfs_free_path(path);
1656 	return ret;
1657 }
1658 
1659 static noinline int key_in_sk(struct btrfs_key *key,
1660 			      struct btrfs_ioctl_search_key *sk)
1661 {
1662 	struct btrfs_key test;
1663 	int ret;
1664 
1665 	test.objectid = sk->min_objectid;
1666 	test.type = sk->min_type;
1667 	test.offset = sk->min_offset;
1668 
1669 	ret = btrfs_comp_cpu_keys(key, &test);
1670 	if (ret < 0)
1671 		return 0;
1672 
1673 	test.objectid = sk->max_objectid;
1674 	test.type = sk->max_type;
1675 	test.offset = sk->max_offset;
1676 
1677 	ret = btrfs_comp_cpu_keys(key, &test);
1678 	if (ret > 0)
1679 		return 0;
1680 	return 1;
1681 }
1682 
1683 static noinline int copy_to_sk(struct btrfs_root *root,
1684 			       struct btrfs_path *path,
1685 			       struct btrfs_key *key,
1686 			       struct btrfs_ioctl_search_key *sk,
1687 			       char *buf,
1688 			       unsigned long *sk_offset,
1689 			       int *num_found)
1690 {
1691 	u64 found_transid;
1692 	struct extent_buffer *leaf;
1693 	struct btrfs_ioctl_search_header sh;
1694 	unsigned long item_off;
1695 	unsigned long item_len;
1696 	int nritems;
1697 	int i;
1698 	int slot;
1699 	int ret = 0;
1700 
1701 	leaf = path->nodes[0];
1702 	slot = path->slots[0];
1703 	nritems = btrfs_header_nritems(leaf);
1704 
1705 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1706 		i = nritems;
1707 		goto advance_key;
1708 	}
1709 	found_transid = btrfs_header_generation(leaf);
1710 
1711 	for (i = slot; i < nritems; i++) {
1712 		item_off = btrfs_item_ptr_offset(leaf, i);
1713 		item_len = btrfs_item_size_nr(leaf, i);
1714 
1715 		if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1716 			item_len = 0;
1717 
1718 		if (sizeof(sh) + item_len + *sk_offset >
1719 		    BTRFS_SEARCH_ARGS_BUFSIZE) {
1720 			ret = 1;
1721 			goto overflow;
1722 		}
1723 
1724 		btrfs_item_key_to_cpu(leaf, key, i);
1725 		if (!key_in_sk(key, sk))
1726 			continue;
1727 
1728 		sh.objectid = key->objectid;
1729 		sh.offset = key->offset;
1730 		sh.type = key->type;
1731 		sh.len = item_len;
1732 		sh.transid = found_transid;
1733 
1734 		/* copy search result header */
1735 		memcpy(buf + *sk_offset, &sh, sizeof(sh));
1736 		*sk_offset += sizeof(sh);
1737 
1738 		if (item_len) {
1739 			char *p = buf + *sk_offset;
1740 			/* copy the item */
1741 			read_extent_buffer(leaf, p,
1742 					   item_off, item_len);
1743 			*sk_offset += item_len;
1744 		}
1745 		(*num_found)++;
1746 
1747 		if (*num_found >= sk->nr_items)
1748 			break;
1749 	}
1750 advance_key:
1751 	ret = 0;
1752 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1753 		key->offset++;
1754 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
1755 		key->offset = 0;
1756 		key->type++;
1757 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1758 		key->offset = 0;
1759 		key->type = 0;
1760 		key->objectid++;
1761 	} else
1762 		ret = 1;
1763 overflow:
1764 	return ret;
1765 }
1766 
1767 static noinline int search_ioctl(struct inode *inode,
1768 				 struct btrfs_ioctl_search_args *args)
1769 {
1770 	struct btrfs_root *root;
1771 	struct btrfs_key key;
1772 	struct btrfs_key max_key;
1773 	struct btrfs_path *path;
1774 	struct btrfs_ioctl_search_key *sk = &args->key;
1775 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1776 	int ret;
1777 	int num_found = 0;
1778 	unsigned long sk_offset = 0;
1779 
1780 	path = btrfs_alloc_path();
1781 	if (!path)
1782 		return -ENOMEM;
1783 
1784 	if (sk->tree_id == 0) {
1785 		/* search the root of the inode that was passed */
1786 		root = BTRFS_I(inode)->root;
1787 	} else {
1788 		key.objectid = sk->tree_id;
1789 		key.type = BTRFS_ROOT_ITEM_KEY;
1790 		key.offset = (u64)-1;
1791 		root = btrfs_read_fs_root_no_name(info, &key);
1792 		if (IS_ERR(root)) {
1793 			printk(KERN_ERR "could not find root %llu\n",
1794 			       sk->tree_id);
1795 			btrfs_free_path(path);
1796 			return -ENOENT;
1797 		}
1798 	}
1799 
1800 	key.objectid = sk->min_objectid;
1801 	key.type = sk->min_type;
1802 	key.offset = sk->min_offset;
1803 
1804 	max_key.objectid = sk->max_objectid;
1805 	max_key.type = sk->max_type;
1806 	max_key.offset = sk->max_offset;
1807 
1808 	path->keep_locks = 1;
1809 
1810 	while(1) {
1811 		ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1812 					   sk->min_transid);
1813 		if (ret != 0) {
1814 			if (ret > 0)
1815 				ret = 0;
1816 			goto err;
1817 		}
1818 		ret = copy_to_sk(root, path, &key, sk, args->buf,
1819 				 &sk_offset, &num_found);
1820 		btrfs_release_path(path);
1821 		if (ret || num_found >= sk->nr_items)
1822 			break;
1823 
1824 	}
1825 	ret = 0;
1826 err:
1827 	sk->nr_items = num_found;
1828 	btrfs_free_path(path);
1829 	return ret;
1830 }
1831 
1832 static noinline int btrfs_ioctl_tree_search(struct file *file,
1833 					   void __user *argp)
1834 {
1835 	 struct btrfs_ioctl_search_args *args;
1836 	 struct inode *inode;
1837 	 int ret;
1838 
1839 	if (!capable(CAP_SYS_ADMIN))
1840 		return -EPERM;
1841 
1842 	args = memdup_user(argp, sizeof(*args));
1843 	if (IS_ERR(args))
1844 		return PTR_ERR(args);
1845 
1846 	inode = fdentry(file)->d_inode;
1847 	ret = search_ioctl(inode, args);
1848 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1849 		ret = -EFAULT;
1850 	kfree(args);
1851 	return ret;
1852 }
1853 
1854 /*
1855  * Search INODE_REFs to identify path name of 'dirid' directory
1856  * in a 'tree_id' tree. and sets path name to 'name'.
1857  */
1858 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1859 				u64 tree_id, u64 dirid, char *name)
1860 {
1861 	struct btrfs_root *root;
1862 	struct btrfs_key key;
1863 	char *ptr;
1864 	int ret = -1;
1865 	int slot;
1866 	int len;
1867 	int total_len = 0;
1868 	struct btrfs_inode_ref *iref;
1869 	struct extent_buffer *l;
1870 	struct btrfs_path *path;
1871 
1872 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1873 		name[0]='\0';
1874 		return 0;
1875 	}
1876 
1877 	path = btrfs_alloc_path();
1878 	if (!path)
1879 		return -ENOMEM;
1880 
1881 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1882 
1883 	key.objectid = tree_id;
1884 	key.type = BTRFS_ROOT_ITEM_KEY;
1885 	key.offset = (u64)-1;
1886 	root = btrfs_read_fs_root_no_name(info, &key);
1887 	if (IS_ERR(root)) {
1888 		printk(KERN_ERR "could not find root %llu\n", tree_id);
1889 		ret = -ENOENT;
1890 		goto out;
1891 	}
1892 
1893 	key.objectid = dirid;
1894 	key.type = BTRFS_INODE_REF_KEY;
1895 	key.offset = (u64)-1;
1896 
1897 	while(1) {
1898 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1899 		if (ret < 0)
1900 			goto out;
1901 
1902 		l = path->nodes[0];
1903 		slot = path->slots[0];
1904 		if (ret > 0 && slot > 0)
1905 			slot--;
1906 		btrfs_item_key_to_cpu(l, &key, slot);
1907 
1908 		if (ret > 0 && (key.objectid != dirid ||
1909 				key.type != BTRFS_INODE_REF_KEY)) {
1910 			ret = -ENOENT;
1911 			goto out;
1912 		}
1913 
1914 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1915 		len = btrfs_inode_ref_name_len(l, iref);
1916 		ptr -= len + 1;
1917 		total_len += len + 1;
1918 		if (ptr < name)
1919 			goto out;
1920 
1921 		*(ptr + len) = '/';
1922 		read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1923 
1924 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1925 			break;
1926 
1927 		btrfs_release_path(path);
1928 		key.objectid = key.offset;
1929 		key.offset = (u64)-1;
1930 		dirid = key.objectid;
1931 	}
1932 	if (ptr < name)
1933 		goto out;
1934 	memmove(name, ptr, total_len);
1935 	name[total_len]='\0';
1936 	ret = 0;
1937 out:
1938 	btrfs_free_path(path);
1939 	return ret;
1940 }
1941 
1942 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1943 					   void __user *argp)
1944 {
1945 	 struct btrfs_ioctl_ino_lookup_args *args;
1946 	 struct inode *inode;
1947 	 int ret;
1948 
1949 	if (!capable(CAP_SYS_ADMIN))
1950 		return -EPERM;
1951 
1952 	args = memdup_user(argp, sizeof(*args));
1953 	if (IS_ERR(args))
1954 		return PTR_ERR(args);
1955 
1956 	inode = fdentry(file)->d_inode;
1957 
1958 	if (args->treeid == 0)
1959 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1960 
1961 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1962 					args->treeid, args->objectid,
1963 					args->name);
1964 
1965 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1966 		ret = -EFAULT;
1967 
1968 	kfree(args);
1969 	return ret;
1970 }
1971 
1972 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1973 					     void __user *arg)
1974 {
1975 	struct dentry *parent = fdentry(file);
1976 	struct dentry *dentry;
1977 	struct inode *dir = parent->d_inode;
1978 	struct inode *inode;
1979 	struct btrfs_root *root = BTRFS_I(dir)->root;
1980 	struct btrfs_root *dest = NULL;
1981 	struct btrfs_ioctl_vol_args *vol_args;
1982 	struct btrfs_trans_handle *trans;
1983 	int namelen;
1984 	int ret;
1985 	int err = 0;
1986 
1987 	vol_args = memdup_user(arg, sizeof(*vol_args));
1988 	if (IS_ERR(vol_args))
1989 		return PTR_ERR(vol_args);
1990 
1991 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1992 	namelen = strlen(vol_args->name);
1993 	if (strchr(vol_args->name, '/') ||
1994 	    strncmp(vol_args->name, "..", namelen) == 0) {
1995 		err = -EINVAL;
1996 		goto out;
1997 	}
1998 
1999 	err = mnt_want_write_file(file);
2000 	if (err)
2001 		goto out;
2002 
2003 	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
2004 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2005 	if (IS_ERR(dentry)) {
2006 		err = PTR_ERR(dentry);
2007 		goto out_unlock_dir;
2008 	}
2009 
2010 	if (!dentry->d_inode) {
2011 		err = -ENOENT;
2012 		goto out_dput;
2013 	}
2014 
2015 	inode = dentry->d_inode;
2016 	dest = BTRFS_I(inode)->root;
2017 	if (!capable(CAP_SYS_ADMIN)){
2018 		/*
2019 		 * Regular user.  Only allow this with a special mount
2020 		 * option, when the user has write+exec access to the
2021 		 * subvol root, and when rmdir(2) would have been
2022 		 * allowed.
2023 		 *
2024 		 * Note that this is _not_ check that the subvol is
2025 		 * empty or doesn't contain data that we wouldn't
2026 		 * otherwise be able to delete.
2027 		 *
2028 		 * Users who want to delete empty subvols should try
2029 		 * rmdir(2).
2030 		 */
2031 		err = -EPERM;
2032 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2033 			goto out_dput;
2034 
2035 		/*
2036 		 * Do not allow deletion if the parent dir is the same
2037 		 * as the dir to be deleted.  That means the ioctl
2038 		 * must be called on the dentry referencing the root
2039 		 * of the subvol, not a random directory contained
2040 		 * within it.
2041 		 */
2042 		err = -EINVAL;
2043 		if (root == dest)
2044 			goto out_dput;
2045 
2046 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2047 		if (err)
2048 			goto out_dput;
2049 
2050 		/* check if subvolume may be deleted by a non-root user */
2051 		err = btrfs_may_delete(dir, dentry, 1);
2052 		if (err)
2053 			goto out_dput;
2054 	}
2055 
2056 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2057 		err = -EINVAL;
2058 		goto out_dput;
2059 	}
2060 
2061 	mutex_lock(&inode->i_mutex);
2062 	err = d_invalidate(dentry);
2063 	if (err)
2064 		goto out_unlock;
2065 
2066 	down_write(&root->fs_info->subvol_sem);
2067 
2068 	err = may_destroy_subvol(dest);
2069 	if (err)
2070 		goto out_up_write;
2071 
2072 	trans = btrfs_start_transaction(root, 0);
2073 	if (IS_ERR(trans)) {
2074 		err = PTR_ERR(trans);
2075 		goto out_up_write;
2076 	}
2077 	trans->block_rsv = &root->fs_info->global_block_rsv;
2078 
2079 	ret = btrfs_unlink_subvol(trans, root, dir,
2080 				dest->root_key.objectid,
2081 				dentry->d_name.name,
2082 				dentry->d_name.len);
2083 	if (ret) {
2084 		err = ret;
2085 		btrfs_abort_transaction(trans, root, ret);
2086 		goto out_end_trans;
2087 	}
2088 
2089 	btrfs_record_root_in_trans(trans, dest);
2090 
2091 	memset(&dest->root_item.drop_progress, 0,
2092 		sizeof(dest->root_item.drop_progress));
2093 	dest->root_item.drop_level = 0;
2094 	btrfs_set_root_refs(&dest->root_item, 0);
2095 
2096 	if (!xchg(&dest->orphan_item_inserted, 1)) {
2097 		ret = btrfs_insert_orphan_item(trans,
2098 					root->fs_info->tree_root,
2099 					dest->root_key.objectid);
2100 		if (ret) {
2101 			btrfs_abort_transaction(trans, root, ret);
2102 			err = ret;
2103 			goto out_end_trans;
2104 		}
2105 	}
2106 out_end_trans:
2107 	ret = btrfs_end_transaction(trans, root);
2108 	if (ret && !err)
2109 		err = ret;
2110 	inode->i_flags |= S_DEAD;
2111 out_up_write:
2112 	up_write(&root->fs_info->subvol_sem);
2113 out_unlock:
2114 	mutex_unlock(&inode->i_mutex);
2115 	if (!err) {
2116 		shrink_dcache_sb(root->fs_info->sb);
2117 		btrfs_invalidate_inodes(dest);
2118 		d_delete(dentry);
2119 	}
2120 out_dput:
2121 	dput(dentry);
2122 out_unlock_dir:
2123 	mutex_unlock(&dir->i_mutex);
2124 	mnt_drop_write_file(file);
2125 out:
2126 	kfree(vol_args);
2127 	return err;
2128 }
2129 
2130 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2131 {
2132 	struct inode *inode = fdentry(file)->d_inode;
2133 	struct btrfs_root *root = BTRFS_I(inode)->root;
2134 	struct btrfs_ioctl_defrag_range_args *range;
2135 	int ret;
2136 
2137 	if (btrfs_root_readonly(root))
2138 		return -EROFS;
2139 
2140 	ret = mnt_want_write_file(file);
2141 	if (ret)
2142 		return ret;
2143 
2144 	switch (inode->i_mode & S_IFMT) {
2145 	case S_IFDIR:
2146 		if (!capable(CAP_SYS_ADMIN)) {
2147 			ret = -EPERM;
2148 			goto out;
2149 		}
2150 		ret = btrfs_defrag_root(root, 0);
2151 		if (ret)
2152 			goto out;
2153 		ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
2154 		break;
2155 	case S_IFREG:
2156 		if (!(file->f_mode & FMODE_WRITE)) {
2157 			ret = -EINVAL;
2158 			goto out;
2159 		}
2160 
2161 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2162 		if (!range) {
2163 			ret = -ENOMEM;
2164 			goto out;
2165 		}
2166 
2167 		if (argp) {
2168 			if (copy_from_user(range, argp,
2169 					   sizeof(*range))) {
2170 				ret = -EFAULT;
2171 				kfree(range);
2172 				goto out;
2173 			}
2174 			/* compression requires us to start the IO */
2175 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2176 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2177 				range->extent_thresh = (u32)-1;
2178 			}
2179 		} else {
2180 			/* the rest are all set to zero by kzalloc */
2181 			range->len = (u64)-1;
2182 		}
2183 		ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2184 					range, 0, 0);
2185 		if (ret > 0)
2186 			ret = 0;
2187 		kfree(range);
2188 		break;
2189 	default:
2190 		ret = -EINVAL;
2191 	}
2192 out:
2193 	mnt_drop_write_file(file);
2194 	return ret;
2195 }
2196 
2197 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2198 {
2199 	struct btrfs_ioctl_vol_args *vol_args;
2200 	int ret;
2201 
2202 	if (!capable(CAP_SYS_ADMIN))
2203 		return -EPERM;
2204 
2205 	mutex_lock(&root->fs_info->volume_mutex);
2206 	if (root->fs_info->balance_ctl) {
2207 		printk(KERN_INFO "btrfs: balance in progress\n");
2208 		ret = -EINVAL;
2209 		goto out;
2210 	}
2211 
2212 	vol_args = memdup_user(arg, sizeof(*vol_args));
2213 	if (IS_ERR(vol_args)) {
2214 		ret = PTR_ERR(vol_args);
2215 		goto out;
2216 	}
2217 
2218 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2219 	ret = btrfs_init_new_device(root, vol_args->name);
2220 
2221 	kfree(vol_args);
2222 out:
2223 	mutex_unlock(&root->fs_info->volume_mutex);
2224 	return ret;
2225 }
2226 
2227 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2228 {
2229 	struct btrfs_ioctl_vol_args *vol_args;
2230 	int ret;
2231 
2232 	if (!capable(CAP_SYS_ADMIN))
2233 		return -EPERM;
2234 
2235 	if (root->fs_info->sb->s_flags & MS_RDONLY)
2236 		return -EROFS;
2237 
2238 	mutex_lock(&root->fs_info->volume_mutex);
2239 	if (root->fs_info->balance_ctl) {
2240 		printk(KERN_INFO "btrfs: balance in progress\n");
2241 		ret = -EINVAL;
2242 		goto out;
2243 	}
2244 
2245 	vol_args = memdup_user(arg, sizeof(*vol_args));
2246 	if (IS_ERR(vol_args)) {
2247 		ret = PTR_ERR(vol_args);
2248 		goto out;
2249 	}
2250 
2251 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2252 	ret = btrfs_rm_device(root, vol_args->name);
2253 
2254 	kfree(vol_args);
2255 out:
2256 	mutex_unlock(&root->fs_info->volume_mutex);
2257 	return ret;
2258 }
2259 
2260 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2261 {
2262 	struct btrfs_ioctl_fs_info_args *fi_args;
2263 	struct btrfs_device *device;
2264 	struct btrfs_device *next;
2265 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2266 	int ret = 0;
2267 
2268 	if (!capable(CAP_SYS_ADMIN))
2269 		return -EPERM;
2270 
2271 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2272 	if (!fi_args)
2273 		return -ENOMEM;
2274 
2275 	fi_args->num_devices = fs_devices->num_devices;
2276 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2277 
2278 	mutex_lock(&fs_devices->device_list_mutex);
2279 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2280 		if (device->devid > fi_args->max_id)
2281 			fi_args->max_id = device->devid;
2282 	}
2283 	mutex_unlock(&fs_devices->device_list_mutex);
2284 
2285 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2286 		ret = -EFAULT;
2287 
2288 	kfree(fi_args);
2289 	return ret;
2290 }
2291 
2292 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2293 {
2294 	struct btrfs_ioctl_dev_info_args *di_args;
2295 	struct btrfs_device *dev;
2296 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2297 	int ret = 0;
2298 	char *s_uuid = NULL;
2299 	char empty_uuid[BTRFS_UUID_SIZE] = {0};
2300 
2301 	if (!capable(CAP_SYS_ADMIN))
2302 		return -EPERM;
2303 
2304 	di_args = memdup_user(arg, sizeof(*di_args));
2305 	if (IS_ERR(di_args))
2306 		return PTR_ERR(di_args);
2307 
2308 	if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2309 		s_uuid = di_args->uuid;
2310 
2311 	mutex_lock(&fs_devices->device_list_mutex);
2312 	dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2313 	mutex_unlock(&fs_devices->device_list_mutex);
2314 
2315 	if (!dev) {
2316 		ret = -ENODEV;
2317 		goto out;
2318 	}
2319 
2320 	di_args->devid = dev->devid;
2321 	di_args->bytes_used = dev->bytes_used;
2322 	di_args->total_bytes = dev->total_bytes;
2323 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2324 	if (dev->name) {
2325 		struct rcu_string *name;
2326 
2327 		rcu_read_lock();
2328 		name = rcu_dereference(dev->name);
2329 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2330 		rcu_read_unlock();
2331 		di_args->path[sizeof(di_args->path) - 1] = 0;
2332 	} else {
2333 		di_args->path[0] = '\0';
2334 	}
2335 
2336 out:
2337 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2338 		ret = -EFAULT;
2339 
2340 	kfree(di_args);
2341 	return ret;
2342 }
2343 
2344 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2345 				       u64 off, u64 olen, u64 destoff)
2346 {
2347 	struct inode *inode = fdentry(file)->d_inode;
2348 	struct btrfs_root *root = BTRFS_I(inode)->root;
2349 	struct file *src_file;
2350 	struct inode *src;
2351 	struct btrfs_trans_handle *trans;
2352 	struct btrfs_path *path;
2353 	struct extent_buffer *leaf;
2354 	char *buf;
2355 	struct btrfs_key key;
2356 	u32 nritems;
2357 	int slot;
2358 	int ret;
2359 	u64 len = olen;
2360 	u64 bs = root->fs_info->sb->s_blocksize;
2361 	u64 hint_byte;
2362 
2363 	/*
2364 	 * TODO:
2365 	 * - split compressed inline extents.  annoying: we need to
2366 	 *   decompress into destination's address_space (the file offset
2367 	 *   may change, so source mapping won't do), then recompress (or
2368 	 *   otherwise reinsert) a subrange.
2369 	 * - allow ranges within the same file to be cloned (provided
2370 	 *   they don't overlap)?
2371 	 */
2372 
2373 	/* the destination must be opened for writing */
2374 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2375 		return -EINVAL;
2376 
2377 	if (btrfs_root_readonly(root))
2378 		return -EROFS;
2379 
2380 	ret = mnt_want_write_file(file);
2381 	if (ret)
2382 		return ret;
2383 
2384 	src_file = fget(srcfd);
2385 	if (!src_file) {
2386 		ret = -EBADF;
2387 		goto out_drop_write;
2388 	}
2389 
2390 	ret = -EXDEV;
2391 	if (src_file->f_path.mnt != file->f_path.mnt)
2392 		goto out_fput;
2393 
2394 	src = src_file->f_dentry->d_inode;
2395 
2396 	ret = -EINVAL;
2397 	if (src == inode)
2398 		goto out_fput;
2399 
2400 	/* the src must be open for reading */
2401 	if (!(src_file->f_mode & FMODE_READ))
2402 		goto out_fput;
2403 
2404 	/* don't make the dst file partly checksummed */
2405 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2406 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2407 		goto out_fput;
2408 
2409 	ret = -EISDIR;
2410 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2411 		goto out_fput;
2412 
2413 	ret = -EXDEV;
2414 	if (src->i_sb != inode->i_sb)
2415 		goto out_fput;
2416 
2417 	ret = -ENOMEM;
2418 	buf = vmalloc(btrfs_level_size(root, 0));
2419 	if (!buf)
2420 		goto out_fput;
2421 
2422 	path = btrfs_alloc_path();
2423 	if (!path) {
2424 		vfree(buf);
2425 		goto out_fput;
2426 	}
2427 	path->reada = 2;
2428 
2429 	if (inode < src) {
2430 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2431 		mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2432 	} else {
2433 		mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2434 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2435 	}
2436 
2437 	/* determine range to clone */
2438 	ret = -EINVAL;
2439 	if (off + len > src->i_size || off + len < off)
2440 		goto out_unlock;
2441 	if (len == 0)
2442 		olen = len = src->i_size - off;
2443 	/* if we extend to eof, continue to block boundary */
2444 	if (off + len == src->i_size)
2445 		len = ALIGN(src->i_size, bs) - off;
2446 
2447 	/* verify the end result is block aligned */
2448 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2449 	    !IS_ALIGNED(destoff, bs))
2450 		goto out_unlock;
2451 
2452 	if (destoff > inode->i_size) {
2453 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2454 		if (ret)
2455 			goto out_unlock;
2456 	}
2457 
2458 	/* truncate page cache pages from target inode range */
2459 	truncate_inode_pages_range(&inode->i_data, destoff,
2460 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
2461 
2462 	/* do any pending delalloc/csum calc on src, one way or
2463 	   another, and lock file content */
2464 	while (1) {
2465 		struct btrfs_ordered_extent *ordered;
2466 		lock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2467 		ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2468 		if (!ordered &&
2469 		    !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2470 				   EXTENT_DELALLOC, 0, NULL))
2471 			break;
2472 		unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2473 		if (ordered)
2474 			btrfs_put_ordered_extent(ordered);
2475 		btrfs_wait_ordered_range(src, off, len);
2476 	}
2477 
2478 	/* clone data */
2479 	key.objectid = btrfs_ino(src);
2480 	key.type = BTRFS_EXTENT_DATA_KEY;
2481 	key.offset = 0;
2482 
2483 	while (1) {
2484 		/*
2485 		 * note the key will change type as we walk through the
2486 		 * tree.
2487 		 */
2488 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2489 				0, 0);
2490 		if (ret < 0)
2491 			goto out;
2492 
2493 		nritems = btrfs_header_nritems(path->nodes[0]);
2494 		if (path->slots[0] >= nritems) {
2495 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2496 			if (ret < 0)
2497 				goto out;
2498 			if (ret > 0)
2499 				break;
2500 			nritems = btrfs_header_nritems(path->nodes[0]);
2501 		}
2502 		leaf = path->nodes[0];
2503 		slot = path->slots[0];
2504 
2505 		btrfs_item_key_to_cpu(leaf, &key, slot);
2506 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2507 		    key.objectid != btrfs_ino(src))
2508 			break;
2509 
2510 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2511 			struct btrfs_file_extent_item *extent;
2512 			int type;
2513 			u32 size;
2514 			struct btrfs_key new_key;
2515 			u64 disko = 0, diskl = 0;
2516 			u64 datao = 0, datal = 0;
2517 			u8 comp;
2518 			u64 endoff;
2519 
2520 			size = btrfs_item_size_nr(leaf, slot);
2521 			read_extent_buffer(leaf, buf,
2522 					   btrfs_item_ptr_offset(leaf, slot),
2523 					   size);
2524 
2525 			extent = btrfs_item_ptr(leaf, slot,
2526 						struct btrfs_file_extent_item);
2527 			comp = btrfs_file_extent_compression(leaf, extent);
2528 			type = btrfs_file_extent_type(leaf, extent);
2529 			if (type == BTRFS_FILE_EXTENT_REG ||
2530 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2531 				disko = btrfs_file_extent_disk_bytenr(leaf,
2532 								      extent);
2533 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
2534 								 extent);
2535 				datao = btrfs_file_extent_offset(leaf, extent);
2536 				datal = btrfs_file_extent_num_bytes(leaf,
2537 								    extent);
2538 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
2539 				/* take upper bound, may be compressed */
2540 				datal = btrfs_file_extent_ram_bytes(leaf,
2541 								    extent);
2542 			}
2543 			btrfs_release_path(path);
2544 
2545 			if (key.offset + datal <= off ||
2546 			    key.offset >= off+len)
2547 				goto next;
2548 
2549 			memcpy(&new_key, &key, sizeof(new_key));
2550 			new_key.objectid = btrfs_ino(inode);
2551 			if (off <= key.offset)
2552 				new_key.offset = key.offset + destoff - off;
2553 			else
2554 				new_key.offset = destoff;
2555 
2556 			/*
2557 			 * 1 - adjusting old extent (we may have to split it)
2558 			 * 1 - add new extent
2559 			 * 1 - inode update
2560 			 */
2561 			trans = btrfs_start_transaction(root, 3);
2562 			if (IS_ERR(trans)) {
2563 				ret = PTR_ERR(trans);
2564 				goto out;
2565 			}
2566 
2567 			if (type == BTRFS_FILE_EXTENT_REG ||
2568 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2569 				/*
2570 				 *    a  | --- range to clone ---|  b
2571 				 * | ------------- extent ------------- |
2572 				 */
2573 
2574 				/* substract range b */
2575 				if (key.offset + datal > off + len)
2576 					datal = off + len - key.offset;
2577 
2578 				/* substract range a */
2579 				if (off > key.offset) {
2580 					datao += off - key.offset;
2581 					datal -= off - key.offset;
2582 				}
2583 
2584 				ret = btrfs_drop_extents(trans, inode,
2585 							 new_key.offset,
2586 							 new_key.offset + datal,
2587 							 &hint_byte, 1);
2588 				if (ret) {
2589 					btrfs_abort_transaction(trans, root,
2590 								ret);
2591 					btrfs_end_transaction(trans, root);
2592 					goto out;
2593 				}
2594 
2595 				ret = btrfs_insert_empty_item(trans, root, path,
2596 							      &new_key, size);
2597 				if (ret) {
2598 					btrfs_abort_transaction(trans, root,
2599 								ret);
2600 					btrfs_end_transaction(trans, root);
2601 					goto out;
2602 				}
2603 
2604 				leaf = path->nodes[0];
2605 				slot = path->slots[0];
2606 				write_extent_buffer(leaf, buf,
2607 					    btrfs_item_ptr_offset(leaf, slot),
2608 					    size);
2609 
2610 				extent = btrfs_item_ptr(leaf, slot,
2611 						struct btrfs_file_extent_item);
2612 
2613 				/* disko == 0 means it's a hole */
2614 				if (!disko)
2615 					datao = 0;
2616 
2617 				btrfs_set_file_extent_offset(leaf, extent,
2618 							     datao);
2619 				btrfs_set_file_extent_num_bytes(leaf, extent,
2620 								datal);
2621 				if (disko) {
2622 					inode_add_bytes(inode, datal);
2623 					ret = btrfs_inc_extent_ref(trans, root,
2624 							disko, diskl, 0,
2625 							root->root_key.objectid,
2626 							btrfs_ino(inode),
2627 							new_key.offset - datao,
2628 							0);
2629 					if (ret) {
2630 						btrfs_abort_transaction(trans,
2631 									root,
2632 									ret);
2633 						btrfs_end_transaction(trans,
2634 								      root);
2635 						goto out;
2636 
2637 					}
2638 				}
2639 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
2640 				u64 skip = 0;
2641 				u64 trim = 0;
2642 				if (off > key.offset) {
2643 					skip = off - key.offset;
2644 					new_key.offset += skip;
2645 				}
2646 
2647 				if (key.offset + datal > off+len)
2648 					trim = key.offset + datal - (off+len);
2649 
2650 				if (comp && (skip || trim)) {
2651 					ret = -EINVAL;
2652 					btrfs_end_transaction(trans, root);
2653 					goto out;
2654 				}
2655 				size -= skip + trim;
2656 				datal -= skip + trim;
2657 
2658 				ret = btrfs_drop_extents(trans, inode,
2659 							 new_key.offset,
2660 							 new_key.offset + datal,
2661 							 &hint_byte, 1);
2662 				if (ret) {
2663 					btrfs_abort_transaction(trans, root,
2664 								ret);
2665 					btrfs_end_transaction(trans, root);
2666 					goto out;
2667 				}
2668 
2669 				ret = btrfs_insert_empty_item(trans, root, path,
2670 							      &new_key, size);
2671 				if (ret) {
2672 					btrfs_abort_transaction(trans, root,
2673 								ret);
2674 					btrfs_end_transaction(trans, root);
2675 					goto out;
2676 				}
2677 
2678 				if (skip) {
2679 					u32 start =
2680 					  btrfs_file_extent_calc_inline_size(0);
2681 					memmove(buf+start, buf+start+skip,
2682 						datal);
2683 				}
2684 
2685 				leaf = path->nodes[0];
2686 				slot = path->slots[0];
2687 				write_extent_buffer(leaf, buf,
2688 					    btrfs_item_ptr_offset(leaf, slot),
2689 					    size);
2690 				inode_add_bytes(inode, datal);
2691 			}
2692 
2693 			btrfs_mark_buffer_dirty(leaf);
2694 			btrfs_release_path(path);
2695 
2696 			inode_inc_iversion(inode);
2697 			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2698 
2699 			/*
2700 			 * we round up to the block size at eof when
2701 			 * determining which extents to clone above,
2702 			 * but shouldn't round up the file size
2703 			 */
2704 			endoff = new_key.offset + datal;
2705 			if (endoff > destoff+olen)
2706 				endoff = destoff+olen;
2707 			if (endoff > inode->i_size)
2708 				btrfs_i_size_write(inode, endoff);
2709 
2710 			ret = btrfs_update_inode(trans, root, inode);
2711 			if (ret) {
2712 				btrfs_abort_transaction(trans, root, ret);
2713 				btrfs_end_transaction(trans, root);
2714 				goto out;
2715 			}
2716 			ret = btrfs_end_transaction(trans, root);
2717 		}
2718 next:
2719 		btrfs_release_path(path);
2720 		key.offset++;
2721 	}
2722 	ret = 0;
2723 out:
2724 	btrfs_release_path(path);
2725 	unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2726 out_unlock:
2727 	mutex_unlock(&src->i_mutex);
2728 	mutex_unlock(&inode->i_mutex);
2729 	vfree(buf);
2730 	btrfs_free_path(path);
2731 out_fput:
2732 	fput(src_file);
2733 out_drop_write:
2734 	mnt_drop_write_file(file);
2735 	return ret;
2736 }
2737 
2738 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2739 {
2740 	struct btrfs_ioctl_clone_range_args args;
2741 
2742 	if (copy_from_user(&args, argp, sizeof(args)))
2743 		return -EFAULT;
2744 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2745 				 args.src_length, args.dest_offset);
2746 }
2747 
2748 /*
2749  * there are many ways the trans_start and trans_end ioctls can lead
2750  * to deadlocks.  They should only be used by applications that
2751  * basically own the machine, and have a very in depth understanding
2752  * of all the possible deadlocks and enospc problems.
2753  */
2754 static long btrfs_ioctl_trans_start(struct file *file)
2755 {
2756 	struct inode *inode = fdentry(file)->d_inode;
2757 	struct btrfs_root *root = BTRFS_I(inode)->root;
2758 	struct btrfs_trans_handle *trans;
2759 	int ret;
2760 
2761 	ret = -EPERM;
2762 	if (!capable(CAP_SYS_ADMIN))
2763 		goto out;
2764 
2765 	ret = -EINPROGRESS;
2766 	if (file->private_data)
2767 		goto out;
2768 
2769 	ret = -EROFS;
2770 	if (btrfs_root_readonly(root))
2771 		goto out;
2772 
2773 	ret = mnt_want_write_file(file);
2774 	if (ret)
2775 		goto out;
2776 
2777 	atomic_inc(&root->fs_info->open_ioctl_trans);
2778 
2779 	ret = -ENOMEM;
2780 	trans = btrfs_start_ioctl_transaction(root);
2781 	if (IS_ERR(trans))
2782 		goto out_drop;
2783 
2784 	file->private_data = trans;
2785 	return 0;
2786 
2787 out_drop:
2788 	atomic_dec(&root->fs_info->open_ioctl_trans);
2789 	mnt_drop_write_file(file);
2790 out:
2791 	return ret;
2792 }
2793 
2794 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2795 {
2796 	struct inode *inode = fdentry(file)->d_inode;
2797 	struct btrfs_root *root = BTRFS_I(inode)->root;
2798 	struct btrfs_root *new_root;
2799 	struct btrfs_dir_item *di;
2800 	struct btrfs_trans_handle *trans;
2801 	struct btrfs_path *path;
2802 	struct btrfs_key location;
2803 	struct btrfs_disk_key disk_key;
2804 	u64 objectid = 0;
2805 	u64 dir_id;
2806 
2807 	if (!capable(CAP_SYS_ADMIN))
2808 		return -EPERM;
2809 
2810 	if (copy_from_user(&objectid, argp, sizeof(objectid)))
2811 		return -EFAULT;
2812 
2813 	if (!objectid)
2814 		objectid = root->root_key.objectid;
2815 
2816 	location.objectid = objectid;
2817 	location.type = BTRFS_ROOT_ITEM_KEY;
2818 	location.offset = (u64)-1;
2819 
2820 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2821 	if (IS_ERR(new_root))
2822 		return PTR_ERR(new_root);
2823 
2824 	if (btrfs_root_refs(&new_root->root_item) == 0)
2825 		return -ENOENT;
2826 
2827 	path = btrfs_alloc_path();
2828 	if (!path)
2829 		return -ENOMEM;
2830 	path->leave_spinning = 1;
2831 
2832 	trans = btrfs_start_transaction(root, 1);
2833 	if (IS_ERR(trans)) {
2834 		btrfs_free_path(path);
2835 		return PTR_ERR(trans);
2836 	}
2837 
2838 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2839 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2840 				   dir_id, "default", 7, 1);
2841 	if (IS_ERR_OR_NULL(di)) {
2842 		btrfs_free_path(path);
2843 		btrfs_end_transaction(trans, root);
2844 		printk(KERN_ERR "Umm, you don't have the default dir item, "
2845 		       "this isn't going to work\n");
2846 		return -ENOENT;
2847 	}
2848 
2849 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2850 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2851 	btrfs_mark_buffer_dirty(path->nodes[0]);
2852 	btrfs_free_path(path);
2853 
2854 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
2855 	btrfs_end_transaction(trans, root);
2856 
2857 	return 0;
2858 }
2859 
2860 static void get_block_group_info(struct list_head *groups_list,
2861 				 struct btrfs_ioctl_space_info *space)
2862 {
2863 	struct btrfs_block_group_cache *block_group;
2864 
2865 	space->total_bytes = 0;
2866 	space->used_bytes = 0;
2867 	space->flags = 0;
2868 	list_for_each_entry(block_group, groups_list, list) {
2869 		space->flags = block_group->flags;
2870 		space->total_bytes += block_group->key.offset;
2871 		space->used_bytes +=
2872 			btrfs_block_group_used(&block_group->item);
2873 	}
2874 }
2875 
2876 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2877 {
2878 	struct btrfs_ioctl_space_args space_args;
2879 	struct btrfs_ioctl_space_info space;
2880 	struct btrfs_ioctl_space_info *dest;
2881 	struct btrfs_ioctl_space_info *dest_orig;
2882 	struct btrfs_ioctl_space_info __user *user_dest;
2883 	struct btrfs_space_info *info;
2884 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2885 		       BTRFS_BLOCK_GROUP_SYSTEM,
2886 		       BTRFS_BLOCK_GROUP_METADATA,
2887 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2888 	int num_types = 4;
2889 	int alloc_size;
2890 	int ret = 0;
2891 	u64 slot_count = 0;
2892 	int i, c;
2893 
2894 	if (copy_from_user(&space_args,
2895 			   (struct btrfs_ioctl_space_args __user *)arg,
2896 			   sizeof(space_args)))
2897 		return -EFAULT;
2898 
2899 	for (i = 0; i < num_types; i++) {
2900 		struct btrfs_space_info *tmp;
2901 
2902 		info = NULL;
2903 		rcu_read_lock();
2904 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2905 					list) {
2906 			if (tmp->flags == types[i]) {
2907 				info = tmp;
2908 				break;
2909 			}
2910 		}
2911 		rcu_read_unlock();
2912 
2913 		if (!info)
2914 			continue;
2915 
2916 		down_read(&info->groups_sem);
2917 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2918 			if (!list_empty(&info->block_groups[c]))
2919 				slot_count++;
2920 		}
2921 		up_read(&info->groups_sem);
2922 	}
2923 
2924 	/* space_slots == 0 means they are asking for a count */
2925 	if (space_args.space_slots == 0) {
2926 		space_args.total_spaces = slot_count;
2927 		goto out;
2928 	}
2929 
2930 	slot_count = min_t(u64, space_args.space_slots, slot_count);
2931 
2932 	alloc_size = sizeof(*dest) * slot_count;
2933 
2934 	/* we generally have at most 6 or so space infos, one for each raid
2935 	 * level.  So, a whole page should be more than enough for everyone
2936 	 */
2937 	if (alloc_size > PAGE_CACHE_SIZE)
2938 		return -ENOMEM;
2939 
2940 	space_args.total_spaces = 0;
2941 	dest = kmalloc(alloc_size, GFP_NOFS);
2942 	if (!dest)
2943 		return -ENOMEM;
2944 	dest_orig = dest;
2945 
2946 	/* now we have a buffer to copy into */
2947 	for (i = 0; i < num_types; i++) {
2948 		struct btrfs_space_info *tmp;
2949 
2950 		if (!slot_count)
2951 			break;
2952 
2953 		info = NULL;
2954 		rcu_read_lock();
2955 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2956 					list) {
2957 			if (tmp->flags == types[i]) {
2958 				info = tmp;
2959 				break;
2960 			}
2961 		}
2962 		rcu_read_unlock();
2963 
2964 		if (!info)
2965 			continue;
2966 		down_read(&info->groups_sem);
2967 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2968 			if (!list_empty(&info->block_groups[c])) {
2969 				get_block_group_info(&info->block_groups[c],
2970 						     &space);
2971 				memcpy(dest, &space, sizeof(space));
2972 				dest++;
2973 				space_args.total_spaces++;
2974 				slot_count--;
2975 			}
2976 			if (!slot_count)
2977 				break;
2978 		}
2979 		up_read(&info->groups_sem);
2980 	}
2981 
2982 	user_dest = (struct btrfs_ioctl_space_info __user *)
2983 		(arg + sizeof(struct btrfs_ioctl_space_args));
2984 
2985 	if (copy_to_user(user_dest, dest_orig, alloc_size))
2986 		ret = -EFAULT;
2987 
2988 	kfree(dest_orig);
2989 out:
2990 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2991 		ret = -EFAULT;
2992 
2993 	return ret;
2994 }
2995 
2996 /*
2997  * there are many ways the trans_start and trans_end ioctls can lead
2998  * to deadlocks.  They should only be used by applications that
2999  * basically own the machine, and have a very in depth understanding
3000  * of all the possible deadlocks and enospc problems.
3001  */
3002 long btrfs_ioctl_trans_end(struct file *file)
3003 {
3004 	struct inode *inode = fdentry(file)->d_inode;
3005 	struct btrfs_root *root = BTRFS_I(inode)->root;
3006 	struct btrfs_trans_handle *trans;
3007 
3008 	trans = file->private_data;
3009 	if (!trans)
3010 		return -EINVAL;
3011 	file->private_data = NULL;
3012 
3013 	btrfs_end_transaction(trans, root);
3014 
3015 	atomic_dec(&root->fs_info->open_ioctl_trans);
3016 
3017 	mnt_drop_write_file(file);
3018 	return 0;
3019 }
3020 
3021 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
3022 {
3023 	struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
3024 	struct btrfs_trans_handle *trans;
3025 	u64 transid;
3026 	int ret;
3027 
3028 	trans = btrfs_start_transaction(root, 0);
3029 	if (IS_ERR(trans))
3030 		return PTR_ERR(trans);
3031 	transid = trans->transid;
3032 	ret = btrfs_commit_transaction_async(trans, root, 0);
3033 	if (ret) {
3034 		btrfs_end_transaction(trans, root);
3035 		return ret;
3036 	}
3037 
3038 	if (argp)
3039 		if (copy_to_user(argp, &transid, sizeof(transid)))
3040 			return -EFAULT;
3041 	return 0;
3042 }
3043 
3044 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
3045 {
3046 	struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
3047 	u64 transid;
3048 
3049 	if (argp) {
3050 		if (copy_from_user(&transid, argp, sizeof(transid)))
3051 			return -EFAULT;
3052 	} else {
3053 		transid = 0;  /* current trans */
3054 	}
3055 	return btrfs_wait_for_commit(root, transid);
3056 }
3057 
3058 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
3059 {
3060 	int ret;
3061 	struct btrfs_ioctl_scrub_args *sa;
3062 
3063 	if (!capable(CAP_SYS_ADMIN))
3064 		return -EPERM;
3065 
3066 	sa = memdup_user(arg, sizeof(*sa));
3067 	if (IS_ERR(sa))
3068 		return PTR_ERR(sa);
3069 
3070 	ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
3071 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
3072 
3073 	if (copy_to_user(arg, sa, sizeof(*sa)))
3074 		ret = -EFAULT;
3075 
3076 	kfree(sa);
3077 	return ret;
3078 }
3079 
3080 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3081 {
3082 	if (!capable(CAP_SYS_ADMIN))
3083 		return -EPERM;
3084 
3085 	return btrfs_scrub_cancel(root);
3086 }
3087 
3088 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3089 				       void __user *arg)
3090 {
3091 	struct btrfs_ioctl_scrub_args *sa;
3092 	int ret;
3093 
3094 	if (!capable(CAP_SYS_ADMIN))
3095 		return -EPERM;
3096 
3097 	sa = memdup_user(arg, sizeof(*sa));
3098 	if (IS_ERR(sa))
3099 		return PTR_ERR(sa);
3100 
3101 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3102 
3103 	if (copy_to_user(arg, sa, sizeof(*sa)))
3104 		ret = -EFAULT;
3105 
3106 	kfree(sa);
3107 	return ret;
3108 }
3109 
3110 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3111 				      void __user *arg)
3112 {
3113 	struct btrfs_ioctl_get_dev_stats *sa;
3114 	int ret;
3115 
3116 	sa = memdup_user(arg, sizeof(*sa));
3117 	if (IS_ERR(sa))
3118 		return PTR_ERR(sa);
3119 
3120 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3121 		kfree(sa);
3122 		return -EPERM;
3123 	}
3124 
3125 	ret = btrfs_get_dev_stats(root, sa);
3126 
3127 	if (copy_to_user(arg, sa, sizeof(*sa)))
3128 		ret = -EFAULT;
3129 
3130 	kfree(sa);
3131 	return ret;
3132 }
3133 
3134 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3135 {
3136 	int ret = 0;
3137 	int i;
3138 	u64 rel_ptr;
3139 	int size;
3140 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3141 	struct inode_fs_paths *ipath = NULL;
3142 	struct btrfs_path *path;
3143 
3144 	if (!capable(CAP_SYS_ADMIN))
3145 		return -EPERM;
3146 
3147 	path = btrfs_alloc_path();
3148 	if (!path) {
3149 		ret = -ENOMEM;
3150 		goto out;
3151 	}
3152 
3153 	ipa = memdup_user(arg, sizeof(*ipa));
3154 	if (IS_ERR(ipa)) {
3155 		ret = PTR_ERR(ipa);
3156 		ipa = NULL;
3157 		goto out;
3158 	}
3159 
3160 	size = min_t(u32, ipa->size, 4096);
3161 	ipath = init_ipath(size, root, path);
3162 	if (IS_ERR(ipath)) {
3163 		ret = PTR_ERR(ipath);
3164 		ipath = NULL;
3165 		goto out;
3166 	}
3167 
3168 	ret = paths_from_inode(ipa->inum, ipath);
3169 	if (ret < 0)
3170 		goto out;
3171 
3172 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3173 		rel_ptr = ipath->fspath->val[i] -
3174 			  (u64)(unsigned long)ipath->fspath->val;
3175 		ipath->fspath->val[i] = rel_ptr;
3176 	}
3177 
3178 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3179 			   (void *)(unsigned long)ipath->fspath, size);
3180 	if (ret) {
3181 		ret = -EFAULT;
3182 		goto out;
3183 	}
3184 
3185 out:
3186 	btrfs_free_path(path);
3187 	free_ipath(ipath);
3188 	kfree(ipa);
3189 
3190 	return ret;
3191 }
3192 
3193 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3194 {
3195 	struct btrfs_data_container *inodes = ctx;
3196 	const size_t c = 3 * sizeof(u64);
3197 
3198 	if (inodes->bytes_left >= c) {
3199 		inodes->bytes_left -= c;
3200 		inodes->val[inodes->elem_cnt] = inum;
3201 		inodes->val[inodes->elem_cnt + 1] = offset;
3202 		inodes->val[inodes->elem_cnt + 2] = root;
3203 		inodes->elem_cnt += 3;
3204 	} else {
3205 		inodes->bytes_missing += c - inodes->bytes_left;
3206 		inodes->bytes_left = 0;
3207 		inodes->elem_missed += 3;
3208 	}
3209 
3210 	return 0;
3211 }
3212 
3213 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3214 					void __user *arg)
3215 {
3216 	int ret = 0;
3217 	int size;
3218 	u64 extent_item_pos;
3219 	struct btrfs_ioctl_logical_ino_args *loi;
3220 	struct btrfs_data_container *inodes = NULL;
3221 	struct btrfs_path *path = NULL;
3222 	struct btrfs_key key;
3223 
3224 	if (!capable(CAP_SYS_ADMIN))
3225 		return -EPERM;
3226 
3227 	loi = memdup_user(arg, sizeof(*loi));
3228 	if (IS_ERR(loi)) {
3229 		ret = PTR_ERR(loi);
3230 		loi = NULL;
3231 		goto out;
3232 	}
3233 
3234 	path = btrfs_alloc_path();
3235 	if (!path) {
3236 		ret = -ENOMEM;
3237 		goto out;
3238 	}
3239 
3240 	size = min_t(u32, loi->size, 4096);
3241 	inodes = init_data_container(size);
3242 	if (IS_ERR(inodes)) {
3243 		ret = PTR_ERR(inodes);
3244 		inodes = NULL;
3245 		goto out;
3246 	}
3247 
3248 	ret = extent_from_logical(root->fs_info, loi->logical, path, &key);
3249 	btrfs_release_path(path);
3250 
3251 	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3252 		ret = -ENOENT;
3253 	if (ret < 0)
3254 		goto out;
3255 
3256 	extent_item_pos = loi->logical - key.objectid;
3257 	ret = iterate_extent_inodes(root->fs_info, key.objectid,
3258 					extent_item_pos, 0, build_ino_list,
3259 					inodes);
3260 
3261 	if (ret < 0)
3262 		goto out;
3263 
3264 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
3265 			   (void *)(unsigned long)inodes, size);
3266 	if (ret)
3267 		ret = -EFAULT;
3268 
3269 out:
3270 	btrfs_free_path(path);
3271 	kfree(inodes);
3272 	kfree(loi);
3273 
3274 	return ret;
3275 }
3276 
3277 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3278 			       struct btrfs_ioctl_balance_args *bargs)
3279 {
3280 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3281 
3282 	bargs->flags = bctl->flags;
3283 
3284 	if (atomic_read(&fs_info->balance_running))
3285 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3286 	if (atomic_read(&fs_info->balance_pause_req))
3287 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3288 	if (atomic_read(&fs_info->balance_cancel_req))
3289 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3290 
3291 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3292 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3293 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3294 
3295 	if (lock) {
3296 		spin_lock(&fs_info->balance_lock);
3297 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3298 		spin_unlock(&fs_info->balance_lock);
3299 	} else {
3300 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3301 	}
3302 }
3303 
3304 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3305 {
3306 	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3307 	struct btrfs_fs_info *fs_info = root->fs_info;
3308 	struct btrfs_ioctl_balance_args *bargs;
3309 	struct btrfs_balance_control *bctl;
3310 	int ret;
3311 
3312 	if (!capable(CAP_SYS_ADMIN))
3313 		return -EPERM;
3314 
3315 	ret = mnt_want_write_file(file);
3316 	if (ret)
3317 		return ret;
3318 
3319 	mutex_lock(&fs_info->volume_mutex);
3320 	mutex_lock(&fs_info->balance_mutex);
3321 
3322 	if (arg) {
3323 		bargs = memdup_user(arg, sizeof(*bargs));
3324 		if (IS_ERR(bargs)) {
3325 			ret = PTR_ERR(bargs);
3326 			goto out;
3327 		}
3328 
3329 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
3330 			if (!fs_info->balance_ctl) {
3331 				ret = -ENOTCONN;
3332 				goto out_bargs;
3333 			}
3334 
3335 			bctl = fs_info->balance_ctl;
3336 			spin_lock(&fs_info->balance_lock);
3337 			bctl->flags |= BTRFS_BALANCE_RESUME;
3338 			spin_unlock(&fs_info->balance_lock);
3339 
3340 			goto do_balance;
3341 		}
3342 	} else {
3343 		bargs = NULL;
3344 	}
3345 
3346 	if (fs_info->balance_ctl) {
3347 		ret = -EINPROGRESS;
3348 		goto out_bargs;
3349 	}
3350 
3351 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3352 	if (!bctl) {
3353 		ret = -ENOMEM;
3354 		goto out_bargs;
3355 	}
3356 
3357 	bctl->fs_info = fs_info;
3358 	if (arg) {
3359 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3360 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3361 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3362 
3363 		bctl->flags = bargs->flags;
3364 	} else {
3365 		/* balance everything - no filters */
3366 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3367 	}
3368 
3369 do_balance:
3370 	ret = btrfs_balance(bctl, bargs);
3371 	/*
3372 	 * bctl is freed in __cancel_balance or in free_fs_info if
3373 	 * restriper was paused all the way until unmount
3374 	 */
3375 	if (arg) {
3376 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3377 			ret = -EFAULT;
3378 	}
3379 
3380 out_bargs:
3381 	kfree(bargs);
3382 out:
3383 	mutex_unlock(&fs_info->balance_mutex);
3384 	mutex_unlock(&fs_info->volume_mutex);
3385 	mnt_drop_write_file(file);
3386 	return ret;
3387 }
3388 
3389 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3390 {
3391 	if (!capable(CAP_SYS_ADMIN))
3392 		return -EPERM;
3393 
3394 	switch (cmd) {
3395 	case BTRFS_BALANCE_CTL_PAUSE:
3396 		return btrfs_pause_balance(root->fs_info);
3397 	case BTRFS_BALANCE_CTL_CANCEL:
3398 		return btrfs_cancel_balance(root->fs_info);
3399 	}
3400 
3401 	return -EINVAL;
3402 }
3403 
3404 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3405 					 void __user *arg)
3406 {
3407 	struct btrfs_fs_info *fs_info = root->fs_info;
3408 	struct btrfs_ioctl_balance_args *bargs;
3409 	int ret = 0;
3410 
3411 	if (!capable(CAP_SYS_ADMIN))
3412 		return -EPERM;
3413 
3414 	mutex_lock(&fs_info->balance_mutex);
3415 	if (!fs_info->balance_ctl) {
3416 		ret = -ENOTCONN;
3417 		goto out;
3418 	}
3419 
3420 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3421 	if (!bargs) {
3422 		ret = -ENOMEM;
3423 		goto out;
3424 	}
3425 
3426 	update_ioctl_balance_args(fs_info, 1, bargs);
3427 
3428 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3429 		ret = -EFAULT;
3430 
3431 	kfree(bargs);
3432 out:
3433 	mutex_unlock(&fs_info->balance_mutex);
3434 	return ret;
3435 }
3436 
3437 static long btrfs_ioctl_quota_ctl(struct btrfs_root *root, void __user *arg)
3438 {
3439 	struct btrfs_ioctl_quota_ctl_args *sa;
3440 	struct btrfs_trans_handle *trans = NULL;
3441 	int ret;
3442 	int err;
3443 
3444 	if (!capable(CAP_SYS_ADMIN))
3445 		return -EPERM;
3446 
3447 	if (root->fs_info->sb->s_flags & MS_RDONLY)
3448 		return -EROFS;
3449 
3450 	sa = memdup_user(arg, sizeof(*sa));
3451 	if (IS_ERR(sa))
3452 		return PTR_ERR(sa);
3453 
3454 	if (sa->cmd != BTRFS_QUOTA_CTL_RESCAN) {
3455 		trans = btrfs_start_transaction(root, 2);
3456 		if (IS_ERR(trans)) {
3457 			ret = PTR_ERR(trans);
3458 			goto out;
3459 		}
3460 	}
3461 
3462 	switch (sa->cmd) {
3463 	case BTRFS_QUOTA_CTL_ENABLE:
3464 		ret = btrfs_quota_enable(trans, root->fs_info);
3465 		break;
3466 	case BTRFS_QUOTA_CTL_DISABLE:
3467 		ret = btrfs_quota_disable(trans, root->fs_info);
3468 		break;
3469 	case BTRFS_QUOTA_CTL_RESCAN:
3470 		ret = btrfs_quota_rescan(root->fs_info);
3471 		break;
3472 	default:
3473 		ret = -EINVAL;
3474 		break;
3475 	}
3476 
3477 	if (copy_to_user(arg, sa, sizeof(*sa)))
3478 		ret = -EFAULT;
3479 
3480 	if (trans) {
3481 		err = btrfs_commit_transaction(trans, root);
3482 		if (err && !ret)
3483 			ret = err;
3484 	}
3485 
3486 out:
3487 	kfree(sa);
3488 	return ret;
3489 }
3490 
3491 static long btrfs_ioctl_qgroup_assign(struct btrfs_root *root, void __user *arg)
3492 {
3493 	struct btrfs_ioctl_qgroup_assign_args *sa;
3494 	struct btrfs_trans_handle *trans;
3495 	int ret;
3496 	int err;
3497 
3498 	if (!capable(CAP_SYS_ADMIN))
3499 		return -EPERM;
3500 
3501 	if (root->fs_info->sb->s_flags & MS_RDONLY)
3502 		return -EROFS;
3503 
3504 	sa = memdup_user(arg, sizeof(*sa));
3505 	if (IS_ERR(sa))
3506 		return PTR_ERR(sa);
3507 
3508 	trans = btrfs_join_transaction(root);
3509 	if (IS_ERR(trans)) {
3510 		ret = PTR_ERR(trans);
3511 		goto out;
3512 	}
3513 
3514 	/* FIXME: check if the IDs really exist */
3515 	if (sa->assign) {
3516 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
3517 						sa->src, sa->dst);
3518 	} else {
3519 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
3520 						sa->src, sa->dst);
3521 	}
3522 
3523 	err = btrfs_end_transaction(trans, root);
3524 	if (err && !ret)
3525 		ret = err;
3526 
3527 out:
3528 	kfree(sa);
3529 	return ret;
3530 }
3531 
3532 static long btrfs_ioctl_qgroup_create(struct btrfs_root *root, void __user *arg)
3533 {
3534 	struct btrfs_ioctl_qgroup_create_args *sa;
3535 	struct btrfs_trans_handle *trans;
3536 	int ret;
3537 	int err;
3538 
3539 	if (!capable(CAP_SYS_ADMIN))
3540 		return -EPERM;
3541 
3542 	if (root->fs_info->sb->s_flags & MS_RDONLY)
3543 		return -EROFS;
3544 
3545 	sa = memdup_user(arg, sizeof(*sa));
3546 	if (IS_ERR(sa))
3547 		return PTR_ERR(sa);
3548 
3549 	trans = btrfs_join_transaction(root);
3550 	if (IS_ERR(trans)) {
3551 		ret = PTR_ERR(trans);
3552 		goto out;
3553 	}
3554 
3555 	/* FIXME: check if the IDs really exist */
3556 	if (sa->create) {
3557 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
3558 					  NULL);
3559 	} else {
3560 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
3561 	}
3562 
3563 	err = btrfs_end_transaction(trans, root);
3564 	if (err && !ret)
3565 		ret = err;
3566 
3567 out:
3568 	kfree(sa);
3569 	return ret;
3570 }
3571 
3572 static long btrfs_ioctl_qgroup_limit(struct btrfs_root *root, void __user *arg)
3573 {
3574 	struct btrfs_ioctl_qgroup_limit_args *sa;
3575 	struct btrfs_trans_handle *trans;
3576 	int ret;
3577 	int err;
3578 	u64 qgroupid;
3579 
3580 	if (!capable(CAP_SYS_ADMIN))
3581 		return -EPERM;
3582 
3583 	if (root->fs_info->sb->s_flags & MS_RDONLY)
3584 		return -EROFS;
3585 
3586 	sa = memdup_user(arg, sizeof(*sa));
3587 	if (IS_ERR(sa))
3588 		return PTR_ERR(sa);
3589 
3590 	trans = btrfs_join_transaction(root);
3591 	if (IS_ERR(trans)) {
3592 		ret = PTR_ERR(trans);
3593 		goto out;
3594 	}
3595 
3596 	qgroupid = sa->qgroupid;
3597 	if (!qgroupid) {
3598 		/* take the current subvol as qgroup */
3599 		qgroupid = root->root_key.objectid;
3600 	}
3601 
3602 	/* FIXME: check if the IDs really exist */
3603 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
3604 
3605 	err = btrfs_end_transaction(trans, root);
3606 	if (err && !ret)
3607 		ret = err;
3608 
3609 out:
3610 	kfree(sa);
3611 	return ret;
3612 }
3613 
3614 static long btrfs_ioctl_set_received_subvol(struct file *file,
3615 					    void __user *arg)
3616 {
3617 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
3618 	struct inode *inode = fdentry(file)->d_inode;
3619 	struct btrfs_root *root = BTRFS_I(inode)->root;
3620 	struct btrfs_root_item *root_item = &root->root_item;
3621 	struct btrfs_trans_handle *trans;
3622 	struct timespec ct = CURRENT_TIME;
3623 	int ret = 0;
3624 
3625 	ret = mnt_want_write_file(file);
3626 	if (ret < 0)
3627 		return ret;
3628 
3629 	down_write(&root->fs_info->subvol_sem);
3630 
3631 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
3632 		ret = -EINVAL;
3633 		goto out;
3634 	}
3635 
3636 	if (btrfs_root_readonly(root)) {
3637 		ret = -EROFS;
3638 		goto out;
3639 	}
3640 
3641 	if (!inode_owner_or_capable(inode)) {
3642 		ret = -EACCES;
3643 		goto out;
3644 	}
3645 
3646 	sa = memdup_user(arg, sizeof(*sa));
3647 	if (IS_ERR(sa)) {
3648 		ret = PTR_ERR(sa);
3649 		sa = NULL;
3650 		goto out;
3651 	}
3652 
3653 	trans = btrfs_start_transaction(root, 1);
3654 	if (IS_ERR(trans)) {
3655 		ret = PTR_ERR(trans);
3656 		trans = NULL;
3657 		goto out;
3658 	}
3659 
3660 	sa->rtransid = trans->transid;
3661 	sa->rtime.sec = ct.tv_sec;
3662 	sa->rtime.nsec = ct.tv_nsec;
3663 
3664 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3665 	btrfs_set_root_stransid(root_item, sa->stransid);
3666 	btrfs_set_root_rtransid(root_item, sa->rtransid);
3667 	root_item->stime.sec = cpu_to_le64(sa->stime.sec);
3668 	root_item->stime.nsec = cpu_to_le32(sa->stime.nsec);
3669 	root_item->rtime.sec = cpu_to_le64(sa->rtime.sec);
3670 	root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec);
3671 
3672 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
3673 				&root->root_key, &root->root_item);
3674 	if (ret < 0) {
3675 		btrfs_end_transaction(trans, root);
3676 		trans = NULL;
3677 		goto out;
3678 	} else {
3679 		ret = btrfs_commit_transaction(trans, root);
3680 		if (ret < 0)
3681 			goto out;
3682 	}
3683 
3684 	ret = copy_to_user(arg, sa, sizeof(*sa));
3685 	if (ret)
3686 		ret = -EFAULT;
3687 
3688 out:
3689 	kfree(sa);
3690 	up_write(&root->fs_info->subvol_sem);
3691 	mnt_drop_write_file(file);
3692 	return ret;
3693 }
3694 
3695 long btrfs_ioctl(struct file *file, unsigned int
3696 		cmd, unsigned long arg)
3697 {
3698 	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3699 	void __user *argp = (void __user *)arg;
3700 
3701 	switch (cmd) {
3702 	case FS_IOC_GETFLAGS:
3703 		return btrfs_ioctl_getflags(file, argp);
3704 	case FS_IOC_SETFLAGS:
3705 		return btrfs_ioctl_setflags(file, argp);
3706 	case FS_IOC_GETVERSION:
3707 		return btrfs_ioctl_getversion(file, argp);
3708 	case FITRIM:
3709 		return btrfs_ioctl_fitrim(file, argp);
3710 	case BTRFS_IOC_SNAP_CREATE:
3711 		return btrfs_ioctl_snap_create(file, argp, 0);
3712 	case BTRFS_IOC_SNAP_CREATE_V2:
3713 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
3714 	case BTRFS_IOC_SUBVOL_CREATE:
3715 		return btrfs_ioctl_snap_create(file, argp, 1);
3716 	case BTRFS_IOC_SUBVOL_CREATE_V2:
3717 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
3718 	case BTRFS_IOC_SNAP_DESTROY:
3719 		return btrfs_ioctl_snap_destroy(file, argp);
3720 	case BTRFS_IOC_SUBVOL_GETFLAGS:
3721 		return btrfs_ioctl_subvol_getflags(file, argp);
3722 	case BTRFS_IOC_SUBVOL_SETFLAGS:
3723 		return btrfs_ioctl_subvol_setflags(file, argp);
3724 	case BTRFS_IOC_DEFAULT_SUBVOL:
3725 		return btrfs_ioctl_default_subvol(file, argp);
3726 	case BTRFS_IOC_DEFRAG:
3727 		return btrfs_ioctl_defrag(file, NULL);
3728 	case BTRFS_IOC_DEFRAG_RANGE:
3729 		return btrfs_ioctl_defrag(file, argp);
3730 	case BTRFS_IOC_RESIZE:
3731 		return btrfs_ioctl_resize(root, argp);
3732 	case BTRFS_IOC_ADD_DEV:
3733 		return btrfs_ioctl_add_dev(root, argp);
3734 	case BTRFS_IOC_RM_DEV:
3735 		return btrfs_ioctl_rm_dev(root, argp);
3736 	case BTRFS_IOC_FS_INFO:
3737 		return btrfs_ioctl_fs_info(root, argp);
3738 	case BTRFS_IOC_DEV_INFO:
3739 		return btrfs_ioctl_dev_info(root, argp);
3740 	case BTRFS_IOC_BALANCE:
3741 		return btrfs_ioctl_balance(file, NULL);
3742 	case BTRFS_IOC_CLONE:
3743 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
3744 	case BTRFS_IOC_CLONE_RANGE:
3745 		return btrfs_ioctl_clone_range(file, argp);
3746 	case BTRFS_IOC_TRANS_START:
3747 		return btrfs_ioctl_trans_start(file);
3748 	case BTRFS_IOC_TRANS_END:
3749 		return btrfs_ioctl_trans_end(file);
3750 	case BTRFS_IOC_TREE_SEARCH:
3751 		return btrfs_ioctl_tree_search(file, argp);
3752 	case BTRFS_IOC_INO_LOOKUP:
3753 		return btrfs_ioctl_ino_lookup(file, argp);
3754 	case BTRFS_IOC_INO_PATHS:
3755 		return btrfs_ioctl_ino_to_path(root, argp);
3756 	case BTRFS_IOC_LOGICAL_INO:
3757 		return btrfs_ioctl_logical_to_ino(root, argp);
3758 	case BTRFS_IOC_SPACE_INFO:
3759 		return btrfs_ioctl_space_info(root, argp);
3760 	case BTRFS_IOC_SYNC:
3761 		btrfs_sync_fs(file->f_dentry->d_sb, 1);
3762 		return 0;
3763 	case BTRFS_IOC_START_SYNC:
3764 		return btrfs_ioctl_start_sync(file, argp);
3765 	case BTRFS_IOC_WAIT_SYNC:
3766 		return btrfs_ioctl_wait_sync(file, argp);
3767 	case BTRFS_IOC_SCRUB:
3768 		return btrfs_ioctl_scrub(root, argp);
3769 	case BTRFS_IOC_SCRUB_CANCEL:
3770 		return btrfs_ioctl_scrub_cancel(root, argp);
3771 	case BTRFS_IOC_SCRUB_PROGRESS:
3772 		return btrfs_ioctl_scrub_progress(root, argp);
3773 	case BTRFS_IOC_BALANCE_V2:
3774 		return btrfs_ioctl_balance(file, argp);
3775 	case BTRFS_IOC_BALANCE_CTL:
3776 		return btrfs_ioctl_balance_ctl(root, arg);
3777 	case BTRFS_IOC_BALANCE_PROGRESS:
3778 		return btrfs_ioctl_balance_progress(root, argp);
3779 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
3780 		return btrfs_ioctl_set_received_subvol(file, argp);
3781 	case BTRFS_IOC_SEND:
3782 		return btrfs_ioctl_send(file, argp);
3783 	case BTRFS_IOC_GET_DEV_STATS:
3784 		return btrfs_ioctl_get_dev_stats(root, argp);
3785 	case BTRFS_IOC_QUOTA_CTL:
3786 		return btrfs_ioctl_quota_ctl(root, argp);
3787 	case BTRFS_IOC_QGROUP_ASSIGN:
3788 		return btrfs_ioctl_qgroup_assign(root, argp);
3789 	case BTRFS_IOC_QGROUP_CREATE:
3790 		return btrfs_ioctl_qgroup_create(root, argp);
3791 	case BTRFS_IOC_QGROUP_LIMIT:
3792 		return btrfs_ioctl_qgroup_limit(root, argp);
3793 	}
3794 
3795 	return -ENOTTY;
3796 }
3797