1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "export.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "volumes.h" 38 #include "locking.h" 39 #include "backref.h" 40 #include "send.h" 41 #include "dev-replace.h" 42 #include "props.h" 43 #include "sysfs.h" 44 #include "qgroup.h" 45 #include "tree-log.h" 46 #include "compression.h" 47 #include "space-info.h" 48 #include "block-group.h" 49 #include "fs.h" 50 #include "accessors.h" 51 #include "extent-tree.h" 52 #include "root-tree.h" 53 #include "defrag.h" 54 #include "dir-item.h" 55 #include "uuid-tree.h" 56 #include "ioctl.h" 57 #include "file.h" 58 #include "scrub.h" 59 #include "super.h" 60 61 #ifdef CONFIG_64BIT 62 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 63 * structures are incorrect, as the timespec structure from userspace 64 * is 4 bytes too small. We define these alternatives here to teach 65 * the kernel about the 32-bit struct packing. 66 */ 67 struct btrfs_ioctl_timespec_32 { 68 __u64 sec; 69 __u32 nsec; 70 } __attribute__ ((__packed__)); 71 72 struct btrfs_ioctl_received_subvol_args_32 { 73 char uuid[BTRFS_UUID_SIZE]; /* in */ 74 __u64 stransid; /* in */ 75 __u64 rtransid; /* out */ 76 struct btrfs_ioctl_timespec_32 stime; /* in */ 77 struct btrfs_ioctl_timespec_32 rtime; /* out */ 78 __u64 flags; /* in */ 79 __u64 reserved[16]; /* in */ 80 } __attribute__ ((__packed__)); 81 82 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 83 struct btrfs_ioctl_received_subvol_args_32) 84 #endif 85 86 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 87 struct btrfs_ioctl_send_args_32 { 88 __s64 send_fd; /* in */ 89 __u64 clone_sources_count; /* in */ 90 compat_uptr_t clone_sources; /* in */ 91 __u64 parent_root; /* in */ 92 __u64 flags; /* in */ 93 __u32 version; /* in */ 94 __u8 reserved[28]; /* in */ 95 } __attribute__ ((__packed__)); 96 97 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 98 struct btrfs_ioctl_send_args_32) 99 100 struct btrfs_ioctl_encoded_io_args_32 { 101 compat_uptr_t iov; 102 compat_ulong_t iovcnt; 103 __s64 offset; 104 __u64 flags; 105 __u64 len; 106 __u64 unencoded_len; 107 __u64 unencoded_offset; 108 __u32 compression; 109 __u32 encryption; 110 __u8 reserved[64]; 111 }; 112 113 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 114 struct btrfs_ioctl_encoded_io_args_32) 115 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 116 struct btrfs_ioctl_encoded_io_args_32) 117 #endif 118 119 /* Mask out flags that are inappropriate for the given type of inode. */ 120 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 121 unsigned int flags) 122 { 123 if (S_ISDIR(inode->i_mode)) 124 return flags; 125 else if (S_ISREG(inode->i_mode)) 126 return flags & ~FS_DIRSYNC_FL; 127 else 128 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 129 } 130 131 /* 132 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 133 * ioctl. 134 */ 135 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 136 { 137 unsigned int iflags = 0; 138 u32 flags = binode->flags; 139 u32 ro_flags = binode->ro_flags; 140 141 if (flags & BTRFS_INODE_SYNC) 142 iflags |= FS_SYNC_FL; 143 if (flags & BTRFS_INODE_IMMUTABLE) 144 iflags |= FS_IMMUTABLE_FL; 145 if (flags & BTRFS_INODE_APPEND) 146 iflags |= FS_APPEND_FL; 147 if (flags & BTRFS_INODE_NODUMP) 148 iflags |= FS_NODUMP_FL; 149 if (flags & BTRFS_INODE_NOATIME) 150 iflags |= FS_NOATIME_FL; 151 if (flags & BTRFS_INODE_DIRSYNC) 152 iflags |= FS_DIRSYNC_FL; 153 if (flags & BTRFS_INODE_NODATACOW) 154 iflags |= FS_NOCOW_FL; 155 if (ro_flags & BTRFS_INODE_RO_VERITY) 156 iflags |= FS_VERITY_FL; 157 158 if (flags & BTRFS_INODE_NOCOMPRESS) 159 iflags |= FS_NOCOMP_FL; 160 else if (flags & BTRFS_INODE_COMPRESS) 161 iflags |= FS_COMPR_FL; 162 163 return iflags; 164 } 165 166 /* 167 * Update inode->i_flags based on the btrfs internal flags. 168 */ 169 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 170 { 171 struct btrfs_inode *binode = BTRFS_I(inode); 172 unsigned int new_fl = 0; 173 174 if (binode->flags & BTRFS_INODE_SYNC) 175 new_fl |= S_SYNC; 176 if (binode->flags & BTRFS_INODE_IMMUTABLE) 177 new_fl |= S_IMMUTABLE; 178 if (binode->flags & BTRFS_INODE_APPEND) 179 new_fl |= S_APPEND; 180 if (binode->flags & BTRFS_INODE_NOATIME) 181 new_fl |= S_NOATIME; 182 if (binode->flags & BTRFS_INODE_DIRSYNC) 183 new_fl |= S_DIRSYNC; 184 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 185 new_fl |= S_VERITY; 186 187 set_mask_bits(&inode->i_flags, 188 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 189 S_VERITY, new_fl); 190 } 191 192 /* 193 * Check if @flags are a supported and valid set of FS_*_FL flags and that 194 * the old and new flags are not conflicting 195 */ 196 static int check_fsflags(unsigned int old_flags, unsigned int flags) 197 { 198 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 199 FS_NOATIME_FL | FS_NODUMP_FL | \ 200 FS_SYNC_FL | FS_DIRSYNC_FL | \ 201 FS_NOCOMP_FL | FS_COMPR_FL | 202 FS_NOCOW_FL)) 203 return -EOPNOTSUPP; 204 205 /* COMPR and NOCOMP on new/old are valid */ 206 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 207 return -EINVAL; 208 209 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 210 return -EINVAL; 211 212 /* NOCOW and compression options are mutually exclusive */ 213 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 214 return -EINVAL; 215 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 216 return -EINVAL; 217 218 return 0; 219 } 220 221 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 222 unsigned int flags) 223 { 224 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 225 return -EPERM; 226 227 return 0; 228 } 229 230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args) 231 { 232 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL) 233 return -ENAMETOOLONG; 234 return 0; 235 } 236 237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2) 238 { 239 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL) 240 return -ENAMETOOLONG; 241 return 0; 242 } 243 244 /* 245 * Set flags/xflags from the internal inode flags. The remaining items of 246 * fsxattr are zeroed. 247 */ 248 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 249 { 250 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 251 252 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 253 return 0; 254 } 255 256 int btrfs_fileattr_set(struct mnt_idmap *idmap, 257 struct dentry *dentry, struct fileattr *fa) 258 { 259 struct inode *inode = d_inode(dentry); 260 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 261 struct btrfs_inode *binode = BTRFS_I(inode); 262 struct btrfs_root *root = binode->root; 263 struct btrfs_trans_handle *trans; 264 unsigned int fsflags, old_fsflags; 265 int ret; 266 const char *comp = NULL; 267 u32 binode_flags; 268 269 if (btrfs_root_readonly(root)) 270 return -EROFS; 271 272 if (fileattr_has_fsx(fa)) 273 return -EOPNOTSUPP; 274 275 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 276 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 277 ret = check_fsflags(old_fsflags, fsflags); 278 if (ret) 279 return ret; 280 281 ret = check_fsflags_compatible(fs_info, fsflags); 282 if (ret) 283 return ret; 284 285 binode_flags = binode->flags; 286 if (fsflags & FS_SYNC_FL) 287 binode_flags |= BTRFS_INODE_SYNC; 288 else 289 binode_flags &= ~BTRFS_INODE_SYNC; 290 if (fsflags & FS_IMMUTABLE_FL) 291 binode_flags |= BTRFS_INODE_IMMUTABLE; 292 else 293 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 294 if (fsflags & FS_APPEND_FL) 295 binode_flags |= BTRFS_INODE_APPEND; 296 else 297 binode_flags &= ~BTRFS_INODE_APPEND; 298 if (fsflags & FS_NODUMP_FL) 299 binode_flags |= BTRFS_INODE_NODUMP; 300 else 301 binode_flags &= ~BTRFS_INODE_NODUMP; 302 if (fsflags & FS_NOATIME_FL) 303 binode_flags |= BTRFS_INODE_NOATIME; 304 else 305 binode_flags &= ~BTRFS_INODE_NOATIME; 306 307 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 308 if (!fa->flags_valid) { 309 /* 1 item for the inode */ 310 trans = btrfs_start_transaction(root, 1); 311 if (IS_ERR(trans)) 312 return PTR_ERR(trans); 313 goto update_flags; 314 } 315 316 if (fsflags & FS_DIRSYNC_FL) 317 binode_flags |= BTRFS_INODE_DIRSYNC; 318 else 319 binode_flags &= ~BTRFS_INODE_DIRSYNC; 320 if (fsflags & FS_NOCOW_FL) { 321 if (S_ISREG(inode->i_mode)) { 322 /* 323 * It's safe to turn csums off here, no extents exist. 324 * Otherwise we want the flag to reflect the real COW 325 * status of the file and will not set it. 326 */ 327 if (inode->i_size == 0) 328 binode_flags |= BTRFS_INODE_NODATACOW | 329 BTRFS_INODE_NODATASUM; 330 } else { 331 binode_flags |= BTRFS_INODE_NODATACOW; 332 } 333 } else { 334 /* 335 * Revert back under same assumptions as above 336 */ 337 if (S_ISREG(inode->i_mode)) { 338 if (inode->i_size == 0) 339 binode_flags &= ~(BTRFS_INODE_NODATACOW | 340 BTRFS_INODE_NODATASUM); 341 } else { 342 binode_flags &= ~BTRFS_INODE_NODATACOW; 343 } 344 } 345 346 /* 347 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 348 * flag may be changed automatically if compression code won't make 349 * things smaller. 350 */ 351 if (fsflags & FS_NOCOMP_FL) { 352 binode_flags &= ~BTRFS_INODE_COMPRESS; 353 binode_flags |= BTRFS_INODE_NOCOMPRESS; 354 } else if (fsflags & FS_COMPR_FL) { 355 356 if (IS_SWAPFILE(inode)) 357 return -ETXTBSY; 358 359 binode_flags |= BTRFS_INODE_COMPRESS; 360 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 361 362 comp = btrfs_compress_type2str(fs_info->compress_type); 363 if (!comp || comp[0] == 0) 364 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 365 } else { 366 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 367 } 368 369 /* 370 * 1 for inode item 371 * 2 for properties 372 */ 373 trans = btrfs_start_transaction(root, 3); 374 if (IS_ERR(trans)) 375 return PTR_ERR(trans); 376 377 if (comp) { 378 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 379 strlen(comp), 0); 380 if (ret) { 381 btrfs_abort_transaction(trans, ret); 382 goto out_end_trans; 383 } 384 } else { 385 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 386 0, 0); 387 if (ret && ret != -ENODATA) { 388 btrfs_abort_transaction(trans, ret); 389 goto out_end_trans; 390 } 391 } 392 393 update_flags: 394 binode->flags = binode_flags; 395 btrfs_sync_inode_flags_to_i_flags(inode); 396 inode_inc_iversion(inode); 397 inode_set_ctime_current(inode); 398 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 399 400 out_end_trans: 401 btrfs_end_transaction(trans); 402 return ret; 403 } 404 405 /* 406 * Start exclusive operation @type, return true on success 407 */ 408 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 409 enum btrfs_exclusive_operation type) 410 { 411 bool ret = false; 412 413 spin_lock(&fs_info->super_lock); 414 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 415 fs_info->exclusive_operation = type; 416 ret = true; 417 } 418 spin_unlock(&fs_info->super_lock); 419 420 return ret; 421 } 422 423 /* 424 * Conditionally allow to enter the exclusive operation in case it's compatible 425 * with the running one. This must be paired with btrfs_exclop_start_unlock and 426 * btrfs_exclop_finish. 427 * 428 * Compatibility: 429 * - the same type is already running 430 * - when trying to add a device and balance has been paused 431 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 432 * must check the condition first that would allow none -> @type 433 */ 434 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 435 enum btrfs_exclusive_operation type) 436 { 437 spin_lock(&fs_info->super_lock); 438 if (fs_info->exclusive_operation == type || 439 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 440 type == BTRFS_EXCLOP_DEV_ADD)) 441 return true; 442 443 spin_unlock(&fs_info->super_lock); 444 return false; 445 } 446 447 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 448 { 449 spin_unlock(&fs_info->super_lock); 450 } 451 452 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 453 { 454 spin_lock(&fs_info->super_lock); 455 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 456 spin_unlock(&fs_info->super_lock); 457 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 458 } 459 460 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 461 enum btrfs_exclusive_operation op) 462 { 463 switch (op) { 464 case BTRFS_EXCLOP_BALANCE_PAUSED: 465 spin_lock(&fs_info->super_lock); 466 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 467 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD || 468 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE || 469 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 470 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 471 spin_unlock(&fs_info->super_lock); 472 break; 473 case BTRFS_EXCLOP_BALANCE: 474 spin_lock(&fs_info->super_lock); 475 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 476 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 477 spin_unlock(&fs_info->super_lock); 478 break; 479 default: 480 btrfs_warn(fs_info, 481 "invalid exclop balance operation %d requested", op); 482 } 483 } 484 485 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 486 { 487 return put_user(inode->i_generation, arg); 488 } 489 490 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 491 void __user *arg) 492 { 493 struct btrfs_device *device; 494 struct fstrim_range range; 495 u64 minlen = ULLONG_MAX; 496 u64 num_devices = 0; 497 int ret; 498 499 if (!capable(CAP_SYS_ADMIN)) 500 return -EPERM; 501 502 /* 503 * btrfs_trim_block_group() depends on space cache, which is not 504 * available in zoned filesystem. So, disallow fitrim on a zoned 505 * filesystem for now. 506 */ 507 if (btrfs_is_zoned(fs_info)) 508 return -EOPNOTSUPP; 509 510 /* 511 * If the fs is mounted with nologreplay, which requires it to be 512 * mounted in RO mode as well, we can not allow discard on free space 513 * inside block groups, because log trees refer to extents that are not 514 * pinned in a block group's free space cache (pinning the extents is 515 * precisely the first phase of replaying a log tree). 516 */ 517 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 518 return -EROFS; 519 520 rcu_read_lock(); 521 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 522 dev_list) { 523 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 524 continue; 525 num_devices++; 526 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 527 minlen); 528 } 529 rcu_read_unlock(); 530 531 if (!num_devices) 532 return -EOPNOTSUPP; 533 if (copy_from_user(&range, arg, sizeof(range))) 534 return -EFAULT; 535 536 /* 537 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 538 * block group is in the logical address space, which can be any 539 * sectorsize aligned bytenr in the range [0, U64_MAX]. 540 */ 541 if (range.len < fs_info->sectorsize) 542 return -EINVAL; 543 544 range.minlen = max(range.minlen, minlen); 545 ret = btrfs_trim_fs(fs_info, &range); 546 if (ret < 0) 547 return ret; 548 549 if (copy_to_user(arg, &range, sizeof(range))) 550 return -EFAULT; 551 552 return 0; 553 } 554 555 int __pure btrfs_is_empty_uuid(u8 *uuid) 556 { 557 int i; 558 559 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 560 if (uuid[i]) 561 return 0; 562 } 563 return 1; 564 } 565 566 /* 567 * Calculate the number of transaction items to reserve for creating a subvolume 568 * or snapshot, not including the inode, directory entries, or parent directory. 569 */ 570 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) 571 { 572 /* 573 * 1 to add root block 574 * 1 to add root item 575 * 1 to add root ref 576 * 1 to add root backref 577 * 1 to add UUID item 578 * 1 to add qgroup info 579 * 1 to add qgroup limit 580 * 581 * Ideally the last two would only be accounted if qgroups are enabled, 582 * but that can change between now and the time we would insert them. 583 */ 584 unsigned int num_items = 7; 585 586 if (inherit) { 587 /* 2 to add qgroup relations for each inherited qgroup */ 588 num_items += 2 * inherit->num_qgroups; 589 } 590 return num_items; 591 } 592 593 static noinline int create_subvol(struct mnt_idmap *idmap, 594 struct inode *dir, struct dentry *dentry, 595 struct btrfs_qgroup_inherit *inherit) 596 { 597 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 598 struct btrfs_trans_handle *trans; 599 struct btrfs_key key; 600 struct btrfs_root_item *root_item; 601 struct btrfs_inode_item *inode_item; 602 struct extent_buffer *leaf; 603 struct btrfs_root *root = BTRFS_I(dir)->root; 604 struct btrfs_root *new_root; 605 struct btrfs_block_rsv block_rsv; 606 struct timespec64 cur_time = current_time(dir); 607 struct btrfs_new_inode_args new_inode_args = { 608 .dir = dir, 609 .dentry = dentry, 610 .subvol = true, 611 }; 612 unsigned int trans_num_items; 613 int ret; 614 dev_t anon_dev; 615 u64 objectid; 616 u64 qgroup_reserved = 0; 617 618 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 619 if (!root_item) 620 return -ENOMEM; 621 622 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 623 if (ret) 624 goto out_root_item; 625 626 /* 627 * Don't create subvolume whose level is not zero. Or qgroup will be 628 * screwed up since it assumes subvolume qgroup's level to be 0. 629 */ 630 if (btrfs_qgroup_level(objectid)) { 631 ret = -ENOSPC; 632 goto out_root_item; 633 } 634 635 ret = get_anon_bdev(&anon_dev); 636 if (ret < 0) 637 goto out_root_item; 638 639 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir); 640 if (!new_inode_args.inode) { 641 ret = -ENOMEM; 642 goto out_anon_dev; 643 } 644 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 645 if (ret) 646 goto out_inode; 647 trans_num_items += create_subvol_num_items(inherit); 648 649 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 650 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 651 trans_num_items, false); 652 if (ret) 653 goto out_new_inode_args; 654 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 655 656 trans = btrfs_start_transaction(root, 0); 657 if (IS_ERR(trans)) { 658 ret = PTR_ERR(trans); 659 goto out_release_rsv; 660 } 661 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root); 662 if (ret) 663 goto out; 664 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 665 qgroup_reserved = 0; 666 trans->block_rsv = &block_rsv; 667 trans->bytes_reserved = block_rsv.size; 668 /* Tree log can't currently deal with an inode which is a new root. */ 669 btrfs_set_log_full_commit(trans); 670 671 ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit); 672 if (ret) 673 goto out; 674 675 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 676 0, BTRFS_NESTING_NORMAL); 677 if (IS_ERR(leaf)) { 678 ret = PTR_ERR(leaf); 679 goto out; 680 } 681 682 btrfs_mark_buffer_dirty(trans, leaf); 683 684 inode_item = &root_item->inode; 685 btrfs_set_stack_inode_generation(inode_item, 1); 686 btrfs_set_stack_inode_size(inode_item, 3); 687 btrfs_set_stack_inode_nlink(inode_item, 1); 688 btrfs_set_stack_inode_nbytes(inode_item, 689 fs_info->nodesize); 690 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 691 692 btrfs_set_root_flags(root_item, 0); 693 btrfs_set_root_limit(root_item, 0); 694 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 695 696 btrfs_set_root_bytenr(root_item, leaf->start); 697 btrfs_set_root_generation(root_item, trans->transid); 698 btrfs_set_root_level(root_item, 0); 699 btrfs_set_root_refs(root_item, 1); 700 btrfs_set_root_used(root_item, leaf->len); 701 btrfs_set_root_last_snapshot(root_item, 0); 702 703 btrfs_set_root_generation_v2(root_item, 704 btrfs_root_generation(root_item)); 705 generate_random_guid(root_item->uuid); 706 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 707 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 708 root_item->ctime = root_item->otime; 709 btrfs_set_root_ctransid(root_item, trans->transid); 710 btrfs_set_root_otransid(root_item, trans->transid); 711 712 btrfs_tree_unlock(leaf); 713 714 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 715 716 key.objectid = objectid; 717 key.offset = 0; 718 key.type = BTRFS_ROOT_ITEM_KEY; 719 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 720 root_item); 721 if (ret) { 722 /* 723 * Since we don't abort the transaction in this case, free the 724 * tree block so that we don't leak space and leave the 725 * filesystem in an inconsistent state (an extent item in the 726 * extent tree with a backreference for a root that does not 727 * exists). 728 */ 729 btrfs_tree_lock(leaf); 730 btrfs_clear_buffer_dirty(trans, leaf); 731 btrfs_tree_unlock(leaf); 732 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 733 free_extent_buffer(leaf); 734 goto out; 735 } 736 737 free_extent_buffer(leaf); 738 leaf = NULL; 739 740 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev); 741 if (IS_ERR(new_root)) { 742 ret = PTR_ERR(new_root); 743 btrfs_abort_transaction(trans, ret); 744 goto out; 745 } 746 /* anon_dev is owned by new_root now. */ 747 anon_dev = 0; 748 BTRFS_I(new_inode_args.inode)->root = new_root; 749 /* ... and new_root is owned by new_inode_args.inode now. */ 750 751 ret = btrfs_record_root_in_trans(trans, new_root); 752 if (ret) { 753 btrfs_abort_transaction(trans, ret); 754 goto out; 755 } 756 757 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 758 BTRFS_UUID_KEY_SUBVOL, objectid); 759 if (ret) { 760 btrfs_abort_transaction(trans, ret); 761 goto out; 762 } 763 764 ret = btrfs_create_new_inode(trans, &new_inode_args); 765 if (ret) { 766 btrfs_abort_transaction(trans, ret); 767 goto out; 768 } 769 770 d_instantiate_new(dentry, new_inode_args.inode); 771 new_inode_args.inode = NULL; 772 773 out: 774 trans->block_rsv = NULL; 775 trans->bytes_reserved = 0; 776 btrfs_end_transaction(trans); 777 out_release_rsv: 778 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 779 if (qgroup_reserved) 780 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 781 out_new_inode_args: 782 btrfs_new_inode_args_destroy(&new_inode_args); 783 out_inode: 784 iput(new_inode_args.inode); 785 out_anon_dev: 786 if (anon_dev) 787 free_anon_bdev(anon_dev); 788 out_root_item: 789 kfree(root_item); 790 return ret; 791 } 792 793 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 794 struct dentry *dentry, bool readonly, 795 struct btrfs_qgroup_inherit *inherit) 796 { 797 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 798 struct inode *inode; 799 struct btrfs_pending_snapshot *pending_snapshot; 800 unsigned int trans_num_items; 801 struct btrfs_trans_handle *trans; 802 struct btrfs_block_rsv *block_rsv; 803 u64 qgroup_reserved = 0; 804 int ret; 805 806 /* We do not support snapshotting right now. */ 807 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 808 btrfs_warn(fs_info, 809 "extent tree v2 doesn't support snapshotting yet"); 810 return -EOPNOTSUPP; 811 } 812 813 if (btrfs_root_refs(&root->root_item) == 0) 814 return -ENOENT; 815 816 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 817 return -EINVAL; 818 819 if (atomic_read(&root->nr_swapfiles)) { 820 btrfs_warn(fs_info, 821 "cannot snapshot subvolume with active swapfile"); 822 return -ETXTBSY; 823 } 824 825 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 826 if (!pending_snapshot) 827 return -ENOMEM; 828 829 ret = get_anon_bdev(&pending_snapshot->anon_dev); 830 if (ret < 0) 831 goto free_pending; 832 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 833 GFP_KERNEL); 834 pending_snapshot->path = btrfs_alloc_path(); 835 if (!pending_snapshot->root_item || !pending_snapshot->path) { 836 ret = -ENOMEM; 837 goto free_pending; 838 } 839 840 block_rsv = &pending_snapshot->block_rsv; 841 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP); 842 /* 843 * 1 to add dir item 844 * 1 to add dir index 845 * 1 to update parent inode item 846 */ 847 trans_num_items = create_subvol_num_items(inherit) + 3; 848 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv, 849 trans_num_items, false); 850 if (ret) 851 goto free_pending; 852 qgroup_reserved = block_rsv->qgroup_rsv_reserved; 853 854 pending_snapshot->dentry = dentry; 855 pending_snapshot->root = root; 856 pending_snapshot->readonly = readonly; 857 pending_snapshot->dir = dir; 858 pending_snapshot->inherit = inherit; 859 860 trans = btrfs_start_transaction(root, 0); 861 if (IS_ERR(trans)) { 862 ret = PTR_ERR(trans); 863 goto fail; 864 } 865 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root); 866 if (ret) { 867 btrfs_end_transaction(trans); 868 goto fail; 869 } 870 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 871 qgroup_reserved = 0; 872 873 trans->pending_snapshot = pending_snapshot; 874 875 ret = btrfs_commit_transaction(trans); 876 if (ret) 877 goto fail; 878 879 ret = pending_snapshot->error; 880 if (ret) 881 goto fail; 882 883 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 884 if (ret) 885 goto fail; 886 887 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 888 if (IS_ERR(inode)) { 889 ret = PTR_ERR(inode); 890 goto fail; 891 } 892 893 d_instantiate(dentry, inode); 894 ret = 0; 895 pending_snapshot->anon_dev = 0; 896 fail: 897 /* Prevent double freeing of anon_dev */ 898 if (ret && pending_snapshot->snap) 899 pending_snapshot->snap->anon_dev = 0; 900 btrfs_put_root(pending_snapshot->snap); 901 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL); 902 if (qgroup_reserved) 903 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 904 free_pending: 905 if (pending_snapshot->anon_dev) 906 free_anon_bdev(pending_snapshot->anon_dev); 907 kfree(pending_snapshot->root_item); 908 btrfs_free_path(pending_snapshot->path); 909 kfree(pending_snapshot); 910 911 return ret; 912 } 913 914 /* copy of may_delete in fs/namei.c() 915 * Check whether we can remove a link victim from directory dir, check 916 * whether the type of victim is right. 917 * 1. We can't do it if dir is read-only (done in permission()) 918 * 2. We should have write and exec permissions on dir 919 * 3. We can't remove anything from append-only dir 920 * 4. We can't do anything with immutable dir (done in permission()) 921 * 5. If the sticky bit on dir is set we should either 922 * a. be owner of dir, or 923 * b. be owner of victim, or 924 * c. have CAP_FOWNER capability 925 * 6. If the victim is append-only or immutable we can't do anything with 926 * links pointing to it. 927 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 928 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 929 * 9. We can't remove a root or mountpoint. 930 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 931 * nfs_async_unlink(). 932 */ 933 934 static int btrfs_may_delete(struct mnt_idmap *idmap, 935 struct inode *dir, struct dentry *victim, int isdir) 936 { 937 int error; 938 939 if (d_really_is_negative(victim)) 940 return -ENOENT; 941 942 /* The @victim is not inside @dir. */ 943 if (d_inode(victim->d_parent) != dir) 944 return -EINVAL; 945 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 946 947 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 948 if (error) 949 return error; 950 if (IS_APPEND(dir)) 951 return -EPERM; 952 if (check_sticky(idmap, dir, d_inode(victim)) || 953 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 954 IS_SWAPFILE(d_inode(victim))) 955 return -EPERM; 956 if (isdir) { 957 if (!d_is_dir(victim)) 958 return -ENOTDIR; 959 if (IS_ROOT(victim)) 960 return -EBUSY; 961 } else if (d_is_dir(victim)) 962 return -EISDIR; 963 if (IS_DEADDIR(dir)) 964 return -ENOENT; 965 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 966 return -EBUSY; 967 return 0; 968 } 969 970 /* copy of may_create in fs/namei.c() */ 971 static inline int btrfs_may_create(struct mnt_idmap *idmap, 972 struct inode *dir, struct dentry *child) 973 { 974 if (d_really_is_positive(child)) 975 return -EEXIST; 976 if (IS_DEADDIR(dir)) 977 return -ENOENT; 978 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 979 return -EOVERFLOW; 980 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 981 } 982 983 /* 984 * Create a new subvolume below @parent. This is largely modeled after 985 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 986 * inside this filesystem so it's quite a bit simpler. 987 */ 988 static noinline int btrfs_mksubvol(const struct path *parent, 989 struct mnt_idmap *idmap, 990 const char *name, int namelen, 991 struct btrfs_root *snap_src, 992 bool readonly, 993 struct btrfs_qgroup_inherit *inherit) 994 { 995 struct inode *dir = d_inode(parent->dentry); 996 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 997 struct dentry *dentry; 998 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen); 999 int error; 1000 1001 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 1002 if (error == -EINTR) 1003 return error; 1004 1005 dentry = lookup_one(idmap, name, parent->dentry, namelen); 1006 error = PTR_ERR(dentry); 1007 if (IS_ERR(dentry)) 1008 goto out_unlock; 1009 1010 error = btrfs_may_create(idmap, dir, dentry); 1011 if (error) 1012 goto out_dput; 1013 1014 /* 1015 * even if this name doesn't exist, we may get hash collisions. 1016 * check for them now when we can safely fail 1017 */ 1018 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 1019 dir->i_ino, &name_str); 1020 if (error) 1021 goto out_dput; 1022 1023 down_read(&fs_info->subvol_sem); 1024 1025 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 1026 goto out_up_read; 1027 1028 if (snap_src) 1029 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 1030 else 1031 error = create_subvol(idmap, dir, dentry, inherit); 1032 1033 if (!error) 1034 fsnotify_mkdir(dir, dentry); 1035 out_up_read: 1036 up_read(&fs_info->subvol_sem); 1037 out_dput: 1038 dput(dentry); 1039 out_unlock: 1040 btrfs_inode_unlock(BTRFS_I(dir), 0); 1041 return error; 1042 } 1043 1044 static noinline int btrfs_mksnapshot(const struct path *parent, 1045 struct mnt_idmap *idmap, 1046 const char *name, int namelen, 1047 struct btrfs_root *root, 1048 bool readonly, 1049 struct btrfs_qgroup_inherit *inherit) 1050 { 1051 int ret; 1052 bool snapshot_force_cow = false; 1053 1054 /* 1055 * Force new buffered writes to reserve space even when NOCOW is 1056 * possible. This is to avoid later writeback (running dealloc) to 1057 * fallback to COW mode and unexpectedly fail with ENOSPC. 1058 */ 1059 btrfs_drew_read_lock(&root->snapshot_lock); 1060 1061 ret = btrfs_start_delalloc_snapshot(root, false); 1062 if (ret) 1063 goto out; 1064 1065 /* 1066 * All previous writes have started writeback in NOCOW mode, so now 1067 * we force future writes to fallback to COW mode during snapshot 1068 * creation. 1069 */ 1070 atomic_inc(&root->snapshot_force_cow); 1071 snapshot_force_cow = true; 1072 1073 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1074 1075 ret = btrfs_mksubvol(parent, idmap, name, namelen, 1076 root, readonly, inherit); 1077 out: 1078 if (snapshot_force_cow) 1079 atomic_dec(&root->snapshot_force_cow); 1080 btrfs_drew_read_unlock(&root->snapshot_lock); 1081 return ret; 1082 } 1083 1084 /* 1085 * Try to start exclusive operation @type or cancel it if it's running. 1086 * 1087 * Return: 1088 * 0 - normal mode, newly claimed op started 1089 * >0 - normal mode, something else is running, 1090 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1091 * ECANCELED - cancel mode, successful cancel 1092 * ENOTCONN - cancel mode, operation not running anymore 1093 */ 1094 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1095 enum btrfs_exclusive_operation type, bool cancel) 1096 { 1097 if (!cancel) { 1098 /* Start normal op */ 1099 if (!btrfs_exclop_start(fs_info, type)) 1100 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1101 /* Exclusive operation is now claimed */ 1102 return 0; 1103 } 1104 1105 /* Cancel running op */ 1106 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1107 /* 1108 * This blocks any exclop finish from setting it to NONE, so we 1109 * request cancellation. Either it runs and we will wait for it, 1110 * or it has finished and no waiting will happen. 1111 */ 1112 atomic_inc(&fs_info->reloc_cancel_req); 1113 btrfs_exclop_start_unlock(fs_info); 1114 1115 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1116 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1117 TASK_INTERRUPTIBLE); 1118 1119 return -ECANCELED; 1120 } 1121 1122 /* Something else is running or none */ 1123 return -ENOTCONN; 1124 } 1125 1126 static noinline int btrfs_ioctl_resize(struct file *file, 1127 void __user *arg) 1128 { 1129 BTRFS_DEV_LOOKUP_ARGS(args); 1130 struct inode *inode = file_inode(file); 1131 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1132 u64 new_size; 1133 u64 old_size; 1134 u64 devid = 1; 1135 struct btrfs_root *root = BTRFS_I(inode)->root; 1136 struct btrfs_ioctl_vol_args *vol_args; 1137 struct btrfs_trans_handle *trans; 1138 struct btrfs_device *device = NULL; 1139 char *sizestr; 1140 char *retptr; 1141 char *devstr = NULL; 1142 int ret = 0; 1143 int mod = 0; 1144 bool cancel; 1145 1146 if (!capable(CAP_SYS_ADMIN)) 1147 return -EPERM; 1148 1149 ret = mnt_want_write_file(file); 1150 if (ret) 1151 return ret; 1152 1153 /* 1154 * Read the arguments before checking exclusivity to be able to 1155 * distinguish regular resize and cancel 1156 */ 1157 vol_args = memdup_user(arg, sizeof(*vol_args)); 1158 if (IS_ERR(vol_args)) { 1159 ret = PTR_ERR(vol_args); 1160 goto out_drop; 1161 } 1162 ret = btrfs_check_ioctl_vol_args_path(vol_args); 1163 if (ret < 0) 1164 goto out_free; 1165 1166 sizestr = vol_args->name; 1167 cancel = (strcmp("cancel", sizestr) == 0); 1168 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1169 if (ret) 1170 goto out_free; 1171 /* Exclusive operation is now claimed */ 1172 1173 devstr = strchr(sizestr, ':'); 1174 if (devstr) { 1175 sizestr = devstr + 1; 1176 *devstr = '\0'; 1177 devstr = vol_args->name; 1178 ret = kstrtoull(devstr, 10, &devid); 1179 if (ret) 1180 goto out_finish; 1181 if (!devid) { 1182 ret = -EINVAL; 1183 goto out_finish; 1184 } 1185 btrfs_info(fs_info, "resizing devid %llu", devid); 1186 } 1187 1188 args.devid = devid; 1189 device = btrfs_find_device(fs_info->fs_devices, &args); 1190 if (!device) { 1191 btrfs_info(fs_info, "resizer unable to find device %llu", 1192 devid); 1193 ret = -ENODEV; 1194 goto out_finish; 1195 } 1196 1197 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1198 btrfs_info(fs_info, 1199 "resizer unable to apply on readonly device %llu", 1200 devid); 1201 ret = -EPERM; 1202 goto out_finish; 1203 } 1204 1205 if (!strcmp(sizestr, "max")) 1206 new_size = bdev_nr_bytes(device->bdev); 1207 else { 1208 if (sizestr[0] == '-') { 1209 mod = -1; 1210 sizestr++; 1211 } else if (sizestr[0] == '+') { 1212 mod = 1; 1213 sizestr++; 1214 } 1215 new_size = memparse(sizestr, &retptr); 1216 if (*retptr != '\0' || new_size == 0) { 1217 ret = -EINVAL; 1218 goto out_finish; 1219 } 1220 } 1221 1222 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1223 ret = -EPERM; 1224 goto out_finish; 1225 } 1226 1227 old_size = btrfs_device_get_total_bytes(device); 1228 1229 if (mod < 0) { 1230 if (new_size > old_size) { 1231 ret = -EINVAL; 1232 goto out_finish; 1233 } 1234 new_size = old_size - new_size; 1235 } else if (mod > 0) { 1236 if (new_size > ULLONG_MAX - old_size) { 1237 ret = -ERANGE; 1238 goto out_finish; 1239 } 1240 new_size = old_size + new_size; 1241 } 1242 1243 if (new_size < SZ_256M) { 1244 ret = -EINVAL; 1245 goto out_finish; 1246 } 1247 if (new_size > bdev_nr_bytes(device->bdev)) { 1248 ret = -EFBIG; 1249 goto out_finish; 1250 } 1251 1252 new_size = round_down(new_size, fs_info->sectorsize); 1253 1254 if (new_size > old_size) { 1255 trans = btrfs_start_transaction(root, 0); 1256 if (IS_ERR(trans)) { 1257 ret = PTR_ERR(trans); 1258 goto out_finish; 1259 } 1260 ret = btrfs_grow_device(trans, device, new_size); 1261 btrfs_commit_transaction(trans); 1262 } else if (new_size < old_size) { 1263 ret = btrfs_shrink_device(device, new_size); 1264 } /* equal, nothing need to do */ 1265 1266 if (ret == 0 && new_size != old_size) 1267 btrfs_info_in_rcu(fs_info, 1268 "resize device %s (devid %llu) from %llu to %llu", 1269 btrfs_dev_name(device), device->devid, 1270 old_size, new_size); 1271 out_finish: 1272 btrfs_exclop_finish(fs_info); 1273 out_free: 1274 kfree(vol_args); 1275 out_drop: 1276 mnt_drop_write_file(file); 1277 return ret; 1278 } 1279 1280 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1281 struct mnt_idmap *idmap, 1282 const char *name, unsigned long fd, int subvol, 1283 bool readonly, 1284 struct btrfs_qgroup_inherit *inherit) 1285 { 1286 int namelen; 1287 int ret = 0; 1288 1289 if (!S_ISDIR(file_inode(file)->i_mode)) 1290 return -ENOTDIR; 1291 1292 ret = mnt_want_write_file(file); 1293 if (ret) 1294 goto out; 1295 1296 namelen = strlen(name); 1297 if (strchr(name, '/')) { 1298 ret = -EINVAL; 1299 goto out_drop_write; 1300 } 1301 1302 if (name[0] == '.' && 1303 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1304 ret = -EEXIST; 1305 goto out_drop_write; 1306 } 1307 1308 if (subvol) { 1309 ret = btrfs_mksubvol(&file->f_path, idmap, name, 1310 namelen, NULL, readonly, inherit); 1311 } else { 1312 struct fd src = fdget(fd); 1313 struct inode *src_inode; 1314 if (!src.file) { 1315 ret = -EINVAL; 1316 goto out_drop_write; 1317 } 1318 1319 src_inode = file_inode(src.file); 1320 if (src_inode->i_sb != file_inode(file)->i_sb) { 1321 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1322 "Snapshot src from another FS"); 1323 ret = -EXDEV; 1324 } else if (!inode_owner_or_capable(idmap, src_inode)) { 1325 /* 1326 * Subvolume creation is not restricted, but snapshots 1327 * are limited to own subvolumes only 1328 */ 1329 ret = -EPERM; 1330 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1331 /* 1332 * Snapshots must be made with the src_inode referring 1333 * to the subvolume inode, otherwise the permission 1334 * checking above is useless because we may have 1335 * permission on a lower directory but not the subvol 1336 * itself. 1337 */ 1338 ret = -EINVAL; 1339 } else { 1340 ret = btrfs_mksnapshot(&file->f_path, idmap, 1341 name, namelen, 1342 BTRFS_I(src_inode)->root, 1343 readonly, inherit); 1344 } 1345 fdput(src); 1346 } 1347 out_drop_write: 1348 mnt_drop_write_file(file); 1349 out: 1350 return ret; 1351 } 1352 1353 static noinline int btrfs_ioctl_snap_create(struct file *file, 1354 void __user *arg, int subvol) 1355 { 1356 struct btrfs_ioctl_vol_args *vol_args; 1357 int ret; 1358 1359 if (!S_ISDIR(file_inode(file)->i_mode)) 1360 return -ENOTDIR; 1361 1362 vol_args = memdup_user(arg, sizeof(*vol_args)); 1363 if (IS_ERR(vol_args)) 1364 return PTR_ERR(vol_args); 1365 ret = btrfs_check_ioctl_vol_args_path(vol_args); 1366 if (ret < 0) 1367 goto out; 1368 1369 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1370 vol_args->name, vol_args->fd, subvol, 1371 false, NULL); 1372 1373 out: 1374 kfree(vol_args); 1375 return ret; 1376 } 1377 1378 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1379 void __user *arg, int subvol) 1380 { 1381 struct btrfs_ioctl_vol_args_v2 *vol_args; 1382 int ret; 1383 bool readonly = false; 1384 struct btrfs_qgroup_inherit *inherit = NULL; 1385 1386 if (!S_ISDIR(file_inode(file)->i_mode)) 1387 return -ENOTDIR; 1388 1389 vol_args = memdup_user(arg, sizeof(*vol_args)); 1390 if (IS_ERR(vol_args)) 1391 return PTR_ERR(vol_args); 1392 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args); 1393 if (ret < 0) 1394 goto free_args; 1395 1396 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1397 ret = -EOPNOTSUPP; 1398 goto free_args; 1399 } 1400 1401 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1402 readonly = true; 1403 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1404 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file)); 1405 1406 if (vol_args->size < sizeof(*inherit) || 1407 vol_args->size > PAGE_SIZE) { 1408 ret = -EINVAL; 1409 goto free_args; 1410 } 1411 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1412 if (IS_ERR(inherit)) { 1413 ret = PTR_ERR(inherit); 1414 goto free_args; 1415 } 1416 1417 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size); 1418 if (ret < 0) 1419 goto free_inherit; 1420 } 1421 1422 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1423 vol_args->name, vol_args->fd, subvol, 1424 readonly, inherit); 1425 if (ret) 1426 goto free_inherit; 1427 free_inherit: 1428 kfree(inherit); 1429 free_args: 1430 kfree(vol_args); 1431 return ret; 1432 } 1433 1434 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 1435 void __user *arg) 1436 { 1437 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1438 struct btrfs_root *root = BTRFS_I(inode)->root; 1439 int ret = 0; 1440 u64 flags = 0; 1441 1442 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1443 return -EINVAL; 1444 1445 down_read(&fs_info->subvol_sem); 1446 if (btrfs_root_readonly(root)) 1447 flags |= BTRFS_SUBVOL_RDONLY; 1448 up_read(&fs_info->subvol_sem); 1449 1450 if (copy_to_user(arg, &flags, sizeof(flags))) 1451 ret = -EFAULT; 1452 1453 return ret; 1454 } 1455 1456 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1457 void __user *arg) 1458 { 1459 struct inode *inode = file_inode(file); 1460 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1461 struct btrfs_root *root = BTRFS_I(inode)->root; 1462 struct btrfs_trans_handle *trans; 1463 u64 root_flags; 1464 u64 flags; 1465 int ret = 0; 1466 1467 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 1468 return -EPERM; 1469 1470 ret = mnt_want_write_file(file); 1471 if (ret) 1472 goto out; 1473 1474 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1475 ret = -EINVAL; 1476 goto out_drop_write; 1477 } 1478 1479 if (copy_from_user(&flags, arg, sizeof(flags))) { 1480 ret = -EFAULT; 1481 goto out_drop_write; 1482 } 1483 1484 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1485 ret = -EOPNOTSUPP; 1486 goto out_drop_write; 1487 } 1488 1489 down_write(&fs_info->subvol_sem); 1490 1491 /* nothing to do */ 1492 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1493 goto out_drop_sem; 1494 1495 root_flags = btrfs_root_flags(&root->root_item); 1496 if (flags & BTRFS_SUBVOL_RDONLY) { 1497 btrfs_set_root_flags(&root->root_item, 1498 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1499 } else { 1500 /* 1501 * Block RO -> RW transition if this subvolume is involved in 1502 * send 1503 */ 1504 spin_lock(&root->root_item_lock); 1505 if (root->send_in_progress == 0) { 1506 btrfs_set_root_flags(&root->root_item, 1507 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1508 spin_unlock(&root->root_item_lock); 1509 } else { 1510 spin_unlock(&root->root_item_lock); 1511 btrfs_warn(fs_info, 1512 "Attempt to set subvolume %llu read-write during send", 1513 btrfs_root_id(root)); 1514 ret = -EPERM; 1515 goto out_drop_sem; 1516 } 1517 } 1518 1519 trans = btrfs_start_transaction(root, 1); 1520 if (IS_ERR(trans)) { 1521 ret = PTR_ERR(trans); 1522 goto out_reset; 1523 } 1524 1525 ret = btrfs_update_root(trans, fs_info->tree_root, 1526 &root->root_key, &root->root_item); 1527 if (ret < 0) { 1528 btrfs_end_transaction(trans); 1529 goto out_reset; 1530 } 1531 1532 ret = btrfs_commit_transaction(trans); 1533 1534 out_reset: 1535 if (ret) 1536 btrfs_set_root_flags(&root->root_item, root_flags); 1537 out_drop_sem: 1538 up_write(&fs_info->subvol_sem); 1539 out_drop_write: 1540 mnt_drop_write_file(file); 1541 out: 1542 return ret; 1543 } 1544 1545 static noinline int key_in_sk(struct btrfs_key *key, 1546 struct btrfs_ioctl_search_key *sk) 1547 { 1548 struct btrfs_key test; 1549 int ret; 1550 1551 test.objectid = sk->min_objectid; 1552 test.type = sk->min_type; 1553 test.offset = sk->min_offset; 1554 1555 ret = btrfs_comp_cpu_keys(key, &test); 1556 if (ret < 0) 1557 return 0; 1558 1559 test.objectid = sk->max_objectid; 1560 test.type = sk->max_type; 1561 test.offset = sk->max_offset; 1562 1563 ret = btrfs_comp_cpu_keys(key, &test); 1564 if (ret > 0) 1565 return 0; 1566 return 1; 1567 } 1568 1569 static noinline int copy_to_sk(struct btrfs_path *path, 1570 struct btrfs_key *key, 1571 struct btrfs_ioctl_search_key *sk, 1572 u64 *buf_size, 1573 char __user *ubuf, 1574 unsigned long *sk_offset, 1575 int *num_found) 1576 { 1577 u64 found_transid; 1578 struct extent_buffer *leaf; 1579 struct btrfs_ioctl_search_header sh; 1580 struct btrfs_key test; 1581 unsigned long item_off; 1582 unsigned long item_len; 1583 int nritems; 1584 int i; 1585 int slot; 1586 int ret = 0; 1587 1588 leaf = path->nodes[0]; 1589 slot = path->slots[0]; 1590 nritems = btrfs_header_nritems(leaf); 1591 1592 if (btrfs_header_generation(leaf) > sk->max_transid) { 1593 i = nritems; 1594 goto advance_key; 1595 } 1596 found_transid = btrfs_header_generation(leaf); 1597 1598 for (i = slot; i < nritems; i++) { 1599 item_off = btrfs_item_ptr_offset(leaf, i); 1600 item_len = btrfs_item_size(leaf, i); 1601 1602 btrfs_item_key_to_cpu(leaf, key, i); 1603 if (!key_in_sk(key, sk)) 1604 continue; 1605 1606 if (sizeof(sh) + item_len > *buf_size) { 1607 if (*num_found) { 1608 ret = 1; 1609 goto out; 1610 } 1611 1612 /* 1613 * return one empty item back for v1, which does not 1614 * handle -EOVERFLOW 1615 */ 1616 1617 *buf_size = sizeof(sh) + item_len; 1618 item_len = 0; 1619 ret = -EOVERFLOW; 1620 } 1621 1622 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1623 ret = 1; 1624 goto out; 1625 } 1626 1627 sh.objectid = key->objectid; 1628 sh.offset = key->offset; 1629 sh.type = key->type; 1630 sh.len = item_len; 1631 sh.transid = found_transid; 1632 1633 /* 1634 * Copy search result header. If we fault then loop again so we 1635 * can fault in the pages and -EFAULT there if there's a 1636 * problem. Otherwise we'll fault and then copy the buffer in 1637 * properly this next time through 1638 */ 1639 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 1640 ret = 0; 1641 goto out; 1642 } 1643 1644 *sk_offset += sizeof(sh); 1645 1646 if (item_len) { 1647 char __user *up = ubuf + *sk_offset; 1648 /* 1649 * Copy the item, same behavior as above, but reset the 1650 * * sk_offset so we copy the full thing again. 1651 */ 1652 if (read_extent_buffer_to_user_nofault(leaf, up, 1653 item_off, item_len)) { 1654 ret = 0; 1655 *sk_offset -= sizeof(sh); 1656 goto out; 1657 } 1658 1659 *sk_offset += item_len; 1660 } 1661 (*num_found)++; 1662 1663 if (ret) /* -EOVERFLOW from above */ 1664 goto out; 1665 1666 if (*num_found >= sk->nr_items) { 1667 ret = 1; 1668 goto out; 1669 } 1670 } 1671 advance_key: 1672 ret = 0; 1673 test.objectid = sk->max_objectid; 1674 test.type = sk->max_type; 1675 test.offset = sk->max_offset; 1676 if (btrfs_comp_cpu_keys(key, &test) >= 0) 1677 ret = 1; 1678 else if (key->offset < (u64)-1) 1679 key->offset++; 1680 else if (key->type < (u8)-1) { 1681 key->offset = 0; 1682 key->type++; 1683 } else if (key->objectid < (u64)-1) { 1684 key->offset = 0; 1685 key->type = 0; 1686 key->objectid++; 1687 } else 1688 ret = 1; 1689 out: 1690 /* 1691 * 0: all items from this leaf copied, continue with next 1692 * 1: * more items can be copied, but unused buffer is too small 1693 * * all items were found 1694 * Either way, it will stops the loop which iterates to the next 1695 * leaf 1696 * -EOVERFLOW: item was to large for buffer 1697 * -EFAULT: could not copy extent buffer back to userspace 1698 */ 1699 return ret; 1700 } 1701 1702 static noinline int search_ioctl(struct inode *inode, 1703 struct btrfs_ioctl_search_key *sk, 1704 u64 *buf_size, 1705 char __user *ubuf) 1706 { 1707 struct btrfs_fs_info *info = inode_to_fs_info(inode); 1708 struct btrfs_root *root; 1709 struct btrfs_key key; 1710 struct btrfs_path *path; 1711 int ret; 1712 int num_found = 0; 1713 unsigned long sk_offset = 0; 1714 1715 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 1716 *buf_size = sizeof(struct btrfs_ioctl_search_header); 1717 return -EOVERFLOW; 1718 } 1719 1720 path = btrfs_alloc_path(); 1721 if (!path) 1722 return -ENOMEM; 1723 1724 if (sk->tree_id == 0) { 1725 /* search the root of the inode that was passed */ 1726 root = btrfs_grab_root(BTRFS_I(inode)->root); 1727 } else { 1728 root = btrfs_get_fs_root(info, sk->tree_id, true); 1729 if (IS_ERR(root)) { 1730 btrfs_free_path(path); 1731 return PTR_ERR(root); 1732 } 1733 } 1734 1735 key.objectid = sk->min_objectid; 1736 key.type = sk->min_type; 1737 key.offset = sk->min_offset; 1738 1739 while (1) { 1740 ret = -EFAULT; 1741 /* 1742 * Ensure that the whole user buffer is faulted in at sub-page 1743 * granularity, otherwise the loop may live-lock. 1744 */ 1745 if (fault_in_subpage_writeable(ubuf + sk_offset, 1746 *buf_size - sk_offset)) 1747 break; 1748 1749 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1750 if (ret != 0) { 1751 if (ret > 0) 1752 ret = 0; 1753 goto err; 1754 } 1755 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 1756 &sk_offset, &num_found); 1757 btrfs_release_path(path); 1758 if (ret) 1759 break; 1760 1761 } 1762 if (ret > 0) 1763 ret = 0; 1764 err: 1765 sk->nr_items = num_found; 1766 btrfs_put_root(root); 1767 btrfs_free_path(path); 1768 return ret; 1769 } 1770 1771 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 1772 void __user *argp) 1773 { 1774 struct btrfs_ioctl_search_args __user *uargs = argp; 1775 struct btrfs_ioctl_search_key sk; 1776 int ret; 1777 u64 buf_size; 1778 1779 if (!capable(CAP_SYS_ADMIN)) 1780 return -EPERM; 1781 1782 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 1783 return -EFAULT; 1784 1785 buf_size = sizeof(uargs->buf); 1786 1787 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 1788 1789 /* 1790 * In the origin implementation an overflow is handled by returning a 1791 * search header with a len of zero, so reset ret. 1792 */ 1793 if (ret == -EOVERFLOW) 1794 ret = 0; 1795 1796 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 1797 ret = -EFAULT; 1798 return ret; 1799 } 1800 1801 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 1802 void __user *argp) 1803 { 1804 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 1805 struct btrfs_ioctl_search_args_v2 args; 1806 int ret; 1807 u64 buf_size; 1808 const u64 buf_limit = SZ_16M; 1809 1810 if (!capable(CAP_SYS_ADMIN)) 1811 return -EPERM; 1812 1813 /* copy search header and buffer size */ 1814 if (copy_from_user(&args, uarg, sizeof(args))) 1815 return -EFAULT; 1816 1817 buf_size = args.buf_size; 1818 1819 /* limit result size to 16MB */ 1820 if (buf_size > buf_limit) 1821 buf_size = buf_limit; 1822 1823 ret = search_ioctl(inode, &args.key, &buf_size, 1824 (char __user *)(&uarg->buf[0])); 1825 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 1826 ret = -EFAULT; 1827 else if (ret == -EOVERFLOW && 1828 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 1829 ret = -EFAULT; 1830 1831 return ret; 1832 } 1833 1834 /* 1835 * Search INODE_REFs to identify path name of 'dirid' directory 1836 * in a 'tree_id' tree. and sets path name to 'name'. 1837 */ 1838 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1839 u64 tree_id, u64 dirid, char *name) 1840 { 1841 struct btrfs_root *root; 1842 struct btrfs_key key; 1843 char *ptr; 1844 int ret = -1; 1845 int slot; 1846 int len; 1847 int total_len = 0; 1848 struct btrfs_inode_ref *iref; 1849 struct extent_buffer *l; 1850 struct btrfs_path *path; 1851 1852 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1853 name[0]='\0'; 1854 return 0; 1855 } 1856 1857 path = btrfs_alloc_path(); 1858 if (!path) 1859 return -ENOMEM; 1860 1861 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 1862 1863 root = btrfs_get_fs_root(info, tree_id, true); 1864 if (IS_ERR(root)) { 1865 ret = PTR_ERR(root); 1866 root = NULL; 1867 goto out; 1868 } 1869 1870 key.objectid = dirid; 1871 key.type = BTRFS_INODE_REF_KEY; 1872 key.offset = (u64)-1; 1873 1874 while (1) { 1875 ret = btrfs_search_backwards(root, &key, path); 1876 if (ret < 0) 1877 goto out; 1878 else if (ret > 0) { 1879 ret = -ENOENT; 1880 goto out; 1881 } 1882 1883 l = path->nodes[0]; 1884 slot = path->slots[0]; 1885 1886 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1887 len = btrfs_inode_ref_name_len(l, iref); 1888 ptr -= len + 1; 1889 total_len += len + 1; 1890 if (ptr < name) { 1891 ret = -ENAMETOOLONG; 1892 goto out; 1893 } 1894 1895 *(ptr + len) = '/'; 1896 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 1897 1898 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1899 break; 1900 1901 btrfs_release_path(path); 1902 key.objectid = key.offset; 1903 key.offset = (u64)-1; 1904 dirid = key.objectid; 1905 } 1906 memmove(name, ptr, total_len); 1907 name[total_len] = '\0'; 1908 ret = 0; 1909 out: 1910 btrfs_put_root(root); 1911 btrfs_free_path(path); 1912 return ret; 1913 } 1914 1915 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap, 1916 struct inode *inode, 1917 struct btrfs_ioctl_ino_lookup_user_args *args) 1918 { 1919 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1920 struct super_block *sb = inode->i_sb; 1921 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 1922 u64 treeid = btrfs_root_id(BTRFS_I(inode)->root); 1923 u64 dirid = args->dirid; 1924 unsigned long item_off; 1925 unsigned long item_len; 1926 struct btrfs_inode_ref *iref; 1927 struct btrfs_root_ref *rref; 1928 struct btrfs_root *root = NULL; 1929 struct btrfs_path *path; 1930 struct btrfs_key key, key2; 1931 struct extent_buffer *leaf; 1932 struct inode *temp_inode; 1933 char *ptr; 1934 int slot; 1935 int len; 1936 int total_len = 0; 1937 int ret; 1938 1939 path = btrfs_alloc_path(); 1940 if (!path) 1941 return -ENOMEM; 1942 1943 /* 1944 * If the bottom subvolume does not exist directly under upper_limit, 1945 * construct the path in from the bottom up. 1946 */ 1947 if (dirid != upper_limit.objectid) { 1948 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 1949 1950 root = btrfs_get_fs_root(fs_info, treeid, true); 1951 if (IS_ERR(root)) { 1952 ret = PTR_ERR(root); 1953 goto out; 1954 } 1955 1956 key.objectid = dirid; 1957 key.type = BTRFS_INODE_REF_KEY; 1958 key.offset = (u64)-1; 1959 while (1) { 1960 ret = btrfs_search_backwards(root, &key, path); 1961 if (ret < 0) 1962 goto out_put; 1963 else if (ret > 0) { 1964 ret = -ENOENT; 1965 goto out_put; 1966 } 1967 1968 leaf = path->nodes[0]; 1969 slot = path->slots[0]; 1970 1971 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 1972 len = btrfs_inode_ref_name_len(leaf, iref); 1973 ptr -= len + 1; 1974 total_len += len + 1; 1975 if (ptr < args->path) { 1976 ret = -ENAMETOOLONG; 1977 goto out_put; 1978 } 1979 1980 *(ptr + len) = '/'; 1981 read_extent_buffer(leaf, ptr, 1982 (unsigned long)(iref + 1), len); 1983 1984 /* Check the read+exec permission of this directory */ 1985 ret = btrfs_previous_item(root, path, dirid, 1986 BTRFS_INODE_ITEM_KEY); 1987 if (ret < 0) { 1988 goto out_put; 1989 } else if (ret > 0) { 1990 ret = -ENOENT; 1991 goto out_put; 1992 } 1993 1994 leaf = path->nodes[0]; 1995 slot = path->slots[0]; 1996 btrfs_item_key_to_cpu(leaf, &key2, slot); 1997 if (key2.objectid != dirid) { 1998 ret = -ENOENT; 1999 goto out_put; 2000 } 2001 2002 /* 2003 * We don't need the path anymore, so release it and 2004 * avoid deadlocks and lockdep warnings in case 2005 * btrfs_iget() needs to lookup the inode from its root 2006 * btree and lock the same leaf. 2007 */ 2008 btrfs_release_path(path); 2009 temp_inode = btrfs_iget(sb, key2.objectid, root); 2010 if (IS_ERR(temp_inode)) { 2011 ret = PTR_ERR(temp_inode); 2012 goto out_put; 2013 } 2014 ret = inode_permission(idmap, temp_inode, 2015 MAY_READ | MAY_EXEC); 2016 iput(temp_inode); 2017 if (ret) { 2018 ret = -EACCES; 2019 goto out_put; 2020 } 2021 2022 if (key.offset == upper_limit.objectid) 2023 break; 2024 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2025 ret = -EACCES; 2026 goto out_put; 2027 } 2028 2029 key.objectid = key.offset; 2030 key.offset = (u64)-1; 2031 dirid = key.objectid; 2032 } 2033 2034 memmove(args->path, ptr, total_len); 2035 args->path[total_len] = '\0'; 2036 btrfs_put_root(root); 2037 root = NULL; 2038 btrfs_release_path(path); 2039 } 2040 2041 /* Get the bottom subvolume's name from ROOT_REF */ 2042 key.objectid = treeid; 2043 key.type = BTRFS_ROOT_REF_KEY; 2044 key.offset = args->treeid; 2045 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2046 if (ret < 0) { 2047 goto out; 2048 } else if (ret > 0) { 2049 ret = -ENOENT; 2050 goto out; 2051 } 2052 2053 leaf = path->nodes[0]; 2054 slot = path->slots[0]; 2055 btrfs_item_key_to_cpu(leaf, &key, slot); 2056 2057 item_off = btrfs_item_ptr_offset(leaf, slot); 2058 item_len = btrfs_item_size(leaf, slot); 2059 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2060 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2061 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2062 ret = -EINVAL; 2063 goto out; 2064 } 2065 2066 /* Copy subvolume's name */ 2067 item_off += sizeof(struct btrfs_root_ref); 2068 item_len -= sizeof(struct btrfs_root_ref); 2069 read_extent_buffer(leaf, args->name, item_off, item_len); 2070 args->name[item_len] = 0; 2071 2072 out_put: 2073 btrfs_put_root(root); 2074 out: 2075 btrfs_free_path(path); 2076 return ret; 2077 } 2078 2079 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2080 void __user *argp) 2081 { 2082 struct btrfs_ioctl_ino_lookup_args *args; 2083 int ret = 0; 2084 2085 args = memdup_user(argp, sizeof(*args)); 2086 if (IS_ERR(args)) 2087 return PTR_ERR(args); 2088 2089 /* 2090 * Unprivileged query to obtain the containing subvolume root id. The 2091 * path is reset so it's consistent with btrfs_search_path_in_tree. 2092 */ 2093 if (args->treeid == 0) 2094 args->treeid = btrfs_root_id(root); 2095 2096 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2097 args->name[0] = 0; 2098 goto out; 2099 } 2100 2101 if (!capable(CAP_SYS_ADMIN)) { 2102 ret = -EPERM; 2103 goto out; 2104 } 2105 2106 ret = btrfs_search_path_in_tree(root->fs_info, 2107 args->treeid, args->objectid, 2108 args->name); 2109 2110 out: 2111 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2112 ret = -EFAULT; 2113 2114 kfree(args); 2115 return ret; 2116 } 2117 2118 /* 2119 * Version of ino_lookup ioctl (unprivileged) 2120 * 2121 * The main differences from ino_lookup ioctl are: 2122 * 2123 * 1. Read + Exec permission will be checked using inode_permission() during 2124 * path construction. -EACCES will be returned in case of failure. 2125 * 2. Path construction will be stopped at the inode number which corresponds 2126 * to the fd with which this ioctl is called. If constructed path does not 2127 * exist under fd's inode, -EACCES will be returned. 2128 * 3. The name of bottom subvolume is also searched and filled. 2129 */ 2130 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2131 { 2132 struct btrfs_ioctl_ino_lookup_user_args *args; 2133 struct inode *inode; 2134 int ret; 2135 2136 args = memdup_user(argp, sizeof(*args)); 2137 if (IS_ERR(args)) 2138 return PTR_ERR(args); 2139 2140 inode = file_inode(file); 2141 2142 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2143 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2144 /* 2145 * The subvolume does not exist under fd with which this is 2146 * called 2147 */ 2148 kfree(args); 2149 return -EACCES; 2150 } 2151 2152 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args); 2153 2154 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2155 ret = -EFAULT; 2156 2157 kfree(args); 2158 return ret; 2159 } 2160 2161 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2162 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2163 { 2164 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2165 struct btrfs_fs_info *fs_info; 2166 struct btrfs_root *root; 2167 struct btrfs_path *path; 2168 struct btrfs_key key; 2169 struct btrfs_root_item *root_item; 2170 struct btrfs_root_ref *rref; 2171 struct extent_buffer *leaf; 2172 unsigned long item_off; 2173 unsigned long item_len; 2174 int slot; 2175 int ret = 0; 2176 2177 path = btrfs_alloc_path(); 2178 if (!path) 2179 return -ENOMEM; 2180 2181 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2182 if (!subvol_info) { 2183 btrfs_free_path(path); 2184 return -ENOMEM; 2185 } 2186 2187 fs_info = BTRFS_I(inode)->root->fs_info; 2188 2189 /* Get root_item of inode's subvolume */ 2190 key.objectid = btrfs_root_id(BTRFS_I(inode)->root); 2191 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2192 if (IS_ERR(root)) { 2193 ret = PTR_ERR(root); 2194 goto out_free; 2195 } 2196 root_item = &root->root_item; 2197 2198 subvol_info->treeid = key.objectid; 2199 2200 subvol_info->generation = btrfs_root_generation(root_item); 2201 subvol_info->flags = btrfs_root_flags(root_item); 2202 2203 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2204 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2205 BTRFS_UUID_SIZE); 2206 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2207 BTRFS_UUID_SIZE); 2208 2209 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2210 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2211 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2212 2213 subvol_info->otransid = btrfs_root_otransid(root_item); 2214 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2215 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2216 2217 subvol_info->stransid = btrfs_root_stransid(root_item); 2218 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2219 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2220 2221 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2222 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2223 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2224 2225 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2226 /* Search root tree for ROOT_BACKREF of this subvolume */ 2227 key.type = BTRFS_ROOT_BACKREF_KEY; 2228 key.offset = 0; 2229 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2230 if (ret < 0) { 2231 goto out; 2232 } else if (path->slots[0] >= 2233 btrfs_header_nritems(path->nodes[0])) { 2234 ret = btrfs_next_leaf(fs_info->tree_root, path); 2235 if (ret < 0) { 2236 goto out; 2237 } else if (ret > 0) { 2238 ret = -EUCLEAN; 2239 goto out; 2240 } 2241 } 2242 2243 leaf = path->nodes[0]; 2244 slot = path->slots[0]; 2245 btrfs_item_key_to_cpu(leaf, &key, slot); 2246 if (key.objectid == subvol_info->treeid && 2247 key.type == BTRFS_ROOT_BACKREF_KEY) { 2248 subvol_info->parent_id = key.offset; 2249 2250 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2251 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2252 2253 item_off = btrfs_item_ptr_offset(leaf, slot) 2254 + sizeof(struct btrfs_root_ref); 2255 item_len = btrfs_item_size(leaf, slot) 2256 - sizeof(struct btrfs_root_ref); 2257 read_extent_buffer(leaf, subvol_info->name, 2258 item_off, item_len); 2259 } else { 2260 ret = -ENOENT; 2261 goto out; 2262 } 2263 } 2264 2265 btrfs_free_path(path); 2266 path = NULL; 2267 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2268 ret = -EFAULT; 2269 2270 out: 2271 btrfs_put_root(root); 2272 out_free: 2273 btrfs_free_path(path); 2274 kfree(subvol_info); 2275 return ret; 2276 } 2277 2278 /* 2279 * Return ROOT_REF information of the subvolume containing this inode 2280 * except the subvolume name. 2281 */ 2282 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 2283 void __user *argp) 2284 { 2285 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2286 struct btrfs_root_ref *rref; 2287 struct btrfs_path *path; 2288 struct btrfs_key key; 2289 struct extent_buffer *leaf; 2290 u64 objectid; 2291 int slot; 2292 int ret; 2293 u8 found; 2294 2295 path = btrfs_alloc_path(); 2296 if (!path) 2297 return -ENOMEM; 2298 2299 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2300 if (IS_ERR(rootrefs)) { 2301 btrfs_free_path(path); 2302 return PTR_ERR(rootrefs); 2303 } 2304 2305 objectid = btrfs_root_id(root); 2306 key.objectid = objectid; 2307 key.type = BTRFS_ROOT_REF_KEY; 2308 key.offset = rootrefs->min_treeid; 2309 found = 0; 2310 2311 root = root->fs_info->tree_root; 2312 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2313 if (ret < 0) { 2314 goto out; 2315 } else if (path->slots[0] >= 2316 btrfs_header_nritems(path->nodes[0])) { 2317 ret = btrfs_next_leaf(root, path); 2318 if (ret < 0) { 2319 goto out; 2320 } else if (ret > 0) { 2321 ret = -EUCLEAN; 2322 goto out; 2323 } 2324 } 2325 while (1) { 2326 leaf = path->nodes[0]; 2327 slot = path->slots[0]; 2328 2329 btrfs_item_key_to_cpu(leaf, &key, slot); 2330 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2331 ret = 0; 2332 goto out; 2333 } 2334 2335 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2336 ret = -EOVERFLOW; 2337 goto out; 2338 } 2339 2340 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2341 rootrefs->rootref[found].treeid = key.offset; 2342 rootrefs->rootref[found].dirid = 2343 btrfs_root_ref_dirid(leaf, rref); 2344 found++; 2345 2346 ret = btrfs_next_item(root, path); 2347 if (ret < 0) { 2348 goto out; 2349 } else if (ret > 0) { 2350 ret = -EUCLEAN; 2351 goto out; 2352 } 2353 } 2354 2355 out: 2356 btrfs_free_path(path); 2357 2358 if (!ret || ret == -EOVERFLOW) { 2359 rootrefs->num_items = found; 2360 /* update min_treeid for next search */ 2361 if (found) 2362 rootrefs->min_treeid = 2363 rootrefs->rootref[found - 1].treeid + 1; 2364 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2365 ret = -EFAULT; 2366 } 2367 2368 kfree(rootrefs); 2369 2370 return ret; 2371 } 2372 2373 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2374 void __user *arg, 2375 bool destroy_v2) 2376 { 2377 struct dentry *parent = file->f_path.dentry; 2378 struct dentry *dentry; 2379 struct inode *dir = d_inode(parent); 2380 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 2381 struct inode *inode; 2382 struct btrfs_root *root = BTRFS_I(dir)->root; 2383 struct btrfs_root *dest = NULL; 2384 struct btrfs_ioctl_vol_args *vol_args = NULL; 2385 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2386 struct mnt_idmap *idmap = file_mnt_idmap(file); 2387 char *subvol_name, *subvol_name_ptr = NULL; 2388 int subvol_namelen; 2389 int ret = 0; 2390 bool destroy_parent = false; 2391 2392 /* We don't support snapshots with extent tree v2 yet. */ 2393 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2394 btrfs_err(fs_info, 2395 "extent tree v2 doesn't support snapshot deletion yet"); 2396 return -EOPNOTSUPP; 2397 } 2398 2399 if (destroy_v2) { 2400 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2401 if (IS_ERR(vol_args2)) 2402 return PTR_ERR(vol_args2); 2403 2404 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2405 ret = -EOPNOTSUPP; 2406 goto out; 2407 } 2408 2409 /* 2410 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2411 * name, same as v1 currently does. 2412 */ 2413 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2414 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2); 2415 if (ret < 0) 2416 goto out; 2417 subvol_name = vol_args2->name; 2418 2419 ret = mnt_want_write_file(file); 2420 if (ret) 2421 goto out; 2422 } else { 2423 struct inode *old_dir; 2424 2425 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2426 ret = -EINVAL; 2427 goto out; 2428 } 2429 2430 ret = mnt_want_write_file(file); 2431 if (ret) 2432 goto out; 2433 2434 dentry = btrfs_get_dentry(fs_info->sb, 2435 BTRFS_FIRST_FREE_OBJECTID, 2436 vol_args2->subvolid, 0); 2437 if (IS_ERR(dentry)) { 2438 ret = PTR_ERR(dentry); 2439 goto out_drop_write; 2440 } 2441 2442 /* 2443 * Change the default parent since the subvolume being 2444 * deleted can be outside of the current mount point. 2445 */ 2446 parent = btrfs_get_parent(dentry); 2447 2448 /* 2449 * At this point dentry->d_name can point to '/' if the 2450 * subvolume we want to destroy is outsite of the 2451 * current mount point, so we need to release the 2452 * current dentry and execute the lookup to return a new 2453 * one with ->d_name pointing to the 2454 * <mount point>/subvol_name. 2455 */ 2456 dput(dentry); 2457 if (IS_ERR(parent)) { 2458 ret = PTR_ERR(parent); 2459 goto out_drop_write; 2460 } 2461 old_dir = dir; 2462 dir = d_inode(parent); 2463 2464 /* 2465 * If v2 was used with SPEC_BY_ID, a new parent was 2466 * allocated since the subvolume can be outside of the 2467 * current mount point. Later on we need to release this 2468 * new parent dentry. 2469 */ 2470 destroy_parent = true; 2471 2472 /* 2473 * On idmapped mounts, deletion via subvolid is 2474 * restricted to subvolumes that are immediate 2475 * ancestors of the inode referenced by the file 2476 * descriptor in the ioctl. Otherwise the idmapping 2477 * could potentially be abused to delete subvolumes 2478 * anywhere in the filesystem the user wouldn't be able 2479 * to delete without an idmapped mount. 2480 */ 2481 if (old_dir != dir && idmap != &nop_mnt_idmap) { 2482 ret = -EOPNOTSUPP; 2483 goto free_parent; 2484 } 2485 2486 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2487 fs_info, vol_args2->subvolid); 2488 if (IS_ERR(subvol_name_ptr)) { 2489 ret = PTR_ERR(subvol_name_ptr); 2490 goto free_parent; 2491 } 2492 /* subvol_name_ptr is already nul terminated */ 2493 subvol_name = (char *)kbasename(subvol_name_ptr); 2494 } 2495 } else { 2496 vol_args = memdup_user(arg, sizeof(*vol_args)); 2497 if (IS_ERR(vol_args)) 2498 return PTR_ERR(vol_args); 2499 2500 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2501 if (ret < 0) 2502 goto out; 2503 2504 subvol_name = vol_args->name; 2505 2506 ret = mnt_want_write_file(file); 2507 if (ret) 2508 goto out; 2509 } 2510 2511 subvol_namelen = strlen(subvol_name); 2512 2513 if (strchr(subvol_name, '/') || 2514 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2515 ret = -EINVAL; 2516 goto free_subvol_name; 2517 } 2518 2519 if (!S_ISDIR(dir->i_mode)) { 2520 ret = -ENOTDIR; 2521 goto free_subvol_name; 2522 } 2523 2524 ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2525 if (ret == -EINTR) 2526 goto free_subvol_name; 2527 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen); 2528 if (IS_ERR(dentry)) { 2529 ret = PTR_ERR(dentry); 2530 goto out_unlock_dir; 2531 } 2532 2533 if (d_really_is_negative(dentry)) { 2534 ret = -ENOENT; 2535 goto out_dput; 2536 } 2537 2538 inode = d_inode(dentry); 2539 dest = BTRFS_I(inode)->root; 2540 if (!capable(CAP_SYS_ADMIN)) { 2541 /* 2542 * Regular user. Only allow this with a special mount 2543 * option, when the user has write+exec access to the 2544 * subvol root, and when rmdir(2) would have been 2545 * allowed. 2546 * 2547 * Note that this is _not_ check that the subvol is 2548 * empty or doesn't contain data that we wouldn't 2549 * otherwise be able to delete. 2550 * 2551 * Users who want to delete empty subvols should try 2552 * rmdir(2). 2553 */ 2554 ret = -EPERM; 2555 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2556 goto out_dput; 2557 2558 /* 2559 * Do not allow deletion if the parent dir is the same 2560 * as the dir to be deleted. That means the ioctl 2561 * must be called on the dentry referencing the root 2562 * of the subvol, not a random directory contained 2563 * within it. 2564 */ 2565 ret = -EINVAL; 2566 if (root == dest) 2567 goto out_dput; 2568 2569 ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC); 2570 if (ret) 2571 goto out_dput; 2572 } 2573 2574 /* check if subvolume may be deleted by a user */ 2575 ret = btrfs_may_delete(idmap, dir, dentry, 1); 2576 if (ret) 2577 goto out_dput; 2578 2579 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2580 ret = -EINVAL; 2581 goto out_dput; 2582 } 2583 2584 btrfs_inode_lock(BTRFS_I(inode), 0); 2585 ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry); 2586 btrfs_inode_unlock(BTRFS_I(inode), 0); 2587 if (!ret) 2588 d_delete_notify(dir, dentry); 2589 2590 out_dput: 2591 dput(dentry); 2592 out_unlock_dir: 2593 btrfs_inode_unlock(BTRFS_I(dir), 0); 2594 free_subvol_name: 2595 kfree(subvol_name_ptr); 2596 free_parent: 2597 if (destroy_parent) 2598 dput(parent); 2599 out_drop_write: 2600 mnt_drop_write_file(file); 2601 out: 2602 kfree(vol_args2); 2603 kfree(vol_args); 2604 return ret; 2605 } 2606 2607 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2608 { 2609 struct inode *inode = file_inode(file); 2610 struct btrfs_root *root = BTRFS_I(inode)->root; 2611 struct btrfs_ioctl_defrag_range_args range = {0}; 2612 int ret; 2613 2614 ret = mnt_want_write_file(file); 2615 if (ret) 2616 return ret; 2617 2618 if (btrfs_root_readonly(root)) { 2619 ret = -EROFS; 2620 goto out; 2621 } 2622 2623 switch (inode->i_mode & S_IFMT) { 2624 case S_IFDIR: 2625 if (!capable(CAP_SYS_ADMIN)) { 2626 ret = -EPERM; 2627 goto out; 2628 } 2629 ret = btrfs_defrag_root(root); 2630 break; 2631 case S_IFREG: 2632 /* 2633 * Note that this does not check the file descriptor for write 2634 * access. This prevents defragmenting executables that are 2635 * running and allows defrag on files open in read-only mode. 2636 */ 2637 if (!capable(CAP_SYS_ADMIN) && 2638 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) { 2639 ret = -EPERM; 2640 goto out; 2641 } 2642 2643 if (argp) { 2644 if (copy_from_user(&range, argp, sizeof(range))) { 2645 ret = -EFAULT; 2646 goto out; 2647 } 2648 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) { 2649 ret = -EOPNOTSUPP; 2650 goto out; 2651 } 2652 /* compression requires us to start the IO */ 2653 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2654 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 2655 range.extent_thresh = (u32)-1; 2656 } 2657 } else { 2658 /* the rest are all set to zero by kzalloc */ 2659 range.len = (u64)-1; 2660 } 2661 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 2662 &range, BTRFS_OLDEST_GENERATION, 0); 2663 if (ret > 0) 2664 ret = 0; 2665 break; 2666 default: 2667 ret = -EINVAL; 2668 } 2669 out: 2670 mnt_drop_write_file(file); 2671 return ret; 2672 } 2673 2674 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2675 { 2676 struct btrfs_ioctl_vol_args *vol_args; 2677 bool restore_op = false; 2678 int ret; 2679 2680 if (!capable(CAP_SYS_ADMIN)) 2681 return -EPERM; 2682 2683 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2684 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 2685 return -EINVAL; 2686 } 2687 2688 if (fs_info->fs_devices->temp_fsid) { 2689 btrfs_err(fs_info, 2690 "device add not supported on cloned temp-fsid mount"); 2691 return -EINVAL; 2692 } 2693 2694 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 2695 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 2696 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2697 2698 /* 2699 * We can do the device add because we have a paused balanced, 2700 * change the exclusive op type and remember we should bring 2701 * back the paused balance 2702 */ 2703 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 2704 btrfs_exclop_start_unlock(fs_info); 2705 restore_op = true; 2706 } 2707 2708 vol_args = memdup_user(arg, sizeof(*vol_args)); 2709 if (IS_ERR(vol_args)) { 2710 ret = PTR_ERR(vol_args); 2711 goto out; 2712 } 2713 2714 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2715 if (ret < 0) 2716 goto out_free; 2717 2718 ret = btrfs_init_new_device(fs_info, vol_args->name); 2719 2720 if (!ret) 2721 btrfs_info(fs_info, "disk added %s", vol_args->name); 2722 2723 out_free: 2724 kfree(vol_args); 2725 out: 2726 if (restore_op) 2727 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 2728 else 2729 btrfs_exclop_finish(fs_info); 2730 return ret; 2731 } 2732 2733 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2734 { 2735 BTRFS_DEV_LOOKUP_ARGS(args); 2736 struct inode *inode = file_inode(file); 2737 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2738 struct btrfs_ioctl_vol_args_v2 *vol_args; 2739 struct file *bdev_file = NULL; 2740 int ret; 2741 bool cancel = false; 2742 2743 if (!capable(CAP_SYS_ADMIN)) 2744 return -EPERM; 2745 2746 vol_args = memdup_user(arg, sizeof(*vol_args)); 2747 if (IS_ERR(vol_args)) 2748 return PTR_ERR(vol_args); 2749 2750 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 2751 ret = -EOPNOTSUPP; 2752 goto out; 2753 } 2754 2755 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args); 2756 if (ret < 0) 2757 goto out; 2758 2759 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2760 args.devid = vol_args->devid; 2761 } else if (!strcmp("cancel", vol_args->name)) { 2762 cancel = true; 2763 } else { 2764 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2765 if (ret) 2766 goto out; 2767 } 2768 2769 ret = mnt_want_write_file(file); 2770 if (ret) 2771 goto out; 2772 2773 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2774 cancel); 2775 if (ret) 2776 goto err_drop; 2777 2778 /* Exclusive operation is now claimed */ 2779 ret = btrfs_rm_device(fs_info, &args, &bdev_file); 2780 2781 btrfs_exclop_finish(fs_info); 2782 2783 if (!ret) { 2784 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2785 btrfs_info(fs_info, "device deleted: id %llu", 2786 vol_args->devid); 2787 else 2788 btrfs_info(fs_info, "device deleted: %s", 2789 vol_args->name); 2790 } 2791 err_drop: 2792 mnt_drop_write_file(file); 2793 if (bdev_file) 2794 fput(bdev_file); 2795 out: 2796 btrfs_put_dev_args_from_path(&args); 2797 kfree(vol_args); 2798 return ret; 2799 } 2800 2801 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2802 { 2803 BTRFS_DEV_LOOKUP_ARGS(args); 2804 struct inode *inode = file_inode(file); 2805 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2806 struct btrfs_ioctl_vol_args *vol_args; 2807 struct file *bdev_file = NULL; 2808 int ret; 2809 bool cancel = false; 2810 2811 if (!capable(CAP_SYS_ADMIN)) 2812 return -EPERM; 2813 2814 vol_args = memdup_user(arg, sizeof(*vol_args)); 2815 if (IS_ERR(vol_args)) 2816 return PTR_ERR(vol_args); 2817 2818 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2819 if (ret < 0) 2820 goto out_free; 2821 2822 if (!strcmp("cancel", vol_args->name)) { 2823 cancel = true; 2824 } else { 2825 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2826 if (ret) 2827 goto out; 2828 } 2829 2830 ret = mnt_want_write_file(file); 2831 if (ret) 2832 goto out; 2833 2834 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2835 cancel); 2836 if (ret == 0) { 2837 ret = btrfs_rm_device(fs_info, &args, &bdev_file); 2838 if (!ret) 2839 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2840 btrfs_exclop_finish(fs_info); 2841 } 2842 2843 mnt_drop_write_file(file); 2844 if (bdev_file) 2845 fput(bdev_file); 2846 out: 2847 btrfs_put_dev_args_from_path(&args); 2848 out_free: 2849 kfree(vol_args); 2850 return ret; 2851 } 2852 2853 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2854 void __user *arg) 2855 { 2856 struct btrfs_ioctl_fs_info_args *fi_args; 2857 struct btrfs_device *device; 2858 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2859 u64 flags_in; 2860 int ret = 0; 2861 2862 fi_args = memdup_user(arg, sizeof(*fi_args)); 2863 if (IS_ERR(fi_args)) 2864 return PTR_ERR(fi_args); 2865 2866 flags_in = fi_args->flags; 2867 memset(fi_args, 0, sizeof(*fi_args)); 2868 2869 rcu_read_lock(); 2870 fi_args->num_devices = fs_devices->num_devices; 2871 2872 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2873 if (device->devid > fi_args->max_id) 2874 fi_args->max_id = device->devid; 2875 } 2876 rcu_read_unlock(); 2877 2878 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 2879 fi_args->nodesize = fs_info->nodesize; 2880 fi_args->sectorsize = fs_info->sectorsize; 2881 fi_args->clone_alignment = fs_info->sectorsize; 2882 2883 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 2884 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 2885 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 2886 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 2887 } 2888 2889 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 2890 fi_args->generation = btrfs_get_fs_generation(fs_info); 2891 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 2892 } 2893 2894 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 2895 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 2896 sizeof(fi_args->metadata_uuid)); 2897 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 2898 } 2899 2900 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2901 ret = -EFAULT; 2902 2903 kfree(fi_args); 2904 return ret; 2905 } 2906 2907 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2908 void __user *arg) 2909 { 2910 BTRFS_DEV_LOOKUP_ARGS(args); 2911 struct btrfs_ioctl_dev_info_args *di_args; 2912 struct btrfs_device *dev; 2913 int ret = 0; 2914 2915 di_args = memdup_user(arg, sizeof(*di_args)); 2916 if (IS_ERR(di_args)) 2917 return PTR_ERR(di_args); 2918 2919 args.devid = di_args->devid; 2920 if (!btrfs_is_empty_uuid(di_args->uuid)) 2921 args.uuid = di_args->uuid; 2922 2923 rcu_read_lock(); 2924 dev = btrfs_find_device(fs_info->fs_devices, &args); 2925 if (!dev) { 2926 ret = -ENODEV; 2927 goto out; 2928 } 2929 2930 di_args->devid = dev->devid; 2931 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2932 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2933 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2934 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2935 if (dev->name) 2936 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path)); 2937 else 2938 di_args->path[0] = '\0'; 2939 2940 out: 2941 rcu_read_unlock(); 2942 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2943 ret = -EFAULT; 2944 2945 kfree(di_args); 2946 return ret; 2947 } 2948 2949 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2950 { 2951 struct inode *inode = file_inode(file); 2952 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2953 struct btrfs_root *root = BTRFS_I(inode)->root; 2954 struct btrfs_root *new_root; 2955 struct btrfs_dir_item *di; 2956 struct btrfs_trans_handle *trans; 2957 struct btrfs_path *path = NULL; 2958 struct btrfs_disk_key disk_key; 2959 struct fscrypt_str name = FSTR_INIT("default", 7); 2960 u64 objectid = 0; 2961 u64 dir_id; 2962 int ret; 2963 2964 if (!capable(CAP_SYS_ADMIN)) 2965 return -EPERM; 2966 2967 ret = mnt_want_write_file(file); 2968 if (ret) 2969 return ret; 2970 2971 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2972 ret = -EFAULT; 2973 goto out; 2974 } 2975 2976 if (!objectid) 2977 objectid = BTRFS_FS_TREE_OBJECTID; 2978 2979 new_root = btrfs_get_fs_root(fs_info, objectid, true); 2980 if (IS_ERR(new_root)) { 2981 ret = PTR_ERR(new_root); 2982 goto out; 2983 } 2984 if (!is_fstree(btrfs_root_id(new_root))) { 2985 ret = -ENOENT; 2986 goto out_free; 2987 } 2988 2989 path = btrfs_alloc_path(); 2990 if (!path) { 2991 ret = -ENOMEM; 2992 goto out_free; 2993 } 2994 2995 trans = btrfs_start_transaction(root, 1); 2996 if (IS_ERR(trans)) { 2997 ret = PTR_ERR(trans); 2998 goto out_free; 2999 } 3000 3001 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3002 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3003 dir_id, &name, 1); 3004 if (IS_ERR_OR_NULL(di)) { 3005 btrfs_release_path(path); 3006 btrfs_end_transaction(trans); 3007 btrfs_err(fs_info, 3008 "Umm, you don't have the default diritem, this isn't going to work"); 3009 ret = -ENOENT; 3010 goto out_free; 3011 } 3012 3013 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3014 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3015 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 3016 btrfs_release_path(path); 3017 3018 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3019 btrfs_end_transaction(trans); 3020 out_free: 3021 btrfs_put_root(new_root); 3022 btrfs_free_path(path); 3023 out: 3024 mnt_drop_write_file(file); 3025 return ret; 3026 } 3027 3028 static void get_block_group_info(struct list_head *groups_list, 3029 struct btrfs_ioctl_space_info *space) 3030 { 3031 struct btrfs_block_group *block_group; 3032 3033 space->total_bytes = 0; 3034 space->used_bytes = 0; 3035 space->flags = 0; 3036 list_for_each_entry(block_group, groups_list, list) { 3037 space->flags = block_group->flags; 3038 space->total_bytes += block_group->length; 3039 space->used_bytes += block_group->used; 3040 } 3041 } 3042 3043 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3044 void __user *arg) 3045 { 3046 struct btrfs_ioctl_space_args space_args = { 0 }; 3047 struct btrfs_ioctl_space_info space; 3048 struct btrfs_ioctl_space_info *dest; 3049 struct btrfs_ioctl_space_info *dest_orig; 3050 struct btrfs_ioctl_space_info __user *user_dest; 3051 struct btrfs_space_info *info; 3052 static const u64 types[] = { 3053 BTRFS_BLOCK_GROUP_DATA, 3054 BTRFS_BLOCK_GROUP_SYSTEM, 3055 BTRFS_BLOCK_GROUP_METADATA, 3056 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3057 }; 3058 int num_types = 4; 3059 int alloc_size; 3060 int ret = 0; 3061 u64 slot_count = 0; 3062 int i, c; 3063 3064 if (copy_from_user(&space_args, 3065 (struct btrfs_ioctl_space_args __user *)arg, 3066 sizeof(space_args))) 3067 return -EFAULT; 3068 3069 for (i = 0; i < num_types; i++) { 3070 struct btrfs_space_info *tmp; 3071 3072 info = NULL; 3073 list_for_each_entry(tmp, &fs_info->space_info, list) { 3074 if (tmp->flags == types[i]) { 3075 info = tmp; 3076 break; 3077 } 3078 } 3079 3080 if (!info) 3081 continue; 3082 3083 down_read(&info->groups_sem); 3084 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3085 if (!list_empty(&info->block_groups[c])) 3086 slot_count++; 3087 } 3088 up_read(&info->groups_sem); 3089 } 3090 3091 /* 3092 * Global block reserve, exported as a space_info 3093 */ 3094 slot_count++; 3095 3096 /* space_slots == 0 means they are asking for a count */ 3097 if (space_args.space_slots == 0) { 3098 space_args.total_spaces = slot_count; 3099 goto out; 3100 } 3101 3102 slot_count = min_t(u64, space_args.space_slots, slot_count); 3103 3104 alloc_size = sizeof(*dest) * slot_count; 3105 3106 /* we generally have at most 6 or so space infos, one for each raid 3107 * level. So, a whole page should be more than enough for everyone 3108 */ 3109 if (alloc_size > PAGE_SIZE) 3110 return -ENOMEM; 3111 3112 space_args.total_spaces = 0; 3113 dest = kmalloc(alloc_size, GFP_KERNEL); 3114 if (!dest) 3115 return -ENOMEM; 3116 dest_orig = dest; 3117 3118 /* now we have a buffer to copy into */ 3119 for (i = 0; i < num_types; i++) { 3120 struct btrfs_space_info *tmp; 3121 3122 if (!slot_count) 3123 break; 3124 3125 info = NULL; 3126 list_for_each_entry(tmp, &fs_info->space_info, list) { 3127 if (tmp->flags == types[i]) { 3128 info = tmp; 3129 break; 3130 } 3131 } 3132 3133 if (!info) 3134 continue; 3135 down_read(&info->groups_sem); 3136 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3137 if (!list_empty(&info->block_groups[c])) { 3138 get_block_group_info(&info->block_groups[c], 3139 &space); 3140 memcpy(dest, &space, sizeof(space)); 3141 dest++; 3142 space_args.total_spaces++; 3143 slot_count--; 3144 } 3145 if (!slot_count) 3146 break; 3147 } 3148 up_read(&info->groups_sem); 3149 } 3150 3151 /* 3152 * Add global block reserve 3153 */ 3154 if (slot_count) { 3155 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3156 3157 spin_lock(&block_rsv->lock); 3158 space.total_bytes = block_rsv->size; 3159 space.used_bytes = block_rsv->size - block_rsv->reserved; 3160 spin_unlock(&block_rsv->lock); 3161 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3162 memcpy(dest, &space, sizeof(space)); 3163 space_args.total_spaces++; 3164 } 3165 3166 user_dest = (struct btrfs_ioctl_space_info __user *) 3167 (arg + sizeof(struct btrfs_ioctl_space_args)); 3168 3169 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3170 ret = -EFAULT; 3171 3172 kfree(dest_orig); 3173 out: 3174 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3175 ret = -EFAULT; 3176 3177 return ret; 3178 } 3179 3180 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3181 void __user *argp) 3182 { 3183 struct btrfs_trans_handle *trans; 3184 u64 transid; 3185 3186 /* 3187 * Start orphan cleanup here for the given root in case it hasn't been 3188 * started already by other means. Errors are handled in the other 3189 * functions during transaction commit. 3190 */ 3191 btrfs_orphan_cleanup(root); 3192 3193 trans = btrfs_attach_transaction_barrier(root); 3194 if (IS_ERR(trans)) { 3195 if (PTR_ERR(trans) != -ENOENT) 3196 return PTR_ERR(trans); 3197 3198 /* No running transaction, don't bother */ 3199 transid = btrfs_get_last_trans_committed(root->fs_info); 3200 goto out; 3201 } 3202 transid = trans->transid; 3203 btrfs_commit_transaction_async(trans); 3204 out: 3205 if (argp) 3206 if (copy_to_user(argp, &transid, sizeof(transid))) 3207 return -EFAULT; 3208 return 0; 3209 } 3210 3211 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3212 void __user *argp) 3213 { 3214 /* By default wait for the current transaction. */ 3215 u64 transid = 0; 3216 3217 if (argp) 3218 if (copy_from_user(&transid, argp, sizeof(transid))) 3219 return -EFAULT; 3220 3221 return btrfs_wait_for_commit(fs_info, transid); 3222 } 3223 3224 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3225 { 3226 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file)); 3227 struct btrfs_ioctl_scrub_args *sa; 3228 int ret; 3229 3230 if (!capable(CAP_SYS_ADMIN)) 3231 return -EPERM; 3232 3233 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3234 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 3235 return -EINVAL; 3236 } 3237 3238 sa = memdup_user(arg, sizeof(*sa)); 3239 if (IS_ERR(sa)) 3240 return PTR_ERR(sa); 3241 3242 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) { 3243 ret = -EOPNOTSUPP; 3244 goto out; 3245 } 3246 3247 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3248 ret = mnt_want_write_file(file); 3249 if (ret) 3250 goto out; 3251 } 3252 3253 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3254 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3255 0); 3256 3257 /* 3258 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3259 * error. This is important as it allows user space to know how much 3260 * progress scrub has done. For example, if scrub is canceled we get 3261 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3262 * space. Later user space can inspect the progress from the structure 3263 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3264 * previously (btrfs-progs does this). 3265 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3266 * then return -EFAULT to signal the structure was not copied or it may 3267 * be corrupt and unreliable due to a partial copy. 3268 */ 3269 if (copy_to_user(arg, sa, sizeof(*sa))) 3270 ret = -EFAULT; 3271 3272 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3273 mnt_drop_write_file(file); 3274 out: 3275 kfree(sa); 3276 return ret; 3277 } 3278 3279 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3280 { 3281 if (!capable(CAP_SYS_ADMIN)) 3282 return -EPERM; 3283 3284 return btrfs_scrub_cancel(fs_info); 3285 } 3286 3287 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3288 void __user *arg) 3289 { 3290 struct btrfs_ioctl_scrub_args *sa; 3291 int ret; 3292 3293 if (!capable(CAP_SYS_ADMIN)) 3294 return -EPERM; 3295 3296 sa = memdup_user(arg, sizeof(*sa)); 3297 if (IS_ERR(sa)) 3298 return PTR_ERR(sa); 3299 3300 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3301 3302 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3303 ret = -EFAULT; 3304 3305 kfree(sa); 3306 return ret; 3307 } 3308 3309 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3310 void __user *arg) 3311 { 3312 struct btrfs_ioctl_get_dev_stats *sa; 3313 int ret; 3314 3315 sa = memdup_user(arg, sizeof(*sa)); 3316 if (IS_ERR(sa)) 3317 return PTR_ERR(sa); 3318 3319 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3320 kfree(sa); 3321 return -EPERM; 3322 } 3323 3324 ret = btrfs_get_dev_stats(fs_info, sa); 3325 3326 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3327 ret = -EFAULT; 3328 3329 kfree(sa); 3330 return ret; 3331 } 3332 3333 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3334 void __user *arg) 3335 { 3336 struct btrfs_ioctl_dev_replace_args *p; 3337 int ret; 3338 3339 if (!capable(CAP_SYS_ADMIN)) 3340 return -EPERM; 3341 3342 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3343 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 3344 return -EINVAL; 3345 } 3346 3347 p = memdup_user(arg, sizeof(*p)); 3348 if (IS_ERR(p)) 3349 return PTR_ERR(p); 3350 3351 switch (p->cmd) { 3352 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3353 if (sb_rdonly(fs_info->sb)) { 3354 ret = -EROFS; 3355 goto out; 3356 } 3357 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3358 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3359 } else { 3360 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3361 btrfs_exclop_finish(fs_info); 3362 } 3363 break; 3364 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3365 btrfs_dev_replace_status(fs_info, p); 3366 ret = 0; 3367 break; 3368 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3369 p->result = btrfs_dev_replace_cancel(fs_info); 3370 ret = 0; 3371 break; 3372 default: 3373 ret = -EINVAL; 3374 break; 3375 } 3376 3377 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3378 ret = -EFAULT; 3379 out: 3380 kfree(p); 3381 return ret; 3382 } 3383 3384 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3385 { 3386 int ret = 0; 3387 int i; 3388 u64 rel_ptr; 3389 int size; 3390 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3391 struct inode_fs_paths *ipath = NULL; 3392 struct btrfs_path *path; 3393 3394 if (!capable(CAP_DAC_READ_SEARCH)) 3395 return -EPERM; 3396 3397 path = btrfs_alloc_path(); 3398 if (!path) { 3399 ret = -ENOMEM; 3400 goto out; 3401 } 3402 3403 ipa = memdup_user(arg, sizeof(*ipa)); 3404 if (IS_ERR(ipa)) { 3405 ret = PTR_ERR(ipa); 3406 ipa = NULL; 3407 goto out; 3408 } 3409 3410 size = min_t(u32, ipa->size, 4096); 3411 ipath = init_ipath(size, root, path); 3412 if (IS_ERR(ipath)) { 3413 ret = PTR_ERR(ipath); 3414 ipath = NULL; 3415 goto out; 3416 } 3417 3418 ret = paths_from_inode(ipa->inum, ipath); 3419 if (ret < 0) 3420 goto out; 3421 3422 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3423 rel_ptr = ipath->fspath->val[i] - 3424 (u64)(unsigned long)ipath->fspath->val; 3425 ipath->fspath->val[i] = rel_ptr; 3426 } 3427 3428 btrfs_free_path(path); 3429 path = NULL; 3430 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3431 ipath->fspath, size); 3432 if (ret) { 3433 ret = -EFAULT; 3434 goto out; 3435 } 3436 3437 out: 3438 btrfs_free_path(path); 3439 free_ipath(ipath); 3440 kfree(ipa); 3441 3442 return ret; 3443 } 3444 3445 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3446 void __user *arg, int version) 3447 { 3448 int ret = 0; 3449 int size; 3450 struct btrfs_ioctl_logical_ino_args *loi; 3451 struct btrfs_data_container *inodes = NULL; 3452 struct btrfs_path *path = NULL; 3453 bool ignore_offset; 3454 3455 if (!capable(CAP_SYS_ADMIN)) 3456 return -EPERM; 3457 3458 loi = memdup_user(arg, sizeof(*loi)); 3459 if (IS_ERR(loi)) 3460 return PTR_ERR(loi); 3461 3462 if (version == 1) { 3463 ignore_offset = false; 3464 size = min_t(u32, loi->size, SZ_64K); 3465 } else { 3466 /* All reserved bits must be 0 for now */ 3467 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3468 ret = -EINVAL; 3469 goto out_loi; 3470 } 3471 /* Only accept flags we have defined so far */ 3472 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3473 ret = -EINVAL; 3474 goto out_loi; 3475 } 3476 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3477 size = min_t(u32, loi->size, SZ_16M); 3478 } 3479 3480 inodes = init_data_container(size); 3481 if (IS_ERR(inodes)) { 3482 ret = PTR_ERR(inodes); 3483 goto out_loi; 3484 } 3485 3486 path = btrfs_alloc_path(); 3487 if (!path) { 3488 ret = -ENOMEM; 3489 goto out; 3490 } 3491 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3492 inodes, ignore_offset); 3493 btrfs_free_path(path); 3494 if (ret == -EINVAL) 3495 ret = -ENOENT; 3496 if (ret < 0) 3497 goto out; 3498 3499 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3500 size); 3501 if (ret) 3502 ret = -EFAULT; 3503 3504 out: 3505 kvfree(inodes); 3506 out_loi: 3507 kfree(loi); 3508 3509 return ret; 3510 } 3511 3512 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3513 struct btrfs_ioctl_balance_args *bargs) 3514 { 3515 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3516 3517 bargs->flags = bctl->flags; 3518 3519 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3520 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3521 if (atomic_read(&fs_info->balance_pause_req)) 3522 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3523 if (atomic_read(&fs_info->balance_cancel_req)) 3524 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3525 3526 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3527 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3528 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3529 3530 spin_lock(&fs_info->balance_lock); 3531 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3532 spin_unlock(&fs_info->balance_lock); 3533 } 3534 3535 /* 3536 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 3537 * required. 3538 * 3539 * @fs_info: the filesystem 3540 * @excl_acquired: ptr to boolean value which is set to false in case balance 3541 * is being resumed 3542 * 3543 * Return 0 on success in which case both fs_info::balance is acquired as well 3544 * as exclusive ops are blocked. In case of failure return an error code. 3545 */ 3546 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 3547 { 3548 int ret; 3549 3550 /* 3551 * Exclusive operation is locked. Three possibilities: 3552 * (1) some other op is running 3553 * (2) balance is running 3554 * (3) balance is paused -- special case (think resume) 3555 */ 3556 while (1) { 3557 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3558 *excl_acquired = true; 3559 mutex_lock(&fs_info->balance_mutex); 3560 return 0; 3561 } 3562 3563 mutex_lock(&fs_info->balance_mutex); 3564 if (fs_info->balance_ctl) { 3565 /* This is either (2) or (3) */ 3566 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3567 /* This is (2) */ 3568 ret = -EINPROGRESS; 3569 goto out_failure; 3570 3571 } else { 3572 mutex_unlock(&fs_info->balance_mutex); 3573 /* 3574 * Lock released to allow other waiters to 3575 * continue, we'll reexamine the status again. 3576 */ 3577 mutex_lock(&fs_info->balance_mutex); 3578 3579 if (fs_info->balance_ctl && 3580 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3581 /* This is (3) */ 3582 *excl_acquired = false; 3583 return 0; 3584 } 3585 } 3586 } else { 3587 /* This is (1) */ 3588 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3589 goto out_failure; 3590 } 3591 3592 mutex_unlock(&fs_info->balance_mutex); 3593 } 3594 3595 out_failure: 3596 mutex_unlock(&fs_info->balance_mutex); 3597 *excl_acquired = false; 3598 return ret; 3599 } 3600 3601 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3602 { 3603 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3604 struct btrfs_fs_info *fs_info = root->fs_info; 3605 struct btrfs_ioctl_balance_args *bargs; 3606 struct btrfs_balance_control *bctl; 3607 bool need_unlock = true; 3608 int ret; 3609 3610 if (!capable(CAP_SYS_ADMIN)) 3611 return -EPERM; 3612 3613 ret = mnt_want_write_file(file); 3614 if (ret) 3615 return ret; 3616 3617 bargs = memdup_user(arg, sizeof(*bargs)); 3618 if (IS_ERR(bargs)) { 3619 ret = PTR_ERR(bargs); 3620 bargs = NULL; 3621 goto out; 3622 } 3623 3624 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 3625 if (ret) 3626 goto out; 3627 3628 lockdep_assert_held(&fs_info->balance_mutex); 3629 3630 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3631 if (!fs_info->balance_ctl) { 3632 ret = -ENOTCONN; 3633 goto out_unlock; 3634 } 3635 3636 bctl = fs_info->balance_ctl; 3637 spin_lock(&fs_info->balance_lock); 3638 bctl->flags |= BTRFS_BALANCE_RESUME; 3639 spin_unlock(&fs_info->balance_lock); 3640 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 3641 3642 goto do_balance; 3643 } 3644 3645 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3646 ret = -EINVAL; 3647 goto out_unlock; 3648 } 3649 3650 if (fs_info->balance_ctl) { 3651 ret = -EINPROGRESS; 3652 goto out_unlock; 3653 } 3654 3655 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3656 if (!bctl) { 3657 ret = -ENOMEM; 3658 goto out_unlock; 3659 } 3660 3661 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3662 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3663 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3664 3665 bctl->flags = bargs->flags; 3666 do_balance: 3667 /* 3668 * Ownership of bctl and exclusive operation goes to btrfs_balance. 3669 * bctl is freed in reset_balance_state, or, if restriper was paused 3670 * all the way until unmount, in free_fs_info. The flag should be 3671 * cleared after reset_balance_state. 3672 */ 3673 need_unlock = false; 3674 3675 ret = btrfs_balance(fs_info, bctl, bargs); 3676 bctl = NULL; 3677 3678 if (ret == 0 || ret == -ECANCELED) { 3679 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3680 ret = -EFAULT; 3681 } 3682 3683 kfree(bctl); 3684 out_unlock: 3685 mutex_unlock(&fs_info->balance_mutex); 3686 if (need_unlock) 3687 btrfs_exclop_finish(fs_info); 3688 out: 3689 mnt_drop_write_file(file); 3690 kfree(bargs); 3691 return ret; 3692 } 3693 3694 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 3695 { 3696 if (!capable(CAP_SYS_ADMIN)) 3697 return -EPERM; 3698 3699 switch (cmd) { 3700 case BTRFS_BALANCE_CTL_PAUSE: 3701 return btrfs_pause_balance(fs_info); 3702 case BTRFS_BALANCE_CTL_CANCEL: 3703 return btrfs_cancel_balance(fs_info); 3704 } 3705 3706 return -EINVAL; 3707 } 3708 3709 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 3710 void __user *arg) 3711 { 3712 struct btrfs_ioctl_balance_args *bargs; 3713 int ret = 0; 3714 3715 if (!capable(CAP_SYS_ADMIN)) 3716 return -EPERM; 3717 3718 mutex_lock(&fs_info->balance_mutex); 3719 if (!fs_info->balance_ctl) { 3720 ret = -ENOTCONN; 3721 goto out; 3722 } 3723 3724 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 3725 if (!bargs) { 3726 ret = -ENOMEM; 3727 goto out; 3728 } 3729 3730 btrfs_update_ioctl_balance_args(fs_info, bargs); 3731 3732 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3733 ret = -EFAULT; 3734 3735 kfree(bargs); 3736 out: 3737 mutex_unlock(&fs_info->balance_mutex); 3738 return ret; 3739 } 3740 3741 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3742 { 3743 struct inode *inode = file_inode(file); 3744 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3745 struct btrfs_ioctl_quota_ctl_args *sa; 3746 int ret; 3747 3748 if (!capable(CAP_SYS_ADMIN)) 3749 return -EPERM; 3750 3751 ret = mnt_want_write_file(file); 3752 if (ret) 3753 return ret; 3754 3755 sa = memdup_user(arg, sizeof(*sa)); 3756 if (IS_ERR(sa)) { 3757 ret = PTR_ERR(sa); 3758 goto drop_write; 3759 } 3760 3761 switch (sa->cmd) { 3762 case BTRFS_QUOTA_CTL_ENABLE: 3763 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA: 3764 down_write(&fs_info->subvol_sem); 3765 ret = btrfs_quota_enable(fs_info, sa); 3766 up_write(&fs_info->subvol_sem); 3767 break; 3768 case BTRFS_QUOTA_CTL_DISABLE: 3769 /* 3770 * Lock the cleaner mutex to prevent races with concurrent 3771 * relocation, because relocation may be building backrefs for 3772 * blocks of the quota root while we are deleting the root. This 3773 * is like dropping fs roots of deleted snapshots/subvolumes, we 3774 * need the same protection. 3775 * 3776 * This also prevents races between concurrent tasks trying to 3777 * disable quotas, because we will unlock and relock 3778 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes. 3779 * 3780 * We take this here because we have the dependency of 3781 * 3782 * inode_lock -> subvol_sem 3783 * 3784 * because of rename. With relocation we can prealloc extents, 3785 * so that makes the dependency chain 3786 * 3787 * cleaner_mutex -> inode_lock -> subvol_sem 3788 * 3789 * so we must take the cleaner_mutex here before we take the 3790 * subvol_sem. The deadlock can't actually happen, but this 3791 * quiets lockdep. 3792 */ 3793 mutex_lock(&fs_info->cleaner_mutex); 3794 down_write(&fs_info->subvol_sem); 3795 ret = btrfs_quota_disable(fs_info); 3796 up_write(&fs_info->subvol_sem); 3797 mutex_unlock(&fs_info->cleaner_mutex); 3798 break; 3799 default: 3800 ret = -EINVAL; 3801 break; 3802 } 3803 3804 kfree(sa); 3805 drop_write: 3806 mnt_drop_write_file(file); 3807 return ret; 3808 } 3809 3810 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3811 { 3812 struct inode *inode = file_inode(file); 3813 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3814 struct btrfs_root *root = BTRFS_I(inode)->root; 3815 struct btrfs_ioctl_qgroup_assign_args *sa; 3816 struct btrfs_trans_handle *trans; 3817 int ret; 3818 int err; 3819 3820 if (!capable(CAP_SYS_ADMIN)) 3821 return -EPERM; 3822 3823 ret = mnt_want_write_file(file); 3824 if (ret) 3825 return ret; 3826 3827 sa = memdup_user(arg, sizeof(*sa)); 3828 if (IS_ERR(sa)) { 3829 ret = PTR_ERR(sa); 3830 goto drop_write; 3831 } 3832 3833 trans = btrfs_join_transaction(root); 3834 if (IS_ERR(trans)) { 3835 ret = PTR_ERR(trans); 3836 goto out; 3837 } 3838 3839 if (sa->assign) { 3840 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 3841 } else { 3842 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 3843 } 3844 3845 /* update qgroup status and info */ 3846 mutex_lock(&fs_info->qgroup_ioctl_lock); 3847 err = btrfs_run_qgroups(trans); 3848 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3849 if (err < 0) 3850 btrfs_handle_fs_error(fs_info, err, 3851 "failed to update qgroup status and info"); 3852 err = btrfs_end_transaction(trans); 3853 if (err && !ret) 3854 ret = err; 3855 3856 out: 3857 kfree(sa); 3858 drop_write: 3859 mnt_drop_write_file(file); 3860 return ret; 3861 } 3862 3863 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3864 { 3865 struct inode *inode = file_inode(file); 3866 struct btrfs_root *root = BTRFS_I(inode)->root; 3867 struct btrfs_ioctl_qgroup_create_args *sa; 3868 struct btrfs_trans_handle *trans; 3869 int ret; 3870 int err; 3871 3872 if (!capable(CAP_SYS_ADMIN)) 3873 return -EPERM; 3874 3875 ret = mnt_want_write_file(file); 3876 if (ret) 3877 return ret; 3878 3879 sa = memdup_user(arg, sizeof(*sa)); 3880 if (IS_ERR(sa)) { 3881 ret = PTR_ERR(sa); 3882 goto drop_write; 3883 } 3884 3885 if (!sa->qgroupid) { 3886 ret = -EINVAL; 3887 goto out; 3888 } 3889 3890 if (sa->create && is_fstree(sa->qgroupid)) { 3891 ret = -EINVAL; 3892 goto out; 3893 } 3894 3895 trans = btrfs_join_transaction(root); 3896 if (IS_ERR(trans)) { 3897 ret = PTR_ERR(trans); 3898 goto out; 3899 } 3900 3901 if (sa->create) { 3902 ret = btrfs_create_qgroup(trans, sa->qgroupid); 3903 } else { 3904 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 3905 } 3906 3907 err = btrfs_end_transaction(trans); 3908 if (err && !ret) 3909 ret = err; 3910 3911 out: 3912 kfree(sa); 3913 drop_write: 3914 mnt_drop_write_file(file); 3915 return ret; 3916 } 3917 3918 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3919 { 3920 struct inode *inode = file_inode(file); 3921 struct btrfs_root *root = BTRFS_I(inode)->root; 3922 struct btrfs_ioctl_qgroup_limit_args *sa; 3923 struct btrfs_trans_handle *trans; 3924 int ret; 3925 int err; 3926 u64 qgroupid; 3927 3928 if (!capable(CAP_SYS_ADMIN)) 3929 return -EPERM; 3930 3931 ret = mnt_want_write_file(file); 3932 if (ret) 3933 return ret; 3934 3935 sa = memdup_user(arg, sizeof(*sa)); 3936 if (IS_ERR(sa)) { 3937 ret = PTR_ERR(sa); 3938 goto drop_write; 3939 } 3940 3941 trans = btrfs_join_transaction(root); 3942 if (IS_ERR(trans)) { 3943 ret = PTR_ERR(trans); 3944 goto out; 3945 } 3946 3947 qgroupid = sa->qgroupid; 3948 if (!qgroupid) { 3949 /* take the current subvol as qgroup */ 3950 qgroupid = btrfs_root_id(root); 3951 } 3952 3953 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 3954 3955 err = btrfs_end_transaction(trans); 3956 if (err && !ret) 3957 ret = err; 3958 3959 out: 3960 kfree(sa); 3961 drop_write: 3962 mnt_drop_write_file(file); 3963 return ret; 3964 } 3965 3966 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 3967 { 3968 struct inode *inode = file_inode(file); 3969 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3970 struct btrfs_ioctl_quota_rescan_args *qsa; 3971 int ret; 3972 3973 if (!capable(CAP_SYS_ADMIN)) 3974 return -EPERM; 3975 3976 ret = mnt_want_write_file(file); 3977 if (ret) 3978 return ret; 3979 3980 qsa = memdup_user(arg, sizeof(*qsa)); 3981 if (IS_ERR(qsa)) { 3982 ret = PTR_ERR(qsa); 3983 goto drop_write; 3984 } 3985 3986 if (qsa->flags) { 3987 ret = -EINVAL; 3988 goto out; 3989 } 3990 3991 ret = btrfs_qgroup_rescan(fs_info); 3992 3993 out: 3994 kfree(qsa); 3995 drop_write: 3996 mnt_drop_write_file(file); 3997 return ret; 3998 } 3999 4000 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4001 void __user *arg) 4002 { 4003 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 4004 4005 if (!capable(CAP_SYS_ADMIN)) 4006 return -EPERM; 4007 4008 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4009 qsa.flags = 1; 4010 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 4011 } 4012 4013 if (copy_to_user(arg, &qsa, sizeof(qsa))) 4014 return -EFAULT; 4015 4016 return 0; 4017 } 4018 4019 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4020 void __user *arg) 4021 { 4022 if (!capable(CAP_SYS_ADMIN)) 4023 return -EPERM; 4024 4025 return btrfs_qgroup_wait_for_completion(fs_info, true); 4026 } 4027 4028 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4029 struct mnt_idmap *idmap, 4030 struct btrfs_ioctl_received_subvol_args *sa) 4031 { 4032 struct inode *inode = file_inode(file); 4033 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4034 struct btrfs_root *root = BTRFS_I(inode)->root; 4035 struct btrfs_root_item *root_item = &root->root_item; 4036 struct btrfs_trans_handle *trans; 4037 struct timespec64 ct = current_time(inode); 4038 int ret = 0; 4039 int received_uuid_changed; 4040 4041 if (!inode_owner_or_capable(idmap, inode)) 4042 return -EPERM; 4043 4044 ret = mnt_want_write_file(file); 4045 if (ret < 0) 4046 return ret; 4047 4048 down_write(&fs_info->subvol_sem); 4049 4050 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4051 ret = -EINVAL; 4052 goto out; 4053 } 4054 4055 if (btrfs_root_readonly(root)) { 4056 ret = -EROFS; 4057 goto out; 4058 } 4059 4060 /* 4061 * 1 - root item 4062 * 2 - uuid items (received uuid + subvol uuid) 4063 */ 4064 trans = btrfs_start_transaction(root, 3); 4065 if (IS_ERR(trans)) { 4066 ret = PTR_ERR(trans); 4067 trans = NULL; 4068 goto out; 4069 } 4070 4071 sa->rtransid = trans->transid; 4072 sa->rtime.sec = ct.tv_sec; 4073 sa->rtime.nsec = ct.tv_nsec; 4074 4075 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4076 BTRFS_UUID_SIZE); 4077 if (received_uuid_changed && 4078 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4079 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4080 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4081 btrfs_root_id(root)); 4082 if (ret && ret != -ENOENT) { 4083 btrfs_abort_transaction(trans, ret); 4084 btrfs_end_transaction(trans); 4085 goto out; 4086 } 4087 } 4088 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4089 btrfs_set_root_stransid(root_item, sa->stransid); 4090 btrfs_set_root_rtransid(root_item, sa->rtransid); 4091 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4092 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4093 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4094 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4095 4096 ret = btrfs_update_root(trans, fs_info->tree_root, 4097 &root->root_key, &root->root_item); 4098 if (ret < 0) { 4099 btrfs_end_transaction(trans); 4100 goto out; 4101 } 4102 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4103 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4104 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4105 btrfs_root_id(root)); 4106 if (ret < 0 && ret != -EEXIST) { 4107 btrfs_abort_transaction(trans, ret); 4108 btrfs_end_transaction(trans); 4109 goto out; 4110 } 4111 } 4112 ret = btrfs_commit_transaction(trans); 4113 out: 4114 up_write(&fs_info->subvol_sem); 4115 mnt_drop_write_file(file); 4116 return ret; 4117 } 4118 4119 #ifdef CONFIG_64BIT 4120 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4121 void __user *arg) 4122 { 4123 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4124 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4125 int ret = 0; 4126 4127 args32 = memdup_user(arg, sizeof(*args32)); 4128 if (IS_ERR(args32)) 4129 return PTR_ERR(args32); 4130 4131 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4132 if (!args64) { 4133 ret = -ENOMEM; 4134 goto out; 4135 } 4136 4137 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4138 args64->stransid = args32->stransid; 4139 args64->rtransid = args32->rtransid; 4140 args64->stime.sec = args32->stime.sec; 4141 args64->stime.nsec = args32->stime.nsec; 4142 args64->rtime.sec = args32->rtime.sec; 4143 args64->rtime.nsec = args32->rtime.nsec; 4144 args64->flags = args32->flags; 4145 4146 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64); 4147 if (ret) 4148 goto out; 4149 4150 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4151 args32->stransid = args64->stransid; 4152 args32->rtransid = args64->rtransid; 4153 args32->stime.sec = args64->stime.sec; 4154 args32->stime.nsec = args64->stime.nsec; 4155 args32->rtime.sec = args64->rtime.sec; 4156 args32->rtime.nsec = args64->rtime.nsec; 4157 args32->flags = args64->flags; 4158 4159 ret = copy_to_user(arg, args32, sizeof(*args32)); 4160 if (ret) 4161 ret = -EFAULT; 4162 4163 out: 4164 kfree(args32); 4165 kfree(args64); 4166 return ret; 4167 } 4168 #endif 4169 4170 static long btrfs_ioctl_set_received_subvol(struct file *file, 4171 void __user *arg) 4172 { 4173 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4174 int ret = 0; 4175 4176 sa = memdup_user(arg, sizeof(*sa)); 4177 if (IS_ERR(sa)) 4178 return PTR_ERR(sa); 4179 4180 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa); 4181 4182 if (ret) 4183 goto out; 4184 4185 ret = copy_to_user(arg, sa, sizeof(*sa)); 4186 if (ret) 4187 ret = -EFAULT; 4188 4189 out: 4190 kfree(sa); 4191 return ret; 4192 } 4193 4194 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4195 void __user *arg) 4196 { 4197 size_t len; 4198 int ret; 4199 char label[BTRFS_LABEL_SIZE]; 4200 4201 spin_lock(&fs_info->super_lock); 4202 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4203 spin_unlock(&fs_info->super_lock); 4204 4205 len = strnlen(label, BTRFS_LABEL_SIZE); 4206 4207 if (len == BTRFS_LABEL_SIZE) { 4208 btrfs_warn(fs_info, 4209 "label is too long, return the first %zu bytes", 4210 --len); 4211 } 4212 4213 ret = copy_to_user(arg, label, len); 4214 4215 return ret ? -EFAULT : 0; 4216 } 4217 4218 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4219 { 4220 struct inode *inode = file_inode(file); 4221 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4222 struct btrfs_root *root = BTRFS_I(inode)->root; 4223 struct btrfs_super_block *super_block = fs_info->super_copy; 4224 struct btrfs_trans_handle *trans; 4225 char label[BTRFS_LABEL_SIZE]; 4226 int ret; 4227 4228 if (!capable(CAP_SYS_ADMIN)) 4229 return -EPERM; 4230 4231 if (copy_from_user(label, arg, sizeof(label))) 4232 return -EFAULT; 4233 4234 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4235 btrfs_err(fs_info, 4236 "unable to set label with more than %d bytes", 4237 BTRFS_LABEL_SIZE - 1); 4238 return -EINVAL; 4239 } 4240 4241 ret = mnt_want_write_file(file); 4242 if (ret) 4243 return ret; 4244 4245 trans = btrfs_start_transaction(root, 0); 4246 if (IS_ERR(trans)) { 4247 ret = PTR_ERR(trans); 4248 goto out_unlock; 4249 } 4250 4251 spin_lock(&fs_info->super_lock); 4252 strcpy(super_block->label, label); 4253 spin_unlock(&fs_info->super_lock); 4254 ret = btrfs_commit_transaction(trans); 4255 4256 out_unlock: 4257 mnt_drop_write_file(file); 4258 return ret; 4259 } 4260 4261 #define INIT_FEATURE_FLAGS(suffix) \ 4262 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4263 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4264 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4265 4266 int btrfs_ioctl_get_supported_features(void __user *arg) 4267 { 4268 static const struct btrfs_ioctl_feature_flags features[3] = { 4269 INIT_FEATURE_FLAGS(SUPP), 4270 INIT_FEATURE_FLAGS(SAFE_SET), 4271 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4272 }; 4273 4274 if (copy_to_user(arg, &features, sizeof(features))) 4275 return -EFAULT; 4276 4277 return 0; 4278 } 4279 4280 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4281 void __user *arg) 4282 { 4283 struct btrfs_super_block *super_block = fs_info->super_copy; 4284 struct btrfs_ioctl_feature_flags features; 4285 4286 features.compat_flags = btrfs_super_compat_flags(super_block); 4287 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4288 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4289 4290 if (copy_to_user(arg, &features, sizeof(features))) 4291 return -EFAULT; 4292 4293 return 0; 4294 } 4295 4296 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4297 enum btrfs_feature_set set, 4298 u64 change_mask, u64 flags, u64 supported_flags, 4299 u64 safe_set, u64 safe_clear) 4300 { 4301 const char *type = btrfs_feature_set_name(set); 4302 char *names; 4303 u64 disallowed, unsupported; 4304 u64 set_mask = flags & change_mask; 4305 u64 clear_mask = ~flags & change_mask; 4306 4307 unsupported = set_mask & ~supported_flags; 4308 if (unsupported) { 4309 names = btrfs_printable_features(set, unsupported); 4310 if (names) { 4311 btrfs_warn(fs_info, 4312 "this kernel does not support the %s feature bit%s", 4313 names, strchr(names, ',') ? "s" : ""); 4314 kfree(names); 4315 } else 4316 btrfs_warn(fs_info, 4317 "this kernel does not support %s bits 0x%llx", 4318 type, unsupported); 4319 return -EOPNOTSUPP; 4320 } 4321 4322 disallowed = set_mask & ~safe_set; 4323 if (disallowed) { 4324 names = btrfs_printable_features(set, disallowed); 4325 if (names) { 4326 btrfs_warn(fs_info, 4327 "can't set the %s feature bit%s while mounted", 4328 names, strchr(names, ',') ? "s" : ""); 4329 kfree(names); 4330 } else 4331 btrfs_warn(fs_info, 4332 "can't set %s bits 0x%llx while mounted", 4333 type, disallowed); 4334 return -EPERM; 4335 } 4336 4337 disallowed = clear_mask & ~safe_clear; 4338 if (disallowed) { 4339 names = btrfs_printable_features(set, disallowed); 4340 if (names) { 4341 btrfs_warn(fs_info, 4342 "can't clear the %s feature bit%s while mounted", 4343 names, strchr(names, ',') ? "s" : ""); 4344 kfree(names); 4345 } else 4346 btrfs_warn(fs_info, 4347 "can't clear %s bits 0x%llx while mounted", 4348 type, disallowed); 4349 return -EPERM; 4350 } 4351 4352 return 0; 4353 } 4354 4355 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4356 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4357 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4358 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4359 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4360 4361 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4362 { 4363 struct inode *inode = file_inode(file); 4364 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4365 struct btrfs_root *root = BTRFS_I(inode)->root; 4366 struct btrfs_super_block *super_block = fs_info->super_copy; 4367 struct btrfs_ioctl_feature_flags flags[2]; 4368 struct btrfs_trans_handle *trans; 4369 u64 newflags; 4370 int ret; 4371 4372 if (!capable(CAP_SYS_ADMIN)) 4373 return -EPERM; 4374 4375 if (copy_from_user(flags, arg, sizeof(flags))) 4376 return -EFAULT; 4377 4378 /* Nothing to do */ 4379 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4380 !flags[0].incompat_flags) 4381 return 0; 4382 4383 ret = check_feature(fs_info, flags[0].compat_flags, 4384 flags[1].compat_flags, COMPAT); 4385 if (ret) 4386 return ret; 4387 4388 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4389 flags[1].compat_ro_flags, COMPAT_RO); 4390 if (ret) 4391 return ret; 4392 4393 ret = check_feature(fs_info, flags[0].incompat_flags, 4394 flags[1].incompat_flags, INCOMPAT); 4395 if (ret) 4396 return ret; 4397 4398 ret = mnt_want_write_file(file); 4399 if (ret) 4400 return ret; 4401 4402 trans = btrfs_start_transaction(root, 0); 4403 if (IS_ERR(trans)) { 4404 ret = PTR_ERR(trans); 4405 goto out_drop_write; 4406 } 4407 4408 spin_lock(&fs_info->super_lock); 4409 newflags = btrfs_super_compat_flags(super_block); 4410 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4411 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4412 btrfs_set_super_compat_flags(super_block, newflags); 4413 4414 newflags = btrfs_super_compat_ro_flags(super_block); 4415 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4416 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4417 btrfs_set_super_compat_ro_flags(super_block, newflags); 4418 4419 newflags = btrfs_super_incompat_flags(super_block); 4420 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4421 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4422 btrfs_set_super_incompat_flags(super_block, newflags); 4423 spin_unlock(&fs_info->super_lock); 4424 4425 ret = btrfs_commit_transaction(trans); 4426 out_drop_write: 4427 mnt_drop_write_file(file); 4428 4429 return ret; 4430 } 4431 4432 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) 4433 { 4434 struct btrfs_ioctl_send_args *arg; 4435 int ret; 4436 4437 if (compat) { 4438 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4439 struct btrfs_ioctl_send_args_32 args32 = { 0 }; 4440 4441 ret = copy_from_user(&args32, argp, sizeof(args32)); 4442 if (ret) 4443 return -EFAULT; 4444 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4445 if (!arg) 4446 return -ENOMEM; 4447 arg->send_fd = args32.send_fd; 4448 arg->clone_sources_count = args32.clone_sources_count; 4449 arg->clone_sources = compat_ptr(args32.clone_sources); 4450 arg->parent_root = args32.parent_root; 4451 arg->flags = args32.flags; 4452 arg->version = args32.version; 4453 memcpy(arg->reserved, args32.reserved, 4454 sizeof(args32.reserved)); 4455 #else 4456 return -ENOTTY; 4457 #endif 4458 } else { 4459 arg = memdup_user(argp, sizeof(*arg)); 4460 if (IS_ERR(arg)) 4461 return PTR_ERR(arg); 4462 } 4463 ret = btrfs_ioctl_send(inode, arg); 4464 kfree(arg); 4465 return ret; 4466 } 4467 4468 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 4469 bool compat) 4470 { 4471 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4472 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 4473 flags); 4474 size_t copy_end; 4475 struct iovec iovstack[UIO_FASTIOV]; 4476 struct iovec *iov = iovstack; 4477 struct iov_iter iter; 4478 loff_t pos; 4479 struct kiocb kiocb; 4480 ssize_t ret; 4481 4482 if (!capable(CAP_SYS_ADMIN)) { 4483 ret = -EPERM; 4484 goto out_acct; 4485 } 4486 4487 if (compat) { 4488 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4489 struct btrfs_ioctl_encoded_io_args_32 args32; 4490 4491 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 4492 flags); 4493 if (copy_from_user(&args32, argp, copy_end)) { 4494 ret = -EFAULT; 4495 goto out_acct; 4496 } 4497 args.iov = compat_ptr(args32.iov); 4498 args.iovcnt = args32.iovcnt; 4499 args.offset = args32.offset; 4500 args.flags = args32.flags; 4501 #else 4502 return -ENOTTY; 4503 #endif 4504 } else { 4505 copy_end = copy_end_kernel; 4506 if (copy_from_user(&args, argp, copy_end)) { 4507 ret = -EFAULT; 4508 goto out_acct; 4509 } 4510 } 4511 if (args.flags != 0) { 4512 ret = -EINVAL; 4513 goto out_acct; 4514 } 4515 4516 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4517 &iov, &iter); 4518 if (ret < 0) 4519 goto out_acct; 4520 4521 if (iov_iter_count(&iter) == 0) { 4522 ret = 0; 4523 goto out_iov; 4524 } 4525 pos = args.offset; 4526 ret = rw_verify_area(READ, file, &pos, args.len); 4527 if (ret < 0) 4528 goto out_iov; 4529 4530 init_sync_kiocb(&kiocb, file); 4531 kiocb.ki_pos = pos; 4532 4533 ret = btrfs_encoded_read(&kiocb, &iter, &args); 4534 if (ret >= 0) { 4535 fsnotify_access(file); 4536 if (copy_to_user(argp + copy_end, 4537 (char *)&args + copy_end_kernel, 4538 sizeof(args) - copy_end_kernel)) 4539 ret = -EFAULT; 4540 } 4541 4542 out_iov: 4543 kfree(iov); 4544 out_acct: 4545 if (ret > 0) 4546 add_rchar(current, ret); 4547 inc_syscr(current); 4548 return ret; 4549 } 4550 4551 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 4552 { 4553 struct btrfs_ioctl_encoded_io_args args; 4554 struct iovec iovstack[UIO_FASTIOV]; 4555 struct iovec *iov = iovstack; 4556 struct iov_iter iter; 4557 loff_t pos; 4558 struct kiocb kiocb; 4559 ssize_t ret; 4560 4561 if (!capable(CAP_SYS_ADMIN)) { 4562 ret = -EPERM; 4563 goto out_acct; 4564 } 4565 4566 if (!(file->f_mode & FMODE_WRITE)) { 4567 ret = -EBADF; 4568 goto out_acct; 4569 } 4570 4571 if (compat) { 4572 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4573 struct btrfs_ioctl_encoded_io_args_32 args32; 4574 4575 if (copy_from_user(&args32, argp, sizeof(args32))) { 4576 ret = -EFAULT; 4577 goto out_acct; 4578 } 4579 args.iov = compat_ptr(args32.iov); 4580 args.iovcnt = args32.iovcnt; 4581 args.offset = args32.offset; 4582 args.flags = args32.flags; 4583 args.len = args32.len; 4584 args.unencoded_len = args32.unencoded_len; 4585 args.unencoded_offset = args32.unencoded_offset; 4586 args.compression = args32.compression; 4587 args.encryption = args32.encryption; 4588 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 4589 #else 4590 return -ENOTTY; 4591 #endif 4592 } else { 4593 if (copy_from_user(&args, argp, sizeof(args))) { 4594 ret = -EFAULT; 4595 goto out_acct; 4596 } 4597 } 4598 4599 ret = -EINVAL; 4600 if (args.flags != 0) 4601 goto out_acct; 4602 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 4603 goto out_acct; 4604 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4605 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4606 goto out_acct; 4607 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4608 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4609 goto out_acct; 4610 if (args.unencoded_offset > args.unencoded_len) 4611 goto out_acct; 4612 if (args.len > args.unencoded_len - args.unencoded_offset) 4613 goto out_acct; 4614 4615 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4616 &iov, &iter); 4617 if (ret < 0) 4618 goto out_acct; 4619 4620 if (iov_iter_count(&iter) == 0) { 4621 ret = 0; 4622 goto out_iov; 4623 } 4624 pos = args.offset; 4625 ret = rw_verify_area(WRITE, file, &pos, args.len); 4626 if (ret < 0) 4627 goto out_iov; 4628 4629 init_sync_kiocb(&kiocb, file); 4630 ret = kiocb_set_rw_flags(&kiocb, 0); 4631 if (ret) 4632 goto out_iov; 4633 kiocb.ki_pos = pos; 4634 4635 file_start_write(file); 4636 4637 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 4638 if (ret > 0) 4639 fsnotify_modify(file); 4640 4641 file_end_write(file); 4642 out_iov: 4643 kfree(iov); 4644 out_acct: 4645 if (ret > 0) 4646 add_wchar(current, ret); 4647 inc_syscw(current); 4648 return ret; 4649 } 4650 4651 long btrfs_ioctl(struct file *file, unsigned int 4652 cmd, unsigned long arg) 4653 { 4654 struct inode *inode = file_inode(file); 4655 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4656 struct btrfs_root *root = BTRFS_I(inode)->root; 4657 void __user *argp = (void __user *)arg; 4658 4659 switch (cmd) { 4660 case FS_IOC_GETVERSION: 4661 return btrfs_ioctl_getversion(inode, argp); 4662 case FS_IOC_GETFSLABEL: 4663 return btrfs_ioctl_get_fslabel(fs_info, argp); 4664 case FS_IOC_SETFSLABEL: 4665 return btrfs_ioctl_set_fslabel(file, argp); 4666 case FITRIM: 4667 return btrfs_ioctl_fitrim(fs_info, argp); 4668 case BTRFS_IOC_SNAP_CREATE: 4669 return btrfs_ioctl_snap_create(file, argp, 0); 4670 case BTRFS_IOC_SNAP_CREATE_V2: 4671 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4672 case BTRFS_IOC_SUBVOL_CREATE: 4673 return btrfs_ioctl_snap_create(file, argp, 1); 4674 case BTRFS_IOC_SUBVOL_CREATE_V2: 4675 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4676 case BTRFS_IOC_SNAP_DESTROY: 4677 return btrfs_ioctl_snap_destroy(file, argp, false); 4678 case BTRFS_IOC_SNAP_DESTROY_V2: 4679 return btrfs_ioctl_snap_destroy(file, argp, true); 4680 case BTRFS_IOC_SUBVOL_GETFLAGS: 4681 return btrfs_ioctl_subvol_getflags(inode, argp); 4682 case BTRFS_IOC_SUBVOL_SETFLAGS: 4683 return btrfs_ioctl_subvol_setflags(file, argp); 4684 case BTRFS_IOC_DEFAULT_SUBVOL: 4685 return btrfs_ioctl_default_subvol(file, argp); 4686 case BTRFS_IOC_DEFRAG: 4687 return btrfs_ioctl_defrag(file, NULL); 4688 case BTRFS_IOC_DEFRAG_RANGE: 4689 return btrfs_ioctl_defrag(file, argp); 4690 case BTRFS_IOC_RESIZE: 4691 return btrfs_ioctl_resize(file, argp); 4692 case BTRFS_IOC_ADD_DEV: 4693 return btrfs_ioctl_add_dev(fs_info, argp); 4694 case BTRFS_IOC_RM_DEV: 4695 return btrfs_ioctl_rm_dev(file, argp); 4696 case BTRFS_IOC_RM_DEV_V2: 4697 return btrfs_ioctl_rm_dev_v2(file, argp); 4698 case BTRFS_IOC_FS_INFO: 4699 return btrfs_ioctl_fs_info(fs_info, argp); 4700 case BTRFS_IOC_DEV_INFO: 4701 return btrfs_ioctl_dev_info(fs_info, argp); 4702 case BTRFS_IOC_TREE_SEARCH: 4703 return btrfs_ioctl_tree_search(inode, argp); 4704 case BTRFS_IOC_TREE_SEARCH_V2: 4705 return btrfs_ioctl_tree_search_v2(inode, argp); 4706 case BTRFS_IOC_INO_LOOKUP: 4707 return btrfs_ioctl_ino_lookup(root, argp); 4708 case BTRFS_IOC_INO_PATHS: 4709 return btrfs_ioctl_ino_to_path(root, argp); 4710 case BTRFS_IOC_LOGICAL_INO: 4711 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4712 case BTRFS_IOC_LOGICAL_INO_V2: 4713 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4714 case BTRFS_IOC_SPACE_INFO: 4715 return btrfs_ioctl_space_info(fs_info, argp); 4716 case BTRFS_IOC_SYNC: { 4717 int ret; 4718 4719 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4720 if (ret) 4721 return ret; 4722 ret = btrfs_sync_fs(inode->i_sb, 1); 4723 /* 4724 * The transaction thread may want to do more work, 4725 * namely it pokes the cleaner kthread that will start 4726 * processing uncleaned subvols. 4727 */ 4728 wake_up_process(fs_info->transaction_kthread); 4729 return ret; 4730 } 4731 case BTRFS_IOC_START_SYNC: 4732 return btrfs_ioctl_start_sync(root, argp); 4733 case BTRFS_IOC_WAIT_SYNC: 4734 return btrfs_ioctl_wait_sync(fs_info, argp); 4735 case BTRFS_IOC_SCRUB: 4736 return btrfs_ioctl_scrub(file, argp); 4737 case BTRFS_IOC_SCRUB_CANCEL: 4738 return btrfs_ioctl_scrub_cancel(fs_info); 4739 case BTRFS_IOC_SCRUB_PROGRESS: 4740 return btrfs_ioctl_scrub_progress(fs_info, argp); 4741 case BTRFS_IOC_BALANCE_V2: 4742 return btrfs_ioctl_balance(file, argp); 4743 case BTRFS_IOC_BALANCE_CTL: 4744 return btrfs_ioctl_balance_ctl(fs_info, arg); 4745 case BTRFS_IOC_BALANCE_PROGRESS: 4746 return btrfs_ioctl_balance_progress(fs_info, argp); 4747 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4748 return btrfs_ioctl_set_received_subvol(file, argp); 4749 #ifdef CONFIG_64BIT 4750 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4751 return btrfs_ioctl_set_received_subvol_32(file, argp); 4752 #endif 4753 case BTRFS_IOC_SEND: 4754 return _btrfs_ioctl_send(inode, argp, false); 4755 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4756 case BTRFS_IOC_SEND_32: 4757 return _btrfs_ioctl_send(inode, argp, true); 4758 #endif 4759 case BTRFS_IOC_GET_DEV_STATS: 4760 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4761 case BTRFS_IOC_QUOTA_CTL: 4762 return btrfs_ioctl_quota_ctl(file, argp); 4763 case BTRFS_IOC_QGROUP_ASSIGN: 4764 return btrfs_ioctl_qgroup_assign(file, argp); 4765 case BTRFS_IOC_QGROUP_CREATE: 4766 return btrfs_ioctl_qgroup_create(file, argp); 4767 case BTRFS_IOC_QGROUP_LIMIT: 4768 return btrfs_ioctl_qgroup_limit(file, argp); 4769 case BTRFS_IOC_QUOTA_RESCAN: 4770 return btrfs_ioctl_quota_rescan(file, argp); 4771 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4772 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4773 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4774 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4775 case BTRFS_IOC_DEV_REPLACE: 4776 return btrfs_ioctl_dev_replace(fs_info, argp); 4777 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4778 return btrfs_ioctl_get_supported_features(argp); 4779 case BTRFS_IOC_GET_FEATURES: 4780 return btrfs_ioctl_get_features(fs_info, argp); 4781 case BTRFS_IOC_SET_FEATURES: 4782 return btrfs_ioctl_set_features(file, argp); 4783 case BTRFS_IOC_GET_SUBVOL_INFO: 4784 return btrfs_ioctl_get_subvol_info(inode, argp); 4785 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4786 return btrfs_ioctl_get_subvol_rootref(root, argp); 4787 case BTRFS_IOC_INO_LOOKUP_USER: 4788 return btrfs_ioctl_ino_lookup_user(file, argp); 4789 case FS_IOC_ENABLE_VERITY: 4790 return fsverity_ioctl_enable(file, (const void __user *)argp); 4791 case FS_IOC_MEASURE_VERITY: 4792 return fsverity_ioctl_measure(file, argp); 4793 case BTRFS_IOC_ENCODED_READ: 4794 return btrfs_ioctl_encoded_read(file, argp, false); 4795 case BTRFS_IOC_ENCODED_WRITE: 4796 return btrfs_ioctl_encoded_write(file, argp, false); 4797 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4798 case BTRFS_IOC_ENCODED_READ_32: 4799 return btrfs_ioctl_encoded_read(file, argp, true); 4800 case BTRFS_IOC_ENCODED_WRITE_32: 4801 return btrfs_ioctl_encoded_write(file, argp, true); 4802 #endif 4803 } 4804 4805 return -ENOTTY; 4806 } 4807 4808 #ifdef CONFIG_COMPAT 4809 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4810 { 4811 /* 4812 * These all access 32-bit values anyway so no further 4813 * handling is necessary. 4814 */ 4815 switch (cmd) { 4816 case FS_IOC32_GETVERSION: 4817 cmd = FS_IOC_GETVERSION; 4818 break; 4819 } 4820 4821 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4822 } 4823 #endif 4824