1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include <linux/io_uring/cmd.h> 33 #include "ctree.h" 34 #include "disk-io.h" 35 #include "export.h" 36 #include "transaction.h" 37 #include "btrfs_inode.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "send.h" 42 #include "dev-replace.h" 43 #include "props.h" 44 #include "sysfs.h" 45 #include "qgroup.h" 46 #include "tree-log.h" 47 #include "compression.h" 48 #include "space-info.h" 49 #include "block-group.h" 50 #include "fs.h" 51 #include "accessors.h" 52 #include "extent-tree.h" 53 #include "root-tree.h" 54 #include "defrag.h" 55 #include "dir-item.h" 56 #include "uuid-tree.h" 57 #include "ioctl.h" 58 #include "file.h" 59 #include "scrub.h" 60 #include "super.h" 61 62 #ifdef CONFIG_64BIT 63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 64 * structures are incorrect, as the timespec structure from userspace 65 * is 4 bytes too small. We define these alternatives here to teach 66 * the kernel about the 32-bit struct packing. 67 */ 68 struct btrfs_ioctl_timespec_32 { 69 __u64 sec; 70 __u32 nsec; 71 } __attribute__ ((__packed__)); 72 73 struct btrfs_ioctl_received_subvol_args_32 { 74 char uuid[BTRFS_UUID_SIZE]; /* in */ 75 __u64 stransid; /* in */ 76 __u64 rtransid; /* out */ 77 struct btrfs_ioctl_timespec_32 stime; /* in */ 78 struct btrfs_ioctl_timespec_32 rtime; /* out */ 79 __u64 flags; /* in */ 80 __u64 reserved[16]; /* in */ 81 } __attribute__ ((__packed__)); 82 83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 84 struct btrfs_ioctl_received_subvol_args_32) 85 #endif 86 87 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 88 struct btrfs_ioctl_send_args_32 { 89 __s64 send_fd; /* in */ 90 __u64 clone_sources_count; /* in */ 91 compat_uptr_t clone_sources; /* in */ 92 __u64 parent_root; /* in */ 93 __u64 flags; /* in */ 94 __u32 version; /* in */ 95 __u8 reserved[28]; /* in */ 96 } __attribute__ ((__packed__)); 97 98 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 99 struct btrfs_ioctl_send_args_32) 100 101 struct btrfs_ioctl_encoded_io_args_32 { 102 compat_uptr_t iov; 103 compat_ulong_t iovcnt; 104 __s64 offset; 105 __u64 flags; 106 __u64 len; 107 __u64 unencoded_len; 108 __u64 unencoded_offset; 109 __u32 compression; 110 __u32 encryption; 111 __u8 reserved[64]; 112 }; 113 114 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 115 struct btrfs_ioctl_encoded_io_args_32) 116 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 117 struct btrfs_ioctl_encoded_io_args_32) 118 #endif 119 120 /* Mask out flags that are inappropriate for the given type of inode. */ 121 static unsigned int btrfs_mask_fsflags_for_type(const struct inode *inode, 122 unsigned int flags) 123 { 124 if (S_ISDIR(inode->i_mode)) 125 return flags; 126 else if (S_ISREG(inode->i_mode)) 127 return flags & ~FS_DIRSYNC_FL; 128 else 129 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 130 } 131 132 /* 133 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 134 * ioctl. 135 */ 136 static unsigned int btrfs_inode_flags_to_fsflags(const struct btrfs_inode *inode) 137 { 138 unsigned int iflags = 0; 139 u32 flags = inode->flags; 140 u32 ro_flags = inode->ro_flags; 141 142 if (flags & BTRFS_INODE_SYNC) 143 iflags |= FS_SYNC_FL; 144 if (flags & BTRFS_INODE_IMMUTABLE) 145 iflags |= FS_IMMUTABLE_FL; 146 if (flags & BTRFS_INODE_APPEND) 147 iflags |= FS_APPEND_FL; 148 if (flags & BTRFS_INODE_NODUMP) 149 iflags |= FS_NODUMP_FL; 150 if (flags & BTRFS_INODE_NOATIME) 151 iflags |= FS_NOATIME_FL; 152 if (flags & BTRFS_INODE_DIRSYNC) 153 iflags |= FS_DIRSYNC_FL; 154 if (flags & BTRFS_INODE_NODATACOW) 155 iflags |= FS_NOCOW_FL; 156 if (ro_flags & BTRFS_INODE_RO_VERITY) 157 iflags |= FS_VERITY_FL; 158 159 if (flags & BTRFS_INODE_NOCOMPRESS) 160 iflags |= FS_NOCOMP_FL; 161 else if (flags & BTRFS_INODE_COMPRESS) 162 iflags |= FS_COMPR_FL; 163 164 return iflags; 165 } 166 167 /* 168 * Update inode->i_flags based on the btrfs internal flags. 169 */ 170 void btrfs_sync_inode_flags_to_i_flags(struct btrfs_inode *inode) 171 { 172 unsigned int new_fl = 0; 173 174 if (inode->flags & BTRFS_INODE_SYNC) 175 new_fl |= S_SYNC; 176 if (inode->flags & BTRFS_INODE_IMMUTABLE) 177 new_fl |= S_IMMUTABLE; 178 if (inode->flags & BTRFS_INODE_APPEND) 179 new_fl |= S_APPEND; 180 if (inode->flags & BTRFS_INODE_NOATIME) 181 new_fl |= S_NOATIME; 182 if (inode->flags & BTRFS_INODE_DIRSYNC) 183 new_fl |= S_DIRSYNC; 184 if (inode->ro_flags & BTRFS_INODE_RO_VERITY) 185 new_fl |= S_VERITY; 186 187 set_mask_bits(&inode->vfs_inode.i_flags, 188 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 189 S_VERITY, new_fl); 190 } 191 192 /* 193 * Check if @flags are a supported and valid set of FS_*_FL flags and that 194 * the old and new flags are not conflicting 195 */ 196 static int check_fsflags(unsigned int old_flags, unsigned int flags) 197 { 198 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 199 FS_NOATIME_FL | FS_NODUMP_FL | \ 200 FS_SYNC_FL | FS_DIRSYNC_FL | \ 201 FS_NOCOMP_FL | FS_COMPR_FL | 202 FS_NOCOW_FL)) 203 return -EOPNOTSUPP; 204 205 /* COMPR and NOCOMP on new/old are valid */ 206 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 207 return -EINVAL; 208 209 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 210 return -EINVAL; 211 212 /* NOCOW and compression options are mutually exclusive */ 213 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 214 return -EINVAL; 215 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 216 return -EINVAL; 217 218 return 0; 219 } 220 221 static int check_fsflags_compatible(const struct btrfs_fs_info *fs_info, 222 unsigned int flags) 223 { 224 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 225 return -EPERM; 226 227 return 0; 228 } 229 230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args) 231 { 232 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL) 233 return -ENAMETOOLONG; 234 return 0; 235 } 236 237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2) 238 { 239 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL) 240 return -ENAMETOOLONG; 241 return 0; 242 } 243 244 /* 245 * Set flags/xflags from the internal inode flags. The remaining items of 246 * fsxattr are zeroed. 247 */ 248 int btrfs_fileattr_get(struct dentry *dentry, struct file_kattr *fa) 249 { 250 const struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 251 252 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(inode)); 253 return 0; 254 } 255 256 int btrfs_fileattr_set(struct mnt_idmap *idmap, 257 struct dentry *dentry, struct file_kattr *fa) 258 { 259 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 260 struct btrfs_root *root = inode->root; 261 struct btrfs_fs_info *fs_info = root->fs_info; 262 struct btrfs_trans_handle *trans; 263 unsigned int fsflags, old_fsflags; 264 int ret; 265 const char *comp = NULL; 266 u32 inode_flags; 267 268 if (btrfs_root_readonly(root)) 269 return -EROFS; 270 271 if (fileattr_has_fsx(fa)) 272 return -EOPNOTSUPP; 273 274 fsflags = btrfs_mask_fsflags_for_type(&inode->vfs_inode, fa->flags); 275 old_fsflags = btrfs_inode_flags_to_fsflags(inode); 276 ret = check_fsflags(old_fsflags, fsflags); 277 if (ret) 278 return ret; 279 280 ret = check_fsflags_compatible(fs_info, fsflags); 281 if (ret) 282 return ret; 283 284 inode_flags = inode->flags; 285 if (fsflags & FS_SYNC_FL) 286 inode_flags |= BTRFS_INODE_SYNC; 287 else 288 inode_flags &= ~BTRFS_INODE_SYNC; 289 if (fsflags & FS_IMMUTABLE_FL) 290 inode_flags |= BTRFS_INODE_IMMUTABLE; 291 else 292 inode_flags &= ~BTRFS_INODE_IMMUTABLE; 293 if (fsflags & FS_APPEND_FL) 294 inode_flags |= BTRFS_INODE_APPEND; 295 else 296 inode_flags &= ~BTRFS_INODE_APPEND; 297 if (fsflags & FS_NODUMP_FL) 298 inode_flags |= BTRFS_INODE_NODUMP; 299 else 300 inode_flags &= ~BTRFS_INODE_NODUMP; 301 if (fsflags & FS_NOATIME_FL) 302 inode_flags |= BTRFS_INODE_NOATIME; 303 else 304 inode_flags &= ~BTRFS_INODE_NOATIME; 305 306 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 307 if (!fa->flags_valid) { 308 /* 1 item for the inode */ 309 trans = btrfs_start_transaction(root, 1); 310 if (IS_ERR(trans)) 311 return PTR_ERR(trans); 312 goto update_flags; 313 } 314 315 if (fsflags & FS_DIRSYNC_FL) 316 inode_flags |= BTRFS_INODE_DIRSYNC; 317 else 318 inode_flags &= ~BTRFS_INODE_DIRSYNC; 319 if (fsflags & FS_NOCOW_FL) { 320 if (S_ISREG(inode->vfs_inode.i_mode)) { 321 /* 322 * It's safe to turn csums off here, no extents exist. 323 * Otherwise we want the flag to reflect the real COW 324 * status of the file and will not set it. 325 */ 326 if (inode->vfs_inode.i_size == 0) 327 inode_flags |= BTRFS_INODE_NODATACOW | 328 BTRFS_INODE_NODATASUM; 329 } else { 330 inode_flags |= BTRFS_INODE_NODATACOW; 331 } 332 } else { 333 /* 334 * Revert back under same assumptions as above 335 */ 336 if (S_ISREG(inode->vfs_inode.i_mode)) { 337 if (inode->vfs_inode.i_size == 0) 338 inode_flags &= ~(BTRFS_INODE_NODATACOW | 339 BTRFS_INODE_NODATASUM); 340 } else { 341 inode_flags &= ~BTRFS_INODE_NODATACOW; 342 } 343 } 344 345 /* 346 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 347 * flag may be changed automatically if compression code won't make 348 * things smaller. 349 */ 350 if (fsflags & FS_NOCOMP_FL) { 351 inode_flags &= ~BTRFS_INODE_COMPRESS; 352 inode_flags |= BTRFS_INODE_NOCOMPRESS; 353 } else if (fsflags & FS_COMPR_FL) { 354 355 if (IS_SWAPFILE(&inode->vfs_inode)) 356 return -ETXTBSY; 357 358 inode_flags |= BTRFS_INODE_COMPRESS; 359 inode_flags &= ~BTRFS_INODE_NOCOMPRESS; 360 361 comp = btrfs_compress_type2str(fs_info->compress_type); 362 if (!comp || comp[0] == 0) 363 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 364 } else { 365 inode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 366 } 367 368 /* 369 * 1 for inode item 370 * 2 for properties 371 */ 372 trans = btrfs_start_transaction(root, 3); 373 if (IS_ERR(trans)) 374 return PTR_ERR(trans); 375 376 if (comp) { 377 ret = btrfs_set_prop(trans, inode, "btrfs.compression", 378 comp, strlen(comp), 0); 379 if (ret) { 380 btrfs_abort_transaction(trans, ret); 381 goto out_end_trans; 382 } 383 } else { 384 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 0, 0); 385 if (ret && ret != -ENODATA) { 386 btrfs_abort_transaction(trans, ret); 387 goto out_end_trans; 388 } 389 } 390 391 update_flags: 392 inode->flags = inode_flags; 393 btrfs_update_inode_mapping_flags(inode); 394 btrfs_sync_inode_flags_to_i_flags(inode); 395 inode_inc_iversion(&inode->vfs_inode); 396 inode_set_ctime_current(&inode->vfs_inode); 397 ret = btrfs_update_inode(trans, inode); 398 399 out_end_trans: 400 btrfs_end_transaction(trans); 401 return ret; 402 } 403 404 static int btrfs_ioctl_getversion(const struct inode *inode, int __user *arg) 405 { 406 return put_user(inode->i_generation, arg); 407 } 408 409 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 410 void __user *arg) 411 { 412 struct btrfs_device *device; 413 struct fstrim_range range; 414 u64 minlen = ULLONG_MAX; 415 u64 num_devices = 0; 416 int ret; 417 418 if (!capable(CAP_SYS_ADMIN)) 419 return -EPERM; 420 421 /* 422 * btrfs_trim_block_group() depends on space cache, which is not 423 * available in zoned filesystem. So, disallow fitrim on a zoned 424 * filesystem for now. 425 */ 426 if (btrfs_is_zoned(fs_info)) 427 return -EOPNOTSUPP; 428 429 /* 430 * If the fs is mounted with nologreplay, which requires it to be 431 * mounted in RO mode as well, we can not allow discard on free space 432 * inside block groups, because log trees refer to extents that are not 433 * pinned in a block group's free space cache (pinning the extents is 434 * precisely the first phase of replaying a log tree). 435 */ 436 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 437 return -EROFS; 438 439 rcu_read_lock(); 440 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 441 dev_list) { 442 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 443 continue; 444 num_devices++; 445 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 446 minlen); 447 } 448 rcu_read_unlock(); 449 450 if (!num_devices) 451 return -EOPNOTSUPP; 452 if (copy_from_user(&range, arg, sizeof(range))) 453 return -EFAULT; 454 455 /* 456 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 457 * block group is in the logical address space, which can be any 458 * sectorsize aligned bytenr in the range [0, U64_MAX]. 459 */ 460 if (range.len < fs_info->sectorsize) 461 return -EINVAL; 462 463 range.minlen = max(range.minlen, minlen); 464 ret = btrfs_trim_fs(fs_info, &range); 465 466 if (copy_to_user(arg, &range, sizeof(range))) 467 return -EFAULT; 468 469 return ret; 470 } 471 472 /* 473 * Calculate the number of transaction items to reserve for creating a subvolume 474 * or snapshot, not including the inode, directory entries, or parent directory. 475 */ 476 static unsigned int create_subvol_num_items(const struct btrfs_qgroup_inherit *inherit) 477 { 478 /* 479 * 1 to add root block 480 * 1 to add root item 481 * 1 to add root ref 482 * 1 to add root backref 483 * 1 to add UUID item 484 * 1 to add qgroup info 485 * 1 to add qgroup limit 486 * 487 * Ideally the last two would only be accounted if qgroups are enabled, 488 * but that can change between now and the time we would insert them. 489 */ 490 unsigned int num_items = 7; 491 492 if (inherit) { 493 /* 2 to add qgroup relations for each inherited qgroup */ 494 num_items += 2 * inherit->num_qgroups; 495 } 496 return num_items; 497 } 498 499 static noinline int create_subvol(struct mnt_idmap *idmap, 500 struct inode *dir, struct dentry *dentry, 501 struct btrfs_qgroup_inherit *inherit) 502 { 503 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 504 struct btrfs_trans_handle *trans; 505 struct btrfs_key key; 506 struct btrfs_root_item *root_item; 507 struct btrfs_inode_item *inode_item; 508 struct extent_buffer *leaf; 509 struct btrfs_root *root = BTRFS_I(dir)->root; 510 struct btrfs_root *new_root; 511 struct btrfs_block_rsv block_rsv; 512 struct timespec64 cur_time = current_time(dir); 513 struct btrfs_new_inode_args new_inode_args = { 514 .dir = dir, 515 .dentry = dentry, 516 .subvol = true, 517 }; 518 unsigned int trans_num_items; 519 int ret; 520 dev_t anon_dev; 521 u64 objectid; 522 u64 qgroup_reserved = 0; 523 524 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 525 if (!root_item) 526 return -ENOMEM; 527 528 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 529 if (ret) 530 goto out_root_item; 531 532 /* 533 * Don't create subvolume whose level is not zero. Or qgroup will be 534 * screwed up since it assumes subvolume qgroup's level to be 0. 535 */ 536 if (btrfs_qgroup_level(objectid)) { 537 ret = -ENOSPC; 538 goto out_root_item; 539 } 540 541 ret = get_anon_bdev(&anon_dev); 542 if (ret < 0) 543 goto out_root_item; 544 545 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir); 546 if (!new_inode_args.inode) { 547 ret = -ENOMEM; 548 goto out_anon_dev; 549 } 550 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 551 if (ret) 552 goto out_inode; 553 trans_num_items += create_subvol_num_items(inherit); 554 555 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 556 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 557 trans_num_items, false); 558 if (ret) 559 goto out_new_inode_args; 560 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 561 562 trans = btrfs_start_transaction(root, 0); 563 if (IS_ERR(trans)) { 564 ret = PTR_ERR(trans); 565 goto out_release_rsv; 566 } 567 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 568 qgroup_reserved = 0; 569 trans->block_rsv = &block_rsv; 570 trans->bytes_reserved = block_rsv.size; 571 572 ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit); 573 if (ret) 574 goto out; 575 576 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 577 0, BTRFS_NESTING_NORMAL); 578 if (IS_ERR(leaf)) { 579 ret = PTR_ERR(leaf); 580 goto out; 581 } 582 583 btrfs_mark_buffer_dirty(trans, leaf); 584 585 inode_item = &root_item->inode; 586 btrfs_set_stack_inode_generation(inode_item, 1); 587 btrfs_set_stack_inode_size(inode_item, 3); 588 btrfs_set_stack_inode_nlink(inode_item, 1); 589 btrfs_set_stack_inode_nbytes(inode_item, 590 fs_info->nodesize); 591 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 592 593 btrfs_set_root_flags(root_item, 0); 594 btrfs_set_root_limit(root_item, 0); 595 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 596 597 btrfs_set_root_bytenr(root_item, leaf->start); 598 btrfs_set_root_generation(root_item, trans->transid); 599 btrfs_set_root_level(root_item, 0); 600 btrfs_set_root_refs(root_item, 1); 601 btrfs_set_root_used(root_item, leaf->len); 602 btrfs_set_root_last_snapshot(root_item, 0); 603 604 btrfs_set_root_generation_v2(root_item, 605 btrfs_root_generation(root_item)); 606 generate_random_guid(root_item->uuid); 607 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 608 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 609 root_item->ctime = root_item->otime; 610 btrfs_set_root_ctransid(root_item, trans->transid); 611 btrfs_set_root_otransid(root_item, trans->transid); 612 613 btrfs_tree_unlock(leaf); 614 615 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 616 617 key.objectid = objectid; 618 key.type = BTRFS_ROOT_ITEM_KEY; 619 key.offset = 0; 620 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 621 root_item); 622 if (ret) { 623 int ret2; 624 625 /* 626 * Since we don't abort the transaction in this case, free the 627 * tree block so that we don't leak space and leave the 628 * filesystem in an inconsistent state (an extent item in the 629 * extent tree with a backreference for a root that does not 630 * exists). 631 */ 632 btrfs_tree_lock(leaf); 633 btrfs_clear_buffer_dirty(trans, leaf); 634 btrfs_tree_unlock(leaf); 635 ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 636 if (ret2 < 0) 637 btrfs_abort_transaction(trans, ret2); 638 free_extent_buffer(leaf); 639 goto out; 640 } 641 642 free_extent_buffer(leaf); 643 leaf = NULL; 644 645 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev); 646 if (IS_ERR(new_root)) { 647 ret = PTR_ERR(new_root); 648 btrfs_abort_transaction(trans, ret); 649 goto out; 650 } 651 /* anon_dev is owned by new_root now. */ 652 anon_dev = 0; 653 BTRFS_I(new_inode_args.inode)->root = new_root; 654 /* ... and new_root is owned by new_inode_args.inode now. */ 655 656 ret = btrfs_record_root_in_trans(trans, new_root); 657 if (ret) { 658 btrfs_abort_transaction(trans, ret); 659 goto out; 660 } 661 662 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 663 BTRFS_UUID_KEY_SUBVOL, objectid); 664 if (ret) { 665 btrfs_abort_transaction(trans, ret); 666 goto out; 667 } 668 669 btrfs_record_new_subvolume(trans, BTRFS_I(dir)); 670 671 ret = btrfs_create_new_inode(trans, &new_inode_args); 672 if (ret) { 673 btrfs_abort_transaction(trans, ret); 674 goto out; 675 } 676 677 d_instantiate_new(dentry, new_inode_args.inode); 678 new_inode_args.inode = NULL; 679 680 out: 681 trans->block_rsv = NULL; 682 trans->bytes_reserved = 0; 683 btrfs_end_transaction(trans); 684 out_release_rsv: 685 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 686 if (qgroup_reserved) 687 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 688 out_new_inode_args: 689 btrfs_new_inode_args_destroy(&new_inode_args); 690 out_inode: 691 iput(new_inode_args.inode); 692 out_anon_dev: 693 if (anon_dev) 694 free_anon_bdev(anon_dev); 695 out_root_item: 696 kfree(root_item); 697 return ret; 698 } 699 700 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 701 struct dentry *dentry, bool readonly, 702 struct btrfs_qgroup_inherit *inherit) 703 { 704 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 705 struct inode *inode; 706 struct btrfs_pending_snapshot *pending_snapshot; 707 unsigned int trans_num_items; 708 struct btrfs_trans_handle *trans; 709 struct btrfs_block_rsv *block_rsv; 710 u64 qgroup_reserved = 0; 711 int ret; 712 713 /* We do not support snapshotting right now. */ 714 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 715 btrfs_warn(fs_info, 716 "extent tree v2 doesn't support snapshotting yet"); 717 return -EOPNOTSUPP; 718 } 719 720 if (btrfs_root_refs(&root->root_item) == 0) 721 return -ENOENT; 722 723 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 724 return -EINVAL; 725 726 if (atomic_read(&root->nr_swapfiles)) { 727 btrfs_warn(fs_info, 728 "cannot snapshot subvolume with active swapfile"); 729 return -ETXTBSY; 730 } 731 732 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 733 if (!pending_snapshot) 734 return -ENOMEM; 735 736 ret = get_anon_bdev(&pending_snapshot->anon_dev); 737 if (ret < 0) 738 goto free_pending; 739 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 740 GFP_KERNEL); 741 pending_snapshot->path = btrfs_alloc_path(); 742 if (!pending_snapshot->root_item || !pending_snapshot->path) { 743 ret = -ENOMEM; 744 goto free_pending; 745 } 746 747 block_rsv = &pending_snapshot->block_rsv; 748 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP); 749 /* 750 * 1 to add dir item 751 * 1 to add dir index 752 * 1 to update parent inode item 753 */ 754 trans_num_items = create_subvol_num_items(inherit) + 3; 755 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv, 756 trans_num_items, false); 757 if (ret) 758 goto free_pending; 759 qgroup_reserved = block_rsv->qgroup_rsv_reserved; 760 761 pending_snapshot->dentry = dentry; 762 pending_snapshot->root = root; 763 pending_snapshot->readonly = readonly; 764 pending_snapshot->dir = BTRFS_I(dir); 765 pending_snapshot->inherit = inherit; 766 767 trans = btrfs_start_transaction(root, 0); 768 if (IS_ERR(trans)) { 769 ret = PTR_ERR(trans); 770 goto fail; 771 } 772 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root); 773 if (ret) { 774 btrfs_end_transaction(trans); 775 goto fail; 776 } 777 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 778 qgroup_reserved = 0; 779 780 trans->pending_snapshot = pending_snapshot; 781 782 ret = btrfs_commit_transaction(trans); 783 if (ret) 784 goto fail; 785 786 ret = pending_snapshot->error; 787 if (ret) 788 goto fail; 789 790 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 791 if (ret) 792 goto fail; 793 794 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 795 if (IS_ERR(inode)) { 796 ret = PTR_ERR(inode); 797 goto fail; 798 } 799 800 d_instantiate(dentry, inode); 801 ret = 0; 802 pending_snapshot->anon_dev = 0; 803 fail: 804 /* Prevent double freeing of anon_dev */ 805 if (ret && pending_snapshot->snap) 806 pending_snapshot->snap->anon_dev = 0; 807 btrfs_put_root(pending_snapshot->snap); 808 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL); 809 if (qgroup_reserved) 810 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 811 free_pending: 812 if (pending_snapshot->anon_dev) 813 free_anon_bdev(pending_snapshot->anon_dev); 814 kfree(pending_snapshot->root_item); 815 btrfs_free_path(pending_snapshot->path); 816 kfree(pending_snapshot); 817 818 return ret; 819 } 820 821 /* copy of may_delete in fs/namei.c() 822 * Check whether we can remove a link victim from directory dir, check 823 * whether the type of victim is right. 824 * 1. We can't do it if dir is read-only (done in permission()) 825 * 2. We should have write and exec permissions on dir 826 * 3. We can't remove anything from append-only dir 827 * 4. We can't do anything with immutable dir (done in permission()) 828 * 5. If the sticky bit on dir is set we should either 829 * a. be owner of dir, or 830 * b. be owner of victim, or 831 * c. have CAP_FOWNER capability 832 * 6. If the victim is append-only or immutable we can't do anything with 833 * links pointing to it. 834 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 835 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 836 * 9. We can't remove a root or mountpoint. 837 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 838 * nfs_async_unlink(). 839 */ 840 841 static int btrfs_may_delete(struct mnt_idmap *idmap, 842 struct inode *dir, struct dentry *victim, int isdir) 843 { 844 int ret; 845 846 if (d_really_is_negative(victim)) 847 return -ENOENT; 848 849 /* The @victim is not inside @dir. */ 850 if (d_inode(victim->d_parent) != dir) 851 return -EINVAL; 852 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 853 854 ret = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 855 if (ret) 856 return ret; 857 if (IS_APPEND(dir)) 858 return -EPERM; 859 if (check_sticky(idmap, dir, d_inode(victim)) || 860 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 861 IS_SWAPFILE(d_inode(victim))) 862 return -EPERM; 863 if (isdir) { 864 if (!d_is_dir(victim)) 865 return -ENOTDIR; 866 if (IS_ROOT(victim)) 867 return -EBUSY; 868 } else if (d_is_dir(victim)) 869 return -EISDIR; 870 if (IS_DEADDIR(dir)) 871 return -ENOENT; 872 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 873 return -EBUSY; 874 return 0; 875 } 876 877 /* copy of may_create in fs/namei.c() */ 878 static inline int btrfs_may_create(struct mnt_idmap *idmap, 879 struct inode *dir, const struct dentry *child) 880 { 881 if (d_really_is_positive(child)) 882 return -EEXIST; 883 if (IS_DEADDIR(dir)) 884 return -ENOENT; 885 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 886 return -EOVERFLOW; 887 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 888 } 889 890 /* 891 * Create a new subvolume below @parent. This is largely modeled after 892 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 893 * inside this filesystem so it's quite a bit simpler. 894 */ 895 static noinline int btrfs_mksubvol(struct dentry *parent, 896 struct mnt_idmap *idmap, 897 struct qstr *qname, struct btrfs_root *snap_src, 898 bool readonly, 899 struct btrfs_qgroup_inherit *inherit) 900 { 901 struct inode *dir = d_inode(parent); 902 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 903 struct dentry *dentry; 904 struct fscrypt_str name_str = FSTR_INIT((char *)qname->name, qname->len); 905 int ret; 906 907 ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 908 if (ret == -EINTR) 909 return ret; 910 911 dentry = lookup_one(idmap, qname, parent); 912 ret = PTR_ERR(dentry); 913 if (IS_ERR(dentry)) 914 goto out_unlock; 915 916 ret = btrfs_may_create(idmap, dir, dentry); 917 if (ret) 918 goto out_dput; 919 920 /* 921 * even if this name doesn't exist, we may get hash collisions. 922 * check for them now when we can safely fail 923 */ 924 ret = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, dir->i_ino, &name_str); 925 if (ret) 926 goto out_dput; 927 928 down_read(&fs_info->subvol_sem); 929 930 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 931 goto out_up_read; 932 933 if (snap_src) 934 ret = create_snapshot(snap_src, dir, dentry, readonly, inherit); 935 else 936 ret = create_subvol(idmap, dir, dentry, inherit); 937 938 if (!ret) 939 fsnotify_mkdir(dir, dentry); 940 out_up_read: 941 up_read(&fs_info->subvol_sem); 942 out_dput: 943 dput(dentry); 944 out_unlock: 945 btrfs_inode_unlock(BTRFS_I(dir), 0); 946 return ret; 947 } 948 949 static noinline int btrfs_mksnapshot(struct dentry *parent, 950 struct mnt_idmap *idmap, 951 struct qstr *qname, 952 struct btrfs_root *root, 953 bool readonly, 954 struct btrfs_qgroup_inherit *inherit) 955 { 956 int ret; 957 958 /* 959 * Force new buffered writes to reserve space even when NOCOW is 960 * possible. This is to avoid later writeback (running dealloc) to 961 * fallback to COW mode and unexpectedly fail with ENOSPC. 962 */ 963 btrfs_drew_read_lock(&root->snapshot_lock); 964 965 ret = btrfs_start_delalloc_snapshot(root, false); 966 if (ret) 967 goto out; 968 969 /* 970 * All previous writes have started writeback in NOCOW mode, so now 971 * we force future writes to fallback to COW mode during snapshot 972 * creation. 973 */ 974 atomic_inc(&root->snapshot_force_cow); 975 976 btrfs_wait_ordered_extents(root, U64_MAX, NULL); 977 978 ret = btrfs_mksubvol(parent, idmap, qname, root, readonly, inherit); 979 980 atomic_dec(&root->snapshot_force_cow); 981 out: 982 btrfs_drew_read_unlock(&root->snapshot_lock); 983 return ret; 984 } 985 986 /* 987 * Try to start exclusive operation @type or cancel it if it's running. 988 * 989 * Return: 990 * 0 - normal mode, newly claimed op started 991 * >0 - normal mode, something else is running, 992 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 993 * ECANCELED - cancel mode, successful cancel 994 * ENOTCONN - cancel mode, operation not running anymore 995 */ 996 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 997 enum btrfs_exclusive_operation type, bool cancel) 998 { 999 if (!cancel) { 1000 /* Start normal op */ 1001 if (!btrfs_exclop_start(fs_info, type)) 1002 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1003 /* Exclusive operation is now claimed */ 1004 return 0; 1005 } 1006 1007 /* Cancel running op */ 1008 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1009 /* 1010 * This blocks any exclop finish from setting it to NONE, so we 1011 * request cancellation. Either it runs and we will wait for it, 1012 * or it has finished and no waiting will happen. 1013 */ 1014 atomic_inc(&fs_info->reloc_cancel_req); 1015 btrfs_exclop_start_unlock(fs_info); 1016 1017 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1018 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1019 TASK_INTERRUPTIBLE); 1020 1021 return -ECANCELED; 1022 } 1023 1024 /* Something else is running or none */ 1025 return -ENOTCONN; 1026 } 1027 1028 static noinline int btrfs_ioctl_resize(struct file *file, 1029 void __user *arg) 1030 { 1031 BTRFS_DEV_LOOKUP_ARGS(args); 1032 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1033 struct btrfs_fs_info *fs_info = root->fs_info; 1034 u64 new_size; 1035 u64 old_size; 1036 u64 devid = 1; 1037 struct btrfs_ioctl_vol_args *vol_args; 1038 struct btrfs_device *device = NULL; 1039 char *sizestr; 1040 char *devstr = NULL; 1041 int ret = 0; 1042 int mod = 0; 1043 bool cancel; 1044 1045 if (!capable(CAP_SYS_ADMIN)) 1046 return -EPERM; 1047 1048 ret = mnt_want_write_file(file); 1049 if (ret) 1050 return ret; 1051 1052 /* 1053 * Read the arguments before checking exclusivity to be able to 1054 * distinguish regular resize and cancel 1055 */ 1056 vol_args = memdup_user(arg, sizeof(*vol_args)); 1057 if (IS_ERR(vol_args)) { 1058 ret = PTR_ERR(vol_args); 1059 goto out_drop; 1060 } 1061 ret = btrfs_check_ioctl_vol_args_path(vol_args); 1062 if (ret < 0) 1063 goto out_free; 1064 1065 sizestr = vol_args->name; 1066 cancel = (strcmp("cancel", sizestr) == 0); 1067 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1068 if (ret) 1069 goto out_free; 1070 /* Exclusive operation is now claimed */ 1071 1072 devstr = strchr(sizestr, ':'); 1073 if (devstr) { 1074 sizestr = devstr + 1; 1075 *devstr = '\0'; 1076 devstr = vol_args->name; 1077 ret = kstrtoull(devstr, 10, &devid); 1078 if (ret) 1079 goto out_finish; 1080 if (!devid) { 1081 ret = -EINVAL; 1082 goto out_finish; 1083 } 1084 btrfs_info(fs_info, "resizing devid %llu", devid); 1085 } 1086 1087 args.devid = devid; 1088 device = btrfs_find_device(fs_info->fs_devices, &args); 1089 if (!device) { 1090 btrfs_info(fs_info, "resizer unable to find device %llu", 1091 devid); 1092 ret = -ENODEV; 1093 goto out_finish; 1094 } 1095 1096 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1097 btrfs_info(fs_info, 1098 "resizer unable to apply on readonly device %llu", 1099 devid); 1100 ret = -EPERM; 1101 goto out_finish; 1102 } 1103 1104 if (!strcmp(sizestr, "max")) 1105 new_size = bdev_nr_bytes(device->bdev); 1106 else { 1107 char *retptr; 1108 1109 if (sizestr[0] == '-') { 1110 mod = -1; 1111 sizestr++; 1112 } else if (sizestr[0] == '+') { 1113 mod = 1; 1114 sizestr++; 1115 } 1116 new_size = memparse(sizestr, &retptr); 1117 if (*retptr != '\0' || new_size == 0) { 1118 ret = -EINVAL; 1119 goto out_finish; 1120 } 1121 } 1122 1123 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1124 ret = -EPERM; 1125 goto out_finish; 1126 } 1127 1128 old_size = btrfs_device_get_total_bytes(device); 1129 1130 if (mod < 0) { 1131 if (new_size > old_size) { 1132 ret = -EINVAL; 1133 goto out_finish; 1134 } 1135 new_size = old_size - new_size; 1136 } else if (mod > 0) { 1137 if (new_size > ULLONG_MAX - old_size) { 1138 ret = -ERANGE; 1139 goto out_finish; 1140 } 1141 new_size = old_size + new_size; 1142 } 1143 1144 if (new_size < SZ_256M) { 1145 ret = -EINVAL; 1146 goto out_finish; 1147 } 1148 if (new_size > bdev_nr_bytes(device->bdev)) { 1149 ret = -EFBIG; 1150 goto out_finish; 1151 } 1152 1153 new_size = round_down(new_size, fs_info->sectorsize); 1154 1155 if (new_size > old_size) { 1156 struct btrfs_trans_handle *trans; 1157 1158 trans = btrfs_start_transaction(root, 0); 1159 if (IS_ERR(trans)) { 1160 ret = PTR_ERR(trans); 1161 goto out_finish; 1162 } 1163 ret = btrfs_grow_device(trans, device, new_size); 1164 btrfs_commit_transaction(trans); 1165 } else if (new_size < old_size) { 1166 ret = btrfs_shrink_device(device, new_size); 1167 } /* equal, nothing need to do */ 1168 1169 if (ret == 0 && new_size != old_size) 1170 btrfs_info(fs_info, 1171 "resize device %s (devid %llu) from %llu to %llu", 1172 btrfs_dev_name(device), device->devid, 1173 old_size, new_size); 1174 out_finish: 1175 btrfs_exclop_finish(fs_info); 1176 out_free: 1177 kfree(vol_args); 1178 out_drop: 1179 mnt_drop_write_file(file); 1180 return ret; 1181 } 1182 1183 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1184 struct mnt_idmap *idmap, 1185 const char *name, unsigned long fd, bool subvol, 1186 bool readonly, 1187 struct btrfs_qgroup_inherit *inherit) 1188 { 1189 int ret = 0; 1190 struct qstr qname = QSTR_INIT(name, strlen(name)); 1191 1192 if (!S_ISDIR(file_inode(file)->i_mode)) 1193 return -ENOTDIR; 1194 1195 ret = mnt_want_write_file(file); 1196 if (ret) 1197 goto out; 1198 1199 if (strchr(name, '/')) { 1200 ret = -EINVAL; 1201 goto out_drop_write; 1202 } 1203 1204 if (qname.name[0] == '.' && 1205 (qname.len == 1 || (qname.name[1] == '.' && qname.len == 2))) { 1206 ret = -EEXIST; 1207 goto out_drop_write; 1208 } 1209 1210 if (subvol) { 1211 ret = btrfs_mksubvol(file_dentry(file), idmap, &qname, NULL, 1212 readonly, inherit); 1213 } else { 1214 CLASS(fd, src)(fd); 1215 struct inode *src_inode; 1216 if (fd_empty(src)) { 1217 ret = -EINVAL; 1218 goto out_drop_write; 1219 } 1220 1221 src_inode = file_inode(fd_file(src)); 1222 if (src_inode->i_sb != file_inode(file)->i_sb) { 1223 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1224 "Snapshot src from another FS"); 1225 ret = -EXDEV; 1226 } else if (!inode_owner_or_capable(idmap, src_inode)) { 1227 /* 1228 * Subvolume creation is not restricted, but snapshots 1229 * are limited to own subvolumes only 1230 */ 1231 ret = -EPERM; 1232 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1233 /* 1234 * Snapshots must be made with the src_inode referring 1235 * to the subvolume inode, otherwise the permission 1236 * checking above is useless because we may have 1237 * permission on a lower directory but not the subvol 1238 * itself. 1239 */ 1240 ret = -EINVAL; 1241 } else { 1242 ret = btrfs_mksnapshot(file_dentry(file), idmap, &qname, 1243 BTRFS_I(src_inode)->root, 1244 readonly, inherit); 1245 } 1246 } 1247 out_drop_write: 1248 mnt_drop_write_file(file); 1249 out: 1250 return ret; 1251 } 1252 1253 static noinline int btrfs_ioctl_snap_create(struct file *file, 1254 void __user *arg, int subvol) 1255 { 1256 struct btrfs_ioctl_vol_args *vol_args; 1257 int ret; 1258 1259 if (!S_ISDIR(file_inode(file)->i_mode)) 1260 return -ENOTDIR; 1261 1262 vol_args = memdup_user(arg, sizeof(*vol_args)); 1263 if (IS_ERR(vol_args)) 1264 return PTR_ERR(vol_args); 1265 ret = btrfs_check_ioctl_vol_args_path(vol_args); 1266 if (ret < 0) 1267 goto out; 1268 1269 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1270 vol_args->name, vol_args->fd, subvol, 1271 false, NULL); 1272 1273 out: 1274 kfree(vol_args); 1275 return ret; 1276 } 1277 1278 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1279 void __user *arg, bool subvol) 1280 { 1281 struct btrfs_ioctl_vol_args_v2 *vol_args; 1282 int ret; 1283 bool readonly = false; 1284 struct btrfs_qgroup_inherit *inherit = NULL; 1285 1286 if (!S_ISDIR(file_inode(file)->i_mode)) 1287 return -ENOTDIR; 1288 1289 vol_args = memdup_user(arg, sizeof(*vol_args)); 1290 if (IS_ERR(vol_args)) 1291 return PTR_ERR(vol_args); 1292 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args); 1293 if (ret < 0) 1294 goto free_args; 1295 1296 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1297 ret = -EOPNOTSUPP; 1298 goto free_args; 1299 } 1300 1301 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1302 readonly = true; 1303 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1304 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file)); 1305 1306 if (vol_args->size < sizeof(*inherit) || 1307 vol_args->size > PAGE_SIZE) { 1308 ret = -EINVAL; 1309 goto free_args; 1310 } 1311 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1312 if (IS_ERR(inherit)) { 1313 ret = PTR_ERR(inherit); 1314 goto free_args; 1315 } 1316 1317 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size); 1318 if (ret < 0) 1319 goto free_inherit; 1320 } 1321 1322 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1323 vol_args->name, vol_args->fd, subvol, 1324 readonly, inherit); 1325 if (ret) 1326 goto free_inherit; 1327 free_inherit: 1328 kfree(inherit); 1329 free_args: 1330 kfree(vol_args); 1331 return ret; 1332 } 1333 1334 static noinline int btrfs_ioctl_subvol_getflags(struct btrfs_inode *inode, 1335 void __user *arg) 1336 { 1337 struct btrfs_root *root = inode->root; 1338 struct btrfs_fs_info *fs_info = root->fs_info; 1339 int ret = 0; 1340 u64 flags = 0; 1341 1342 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1343 return -EINVAL; 1344 1345 down_read(&fs_info->subvol_sem); 1346 if (btrfs_root_readonly(root)) 1347 flags |= BTRFS_SUBVOL_RDONLY; 1348 up_read(&fs_info->subvol_sem); 1349 1350 if (copy_to_user(arg, &flags, sizeof(flags))) 1351 ret = -EFAULT; 1352 1353 return ret; 1354 } 1355 1356 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1357 void __user *arg) 1358 { 1359 struct inode *inode = file_inode(file); 1360 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 1361 struct btrfs_root *root = BTRFS_I(inode)->root; 1362 struct btrfs_trans_handle *trans; 1363 u64 root_flags; 1364 u64 flags; 1365 int ret = 0; 1366 1367 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 1368 return -EPERM; 1369 1370 ret = mnt_want_write_file(file); 1371 if (ret) 1372 goto out; 1373 1374 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1375 ret = -EINVAL; 1376 goto out_drop_write; 1377 } 1378 1379 if (copy_from_user(&flags, arg, sizeof(flags))) { 1380 ret = -EFAULT; 1381 goto out_drop_write; 1382 } 1383 1384 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1385 ret = -EOPNOTSUPP; 1386 goto out_drop_write; 1387 } 1388 1389 down_write(&fs_info->subvol_sem); 1390 1391 /* nothing to do */ 1392 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1393 goto out_drop_sem; 1394 1395 root_flags = btrfs_root_flags(&root->root_item); 1396 if (flags & BTRFS_SUBVOL_RDONLY) { 1397 btrfs_set_root_flags(&root->root_item, 1398 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1399 } else { 1400 /* 1401 * Block RO -> RW transition if this subvolume is involved in 1402 * send 1403 */ 1404 spin_lock(&root->root_item_lock); 1405 if (root->send_in_progress == 0) { 1406 btrfs_set_root_flags(&root->root_item, 1407 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1408 spin_unlock(&root->root_item_lock); 1409 } else { 1410 spin_unlock(&root->root_item_lock); 1411 btrfs_warn(fs_info, 1412 "Attempt to set subvolume %llu read-write during send", 1413 btrfs_root_id(root)); 1414 ret = -EPERM; 1415 goto out_drop_sem; 1416 } 1417 } 1418 1419 trans = btrfs_start_transaction(root, 1); 1420 if (IS_ERR(trans)) { 1421 ret = PTR_ERR(trans); 1422 goto out_reset; 1423 } 1424 1425 ret = btrfs_update_root(trans, fs_info->tree_root, 1426 &root->root_key, &root->root_item); 1427 if (ret < 0) { 1428 btrfs_end_transaction(trans); 1429 goto out_reset; 1430 } 1431 1432 ret = btrfs_commit_transaction(trans); 1433 1434 out_reset: 1435 if (ret) 1436 btrfs_set_root_flags(&root->root_item, root_flags); 1437 out_drop_sem: 1438 up_write(&fs_info->subvol_sem); 1439 out_drop_write: 1440 mnt_drop_write_file(file); 1441 out: 1442 return ret; 1443 } 1444 1445 static noinline bool key_in_sk(const struct btrfs_key *key, 1446 const struct btrfs_ioctl_search_key *sk) 1447 { 1448 struct btrfs_key test; 1449 int ret; 1450 1451 test.objectid = sk->min_objectid; 1452 test.type = sk->min_type; 1453 test.offset = sk->min_offset; 1454 1455 ret = btrfs_comp_cpu_keys(key, &test); 1456 if (ret < 0) 1457 return false; 1458 1459 test.objectid = sk->max_objectid; 1460 test.type = sk->max_type; 1461 test.offset = sk->max_offset; 1462 1463 ret = btrfs_comp_cpu_keys(key, &test); 1464 if (ret > 0) 1465 return false; 1466 return true; 1467 } 1468 1469 static noinline int copy_to_sk(struct btrfs_path *path, 1470 struct btrfs_key *key, 1471 const struct btrfs_ioctl_search_key *sk, 1472 u64 *buf_size, 1473 char __user *ubuf, 1474 unsigned long *sk_offset, 1475 int *num_found) 1476 { 1477 u64 found_transid; 1478 struct extent_buffer *leaf; 1479 struct btrfs_ioctl_search_header sh; 1480 struct btrfs_key test; 1481 unsigned long item_off; 1482 unsigned long item_len; 1483 int nritems; 1484 int i; 1485 int slot; 1486 int ret = 0; 1487 1488 leaf = path->nodes[0]; 1489 slot = path->slots[0]; 1490 nritems = btrfs_header_nritems(leaf); 1491 1492 if (btrfs_header_generation(leaf) > sk->max_transid) { 1493 i = nritems; 1494 goto advance_key; 1495 } 1496 found_transid = btrfs_header_generation(leaf); 1497 1498 for (i = slot; i < nritems; i++) { 1499 item_off = btrfs_item_ptr_offset(leaf, i); 1500 item_len = btrfs_item_size(leaf, i); 1501 1502 btrfs_item_key_to_cpu(leaf, key, i); 1503 if (!key_in_sk(key, sk)) 1504 continue; 1505 1506 if (sizeof(sh) + item_len > *buf_size) { 1507 if (*num_found) { 1508 ret = 1; 1509 goto out; 1510 } 1511 1512 /* 1513 * return one empty item back for v1, which does not 1514 * handle -EOVERFLOW 1515 */ 1516 1517 *buf_size = sizeof(sh) + item_len; 1518 item_len = 0; 1519 ret = -EOVERFLOW; 1520 } 1521 1522 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1523 ret = 1; 1524 goto out; 1525 } 1526 1527 sh.objectid = key->objectid; 1528 sh.type = key->type; 1529 sh.offset = key->offset; 1530 sh.len = item_len; 1531 sh.transid = found_transid; 1532 1533 /* 1534 * Copy search result header. If we fault then loop again so we 1535 * can fault in the pages and -EFAULT there if there's a 1536 * problem. Otherwise we'll fault and then copy the buffer in 1537 * properly this next time through 1538 */ 1539 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 1540 ret = 0; 1541 goto out; 1542 } 1543 1544 *sk_offset += sizeof(sh); 1545 1546 if (item_len) { 1547 char __user *up = ubuf + *sk_offset; 1548 /* 1549 * Copy the item, same behavior as above, but reset the 1550 * * sk_offset so we copy the full thing again. 1551 */ 1552 if (read_extent_buffer_to_user_nofault(leaf, up, 1553 item_off, item_len)) { 1554 ret = 0; 1555 *sk_offset -= sizeof(sh); 1556 goto out; 1557 } 1558 1559 *sk_offset += item_len; 1560 } 1561 (*num_found)++; 1562 1563 if (ret) /* -EOVERFLOW from above */ 1564 goto out; 1565 1566 if (*num_found >= sk->nr_items) { 1567 ret = 1; 1568 goto out; 1569 } 1570 } 1571 advance_key: 1572 ret = 0; 1573 test.objectid = sk->max_objectid; 1574 test.type = sk->max_type; 1575 test.offset = sk->max_offset; 1576 if (btrfs_comp_cpu_keys(key, &test) >= 0) 1577 ret = 1; 1578 else if (key->offset < (u64)-1) 1579 key->offset++; 1580 else if (key->type < (u8)-1) { 1581 key->offset = 0; 1582 key->type++; 1583 } else if (key->objectid < (u64)-1) { 1584 key->offset = 0; 1585 key->type = 0; 1586 key->objectid++; 1587 } else 1588 ret = 1; 1589 out: 1590 /* 1591 * 0: all items from this leaf copied, continue with next 1592 * 1: * more items can be copied, but unused buffer is too small 1593 * * all items were found 1594 * Either way, it will stops the loop which iterates to the next 1595 * leaf 1596 * -EOVERFLOW: item was to large for buffer 1597 * -EFAULT: could not copy extent buffer back to userspace 1598 */ 1599 return ret; 1600 } 1601 1602 static noinline int search_ioctl(struct btrfs_root *root, 1603 struct btrfs_ioctl_search_key *sk, 1604 u64 *buf_size, 1605 char __user *ubuf) 1606 { 1607 struct btrfs_fs_info *info = root->fs_info; 1608 struct btrfs_key key; 1609 struct btrfs_path *path; 1610 int ret; 1611 int num_found = 0; 1612 unsigned long sk_offset = 0; 1613 1614 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 1615 *buf_size = sizeof(struct btrfs_ioctl_search_header); 1616 return -EOVERFLOW; 1617 } 1618 1619 path = btrfs_alloc_path(); 1620 if (!path) 1621 return -ENOMEM; 1622 1623 if (sk->tree_id == 0) { 1624 /* Search the root that we got passed. */ 1625 root = btrfs_grab_root(root); 1626 } else { 1627 /* Look up the root from the arguments. */ 1628 root = btrfs_get_fs_root(info, sk->tree_id, true); 1629 if (IS_ERR(root)) { 1630 btrfs_free_path(path); 1631 return PTR_ERR(root); 1632 } 1633 } 1634 1635 key.objectid = sk->min_objectid; 1636 key.type = sk->min_type; 1637 key.offset = sk->min_offset; 1638 1639 while (1) { 1640 /* 1641 * Ensure that the whole user buffer is faulted in at sub-page 1642 * granularity, otherwise the loop may live-lock. 1643 */ 1644 if (fault_in_subpage_writeable(ubuf + sk_offset, *buf_size - sk_offset)) { 1645 ret = -EFAULT; 1646 break; 1647 } 1648 1649 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1650 if (ret) 1651 break; 1652 1653 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 1654 &sk_offset, &num_found); 1655 btrfs_release_path(path); 1656 if (ret) 1657 break; 1658 1659 } 1660 /* Normalize return values from btrfs_search_forward() and copy_to_sk(). */ 1661 if (ret > 0) 1662 ret = 0; 1663 1664 sk->nr_items = num_found; 1665 btrfs_put_root(root); 1666 btrfs_free_path(path); 1667 return ret; 1668 } 1669 1670 static noinline int btrfs_ioctl_tree_search(struct btrfs_root *root, 1671 void __user *argp) 1672 { 1673 struct btrfs_ioctl_search_args __user *uargs = argp; 1674 struct btrfs_ioctl_search_key sk; 1675 int ret; 1676 u64 buf_size; 1677 1678 if (!capable(CAP_SYS_ADMIN)) 1679 return -EPERM; 1680 1681 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 1682 return -EFAULT; 1683 1684 buf_size = sizeof(uargs->buf); 1685 1686 ret = search_ioctl(root, &sk, &buf_size, uargs->buf); 1687 1688 /* 1689 * In the origin implementation an overflow is handled by returning a 1690 * search header with a len of zero, so reset ret. 1691 */ 1692 if (ret == -EOVERFLOW) 1693 ret = 0; 1694 1695 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 1696 ret = -EFAULT; 1697 return ret; 1698 } 1699 1700 static noinline int btrfs_ioctl_tree_search_v2(struct btrfs_root *root, 1701 void __user *argp) 1702 { 1703 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 1704 struct btrfs_ioctl_search_args_v2 args; 1705 int ret; 1706 u64 buf_size; 1707 const u64 buf_limit = SZ_16M; 1708 1709 if (!capable(CAP_SYS_ADMIN)) 1710 return -EPERM; 1711 1712 /* copy search header and buffer size */ 1713 if (copy_from_user(&args, uarg, sizeof(args))) 1714 return -EFAULT; 1715 1716 buf_size = args.buf_size; 1717 1718 /* limit result size to 16MB */ 1719 if (buf_size > buf_limit) 1720 buf_size = buf_limit; 1721 1722 ret = search_ioctl(root, &args.key, &buf_size, 1723 (char __user *)(&uarg->buf[0])); 1724 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 1725 ret = -EFAULT; 1726 else if (ret == -EOVERFLOW && 1727 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 1728 ret = -EFAULT; 1729 1730 return ret; 1731 } 1732 1733 /* 1734 * Search INODE_REFs to identify path name of 'dirid' directory 1735 * in a 'tree_id' tree. and sets path name to 'name'. 1736 */ 1737 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1738 u64 tree_id, u64 dirid, char *name) 1739 { 1740 struct btrfs_root *root; 1741 struct btrfs_key key; 1742 char *ptr; 1743 int ret = -1; 1744 int slot; 1745 int len; 1746 int total_len = 0; 1747 struct btrfs_inode_ref *iref; 1748 struct extent_buffer *l; 1749 struct btrfs_path *path; 1750 1751 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1752 name[0]='\0'; 1753 return 0; 1754 } 1755 1756 path = btrfs_alloc_path(); 1757 if (!path) 1758 return -ENOMEM; 1759 1760 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 1761 1762 root = btrfs_get_fs_root(info, tree_id, true); 1763 if (IS_ERR(root)) { 1764 ret = PTR_ERR(root); 1765 root = NULL; 1766 goto out; 1767 } 1768 1769 key.objectid = dirid; 1770 key.type = BTRFS_INODE_REF_KEY; 1771 key.offset = (u64)-1; 1772 1773 while (1) { 1774 ret = btrfs_search_backwards(root, &key, path); 1775 if (ret < 0) 1776 goto out; 1777 else if (ret > 0) { 1778 ret = -ENOENT; 1779 goto out; 1780 } 1781 1782 l = path->nodes[0]; 1783 slot = path->slots[0]; 1784 1785 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1786 len = btrfs_inode_ref_name_len(l, iref); 1787 ptr -= len + 1; 1788 total_len += len + 1; 1789 if (ptr < name) { 1790 ret = -ENAMETOOLONG; 1791 goto out; 1792 } 1793 1794 *(ptr + len) = '/'; 1795 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 1796 1797 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1798 break; 1799 1800 btrfs_release_path(path); 1801 key.objectid = key.offset; 1802 key.offset = (u64)-1; 1803 dirid = key.objectid; 1804 } 1805 memmove(name, ptr, total_len); 1806 name[total_len] = '\0'; 1807 ret = 0; 1808 out: 1809 btrfs_put_root(root); 1810 btrfs_free_path(path); 1811 return ret; 1812 } 1813 1814 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap, 1815 struct inode *inode, 1816 struct btrfs_ioctl_ino_lookup_user_args *args) 1817 { 1818 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1819 u64 upper_limit = btrfs_ino(BTRFS_I(inode)); 1820 u64 treeid = btrfs_root_id(BTRFS_I(inode)->root); 1821 u64 dirid = args->dirid; 1822 unsigned long item_off; 1823 unsigned long item_len; 1824 struct btrfs_inode_ref *iref; 1825 struct btrfs_root_ref *rref; 1826 struct btrfs_root *root = NULL; 1827 struct btrfs_path *path; 1828 struct btrfs_key key, key2; 1829 struct extent_buffer *leaf; 1830 char *ptr; 1831 int slot; 1832 int len; 1833 int total_len = 0; 1834 int ret; 1835 1836 path = btrfs_alloc_path(); 1837 if (!path) 1838 return -ENOMEM; 1839 1840 /* 1841 * If the bottom subvolume does not exist directly under upper_limit, 1842 * construct the path in from the bottom up. 1843 */ 1844 if (dirid != upper_limit) { 1845 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 1846 1847 root = btrfs_get_fs_root(fs_info, treeid, true); 1848 if (IS_ERR(root)) { 1849 ret = PTR_ERR(root); 1850 goto out; 1851 } 1852 1853 key.objectid = dirid; 1854 key.type = BTRFS_INODE_REF_KEY; 1855 key.offset = (u64)-1; 1856 while (1) { 1857 struct btrfs_inode *temp_inode; 1858 1859 ret = btrfs_search_backwards(root, &key, path); 1860 if (ret < 0) 1861 goto out_put; 1862 else if (ret > 0) { 1863 ret = -ENOENT; 1864 goto out_put; 1865 } 1866 1867 leaf = path->nodes[0]; 1868 slot = path->slots[0]; 1869 1870 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 1871 len = btrfs_inode_ref_name_len(leaf, iref); 1872 ptr -= len + 1; 1873 total_len += len + 1; 1874 if (ptr < args->path) { 1875 ret = -ENAMETOOLONG; 1876 goto out_put; 1877 } 1878 1879 *(ptr + len) = '/'; 1880 read_extent_buffer(leaf, ptr, 1881 (unsigned long)(iref + 1), len); 1882 1883 /* Check the read+exec permission of this directory */ 1884 ret = btrfs_previous_item(root, path, dirid, 1885 BTRFS_INODE_ITEM_KEY); 1886 if (ret < 0) { 1887 goto out_put; 1888 } else if (ret > 0) { 1889 ret = -ENOENT; 1890 goto out_put; 1891 } 1892 1893 leaf = path->nodes[0]; 1894 slot = path->slots[0]; 1895 btrfs_item_key_to_cpu(leaf, &key2, slot); 1896 if (key2.objectid != dirid) { 1897 ret = -ENOENT; 1898 goto out_put; 1899 } 1900 1901 /* 1902 * We don't need the path anymore, so release it and 1903 * avoid deadlocks and lockdep warnings in case 1904 * btrfs_iget() needs to lookup the inode from its root 1905 * btree and lock the same leaf. 1906 */ 1907 btrfs_release_path(path); 1908 temp_inode = btrfs_iget(key2.objectid, root); 1909 if (IS_ERR(temp_inode)) { 1910 ret = PTR_ERR(temp_inode); 1911 goto out_put; 1912 } 1913 ret = inode_permission(idmap, &temp_inode->vfs_inode, 1914 MAY_READ | MAY_EXEC); 1915 iput(&temp_inode->vfs_inode); 1916 if (ret) { 1917 ret = -EACCES; 1918 goto out_put; 1919 } 1920 1921 if (key.offset == upper_limit) 1922 break; 1923 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 1924 ret = -EACCES; 1925 goto out_put; 1926 } 1927 1928 key.objectid = key.offset; 1929 key.offset = (u64)-1; 1930 dirid = key.objectid; 1931 } 1932 1933 memmove(args->path, ptr, total_len); 1934 args->path[total_len] = '\0'; 1935 btrfs_put_root(root); 1936 root = NULL; 1937 btrfs_release_path(path); 1938 } 1939 1940 /* Get the bottom subvolume's name from ROOT_REF */ 1941 key.objectid = treeid; 1942 key.type = BTRFS_ROOT_REF_KEY; 1943 key.offset = args->treeid; 1944 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1945 if (ret < 0) { 1946 goto out; 1947 } else if (ret > 0) { 1948 ret = -ENOENT; 1949 goto out; 1950 } 1951 1952 leaf = path->nodes[0]; 1953 slot = path->slots[0]; 1954 btrfs_item_key_to_cpu(leaf, &key, slot); 1955 1956 item_off = btrfs_item_ptr_offset(leaf, slot); 1957 item_len = btrfs_item_size(leaf, slot); 1958 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 1959 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 1960 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 1961 ret = -EINVAL; 1962 goto out; 1963 } 1964 1965 /* Copy subvolume's name */ 1966 item_off += sizeof(struct btrfs_root_ref); 1967 item_len -= sizeof(struct btrfs_root_ref); 1968 read_extent_buffer(leaf, args->name, item_off, item_len); 1969 args->name[item_len] = 0; 1970 1971 out_put: 1972 btrfs_put_root(root); 1973 out: 1974 btrfs_free_path(path); 1975 return ret; 1976 } 1977 1978 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 1979 void __user *argp) 1980 { 1981 struct btrfs_ioctl_ino_lookup_args *args; 1982 int ret = 0; 1983 1984 args = memdup_user(argp, sizeof(*args)); 1985 if (IS_ERR(args)) 1986 return PTR_ERR(args); 1987 1988 /* 1989 * Unprivileged query to obtain the containing subvolume root id. The 1990 * path is reset so it's consistent with btrfs_search_path_in_tree. 1991 */ 1992 if (args->treeid == 0) 1993 args->treeid = btrfs_root_id(root); 1994 1995 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 1996 args->name[0] = 0; 1997 goto out; 1998 } 1999 2000 if (!capable(CAP_SYS_ADMIN)) { 2001 ret = -EPERM; 2002 goto out; 2003 } 2004 2005 ret = btrfs_search_path_in_tree(root->fs_info, 2006 args->treeid, args->objectid, 2007 args->name); 2008 2009 out: 2010 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2011 ret = -EFAULT; 2012 2013 kfree(args); 2014 return ret; 2015 } 2016 2017 /* 2018 * Version of ino_lookup ioctl (unprivileged) 2019 * 2020 * The main differences from ino_lookup ioctl are: 2021 * 2022 * 1. Read + Exec permission will be checked using inode_permission() during 2023 * path construction. -EACCES will be returned in case of failure. 2024 * 2. Path construction will be stopped at the inode number which corresponds 2025 * to the fd with which this ioctl is called. If constructed path does not 2026 * exist under fd's inode, -EACCES will be returned. 2027 * 3. The name of bottom subvolume is also searched and filled. 2028 */ 2029 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2030 { 2031 struct btrfs_ioctl_ino_lookup_user_args *args; 2032 struct inode *inode; 2033 int ret; 2034 2035 args = memdup_user(argp, sizeof(*args)); 2036 if (IS_ERR(args)) 2037 return PTR_ERR(args); 2038 2039 inode = file_inode(file); 2040 2041 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2042 btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2043 /* 2044 * The subvolume does not exist under fd with which this is 2045 * called 2046 */ 2047 kfree(args); 2048 return -EACCES; 2049 } 2050 2051 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args); 2052 2053 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2054 ret = -EFAULT; 2055 2056 kfree(args); 2057 return ret; 2058 } 2059 2060 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2061 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2062 { 2063 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2064 struct btrfs_fs_info *fs_info; 2065 struct btrfs_root *root; 2066 struct btrfs_path *path; 2067 struct btrfs_key key; 2068 struct btrfs_root_item *root_item; 2069 struct btrfs_root_ref *rref; 2070 struct extent_buffer *leaf; 2071 unsigned long item_off; 2072 unsigned long item_len; 2073 int slot; 2074 int ret = 0; 2075 2076 path = btrfs_alloc_path(); 2077 if (!path) 2078 return -ENOMEM; 2079 2080 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2081 if (!subvol_info) { 2082 btrfs_free_path(path); 2083 return -ENOMEM; 2084 } 2085 2086 fs_info = BTRFS_I(inode)->root->fs_info; 2087 2088 /* Get root_item of inode's subvolume */ 2089 key.objectid = btrfs_root_id(BTRFS_I(inode)->root); 2090 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2091 if (IS_ERR(root)) { 2092 ret = PTR_ERR(root); 2093 goto out_free; 2094 } 2095 root_item = &root->root_item; 2096 2097 subvol_info->treeid = key.objectid; 2098 2099 subvol_info->generation = btrfs_root_generation(root_item); 2100 subvol_info->flags = btrfs_root_flags(root_item); 2101 2102 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2103 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2104 BTRFS_UUID_SIZE); 2105 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2106 BTRFS_UUID_SIZE); 2107 2108 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2109 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2110 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2111 2112 subvol_info->otransid = btrfs_root_otransid(root_item); 2113 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2114 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2115 2116 subvol_info->stransid = btrfs_root_stransid(root_item); 2117 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2118 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2119 2120 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2121 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2122 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2123 2124 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2125 /* Search root tree for ROOT_BACKREF of this subvolume */ 2126 key.type = BTRFS_ROOT_BACKREF_KEY; 2127 key.offset = 0; 2128 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2129 if (ret < 0) { 2130 goto out; 2131 } else if (path->slots[0] >= 2132 btrfs_header_nritems(path->nodes[0])) { 2133 ret = btrfs_next_leaf(fs_info->tree_root, path); 2134 if (ret < 0) { 2135 goto out; 2136 } else if (ret > 0) { 2137 ret = -EUCLEAN; 2138 goto out; 2139 } 2140 } 2141 2142 leaf = path->nodes[0]; 2143 slot = path->slots[0]; 2144 btrfs_item_key_to_cpu(leaf, &key, slot); 2145 if (key.objectid == subvol_info->treeid && 2146 key.type == BTRFS_ROOT_BACKREF_KEY) { 2147 subvol_info->parent_id = key.offset; 2148 2149 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2150 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2151 2152 item_off = btrfs_item_ptr_offset(leaf, slot) 2153 + sizeof(struct btrfs_root_ref); 2154 item_len = btrfs_item_size(leaf, slot) 2155 - sizeof(struct btrfs_root_ref); 2156 read_extent_buffer(leaf, subvol_info->name, 2157 item_off, item_len); 2158 } else { 2159 ret = -ENOENT; 2160 goto out; 2161 } 2162 } 2163 2164 btrfs_free_path(path); 2165 path = NULL; 2166 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2167 ret = -EFAULT; 2168 2169 out: 2170 btrfs_put_root(root); 2171 out_free: 2172 btrfs_free_path(path); 2173 kfree(subvol_info); 2174 return ret; 2175 } 2176 2177 /* 2178 * Return ROOT_REF information of the subvolume containing this inode 2179 * except the subvolume name. 2180 */ 2181 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 2182 void __user *argp) 2183 { 2184 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2185 struct btrfs_root_ref *rref; 2186 struct btrfs_path *path; 2187 struct btrfs_key key; 2188 struct extent_buffer *leaf; 2189 u64 objectid; 2190 int slot; 2191 int ret; 2192 u8 found; 2193 2194 path = btrfs_alloc_path(); 2195 if (!path) 2196 return -ENOMEM; 2197 2198 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2199 if (IS_ERR(rootrefs)) { 2200 btrfs_free_path(path); 2201 return PTR_ERR(rootrefs); 2202 } 2203 2204 objectid = btrfs_root_id(root); 2205 key.objectid = objectid; 2206 key.type = BTRFS_ROOT_REF_KEY; 2207 key.offset = rootrefs->min_treeid; 2208 found = 0; 2209 2210 root = root->fs_info->tree_root; 2211 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2212 if (ret < 0) { 2213 goto out; 2214 } else if (path->slots[0] >= 2215 btrfs_header_nritems(path->nodes[0])) { 2216 ret = btrfs_next_leaf(root, path); 2217 if (ret < 0) { 2218 goto out; 2219 } else if (ret > 0) { 2220 ret = -EUCLEAN; 2221 goto out; 2222 } 2223 } 2224 while (1) { 2225 leaf = path->nodes[0]; 2226 slot = path->slots[0]; 2227 2228 btrfs_item_key_to_cpu(leaf, &key, slot); 2229 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2230 ret = 0; 2231 goto out; 2232 } 2233 2234 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2235 ret = -EOVERFLOW; 2236 goto out; 2237 } 2238 2239 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2240 rootrefs->rootref[found].treeid = key.offset; 2241 rootrefs->rootref[found].dirid = 2242 btrfs_root_ref_dirid(leaf, rref); 2243 found++; 2244 2245 ret = btrfs_next_item(root, path); 2246 if (ret < 0) { 2247 goto out; 2248 } else if (ret > 0) { 2249 ret = -EUCLEAN; 2250 goto out; 2251 } 2252 } 2253 2254 out: 2255 btrfs_free_path(path); 2256 2257 if (!ret || ret == -EOVERFLOW) { 2258 rootrefs->num_items = found; 2259 /* update min_treeid for next search */ 2260 if (found) 2261 rootrefs->min_treeid = 2262 rootrefs->rootref[found - 1].treeid + 1; 2263 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2264 ret = -EFAULT; 2265 } 2266 2267 kfree(rootrefs); 2268 2269 return ret; 2270 } 2271 2272 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2273 void __user *arg, 2274 bool destroy_v2) 2275 { 2276 struct dentry *parent = file->f_path.dentry; 2277 struct dentry *dentry; 2278 struct inode *dir = d_inode(parent); 2279 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 2280 struct inode *inode; 2281 struct btrfs_root *root = BTRFS_I(dir)->root; 2282 struct btrfs_root *dest = NULL; 2283 struct btrfs_ioctl_vol_args *vol_args = NULL; 2284 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2285 struct mnt_idmap *idmap = file_mnt_idmap(file); 2286 char *subvol_name, *subvol_name_ptr = NULL; 2287 int ret = 0; 2288 bool destroy_parent = false; 2289 2290 /* We don't support snapshots with extent tree v2 yet. */ 2291 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2292 btrfs_err(fs_info, 2293 "extent tree v2 doesn't support snapshot deletion yet"); 2294 return -EOPNOTSUPP; 2295 } 2296 2297 if (destroy_v2) { 2298 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2299 if (IS_ERR(vol_args2)) 2300 return PTR_ERR(vol_args2); 2301 2302 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2303 ret = -EOPNOTSUPP; 2304 goto out; 2305 } 2306 2307 /* 2308 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2309 * name, same as v1 currently does. 2310 */ 2311 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2312 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2); 2313 if (ret < 0) 2314 goto out; 2315 subvol_name = vol_args2->name; 2316 2317 ret = mnt_want_write_file(file); 2318 if (ret) 2319 goto out; 2320 } else { 2321 struct inode *old_dir; 2322 2323 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2324 ret = -EINVAL; 2325 goto out; 2326 } 2327 2328 ret = mnt_want_write_file(file); 2329 if (ret) 2330 goto out; 2331 2332 dentry = btrfs_get_dentry(fs_info->sb, 2333 BTRFS_FIRST_FREE_OBJECTID, 2334 vol_args2->subvolid, 0); 2335 if (IS_ERR(dentry)) { 2336 ret = PTR_ERR(dentry); 2337 goto out_drop_write; 2338 } 2339 2340 /* 2341 * Change the default parent since the subvolume being 2342 * deleted can be outside of the current mount point. 2343 */ 2344 parent = btrfs_get_parent(dentry); 2345 2346 /* 2347 * At this point dentry->d_name can point to '/' if the 2348 * subvolume we want to destroy is outsite of the 2349 * current mount point, so we need to release the 2350 * current dentry and execute the lookup to return a new 2351 * one with ->d_name pointing to the 2352 * <mount point>/subvol_name. 2353 */ 2354 dput(dentry); 2355 if (IS_ERR(parent)) { 2356 ret = PTR_ERR(parent); 2357 goto out_drop_write; 2358 } 2359 old_dir = dir; 2360 dir = d_inode(parent); 2361 2362 /* 2363 * If v2 was used with SPEC_BY_ID, a new parent was 2364 * allocated since the subvolume can be outside of the 2365 * current mount point. Later on we need to release this 2366 * new parent dentry. 2367 */ 2368 destroy_parent = true; 2369 2370 /* 2371 * On idmapped mounts, deletion via subvolid is 2372 * restricted to subvolumes that are immediate 2373 * ancestors of the inode referenced by the file 2374 * descriptor in the ioctl. Otherwise the idmapping 2375 * could potentially be abused to delete subvolumes 2376 * anywhere in the filesystem the user wouldn't be able 2377 * to delete without an idmapped mount. 2378 */ 2379 if (old_dir != dir && idmap != &nop_mnt_idmap) { 2380 ret = -EOPNOTSUPP; 2381 goto free_parent; 2382 } 2383 2384 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2385 fs_info, vol_args2->subvolid); 2386 if (IS_ERR(subvol_name_ptr)) { 2387 ret = PTR_ERR(subvol_name_ptr); 2388 goto free_parent; 2389 } 2390 /* subvol_name_ptr is already nul terminated */ 2391 subvol_name = (char *)kbasename(subvol_name_ptr); 2392 } 2393 } else { 2394 vol_args = memdup_user(arg, sizeof(*vol_args)); 2395 if (IS_ERR(vol_args)) 2396 return PTR_ERR(vol_args); 2397 2398 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2399 if (ret < 0) 2400 goto out; 2401 2402 subvol_name = vol_args->name; 2403 2404 ret = mnt_want_write_file(file); 2405 if (ret) 2406 goto out; 2407 } 2408 2409 if (strchr(subvol_name, '/') || 2410 strcmp(subvol_name, "..") == 0) { 2411 ret = -EINVAL; 2412 goto free_subvol_name; 2413 } 2414 2415 if (!S_ISDIR(dir->i_mode)) { 2416 ret = -ENOTDIR; 2417 goto free_subvol_name; 2418 } 2419 2420 ret = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2421 if (ret == -EINTR) 2422 goto free_subvol_name; 2423 dentry = lookup_one(idmap, &QSTR(subvol_name), parent); 2424 if (IS_ERR(dentry)) { 2425 ret = PTR_ERR(dentry); 2426 goto out_unlock_dir; 2427 } 2428 2429 if (d_really_is_negative(dentry)) { 2430 ret = -ENOENT; 2431 goto out_dput; 2432 } 2433 2434 inode = d_inode(dentry); 2435 dest = BTRFS_I(inode)->root; 2436 if (!capable(CAP_SYS_ADMIN)) { 2437 /* 2438 * Regular user. Only allow this with a special mount 2439 * option, when the user has write+exec access to the 2440 * subvol root, and when rmdir(2) would have been 2441 * allowed. 2442 * 2443 * Note that this is _not_ check that the subvol is 2444 * empty or doesn't contain data that we wouldn't 2445 * otherwise be able to delete. 2446 * 2447 * Users who want to delete empty subvols should try 2448 * rmdir(2). 2449 */ 2450 ret = -EPERM; 2451 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2452 goto out_dput; 2453 2454 /* 2455 * Do not allow deletion if the parent dir is the same 2456 * as the dir to be deleted. That means the ioctl 2457 * must be called on the dentry referencing the root 2458 * of the subvol, not a random directory contained 2459 * within it. 2460 */ 2461 ret = -EINVAL; 2462 if (root == dest) 2463 goto out_dput; 2464 2465 ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC); 2466 if (ret) 2467 goto out_dput; 2468 } 2469 2470 /* check if subvolume may be deleted by a user */ 2471 ret = btrfs_may_delete(idmap, dir, dentry, 1); 2472 if (ret) 2473 goto out_dput; 2474 2475 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2476 ret = -EINVAL; 2477 goto out_dput; 2478 } 2479 2480 btrfs_inode_lock(BTRFS_I(inode), 0); 2481 ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry); 2482 btrfs_inode_unlock(BTRFS_I(inode), 0); 2483 if (!ret) 2484 d_delete_notify(dir, dentry); 2485 2486 out_dput: 2487 dput(dentry); 2488 out_unlock_dir: 2489 btrfs_inode_unlock(BTRFS_I(dir), 0); 2490 free_subvol_name: 2491 kfree(subvol_name_ptr); 2492 free_parent: 2493 if (destroy_parent) 2494 dput(parent); 2495 out_drop_write: 2496 mnt_drop_write_file(file); 2497 out: 2498 kfree(vol_args2); 2499 kfree(vol_args); 2500 return ret; 2501 } 2502 2503 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2504 { 2505 struct inode *inode = file_inode(file); 2506 struct btrfs_root *root = BTRFS_I(inode)->root; 2507 struct btrfs_ioctl_defrag_range_args range = {0}; 2508 int ret; 2509 2510 ret = mnt_want_write_file(file); 2511 if (ret) 2512 return ret; 2513 2514 if (btrfs_root_readonly(root)) { 2515 ret = -EROFS; 2516 goto out; 2517 } 2518 2519 switch (inode->i_mode & S_IFMT) { 2520 case S_IFDIR: 2521 if (!capable(CAP_SYS_ADMIN)) { 2522 ret = -EPERM; 2523 goto out; 2524 } 2525 ret = btrfs_defrag_root(root); 2526 break; 2527 case S_IFREG: 2528 /* 2529 * Note that this does not check the file descriptor for write 2530 * access. This prevents defragmenting executables that are 2531 * running and allows defrag on files open in read-only mode. 2532 */ 2533 if (!capable(CAP_SYS_ADMIN) && 2534 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) { 2535 ret = -EPERM; 2536 goto out; 2537 } 2538 2539 /* 2540 * Don't allow defrag on pre-content watched files, as it could 2541 * populate the page cache with 0's via readahead. 2542 */ 2543 if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) { 2544 ret = -EINVAL; 2545 goto out; 2546 } 2547 2548 if (argp) { 2549 if (copy_from_user(&range, argp, sizeof(range))) { 2550 ret = -EFAULT; 2551 goto out; 2552 } 2553 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) { 2554 ret = -EOPNOTSUPP; 2555 goto out; 2556 } 2557 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS) && 2558 (range.flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS)) { 2559 ret = -EINVAL; 2560 goto out; 2561 } 2562 /* Compression or no-compression require to start the IO. */ 2563 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS) || 2564 (range.flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS)) { 2565 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 2566 range.extent_thresh = (u32)-1; 2567 } 2568 } else { 2569 /* the rest are all set to zero by kzalloc */ 2570 range.len = (u64)-1; 2571 } 2572 ret = btrfs_defrag_file(BTRFS_I(file_inode(file)), &file->f_ra, 2573 &range, BTRFS_OLDEST_GENERATION, 0); 2574 if (ret > 0) 2575 ret = 0; 2576 break; 2577 default: 2578 ret = -EINVAL; 2579 } 2580 out: 2581 mnt_drop_write_file(file); 2582 return ret; 2583 } 2584 2585 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2586 { 2587 struct btrfs_ioctl_vol_args *vol_args; 2588 bool restore_op = false; 2589 int ret; 2590 2591 if (!capable(CAP_SYS_ADMIN)) 2592 return -EPERM; 2593 2594 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2595 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 2596 return -EINVAL; 2597 } 2598 2599 if (fs_info->fs_devices->temp_fsid) { 2600 btrfs_err(fs_info, 2601 "device add not supported on cloned temp-fsid mount"); 2602 return -EINVAL; 2603 } 2604 2605 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 2606 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 2607 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2608 2609 /* 2610 * We can do the device add because we have a paused balanced, 2611 * change the exclusive op type and remember we should bring 2612 * back the paused balance 2613 */ 2614 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 2615 btrfs_exclop_start_unlock(fs_info); 2616 restore_op = true; 2617 } 2618 2619 vol_args = memdup_user(arg, sizeof(*vol_args)); 2620 if (IS_ERR(vol_args)) { 2621 ret = PTR_ERR(vol_args); 2622 goto out; 2623 } 2624 2625 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2626 if (ret < 0) 2627 goto out_free; 2628 2629 ret = btrfs_init_new_device(fs_info, vol_args->name); 2630 2631 if (!ret) 2632 btrfs_info(fs_info, "disk added %s", vol_args->name); 2633 2634 out_free: 2635 kfree(vol_args); 2636 out: 2637 if (restore_op) 2638 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 2639 else 2640 btrfs_exclop_finish(fs_info); 2641 return ret; 2642 } 2643 2644 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2645 { 2646 BTRFS_DEV_LOOKUP_ARGS(args); 2647 struct inode *inode = file_inode(file); 2648 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2649 struct btrfs_ioctl_vol_args_v2 *vol_args; 2650 struct file *bdev_file = NULL; 2651 int ret; 2652 bool cancel = false; 2653 2654 if (!capable(CAP_SYS_ADMIN)) 2655 return -EPERM; 2656 2657 vol_args = memdup_user(arg, sizeof(*vol_args)); 2658 if (IS_ERR(vol_args)) 2659 return PTR_ERR(vol_args); 2660 2661 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 2662 ret = -EOPNOTSUPP; 2663 goto out; 2664 } 2665 2666 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args); 2667 if (ret < 0) 2668 goto out; 2669 2670 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2671 args.devid = vol_args->devid; 2672 } else if (!strcmp("cancel", vol_args->name)) { 2673 cancel = true; 2674 } else { 2675 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2676 if (ret) 2677 goto out; 2678 } 2679 2680 ret = mnt_want_write_file(file); 2681 if (ret) 2682 goto out; 2683 2684 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2685 cancel); 2686 if (ret) 2687 goto err_drop; 2688 2689 /* Exclusive operation is now claimed */ 2690 ret = btrfs_rm_device(fs_info, &args, &bdev_file); 2691 2692 btrfs_exclop_finish(fs_info); 2693 2694 if (!ret) { 2695 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2696 btrfs_info(fs_info, "device deleted: id %llu", 2697 vol_args->devid); 2698 else 2699 btrfs_info(fs_info, "device deleted: %s", 2700 vol_args->name); 2701 } 2702 err_drop: 2703 mnt_drop_write_file(file); 2704 if (bdev_file) 2705 bdev_fput(bdev_file); 2706 out: 2707 btrfs_put_dev_args_from_path(&args); 2708 kfree(vol_args); 2709 return ret; 2710 } 2711 2712 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2713 { 2714 BTRFS_DEV_LOOKUP_ARGS(args); 2715 struct inode *inode = file_inode(file); 2716 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2717 struct btrfs_ioctl_vol_args *vol_args; 2718 struct file *bdev_file = NULL; 2719 int ret; 2720 bool cancel = false; 2721 2722 if (!capable(CAP_SYS_ADMIN)) 2723 return -EPERM; 2724 2725 vol_args = memdup_user(arg, sizeof(*vol_args)); 2726 if (IS_ERR(vol_args)) 2727 return PTR_ERR(vol_args); 2728 2729 ret = btrfs_check_ioctl_vol_args_path(vol_args); 2730 if (ret < 0) 2731 goto out_free; 2732 2733 if (!strcmp("cancel", vol_args->name)) { 2734 cancel = true; 2735 } else { 2736 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2737 if (ret) 2738 goto out; 2739 } 2740 2741 ret = mnt_want_write_file(file); 2742 if (ret) 2743 goto out; 2744 2745 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2746 cancel); 2747 if (ret == 0) { 2748 ret = btrfs_rm_device(fs_info, &args, &bdev_file); 2749 if (!ret) 2750 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2751 btrfs_exclop_finish(fs_info); 2752 } 2753 2754 mnt_drop_write_file(file); 2755 if (bdev_file) 2756 bdev_fput(bdev_file); 2757 out: 2758 btrfs_put_dev_args_from_path(&args); 2759 out_free: 2760 kfree(vol_args); 2761 return ret; 2762 } 2763 2764 static long btrfs_ioctl_fs_info(const struct btrfs_fs_info *fs_info, 2765 void __user *arg) 2766 { 2767 struct btrfs_ioctl_fs_info_args *fi_args; 2768 struct btrfs_device *device; 2769 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2770 u64 flags_in; 2771 int ret = 0; 2772 2773 fi_args = memdup_user(arg, sizeof(*fi_args)); 2774 if (IS_ERR(fi_args)) 2775 return PTR_ERR(fi_args); 2776 2777 flags_in = fi_args->flags; 2778 memset(fi_args, 0, sizeof(*fi_args)); 2779 2780 rcu_read_lock(); 2781 fi_args->num_devices = fs_devices->num_devices; 2782 2783 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2784 if (device->devid > fi_args->max_id) 2785 fi_args->max_id = device->devid; 2786 } 2787 rcu_read_unlock(); 2788 2789 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 2790 fi_args->nodesize = fs_info->nodesize; 2791 fi_args->sectorsize = fs_info->sectorsize; 2792 fi_args->clone_alignment = fs_info->sectorsize; 2793 2794 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 2795 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 2796 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 2797 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 2798 } 2799 2800 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 2801 fi_args->generation = btrfs_get_fs_generation(fs_info); 2802 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 2803 } 2804 2805 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 2806 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 2807 sizeof(fi_args->metadata_uuid)); 2808 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 2809 } 2810 2811 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2812 ret = -EFAULT; 2813 2814 kfree(fi_args); 2815 return ret; 2816 } 2817 2818 static long btrfs_ioctl_dev_info(const struct btrfs_fs_info *fs_info, 2819 void __user *arg) 2820 { 2821 BTRFS_DEV_LOOKUP_ARGS(args); 2822 struct btrfs_ioctl_dev_info_args *di_args; 2823 struct btrfs_device *dev; 2824 int ret = 0; 2825 2826 di_args = memdup_user(arg, sizeof(*di_args)); 2827 if (IS_ERR(di_args)) 2828 return PTR_ERR(di_args); 2829 2830 args.devid = di_args->devid; 2831 if (!btrfs_is_empty_uuid(di_args->uuid)) 2832 args.uuid = di_args->uuid; 2833 2834 rcu_read_lock(); 2835 dev = btrfs_find_device(fs_info->fs_devices, &args); 2836 if (!dev) { 2837 ret = -ENODEV; 2838 goto out; 2839 } 2840 2841 di_args->devid = dev->devid; 2842 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2843 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2844 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2845 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE); 2846 if (dev->name) 2847 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path)); 2848 else 2849 di_args->path[0] = '\0'; 2850 2851 out: 2852 rcu_read_unlock(); 2853 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2854 ret = -EFAULT; 2855 2856 kfree(di_args); 2857 return ret; 2858 } 2859 2860 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2861 { 2862 struct inode *inode = file_inode(file); 2863 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2864 struct btrfs_root *root = BTRFS_I(inode)->root; 2865 struct btrfs_root *new_root; 2866 struct btrfs_dir_item *di; 2867 struct btrfs_trans_handle *trans; 2868 struct btrfs_path *path = NULL; 2869 struct btrfs_disk_key disk_key; 2870 struct fscrypt_str name = FSTR_INIT("default", 7); 2871 u64 objectid = 0; 2872 u64 dir_id; 2873 int ret; 2874 2875 if (!capable(CAP_SYS_ADMIN)) 2876 return -EPERM; 2877 2878 ret = mnt_want_write_file(file); 2879 if (ret) 2880 return ret; 2881 2882 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2883 ret = -EFAULT; 2884 goto out; 2885 } 2886 2887 if (!objectid) 2888 objectid = BTRFS_FS_TREE_OBJECTID; 2889 2890 new_root = btrfs_get_fs_root(fs_info, objectid, true); 2891 if (IS_ERR(new_root)) { 2892 ret = PTR_ERR(new_root); 2893 goto out; 2894 } 2895 if (!btrfs_is_fstree(btrfs_root_id(new_root))) { 2896 ret = -ENOENT; 2897 goto out_free; 2898 } 2899 2900 path = btrfs_alloc_path(); 2901 if (!path) { 2902 ret = -ENOMEM; 2903 goto out_free; 2904 } 2905 2906 trans = btrfs_start_transaction(root, 1); 2907 if (IS_ERR(trans)) { 2908 ret = PTR_ERR(trans); 2909 goto out_free; 2910 } 2911 2912 dir_id = btrfs_super_root_dir(fs_info->super_copy); 2913 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 2914 dir_id, &name, 1); 2915 if (IS_ERR_OR_NULL(di)) { 2916 btrfs_release_path(path); 2917 btrfs_end_transaction(trans); 2918 btrfs_err(fs_info, 2919 "Umm, you don't have the default diritem, this isn't going to work"); 2920 ret = -ENOENT; 2921 goto out_free; 2922 } 2923 2924 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2925 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2926 btrfs_release_path(path); 2927 2928 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 2929 btrfs_end_transaction(trans); 2930 out_free: 2931 btrfs_put_root(new_root); 2932 btrfs_free_path(path); 2933 out: 2934 mnt_drop_write_file(file); 2935 return ret; 2936 } 2937 2938 static void get_block_group_info(struct list_head *groups_list, 2939 struct btrfs_ioctl_space_info *space) 2940 { 2941 struct btrfs_block_group *block_group; 2942 2943 space->total_bytes = 0; 2944 space->used_bytes = 0; 2945 space->flags = 0; 2946 list_for_each_entry(block_group, groups_list, list) { 2947 space->flags = block_group->flags; 2948 space->total_bytes += block_group->length; 2949 space->used_bytes += block_group->used; 2950 } 2951 } 2952 2953 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 2954 void __user *arg) 2955 { 2956 struct btrfs_ioctl_space_args space_args = { 0 }; 2957 struct btrfs_ioctl_space_info space; 2958 struct btrfs_ioctl_space_info *dest; 2959 struct btrfs_ioctl_space_info *dest_orig; 2960 struct btrfs_ioctl_space_info __user *user_dest; 2961 struct btrfs_space_info *info; 2962 static const u64 types[] = { 2963 BTRFS_BLOCK_GROUP_DATA, 2964 BTRFS_BLOCK_GROUP_SYSTEM, 2965 BTRFS_BLOCK_GROUP_METADATA, 2966 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 2967 }; 2968 int num_types = 4; 2969 int alloc_size; 2970 int ret = 0; 2971 u64 slot_count = 0; 2972 int i, c; 2973 2974 if (copy_from_user(&space_args, 2975 (struct btrfs_ioctl_space_args __user *)arg, 2976 sizeof(space_args))) 2977 return -EFAULT; 2978 2979 for (i = 0; i < num_types; i++) { 2980 struct btrfs_space_info *tmp; 2981 2982 info = NULL; 2983 list_for_each_entry(tmp, &fs_info->space_info, list) { 2984 if (tmp->flags == types[i]) { 2985 info = tmp; 2986 break; 2987 } 2988 } 2989 2990 if (!info) 2991 continue; 2992 2993 down_read(&info->groups_sem); 2994 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2995 if (!list_empty(&info->block_groups[c])) 2996 slot_count++; 2997 } 2998 up_read(&info->groups_sem); 2999 } 3000 3001 /* 3002 * Global block reserve, exported as a space_info 3003 */ 3004 slot_count++; 3005 3006 /* space_slots == 0 means they are asking for a count */ 3007 if (space_args.space_slots == 0) { 3008 space_args.total_spaces = slot_count; 3009 goto out; 3010 } 3011 3012 slot_count = min_t(u64, space_args.space_slots, slot_count); 3013 3014 alloc_size = sizeof(*dest) * slot_count; 3015 3016 /* we generally have at most 6 or so space infos, one for each raid 3017 * level. So, a whole page should be more than enough for everyone 3018 */ 3019 if (alloc_size > PAGE_SIZE) 3020 return -ENOMEM; 3021 3022 space_args.total_spaces = 0; 3023 dest = kmalloc(alloc_size, GFP_KERNEL); 3024 if (!dest) 3025 return -ENOMEM; 3026 dest_orig = dest; 3027 3028 /* now we have a buffer to copy into */ 3029 for (i = 0; i < num_types; i++) { 3030 struct btrfs_space_info *tmp; 3031 3032 if (!slot_count) 3033 break; 3034 3035 info = NULL; 3036 list_for_each_entry(tmp, &fs_info->space_info, list) { 3037 if (tmp->flags == types[i]) { 3038 info = tmp; 3039 break; 3040 } 3041 } 3042 3043 if (!info) 3044 continue; 3045 down_read(&info->groups_sem); 3046 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3047 if (!list_empty(&info->block_groups[c])) { 3048 get_block_group_info(&info->block_groups[c], 3049 &space); 3050 memcpy(dest, &space, sizeof(space)); 3051 dest++; 3052 space_args.total_spaces++; 3053 slot_count--; 3054 } 3055 if (!slot_count) 3056 break; 3057 } 3058 up_read(&info->groups_sem); 3059 } 3060 3061 /* 3062 * Add global block reserve 3063 */ 3064 if (slot_count) { 3065 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3066 3067 spin_lock(&block_rsv->lock); 3068 space.total_bytes = block_rsv->size; 3069 space.used_bytes = block_rsv->size - block_rsv->reserved; 3070 spin_unlock(&block_rsv->lock); 3071 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3072 memcpy(dest, &space, sizeof(space)); 3073 space_args.total_spaces++; 3074 } 3075 3076 user_dest = (struct btrfs_ioctl_space_info __user *) 3077 (arg + sizeof(struct btrfs_ioctl_space_args)); 3078 3079 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3080 ret = -EFAULT; 3081 3082 kfree(dest_orig); 3083 out: 3084 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3085 ret = -EFAULT; 3086 3087 return ret; 3088 } 3089 3090 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3091 void __user *argp) 3092 { 3093 struct btrfs_trans_handle *trans; 3094 u64 transid; 3095 3096 /* 3097 * Start orphan cleanup here for the given root in case it hasn't been 3098 * started already by other means. Errors are handled in the other 3099 * functions during transaction commit. 3100 */ 3101 btrfs_orphan_cleanup(root); 3102 3103 trans = btrfs_attach_transaction_barrier(root); 3104 if (IS_ERR(trans)) { 3105 if (PTR_ERR(trans) != -ENOENT) 3106 return PTR_ERR(trans); 3107 3108 /* No running transaction, don't bother */ 3109 transid = btrfs_get_last_trans_committed(root->fs_info); 3110 goto out; 3111 } 3112 transid = trans->transid; 3113 btrfs_commit_transaction_async(trans); 3114 out: 3115 if (argp) 3116 if (copy_to_user(argp, &transid, sizeof(transid))) 3117 return -EFAULT; 3118 return 0; 3119 } 3120 3121 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3122 void __user *argp) 3123 { 3124 /* By default wait for the current transaction. */ 3125 u64 transid = 0; 3126 3127 if (argp) 3128 if (copy_from_user(&transid, argp, sizeof(transid))) 3129 return -EFAULT; 3130 3131 return btrfs_wait_for_commit(fs_info, transid); 3132 } 3133 3134 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3135 { 3136 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file)); 3137 struct btrfs_ioctl_scrub_args *sa; 3138 int ret; 3139 3140 if (!capable(CAP_SYS_ADMIN)) 3141 return -EPERM; 3142 3143 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3144 btrfs_err(fs_info, "scrub: extent tree v2 not yet supported"); 3145 return -EINVAL; 3146 } 3147 3148 sa = memdup_user(arg, sizeof(*sa)); 3149 if (IS_ERR(sa)) 3150 return PTR_ERR(sa); 3151 3152 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) { 3153 ret = -EOPNOTSUPP; 3154 goto out; 3155 } 3156 3157 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3158 ret = mnt_want_write_file(file); 3159 if (ret) 3160 goto out; 3161 } 3162 3163 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3164 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3165 0); 3166 3167 /* 3168 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3169 * error. This is important as it allows user space to know how much 3170 * progress scrub has done. For example, if scrub is canceled we get 3171 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3172 * space. Later user space can inspect the progress from the structure 3173 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3174 * previously (btrfs-progs does this). 3175 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3176 * then return -EFAULT to signal the structure was not copied or it may 3177 * be corrupt and unreliable due to a partial copy. 3178 */ 3179 if (copy_to_user(arg, sa, sizeof(*sa))) 3180 ret = -EFAULT; 3181 3182 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3183 mnt_drop_write_file(file); 3184 out: 3185 kfree(sa); 3186 return ret; 3187 } 3188 3189 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3190 { 3191 if (!capable(CAP_SYS_ADMIN)) 3192 return -EPERM; 3193 3194 return btrfs_scrub_cancel(fs_info); 3195 } 3196 3197 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3198 void __user *arg) 3199 { 3200 struct btrfs_ioctl_scrub_args *sa; 3201 int ret; 3202 3203 if (!capable(CAP_SYS_ADMIN)) 3204 return -EPERM; 3205 3206 sa = memdup_user(arg, sizeof(*sa)); 3207 if (IS_ERR(sa)) 3208 return PTR_ERR(sa); 3209 3210 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3211 3212 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3213 ret = -EFAULT; 3214 3215 kfree(sa); 3216 return ret; 3217 } 3218 3219 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3220 void __user *arg) 3221 { 3222 struct btrfs_ioctl_get_dev_stats *sa; 3223 int ret; 3224 3225 sa = memdup_user(arg, sizeof(*sa)); 3226 if (IS_ERR(sa)) 3227 return PTR_ERR(sa); 3228 3229 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3230 kfree(sa); 3231 return -EPERM; 3232 } 3233 3234 ret = btrfs_get_dev_stats(fs_info, sa); 3235 3236 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3237 ret = -EFAULT; 3238 3239 kfree(sa); 3240 return ret; 3241 } 3242 3243 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3244 void __user *arg) 3245 { 3246 struct btrfs_ioctl_dev_replace_args *p; 3247 int ret; 3248 3249 if (!capable(CAP_SYS_ADMIN)) 3250 return -EPERM; 3251 3252 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3253 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 3254 return -EINVAL; 3255 } 3256 3257 p = memdup_user(arg, sizeof(*p)); 3258 if (IS_ERR(p)) 3259 return PTR_ERR(p); 3260 3261 switch (p->cmd) { 3262 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3263 if (sb_rdonly(fs_info->sb)) { 3264 ret = -EROFS; 3265 goto out; 3266 } 3267 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3268 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3269 } else { 3270 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3271 btrfs_exclop_finish(fs_info); 3272 } 3273 break; 3274 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3275 btrfs_dev_replace_status(fs_info, p); 3276 ret = 0; 3277 break; 3278 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3279 p->result = btrfs_dev_replace_cancel(fs_info); 3280 ret = 0; 3281 break; 3282 default: 3283 ret = -EINVAL; 3284 break; 3285 } 3286 3287 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3288 ret = -EFAULT; 3289 out: 3290 kfree(p); 3291 return ret; 3292 } 3293 3294 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3295 { 3296 int ret = 0; 3297 int i; 3298 u64 rel_ptr; 3299 int size; 3300 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3301 struct inode_fs_paths *ipath = NULL; 3302 struct btrfs_path *path; 3303 3304 if (!capable(CAP_DAC_READ_SEARCH)) 3305 return -EPERM; 3306 3307 path = btrfs_alloc_path(); 3308 if (!path) { 3309 ret = -ENOMEM; 3310 goto out; 3311 } 3312 3313 ipa = memdup_user(arg, sizeof(*ipa)); 3314 if (IS_ERR(ipa)) { 3315 ret = PTR_ERR(ipa); 3316 ipa = NULL; 3317 goto out; 3318 } 3319 3320 size = min_t(u32, ipa->size, 4096); 3321 ipath = init_ipath(size, root, path); 3322 if (IS_ERR(ipath)) { 3323 ret = PTR_ERR(ipath); 3324 ipath = NULL; 3325 goto out; 3326 } 3327 3328 ret = paths_from_inode(ipa->inum, ipath); 3329 if (ret < 0) 3330 goto out; 3331 3332 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3333 rel_ptr = ipath->fspath->val[i] - 3334 (u64)(unsigned long)ipath->fspath->val; 3335 ipath->fspath->val[i] = rel_ptr; 3336 } 3337 3338 btrfs_free_path(path); 3339 path = NULL; 3340 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3341 ipath->fspath, size); 3342 if (ret) { 3343 ret = -EFAULT; 3344 goto out; 3345 } 3346 3347 out: 3348 btrfs_free_path(path); 3349 free_ipath(ipath); 3350 kfree(ipa); 3351 3352 return ret; 3353 } 3354 3355 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3356 void __user *arg, int version) 3357 { 3358 int ret = 0; 3359 int size; 3360 struct btrfs_ioctl_logical_ino_args *loi; 3361 struct btrfs_data_container *inodes = NULL; 3362 bool ignore_offset; 3363 3364 if (!capable(CAP_SYS_ADMIN)) 3365 return -EPERM; 3366 3367 loi = memdup_user(arg, sizeof(*loi)); 3368 if (IS_ERR(loi)) 3369 return PTR_ERR(loi); 3370 3371 if (version == 1) { 3372 ignore_offset = false; 3373 size = min_t(u32, loi->size, SZ_64K); 3374 } else { 3375 /* All reserved bits must be 0 for now */ 3376 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3377 ret = -EINVAL; 3378 goto out_loi; 3379 } 3380 /* Only accept flags we have defined so far */ 3381 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3382 ret = -EINVAL; 3383 goto out_loi; 3384 } 3385 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3386 size = min_t(u32, loi->size, SZ_16M); 3387 } 3388 3389 inodes = init_data_container(size); 3390 if (IS_ERR(inodes)) { 3391 ret = PTR_ERR(inodes); 3392 goto out_loi; 3393 } 3394 3395 ret = iterate_inodes_from_logical(loi->logical, fs_info, inodes, ignore_offset); 3396 if (ret == -EINVAL) 3397 ret = -ENOENT; 3398 if (ret < 0) 3399 goto out; 3400 3401 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3402 size); 3403 if (ret) 3404 ret = -EFAULT; 3405 3406 out: 3407 kvfree(inodes); 3408 out_loi: 3409 kfree(loi); 3410 3411 return ret; 3412 } 3413 3414 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3415 struct btrfs_ioctl_balance_args *bargs) 3416 { 3417 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3418 3419 bargs->flags = bctl->flags; 3420 3421 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3422 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3423 if (atomic_read(&fs_info->balance_pause_req)) 3424 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3425 if (atomic_read(&fs_info->balance_cancel_req)) 3426 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3427 3428 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3429 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3430 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3431 3432 spin_lock(&fs_info->balance_lock); 3433 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3434 spin_unlock(&fs_info->balance_lock); 3435 } 3436 3437 /* 3438 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 3439 * required. 3440 * 3441 * @fs_info: the filesystem 3442 * @excl_acquired: ptr to boolean value which is set to false in case balance 3443 * is being resumed 3444 * 3445 * Return 0 on success in which case both fs_info::balance is acquired as well 3446 * as exclusive ops are blocked. In case of failure return an error code. 3447 */ 3448 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 3449 { 3450 int ret; 3451 3452 /* 3453 * Exclusive operation is locked. Three possibilities: 3454 * (1) some other op is running 3455 * (2) balance is running 3456 * (3) balance is paused -- special case (think resume) 3457 */ 3458 while (1) { 3459 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3460 *excl_acquired = true; 3461 mutex_lock(&fs_info->balance_mutex); 3462 return 0; 3463 } 3464 3465 mutex_lock(&fs_info->balance_mutex); 3466 if (fs_info->balance_ctl) { 3467 /* This is either (2) or (3) */ 3468 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3469 /* This is (2) */ 3470 ret = -EINPROGRESS; 3471 goto out_failure; 3472 3473 } else { 3474 mutex_unlock(&fs_info->balance_mutex); 3475 /* 3476 * Lock released to allow other waiters to 3477 * continue, we'll reexamine the status again. 3478 */ 3479 mutex_lock(&fs_info->balance_mutex); 3480 3481 if (fs_info->balance_ctl && 3482 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3483 /* This is (3) */ 3484 *excl_acquired = false; 3485 return 0; 3486 } 3487 } 3488 } else { 3489 /* This is (1) */ 3490 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3491 goto out_failure; 3492 } 3493 3494 mutex_unlock(&fs_info->balance_mutex); 3495 } 3496 3497 out_failure: 3498 mutex_unlock(&fs_info->balance_mutex); 3499 *excl_acquired = false; 3500 return ret; 3501 } 3502 3503 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3504 { 3505 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3506 struct btrfs_fs_info *fs_info = root->fs_info; 3507 struct btrfs_ioctl_balance_args *bargs; 3508 struct btrfs_balance_control *bctl; 3509 bool need_unlock = true; 3510 int ret; 3511 3512 if (!capable(CAP_SYS_ADMIN)) 3513 return -EPERM; 3514 3515 ret = mnt_want_write_file(file); 3516 if (ret) 3517 return ret; 3518 3519 bargs = memdup_user(arg, sizeof(*bargs)); 3520 if (IS_ERR(bargs)) { 3521 ret = PTR_ERR(bargs); 3522 bargs = NULL; 3523 goto out; 3524 } 3525 3526 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 3527 if (ret) 3528 goto out; 3529 3530 lockdep_assert_held(&fs_info->balance_mutex); 3531 3532 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3533 if (!fs_info->balance_ctl) { 3534 ret = -ENOTCONN; 3535 goto out_unlock; 3536 } 3537 3538 bctl = fs_info->balance_ctl; 3539 spin_lock(&fs_info->balance_lock); 3540 bctl->flags |= BTRFS_BALANCE_RESUME; 3541 spin_unlock(&fs_info->balance_lock); 3542 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 3543 3544 goto do_balance; 3545 } 3546 3547 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3548 ret = -EINVAL; 3549 goto out_unlock; 3550 } 3551 3552 if (fs_info->balance_ctl) { 3553 ret = -EINPROGRESS; 3554 goto out_unlock; 3555 } 3556 3557 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3558 if (!bctl) { 3559 ret = -ENOMEM; 3560 goto out_unlock; 3561 } 3562 3563 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3564 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3565 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3566 3567 bctl->flags = bargs->flags; 3568 do_balance: 3569 /* 3570 * Ownership of bctl and exclusive operation goes to btrfs_balance. 3571 * bctl is freed in reset_balance_state, or, if restriper was paused 3572 * all the way until unmount, in free_fs_info. The flag should be 3573 * cleared after reset_balance_state. 3574 */ 3575 need_unlock = false; 3576 3577 ret = btrfs_balance(fs_info, bctl, bargs); 3578 bctl = NULL; 3579 3580 if (ret == 0 || ret == -ECANCELED) { 3581 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3582 ret = -EFAULT; 3583 } 3584 3585 kfree(bctl); 3586 out_unlock: 3587 mutex_unlock(&fs_info->balance_mutex); 3588 if (need_unlock) 3589 btrfs_exclop_finish(fs_info); 3590 out: 3591 mnt_drop_write_file(file); 3592 kfree(bargs); 3593 return ret; 3594 } 3595 3596 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 3597 { 3598 if (!capable(CAP_SYS_ADMIN)) 3599 return -EPERM; 3600 3601 switch (cmd) { 3602 case BTRFS_BALANCE_CTL_PAUSE: 3603 return btrfs_pause_balance(fs_info); 3604 case BTRFS_BALANCE_CTL_CANCEL: 3605 return btrfs_cancel_balance(fs_info); 3606 } 3607 3608 return -EINVAL; 3609 } 3610 3611 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 3612 void __user *arg) 3613 { 3614 struct btrfs_ioctl_balance_args *bargs; 3615 int ret = 0; 3616 3617 if (!capable(CAP_SYS_ADMIN)) 3618 return -EPERM; 3619 3620 mutex_lock(&fs_info->balance_mutex); 3621 if (!fs_info->balance_ctl) { 3622 ret = -ENOTCONN; 3623 goto out; 3624 } 3625 3626 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 3627 if (!bargs) { 3628 ret = -ENOMEM; 3629 goto out; 3630 } 3631 3632 btrfs_update_ioctl_balance_args(fs_info, bargs); 3633 3634 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3635 ret = -EFAULT; 3636 3637 kfree(bargs); 3638 out: 3639 mutex_unlock(&fs_info->balance_mutex); 3640 return ret; 3641 } 3642 3643 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3644 { 3645 struct inode *inode = file_inode(file); 3646 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3647 struct btrfs_ioctl_quota_ctl_args *sa; 3648 int ret; 3649 3650 if (!capable(CAP_SYS_ADMIN)) 3651 return -EPERM; 3652 3653 ret = mnt_want_write_file(file); 3654 if (ret) 3655 return ret; 3656 3657 sa = memdup_user(arg, sizeof(*sa)); 3658 if (IS_ERR(sa)) { 3659 ret = PTR_ERR(sa); 3660 goto drop_write; 3661 } 3662 3663 switch (sa->cmd) { 3664 case BTRFS_QUOTA_CTL_ENABLE: 3665 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA: 3666 down_write(&fs_info->subvol_sem); 3667 ret = btrfs_quota_enable(fs_info, sa); 3668 up_write(&fs_info->subvol_sem); 3669 break; 3670 case BTRFS_QUOTA_CTL_DISABLE: 3671 /* 3672 * Lock the cleaner mutex to prevent races with concurrent 3673 * relocation, because relocation may be building backrefs for 3674 * blocks of the quota root while we are deleting the root. This 3675 * is like dropping fs roots of deleted snapshots/subvolumes, we 3676 * need the same protection. 3677 * 3678 * This also prevents races between concurrent tasks trying to 3679 * disable quotas, because we will unlock and relock 3680 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes. 3681 * 3682 * We take this here because we have the dependency of 3683 * 3684 * inode_lock -> subvol_sem 3685 * 3686 * because of rename. With relocation we can prealloc extents, 3687 * so that makes the dependency chain 3688 * 3689 * cleaner_mutex -> inode_lock -> subvol_sem 3690 * 3691 * so we must take the cleaner_mutex here before we take the 3692 * subvol_sem. The deadlock can't actually happen, but this 3693 * quiets lockdep. 3694 */ 3695 mutex_lock(&fs_info->cleaner_mutex); 3696 down_write(&fs_info->subvol_sem); 3697 ret = btrfs_quota_disable(fs_info); 3698 up_write(&fs_info->subvol_sem); 3699 mutex_unlock(&fs_info->cleaner_mutex); 3700 break; 3701 default: 3702 ret = -EINVAL; 3703 break; 3704 } 3705 3706 kfree(sa); 3707 drop_write: 3708 mnt_drop_write_file(file); 3709 return ret; 3710 } 3711 3712 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3713 { 3714 struct inode *inode = file_inode(file); 3715 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3716 struct btrfs_root *root = BTRFS_I(inode)->root; 3717 struct btrfs_ioctl_qgroup_assign_args *sa; 3718 struct btrfs_qgroup_list *prealloc = NULL; 3719 struct btrfs_trans_handle *trans; 3720 int ret; 3721 int err; 3722 3723 if (!capable(CAP_SYS_ADMIN)) 3724 return -EPERM; 3725 3726 if (!btrfs_qgroup_enabled(fs_info)) 3727 return -ENOTCONN; 3728 3729 ret = mnt_want_write_file(file); 3730 if (ret) 3731 return ret; 3732 3733 sa = memdup_user(arg, sizeof(*sa)); 3734 if (IS_ERR(sa)) { 3735 ret = PTR_ERR(sa); 3736 goto drop_write; 3737 } 3738 3739 if (sa->assign) { 3740 prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL); 3741 if (!prealloc) { 3742 ret = -ENOMEM; 3743 goto drop_write; 3744 } 3745 } 3746 3747 trans = btrfs_join_transaction(root); 3748 if (IS_ERR(trans)) { 3749 ret = PTR_ERR(trans); 3750 goto out; 3751 } 3752 3753 /* 3754 * Prealloc ownership is moved to the relation handler, there it's used 3755 * or freed on error. 3756 */ 3757 if (sa->assign) { 3758 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc); 3759 prealloc = NULL; 3760 } else { 3761 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 3762 } 3763 3764 /* update qgroup status and info */ 3765 mutex_lock(&fs_info->qgroup_ioctl_lock); 3766 err = btrfs_run_qgroups(trans); 3767 mutex_unlock(&fs_info->qgroup_ioctl_lock); 3768 if (err < 0) 3769 btrfs_warn(fs_info, 3770 "qgroup status update failed after %s relation, marked as inconsistent", 3771 sa->assign ? "adding" : "deleting"); 3772 err = btrfs_end_transaction(trans); 3773 if (err && !ret) 3774 ret = err; 3775 3776 out: 3777 kfree(prealloc); 3778 kfree(sa); 3779 drop_write: 3780 mnt_drop_write_file(file); 3781 return ret; 3782 } 3783 3784 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3785 { 3786 struct inode *inode = file_inode(file); 3787 struct btrfs_root *root = BTRFS_I(inode)->root; 3788 struct btrfs_ioctl_qgroup_create_args *sa; 3789 struct btrfs_trans_handle *trans; 3790 int ret; 3791 int err; 3792 3793 if (!capable(CAP_SYS_ADMIN)) 3794 return -EPERM; 3795 3796 if (!btrfs_qgroup_enabled(root->fs_info)) 3797 return -ENOTCONN; 3798 3799 ret = mnt_want_write_file(file); 3800 if (ret) 3801 return ret; 3802 3803 sa = memdup_user(arg, sizeof(*sa)); 3804 if (IS_ERR(sa)) { 3805 ret = PTR_ERR(sa); 3806 goto drop_write; 3807 } 3808 3809 if (!sa->qgroupid) { 3810 ret = -EINVAL; 3811 goto out; 3812 } 3813 3814 if (sa->create && btrfs_is_fstree(sa->qgroupid)) { 3815 ret = -EINVAL; 3816 goto out; 3817 } 3818 3819 trans = btrfs_join_transaction(root); 3820 if (IS_ERR(trans)) { 3821 ret = PTR_ERR(trans); 3822 goto out; 3823 } 3824 3825 if (sa->create) { 3826 ret = btrfs_create_qgroup(trans, sa->qgroupid); 3827 } else { 3828 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 3829 } 3830 3831 err = btrfs_end_transaction(trans); 3832 if (err && !ret) 3833 ret = err; 3834 3835 out: 3836 kfree(sa); 3837 drop_write: 3838 mnt_drop_write_file(file); 3839 return ret; 3840 } 3841 3842 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3843 { 3844 struct inode *inode = file_inode(file); 3845 struct btrfs_root *root = BTRFS_I(inode)->root; 3846 struct btrfs_ioctl_qgroup_limit_args *sa; 3847 struct btrfs_trans_handle *trans; 3848 int ret; 3849 int err; 3850 u64 qgroupid; 3851 3852 if (!capable(CAP_SYS_ADMIN)) 3853 return -EPERM; 3854 3855 if (!btrfs_qgroup_enabled(root->fs_info)) 3856 return -ENOTCONN; 3857 3858 ret = mnt_want_write_file(file); 3859 if (ret) 3860 return ret; 3861 3862 sa = memdup_user(arg, sizeof(*sa)); 3863 if (IS_ERR(sa)) { 3864 ret = PTR_ERR(sa); 3865 goto drop_write; 3866 } 3867 3868 trans = btrfs_join_transaction(root); 3869 if (IS_ERR(trans)) { 3870 ret = PTR_ERR(trans); 3871 goto out; 3872 } 3873 3874 qgroupid = sa->qgroupid; 3875 if (!qgroupid) { 3876 /* take the current subvol as qgroup */ 3877 qgroupid = btrfs_root_id(root); 3878 } 3879 3880 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 3881 3882 err = btrfs_end_transaction(trans); 3883 if (err && !ret) 3884 ret = err; 3885 3886 out: 3887 kfree(sa); 3888 drop_write: 3889 mnt_drop_write_file(file); 3890 return ret; 3891 } 3892 3893 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 3894 { 3895 struct inode *inode = file_inode(file); 3896 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3897 struct btrfs_ioctl_quota_rescan_args *qsa; 3898 int ret; 3899 3900 if (!capable(CAP_SYS_ADMIN)) 3901 return -EPERM; 3902 3903 if (!btrfs_qgroup_enabled(fs_info)) 3904 return -ENOTCONN; 3905 3906 ret = mnt_want_write_file(file); 3907 if (ret) 3908 return ret; 3909 3910 qsa = memdup_user(arg, sizeof(*qsa)); 3911 if (IS_ERR(qsa)) { 3912 ret = PTR_ERR(qsa); 3913 goto drop_write; 3914 } 3915 3916 if (qsa->flags) { 3917 ret = -EINVAL; 3918 goto out; 3919 } 3920 3921 ret = btrfs_qgroup_rescan(fs_info); 3922 3923 out: 3924 kfree(qsa); 3925 drop_write: 3926 mnt_drop_write_file(file); 3927 return ret; 3928 } 3929 3930 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 3931 void __user *arg) 3932 { 3933 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 3934 3935 if (!capable(CAP_SYS_ADMIN)) 3936 return -EPERM; 3937 3938 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 3939 qsa.flags = 1; 3940 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 3941 } 3942 3943 if (copy_to_user(arg, &qsa, sizeof(qsa))) 3944 return -EFAULT; 3945 3946 return 0; 3947 } 3948 3949 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info) 3950 { 3951 if (!capable(CAP_SYS_ADMIN)) 3952 return -EPERM; 3953 3954 return btrfs_qgroup_wait_for_completion(fs_info, true); 3955 } 3956 3957 static long _btrfs_ioctl_set_received_subvol(struct file *file, 3958 struct mnt_idmap *idmap, 3959 struct btrfs_ioctl_received_subvol_args *sa) 3960 { 3961 struct inode *inode = file_inode(file); 3962 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3963 struct btrfs_root *root = BTRFS_I(inode)->root; 3964 struct btrfs_root_item *root_item = &root->root_item; 3965 struct btrfs_trans_handle *trans; 3966 struct timespec64 ct = current_time(inode); 3967 int ret = 0; 3968 int received_uuid_changed; 3969 3970 if (!inode_owner_or_capable(idmap, inode)) 3971 return -EPERM; 3972 3973 ret = mnt_want_write_file(file); 3974 if (ret < 0) 3975 return ret; 3976 3977 down_write(&fs_info->subvol_sem); 3978 3979 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3980 ret = -EINVAL; 3981 goto out; 3982 } 3983 3984 if (btrfs_root_readonly(root)) { 3985 ret = -EROFS; 3986 goto out; 3987 } 3988 3989 /* 3990 * 1 - root item 3991 * 2 - uuid items (received uuid + subvol uuid) 3992 */ 3993 trans = btrfs_start_transaction(root, 3); 3994 if (IS_ERR(trans)) { 3995 ret = PTR_ERR(trans); 3996 trans = NULL; 3997 goto out; 3998 } 3999 4000 sa->rtransid = trans->transid; 4001 sa->rtime.sec = ct.tv_sec; 4002 sa->rtime.nsec = ct.tv_nsec; 4003 4004 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4005 BTRFS_UUID_SIZE); 4006 if (received_uuid_changed && 4007 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4008 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4009 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4010 btrfs_root_id(root)); 4011 if (ret && ret != -ENOENT) { 4012 btrfs_abort_transaction(trans, ret); 4013 btrfs_end_transaction(trans); 4014 goto out; 4015 } 4016 } 4017 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4018 btrfs_set_root_stransid(root_item, sa->stransid); 4019 btrfs_set_root_rtransid(root_item, sa->rtransid); 4020 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4021 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4022 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4023 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4024 4025 ret = btrfs_update_root(trans, fs_info->tree_root, 4026 &root->root_key, &root->root_item); 4027 if (ret < 0) { 4028 btrfs_end_transaction(trans); 4029 goto out; 4030 } 4031 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4032 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4033 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4034 btrfs_root_id(root)); 4035 if (ret < 0 && ret != -EEXIST) { 4036 btrfs_abort_transaction(trans, ret); 4037 btrfs_end_transaction(trans); 4038 goto out; 4039 } 4040 } 4041 ret = btrfs_commit_transaction(trans); 4042 out: 4043 up_write(&fs_info->subvol_sem); 4044 mnt_drop_write_file(file); 4045 return ret; 4046 } 4047 4048 #ifdef CONFIG_64BIT 4049 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4050 void __user *arg) 4051 { 4052 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4053 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4054 int ret = 0; 4055 4056 args32 = memdup_user(arg, sizeof(*args32)); 4057 if (IS_ERR(args32)) 4058 return PTR_ERR(args32); 4059 4060 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4061 if (!args64) { 4062 ret = -ENOMEM; 4063 goto out; 4064 } 4065 4066 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4067 args64->stransid = args32->stransid; 4068 args64->rtransid = args32->rtransid; 4069 args64->stime.sec = args32->stime.sec; 4070 args64->stime.nsec = args32->stime.nsec; 4071 args64->rtime.sec = args32->rtime.sec; 4072 args64->rtime.nsec = args32->rtime.nsec; 4073 args64->flags = args32->flags; 4074 4075 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64); 4076 if (ret) 4077 goto out; 4078 4079 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4080 args32->stransid = args64->stransid; 4081 args32->rtransid = args64->rtransid; 4082 args32->stime.sec = args64->stime.sec; 4083 args32->stime.nsec = args64->stime.nsec; 4084 args32->rtime.sec = args64->rtime.sec; 4085 args32->rtime.nsec = args64->rtime.nsec; 4086 args32->flags = args64->flags; 4087 4088 ret = copy_to_user(arg, args32, sizeof(*args32)); 4089 if (ret) 4090 ret = -EFAULT; 4091 4092 out: 4093 kfree(args32); 4094 kfree(args64); 4095 return ret; 4096 } 4097 #endif 4098 4099 static long btrfs_ioctl_set_received_subvol(struct file *file, 4100 void __user *arg) 4101 { 4102 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4103 int ret = 0; 4104 4105 sa = memdup_user(arg, sizeof(*sa)); 4106 if (IS_ERR(sa)) 4107 return PTR_ERR(sa); 4108 4109 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa); 4110 4111 if (ret) 4112 goto out; 4113 4114 ret = copy_to_user(arg, sa, sizeof(*sa)); 4115 if (ret) 4116 ret = -EFAULT; 4117 4118 out: 4119 kfree(sa); 4120 return ret; 4121 } 4122 4123 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4124 void __user *arg) 4125 { 4126 size_t len; 4127 int ret; 4128 char label[BTRFS_LABEL_SIZE]; 4129 4130 spin_lock(&fs_info->super_lock); 4131 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4132 spin_unlock(&fs_info->super_lock); 4133 4134 len = strnlen(label, BTRFS_LABEL_SIZE); 4135 4136 if (len == BTRFS_LABEL_SIZE) { 4137 btrfs_warn(fs_info, 4138 "label is too long, return the first %zu bytes", 4139 --len); 4140 } 4141 4142 ret = copy_to_user(arg, label, len); 4143 4144 return ret ? -EFAULT : 0; 4145 } 4146 4147 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4148 { 4149 struct inode *inode = file_inode(file); 4150 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4151 struct btrfs_root *root = BTRFS_I(inode)->root; 4152 struct btrfs_super_block *super_block = fs_info->super_copy; 4153 struct btrfs_trans_handle *trans; 4154 char label[BTRFS_LABEL_SIZE]; 4155 int ret; 4156 4157 if (!capable(CAP_SYS_ADMIN)) 4158 return -EPERM; 4159 4160 if (copy_from_user(label, arg, sizeof(label))) 4161 return -EFAULT; 4162 4163 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4164 btrfs_err(fs_info, 4165 "unable to set label with more than %d bytes", 4166 BTRFS_LABEL_SIZE - 1); 4167 return -EINVAL; 4168 } 4169 4170 ret = mnt_want_write_file(file); 4171 if (ret) 4172 return ret; 4173 4174 trans = btrfs_start_transaction(root, 0); 4175 if (IS_ERR(trans)) { 4176 ret = PTR_ERR(trans); 4177 goto out_unlock; 4178 } 4179 4180 spin_lock(&fs_info->super_lock); 4181 strscpy(super_block->label, label); 4182 spin_unlock(&fs_info->super_lock); 4183 ret = btrfs_commit_transaction(trans); 4184 4185 out_unlock: 4186 mnt_drop_write_file(file); 4187 return ret; 4188 } 4189 4190 #define INIT_FEATURE_FLAGS(suffix) \ 4191 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4192 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4193 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4194 4195 int btrfs_ioctl_get_supported_features(void __user *arg) 4196 { 4197 static const struct btrfs_ioctl_feature_flags features[3] = { 4198 INIT_FEATURE_FLAGS(SUPP), 4199 INIT_FEATURE_FLAGS(SAFE_SET), 4200 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4201 }; 4202 4203 if (copy_to_user(arg, &features, sizeof(features))) 4204 return -EFAULT; 4205 4206 return 0; 4207 } 4208 4209 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4210 void __user *arg) 4211 { 4212 struct btrfs_super_block *super_block = fs_info->super_copy; 4213 struct btrfs_ioctl_feature_flags features; 4214 4215 features.compat_flags = btrfs_super_compat_flags(super_block); 4216 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4217 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4218 4219 if (copy_to_user(arg, &features, sizeof(features))) 4220 return -EFAULT; 4221 4222 return 0; 4223 } 4224 4225 static int check_feature_bits(const struct btrfs_fs_info *fs_info, 4226 enum btrfs_feature_set set, 4227 u64 change_mask, u64 flags, u64 supported_flags, 4228 u64 safe_set, u64 safe_clear) 4229 { 4230 const char *type = btrfs_feature_set_name(set); 4231 char *names; 4232 u64 disallowed, unsupported; 4233 u64 set_mask = flags & change_mask; 4234 u64 clear_mask = ~flags & change_mask; 4235 4236 unsupported = set_mask & ~supported_flags; 4237 if (unsupported) { 4238 names = btrfs_printable_features(set, unsupported); 4239 if (names) { 4240 btrfs_warn(fs_info, 4241 "this kernel does not support the %s feature bit%s", 4242 names, strchr(names, ',') ? "s" : ""); 4243 kfree(names); 4244 } else 4245 btrfs_warn(fs_info, 4246 "this kernel does not support %s bits 0x%llx", 4247 type, unsupported); 4248 return -EOPNOTSUPP; 4249 } 4250 4251 disallowed = set_mask & ~safe_set; 4252 if (disallowed) { 4253 names = btrfs_printable_features(set, disallowed); 4254 if (names) { 4255 btrfs_warn(fs_info, 4256 "can't set the %s feature bit%s while mounted", 4257 names, strchr(names, ',') ? "s" : ""); 4258 kfree(names); 4259 } else 4260 btrfs_warn(fs_info, 4261 "can't set %s bits 0x%llx while mounted", 4262 type, disallowed); 4263 return -EPERM; 4264 } 4265 4266 disallowed = clear_mask & ~safe_clear; 4267 if (disallowed) { 4268 names = btrfs_printable_features(set, disallowed); 4269 if (names) { 4270 btrfs_warn(fs_info, 4271 "can't clear the %s feature bit%s while mounted", 4272 names, strchr(names, ',') ? "s" : ""); 4273 kfree(names); 4274 } else 4275 btrfs_warn(fs_info, 4276 "can't clear %s bits 0x%llx while mounted", 4277 type, disallowed); 4278 return -EPERM; 4279 } 4280 4281 return 0; 4282 } 4283 4284 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4285 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4286 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4287 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4288 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4289 4290 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4291 { 4292 struct inode *inode = file_inode(file); 4293 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 4294 struct btrfs_root *root = BTRFS_I(inode)->root; 4295 struct btrfs_super_block *super_block = fs_info->super_copy; 4296 struct btrfs_ioctl_feature_flags flags[2]; 4297 struct btrfs_trans_handle *trans; 4298 u64 newflags; 4299 int ret; 4300 4301 if (!capable(CAP_SYS_ADMIN)) 4302 return -EPERM; 4303 4304 if (copy_from_user(flags, arg, sizeof(flags))) 4305 return -EFAULT; 4306 4307 /* Nothing to do */ 4308 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4309 !flags[0].incompat_flags) 4310 return 0; 4311 4312 ret = check_feature(fs_info, flags[0].compat_flags, 4313 flags[1].compat_flags, COMPAT); 4314 if (ret) 4315 return ret; 4316 4317 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4318 flags[1].compat_ro_flags, COMPAT_RO); 4319 if (ret) 4320 return ret; 4321 4322 ret = check_feature(fs_info, flags[0].incompat_flags, 4323 flags[1].incompat_flags, INCOMPAT); 4324 if (ret) 4325 return ret; 4326 4327 ret = mnt_want_write_file(file); 4328 if (ret) 4329 return ret; 4330 4331 trans = btrfs_start_transaction(root, 0); 4332 if (IS_ERR(trans)) { 4333 ret = PTR_ERR(trans); 4334 goto out_drop_write; 4335 } 4336 4337 spin_lock(&fs_info->super_lock); 4338 newflags = btrfs_super_compat_flags(super_block); 4339 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4340 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4341 btrfs_set_super_compat_flags(super_block, newflags); 4342 4343 newflags = btrfs_super_compat_ro_flags(super_block); 4344 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4345 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4346 btrfs_set_super_compat_ro_flags(super_block, newflags); 4347 4348 newflags = btrfs_super_incompat_flags(super_block); 4349 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4350 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4351 btrfs_set_super_incompat_flags(super_block, newflags); 4352 spin_unlock(&fs_info->super_lock); 4353 4354 ret = btrfs_commit_transaction(trans); 4355 out_drop_write: 4356 mnt_drop_write_file(file); 4357 4358 return ret; 4359 } 4360 4361 static int _btrfs_ioctl_send(struct btrfs_root *root, void __user *argp, bool compat) 4362 { 4363 struct btrfs_ioctl_send_args *arg; 4364 int ret; 4365 4366 if (compat) { 4367 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4368 struct btrfs_ioctl_send_args_32 args32 = { 0 }; 4369 4370 ret = copy_from_user(&args32, argp, sizeof(args32)); 4371 if (ret) 4372 return -EFAULT; 4373 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4374 if (!arg) 4375 return -ENOMEM; 4376 arg->send_fd = args32.send_fd; 4377 arg->clone_sources_count = args32.clone_sources_count; 4378 arg->clone_sources = compat_ptr(args32.clone_sources); 4379 arg->parent_root = args32.parent_root; 4380 arg->flags = args32.flags; 4381 arg->version = args32.version; 4382 memcpy(arg->reserved, args32.reserved, 4383 sizeof(args32.reserved)); 4384 #else 4385 return -ENOTTY; 4386 #endif 4387 } else { 4388 arg = memdup_user(argp, sizeof(*arg)); 4389 if (IS_ERR(arg)) 4390 return PTR_ERR(arg); 4391 } 4392 ret = btrfs_ioctl_send(root, arg); 4393 kfree(arg); 4394 return ret; 4395 } 4396 4397 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 4398 bool compat) 4399 { 4400 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4401 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 4402 flags); 4403 size_t copy_end; 4404 struct btrfs_inode *inode = BTRFS_I(file_inode(file)); 4405 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4406 struct extent_io_tree *io_tree = &inode->io_tree; 4407 struct iovec iovstack[UIO_FASTIOV]; 4408 struct iovec *iov = iovstack; 4409 struct iov_iter iter; 4410 loff_t pos; 4411 struct kiocb kiocb; 4412 ssize_t ret; 4413 u64 disk_bytenr, disk_io_size; 4414 struct extent_state *cached_state = NULL; 4415 4416 if (!capable(CAP_SYS_ADMIN)) { 4417 ret = -EPERM; 4418 goto out_acct; 4419 } 4420 4421 if (compat) { 4422 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4423 struct btrfs_ioctl_encoded_io_args_32 args32; 4424 4425 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 4426 flags); 4427 if (copy_from_user(&args32, argp, copy_end)) { 4428 ret = -EFAULT; 4429 goto out_acct; 4430 } 4431 args.iov = compat_ptr(args32.iov); 4432 args.iovcnt = args32.iovcnt; 4433 args.offset = args32.offset; 4434 args.flags = args32.flags; 4435 #else 4436 return -ENOTTY; 4437 #endif 4438 } else { 4439 copy_end = copy_end_kernel; 4440 if (copy_from_user(&args, argp, copy_end)) { 4441 ret = -EFAULT; 4442 goto out_acct; 4443 } 4444 } 4445 if (args.flags != 0) { 4446 ret = -EINVAL; 4447 goto out_acct; 4448 } 4449 4450 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4451 &iov, &iter); 4452 if (ret < 0) 4453 goto out_acct; 4454 4455 if (iov_iter_count(&iter) == 0) { 4456 ret = 0; 4457 goto out_iov; 4458 } 4459 pos = args.offset; 4460 ret = rw_verify_area(READ, file, &pos, args.len); 4461 if (ret < 0) 4462 goto out_iov; 4463 4464 init_sync_kiocb(&kiocb, file); 4465 kiocb.ki_pos = pos; 4466 4467 ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state, 4468 &disk_bytenr, &disk_io_size); 4469 4470 if (ret == -EIOCBQUEUED) { 4471 bool unlocked = false; 4472 u64 start, lockend, count; 4473 4474 start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize); 4475 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 4476 4477 if (args.compression) 4478 count = disk_io_size; 4479 else 4480 count = args.len; 4481 4482 ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend, 4483 &cached_state, disk_bytenr, 4484 disk_io_size, count, 4485 args.compression, &unlocked); 4486 4487 if (!unlocked) { 4488 btrfs_unlock_extent(io_tree, start, lockend, &cached_state); 4489 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4490 } 4491 } 4492 4493 if (ret >= 0) { 4494 fsnotify_access(file); 4495 if (copy_to_user(argp + copy_end, 4496 (char *)&args + copy_end_kernel, 4497 sizeof(args) - copy_end_kernel)) 4498 ret = -EFAULT; 4499 } 4500 4501 out_iov: 4502 kfree(iov); 4503 out_acct: 4504 if (ret > 0) 4505 add_rchar(current, ret); 4506 inc_syscr(current); 4507 return ret; 4508 } 4509 4510 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 4511 { 4512 struct btrfs_ioctl_encoded_io_args args; 4513 struct iovec iovstack[UIO_FASTIOV]; 4514 struct iovec *iov = iovstack; 4515 struct iov_iter iter; 4516 loff_t pos; 4517 struct kiocb kiocb; 4518 ssize_t ret; 4519 4520 if (!capable(CAP_SYS_ADMIN)) { 4521 ret = -EPERM; 4522 goto out_acct; 4523 } 4524 4525 if (!(file->f_mode & FMODE_WRITE)) { 4526 ret = -EBADF; 4527 goto out_acct; 4528 } 4529 4530 if (compat) { 4531 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4532 struct btrfs_ioctl_encoded_io_args_32 args32; 4533 4534 if (copy_from_user(&args32, argp, sizeof(args32))) { 4535 ret = -EFAULT; 4536 goto out_acct; 4537 } 4538 args.iov = compat_ptr(args32.iov); 4539 args.iovcnt = args32.iovcnt; 4540 args.offset = args32.offset; 4541 args.flags = args32.flags; 4542 args.len = args32.len; 4543 args.unencoded_len = args32.unencoded_len; 4544 args.unencoded_offset = args32.unencoded_offset; 4545 args.compression = args32.compression; 4546 args.encryption = args32.encryption; 4547 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 4548 #else 4549 return -ENOTTY; 4550 #endif 4551 } else { 4552 if (copy_from_user(&args, argp, sizeof(args))) { 4553 ret = -EFAULT; 4554 goto out_acct; 4555 } 4556 } 4557 4558 ret = -EINVAL; 4559 if (args.flags != 0) 4560 goto out_acct; 4561 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 4562 goto out_acct; 4563 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4564 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4565 goto out_acct; 4566 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4567 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4568 goto out_acct; 4569 if (args.unencoded_offset > args.unencoded_len) 4570 goto out_acct; 4571 if (args.len > args.unencoded_len - args.unencoded_offset) 4572 goto out_acct; 4573 4574 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4575 &iov, &iter); 4576 if (ret < 0) 4577 goto out_acct; 4578 4579 if (iov_iter_count(&iter) == 0) { 4580 ret = 0; 4581 goto out_iov; 4582 } 4583 pos = args.offset; 4584 ret = rw_verify_area(WRITE, file, &pos, args.len); 4585 if (ret < 0) 4586 goto out_iov; 4587 4588 init_sync_kiocb(&kiocb, file); 4589 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE); 4590 if (ret) 4591 goto out_iov; 4592 kiocb.ki_pos = pos; 4593 4594 file_start_write(file); 4595 4596 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 4597 if (ret > 0) 4598 fsnotify_modify(file); 4599 4600 file_end_write(file); 4601 out_iov: 4602 kfree(iov); 4603 out_acct: 4604 if (ret > 0) 4605 add_wchar(current, ret); 4606 inc_syscw(current); 4607 return ret; 4608 } 4609 4610 struct btrfs_uring_encoded_data { 4611 struct btrfs_ioctl_encoded_io_args args; 4612 struct iovec iovstack[UIO_FASTIOV]; 4613 struct iovec *iov; 4614 struct iov_iter iter; 4615 }; 4616 4617 /* 4618 * Context that's attached to an encoded read io_uring command, in cmd->pdu. It 4619 * contains the fields in btrfs_uring_read_extent that are necessary to finish 4620 * off and cleanup the I/O in btrfs_uring_read_finished. 4621 */ 4622 struct btrfs_uring_priv { 4623 struct io_uring_cmd *cmd; 4624 struct page **pages; 4625 unsigned long nr_pages; 4626 struct kiocb iocb; 4627 struct iovec *iov; 4628 struct iov_iter iter; 4629 struct extent_state *cached_state; 4630 u64 count; 4631 u64 start; 4632 u64 lockend; 4633 int err; 4634 bool compressed; 4635 }; 4636 4637 struct io_btrfs_cmd { 4638 struct btrfs_uring_encoded_data *data; 4639 struct btrfs_uring_priv *priv; 4640 }; 4641 4642 static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags) 4643 { 4644 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd); 4645 struct btrfs_uring_priv *priv = bc->priv; 4646 struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp)); 4647 struct extent_io_tree *io_tree = &inode->io_tree; 4648 pgoff_t index; 4649 u64 cur; 4650 size_t page_offset; 4651 ssize_t ret; 4652 4653 /* The inode lock has already been acquired in btrfs_uring_read_extent. */ 4654 btrfs_lockdep_inode_acquire(inode, i_rwsem); 4655 4656 if (priv->err) { 4657 ret = priv->err; 4658 goto out; 4659 } 4660 4661 if (priv->compressed) { 4662 index = 0; 4663 page_offset = 0; 4664 } else { 4665 index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT; 4666 page_offset = offset_in_page(priv->iocb.ki_pos - priv->start); 4667 } 4668 cur = 0; 4669 while (cur < priv->count) { 4670 size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset); 4671 4672 if (copy_page_to_iter(priv->pages[index], page_offset, bytes, 4673 &priv->iter) != bytes) { 4674 ret = -EFAULT; 4675 goto out; 4676 } 4677 4678 index++; 4679 cur += bytes; 4680 page_offset = 0; 4681 } 4682 ret = priv->count; 4683 4684 out: 4685 btrfs_unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state); 4686 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4687 4688 io_uring_cmd_done(cmd, ret, 0, issue_flags); 4689 add_rchar(current, ret); 4690 4691 for (index = 0; index < priv->nr_pages; index++) 4692 __free_page(priv->pages[index]); 4693 4694 kfree(priv->pages); 4695 kfree(priv->iov); 4696 kfree(priv); 4697 kfree(bc->data); 4698 } 4699 4700 void btrfs_uring_read_extent_endio(void *ctx, int err) 4701 { 4702 struct btrfs_uring_priv *priv = ctx; 4703 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd); 4704 4705 priv->err = err; 4706 bc->priv = priv; 4707 4708 io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished); 4709 } 4710 4711 static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter, 4712 u64 start, u64 lockend, 4713 struct extent_state *cached_state, 4714 u64 disk_bytenr, u64 disk_io_size, 4715 size_t count, bool compressed, 4716 struct iovec *iov, struct io_uring_cmd *cmd) 4717 { 4718 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 4719 struct extent_io_tree *io_tree = &inode->io_tree; 4720 struct page **pages; 4721 struct btrfs_uring_priv *priv = NULL; 4722 unsigned long nr_pages; 4723 int ret; 4724 4725 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 4726 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 4727 if (!pages) 4728 return -ENOMEM; 4729 ret = btrfs_alloc_page_array(nr_pages, pages, 0); 4730 if (ret) { 4731 ret = -ENOMEM; 4732 goto out_fail; 4733 } 4734 4735 priv = kmalloc(sizeof(*priv), GFP_NOFS); 4736 if (!priv) { 4737 ret = -ENOMEM; 4738 goto out_fail; 4739 } 4740 4741 priv->iocb = *iocb; 4742 priv->iov = iov; 4743 priv->iter = *iter; 4744 priv->count = count; 4745 priv->cmd = cmd; 4746 priv->cached_state = cached_state; 4747 priv->compressed = compressed; 4748 priv->nr_pages = nr_pages; 4749 priv->pages = pages; 4750 priv->start = start; 4751 priv->lockend = lockend; 4752 priv->err = 0; 4753 4754 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 4755 disk_io_size, pages, priv); 4756 if (ret && ret != -EIOCBQUEUED) 4757 goto out_fail; 4758 4759 /* 4760 * If we return -EIOCBQUEUED, we're deferring the cleanup to 4761 * btrfs_uring_read_finished(), which will handle unlocking the extent 4762 * and inode and freeing the allocations. 4763 */ 4764 4765 /* 4766 * We're returning to userspace with the inode lock held, and that's 4767 * okay - it'll get unlocked in a worker thread. Call 4768 * btrfs_lockdep_inode_release() to avoid confusing lockdep. 4769 */ 4770 btrfs_lockdep_inode_release(inode, i_rwsem); 4771 4772 return -EIOCBQUEUED; 4773 4774 out_fail: 4775 btrfs_unlock_extent(io_tree, start, lockend, &cached_state); 4776 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4777 kfree(priv); 4778 return ret; 4779 } 4780 4781 static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags) 4782 { 4783 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags); 4784 size_t copy_end; 4785 int ret; 4786 u64 disk_bytenr, disk_io_size; 4787 struct file *file; 4788 struct btrfs_inode *inode; 4789 struct btrfs_fs_info *fs_info; 4790 struct extent_io_tree *io_tree; 4791 loff_t pos; 4792 struct kiocb kiocb; 4793 struct extent_state *cached_state = NULL; 4794 u64 start, lockend; 4795 void __user *sqe_addr; 4796 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd); 4797 struct btrfs_uring_encoded_data *data = NULL; 4798 4799 if (cmd->flags & IORING_URING_CMD_REISSUE) 4800 data = bc->data; 4801 4802 if (!capable(CAP_SYS_ADMIN)) { 4803 ret = -EPERM; 4804 goto out_acct; 4805 } 4806 file = cmd->file; 4807 inode = BTRFS_I(file->f_inode); 4808 fs_info = inode->root->fs_info; 4809 io_tree = &inode->io_tree; 4810 sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr)); 4811 4812 if (issue_flags & IO_URING_F_COMPAT) { 4813 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4814 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags); 4815 #else 4816 ret = -ENOTTY; 4817 goto out_acct; 4818 #endif 4819 } else { 4820 copy_end = copy_end_kernel; 4821 } 4822 4823 if (!data) { 4824 data = kzalloc(sizeof(*data), GFP_NOFS); 4825 if (!data) { 4826 ret = -ENOMEM; 4827 goto out_acct; 4828 } 4829 4830 bc->data = data; 4831 4832 if (issue_flags & IO_URING_F_COMPAT) { 4833 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4834 struct btrfs_ioctl_encoded_io_args_32 args32; 4835 4836 if (copy_from_user(&args32, sqe_addr, copy_end)) { 4837 ret = -EFAULT; 4838 goto out_acct; 4839 } 4840 4841 data->args.iov = compat_ptr(args32.iov); 4842 data->args.iovcnt = args32.iovcnt; 4843 data->args.offset = args32.offset; 4844 data->args.flags = args32.flags; 4845 #endif 4846 } else { 4847 if (copy_from_user(&data->args, sqe_addr, copy_end)) { 4848 ret = -EFAULT; 4849 goto out_acct; 4850 } 4851 } 4852 4853 if (data->args.flags != 0) { 4854 ret = -EINVAL; 4855 goto out_acct; 4856 } 4857 4858 data->iov = data->iovstack; 4859 ret = import_iovec(ITER_DEST, data->args.iov, data->args.iovcnt, 4860 ARRAY_SIZE(data->iovstack), &data->iov, 4861 &data->iter); 4862 if (ret < 0) 4863 goto out_acct; 4864 4865 if (iov_iter_count(&data->iter) == 0) { 4866 ret = 0; 4867 goto out_free; 4868 } 4869 } 4870 4871 pos = data->args.offset; 4872 ret = rw_verify_area(READ, file, &pos, data->args.len); 4873 if (ret < 0) 4874 goto out_free; 4875 4876 init_sync_kiocb(&kiocb, file); 4877 kiocb.ki_pos = pos; 4878 4879 if (issue_flags & IO_URING_F_NONBLOCK) 4880 kiocb.ki_flags |= IOCB_NOWAIT; 4881 4882 start = ALIGN_DOWN(pos, fs_info->sectorsize); 4883 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 4884 4885 ret = btrfs_encoded_read(&kiocb, &data->iter, &data->args, &cached_state, 4886 &disk_bytenr, &disk_io_size); 4887 if (ret == -EAGAIN) 4888 goto out_acct; 4889 if (ret < 0 && ret != -EIOCBQUEUED) 4890 goto out_free; 4891 4892 file_accessed(file); 4893 4894 if (copy_to_user(sqe_addr + copy_end, 4895 (const char *)&data->args + copy_end_kernel, 4896 sizeof(data->args) - copy_end_kernel)) { 4897 if (ret == -EIOCBQUEUED) { 4898 btrfs_unlock_extent(io_tree, start, lockend, &cached_state); 4899 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 4900 } 4901 ret = -EFAULT; 4902 goto out_free; 4903 } 4904 4905 if (ret == -EIOCBQUEUED) { 4906 u64 count = min_t(u64, iov_iter_count(&data->iter), disk_io_size); 4907 4908 /* Match ioctl by not returning past EOF if uncompressed. */ 4909 if (!data->args.compression) 4910 count = min_t(u64, count, data->args.len); 4911 4912 ret = btrfs_uring_read_extent(&kiocb, &data->iter, start, lockend, 4913 cached_state, disk_bytenr, disk_io_size, 4914 count, data->args.compression, 4915 data->iov, cmd); 4916 4917 goto out_acct; 4918 } 4919 4920 out_free: 4921 kfree(data->iov); 4922 4923 out_acct: 4924 if (ret > 0) 4925 add_rchar(current, ret); 4926 inc_syscr(current); 4927 4928 if (ret != -EIOCBQUEUED && ret != -EAGAIN) 4929 kfree(data); 4930 4931 return ret; 4932 } 4933 4934 static int btrfs_uring_encoded_write(struct io_uring_cmd *cmd, unsigned int issue_flags) 4935 { 4936 loff_t pos; 4937 struct kiocb kiocb; 4938 struct file *file; 4939 ssize_t ret; 4940 void __user *sqe_addr; 4941 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd); 4942 struct btrfs_uring_encoded_data *data = NULL; 4943 4944 if (cmd->flags & IORING_URING_CMD_REISSUE) 4945 data = bc->data; 4946 4947 if (!capable(CAP_SYS_ADMIN)) { 4948 ret = -EPERM; 4949 goto out_acct; 4950 } 4951 4952 file = cmd->file; 4953 sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr)); 4954 4955 if (!(file->f_mode & FMODE_WRITE)) { 4956 ret = -EBADF; 4957 goto out_acct; 4958 } 4959 4960 if (!data) { 4961 data = kzalloc(sizeof(*data), GFP_NOFS); 4962 if (!data) { 4963 ret = -ENOMEM; 4964 goto out_acct; 4965 } 4966 4967 bc->data = data; 4968 4969 if (issue_flags & IO_URING_F_COMPAT) { 4970 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4971 struct btrfs_ioctl_encoded_io_args_32 args32; 4972 4973 if (copy_from_user(&args32, sqe_addr, sizeof(args32))) { 4974 ret = -EFAULT; 4975 goto out_acct; 4976 } 4977 data->args.iov = compat_ptr(args32.iov); 4978 data->args.iovcnt = args32.iovcnt; 4979 data->args.offset = args32.offset; 4980 data->args.flags = args32.flags; 4981 data->args.len = args32.len; 4982 data->args.unencoded_len = args32.unencoded_len; 4983 data->args.unencoded_offset = args32.unencoded_offset; 4984 data->args.compression = args32.compression; 4985 data->args.encryption = args32.encryption; 4986 memcpy(data->args.reserved, args32.reserved, 4987 sizeof(data->args.reserved)); 4988 #else 4989 ret = -ENOTTY; 4990 goto out_acct; 4991 #endif 4992 } else { 4993 if (copy_from_user(&data->args, sqe_addr, sizeof(data->args))) { 4994 ret = -EFAULT; 4995 goto out_acct; 4996 } 4997 } 4998 4999 ret = -EINVAL; 5000 if (data->args.flags != 0) 5001 goto out_acct; 5002 if (memchr_inv(data->args.reserved, 0, sizeof(data->args.reserved))) 5003 goto out_acct; 5004 if (data->args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 5005 data->args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 5006 goto out_acct; 5007 if (data->args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 5008 data->args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 5009 goto out_acct; 5010 if (data->args.unencoded_offset > data->args.unencoded_len) 5011 goto out_acct; 5012 if (data->args.len > data->args.unencoded_len - data->args.unencoded_offset) 5013 goto out_acct; 5014 5015 data->iov = data->iovstack; 5016 ret = import_iovec(ITER_SOURCE, data->args.iov, data->args.iovcnt, 5017 ARRAY_SIZE(data->iovstack), &data->iov, 5018 &data->iter); 5019 if (ret < 0) 5020 goto out_acct; 5021 5022 if (iov_iter_count(&data->iter) == 0) { 5023 ret = 0; 5024 goto out_iov; 5025 } 5026 } 5027 5028 if (issue_flags & IO_URING_F_NONBLOCK) { 5029 ret = -EAGAIN; 5030 goto out_acct; 5031 } 5032 5033 pos = data->args.offset; 5034 ret = rw_verify_area(WRITE, file, &pos, data->args.len); 5035 if (ret < 0) 5036 goto out_iov; 5037 5038 init_sync_kiocb(&kiocb, file); 5039 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE); 5040 if (ret) 5041 goto out_iov; 5042 kiocb.ki_pos = pos; 5043 5044 file_start_write(file); 5045 5046 ret = btrfs_do_write_iter(&kiocb, &data->iter, &data->args); 5047 if (ret > 0) 5048 fsnotify_modify(file); 5049 5050 file_end_write(file); 5051 out_iov: 5052 kfree(data->iov); 5053 out_acct: 5054 if (ret > 0) 5055 add_wchar(current, ret); 5056 inc_syscw(current); 5057 5058 if (ret != -EAGAIN) 5059 kfree(data); 5060 return ret; 5061 } 5062 5063 int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags) 5064 { 5065 switch (cmd->cmd_op) { 5066 case BTRFS_IOC_ENCODED_READ: 5067 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5068 case BTRFS_IOC_ENCODED_READ_32: 5069 #endif 5070 return btrfs_uring_encoded_read(cmd, issue_flags); 5071 5072 case BTRFS_IOC_ENCODED_WRITE: 5073 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5074 case BTRFS_IOC_ENCODED_WRITE_32: 5075 #endif 5076 return btrfs_uring_encoded_write(cmd, issue_flags); 5077 } 5078 5079 return -EINVAL; 5080 } 5081 5082 static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp) 5083 { 5084 struct btrfs_root *root; 5085 struct btrfs_ioctl_subvol_wait args = { 0 }; 5086 signed long sched_ret; 5087 int refs; 5088 u64 root_flags; 5089 bool wait_for_deletion = false; 5090 bool found = false; 5091 5092 if (copy_from_user(&args, argp, sizeof(args))) 5093 return -EFAULT; 5094 5095 switch (args.mode) { 5096 case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED: 5097 /* 5098 * Wait for the first one deleted that waits until all previous 5099 * are cleaned. 5100 */ 5101 spin_lock(&fs_info->trans_lock); 5102 if (!list_empty(&fs_info->dead_roots)) { 5103 root = list_last_entry(&fs_info->dead_roots, 5104 struct btrfs_root, root_list); 5105 args.subvolid = btrfs_root_id(root); 5106 found = true; 5107 } 5108 spin_unlock(&fs_info->trans_lock); 5109 if (!found) 5110 return -ENOENT; 5111 5112 fallthrough; 5113 case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE: 5114 if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) || 5115 BTRFS_LAST_FREE_OBJECTID < args.subvolid) 5116 return -EINVAL; 5117 break; 5118 case BTRFS_SUBVOL_SYNC_COUNT: 5119 spin_lock(&fs_info->trans_lock); 5120 args.count = list_count_nodes(&fs_info->dead_roots); 5121 spin_unlock(&fs_info->trans_lock); 5122 if (copy_to_user(argp, &args, sizeof(args))) 5123 return -EFAULT; 5124 return 0; 5125 case BTRFS_SUBVOL_SYNC_PEEK_FIRST: 5126 spin_lock(&fs_info->trans_lock); 5127 /* Last in the list was deleted first. */ 5128 if (!list_empty(&fs_info->dead_roots)) { 5129 root = list_last_entry(&fs_info->dead_roots, 5130 struct btrfs_root, root_list); 5131 args.subvolid = btrfs_root_id(root); 5132 } else { 5133 args.subvolid = 0; 5134 } 5135 spin_unlock(&fs_info->trans_lock); 5136 if (copy_to_user(argp, &args, sizeof(args))) 5137 return -EFAULT; 5138 return 0; 5139 case BTRFS_SUBVOL_SYNC_PEEK_LAST: 5140 spin_lock(&fs_info->trans_lock); 5141 /* First in the list was deleted last. */ 5142 if (!list_empty(&fs_info->dead_roots)) { 5143 root = list_first_entry(&fs_info->dead_roots, 5144 struct btrfs_root, root_list); 5145 args.subvolid = btrfs_root_id(root); 5146 } else { 5147 args.subvolid = 0; 5148 } 5149 spin_unlock(&fs_info->trans_lock); 5150 if (copy_to_user(argp, &args, sizeof(args))) 5151 return -EFAULT; 5152 return 0; 5153 default: 5154 return -EINVAL; 5155 } 5156 5157 /* 32bit limitation: fs_roots_radix key is not wide enough. */ 5158 if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX) 5159 return -EOVERFLOW; 5160 5161 while (1) { 5162 /* Wait for the specific one. */ 5163 if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR) 5164 return -EINTR; 5165 refs = -1; 5166 spin_lock(&fs_info->fs_roots_radix_lock); 5167 root = radix_tree_lookup(&fs_info->fs_roots_radix, 5168 (unsigned long)args.subvolid); 5169 if (root) { 5170 spin_lock(&root->root_item_lock); 5171 refs = btrfs_root_refs(&root->root_item); 5172 root_flags = btrfs_root_flags(&root->root_item); 5173 spin_unlock(&root->root_item_lock); 5174 } 5175 spin_unlock(&fs_info->fs_roots_radix_lock); 5176 up_read(&fs_info->subvol_sem); 5177 5178 /* Subvolume does not exist. */ 5179 if (!root) 5180 return -ENOENT; 5181 5182 /* Subvolume not deleted at all. */ 5183 if (refs > 0) 5184 return -EEXIST; 5185 /* We've waited and now the subvolume is gone. */ 5186 if (wait_for_deletion && refs == -1) { 5187 /* Return the one we waited for as the last one. */ 5188 if (copy_to_user(argp, &args, sizeof(args))) 5189 return -EFAULT; 5190 return 0; 5191 } 5192 5193 /* Subvolume not found on the first try (deleted or never existed). */ 5194 if (refs == -1) 5195 return -ENOENT; 5196 5197 wait_for_deletion = true; 5198 ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD); 5199 sched_ret = schedule_timeout_interruptible(HZ); 5200 /* Early wake up or error. */ 5201 if (sched_ret != 0) 5202 return -EINTR; 5203 } 5204 5205 return 0; 5206 } 5207 5208 long btrfs_ioctl(struct file *file, unsigned int 5209 cmd, unsigned long arg) 5210 { 5211 struct inode *inode = file_inode(file); 5212 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5213 struct btrfs_root *root = BTRFS_I(inode)->root; 5214 void __user *argp = (void __user *)arg; 5215 5216 switch (cmd) { 5217 case FS_IOC_GETVERSION: 5218 return btrfs_ioctl_getversion(inode, argp); 5219 case FS_IOC_GETFSLABEL: 5220 return btrfs_ioctl_get_fslabel(fs_info, argp); 5221 case FS_IOC_SETFSLABEL: 5222 return btrfs_ioctl_set_fslabel(file, argp); 5223 case FITRIM: 5224 return btrfs_ioctl_fitrim(fs_info, argp); 5225 case BTRFS_IOC_SNAP_CREATE: 5226 return btrfs_ioctl_snap_create(file, argp, 0); 5227 case BTRFS_IOC_SNAP_CREATE_V2: 5228 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5229 case BTRFS_IOC_SUBVOL_CREATE: 5230 return btrfs_ioctl_snap_create(file, argp, 1); 5231 case BTRFS_IOC_SUBVOL_CREATE_V2: 5232 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5233 case BTRFS_IOC_SNAP_DESTROY: 5234 return btrfs_ioctl_snap_destroy(file, argp, false); 5235 case BTRFS_IOC_SNAP_DESTROY_V2: 5236 return btrfs_ioctl_snap_destroy(file, argp, true); 5237 case BTRFS_IOC_SUBVOL_GETFLAGS: 5238 return btrfs_ioctl_subvol_getflags(BTRFS_I(inode), argp); 5239 case BTRFS_IOC_SUBVOL_SETFLAGS: 5240 return btrfs_ioctl_subvol_setflags(file, argp); 5241 case BTRFS_IOC_DEFAULT_SUBVOL: 5242 return btrfs_ioctl_default_subvol(file, argp); 5243 case BTRFS_IOC_DEFRAG: 5244 return btrfs_ioctl_defrag(file, NULL); 5245 case BTRFS_IOC_DEFRAG_RANGE: 5246 return btrfs_ioctl_defrag(file, argp); 5247 case BTRFS_IOC_RESIZE: 5248 return btrfs_ioctl_resize(file, argp); 5249 case BTRFS_IOC_ADD_DEV: 5250 return btrfs_ioctl_add_dev(fs_info, argp); 5251 case BTRFS_IOC_RM_DEV: 5252 return btrfs_ioctl_rm_dev(file, argp); 5253 case BTRFS_IOC_RM_DEV_V2: 5254 return btrfs_ioctl_rm_dev_v2(file, argp); 5255 case BTRFS_IOC_FS_INFO: 5256 return btrfs_ioctl_fs_info(fs_info, argp); 5257 case BTRFS_IOC_DEV_INFO: 5258 return btrfs_ioctl_dev_info(fs_info, argp); 5259 case BTRFS_IOC_TREE_SEARCH: 5260 return btrfs_ioctl_tree_search(root, argp); 5261 case BTRFS_IOC_TREE_SEARCH_V2: 5262 return btrfs_ioctl_tree_search_v2(root, argp); 5263 case BTRFS_IOC_INO_LOOKUP: 5264 return btrfs_ioctl_ino_lookup(root, argp); 5265 case BTRFS_IOC_INO_PATHS: 5266 return btrfs_ioctl_ino_to_path(root, argp); 5267 case BTRFS_IOC_LOGICAL_INO: 5268 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5269 case BTRFS_IOC_LOGICAL_INO_V2: 5270 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5271 case BTRFS_IOC_SPACE_INFO: 5272 return btrfs_ioctl_space_info(fs_info, argp); 5273 case BTRFS_IOC_SYNC: { 5274 int ret; 5275 5276 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 5277 if (ret) 5278 return ret; 5279 ret = btrfs_sync_fs(inode->i_sb, 1); 5280 /* 5281 * There may be work for the cleaner kthread to do (subvolume 5282 * deletion, delayed iputs, defrag inodes, etc), so wake it up. 5283 */ 5284 wake_up_process(fs_info->cleaner_kthread); 5285 return ret; 5286 } 5287 case BTRFS_IOC_START_SYNC: 5288 return btrfs_ioctl_start_sync(root, argp); 5289 case BTRFS_IOC_WAIT_SYNC: 5290 return btrfs_ioctl_wait_sync(fs_info, argp); 5291 case BTRFS_IOC_SCRUB: 5292 return btrfs_ioctl_scrub(file, argp); 5293 case BTRFS_IOC_SCRUB_CANCEL: 5294 return btrfs_ioctl_scrub_cancel(fs_info); 5295 case BTRFS_IOC_SCRUB_PROGRESS: 5296 return btrfs_ioctl_scrub_progress(fs_info, argp); 5297 case BTRFS_IOC_BALANCE_V2: 5298 return btrfs_ioctl_balance(file, argp); 5299 case BTRFS_IOC_BALANCE_CTL: 5300 return btrfs_ioctl_balance_ctl(fs_info, arg); 5301 case BTRFS_IOC_BALANCE_PROGRESS: 5302 return btrfs_ioctl_balance_progress(fs_info, argp); 5303 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5304 return btrfs_ioctl_set_received_subvol(file, argp); 5305 #ifdef CONFIG_64BIT 5306 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5307 return btrfs_ioctl_set_received_subvol_32(file, argp); 5308 #endif 5309 case BTRFS_IOC_SEND: 5310 return _btrfs_ioctl_send(root, argp, false); 5311 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5312 case BTRFS_IOC_SEND_32: 5313 return _btrfs_ioctl_send(root, argp, true); 5314 #endif 5315 case BTRFS_IOC_GET_DEV_STATS: 5316 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5317 case BTRFS_IOC_QUOTA_CTL: 5318 return btrfs_ioctl_quota_ctl(file, argp); 5319 case BTRFS_IOC_QGROUP_ASSIGN: 5320 return btrfs_ioctl_qgroup_assign(file, argp); 5321 case BTRFS_IOC_QGROUP_CREATE: 5322 return btrfs_ioctl_qgroup_create(file, argp); 5323 case BTRFS_IOC_QGROUP_LIMIT: 5324 return btrfs_ioctl_qgroup_limit(file, argp); 5325 case BTRFS_IOC_QUOTA_RESCAN: 5326 return btrfs_ioctl_quota_rescan(file, argp); 5327 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5328 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5329 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5330 return btrfs_ioctl_quota_rescan_wait(fs_info); 5331 case BTRFS_IOC_DEV_REPLACE: 5332 return btrfs_ioctl_dev_replace(fs_info, argp); 5333 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5334 return btrfs_ioctl_get_supported_features(argp); 5335 case BTRFS_IOC_GET_FEATURES: 5336 return btrfs_ioctl_get_features(fs_info, argp); 5337 case BTRFS_IOC_SET_FEATURES: 5338 return btrfs_ioctl_set_features(file, argp); 5339 case BTRFS_IOC_GET_SUBVOL_INFO: 5340 return btrfs_ioctl_get_subvol_info(inode, argp); 5341 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5342 return btrfs_ioctl_get_subvol_rootref(root, argp); 5343 case BTRFS_IOC_INO_LOOKUP_USER: 5344 return btrfs_ioctl_ino_lookup_user(file, argp); 5345 case FS_IOC_ENABLE_VERITY: 5346 return fsverity_ioctl_enable(file, (const void __user *)argp); 5347 case FS_IOC_MEASURE_VERITY: 5348 return fsverity_ioctl_measure(file, argp); 5349 case FS_IOC_READ_VERITY_METADATA: 5350 return fsverity_ioctl_read_metadata(file, argp); 5351 case BTRFS_IOC_ENCODED_READ: 5352 return btrfs_ioctl_encoded_read(file, argp, false); 5353 case BTRFS_IOC_ENCODED_WRITE: 5354 return btrfs_ioctl_encoded_write(file, argp, false); 5355 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5356 case BTRFS_IOC_ENCODED_READ_32: 5357 return btrfs_ioctl_encoded_read(file, argp, true); 5358 case BTRFS_IOC_ENCODED_WRITE_32: 5359 return btrfs_ioctl_encoded_write(file, argp, true); 5360 #endif 5361 case BTRFS_IOC_SUBVOL_SYNC_WAIT: 5362 return btrfs_ioctl_subvol_sync(fs_info, argp); 5363 } 5364 5365 return -ENOTTY; 5366 } 5367 5368 #ifdef CONFIG_COMPAT 5369 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5370 { 5371 /* 5372 * These all access 32-bit values anyway so no further 5373 * handling is necessary. 5374 */ 5375 switch (cmd) { 5376 case FS_IOC32_GETVERSION: 5377 cmd = FS_IOC_GETVERSION; 5378 break; 5379 } 5380 5381 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5382 } 5383 #endif 5384