xref: /linux/fs/btrfs/ioctl.c (revision 1827b0678863bc97a1653fdf5308762b2aefcd56)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/mm.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
46 #include <linux/iversion.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 #include "tree-log.h"
63 #include "compression.h"
64 
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67  * structures are incorrect, as the timespec structure from userspace
68  * is 4 bytes too small. We define these alternatives here to teach
69  * the kernel about the 32-bit struct packing.
70  */
71 struct btrfs_ioctl_timespec_32 {
72 	__u64 sec;
73 	__u32 nsec;
74 } __attribute__ ((__packed__));
75 
76 struct btrfs_ioctl_received_subvol_args_32 {
77 	char	uuid[BTRFS_UUID_SIZE];	/* in */
78 	__u64	stransid;		/* in */
79 	__u64	rtransid;		/* out */
80 	struct btrfs_ioctl_timespec_32 stime; /* in */
81 	struct btrfs_ioctl_timespec_32 rtime; /* out */
82 	__u64	flags;			/* in */
83 	__u64	reserved[16];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 				struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89 
90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91 struct btrfs_ioctl_send_args_32 {
92 	__s64 send_fd;			/* in */
93 	__u64 clone_sources_count;	/* in */
94 	compat_uptr_t clone_sources;	/* in */
95 	__u64 parent_root;		/* in */
96 	__u64 flags;			/* in */
97 	__u64 reserved[4];		/* in */
98 } __attribute__ ((__packed__));
99 
100 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
101 			       struct btrfs_ioctl_send_args_32)
102 #endif
103 
104 static int btrfs_clone(struct inode *src, struct inode *inode,
105 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
106 		       int no_time_update);
107 
108 /* Mask out flags that are inappropriate for the given type of inode. */
109 static unsigned int btrfs_mask_flags(umode_t mode, unsigned int flags)
110 {
111 	if (S_ISDIR(mode))
112 		return flags;
113 	else if (S_ISREG(mode))
114 		return flags & ~FS_DIRSYNC_FL;
115 	else
116 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
117 }
118 
119 /*
120  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
121  */
122 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
123 {
124 	unsigned int iflags = 0;
125 
126 	if (flags & BTRFS_INODE_SYNC)
127 		iflags |= FS_SYNC_FL;
128 	if (flags & BTRFS_INODE_IMMUTABLE)
129 		iflags |= FS_IMMUTABLE_FL;
130 	if (flags & BTRFS_INODE_APPEND)
131 		iflags |= FS_APPEND_FL;
132 	if (flags & BTRFS_INODE_NODUMP)
133 		iflags |= FS_NODUMP_FL;
134 	if (flags & BTRFS_INODE_NOATIME)
135 		iflags |= FS_NOATIME_FL;
136 	if (flags & BTRFS_INODE_DIRSYNC)
137 		iflags |= FS_DIRSYNC_FL;
138 	if (flags & BTRFS_INODE_NODATACOW)
139 		iflags |= FS_NOCOW_FL;
140 
141 	if (flags & BTRFS_INODE_NOCOMPRESS)
142 		iflags |= FS_NOCOMP_FL;
143 	else if (flags & BTRFS_INODE_COMPRESS)
144 		iflags |= FS_COMPR_FL;
145 
146 	return iflags;
147 }
148 
149 /*
150  * Update inode->i_flags based on the btrfs internal flags.
151  */
152 void btrfs_update_iflags(struct inode *inode)
153 {
154 	struct btrfs_inode *ip = BTRFS_I(inode);
155 	unsigned int new_fl = 0;
156 
157 	if (ip->flags & BTRFS_INODE_SYNC)
158 		new_fl |= S_SYNC;
159 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
160 		new_fl |= S_IMMUTABLE;
161 	if (ip->flags & BTRFS_INODE_APPEND)
162 		new_fl |= S_APPEND;
163 	if (ip->flags & BTRFS_INODE_NOATIME)
164 		new_fl |= S_NOATIME;
165 	if (ip->flags & BTRFS_INODE_DIRSYNC)
166 		new_fl |= S_DIRSYNC;
167 
168 	set_mask_bits(&inode->i_flags,
169 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
170 		      new_fl);
171 }
172 
173 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
174 {
175 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
176 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
177 
178 	if (copy_to_user(arg, &flags, sizeof(flags)))
179 		return -EFAULT;
180 	return 0;
181 }
182 
183 static int check_flags(unsigned int flags)
184 {
185 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
186 		      FS_NOATIME_FL | FS_NODUMP_FL | \
187 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
188 		      FS_NOCOMP_FL | FS_COMPR_FL |
189 		      FS_NOCOW_FL))
190 		return -EOPNOTSUPP;
191 
192 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
193 		return -EINVAL;
194 
195 	return 0;
196 }
197 
198 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
199 {
200 	struct inode *inode = file_inode(file);
201 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
202 	struct btrfs_inode *ip = BTRFS_I(inode);
203 	struct btrfs_root *root = ip->root;
204 	struct btrfs_trans_handle *trans;
205 	unsigned int flags, oldflags;
206 	int ret;
207 	u64 ip_oldflags;
208 	unsigned int i_oldflags;
209 	umode_t mode;
210 
211 	if (!inode_owner_or_capable(inode))
212 		return -EPERM;
213 
214 	if (btrfs_root_readonly(root))
215 		return -EROFS;
216 
217 	if (copy_from_user(&flags, arg, sizeof(flags)))
218 		return -EFAULT;
219 
220 	ret = check_flags(flags);
221 	if (ret)
222 		return ret;
223 
224 	ret = mnt_want_write_file(file);
225 	if (ret)
226 		return ret;
227 
228 	inode_lock(inode);
229 
230 	ip_oldflags = ip->flags;
231 	i_oldflags = inode->i_flags;
232 	mode = inode->i_mode;
233 
234 	flags = btrfs_mask_flags(inode->i_mode, flags);
235 	oldflags = btrfs_flags_to_ioctl(ip->flags);
236 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
237 		if (!capable(CAP_LINUX_IMMUTABLE)) {
238 			ret = -EPERM;
239 			goto out_unlock;
240 		}
241 	}
242 
243 	if (flags & FS_SYNC_FL)
244 		ip->flags |= BTRFS_INODE_SYNC;
245 	else
246 		ip->flags &= ~BTRFS_INODE_SYNC;
247 	if (flags & FS_IMMUTABLE_FL)
248 		ip->flags |= BTRFS_INODE_IMMUTABLE;
249 	else
250 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
251 	if (flags & FS_APPEND_FL)
252 		ip->flags |= BTRFS_INODE_APPEND;
253 	else
254 		ip->flags &= ~BTRFS_INODE_APPEND;
255 	if (flags & FS_NODUMP_FL)
256 		ip->flags |= BTRFS_INODE_NODUMP;
257 	else
258 		ip->flags &= ~BTRFS_INODE_NODUMP;
259 	if (flags & FS_NOATIME_FL)
260 		ip->flags |= BTRFS_INODE_NOATIME;
261 	else
262 		ip->flags &= ~BTRFS_INODE_NOATIME;
263 	if (flags & FS_DIRSYNC_FL)
264 		ip->flags |= BTRFS_INODE_DIRSYNC;
265 	else
266 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
267 	if (flags & FS_NOCOW_FL) {
268 		if (S_ISREG(mode)) {
269 			/*
270 			 * It's safe to turn csums off here, no extents exist.
271 			 * Otherwise we want the flag to reflect the real COW
272 			 * status of the file and will not set it.
273 			 */
274 			if (inode->i_size == 0)
275 				ip->flags |= BTRFS_INODE_NODATACOW
276 					   | BTRFS_INODE_NODATASUM;
277 		} else {
278 			ip->flags |= BTRFS_INODE_NODATACOW;
279 		}
280 	} else {
281 		/*
282 		 * Revert back under same assumptions as above
283 		 */
284 		if (S_ISREG(mode)) {
285 			if (inode->i_size == 0)
286 				ip->flags &= ~(BTRFS_INODE_NODATACOW
287 				             | BTRFS_INODE_NODATASUM);
288 		} else {
289 			ip->flags &= ~BTRFS_INODE_NODATACOW;
290 		}
291 	}
292 
293 	/*
294 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
295 	 * flag may be changed automatically if compression code won't make
296 	 * things smaller.
297 	 */
298 	if (flags & FS_NOCOMP_FL) {
299 		ip->flags &= ~BTRFS_INODE_COMPRESS;
300 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
301 
302 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
303 		if (ret && ret != -ENODATA)
304 			goto out_drop;
305 	} else if (flags & FS_COMPR_FL) {
306 		const char *comp;
307 
308 		ip->flags |= BTRFS_INODE_COMPRESS;
309 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
310 
311 		comp = btrfs_compress_type2str(fs_info->compress_type);
312 		if (!comp || comp[0] == 0)
313 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
314 
315 		ret = btrfs_set_prop(inode, "btrfs.compression",
316 				     comp, strlen(comp), 0);
317 		if (ret)
318 			goto out_drop;
319 
320 	} else {
321 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
322 		if (ret && ret != -ENODATA)
323 			goto out_drop;
324 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
325 	}
326 
327 	trans = btrfs_start_transaction(root, 1);
328 	if (IS_ERR(trans)) {
329 		ret = PTR_ERR(trans);
330 		goto out_drop;
331 	}
332 
333 	btrfs_update_iflags(inode);
334 	inode_inc_iversion(inode);
335 	inode->i_ctime = current_time(inode);
336 	ret = btrfs_update_inode(trans, root, inode);
337 
338 	btrfs_end_transaction(trans);
339  out_drop:
340 	if (ret) {
341 		ip->flags = ip_oldflags;
342 		inode->i_flags = i_oldflags;
343 	}
344 
345  out_unlock:
346 	inode_unlock(inode);
347 	mnt_drop_write_file(file);
348 	return ret;
349 }
350 
351 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
352 {
353 	struct inode *inode = file_inode(file);
354 
355 	return put_user(inode->i_generation, arg);
356 }
357 
358 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
359 {
360 	struct inode *inode = file_inode(file);
361 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
362 	struct btrfs_device *device;
363 	struct request_queue *q;
364 	struct fstrim_range range;
365 	u64 minlen = ULLONG_MAX;
366 	u64 num_devices = 0;
367 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
368 	int ret;
369 
370 	if (!capable(CAP_SYS_ADMIN))
371 		return -EPERM;
372 
373 	rcu_read_lock();
374 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
375 				dev_list) {
376 		if (!device->bdev)
377 			continue;
378 		q = bdev_get_queue(device->bdev);
379 		if (blk_queue_discard(q)) {
380 			num_devices++;
381 			minlen = min_t(u64, q->limits.discard_granularity,
382 				     minlen);
383 		}
384 	}
385 	rcu_read_unlock();
386 
387 	if (!num_devices)
388 		return -EOPNOTSUPP;
389 	if (copy_from_user(&range, arg, sizeof(range)))
390 		return -EFAULT;
391 	if (range.start > total_bytes ||
392 	    range.len < fs_info->sb->s_blocksize)
393 		return -EINVAL;
394 
395 	range.len = min(range.len, total_bytes - range.start);
396 	range.minlen = max(range.minlen, minlen);
397 	ret = btrfs_trim_fs(fs_info, &range);
398 	if (ret < 0)
399 		return ret;
400 
401 	if (copy_to_user(arg, &range, sizeof(range)))
402 		return -EFAULT;
403 
404 	return 0;
405 }
406 
407 int btrfs_is_empty_uuid(u8 *uuid)
408 {
409 	int i;
410 
411 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
412 		if (uuid[i])
413 			return 0;
414 	}
415 	return 1;
416 }
417 
418 static noinline int create_subvol(struct inode *dir,
419 				  struct dentry *dentry,
420 				  const char *name, int namelen,
421 				  u64 *async_transid,
422 				  struct btrfs_qgroup_inherit *inherit)
423 {
424 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
425 	struct btrfs_trans_handle *trans;
426 	struct btrfs_key key;
427 	struct btrfs_root_item *root_item;
428 	struct btrfs_inode_item *inode_item;
429 	struct extent_buffer *leaf;
430 	struct btrfs_root *root = BTRFS_I(dir)->root;
431 	struct btrfs_root *new_root;
432 	struct btrfs_block_rsv block_rsv;
433 	struct timespec cur_time = current_time(dir);
434 	struct inode *inode;
435 	int ret;
436 	int err;
437 	u64 objectid;
438 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
439 	u64 index = 0;
440 	u64 qgroup_reserved;
441 	uuid_le new_uuid;
442 
443 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
444 	if (!root_item)
445 		return -ENOMEM;
446 
447 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
448 	if (ret)
449 		goto fail_free;
450 
451 	/*
452 	 * Don't create subvolume whose level is not zero. Or qgroup will be
453 	 * screwed up since it assumes subvolume qgroup's level to be 0.
454 	 */
455 	if (btrfs_qgroup_level(objectid)) {
456 		ret = -ENOSPC;
457 		goto fail_free;
458 	}
459 
460 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
461 	/*
462 	 * The same as the snapshot creation, please see the comment
463 	 * of create_snapshot().
464 	 */
465 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
466 					       8, &qgroup_reserved, false);
467 	if (ret)
468 		goto fail_free;
469 
470 	trans = btrfs_start_transaction(root, 0);
471 	if (IS_ERR(trans)) {
472 		ret = PTR_ERR(trans);
473 		btrfs_subvolume_release_metadata(fs_info, &block_rsv);
474 		goto fail_free;
475 	}
476 	trans->block_rsv = &block_rsv;
477 	trans->bytes_reserved = block_rsv.size;
478 
479 	ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
480 	if (ret)
481 		goto fail;
482 
483 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
484 	if (IS_ERR(leaf)) {
485 		ret = PTR_ERR(leaf);
486 		goto fail;
487 	}
488 
489 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
490 	btrfs_set_header_bytenr(leaf, leaf->start);
491 	btrfs_set_header_generation(leaf, trans->transid);
492 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
493 	btrfs_set_header_owner(leaf, objectid);
494 
495 	write_extent_buffer_fsid(leaf, fs_info->fsid);
496 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
497 	btrfs_mark_buffer_dirty(leaf);
498 
499 	inode_item = &root_item->inode;
500 	btrfs_set_stack_inode_generation(inode_item, 1);
501 	btrfs_set_stack_inode_size(inode_item, 3);
502 	btrfs_set_stack_inode_nlink(inode_item, 1);
503 	btrfs_set_stack_inode_nbytes(inode_item,
504 				     fs_info->nodesize);
505 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
506 
507 	btrfs_set_root_flags(root_item, 0);
508 	btrfs_set_root_limit(root_item, 0);
509 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
510 
511 	btrfs_set_root_bytenr(root_item, leaf->start);
512 	btrfs_set_root_generation(root_item, trans->transid);
513 	btrfs_set_root_level(root_item, 0);
514 	btrfs_set_root_refs(root_item, 1);
515 	btrfs_set_root_used(root_item, leaf->len);
516 	btrfs_set_root_last_snapshot(root_item, 0);
517 
518 	btrfs_set_root_generation_v2(root_item,
519 			btrfs_root_generation(root_item));
520 	uuid_le_gen(&new_uuid);
521 	memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
522 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
523 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
524 	root_item->ctime = root_item->otime;
525 	btrfs_set_root_ctransid(root_item, trans->transid);
526 	btrfs_set_root_otransid(root_item, trans->transid);
527 
528 	btrfs_tree_unlock(leaf);
529 	free_extent_buffer(leaf);
530 	leaf = NULL;
531 
532 	btrfs_set_root_dirid(root_item, new_dirid);
533 
534 	key.objectid = objectid;
535 	key.offset = 0;
536 	key.type = BTRFS_ROOT_ITEM_KEY;
537 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
538 				root_item);
539 	if (ret)
540 		goto fail;
541 
542 	key.offset = (u64)-1;
543 	new_root = btrfs_read_fs_root_no_name(fs_info, &key);
544 	if (IS_ERR(new_root)) {
545 		ret = PTR_ERR(new_root);
546 		btrfs_abort_transaction(trans, ret);
547 		goto fail;
548 	}
549 
550 	btrfs_record_root_in_trans(trans, new_root);
551 
552 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
553 	if (ret) {
554 		/* We potentially lose an unused inode item here */
555 		btrfs_abort_transaction(trans, ret);
556 		goto fail;
557 	}
558 
559 	mutex_lock(&new_root->objectid_mutex);
560 	new_root->highest_objectid = new_dirid;
561 	mutex_unlock(&new_root->objectid_mutex);
562 
563 	/*
564 	 * insert the directory item
565 	 */
566 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
567 	if (ret) {
568 		btrfs_abort_transaction(trans, ret);
569 		goto fail;
570 	}
571 
572 	ret = btrfs_insert_dir_item(trans, root,
573 				    name, namelen, BTRFS_I(dir), &key,
574 				    BTRFS_FT_DIR, index);
575 	if (ret) {
576 		btrfs_abort_transaction(trans, ret);
577 		goto fail;
578 	}
579 
580 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
581 	ret = btrfs_update_inode(trans, root, dir);
582 	BUG_ON(ret);
583 
584 	ret = btrfs_add_root_ref(trans, fs_info,
585 				 objectid, root->root_key.objectid,
586 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
587 	BUG_ON(ret);
588 
589 	ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
590 				  BTRFS_UUID_KEY_SUBVOL, objectid);
591 	if (ret)
592 		btrfs_abort_transaction(trans, ret);
593 
594 fail:
595 	kfree(root_item);
596 	trans->block_rsv = NULL;
597 	trans->bytes_reserved = 0;
598 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
599 
600 	if (async_transid) {
601 		*async_transid = trans->transid;
602 		err = btrfs_commit_transaction_async(trans, 1);
603 		if (err)
604 			err = btrfs_commit_transaction(trans);
605 	} else {
606 		err = btrfs_commit_transaction(trans);
607 	}
608 	if (err && !ret)
609 		ret = err;
610 
611 	if (!ret) {
612 		inode = btrfs_lookup_dentry(dir, dentry);
613 		if (IS_ERR(inode))
614 			return PTR_ERR(inode);
615 		d_instantiate(dentry, inode);
616 	}
617 	return ret;
618 
619 fail_free:
620 	kfree(root_item);
621 	return ret;
622 }
623 
624 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
625 			   struct dentry *dentry,
626 			   u64 *async_transid, bool readonly,
627 			   struct btrfs_qgroup_inherit *inherit)
628 {
629 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
630 	struct inode *inode;
631 	struct btrfs_pending_snapshot *pending_snapshot;
632 	struct btrfs_trans_handle *trans;
633 	int ret;
634 
635 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
636 		return -EINVAL;
637 
638 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
639 	if (!pending_snapshot)
640 		return -ENOMEM;
641 
642 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
643 			GFP_KERNEL);
644 	pending_snapshot->path = btrfs_alloc_path();
645 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
646 		ret = -ENOMEM;
647 		goto free_pending;
648 	}
649 
650 	atomic_inc(&root->will_be_snapshotted);
651 	smp_mb__after_atomic();
652 	/* wait for no snapshot writes */
653 	wait_event(root->subv_writers->wait,
654 		   percpu_counter_sum(&root->subv_writers->counter) == 0);
655 
656 	ret = btrfs_start_delalloc_inodes(root, 0);
657 	if (ret)
658 		goto dec_and_free;
659 
660 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
661 
662 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
663 			     BTRFS_BLOCK_RSV_TEMP);
664 	/*
665 	 * 1 - parent dir inode
666 	 * 2 - dir entries
667 	 * 1 - root item
668 	 * 2 - root ref/backref
669 	 * 1 - root of snapshot
670 	 * 1 - UUID item
671 	 */
672 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
673 					&pending_snapshot->block_rsv, 8,
674 					&pending_snapshot->qgroup_reserved,
675 					false);
676 	if (ret)
677 		goto dec_and_free;
678 
679 	pending_snapshot->dentry = dentry;
680 	pending_snapshot->root = root;
681 	pending_snapshot->readonly = readonly;
682 	pending_snapshot->dir = dir;
683 	pending_snapshot->inherit = inherit;
684 
685 	trans = btrfs_start_transaction(root, 0);
686 	if (IS_ERR(trans)) {
687 		ret = PTR_ERR(trans);
688 		goto fail;
689 	}
690 
691 	spin_lock(&fs_info->trans_lock);
692 	list_add(&pending_snapshot->list,
693 		 &trans->transaction->pending_snapshots);
694 	spin_unlock(&fs_info->trans_lock);
695 	if (async_transid) {
696 		*async_transid = trans->transid;
697 		ret = btrfs_commit_transaction_async(trans, 1);
698 		if (ret)
699 			ret = btrfs_commit_transaction(trans);
700 	} else {
701 		ret = btrfs_commit_transaction(trans);
702 	}
703 	if (ret)
704 		goto fail;
705 
706 	ret = pending_snapshot->error;
707 	if (ret)
708 		goto fail;
709 
710 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
711 	if (ret)
712 		goto fail;
713 
714 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
715 	if (IS_ERR(inode)) {
716 		ret = PTR_ERR(inode);
717 		goto fail;
718 	}
719 
720 	d_instantiate(dentry, inode);
721 	ret = 0;
722 fail:
723 	btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
724 dec_and_free:
725 	if (atomic_dec_and_test(&root->will_be_snapshotted))
726 		wake_up_var(&root->will_be_snapshotted);
727 free_pending:
728 	kfree(pending_snapshot->root_item);
729 	btrfs_free_path(pending_snapshot->path);
730 	kfree(pending_snapshot);
731 
732 	return ret;
733 }
734 
735 /*  copy of may_delete in fs/namei.c()
736  *	Check whether we can remove a link victim from directory dir, check
737  *  whether the type of victim is right.
738  *  1. We can't do it if dir is read-only (done in permission())
739  *  2. We should have write and exec permissions on dir
740  *  3. We can't remove anything from append-only dir
741  *  4. We can't do anything with immutable dir (done in permission())
742  *  5. If the sticky bit on dir is set we should either
743  *	a. be owner of dir, or
744  *	b. be owner of victim, or
745  *	c. have CAP_FOWNER capability
746  *  6. If the victim is append-only or immutable we can't do anything with
747  *     links pointing to it.
748  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
749  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
750  *  9. We can't remove a root or mountpoint.
751  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
752  *     nfs_async_unlink().
753  */
754 
755 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
756 {
757 	int error;
758 
759 	if (d_really_is_negative(victim))
760 		return -ENOENT;
761 
762 	BUG_ON(d_inode(victim->d_parent) != dir);
763 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
764 
765 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
766 	if (error)
767 		return error;
768 	if (IS_APPEND(dir))
769 		return -EPERM;
770 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
771 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
772 		return -EPERM;
773 	if (isdir) {
774 		if (!d_is_dir(victim))
775 			return -ENOTDIR;
776 		if (IS_ROOT(victim))
777 			return -EBUSY;
778 	} else if (d_is_dir(victim))
779 		return -EISDIR;
780 	if (IS_DEADDIR(dir))
781 		return -ENOENT;
782 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
783 		return -EBUSY;
784 	return 0;
785 }
786 
787 /* copy of may_create in fs/namei.c() */
788 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
789 {
790 	if (d_really_is_positive(child))
791 		return -EEXIST;
792 	if (IS_DEADDIR(dir))
793 		return -ENOENT;
794 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
795 }
796 
797 /*
798  * Create a new subvolume below @parent.  This is largely modeled after
799  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
800  * inside this filesystem so it's quite a bit simpler.
801  */
802 static noinline int btrfs_mksubvol(const struct path *parent,
803 				   const char *name, int namelen,
804 				   struct btrfs_root *snap_src,
805 				   u64 *async_transid, bool readonly,
806 				   struct btrfs_qgroup_inherit *inherit)
807 {
808 	struct inode *dir = d_inode(parent->dentry);
809 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
810 	struct dentry *dentry;
811 	int error;
812 
813 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
814 	if (error == -EINTR)
815 		return error;
816 
817 	dentry = lookup_one_len(name, parent->dentry, namelen);
818 	error = PTR_ERR(dentry);
819 	if (IS_ERR(dentry))
820 		goto out_unlock;
821 
822 	error = btrfs_may_create(dir, dentry);
823 	if (error)
824 		goto out_dput;
825 
826 	/*
827 	 * even if this name doesn't exist, we may get hash collisions.
828 	 * check for them now when we can safely fail
829 	 */
830 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
831 					       dir->i_ino, name,
832 					       namelen);
833 	if (error)
834 		goto out_dput;
835 
836 	down_read(&fs_info->subvol_sem);
837 
838 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
839 		goto out_up_read;
840 
841 	if (snap_src) {
842 		error = create_snapshot(snap_src, dir, dentry,
843 					async_transid, readonly, inherit);
844 	} else {
845 		error = create_subvol(dir, dentry, name, namelen,
846 				      async_transid, inherit);
847 	}
848 	if (!error)
849 		fsnotify_mkdir(dir, dentry);
850 out_up_read:
851 	up_read(&fs_info->subvol_sem);
852 out_dput:
853 	dput(dentry);
854 out_unlock:
855 	inode_unlock(dir);
856 	return error;
857 }
858 
859 /*
860  * When we're defragging a range, we don't want to kick it off again
861  * if it is really just waiting for delalloc to send it down.
862  * If we find a nice big extent or delalloc range for the bytes in the
863  * file you want to defrag, we return 0 to let you know to skip this
864  * part of the file
865  */
866 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
867 {
868 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
869 	struct extent_map *em = NULL;
870 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
871 	u64 end;
872 
873 	read_lock(&em_tree->lock);
874 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
875 	read_unlock(&em_tree->lock);
876 
877 	if (em) {
878 		end = extent_map_end(em);
879 		free_extent_map(em);
880 		if (end - offset > thresh)
881 			return 0;
882 	}
883 	/* if we already have a nice delalloc here, just stop */
884 	thresh /= 2;
885 	end = count_range_bits(io_tree, &offset, offset + thresh,
886 			       thresh, EXTENT_DELALLOC, 1);
887 	if (end >= thresh)
888 		return 0;
889 	return 1;
890 }
891 
892 /*
893  * helper function to walk through a file and find extents
894  * newer than a specific transid, and smaller than thresh.
895  *
896  * This is used by the defragging code to find new and small
897  * extents
898  */
899 static int find_new_extents(struct btrfs_root *root,
900 			    struct inode *inode, u64 newer_than,
901 			    u64 *off, u32 thresh)
902 {
903 	struct btrfs_path *path;
904 	struct btrfs_key min_key;
905 	struct extent_buffer *leaf;
906 	struct btrfs_file_extent_item *extent;
907 	int type;
908 	int ret;
909 	u64 ino = btrfs_ino(BTRFS_I(inode));
910 
911 	path = btrfs_alloc_path();
912 	if (!path)
913 		return -ENOMEM;
914 
915 	min_key.objectid = ino;
916 	min_key.type = BTRFS_EXTENT_DATA_KEY;
917 	min_key.offset = *off;
918 
919 	while (1) {
920 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
921 		if (ret != 0)
922 			goto none;
923 process_slot:
924 		if (min_key.objectid != ino)
925 			goto none;
926 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
927 			goto none;
928 
929 		leaf = path->nodes[0];
930 		extent = btrfs_item_ptr(leaf, path->slots[0],
931 					struct btrfs_file_extent_item);
932 
933 		type = btrfs_file_extent_type(leaf, extent);
934 		if (type == BTRFS_FILE_EXTENT_REG &&
935 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
936 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
937 			*off = min_key.offset;
938 			btrfs_free_path(path);
939 			return 0;
940 		}
941 
942 		path->slots[0]++;
943 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
944 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
945 			goto process_slot;
946 		}
947 
948 		if (min_key.offset == (u64)-1)
949 			goto none;
950 
951 		min_key.offset++;
952 		btrfs_release_path(path);
953 	}
954 none:
955 	btrfs_free_path(path);
956 	return -ENOENT;
957 }
958 
959 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
960 {
961 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
962 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
963 	struct extent_map *em;
964 	u64 len = PAGE_SIZE;
965 
966 	/*
967 	 * hopefully we have this extent in the tree already, try without
968 	 * the full extent lock
969 	 */
970 	read_lock(&em_tree->lock);
971 	em = lookup_extent_mapping(em_tree, start, len);
972 	read_unlock(&em_tree->lock);
973 
974 	if (!em) {
975 		struct extent_state *cached = NULL;
976 		u64 end = start + len - 1;
977 
978 		/* get the big lock and read metadata off disk */
979 		lock_extent_bits(io_tree, start, end, &cached);
980 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
981 		unlock_extent_cached(io_tree, start, end, &cached);
982 
983 		if (IS_ERR(em))
984 			return NULL;
985 	}
986 
987 	return em;
988 }
989 
990 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
991 {
992 	struct extent_map *next;
993 	bool ret = true;
994 
995 	/* this is the last extent */
996 	if (em->start + em->len >= i_size_read(inode))
997 		return false;
998 
999 	next = defrag_lookup_extent(inode, em->start + em->len);
1000 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1001 		ret = false;
1002 	else if ((em->block_start + em->block_len == next->block_start) &&
1003 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1004 		ret = false;
1005 
1006 	free_extent_map(next);
1007 	return ret;
1008 }
1009 
1010 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1011 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1012 			       int compress)
1013 {
1014 	struct extent_map *em;
1015 	int ret = 1;
1016 	bool next_mergeable = true;
1017 	bool prev_mergeable = true;
1018 
1019 	/*
1020 	 * make sure that once we start defragging an extent, we keep on
1021 	 * defragging it
1022 	 */
1023 	if (start < *defrag_end)
1024 		return 1;
1025 
1026 	*skip = 0;
1027 
1028 	em = defrag_lookup_extent(inode, start);
1029 	if (!em)
1030 		return 0;
1031 
1032 	/* this will cover holes, and inline extents */
1033 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1034 		ret = 0;
1035 		goto out;
1036 	}
1037 
1038 	if (!*defrag_end)
1039 		prev_mergeable = false;
1040 
1041 	next_mergeable = defrag_check_next_extent(inode, em);
1042 	/*
1043 	 * we hit a real extent, if it is big or the next extent is not a
1044 	 * real extent, don't bother defragging it
1045 	 */
1046 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1047 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1048 		ret = 0;
1049 out:
1050 	/*
1051 	 * last_len ends up being a counter of how many bytes we've defragged.
1052 	 * every time we choose not to defrag an extent, we reset *last_len
1053 	 * so that the next tiny extent will force a defrag.
1054 	 *
1055 	 * The end result of this is that tiny extents before a single big
1056 	 * extent will force at least part of that big extent to be defragged.
1057 	 */
1058 	if (ret) {
1059 		*defrag_end = extent_map_end(em);
1060 	} else {
1061 		*last_len = 0;
1062 		*skip = extent_map_end(em);
1063 		*defrag_end = 0;
1064 	}
1065 
1066 	free_extent_map(em);
1067 	return ret;
1068 }
1069 
1070 /*
1071  * it doesn't do much good to defrag one or two pages
1072  * at a time.  This pulls in a nice chunk of pages
1073  * to COW and defrag.
1074  *
1075  * It also makes sure the delalloc code has enough
1076  * dirty data to avoid making new small extents as part
1077  * of the defrag
1078  *
1079  * It's a good idea to start RA on this range
1080  * before calling this.
1081  */
1082 static int cluster_pages_for_defrag(struct inode *inode,
1083 				    struct page **pages,
1084 				    unsigned long start_index,
1085 				    unsigned long num_pages)
1086 {
1087 	unsigned long file_end;
1088 	u64 isize = i_size_read(inode);
1089 	u64 page_start;
1090 	u64 page_end;
1091 	u64 page_cnt;
1092 	int ret;
1093 	int i;
1094 	int i_done;
1095 	struct btrfs_ordered_extent *ordered;
1096 	struct extent_state *cached_state = NULL;
1097 	struct extent_io_tree *tree;
1098 	struct extent_changeset *data_reserved = NULL;
1099 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1100 
1101 	file_end = (isize - 1) >> PAGE_SHIFT;
1102 	if (!isize || start_index > file_end)
1103 		return 0;
1104 
1105 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1106 
1107 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1108 			start_index << PAGE_SHIFT,
1109 			page_cnt << PAGE_SHIFT);
1110 	if (ret)
1111 		return ret;
1112 	i_done = 0;
1113 	tree = &BTRFS_I(inode)->io_tree;
1114 
1115 	/* step one, lock all the pages */
1116 	for (i = 0; i < page_cnt; i++) {
1117 		struct page *page;
1118 again:
1119 		page = find_or_create_page(inode->i_mapping,
1120 					   start_index + i, mask);
1121 		if (!page)
1122 			break;
1123 
1124 		page_start = page_offset(page);
1125 		page_end = page_start + PAGE_SIZE - 1;
1126 		while (1) {
1127 			lock_extent_bits(tree, page_start, page_end,
1128 					 &cached_state);
1129 			ordered = btrfs_lookup_ordered_extent(inode,
1130 							      page_start);
1131 			unlock_extent_cached(tree, page_start, page_end,
1132 					     &cached_state);
1133 			if (!ordered)
1134 				break;
1135 
1136 			unlock_page(page);
1137 			btrfs_start_ordered_extent(inode, ordered, 1);
1138 			btrfs_put_ordered_extent(ordered);
1139 			lock_page(page);
1140 			/*
1141 			 * we unlocked the page above, so we need check if
1142 			 * it was released or not.
1143 			 */
1144 			if (page->mapping != inode->i_mapping) {
1145 				unlock_page(page);
1146 				put_page(page);
1147 				goto again;
1148 			}
1149 		}
1150 
1151 		if (!PageUptodate(page)) {
1152 			btrfs_readpage(NULL, page);
1153 			lock_page(page);
1154 			if (!PageUptodate(page)) {
1155 				unlock_page(page);
1156 				put_page(page);
1157 				ret = -EIO;
1158 				break;
1159 			}
1160 		}
1161 
1162 		if (page->mapping != inode->i_mapping) {
1163 			unlock_page(page);
1164 			put_page(page);
1165 			goto again;
1166 		}
1167 
1168 		pages[i] = page;
1169 		i_done++;
1170 	}
1171 	if (!i_done || ret)
1172 		goto out;
1173 
1174 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1175 		goto out;
1176 
1177 	/*
1178 	 * so now we have a nice long stream of locked
1179 	 * and up to date pages, lets wait on them
1180 	 */
1181 	for (i = 0; i < i_done; i++)
1182 		wait_on_page_writeback(pages[i]);
1183 
1184 	page_start = page_offset(pages[0]);
1185 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1186 
1187 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1188 			 page_start, page_end - 1, &cached_state);
1189 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1190 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1191 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1192 			  &cached_state);
1193 
1194 	if (i_done != page_cnt) {
1195 		spin_lock(&BTRFS_I(inode)->lock);
1196 		BTRFS_I(inode)->outstanding_extents++;
1197 		spin_unlock(&BTRFS_I(inode)->lock);
1198 		btrfs_delalloc_release_space(inode, data_reserved,
1199 				start_index << PAGE_SHIFT,
1200 				(page_cnt - i_done) << PAGE_SHIFT, true);
1201 	}
1202 
1203 
1204 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1205 			  &cached_state);
1206 
1207 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1208 			     page_start, page_end - 1, &cached_state);
1209 
1210 	for (i = 0; i < i_done; i++) {
1211 		clear_page_dirty_for_io(pages[i]);
1212 		ClearPageChecked(pages[i]);
1213 		set_page_extent_mapped(pages[i]);
1214 		set_page_dirty(pages[i]);
1215 		unlock_page(pages[i]);
1216 		put_page(pages[i]);
1217 	}
1218 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1219 				       false);
1220 	extent_changeset_free(data_reserved);
1221 	return i_done;
1222 out:
1223 	for (i = 0; i < i_done; i++) {
1224 		unlock_page(pages[i]);
1225 		put_page(pages[i]);
1226 	}
1227 	btrfs_delalloc_release_space(inode, data_reserved,
1228 			start_index << PAGE_SHIFT,
1229 			page_cnt << PAGE_SHIFT, true);
1230 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1231 				       true);
1232 	extent_changeset_free(data_reserved);
1233 	return ret;
1234 
1235 }
1236 
1237 int btrfs_defrag_file(struct inode *inode, struct file *file,
1238 		      struct btrfs_ioctl_defrag_range_args *range,
1239 		      u64 newer_than, unsigned long max_to_defrag)
1240 {
1241 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1242 	struct btrfs_root *root = BTRFS_I(inode)->root;
1243 	struct file_ra_state *ra = NULL;
1244 	unsigned long last_index;
1245 	u64 isize = i_size_read(inode);
1246 	u64 last_len = 0;
1247 	u64 skip = 0;
1248 	u64 defrag_end = 0;
1249 	u64 newer_off = range->start;
1250 	unsigned long i;
1251 	unsigned long ra_index = 0;
1252 	int ret;
1253 	int defrag_count = 0;
1254 	int compress_type = BTRFS_COMPRESS_ZLIB;
1255 	u32 extent_thresh = range->extent_thresh;
1256 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1257 	unsigned long cluster = max_cluster;
1258 	u64 new_align = ~((u64)SZ_128K - 1);
1259 	struct page **pages = NULL;
1260 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1261 
1262 	if (isize == 0)
1263 		return 0;
1264 
1265 	if (range->start >= isize)
1266 		return -EINVAL;
1267 
1268 	if (do_compress) {
1269 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1270 			return -EINVAL;
1271 		if (range->compress_type)
1272 			compress_type = range->compress_type;
1273 	}
1274 
1275 	if (extent_thresh == 0)
1276 		extent_thresh = SZ_256K;
1277 
1278 	/*
1279 	 * If we were not given a file, allocate a readahead context. As
1280 	 * readahead is just an optimization, defrag will work without it so
1281 	 * we don't error out.
1282 	 */
1283 	if (!file) {
1284 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1285 		if (ra)
1286 			file_ra_state_init(ra, inode->i_mapping);
1287 	} else {
1288 		ra = &file->f_ra;
1289 	}
1290 
1291 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1292 	if (!pages) {
1293 		ret = -ENOMEM;
1294 		goto out_ra;
1295 	}
1296 
1297 	/* find the last page to defrag */
1298 	if (range->start + range->len > range->start) {
1299 		last_index = min_t(u64, isize - 1,
1300 			 range->start + range->len - 1) >> PAGE_SHIFT;
1301 	} else {
1302 		last_index = (isize - 1) >> PAGE_SHIFT;
1303 	}
1304 
1305 	if (newer_than) {
1306 		ret = find_new_extents(root, inode, newer_than,
1307 				       &newer_off, SZ_64K);
1308 		if (!ret) {
1309 			range->start = newer_off;
1310 			/*
1311 			 * we always align our defrag to help keep
1312 			 * the extents in the file evenly spaced
1313 			 */
1314 			i = (newer_off & new_align) >> PAGE_SHIFT;
1315 		} else
1316 			goto out_ra;
1317 	} else {
1318 		i = range->start >> PAGE_SHIFT;
1319 	}
1320 	if (!max_to_defrag)
1321 		max_to_defrag = last_index - i + 1;
1322 
1323 	/*
1324 	 * make writeback starts from i, so the defrag range can be
1325 	 * written sequentially.
1326 	 */
1327 	if (i < inode->i_mapping->writeback_index)
1328 		inode->i_mapping->writeback_index = i;
1329 
1330 	while (i <= last_index && defrag_count < max_to_defrag &&
1331 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1332 		/*
1333 		 * make sure we stop running if someone unmounts
1334 		 * the FS
1335 		 */
1336 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1337 			break;
1338 
1339 		if (btrfs_defrag_cancelled(fs_info)) {
1340 			btrfs_debug(fs_info, "defrag_file cancelled");
1341 			ret = -EAGAIN;
1342 			break;
1343 		}
1344 
1345 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1346 					 extent_thresh, &last_len, &skip,
1347 					 &defrag_end, do_compress)){
1348 			unsigned long next;
1349 			/*
1350 			 * the should_defrag function tells us how much to skip
1351 			 * bump our counter by the suggested amount
1352 			 */
1353 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1354 			i = max(i + 1, next);
1355 			continue;
1356 		}
1357 
1358 		if (!newer_than) {
1359 			cluster = (PAGE_ALIGN(defrag_end) >>
1360 				   PAGE_SHIFT) - i;
1361 			cluster = min(cluster, max_cluster);
1362 		} else {
1363 			cluster = max_cluster;
1364 		}
1365 
1366 		if (i + cluster > ra_index) {
1367 			ra_index = max(i, ra_index);
1368 			if (ra)
1369 				page_cache_sync_readahead(inode->i_mapping, ra,
1370 						file, ra_index, cluster);
1371 			ra_index += cluster;
1372 		}
1373 
1374 		inode_lock(inode);
1375 		if (do_compress)
1376 			BTRFS_I(inode)->defrag_compress = compress_type;
1377 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1378 		if (ret < 0) {
1379 			inode_unlock(inode);
1380 			goto out_ra;
1381 		}
1382 
1383 		defrag_count += ret;
1384 		balance_dirty_pages_ratelimited(inode->i_mapping);
1385 		inode_unlock(inode);
1386 
1387 		if (newer_than) {
1388 			if (newer_off == (u64)-1)
1389 				break;
1390 
1391 			if (ret > 0)
1392 				i += ret;
1393 
1394 			newer_off = max(newer_off + 1,
1395 					(u64)i << PAGE_SHIFT);
1396 
1397 			ret = find_new_extents(root, inode, newer_than,
1398 					       &newer_off, SZ_64K);
1399 			if (!ret) {
1400 				range->start = newer_off;
1401 				i = (newer_off & new_align) >> PAGE_SHIFT;
1402 			} else {
1403 				break;
1404 			}
1405 		} else {
1406 			if (ret > 0) {
1407 				i += ret;
1408 				last_len += ret << PAGE_SHIFT;
1409 			} else {
1410 				i++;
1411 				last_len = 0;
1412 			}
1413 		}
1414 	}
1415 
1416 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1417 		filemap_flush(inode->i_mapping);
1418 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1419 			     &BTRFS_I(inode)->runtime_flags))
1420 			filemap_flush(inode->i_mapping);
1421 	}
1422 
1423 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1424 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1425 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1426 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1427 	}
1428 
1429 	ret = defrag_count;
1430 
1431 out_ra:
1432 	if (do_compress) {
1433 		inode_lock(inode);
1434 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1435 		inode_unlock(inode);
1436 	}
1437 	if (!file)
1438 		kfree(ra);
1439 	kfree(pages);
1440 	return ret;
1441 }
1442 
1443 static noinline int btrfs_ioctl_resize(struct file *file,
1444 					void __user *arg)
1445 {
1446 	struct inode *inode = file_inode(file);
1447 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1448 	u64 new_size;
1449 	u64 old_size;
1450 	u64 devid = 1;
1451 	struct btrfs_root *root = BTRFS_I(inode)->root;
1452 	struct btrfs_ioctl_vol_args *vol_args;
1453 	struct btrfs_trans_handle *trans;
1454 	struct btrfs_device *device = NULL;
1455 	char *sizestr;
1456 	char *retptr;
1457 	char *devstr = NULL;
1458 	int ret = 0;
1459 	int mod = 0;
1460 
1461 	if (!capable(CAP_SYS_ADMIN))
1462 		return -EPERM;
1463 
1464 	ret = mnt_want_write_file(file);
1465 	if (ret)
1466 		return ret;
1467 
1468 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1469 		mnt_drop_write_file(file);
1470 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1471 	}
1472 
1473 	mutex_lock(&fs_info->volume_mutex);
1474 	vol_args = memdup_user(arg, sizeof(*vol_args));
1475 	if (IS_ERR(vol_args)) {
1476 		ret = PTR_ERR(vol_args);
1477 		goto out;
1478 	}
1479 
1480 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1481 
1482 	sizestr = vol_args->name;
1483 	devstr = strchr(sizestr, ':');
1484 	if (devstr) {
1485 		sizestr = devstr + 1;
1486 		*devstr = '\0';
1487 		devstr = vol_args->name;
1488 		ret = kstrtoull(devstr, 10, &devid);
1489 		if (ret)
1490 			goto out_free;
1491 		if (!devid) {
1492 			ret = -EINVAL;
1493 			goto out_free;
1494 		}
1495 		btrfs_info(fs_info, "resizing devid %llu", devid);
1496 	}
1497 
1498 	device = btrfs_find_device(fs_info, devid, NULL, NULL);
1499 	if (!device) {
1500 		btrfs_info(fs_info, "resizer unable to find device %llu",
1501 			   devid);
1502 		ret = -ENODEV;
1503 		goto out_free;
1504 	}
1505 
1506 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1507 		btrfs_info(fs_info,
1508 			   "resizer unable to apply on readonly device %llu",
1509 		       devid);
1510 		ret = -EPERM;
1511 		goto out_free;
1512 	}
1513 
1514 	if (!strcmp(sizestr, "max"))
1515 		new_size = device->bdev->bd_inode->i_size;
1516 	else {
1517 		if (sizestr[0] == '-') {
1518 			mod = -1;
1519 			sizestr++;
1520 		} else if (sizestr[0] == '+') {
1521 			mod = 1;
1522 			sizestr++;
1523 		}
1524 		new_size = memparse(sizestr, &retptr);
1525 		if (*retptr != '\0' || new_size == 0) {
1526 			ret = -EINVAL;
1527 			goto out_free;
1528 		}
1529 	}
1530 
1531 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1532 		ret = -EPERM;
1533 		goto out_free;
1534 	}
1535 
1536 	old_size = btrfs_device_get_total_bytes(device);
1537 
1538 	if (mod < 0) {
1539 		if (new_size > old_size) {
1540 			ret = -EINVAL;
1541 			goto out_free;
1542 		}
1543 		new_size = old_size - new_size;
1544 	} else if (mod > 0) {
1545 		if (new_size > ULLONG_MAX - old_size) {
1546 			ret = -ERANGE;
1547 			goto out_free;
1548 		}
1549 		new_size = old_size + new_size;
1550 	}
1551 
1552 	if (new_size < SZ_256M) {
1553 		ret = -EINVAL;
1554 		goto out_free;
1555 	}
1556 	if (new_size > device->bdev->bd_inode->i_size) {
1557 		ret = -EFBIG;
1558 		goto out_free;
1559 	}
1560 
1561 	new_size = round_down(new_size, fs_info->sectorsize);
1562 
1563 	btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1564 			  rcu_str_deref(device->name), new_size);
1565 
1566 	if (new_size > old_size) {
1567 		trans = btrfs_start_transaction(root, 0);
1568 		if (IS_ERR(trans)) {
1569 			ret = PTR_ERR(trans);
1570 			goto out_free;
1571 		}
1572 		ret = btrfs_grow_device(trans, device, new_size);
1573 		btrfs_commit_transaction(trans);
1574 	} else if (new_size < old_size) {
1575 		ret = btrfs_shrink_device(device, new_size);
1576 	} /* equal, nothing need to do */
1577 
1578 out_free:
1579 	kfree(vol_args);
1580 out:
1581 	mutex_unlock(&fs_info->volume_mutex);
1582 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1583 	mnt_drop_write_file(file);
1584 	return ret;
1585 }
1586 
1587 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1588 				const char *name, unsigned long fd, int subvol,
1589 				u64 *transid, bool readonly,
1590 				struct btrfs_qgroup_inherit *inherit)
1591 {
1592 	int namelen;
1593 	int ret = 0;
1594 
1595 	if (!S_ISDIR(file_inode(file)->i_mode))
1596 		return -ENOTDIR;
1597 
1598 	ret = mnt_want_write_file(file);
1599 	if (ret)
1600 		goto out;
1601 
1602 	namelen = strlen(name);
1603 	if (strchr(name, '/')) {
1604 		ret = -EINVAL;
1605 		goto out_drop_write;
1606 	}
1607 
1608 	if (name[0] == '.' &&
1609 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1610 		ret = -EEXIST;
1611 		goto out_drop_write;
1612 	}
1613 
1614 	if (subvol) {
1615 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1616 				     NULL, transid, readonly, inherit);
1617 	} else {
1618 		struct fd src = fdget(fd);
1619 		struct inode *src_inode;
1620 		if (!src.file) {
1621 			ret = -EINVAL;
1622 			goto out_drop_write;
1623 		}
1624 
1625 		src_inode = file_inode(src.file);
1626 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1627 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1628 				   "Snapshot src from another FS");
1629 			ret = -EXDEV;
1630 		} else if (!inode_owner_or_capable(src_inode)) {
1631 			/*
1632 			 * Subvolume creation is not restricted, but snapshots
1633 			 * are limited to own subvolumes only
1634 			 */
1635 			ret = -EPERM;
1636 		} else {
1637 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1638 					     BTRFS_I(src_inode)->root,
1639 					     transid, readonly, inherit);
1640 		}
1641 		fdput(src);
1642 	}
1643 out_drop_write:
1644 	mnt_drop_write_file(file);
1645 out:
1646 	return ret;
1647 }
1648 
1649 static noinline int btrfs_ioctl_snap_create(struct file *file,
1650 					    void __user *arg, int subvol)
1651 {
1652 	struct btrfs_ioctl_vol_args *vol_args;
1653 	int ret;
1654 
1655 	if (!S_ISDIR(file_inode(file)->i_mode))
1656 		return -ENOTDIR;
1657 
1658 	vol_args = memdup_user(arg, sizeof(*vol_args));
1659 	if (IS_ERR(vol_args))
1660 		return PTR_ERR(vol_args);
1661 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1662 
1663 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1664 					      vol_args->fd, subvol,
1665 					      NULL, false, NULL);
1666 
1667 	kfree(vol_args);
1668 	return ret;
1669 }
1670 
1671 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1672 					       void __user *arg, int subvol)
1673 {
1674 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1675 	int ret;
1676 	u64 transid = 0;
1677 	u64 *ptr = NULL;
1678 	bool readonly = false;
1679 	struct btrfs_qgroup_inherit *inherit = NULL;
1680 
1681 	if (!S_ISDIR(file_inode(file)->i_mode))
1682 		return -ENOTDIR;
1683 
1684 	vol_args = memdup_user(arg, sizeof(*vol_args));
1685 	if (IS_ERR(vol_args))
1686 		return PTR_ERR(vol_args);
1687 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1688 
1689 	if (vol_args->flags &
1690 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1691 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1692 		ret = -EOPNOTSUPP;
1693 		goto free_args;
1694 	}
1695 
1696 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1697 		ptr = &transid;
1698 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1699 		readonly = true;
1700 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1701 		if (vol_args->size > PAGE_SIZE) {
1702 			ret = -EINVAL;
1703 			goto free_args;
1704 		}
1705 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1706 		if (IS_ERR(inherit)) {
1707 			ret = PTR_ERR(inherit);
1708 			goto free_args;
1709 		}
1710 	}
1711 
1712 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1713 					      vol_args->fd, subvol, ptr,
1714 					      readonly, inherit);
1715 	if (ret)
1716 		goto free_inherit;
1717 
1718 	if (ptr && copy_to_user(arg +
1719 				offsetof(struct btrfs_ioctl_vol_args_v2,
1720 					transid),
1721 				ptr, sizeof(*ptr)))
1722 		ret = -EFAULT;
1723 
1724 free_inherit:
1725 	kfree(inherit);
1726 free_args:
1727 	kfree(vol_args);
1728 	return ret;
1729 }
1730 
1731 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1732 						void __user *arg)
1733 {
1734 	struct inode *inode = file_inode(file);
1735 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1736 	struct btrfs_root *root = BTRFS_I(inode)->root;
1737 	int ret = 0;
1738 	u64 flags = 0;
1739 
1740 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1741 		return -EINVAL;
1742 
1743 	down_read(&fs_info->subvol_sem);
1744 	if (btrfs_root_readonly(root))
1745 		flags |= BTRFS_SUBVOL_RDONLY;
1746 	up_read(&fs_info->subvol_sem);
1747 
1748 	if (copy_to_user(arg, &flags, sizeof(flags)))
1749 		ret = -EFAULT;
1750 
1751 	return ret;
1752 }
1753 
1754 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1755 					      void __user *arg)
1756 {
1757 	struct inode *inode = file_inode(file);
1758 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1759 	struct btrfs_root *root = BTRFS_I(inode)->root;
1760 	struct btrfs_trans_handle *trans;
1761 	u64 root_flags;
1762 	u64 flags;
1763 	int ret = 0;
1764 
1765 	if (!inode_owner_or_capable(inode))
1766 		return -EPERM;
1767 
1768 	ret = mnt_want_write_file(file);
1769 	if (ret)
1770 		goto out;
1771 
1772 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1773 		ret = -EINVAL;
1774 		goto out_drop_write;
1775 	}
1776 
1777 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1778 		ret = -EFAULT;
1779 		goto out_drop_write;
1780 	}
1781 
1782 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1783 		ret = -EINVAL;
1784 		goto out_drop_write;
1785 	}
1786 
1787 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1788 		ret = -EOPNOTSUPP;
1789 		goto out_drop_write;
1790 	}
1791 
1792 	down_write(&fs_info->subvol_sem);
1793 
1794 	/* nothing to do */
1795 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1796 		goto out_drop_sem;
1797 
1798 	root_flags = btrfs_root_flags(&root->root_item);
1799 	if (flags & BTRFS_SUBVOL_RDONLY) {
1800 		btrfs_set_root_flags(&root->root_item,
1801 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1802 	} else {
1803 		/*
1804 		 * Block RO -> RW transition if this subvolume is involved in
1805 		 * send
1806 		 */
1807 		spin_lock(&root->root_item_lock);
1808 		if (root->send_in_progress == 0) {
1809 			btrfs_set_root_flags(&root->root_item,
1810 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1811 			spin_unlock(&root->root_item_lock);
1812 		} else {
1813 			spin_unlock(&root->root_item_lock);
1814 			btrfs_warn(fs_info,
1815 				   "Attempt to set subvolume %llu read-write during send",
1816 				   root->root_key.objectid);
1817 			ret = -EPERM;
1818 			goto out_drop_sem;
1819 		}
1820 	}
1821 
1822 	trans = btrfs_start_transaction(root, 1);
1823 	if (IS_ERR(trans)) {
1824 		ret = PTR_ERR(trans);
1825 		goto out_reset;
1826 	}
1827 
1828 	ret = btrfs_update_root(trans, fs_info->tree_root,
1829 				&root->root_key, &root->root_item);
1830 	if (ret < 0) {
1831 		btrfs_end_transaction(trans);
1832 		goto out_reset;
1833 	}
1834 
1835 	ret = btrfs_commit_transaction(trans);
1836 
1837 out_reset:
1838 	if (ret)
1839 		btrfs_set_root_flags(&root->root_item, root_flags);
1840 out_drop_sem:
1841 	up_write(&fs_info->subvol_sem);
1842 out_drop_write:
1843 	mnt_drop_write_file(file);
1844 out:
1845 	return ret;
1846 }
1847 
1848 /*
1849  * helper to check if the subvolume references other subvolumes
1850  */
1851 static noinline int may_destroy_subvol(struct btrfs_root *root)
1852 {
1853 	struct btrfs_fs_info *fs_info = root->fs_info;
1854 	struct btrfs_path *path;
1855 	struct btrfs_dir_item *di;
1856 	struct btrfs_key key;
1857 	u64 dir_id;
1858 	int ret;
1859 
1860 	path = btrfs_alloc_path();
1861 	if (!path)
1862 		return -ENOMEM;
1863 
1864 	/* Make sure this root isn't set as the default subvol */
1865 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1866 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1867 				   dir_id, "default", 7, 0);
1868 	if (di && !IS_ERR(di)) {
1869 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1870 		if (key.objectid == root->root_key.objectid) {
1871 			ret = -EPERM;
1872 			btrfs_err(fs_info,
1873 				  "deleting default subvolume %llu is not allowed",
1874 				  key.objectid);
1875 			goto out;
1876 		}
1877 		btrfs_release_path(path);
1878 	}
1879 
1880 	key.objectid = root->root_key.objectid;
1881 	key.type = BTRFS_ROOT_REF_KEY;
1882 	key.offset = (u64)-1;
1883 
1884 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1885 	if (ret < 0)
1886 		goto out;
1887 	BUG_ON(ret == 0);
1888 
1889 	ret = 0;
1890 	if (path->slots[0] > 0) {
1891 		path->slots[0]--;
1892 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1893 		if (key.objectid == root->root_key.objectid &&
1894 		    key.type == BTRFS_ROOT_REF_KEY)
1895 			ret = -ENOTEMPTY;
1896 	}
1897 out:
1898 	btrfs_free_path(path);
1899 	return ret;
1900 }
1901 
1902 static noinline int key_in_sk(struct btrfs_key *key,
1903 			      struct btrfs_ioctl_search_key *sk)
1904 {
1905 	struct btrfs_key test;
1906 	int ret;
1907 
1908 	test.objectid = sk->min_objectid;
1909 	test.type = sk->min_type;
1910 	test.offset = sk->min_offset;
1911 
1912 	ret = btrfs_comp_cpu_keys(key, &test);
1913 	if (ret < 0)
1914 		return 0;
1915 
1916 	test.objectid = sk->max_objectid;
1917 	test.type = sk->max_type;
1918 	test.offset = sk->max_offset;
1919 
1920 	ret = btrfs_comp_cpu_keys(key, &test);
1921 	if (ret > 0)
1922 		return 0;
1923 	return 1;
1924 }
1925 
1926 static noinline int copy_to_sk(struct btrfs_path *path,
1927 			       struct btrfs_key *key,
1928 			       struct btrfs_ioctl_search_key *sk,
1929 			       size_t *buf_size,
1930 			       char __user *ubuf,
1931 			       unsigned long *sk_offset,
1932 			       int *num_found)
1933 {
1934 	u64 found_transid;
1935 	struct extent_buffer *leaf;
1936 	struct btrfs_ioctl_search_header sh;
1937 	struct btrfs_key test;
1938 	unsigned long item_off;
1939 	unsigned long item_len;
1940 	int nritems;
1941 	int i;
1942 	int slot;
1943 	int ret = 0;
1944 
1945 	leaf = path->nodes[0];
1946 	slot = path->slots[0];
1947 	nritems = btrfs_header_nritems(leaf);
1948 
1949 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1950 		i = nritems;
1951 		goto advance_key;
1952 	}
1953 	found_transid = btrfs_header_generation(leaf);
1954 
1955 	for (i = slot; i < nritems; i++) {
1956 		item_off = btrfs_item_ptr_offset(leaf, i);
1957 		item_len = btrfs_item_size_nr(leaf, i);
1958 
1959 		btrfs_item_key_to_cpu(leaf, key, i);
1960 		if (!key_in_sk(key, sk))
1961 			continue;
1962 
1963 		if (sizeof(sh) + item_len > *buf_size) {
1964 			if (*num_found) {
1965 				ret = 1;
1966 				goto out;
1967 			}
1968 
1969 			/*
1970 			 * return one empty item back for v1, which does not
1971 			 * handle -EOVERFLOW
1972 			 */
1973 
1974 			*buf_size = sizeof(sh) + item_len;
1975 			item_len = 0;
1976 			ret = -EOVERFLOW;
1977 		}
1978 
1979 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1980 			ret = 1;
1981 			goto out;
1982 		}
1983 
1984 		sh.objectid = key->objectid;
1985 		sh.offset = key->offset;
1986 		sh.type = key->type;
1987 		sh.len = item_len;
1988 		sh.transid = found_transid;
1989 
1990 		/* copy search result header */
1991 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1992 			ret = -EFAULT;
1993 			goto out;
1994 		}
1995 
1996 		*sk_offset += sizeof(sh);
1997 
1998 		if (item_len) {
1999 			char __user *up = ubuf + *sk_offset;
2000 			/* copy the item */
2001 			if (read_extent_buffer_to_user(leaf, up,
2002 						       item_off, item_len)) {
2003 				ret = -EFAULT;
2004 				goto out;
2005 			}
2006 
2007 			*sk_offset += item_len;
2008 		}
2009 		(*num_found)++;
2010 
2011 		if (ret) /* -EOVERFLOW from above */
2012 			goto out;
2013 
2014 		if (*num_found >= sk->nr_items) {
2015 			ret = 1;
2016 			goto out;
2017 		}
2018 	}
2019 advance_key:
2020 	ret = 0;
2021 	test.objectid = sk->max_objectid;
2022 	test.type = sk->max_type;
2023 	test.offset = sk->max_offset;
2024 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2025 		ret = 1;
2026 	else if (key->offset < (u64)-1)
2027 		key->offset++;
2028 	else if (key->type < (u8)-1) {
2029 		key->offset = 0;
2030 		key->type++;
2031 	} else if (key->objectid < (u64)-1) {
2032 		key->offset = 0;
2033 		key->type = 0;
2034 		key->objectid++;
2035 	} else
2036 		ret = 1;
2037 out:
2038 	/*
2039 	 *  0: all items from this leaf copied, continue with next
2040 	 *  1: * more items can be copied, but unused buffer is too small
2041 	 *     * all items were found
2042 	 *     Either way, it will stops the loop which iterates to the next
2043 	 *     leaf
2044 	 *  -EOVERFLOW: item was to large for buffer
2045 	 *  -EFAULT: could not copy extent buffer back to userspace
2046 	 */
2047 	return ret;
2048 }
2049 
2050 static noinline int search_ioctl(struct inode *inode,
2051 				 struct btrfs_ioctl_search_key *sk,
2052 				 size_t *buf_size,
2053 				 char __user *ubuf)
2054 {
2055 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2056 	struct btrfs_root *root;
2057 	struct btrfs_key key;
2058 	struct btrfs_path *path;
2059 	int ret;
2060 	int num_found = 0;
2061 	unsigned long sk_offset = 0;
2062 
2063 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2064 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2065 		return -EOVERFLOW;
2066 	}
2067 
2068 	path = btrfs_alloc_path();
2069 	if (!path)
2070 		return -ENOMEM;
2071 
2072 	if (sk->tree_id == 0) {
2073 		/* search the root of the inode that was passed */
2074 		root = BTRFS_I(inode)->root;
2075 	} else {
2076 		key.objectid = sk->tree_id;
2077 		key.type = BTRFS_ROOT_ITEM_KEY;
2078 		key.offset = (u64)-1;
2079 		root = btrfs_read_fs_root_no_name(info, &key);
2080 		if (IS_ERR(root)) {
2081 			btrfs_free_path(path);
2082 			return -ENOENT;
2083 		}
2084 	}
2085 
2086 	key.objectid = sk->min_objectid;
2087 	key.type = sk->min_type;
2088 	key.offset = sk->min_offset;
2089 
2090 	while (1) {
2091 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2092 		if (ret != 0) {
2093 			if (ret > 0)
2094 				ret = 0;
2095 			goto err;
2096 		}
2097 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2098 				 &sk_offset, &num_found);
2099 		btrfs_release_path(path);
2100 		if (ret)
2101 			break;
2102 
2103 	}
2104 	if (ret > 0)
2105 		ret = 0;
2106 err:
2107 	sk->nr_items = num_found;
2108 	btrfs_free_path(path);
2109 	return ret;
2110 }
2111 
2112 static noinline int btrfs_ioctl_tree_search(struct file *file,
2113 					   void __user *argp)
2114 {
2115 	struct btrfs_ioctl_search_args __user *uargs;
2116 	struct btrfs_ioctl_search_key sk;
2117 	struct inode *inode;
2118 	int ret;
2119 	size_t buf_size;
2120 
2121 	if (!capable(CAP_SYS_ADMIN))
2122 		return -EPERM;
2123 
2124 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2125 
2126 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2127 		return -EFAULT;
2128 
2129 	buf_size = sizeof(uargs->buf);
2130 
2131 	inode = file_inode(file);
2132 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2133 
2134 	/*
2135 	 * In the origin implementation an overflow is handled by returning a
2136 	 * search header with a len of zero, so reset ret.
2137 	 */
2138 	if (ret == -EOVERFLOW)
2139 		ret = 0;
2140 
2141 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2142 		ret = -EFAULT;
2143 	return ret;
2144 }
2145 
2146 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2147 					       void __user *argp)
2148 {
2149 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2150 	struct btrfs_ioctl_search_args_v2 args;
2151 	struct inode *inode;
2152 	int ret;
2153 	size_t buf_size;
2154 	const size_t buf_limit = SZ_16M;
2155 
2156 	if (!capable(CAP_SYS_ADMIN))
2157 		return -EPERM;
2158 
2159 	/* copy search header and buffer size */
2160 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2161 	if (copy_from_user(&args, uarg, sizeof(args)))
2162 		return -EFAULT;
2163 
2164 	buf_size = args.buf_size;
2165 
2166 	/* limit result size to 16MB */
2167 	if (buf_size > buf_limit)
2168 		buf_size = buf_limit;
2169 
2170 	inode = file_inode(file);
2171 	ret = search_ioctl(inode, &args.key, &buf_size,
2172 			   (char __user *)(&uarg->buf[0]));
2173 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2174 		ret = -EFAULT;
2175 	else if (ret == -EOVERFLOW &&
2176 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2177 		ret = -EFAULT;
2178 
2179 	return ret;
2180 }
2181 
2182 /*
2183  * Search INODE_REFs to identify path name of 'dirid' directory
2184  * in a 'tree_id' tree. and sets path name to 'name'.
2185  */
2186 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2187 				u64 tree_id, u64 dirid, char *name)
2188 {
2189 	struct btrfs_root *root;
2190 	struct btrfs_key key;
2191 	char *ptr;
2192 	int ret = -1;
2193 	int slot;
2194 	int len;
2195 	int total_len = 0;
2196 	struct btrfs_inode_ref *iref;
2197 	struct extent_buffer *l;
2198 	struct btrfs_path *path;
2199 
2200 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2201 		name[0]='\0';
2202 		return 0;
2203 	}
2204 
2205 	path = btrfs_alloc_path();
2206 	if (!path)
2207 		return -ENOMEM;
2208 
2209 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2210 
2211 	key.objectid = tree_id;
2212 	key.type = BTRFS_ROOT_ITEM_KEY;
2213 	key.offset = (u64)-1;
2214 	root = btrfs_read_fs_root_no_name(info, &key);
2215 	if (IS_ERR(root)) {
2216 		btrfs_err(info, "could not find root %llu", tree_id);
2217 		ret = -ENOENT;
2218 		goto out;
2219 	}
2220 
2221 	key.objectid = dirid;
2222 	key.type = BTRFS_INODE_REF_KEY;
2223 	key.offset = (u64)-1;
2224 
2225 	while (1) {
2226 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2227 		if (ret < 0)
2228 			goto out;
2229 		else if (ret > 0) {
2230 			ret = btrfs_previous_item(root, path, dirid,
2231 						  BTRFS_INODE_REF_KEY);
2232 			if (ret < 0)
2233 				goto out;
2234 			else if (ret > 0) {
2235 				ret = -ENOENT;
2236 				goto out;
2237 			}
2238 		}
2239 
2240 		l = path->nodes[0];
2241 		slot = path->slots[0];
2242 		btrfs_item_key_to_cpu(l, &key, slot);
2243 
2244 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2245 		len = btrfs_inode_ref_name_len(l, iref);
2246 		ptr -= len + 1;
2247 		total_len += len + 1;
2248 		if (ptr < name) {
2249 			ret = -ENAMETOOLONG;
2250 			goto out;
2251 		}
2252 
2253 		*(ptr + len) = '/';
2254 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2255 
2256 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2257 			break;
2258 
2259 		btrfs_release_path(path);
2260 		key.objectid = key.offset;
2261 		key.offset = (u64)-1;
2262 		dirid = key.objectid;
2263 	}
2264 	memmove(name, ptr, total_len);
2265 	name[total_len] = '\0';
2266 	ret = 0;
2267 out:
2268 	btrfs_free_path(path);
2269 	return ret;
2270 }
2271 
2272 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2273 					   void __user *argp)
2274 {
2275 	 struct btrfs_ioctl_ino_lookup_args *args;
2276 	 struct inode *inode;
2277 	int ret = 0;
2278 
2279 	args = memdup_user(argp, sizeof(*args));
2280 	if (IS_ERR(args))
2281 		return PTR_ERR(args);
2282 
2283 	inode = file_inode(file);
2284 
2285 	/*
2286 	 * Unprivileged query to obtain the containing subvolume root id. The
2287 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2288 	 */
2289 	if (args->treeid == 0)
2290 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2291 
2292 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2293 		args->name[0] = 0;
2294 		goto out;
2295 	}
2296 
2297 	if (!capable(CAP_SYS_ADMIN)) {
2298 		ret = -EPERM;
2299 		goto out;
2300 	}
2301 
2302 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2303 					args->treeid, args->objectid,
2304 					args->name);
2305 
2306 out:
2307 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2308 		ret = -EFAULT;
2309 
2310 	kfree(args);
2311 	return ret;
2312 }
2313 
2314 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2315 					     void __user *arg)
2316 {
2317 	struct dentry *parent = file->f_path.dentry;
2318 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2319 	struct dentry *dentry;
2320 	struct inode *dir = d_inode(parent);
2321 	struct inode *inode;
2322 	struct btrfs_root *root = BTRFS_I(dir)->root;
2323 	struct btrfs_root *dest = NULL;
2324 	struct btrfs_ioctl_vol_args *vol_args;
2325 	struct btrfs_trans_handle *trans;
2326 	struct btrfs_block_rsv block_rsv;
2327 	u64 root_flags;
2328 	u64 qgroup_reserved;
2329 	int namelen;
2330 	int ret;
2331 	int err = 0;
2332 
2333 	if (!S_ISDIR(dir->i_mode))
2334 		return -ENOTDIR;
2335 
2336 	vol_args = memdup_user(arg, sizeof(*vol_args));
2337 	if (IS_ERR(vol_args))
2338 		return PTR_ERR(vol_args);
2339 
2340 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2341 	namelen = strlen(vol_args->name);
2342 	if (strchr(vol_args->name, '/') ||
2343 	    strncmp(vol_args->name, "..", namelen) == 0) {
2344 		err = -EINVAL;
2345 		goto out;
2346 	}
2347 
2348 	err = mnt_want_write_file(file);
2349 	if (err)
2350 		goto out;
2351 
2352 
2353 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2354 	if (err == -EINTR)
2355 		goto out_drop_write;
2356 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2357 	if (IS_ERR(dentry)) {
2358 		err = PTR_ERR(dentry);
2359 		goto out_unlock_dir;
2360 	}
2361 
2362 	if (d_really_is_negative(dentry)) {
2363 		err = -ENOENT;
2364 		goto out_dput;
2365 	}
2366 
2367 	inode = d_inode(dentry);
2368 	dest = BTRFS_I(inode)->root;
2369 	if (!capable(CAP_SYS_ADMIN)) {
2370 		/*
2371 		 * Regular user.  Only allow this with a special mount
2372 		 * option, when the user has write+exec access to the
2373 		 * subvol root, and when rmdir(2) would have been
2374 		 * allowed.
2375 		 *
2376 		 * Note that this is _not_ check that the subvol is
2377 		 * empty or doesn't contain data that we wouldn't
2378 		 * otherwise be able to delete.
2379 		 *
2380 		 * Users who want to delete empty subvols should try
2381 		 * rmdir(2).
2382 		 */
2383 		err = -EPERM;
2384 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2385 			goto out_dput;
2386 
2387 		/*
2388 		 * Do not allow deletion if the parent dir is the same
2389 		 * as the dir to be deleted.  That means the ioctl
2390 		 * must be called on the dentry referencing the root
2391 		 * of the subvol, not a random directory contained
2392 		 * within it.
2393 		 */
2394 		err = -EINVAL;
2395 		if (root == dest)
2396 			goto out_dput;
2397 
2398 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2399 		if (err)
2400 			goto out_dput;
2401 	}
2402 
2403 	/* check if subvolume may be deleted by a user */
2404 	err = btrfs_may_delete(dir, dentry, 1);
2405 	if (err)
2406 		goto out_dput;
2407 
2408 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2409 		err = -EINVAL;
2410 		goto out_dput;
2411 	}
2412 
2413 	inode_lock(inode);
2414 
2415 	/*
2416 	 * Don't allow to delete a subvolume with send in progress. This is
2417 	 * inside the i_mutex so the error handling that has to drop the bit
2418 	 * again is not run concurrently.
2419 	 */
2420 	spin_lock(&dest->root_item_lock);
2421 	root_flags = btrfs_root_flags(&dest->root_item);
2422 	if (dest->send_in_progress == 0) {
2423 		btrfs_set_root_flags(&dest->root_item,
2424 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2425 		spin_unlock(&dest->root_item_lock);
2426 	} else {
2427 		spin_unlock(&dest->root_item_lock);
2428 		btrfs_warn(fs_info,
2429 			   "Attempt to delete subvolume %llu during send",
2430 			   dest->root_key.objectid);
2431 		err = -EPERM;
2432 		goto out_unlock_inode;
2433 	}
2434 
2435 	down_write(&fs_info->subvol_sem);
2436 
2437 	err = may_destroy_subvol(dest);
2438 	if (err)
2439 		goto out_up_write;
2440 
2441 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2442 	/*
2443 	 * One for dir inode, two for dir entries, two for root
2444 	 * ref/backref.
2445 	 */
2446 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2447 					       5, &qgroup_reserved, true);
2448 	if (err)
2449 		goto out_up_write;
2450 
2451 	trans = btrfs_start_transaction(root, 0);
2452 	if (IS_ERR(trans)) {
2453 		err = PTR_ERR(trans);
2454 		goto out_release;
2455 	}
2456 	trans->block_rsv = &block_rsv;
2457 	trans->bytes_reserved = block_rsv.size;
2458 
2459 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2460 
2461 	ret = btrfs_unlink_subvol(trans, root, dir,
2462 				dest->root_key.objectid,
2463 				dentry->d_name.name,
2464 				dentry->d_name.len);
2465 	if (ret) {
2466 		err = ret;
2467 		btrfs_abort_transaction(trans, ret);
2468 		goto out_end_trans;
2469 	}
2470 
2471 	btrfs_record_root_in_trans(trans, dest);
2472 
2473 	memset(&dest->root_item.drop_progress, 0,
2474 		sizeof(dest->root_item.drop_progress));
2475 	dest->root_item.drop_level = 0;
2476 	btrfs_set_root_refs(&dest->root_item, 0);
2477 
2478 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2479 		ret = btrfs_insert_orphan_item(trans,
2480 					fs_info->tree_root,
2481 					dest->root_key.objectid);
2482 		if (ret) {
2483 			btrfs_abort_transaction(trans, ret);
2484 			err = ret;
2485 			goto out_end_trans;
2486 		}
2487 	}
2488 
2489 	ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2490 				  BTRFS_UUID_KEY_SUBVOL,
2491 				  dest->root_key.objectid);
2492 	if (ret && ret != -ENOENT) {
2493 		btrfs_abort_transaction(trans, ret);
2494 		err = ret;
2495 		goto out_end_trans;
2496 	}
2497 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2498 		ret = btrfs_uuid_tree_rem(trans, fs_info,
2499 					  dest->root_item.received_uuid,
2500 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2501 					  dest->root_key.objectid);
2502 		if (ret && ret != -ENOENT) {
2503 			btrfs_abort_transaction(trans, ret);
2504 			err = ret;
2505 			goto out_end_trans;
2506 		}
2507 	}
2508 
2509 out_end_trans:
2510 	trans->block_rsv = NULL;
2511 	trans->bytes_reserved = 0;
2512 	ret = btrfs_end_transaction(trans);
2513 	if (ret && !err)
2514 		err = ret;
2515 	inode->i_flags |= S_DEAD;
2516 out_release:
2517 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2518 out_up_write:
2519 	up_write(&fs_info->subvol_sem);
2520 	if (err) {
2521 		spin_lock(&dest->root_item_lock);
2522 		root_flags = btrfs_root_flags(&dest->root_item);
2523 		btrfs_set_root_flags(&dest->root_item,
2524 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2525 		spin_unlock(&dest->root_item_lock);
2526 	}
2527 out_unlock_inode:
2528 	inode_unlock(inode);
2529 	if (!err) {
2530 		d_invalidate(dentry);
2531 		btrfs_invalidate_inodes(dest);
2532 		d_delete(dentry);
2533 		ASSERT(dest->send_in_progress == 0);
2534 
2535 		/* the last ref */
2536 		if (dest->ino_cache_inode) {
2537 			iput(dest->ino_cache_inode);
2538 			dest->ino_cache_inode = NULL;
2539 		}
2540 	}
2541 out_dput:
2542 	dput(dentry);
2543 out_unlock_dir:
2544 	inode_unlock(dir);
2545 out_drop_write:
2546 	mnt_drop_write_file(file);
2547 out:
2548 	kfree(vol_args);
2549 	return err;
2550 }
2551 
2552 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2553 {
2554 	struct inode *inode = file_inode(file);
2555 	struct btrfs_root *root = BTRFS_I(inode)->root;
2556 	struct btrfs_ioctl_defrag_range_args *range;
2557 	int ret;
2558 
2559 	ret = mnt_want_write_file(file);
2560 	if (ret)
2561 		return ret;
2562 
2563 	if (btrfs_root_readonly(root)) {
2564 		ret = -EROFS;
2565 		goto out;
2566 	}
2567 
2568 	switch (inode->i_mode & S_IFMT) {
2569 	case S_IFDIR:
2570 		if (!capable(CAP_SYS_ADMIN)) {
2571 			ret = -EPERM;
2572 			goto out;
2573 		}
2574 		ret = btrfs_defrag_root(root);
2575 		break;
2576 	case S_IFREG:
2577 		if (!(file->f_mode & FMODE_WRITE)) {
2578 			ret = -EINVAL;
2579 			goto out;
2580 		}
2581 
2582 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2583 		if (!range) {
2584 			ret = -ENOMEM;
2585 			goto out;
2586 		}
2587 
2588 		if (argp) {
2589 			if (copy_from_user(range, argp,
2590 					   sizeof(*range))) {
2591 				ret = -EFAULT;
2592 				kfree(range);
2593 				goto out;
2594 			}
2595 			/* compression requires us to start the IO */
2596 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2597 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2598 				range->extent_thresh = (u32)-1;
2599 			}
2600 		} else {
2601 			/* the rest are all set to zero by kzalloc */
2602 			range->len = (u64)-1;
2603 		}
2604 		ret = btrfs_defrag_file(file_inode(file), file,
2605 					range, BTRFS_OLDEST_GENERATION, 0);
2606 		if (ret > 0)
2607 			ret = 0;
2608 		kfree(range);
2609 		break;
2610 	default:
2611 		ret = -EINVAL;
2612 	}
2613 out:
2614 	mnt_drop_write_file(file);
2615 	return ret;
2616 }
2617 
2618 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2619 {
2620 	struct btrfs_ioctl_vol_args *vol_args;
2621 	int ret;
2622 
2623 	if (!capable(CAP_SYS_ADMIN))
2624 		return -EPERM;
2625 
2626 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2627 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2628 
2629 	mutex_lock(&fs_info->volume_mutex);
2630 	vol_args = memdup_user(arg, sizeof(*vol_args));
2631 	if (IS_ERR(vol_args)) {
2632 		ret = PTR_ERR(vol_args);
2633 		goto out;
2634 	}
2635 
2636 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2637 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2638 
2639 	if (!ret)
2640 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2641 
2642 	kfree(vol_args);
2643 out:
2644 	mutex_unlock(&fs_info->volume_mutex);
2645 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2646 	return ret;
2647 }
2648 
2649 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2650 {
2651 	struct inode *inode = file_inode(file);
2652 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2653 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2654 	int ret;
2655 
2656 	if (!capable(CAP_SYS_ADMIN))
2657 		return -EPERM;
2658 
2659 	ret = mnt_want_write_file(file);
2660 	if (ret)
2661 		return ret;
2662 
2663 	vol_args = memdup_user(arg, sizeof(*vol_args));
2664 	if (IS_ERR(vol_args)) {
2665 		ret = PTR_ERR(vol_args);
2666 		goto err_drop;
2667 	}
2668 
2669 	/* Check for compatibility reject unknown flags */
2670 	if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2671 		return -EOPNOTSUPP;
2672 
2673 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2674 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2675 		goto out;
2676 	}
2677 
2678 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2679 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2680 	} else {
2681 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2682 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2683 	}
2684 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2685 
2686 	if (!ret) {
2687 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2688 			btrfs_info(fs_info, "device deleted: id %llu",
2689 					vol_args->devid);
2690 		else
2691 			btrfs_info(fs_info, "device deleted: %s",
2692 					vol_args->name);
2693 	}
2694 out:
2695 	kfree(vol_args);
2696 err_drop:
2697 	mnt_drop_write_file(file);
2698 	return ret;
2699 }
2700 
2701 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2702 {
2703 	struct inode *inode = file_inode(file);
2704 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2705 	struct btrfs_ioctl_vol_args *vol_args;
2706 	int ret;
2707 
2708 	if (!capable(CAP_SYS_ADMIN))
2709 		return -EPERM;
2710 
2711 	ret = mnt_want_write_file(file);
2712 	if (ret)
2713 		return ret;
2714 
2715 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2716 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2717 		goto out_drop_write;
2718 	}
2719 
2720 	vol_args = memdup_user(arg, sizeof(*vol_args));
2721 	if (IS_ERR(vol_args)) {
2722 		ret = PTR_ERR(vol_args);
2723 		goto out;
2724 	}
2725 
2726 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2727 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2728 
2729 	if (!ret)
2730 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2731 	kfree(vol_args);
2732 out:
2733 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2734 out_drop_write:
2735 	mnt_drop_write_file(file);
2736 
2737 	return ret;
2738 }
2739 
2740 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2741 				void __user *arg)
2742 {
2743 	struct btrfs_ioctl_fs_info_args *fi_args;
2744 	struct btrfs_device *device;
2745 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2746 	int ret = 0;
2747 
2748 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2749 	if (!fi_args)
2750 		return -ENOMEM;
2751 
2752 	rcu_read_lock();
2753 	fi_args->num_devices = fs_devices->num_devices;
2754 
2755 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2756 		if (device->devid > fi_args->max_id)
2757 			fi_args->max_id = device->devid;
2758 	}
2759 	rcu_read_unlock();
2760 
2761 	memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2762 	fi_args->nodesize = fs_info->nodesize;
2763 	fi_args->sectorsize = fs_info->sectorsize;
2764 	fi_args->clone_alignment = fs_info->sectorsize;
2765 
2766 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2767 		ret = -EFAULT;
2768 
2769 	kfree(fi_args);
2770 	return ret;
2771 }
2772 
2773 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2774 				 void __user *arg)
2775 {
2776 	struct btrfs_ioctl_dev_info_args *di_args;
2777 	struct btrfs_device *dev;
2778 	int ret = 0;
2779 	char *s_uuid = NULL;
2780 
2781 	di_args = memdup_user(arg, sizeof(*di_args));
2782 	if (IS_ERR(di_args))
2783 		return PTR_ERR(di_args);
2784 
2785 	if (!btrfs_is_empty_uuid(di_args->uuid))
2786 		s_uuid = di_args->uuid;
2787 
2788 	rcu_read_lock();
2789 	dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2790 
2791 	if (!dev) {
2792 		ret = -ENODEV;
2793 		goto out;
2794 	}
2795 
2796 	di_args->devid = dev->devid;
2797 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2798 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2799 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2800 	if (dev->name) {
2801 		struct rcu_string *name;
2802 
2803 		name = rcu_dereference(dev->name);
2804 		strncpy(di_args->path, name->str, sizeof(di_args->path) - 1);
2805 		di_args->path[sizeof(di_args->path) - 1] = 0;
2806 	} else {
2807 		di_args->path[0] = '\0';
2808 	}
2809 
2810 out:
2811 	rcu_read_unlock();
2812 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2813 		ret = -EFAULT;
2814 
2815 	kfree(di_args);
2816 	return ret;
2817 }
2818 
2819 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2820 {
2821 	struct page *page;
2822 
2823 	page = grab_cache_page(inode->i_mapping, index);
2824 	if (!page)
2825 		return ERR_PTR(-ENOMEM);
2826 
2827 	if (!PageUptodate(page)) {
2828 		int ret;
2829 
2830 		ret = btrfs_readpage(NULL, page);
2831 		if (ret)
2832 			return ERR_PTR(ret);
2833 		lock_page(page);
2834 		if (!PageUptodate(page)) {
2835 			unlock_page(page);
2836 			put_page(page);
2837 			return ERR_PTR(-EIO);
2838 		}
2839 		if (page->mapping != inode->i_mapping) {
2840 			unlock_page(page);
2841 			put_page(page);
2842 			return ERR_PTR(-EAGAIN);
2843 		}
2844 	}
2845 
2846 	return page;
2847 }
2848 
2849 static int gather_extent_pages(struct inode *inode, struct page **pages,
2850 			       int num_pages, u64 off)
2851 {
2852 	int i;
2853 	pgoff_t index = off >> PAGE_SHIFT;
2854 
2855 	for (i = 0; i < num_pages; i++) {
2856 again:
2857 		pages[i] = extent_same_get_page(inode, index + i);
2858 		if (IS_ERR(pages[i])) {
2859 			int err = PTR_ERR(pages[i]);
2860 
2861 			if (err == -EAGAIN)
2862 				goto again;
2863 			pages[i] = NULL;
2864 			return err;
2865 		}
2866 	}
2867 	return 0;
2868 }
2869 
2870 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2871 			     bool retry_range_locking)
2872 {
2873 	/*
2874 	 * Do any pending delalloc/csum calculations on inode, one way or
2875 	 * another, and lock file content.
2876 	 * The locking order is:
2877 	 *
2878 	 *   1) pages
2879 	 *   2) range in the inode's io tree
2880 	 */
2881 	while (1) {
2882 		struct btrfs_ordered_extent *ordered;
2883 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2884 		ordered = btrfs_lookup_first_ordered_extent(inode,
2885 							    off + len - 1);
2886 		if ((!ordered ||
2887 		     ordered->file_offset + ordered->len <= off ||
2888 		     ordered->file_offset >= off + len) &&
2889 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2890 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2891 			if (ordered)
2892 				btrfs_put_ordered_extent(ordered);
2893 			break;
2894 		}
2895 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2896 		if (ordered)
2897 			btrfs_put_ordered_extent(ordered);
2898 		if (!retry_range_locking)
2899 			return -EAGAIN;
2900 		btrfs_wait_ordered_range(inode, off, len);
2901 	}
2902 	return 0;
2903 }
2904 
2905 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2906 {
2907 	inode_unlock(inode1);
2908 	inode_unlock(inode2);
2909 }
2910 
2911 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2912 {
2913 	if (inode1 < inode2)
2914 		swap(inode1, inode2);
2915 
2916 	inode_lock_nested(inode1, I_MUTEX_PARENT);
2917 	inode_lock_nested(inode2, I_MUTEX_CHILD);
2918 }
2919 
2920 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2921 				      struct inode *inode2, u64 loff2, u64 len)
2922 {
2923 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2924 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2925 }
2926 
2927 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2928 				    struct inode *inode2, u64 loff2, u64 len,
2929 				    bool retry_range_locking)
2930 {
2931 	int ret;
2932 
2933 	if (inode1 < inode2) {
2934 		swap(inode1, inode2);
2935 		swap(loff1, loff2);
2936 	}
2937 	ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2938 	if (ret)
2939 		return ret;
2940 	ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2941 	if (ret)
2942 		unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2943 			      loff1 + len - 1);
2944 	return ret;
2945 }
2946 
2947 struct cmp_pages {
2948 	int		num_pages;
2949 	struct page	**src_pages;
2950 	struct page	**dst_pages;
2951 };
2952 
2953 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2954 {
2955 	int i;
2956 	struct page *pg;
2957 
2958 	for (i = 0; i < cmp->num_pages; i++) {
2959 		pg = cmp->src_pages[i];
2960 		if (pg) {
2961 			unlock_page(pg);
2962 			put_page(pg);
2963 		}
2964 		pg = cmp->dst_pages[i];
2965 		if (pg) {
2966 			unlock_page(pg);
2967 			put_page(pg);
2968 		}
2969 	}
2970 	kfree(cmp->src_pages);
2971 	kfree(cmp->dst_pages);
2972 }
2973 
2974 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2975 				  struct inode *dst, u64 dst_loff,
2976 				  u64 len, struct cmp_pages *cmp)
2977 {
2978 	int ret;
2979 	int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2980 	struct page **src_pgarr, **dst_pgarr;
2981 
2982 	/*
2983 	 * We must gather up all the pages before we initiate our
2984 	 * extent locking. We use an array for the page pointers. Size
2985 	 * of the array is bounded by len, which is in turn bounded by
2986 	 * BTRFS_MAX_DEDUPE_LEN.
2987 	 */
2988 	src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2989 	dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2990 	if (!src_pgarr || !dst_pgarr) {
2991 		kfree(src_pgarr);
2992 		kfree(dst_pgarr);
2993 		return -ENOMEM;
2994 	}
2995 	cmp->num_pages = num_pages;
2996 	cmp->src_pages = src_pgarr;
2997 	cmp->dst_pages = dst_pgarr;
2998 
2999 	/*
3000 	 * If deduping ranges in the same inode, locking rules make it mandatory
3001 	 * to always lock pages in ascending order to avoid deadlocks with
3002 	 * concurrent tasks (such as starting writeback/delalloc).
3003 	 */
3004 	if (src == dst && dst_loff < loff) {
3005 		swap(src_pgarr, dst_pgarr);
3006 		swap(loff, dst_loff);
3007 	}
3008 
3009 	ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
3010 	if (ret)
3011 		goto out;
3012 
3013 	ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3014 
3015 out:
3016 	if (ret)
3017 		btrfs_cmp_data_free(cmp);
3018 	return ret;
3019 }
3020 
3021 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3022 {
3023 	int ret = 0;
3024 	int i;
3025 	struct page *src_page, *dst_page;
3026 	unsigned int cmp_len = PAGE_SIZE;
3027 	void *addr, *dst_addr;
3028 
3029 	i = 0;
3030 	while (len) {
3031 		if (len < PAGE_SIZE)
3032 			cmp_len = len;
3033 
3034 		BUG_ON(i >= cmp->num_pages);
3035 
3036 		src_page = cmp->src_pages[i];
3037 		dst_page = cmp->dst_pages[i];
3038 		ASSERT(PageLocked(src_page));
3039 		ASSERT(PageLocked(dst_page));
3040 
3041 		addr = kmap_atomic(src_page);
3042 		dst_addr = kmap_atomic(dst_page);
3043 
3044 		flush_dcache_page(src_page);
3045 		flush_dcache_page(dst_page);
3046 
3047 		if (memcmp(addr, dst_addr, cmp_len))
3048 			ret = -EBADE;
3049 
3050 		kunmap_atomic(addr);
3051 		kunmap_atomic(dst_addr);
3052 
3053 		if (ret)
3054 			break;
3055 
3056 		len -= cmp_len;
3057 		i++;
3058 	}
3059 
3060 	return ret;
3061 }
3062 
3063 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3064 				     u64 olen)
3065 {
3066 	u64 len = *plen;
3067 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3068 
3069 	if (off + olen > inode->i_size || off + olen < off)
3070 		return -EINVAL;
3071 
3072 	/* if we extend to eof, continue to block boundary */
3073 	if (off + len == inode->i_size)
3074 		*plen = len = ALIGN(inode->i_size, bs) - off;
3075 
3076 	/* Check that we are block aligned - btrfs_clone() requires this */
3077 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3078 		return -EINVAL;
3079 
3080 	return 0;
3081 }
3082 
3083 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3084 			     struct inode *dst, u64 dst_loff)
3085 {
3086 	int ret;
3087 	u64 len = olen;
3088 	struct cmp_pages cmp;
3089 	bool same_inode = (src == dst);
3090 	u64 same_lock_start = 0;
3091 	u64 same_lock_len = 0;
3092 
3093 	if (len == 0)
3094 		return 0;
3095 
3096 	if (same_inode)
3097 		inode_lock(src);
3098 	else
3099 		btrfs_double_inode_lock(src, dst);
3100 
3101 	ret = extent_same_check_offsets(src, loff, &len, olen);
3102 	if (ret)
3103 		goto out_unlock;
3104 
3105 	ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3106 	if (ret)
3107 		goto out_unlock;
3108 
3109 	if (same_inode) {
3110 		/*
3111 		 * Single inode case wants the same checks, except we
3112 		 * don't want our length pushed out past i_size as
3113 		 * comparing that data range makes no sense.
3114 		 *
3115 		 * extent_same_check_offsets() will do this for an
3116 		 * unaligned length at i_size, so catch it here and
3117 		 * reject the request.
3118 		 *
3119 		 * This effectively means we require aligned extents
3120 		 * for the single-inode case, whereas the other cases
3121 		 * allow an unaligned length so long as it ends at
3122 		 * i_size.
3123 		 */
3124 		if (len != olen) {
3125 			ret = -EINVAL;
3126 			goto out_unlock;
3127 		}
3128 
3129 		/* Check for overlapping ranges */
3130 		if (dst_loff + len > loff && dst_loff < loff + len) {
3131 			ret = -EINVAL;
3132 			goto out_unlock;
3133 		}
3134 
3135 		same_lock_start = min_t(u64, loff, dst_loff);
3136 		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3137 	}
3138 
3139 	/* don't make the dst file partly checksummed */
3140 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3141 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3142 		ret = -EINVAL;
3143 		goto out_unlock;
3144 	}
3145 
3146 again:
3147 	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3148 	if (ret)
3149 		goto out_unlock;
3150 
3151 	if (same_inode)
3152 		ret = lock_extent_range(src, same_lock_start, same_lock_len,
3153 					false);
3154 	else
3155 		ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3156 					       false);
3157 	/*
3158 	 * If one of the inodes has dirty pages in the respective range or
3159 	 * ordered extents, we need to flush dellaloc and wait for all ordered
3160 	 * extents in the range. We must unlock the pages and the ranges in the
3161 	 * io trees to avoid deadlocks when flushing delalloc (requires locking
3162 	 * pages) and when waiting for ordered extents to complete (they require
3163 	 * range locking).
3164 	 */
3165 	if (ret == -EAGAIN) {
3166 		/*
3167 		 * Ranges in the io trees already unlocked. Now unlock all
3168 		 * pages before waiting for all IO to complete.
3169 		 */
3170 		btrfs_cmp_data_free(&cmp);
3171 		if (same_inode) {
3172 			btrfs_wait_ordered_range(src, same_lock_start,
3173 						 same_lock_len);
3174 		} else {
3175 			btrfs_wait_ordered_range(src, loff, len);
3176 			btrfs_wait_ordered_range(dst, dst_loff, len);
3177 		}
3178 		goto again;
3179 	}
3180 	ASSERT(ret == 0);
3181 	if (WARN_ON(ret)) {
3182 		/* ranges in the io trees already unlocked */
3183 		btrfs_cmp_data_free(&cmp);
3184 		return ret;
3185 	}
3186 
3187 	/* pass original length for comparison so we stay within i_size */
3188 	ret = btrfs_cmp_data(olen, &cmp);
3189 	if (ret == 0)
3190 		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3191 
3192 	if (same_inode)
3193 		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3194 			      same_lock_start + same_lock_len - 1);
3195 	else
3196 		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3197 
3198 	btrfs_cmp_data_free(&cmp);
3199 out_unlock:
3200 	if (same_inode)
3201 		inode_unlock(src);
3202 	else
3203 		btrfs_double_inode_unlock(src, dst);
3204 
3205 	return ret;
3206 }
3207 
3208 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3209 
3210 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3211 				struct file *dst_file, u64 dst_loff)
3212 {
3213 	struct inode *src = file_inode(src_file);
3214 	struct inode *dst = file_inode(dst_file);
3215 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3216 	ssize_t res;
3217 
3218 	if (olen > BTRFS_MAX_DEDUPE_LEN)
3219 		olen = BTRFS_MAX_DEDUPE_LEN;
3220 
3221 	if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3222 		/*
3223 		 * Btrfs does not support blocksize < page_size. As a
3224 		 * result, btrfs_cmp_data() won't correctly handle
3225 		 * this situation without an update.
3226 		 */
3227 		return -EINVAL;
3228 	}
3229 
3230 	res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3231 	if (res)
3232 		return res;
3233 	return olen;
3234 }
3235 
3236 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3237 				     struct inode *inode,
3238 				     u64 endoff,
3239 				     const u64 destoff,
3240 				     const u64 olen,
3241 				     int no_time_update)
3242 {
3243 	struct btrfs_root *root = BTRFS_I(inode)->root;
3244 	int ret;
3245 
3246 	inode_inc_iversion(inode);
3247 	if (!no_time_update)
3248 		inode->i_mtime = inode->i_ctime = current_time(inode);
3249 	/*
3250 	 * We round up to the block size at eof when determining which
3251 	 * extents to clone above, but shouldn't round up the file size.
3252 	 */
3253 	if (endoff > destoff + olen)
3254 		endoff = destoff + olen;
3255 	if (endoff > inode->i_size)
3256 		btrfs_i_size_write(BTRFS_I(inode), endoff);
3257 
3258 	ret = btrfs_update_inode(trans, root, inode);
3259 	if (ret) {
3260 		btrfs_abort_transaction(trans, ret);
3261 		btrfs_end_transaction(trans);
3262 		goto out;
3263 	}
3264 	ret = btrfs_end_transaction(trans);
3265 out:
3266 	return ret;
3267 }
3268 
3269 static void clone_update_extent_map(struct btrfs_inode *inode,
3270 				    const struct btrfs_trans_handle *trans,
3271 				    const struct btrfs_path *path,
3272 				    const u64 hole_offset,
3273 				    const u64 hole_len)
3274 {
3275 	struct extent_map_tree *em_tree = &inode->extent_tree;
3276 	struct extent_map *em;
3277 	int ret;
3278 
3279 	em = alloc_extent_map();
3280 	if (!em) {
3281 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3282 		return;
3283 	}
3284 
3285 	if (path) {
3286 		struct btrfs_file_extent_item *fi;
3287 
3288 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3289 				    struct btrfs_file_extent_item);
3290 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3291 		em->generation = -1;
3292 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3293 		    BTRFS_FILE_EXTENT_INLINE)
3294 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3295 					&inode->runtime_flags);
3296 	} else {
3297 		em->start = hole_offset;
3298 		em->len = hole_len;
3299 		em->ram_bytes = em->len;
3300 		em->orig_start = hole_offset;
3301 		em->block_start = EXTENT_MAP_HOLE;
3302 		em->block_len = 0;
3303 		em->orig_block_len = 0;
3304 		em->compress_type = BTRFS_COMPRESS_NONE;
3305 		em->generation = trans->transid;
3306 	}
3307 
3308 	while (1) {
3309 		write_lock(&em_tree->lock);
3310 		ret = add_extent_mapping(em_tree, em, 1);
3311 		write_unlock(&em_tree->lock);
3312 		if (ret != -EEXIST) {
3313 			free_extent_map(em);
3314 			break;
3315 		}
3316 		btrfs_drop_extent_cache(inode, em->start,
3317 					em->start + em->len - 1, 0);
3318 	}
3319 
3320 	if (ret)
3321 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3322 }
3323 
3324 /*
3325  * Make sure we do not end up inserting an inline extent into a file that has
3326  * already other (non-inline) extents. If a file has an inline extent it can
3327  * not have any other extents and the (single) inline extent must start at the
3328  * file offset 0. Failing to respect these rules will lead to file corruption,
3329  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3330  *
3331  * We can have extents that have been already written to disk or we can have
3332  * dirty ranges still in delalloc, in which case the extent maps and items are
3333  * created only when we run delalloc, and the delalloc ranges might fall outside
3334  * the range we are currently locking in the inode's io tree. So we check the
3335  * inode's i_size because of that (i_size updates are done while holding the
3336  * i_mutex, which we are holding here).
3337  * We also check to see if the inode has a size not greater than "datal" but has
3338  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3339  * protected against such concurrent fallocate calls by the i_mutex).
3340  *
3341  * If the file has no extents but a size greater than datal, do not allow the
3342  * copy because we would need turn the inline extent into a non-inline one (even
3343  * with NO_HOLES enabled). If we find our destination inode only has one inline
3344  * extent, just overwrite it with the source inline extent if its size is less
3345  * than the source extent's size, or we could copy the source inline extent's
3346  * data into the destination inode's inline extent if the later is greater then
3347  * the former.
3348  */
3349 static int clone_copy_inline_extent(struct inode *dst,
3350 				    struct btrfs_trans_handle *trans,
3351 				    struct btrfs_path *path,
3352 				    struct btrfs_key *new_key,
3353 				    const u64 drop_start,
3354 				    const u64 datal,
3355 				    const u64 skip,
3356 				    const u64 size,
3357 				    char *inline_data)
3358 {
3359 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3360 	struct btrfs_root *root = BTRFS_I(dst)->root;
3361 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3362 				      fs_info->sectorsize);
3363 	int ret;
3364 	struct btrfs_key key;
3365 
3366 	if (new_key->offset > 0)
3367 		return -EOPNOTSUPP;
3368 
3369 	key.objectid = btrfs_ino(BTRFS_I(dst));
3370 	key.type = BTRFS_EXTENT_DATA_KEY;
3371 	key.offset = 0;
3372 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3373 	if (ret < 0) {
3374 		return ret;
3375 	} else if (ret > 0) {
3376 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3377 			ret = btrfs_next_leaf(root, path);
3378 			if (ret < 0)
3379 				return ret;
3380 			else if (ret > 0)
3381 				goto copy_inline_extent;
3382 		}
3383 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3384 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3385 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3386 			ASSERT(key.offset > 0);
3387 			return -EOPNOTSUPP;
3388 		}
3389 	} else if (i_size_read(dst) <= datal) {
3390 		struct btrfs_file_extent_item *ei;
3391 		u64 ext_len;
3392 
3393 		/*
3394 		 * If the file size is <= datal, make sure there are no other
3395 		 * extents following (can happen do to an fallocate call with
3396 		 * the flag FALLOC_FL_KEEP_SIZE).
3397 		 */
3398 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3399 				    struct btrfs_file_extent_item);
3400 		/*
3401 		 * If it's an inline extent, it can not have other extents
3402 		 * following it.
3403 		 */
3404 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3405 		    BTRFS_FILE_EXTENT_INLINE)
3406 			goto copy_inline_extent;
3407 
3408 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3409 		if (ext_len > aligned_end)
3410 			return -EOPNOTSUPP;
3411 
3412 		ret = btrfs_next_item(root, path);
3413 		if (ret < 0) {
3414 			return ret;
3415 		} else if (ret == 0) {
3416 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3417 					      path->slots[0]);
3418 			if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3419 			    key.type == BTRFS_EXTENT_DATA_KEY)
3420 				return -EOPNOTSUPP;
3421 		}
3422 	}
3423 
3424 copy_inline_extent:
3425 	/*
3426 	 * We have no extent items, or we have an extent at offset 0 which may
3427 	 * or may not be inlined. All these cases are dealt the same way.
3428 	 */
3429 	if (i_size_read(dst) > datal) {
3430 		/*
3431 		 * If the destination inode has an inline extent...
3432 		 * This would require copying the data from the source inline
3433 		 * extent into the beginning of the destination's inline extent.
3434 		 * But this is really complex, both extents can be compressed
3435 		 * or just one of them, which would require decompressing and
3436 		 * re-compressing data (which could increase the new compressed
3437 		 * size, not allowing the compressed data to fit anymore in an
3438 		 * inline extent).
3439 		 * So just don't support this case for now (it should be rare,
3440 		 * we are not really saving space when cloning inline extents).
3441 		 */
3442 		return -EOPNOTSUPP;
3443 	}
3444 
3445 	btrfs_release_path(path);
3446 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3447 	if (ret)
3448 		return ret;
3449 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3450 	if (ret)
3451 		return ret;
3452 
3453 	if (skip) {
3454 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3455 
3456 		memmove(inline_data + start, inline_data + start + skip, datal);
3457 	}
3458 
3459 	write_extent_buffer(path->nodes[0], inline_data,
3460 			    btrfs_item_ptr_offset(path->nodes[0],
3461 						  path->slots[0]),
3462 			    size);
3463 	inode_add_bytes(dst, datal);
3464 
3465 	return 0;
3466 }
3467 
3468 /**
3469  * btrfs_clone() - clone a range from inode file to another
3470  *
3471  * @src: Inode to clone from
3472  * @inode: Inode to clone to
3473  * @off: Offset within source to start clone from
3474  * @olen: Original length, passed by user, of range to clone
3475  * @olen_aligned: Block-aligned value of olen
3476  * @destoff: Offset within @inode to start clone
3477  * @no_time_update: Whether to update mtime/ctime on the target inode
3478  */
3479 static int btrfs_clone(struct inode *src, struct inode *inode,
3480 		       const u64 off, const u64 olen, const u64 olen_aligned,
3481 		       const u64 destoff, int no_time_update)
3482 {
3483 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3484 	struct btrfs_root *root = BTRFS_I(inode)->root;
3485 	struct btrfs_path *path = NULL;
3486 	struct extent_buffer *leaf;
3487 	struct btrfs_trans_handle *trans;
3488 	char *buf = NULL;
3489 	struct btrfs_key key;
3490 	u32 nritems;
3491 	int slot;
3492 	int ret;
3493 	const u64 len = olen_aligned;
3494 	u64 last_dest_end = destoff;
3495 
3496 	ret = -ENOMEM;
3497 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3498 	if (!buf)
3499 		return ret;
3500 
3501 	path = btrfs_alloc_path();
3502 	if (!path) {
3503 		kvfree(buf);
3504 		return ret;
3505 	}
3506 
3507 	path->reada = READA_FORWARD;
3508 	/* clone data */
3509 	key.objectid = btrfs_ino(BTRFS_I(src));
3510 	key.type = BTRFS_EXTENT_DATA_KEY;
3511 	key.offset = off;
3512 
3513 	while (1) {
3514 		u64 next_key_min_offset = key.offset + 1;
3515 
3516 		/*
3517 		 * note the key will change type as we walk through the
3518 		 * tree.
3519 		 */
3520 		path->leave_spinning = 1;
3521 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3522 				0, 0);
3523 		if (ret < 0)
3524 			goto out;
3525 		/*
3526 		 * First search, if no extent item that starts at offset off was
3527 		 * found but the previous item is an extent item, it's possible
3528 		 * it might overlap our target range, therefore process it.
3529 		 */
3530 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3531 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3532 					      path->slots[0] - 1);
3533 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3534 				path->slots[0]--;
3535 		}
3536 
3537 		nritems = btrfs_header_nritems(path->nodes[0]);
3538 process_slot:
3539 		if (path->slots[0] >= nritems) {
3540 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3541 			if (ret < 0)
3542 				goto out;
3543 			if (ret > 0)
3544 				break;
3545 			nritems = btrfs_header_nritems(path->nodes[0]);
3546 		}
3547 		leaf = path->nodes[0];
3548 		slot = path->slots[0];
3549 
3550 		btrfs_item_key_to_cpu(leaf, &key, slot);
3551 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3552 		    key.objectid != btrfs_ino(BTRFS_I(src)))
3553 			break;
3554 
3555 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3556 			struct btrfs_file_extent_item *extent;
3557 			int type;
3558 			u32 size;
3559 			struct btrfs_key new_key;
3560 			u64 disko = 0, diskl = 0;
3561 			u64 datao = 0, datal = 0;
3562 			u8 comp;
3563 			u64 drop_start;
3564 
3565 			extent = btrfs_item_ptr(leaf, slot,
3566 						struct btrfs_file_extent_item);
3567 			comp = btrfs_file_extent_compression(leaf, extent);
3568 			type = btrfs_file_extent_type(leaf, extent);
3569 			if (type == BTRFS_FILE_EXTENT_REG ||
3570 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3571 				disko = btrfs_file_extent_disk_bytenr(leaf,
3572 								      extent);
3573 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3574 								 extent);
3575 				datao = btrfs_file_extent_offset(leaf, extent);
3576 				datal = btrfs_file_extent_num_bytes(leaf,
3577 								    extent);
3578 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3579 				/* take upper bound, may be compressed */
3580 				datal = btrfs_file_extent_ram_bytes(leaf,
3581 								    extent);
3582 			}
3583 
3584 			/*
3585 			 * The first search might have left us at an extent
3586 			 * item that ends before our target range's start, can
3587 			 * happen if we have holes and NO_HOLES feature enabled.
3588 			 */
3589 			if (key.offset + datal <= off) {
3590 				path->slots[0]++;
3591 				goto process_slot;
3592 			} else if (key.offset >= off + len) {
3593 				break;
3594 			}
3595 			next_key_min_offset = key.offset + datal;
3596 			size = btrfs_item_size_nr(leaf, slot);
3597 			read_extent_buffer(leaf, buf,
3598 					   btrfs_item_ptr_offset(leaf, slot),
3599 					   size);
3600 
3601 			btrfs_release_path(path);
3602 			path->leave_spinning = 0;
3603 
3604 			memcpy(&new_key, &key, sizeof(new_key));
3605 			new_key.objectid = btrfs_ino(BTRFS_I(inode));
3606 			if (off <= key.offset)
3607 				new_key.offset = key.offset + destoff - off;
3608 			else
3609 				new_key.offset = destoff;
3610 
3611 			/*
3612 			 * Deal with a hole that doesn't have an extent item
3613 			 * that represents it (NO_HOLES feature enabled).
3614 			 * This hole is either in the middle of the cloning
3615 			 * range or at the beginning (fully overlaps it or
3616 			 * partially overlaps it).
3617 			 */
3618 			if (new_key.offset != last_dest_end)
3619 				drop_start = last_dest_end;
3620 			else
3621 				drop_start = new_key.offset;
3622 
3623 			/*
3624 			 * 1 - adjusting old extent (we may have to split it)
3625 			 * 1 - add new extent
3626 			 * 1 - inode update
3627 			 */
3628 			trans = btrfs_start_transaction(root, 3);
3629 			if (IS_ERR(trans)) {
3630 				ret = PTR_ERR(trans);
3631 				goto out;
3632 			}
3633 
3634 			if (type == BTRFS_FILE_EXTENT_REG ||
3635 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3636 				/*
3637 				 *    a  | --- range to clone ---|  b
3638 				 * | ------------- extent ------------- |
3639 				 */
3640 
3641 				/* subtract range b */
3642 				if (key.offset + datal > off + len)
3643 					datal = off + len - key.offset;
3644 
3645 				/* subtract range a */
3646 				if (off > key.offset) {
3647 					datao += off - key.offset;
3648 					datal -= off - key.offset;
3649 				}
3650 
3651 				ret = btrfs_drop_extents(trans, root, inode,
3652 							 drop_start,
3653 							 new_key.offset + datal,
3654 							 1);
3655 				if (ret) {
3656 					if (ret != -EOPNOTSUPP)
3657 						btrfs_abort_transaction(trans,
3658 									ret);
3659 					btrfs_end_transaction(trans);
3660 					goto out;
3661 				}
3662 
3663 				ret = btrfs_insert_empty_item(trans, root, path,
3664 							      &new_key, size);
3665 				if (ret) {
3666 					btrfs_abort_transaction(trans, ret);
3667 					btrfs_end_transaction(trans);
3668 					goto out;
3669 				}
3670 
3671 				leaf = path->nodes[0];
3672 				slot = path->slots[0];
3673 				write_extent_buffer(leaf, buf,
3674 					    btrfs_item_ptr_offset(leaf, slot),
3675 					    size);
3676 
3677 				extent = btrfs_item_ptr(leaf, slot,
3678 						struct btrfs_file_extent_item);
3679 
3680 				/* disko == 0 means it's a hole */
3681 				if (!disko)
3682 					datao = 0;
3683 
3684 				btrfs_set_file_extent_offset(leaf, extent,
3685 							     datao);
3686 				btrfs_set_file_extent_num_bytes(leaf, extent,
3687 								datal);
3688 
3689 				if (disko) {
3690 					inode_add_bytes(inode, datal);
3691 					ret = btrfs_inc_extent_ref(trans,
3692 							root,
3693 							disko, diskl, 0,
3694 							root->root_key.objectid,
3695 							btrfs_ino(BTRFS_I(inode)),
3696 							new_key.offset - datao);
3697 					if (ret) {
3698 						btrfs_abort_transaction(trans,
3699 									ret);
3700 						btrfs_end_transaction(trans);
3701 						goto out;
3702 
3703 					}
3704 				}
3705 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3706 				u64 skip = 0;
3707 				u64 trim = 0;
3708 
3709 				if (off > key.offset) {
3710 					skip = off - key.offset;
3711 					new_key.offset += skip;
3712 				}
3713 
3714 				if (key.offset + datal > off + len)
3715 					trim = key.offset + datal - (off + len);
3716 
3717 				if (comp && (skip || trim)) {
3718 					ret = -EINVAL;
3719 					btrfs_end_transaction(trans);
3720 					goto out;
3721 				}
3722 				size -= skip + trim;
3723 				datal -= skip + trim;
3724 
3725 				ret = clone_copy_inline_extent(inode,
3726 							       trans, path,
3727 							       &new_key,
3728 							       drop_start,
3729 							       datal,
3730 							       skip, size, buf);
3731 				if (ret) {
3732 					if (ret != -EOPNOTSUPP)
3733 						btrfs_abort_transaction(trans,
3734 									ret);
3735 					btrfs_end_transaction(trans);
3736 					goto out;
3737 				}
3738 				leaf = path->nodes[0];
3739 				slot = path->slots[0];
3740 			}
3741 
3742 			/* If we have an implicit hole (NO_HOLES feature). */
3743 			if (drop_start < new_key.offset)
3744 				clone_update_extent_map(BTRFS_I(inode), trans,
3745 						NULL, drop_start,
3746 						new_key.offset - drop_start);
3747 
3748 			clone_update_extent_map(BTRFS_I(inode), trans,
3749 					path, 0, 0);
3750 
3751 			btrfs_mark_buffer_dirty(leaf);
3752 			btrfs_release_path(path);
3753 
3754 			last_dest_end = ALIGN(new_key.offset + datal,
3755 					      fs_info->sectorsize);
3756 			ret = clone_finish_inode_update(trans, inode,
3757 							last_dest_end,
3758 							destoff, olen,
3759 							no_time_update);
3760 			if (ret)
3761 				goto out;
3762 			if (new_key.offset + datal >= destoff + len)
3763 				break;
3764 		}
3765 		btrfs_release_path(path);
3766 		key.offset = next_key_min_offset;
3767 
3768 		if (fatal_signal_pending(current)) {
3769 			ret = -EINTR;
3770 			goto out;
3771 		}
3772 	}
3773 	ret = 0;
3774 
3775 	if (last_dest_end < destoff + len) {
3776 		/*
3777 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3778 		 * fully or partially overlaps our cloning range at its end.
3779 		 */
3780 		btrfs_release_path(path);
3781 
3782 		/*
3783 		 * 1 - remove extent(s)
3784 		 * 1 - inode update
3785 		 */
3786 		trans = btrfs_start_transaction(root, 2);
3787 		if (IS_ERR(trans)) {
3788 			ret = PTR_ERR(trans);
3789 			goto out;
3790 		}
3791 		ret = btrfs_drop_extents(trans, root, inode,
3792 					 last_dest_end, destoff + len, 1);
3793 		if (ret) {
3794 			if (ret != -EOPNOTSUPP)
3795 				btrfs_abort_transaction(trans, ret);
3796 			btrfs_end_transaction(trans);
3797 			goto out;
3798 		}
3799 		clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3800 				last_dest_end,
3801 				destoff + len - last_dest_end);
3802 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3803 						destoff, olen, no_time_update);
3804 	}
3805 
3806 out:
3807 	btrfs_free_path(path);
3808 	kvfree(buf);
3809 	return ret;
3810 }
3811 
3812 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3813 					u64 off, u64 olen, u64 destoff)
3814 {
3815 	struct inode *inode = file_inode(file);
3816 	struct inode *src = file_inode(file_src);
3817 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3818 	struct btrfs_root *root = BTRFS_I(inode)->root;
3819 	int ret;
3820 	u64 len = olen;
3821 	u64 bs = fs_info->sb->s_blocksize;
3822 	int same_inode = src == inode;
3823 
3824 	/*
3825 	 * TODO:
3826 	 * - split compressed inline extents.  annoying: we need to
3827 	 *   decompress into destination's address_space (the file offset
3828 	 *   may change, so source mapping won't do), then recompress (or
3829 	 *   otherwise reinsert) a subrange.
3830 	 *
3831 	 * - split destination inode's inline extents.  The inline extents can
3832 	 *   be either compressed or non-compressed.
3833 	 */
3834 
3835 	if (btrfs_root_readonly(root))
3836 		return -EROFS;
3837 
3838 	if (file_src->f_path.mnt != file->f_path.mnt ||
3839 	    src->i_sb != inode->i_sb)
3840 		return -EXDEV;
3841 
3842 	/* don't make the dst file partly checksummed */
3843 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3844 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3845 		return -EINVAL;
3846 
3847 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3848 		return -EISDIR;
3849 
3850 	if (!same_inode) {
3851 		btrfs_double_inode_lock(src, inode);
3852 	} else {
3853 		inode_lock(src);
3854 	}
3855 
3856 	/* determine range to clone */
3857 	ret = -EINVAL;
3858 	if (off + len > src->i_size || off + len < off)
3859 		goto out_unlock;
3860 	if (len == 0)
3861 		olen = len = src->i_size - off;
3862 	/* if we extend to eof, continue to block boundary */
3863 	if (off + len == src->i_size)
3864 		len = ALIGN(src->i_size, bs) - off;
3865 
3866 	if (len == 0) {
3867 		ret = 0;
3868 		goto out_unlock;
3869 	}
3870 
3871 	/* verify the end result is block aligned */
3872 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3873 	    !IS_ALIGNED(destoff, bs))
3874 		goto out_unlock;
3875 
3876 	/* verify if ranges are overlapped within the same file */
3877 	if (same_inode) {
3878 		if (destoff + len > off && destoff < off + len)
3879 			goto out_unlock;
3880 	}
3881 
3882 	if (destoff > inode->i_size) {
3883 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3884 		if (ret)
3885 			goto out_unlock;
3886 	}
3887 
3888 	/*
3889 	 * Lock the target range too. Right after we replace the file extent
3890 	 * items in the fs tree (which now point to the cloned data), we might
3891 	 * have a worker replace them with extent items relative to a write
3892 	 * operation that was issued before this clone operation (i.e. confront
3893 	 * with inode.c:btrfs_finish_ordered_io).
3894 	 */
3895 	if (same_inode) {
3896 		u64 lock_start = min_t(u64, off, destoff);
3897 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3898 
3899 		ret = lock_extent_range(src, lock_start, lock_len, true);
3900 	} else {
3901 		ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3902 					       true);
3903 	}
3904 	ASSERT(ret == 0);
3905 	if (WARN_ON(ret)) {
3906 		/* ranges in the io trees already unlocked */
3907 		goto out_unlock;
3908 	}
3909 
3910 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3911 
3912 	if (same_inode) {
3913 		u64 lock_start = min_t(u64, off, destoff);
3914 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3915 
3916 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3917 	} else {
3918 		btrfs_double_extent_unlock(src, off, inode, destoff, len);
3919 	}
3920 	/*
3921 	 * Truncate page cache pages so that future reads will see the cloned
3922 	 * data immediately and not the previous data.
3923 	 */
3924 	truncate_inode_pages_range(&inode->i_data,
3925 				round_down(destoff, PAGE_SIZE),
3926 				round_up(destoff + len, PAGE_SIZE) - 1);
3927 out_unlock:
3928 	if (!same_inode)
3929 		btrfs_double_inode_unlock(src, inode);
3930 	else
3931 		inode_unlock(src);
3932 	return ret;
3933 }
3934 
3935 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3936 		struct file *dst_file, loff_t destoff, u64 len)
3937 {
3938 	return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3939 }
3940 
3941 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3942 {
3943 	struct inode *inode = file_inode(file);
3944 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3945 	struct btrfs_root *root = BTRFS_I(inode)->root;
3946 	struct btrfs_root *new_root;
3947 	struct btrfs_dir_item *di;
3948 	struct btrfs_trans_handle *trans;
3949 	struct btrfs_path *path;
3950 	struct btrfs_key location;
3951 	struct btrfs_disk_key disk_key;
3952 	u64 objectid = 0;
3953 	u64 dir_id;
3954 	int ret;
3955 
3956 	if (!capable(CAP_SYS_ADMIN))
3957 		return -EPERM;
3958 
3959 	ret = mnt_want_write_file(file);
3960 	if (ret)
3961 		return ret;
3962 
3963 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3964 		ret = -EFAULT;
3965 		goto out;
3966 	}
3967 
3968 	if (!objectid)
3969 		objectid = BTRFS_FS_TREE_OBJECTID;
3970 
3971 	location.objectid = objectid;
3972 	location.type = BTRFS_ROOT_ITEM_KEY;
3973 	location.offset = (u64)-1;
3974 
3975 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
3976 	if (IS_ERR(new_root)) {
3977 		ret = PTR_ERR(new_root);
3978 		goto out;
3979 	}
3980 	if (!is_fstree(new_root->objectid)) {
3981 		ret = -ENOENT;
3982 		goto out;
3983 	}
3984 
3985 	path = btrfs_alloc_path();
3986 	if (!path) {
3987 		ret = -ENOMEM;
3988 		goto out;
3989 	}
3990 	path->leave_spinning = 1;
3991 
3992 	trans = btrfs_start_transaction(root, 1);
3993 	if (IS_ERR(trans)) {
3994 		btrfs_free_path(path);
3995 		ret = PTR_ERR(trans);
3996 		goto out;
3997 	}
3998 
3999 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4000 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4001 				   dir_id, "default", 7, 1);
4002 	if (IS_ERR_OR_NULL(di)) {
4003 		btrfs_free_path(path);
4004 		btrfs_end_transaction(trans);
4005 		btrfs_err(fs_info,
4006 			  "Umm, you don't have the default diritem, this isn't going to work");
4007 		ret = -ENOENT;
4008 		goto out;
4009 	}
4010 
4011 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4012 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4013 	btrfs_mark_buffer_dirty(path->nodes[0]);
4014 	btrfs_free_path(path);
4015 
4016 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4017 	btrfs_end_transaction(trans);
4018 out:
4019 	mnt_drop_write_file(file);
4020 	return ret;
4021 }
4022 
4023 void btrfs_get_block_group_info(struct list_head *groups_list,
4024 				struct btrfs_ioctl_space_info *space)
4025 {
4026 	struct btrfs_block_group_cache *block_group;
4027 
4028 	space->total_bytes = 0;
4029 	space->used_bytes = 0;
4030 	space->flags = 0;
4031 	list_for_each_entry(block_group, groups_list, list) {
4032 		space->flags = block_group->flags;
4033 		space->total_bytes += block_group->key.offset;
4034 		space->used_bytes +=
4035 			btrfs_block_group_used(&block_group->item);
4036 	}
4037 }
4038 
4039 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4040 				   void __user *arg)
4041 {
4042 	struct btrfs_ioctl_space_args space_args;
4043 	struct btrfs_ioctl_space_info space;
4044 	struct btrfs_ioctl_space_info *dest;
4045 	struct btrfs_ioctl_space_info *dest_orig;
4046 	struct btrfs_ioctl_space_info __user *user_dest;
4047 	struct btrfs_space_info *info;
4048 	static const u64 types[] = {
4049 		BTRFS_BLOCK_GROUP_DATA,
4050 		BTRFS_BLOCK_GROUP_SYSTEM,
4051 		BTRFS_BLOCK_GROUP_METADATA,
4052 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4053 	};
4054 	int num_types = 4;
4055 	int alloc_size;
4056 	int ret = 0;
4057 	u64 slot_count = 0;
4058 	int i, c;
4059 
4060 	if (copy_from_user(&space_args,
4061 			   (struct btrfs_ioctl_space_args __user *)arg,
4062 			   sizeof(space_args)))
4063 		return -EFAULT;
4064 
4065 	for (i = 0; i < num_types; i++) {
4066 		struct btrfs_space_info *tmp;
4067 
4068 		info = NULL;
4069 		rcu_read_lock();
4070 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4071 					list) {
4072 			if (tmp->flags == types[i]) {
4073 				info = tmp;
4074 				break;
4075 			}
4076 		}
4077 		rcu_read_unlock();
4078 
4079 		if (!info)
4080 			continue;
4081 
4082 		down_read(&info->groups_sem);
4083 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4084 			if (!list_empty(&info->block_groups[c]))
4085 				slot_count++;
4086 		}
4087 		up_read(&info->groups_sem);
4088 	}
4089 
4090 	/*
4091 	 * Global block reserve, exported as a space_info
4092 	 */
4093 	slot_count++;
4094 
4095 	/* space_slots == 0 means they are asking for a count */
4096 	if (space_args.space_slots == 0) {
4097 		space_args.total_spaces = slot_count;
4098 		goto out;
4099 	}
4100 
4101 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4102 
4103 	alloc_size = sizeof(*dest) * slot_count;
4104 
4105 	/* we generally have at most 6 or so space infos, one for each raid
4106 	 * level.  So, a whole page should be more than enough for everyone
4107 	 */
4108 	if (alloc_size > PAGE_SIZE)
4109 		return -ENOMEM;
4110 
4111 	space_args.total_spaces = 0;
4112 	dest = kmalloc(alloc_size, GFP_KERNEL);
4113 	if (!dest)
4114 		return -ENOMEM;
4115 	dest_orig = dest;
4116 
4117 	/* now we have a buffer to copy into */
4118 	for (i = 0; i < num_types; i++) {
4119 		struct btrfs_space_info *tmp;
4120 
4121 		if (!slot_count)
4122 			break;
4123 
4124 		info = NULL;
4125 		rcu_read_lock();
4126 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4127 					list) {
4128 			if (tmp->flags == types[i]) {
4129 				info = tmp;
4130 				break;
4131 			}
4132 		}
4133 		rcu_read_unlock();
4134 
4135 		if (!info)
4136 			continue;
4137 		down_read(&info->groups_sem);
4138 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4139 			if (!list_empty(&info->block_groups[c])) {
4140 				btrfs_get_block_group_info(
4141 					&info->block_groups[c], &space);
4142 				memcpy(dest, &space, sizeof(space));
4143 				dest++;
4144 				space_args.total_spaces++;
4145 				slot_count--;
4146 			}
4147 			if (!slot_count)
4148 				break;
4149 		}
4150 		up_read(&info->groups_sem);
4151 	}
4152 
4153 	/*
4154 	 * Add global block reserve
4155 	 */
4156 	if (slot_count) {
4157 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4158 
4159 		spin_lock(&block_rsv->lock);
4160 		space.total_bytes = block_rsv->size;
4161 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4162 		spin_unlock(&block_rsv->lock);
4163 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4164 		memcpy(dest, &space, sizeof(space));
4165 		space_args.total_spaces++;
4166 	}
4167 
4168 	user_dest = (struct btrfs_ioctl_space_info __user *)
4169 		(arg + sizeof(struct btrfs_ioctl_space_args));
4170 
4171 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4172 		ret = -EFAULT;
4173 
4174 	kfree(dest_orig);
4175 out:
4176 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4177 		ret = -EFAULT;
4178 
4179 	return ret;
4180 }
4181 
4182 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4183 					    void __user *argp)
4184 {
4185 	struct btrfs_trans_handle *trans;
4186 	u64 transid;
4187 	int ret;
4188 
4189 	trans = btrfs_attach_transaction_barrier(root);
4190 	if (IS_ERR(trans)) {
4191 		if (PTR_ERR(trans) != -ENOENT)
4192 			return PTR_ERR(trans);
4193 
4194 		/* No running transaction, don't bother */
4195 		transid = root->fs_info->last_trans_committed;
4196 		goto out;
4197 	}
4198 	transid = trans->transid;
4199 	ret = btrfs_commit_transaction_async(trans, 0);
4200 	if (ret) {
4201 		btrfs_end_transaction(trans);
4202 		return ret;
4203 	}
4204 out:
4205 	if (argp)
4206 		if (copy_to_user(argp, &transid, sizeof(transid)))
4207 			return -EFAULT;
4208 	return 0;
4209 }
4210 
4211 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4212 					   void __user *argp)
4213 {
4214 	u64 transid;
4215 
4216 	if (argp) {
4217 		if (copy_from_user(&transid, argp, sizeof(transid)))
4218 			return -EFAULT;
4219 	} else {
4220 		transid = 0;  /* current trans */
4221 	}
4222 	return btrfs_wait_for_commit(fs_info, transid);
4223 }
4224 
4225 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4226 {
4227 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4228 	struct btrfs_ioctl_scrub_args *sa;
4229 	int ret;
4230 
4231 	if (!capable(CAP_SYS_ADMIN))
4232 		return -EPERM;
4233 
4234 	sa = memdup_user(arg, sizeof(*sa));
4235 	if (IS_ERR(sa))
4236 		return PTR_ERR(sa);
4237 
4238 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4239 		ret = mnt_want_write_file(file);
4240 		if (ret)
4241 			goto out;
4242 	}
4243 
4244 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4245 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4246 			      0);
4247 
4248 	if (copy_to_user(arg, sa, sizeof(*sa)))
4249 		ret = -EFAULT;
4250 
4251 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4252 		mnt_drop_write_file(file);
4253 out:
4254 	kfree(sa);
4255 	return ret;
4256 }
4257 
4258 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4259 {
4260 	if (!capable(CAP_SYS_ADMIN))
4261 		return -EPERM;
4262 
4263 	return btrfs_scrub_cancel(fs_info);
4264 }
4265 
4266 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4267 				       void __user *arg)
4268 {
4269 	struct btrfs_ioctl_scrub_args *sa;
4270 	int ret;
4271 
4272 	if (!capable(CAP_SYS_ADMIN))
4273 		return -EPERM;
4274 
4275 	sa = memdup_user(arg, sizeof(*sa));
4276 	if (IS_ERR(sa))
4277 		return PTR_ERR(sa);
4278 
4279 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4280 
4281 	if (copy_to_user(arg, sa, sizeof(*sa)))
4282 		ret = -EFAULT;
4283 
4284 	kfree(sa);
4285 	return ret;
4286 }
4287 
4288 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4289 				      void __user *arg)
4290 {
4291 	struct btrfs_ioctl_get_dev_stats *sa;
4292 	int ret;
4293 
4294 	sa = memdup_user(arg, sizeof(*sa));
4295 	if (IS_ERR(sa))
4296 		return PTR_ERR(sa);
4297 
4298 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4299 		kfree(sa);
4300 		return -EPERM;
4301 	}
4302 
4303 	ret = btrfs_get_dev_stats(fs_info, sa);
4304 
4305 	if (copy_to_user(arg, sa, sizeof(*sa)))
4306 		ret = -EFAULT;
4307 
4308 	kfree(sa);
4309 	return ret;
4310 }
4311 
4312 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4313 				    void __user *arg)
4314 {
4315 	struct btrfs_ioctl_dev_replace_args *p;
4316 	int ret;
4317 
4318 	if (!capable(CAP_SYS_ADMIN))
4319 		return -EPERM;
4320 
4321 	p = memdup_user(arg, sizeof(*p));
4322 	if (IS_ERR(p))
4323 		return PTR_ERR(p);
4324 
4325 	switch (p->cmd) {
4326 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4327 		if (sb_rdonly(fs_info->sb)) {
4328 			ret = -EROFS;
4329 			goto out;
4330 		}
4331 		if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4332 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4333 		} else {
4334 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4335 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4336 		}
4337 		break;
4338 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4339 		btrfs_dev_replace_status(fs_info, p);
4340 		ret = 0;
4341 		break;
4342 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4343 		p->result = btrfs_dev_replace_cancel(fs_info);
4344 		ret = 0;
4345 		break;
4346 	default:
4347 		ret = -EINVAL;
4348 		break;
4349 	}
4350 
4351 	if (copy_to_user(arg, p, sizeof(*p)))
4352 		ret = -EFAULT;
4353 out:
4354 	kfree(p);
4355 	return ret;
4356 }
4357 
4358 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4359 {
4360 	int ret = 0;
4361 	int i;
4362 	u64 rel_ptr;
4363 	int size;
4364 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4365 	struct inode_fs_paths *ipath = NULL;
4366 	struct btrfs_path *path;
4367 
4368 	if (!capable(CAP_DAC_READ_SEARCH))
4369 		return -EPERM;
4370 
4371 	path = btrfs_alloc_path();
4372 	if (!path) {
4373 		ret = -ENOMEM;
4374 		goto out;
4375 	}
4376 
4377 	ipa = memdup_user(arg, sizeof(*ipa));
4378 	if (IS_ERR(ipa)) {
4379 		ret = PTR_ERR(ipa);
4380 		ipa = NULL;
4381 		goto out;
4382 	}
4383 
4384 	size = min_t(u32, ipa->size, 4096);
4385 	ipath = init_ipath(size, root, path);
4386 	if (IS_ERR(ipath)) {
4387 		ret = PTR_ERR(ipath);
4388 		ipath = NULL;
4389 		goto out;
4390 	}
4391 
4392 	ret = paths_from_inode(ipa->inum, ipath);
4393 	if (ret < 0)
4394 		goto out;
4395 
4396 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4397 		rel_ptr = ipath->fspath->val[i] -
4398 			  (u64)(unsigned long)ipath->fspath->val;
4399 		ipath->fspath->val[i] = rel_ptr;
4400 	}
4401 
4402 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4403 			   ipath->fspath, size);
4404 	if (ret) {
4405 		ret = -EFAULT;
4406 		goto out;
4407 	}
4408 
4409 out:
4410 	btrfs_free_path(path);
4411 	free_ipath(ipath);
4412 	kfree(ipa);
4413 
4414 	return ret;
4415 }
4416 
4417 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4418 {
4419 	struct btrfs_data_container *inodes = ctx;
4420 	const size_t c = 3 * sizeof(u64);
4421 
4422 	if (inodes->bytes_left >= c) {
4423 		inodes->bytes_left -= c;
4424 		inodes->val[inodes->elem_cnt] = inum;
4425 		inodes->val[inodes->elem_cnt + 1] = offset;
4426 		inodes->val[inodes->elem_cnt + 2] = root;
4427 		inodes->elem_cnt += 3;
4428 	} else {
4429 		inodes->bytes_missing += c - inodes->bytes_left;
4430 		inodes->bytes_left = 0;
4431 		inodes->elem_missed += 3;
4432 	}
4433 
4434 	return 0;
4435 }
4436 
4437 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4438 					void __user *arg, int version)
4439 {
4440 	int ret = 0;
4441 	int size;
4442 	struct btrfs_ioctl_logical_ino_args *loi;
4443 	struct btrfs_data_container *inodes = NULL;
4444 	struct btrfs_path *path = NULL;
4445 	bool ignore_offset;
4446 
4447 	if (!capable(CAP_SYS_ADMIN))
4448 		return -EPERM;
4449 
4450 	loi = memdup_user(arg, sizeof(*loi));
4451 	if (IS_ERR(loi))
4452 		return PTR_ERR(loi);
4453 
4454 	if (version == 1) {
4455 		ignore_offset = false;
4456 		size = min_t(u32, loi->size, SZ_64K);
4457 	} else {
4458 		/* All reserved bits must be 0 for now */
4459 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4460 			ret = -EINVAL;
4461 			goto out_loi;
4462 		}
4463 		/* Only accept flags we have defined so far */
4464 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4465 			ret = -EINVAL;
4466 			goto out_loi;
4467 		}
4468 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4469 		size = min_t(u32, loi->size, SZ_16M);
4470 	}
4471 
4472 	path = btrfs_alloc_path();
4473 	if (!path) {
4474 		ret = -ENOMEM;
4475 		goto out;
4476 	}
4477 
4478 	inodes = init_data_container(size);
4479 	if (IS_ERR(inodes)) {
4480 		ret = PTR_ERR(inodes);
4481 		inodes = NULL;
4482 		goto out;
4483 	}
4484 
4485 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4486 					  build_ino_list, inodes, ignore_offset);
4487 	if (ret == -EINVAL)
4488 		ret = -ENOENT;
4489 	if (ret < 0)
4490 		goto out;
4491 
4492 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4493 			   size);
4494 	if (ret)
4495 		ret = -EFAULT;
4496 
4497 out:
4498 	btrfs_free_path(path);
4499 	kvfree(inodes);
4500 out_loi:
4501 	kfree(loi);
4502 
4503 	return ret;
4504 }
4505 
4506 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4507 			       struct btrfs_ioctl_balance_args *bargs)
4508 {
4509 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4510 
4511 	bargs->flags = bctl->flags;
4512 
4513 	if (atomic_read(&fs_info->balance_running))
4514 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4515 	if (atomic_read(&fs_info->balance_pause_req))
4516 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4517 	if (atomic_read(&fs_info->balance_cancel_req))
4518 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4519 
4520 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4521 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4522 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4523 
4524 	if (lock) {
4525 		spin_lock(&fs_info->balance_lock);
4526 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4527 		spin_unlock(&fs_info->balance_lock);
4528 	} else {
4529 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4530 	}
4531 }
4532 
4533 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4534 {
4535 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4536 	struct btrfs_fs_info *fs_info = root->fs_info;
4537 	struct btrfs_ioctl_balance_args *bargs;
4538 	struct btrfs_balance_control *bctl;
4539 	bool need_unlock; /* for mut. excl. ops lock */
4540 	int ret;
4541 
4542 	if (!capable(CAP_SYS_ADMIN))
4543 		return -EPERM;
4544 
4545 	ret = mnt_want_write_file(file);
4546 	if (ret)
4547 		return ret;
4548 
4549 again:
4550 	if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4551 		mutex_lock(&fs_info->volume_mutex);
4552 		mutex_lock(&fs_info->balance_mutex);
4553 		need_unlock = true;
4554 		goto locked;
4555 	}
4556 
4557 	/*
4558 	 * mut. excl. ops lock is locked.  Three possibilities:
4559 	 *   (1) some other op is running
4560 	 *   (2) balance is running
4561 	 *   (3) balance is paused -- special case (think resume)
4562 	 */
4563 	mutex_lock(&fs_info->balance_mutex);
4564 	if (fs_info->balance_ctl) {
4565 		/* this is either (2) or (3) */
4566 		if (!atomic_read(&fs_info->balance_running)) {
4567 			mutex_unlock(&fs_info->balance_mutex);
4568 			if (!mutex_trylock(&fs_info->volume_mutex))
4569 				goto again;
4570 			mutex_lock(&fs_info->balance_mutex);
4571 
4572 			if (fs_info->balance_ctl &&
4573 			    !atomic_read(&fs_info->balance_running)) {
4574 				/* this is (3) */
4575 				need_unlock = false;
4576 				goto locked;
4577 			}
4578 
4579 			mutex_unlock(&fs_info->balance_mutex);
4580 			mutex_unlock(&fs_info->volume_mutex);
4581 			goto again;
4582 		} else {
4583 			/* this is (2) */
4584 			mutex_unlock(&fs_info->balance_mutex);
4585 			ret = -EINPROGRESS;
4586 			goto out;
4587 		}
4588 	} else {
4589 		/* this is (1) */
4590 		mutex_unlock(&fs_info->balance_mutex);
4591 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4592 		goto out;
4593 	}
4594 
4595 locked:
4596 	BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4597 
4598 	if (arg) {
4599 		bargs = memdup_user(arg, sizeof(*bargs));
4600 		if (IS_ERR(bargs)) {
4601 			ret = PTR_ERR(bargs);
4602 			goto out_unlock;
4603 		}
4604 
4605 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4606 			if (!fs_info->balance_ctl) {
4607 				ret = -ENOTCONN;
4608 				goto out_bargs;
4609 			}
4610 
4611 			bctl = fs_info->balance_ctl;
4612 			spin_lock(&fs_info->balance_lock);
4613 			bctl->flags |= BTRFS_BALANCE_RESUME;
4614 			spin_unlock(&fs_info->balance_lock);
4615 
4616 			goto do_balance;
4617 		}
4618 	} else {
4619 		bargs = NULL;
4620 	}
4621 
4622 	if (fs_info->balance_ctl) {
4623 		ret = -EINPROGRESS;
4624 		goto out_bargs;
4625 	}
4626 
4627 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4628 	if (!bctl) {
4629 		ret = -ENOMEM;
4630 		goto out_bargs;
4631 	}
4632 
4633 	bctl->fs_info = fs_info;
4634 	if (arg) {
4635 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4636 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4637 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4638 
4639 		bctl->flags = bargs->flags;
4640 	} else {
4641 		/* balance everything - no filters */
4642 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4643 	}
4644 
4645 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4646 		ret = -EINVAL;
4647 		goto out_bctl;
4648 	}
4649 
4650 do_balance:
4651 	/*
4652 	 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4653 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4654 	 * or, if restriper was paused all the way until unmount, in
4655 	 * free_fs_info.  The flag is cleared in __cancel_balance.
4656 	 */
4657 	need_unlock = false;
4658 
4659 	ret = btrfs_balance(bctl, bargs);
4660 	bctl = NULL;
4661 
4662 	if (arg) {
4663 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4664 			ret = -EFAULT;
4665 	}
4666 
4667 out_bctl:
4668 	kfree(bctl);
4669 out_bargs:
4670 	kfree(bargs);
4671 out_unlock:
4672 	mutex_unlock(&fs_info->balance_mutex);
4673 	mutex_unlock(&fs_info->volume_mutex);
4674 	if (need_unlock)
4675 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4676 out:
4677 	mnt_drop_write_file(file);
4678 	return ret;
4679 }
4680 
4681 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4682 {
4683 	if (!capable(CAP_SYS_ADMIN))
4684 		return -EPERM;
4685 
4686 	switch (cmd) {
4687 	case BTRFS_BALANCE_CTL_PAUSE:
4688 		return btrfs_pause_balance(fs_info);
4689 	case BTRFS_BALANCE_CTL_CANCEL:
4690 		return btrfs_cancel_balance(fs_info);
4691 	}
4692 
4693 	return -EINVAL;
4694 }
4695 
4696 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4697 					 void __user *arg)
4698 {
4699 	struct btrfs_ioctl_balance_args *bargs;
4700 	int ret = 0;
4701 
4702 	if (!capable(CAP_SYS_ADMIN))
4703 		return -EPERM;
4704 
4705 	mutex_lock(&fs_info->balance_mutex);
4706 	if (!fs_info->balance_ctl) {
4707 		ret = -ENOTCONN;
4708 		goto out;
4709 	}
4710 
4711 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4712 	if (!bargs) {
4713 		ret = -ENOMEM;
4714 		goto out;
4715 	}
4716 
4717 	update_ioctl_balance_args(fs_info, 1, bargs);
4718 
4719 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4720 		ret = -EFAULT;
4721 
4722 	kfree(bargs);
4723 out:
4724 	mutex_unlock(&fs_info->balance_mutex);
4725 	return ret;
4726 }
4727 
4728 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4729 {
4730 	struct inode *inode = file_inode(file);
4731 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4732 	struct btrfs_ioctl_quota_ctl_args *sa;
4733 	struct btrfs_trans_handle *trans = NULL;
4734 	int ret;
4735 	int err;
4736 
4737 	if (!capable(CAP_SYS_ADMIN))
4738 		return -EPERM;
4739 
4740 	ret = mnt_want_write_file(file);
4741 	if (ret)
4742 		return ret;
4743 
4744 	sa = memdup_user(arg, sizeof(*sa));
4745 	if (IS_ERR(sa)) {
4746 		ret = PTR_ERR(sa);
4747 		goto drop_write;
4748 	}
4749 
4750 	down_write(&fs_info->subvol_sem);
4751 	trans = btrfs_start_transaction(fs_info->tree_root, 2);
4752 	if (IS_ERR(trans)) {
4753 		ret = PTR_ERR(trans);
4754 		goto out;
4755 	}
4756 
4757 	switch (sa->cmd) {
4758 	case BTRFS_QUOTA_CTL_ENABLE:
4759 		ret = btrfs_quota_enable(trans, fs_info);
4760 		break;
4761 	case BTRFS_QUOTA_CTL_DISABLE:
4762 		ret = btrfs_quota_disable(trans, fs_info);
4763 		break;
4764 	default:
4765 		ret = -EINVAL;
4766 		break;
4767 	}
4768 
4769 	err = btrfs_commit_transaction(trans);
4770 	if (err && !ret)
4771 		ret = err;
4772 out:
4773 	kfree(sa);
4774 	up_write(&fs_info->subvol_sem);
4775 drop_write:
4776 	mnt_drop_write_file(file);
4777 	return ret;
4778 }
4779 
4780 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4781 {
4782 	struct inode *inode = file_inode(file);
4783 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4784 	struct btrfs_root *root = BTRFS_I(inode)->root;
4785 	struct btrfs_ioctl_qgroup_assign_args *sa;
4786 	struct btrfs_trans_handle *trans;
4787 	int ret;
4788 	int err;
4789 
4790 	if (!capable(CAP_SYS_ADMIN))
4791 		return -EPERM;
4792 
4793 	ret = mnt_want_write_file(file);
4794 	if (ret)
4795 		return ret;
4796 
4797 	sa = memdup_user(arg, sizeof(*sa));
4798 	if (IS_ERR(sa)) {
4799 		ret = PTR_ERR(sa);
4800 		goto drop_write;
4801 	}
4802 
4803 	trans = btrfs_join_transaction(root);
4804 	if (IS_ERR(trans)) {
4805 		ret = PTR_ERR(trans);
4806 		goto out;
4807 	}
4808 
4809 	if (sa->assign) {
4810 		ret = btrfs_add_qgroup_relation(trans, fs_info,
4811 						sa->src, sa->dst);
4812 	} else {
4813 		ret = btrfs_del_qgroup_relation(trans, fs_info,
4814 						sa->src, sa->dst);
4815 	}
4816 
4817 	/* update qgroup status and info */
4818 	err = btrfs_run_qgroups(trans, fs_info);
4819 	if (err < 0)
4820 		btrfs_handle_fs_error(fs_info, err,
4821 				      "failed to update qgroup status and info");
4822 	err = btrfs_end_transaction(trans);
4823 	if (err && !ret)
4824 		ret = err;
4825 
4826 out:
4827 	kfree(sa);
4828 drop_write:
4829 	mnt_drop_write_file(file);
4830 	return ret;
4831 }
4832 
4833 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4834 {
4835 	struct inode *inode = file_inode(file);
4836 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4837 	struct btrfs_root *root = BTRFS_I(inode)->root;
4838 	struct btrfs_ioctl_qgroup_create_args *sa;
4839 	struct btrfs_trans_handle *trans;
4840 	int ret;
4841 	int err;
4842 
4843 	if (!capable(CAP_SYS_ADMIN))
4844 		return -EPERM;
4845 
4846 	ret = mnt_want_write_file(file);
4847 	if (ret)
4848 		return ret;
4849 
4850 	sa = memdup_user(arg, sizeof(*sa));
4851 	if (IS_ERR(sa)) {
4852 		ret = PTR_ERR(sa);
4853 		goto drop_write;
4854 	}
4855 
4856 	if (!sa->qgroupid) {
4857 		ret = -EINVAL;
4858 		goto out;
4859 	}
4860 
4861 	trans = btrfs_join_transaction(root);
4862 	if (IS_ERR(trans)) {
4863 		ret = PTR_ERR(trans);
4864 		goto out;
4865 	}
4866 
4867 	if (sa->create) {
4868 		ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4869 	} else {
4870 		ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4871 	}
4872 
4873 	err = btrfs_end_transaction(trans);
4874 	if (err && !ret)
4875 		ret = err;
4876 
4877 out:
4878 	kfree(sa);
4879 drop_write:
4880 	mnt_drop_write_file(file);
4881 	return ret;
4882 }
4883 
4884 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4885 {
4886 	struct inode *inode = file_inode(file);
4887 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4888 	struct btrfs_root *root = BTRFS_I(inode)->root;
4889 	struct btrfs_ioctl_qgroup_limit_args *sa;
4890 	struct btrfs_trans_handle *trans;
4891 	int ret;
4892 	int err;
4893 	u64 qgroupid;
4894 
4895 	if (!capable(CAP_SYS_ADMIN))
4896 		return -EPERM;
4897 
4898 	ret = mnt_want_write_file(file);
4899 	if (ret)
4900 		return ret;
4901 
4902 	sa = memdup_user(arg, sizeof(*sa));
4903 	if (IS_ERR(sa)) {
4904 		ret = PTR_ERR(sa);
4905 		goto drop_write;
4906 	}
4907 
4908 	trans = btrfs_join_transaction(root);
4909 	if (IS_ERR(trans)) {
4910 		ret = PTR_ERR(trans);
4911 		goto out;
4912 	}
4913 
4914 	qgroupid = sa->qgroupid;
4915 	if (!qgroupid) {
4916 		/* take the current subvol as qgroup */
4917 		qgroupid = root->root_key.objectid;
4918 	}
4919 
4920 	ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
4921 
4922 	err = btrfs_end_transaction(trans);
4923 	if (err && !ret)
4924 		ret = err;
4925 
4926 out:
4927 	kfree(sa);
4928 drop_write:
4929 	mnt_drop_write_file(file);
4930 	return ret;
4931 }
4932 
4933 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4934 {
4935 	struct inode *inode = file_inode(file);
4936 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4937 	struct btrfs_ioctl_quota_rescan_args *qsa;
4938 	int ret;
4939 
4940 	if (!capable(CAP_SYS_ADMIN))
4941 		return -EPERM;
4942 
4943 	ret = mnt_want_write_file(file);
4944 	if (ret)
4945 		return ret;
4946 
4947 	qsa = memdup_user(arg, sizeof(*qsa));
4948 	if (IS_ERR(qsa)) {
4949 		ret = PTR_ERR(qsa);
4950 		goto drop_write;
4951 	}
4952 
4953 	if (qsa->flags) {
4954 		ret = -EINVAL;
4955 		goto out;
4956 	}
4957 
4958 	ret = btrfs_qgroup_rescan(fs_info);
4959 
4960 out:
4961 	kfree(qsa);
4962 drop_write:
4963 	mnt_drop_write_file(file);
4964 	return ret;
4965 }
4966 
4967 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4968 {
4969 	struct inode *inode = file_inode(file);
4970 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4971 	struct btrfs_ioctl_quota_rescan_args *qsa;
4972 	int ret = 0;
4973 
4974 	if (!capable(CAP_SYS_ADMIN))
4975 		return -EPERM;
4976 
4977 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4978 	if (!qsa)
4979 		return -ENOMEM;
4980 
4981 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4982 		qsa->flags = 1;
4983 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4984 	}
4985 
4986 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4987 		ret = -EFAULT;
4988 
4989 	kfree(qsa);
4990 	return ret;
4991 }
4992 
4993 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4994 {
4995 	struct inode *inode = file_inode(file);
4996 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4997 
4998 	if (!capable(CAP_SYS_ADMIN))
4999 		return -EPERM;
5000 
5001 	return btrfs_qgroup_wait_for_completion(fs_info, true);
5002 }
5003 
5004 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5005 					    struct btrfs_ioctl_received_subvol_args *sa)
5006 {
5007 	struct inode *inode = file_inode(file);
5008 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5009 	struct btrfs_root *root = BTRFS_I(inode)->root;
5010 	struct btrfs_root_item *root_item = &root->root_item;
5011 	struct btrfs_trans_handle *trans;
5012 	struct timespec ct = current_time(inode);
5013 	int ret = 0;
5014 	int received_uuid_changed;
5015 
5016 	if (!inode_owner_or_capable(inode))
5017 		return -EPERM;
5018 
5019 	ret = mnt_want_write_file(file);
5020 	if (ret < 0)
5021 		return ret;
5022 
5023 	down_write(&fs_info->subvol_sem);
5024 
5025 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5026 		ret = -EINVAL;
5027 		goto out;
5028 	}
5029 
5030 	if (btrfs_root_readonly(root)) {
5031 		ret = -EROFS;
5032 		goto out;
5033 	}
5034 
5035 	/*
5036 	 * 1 - root item
5037 	 * 2 - uuid items (received uuid + subvol uuid)
5038 	 */
5039 	trans = btrfs_start_transaction(root, 3);
5040 	if (IS_ERR(trans)) {
5041 		ret = PTR_ERR(trans);
5042 		trans = NULL;
5043 		goto out;
5044 	}
5045 
5046 	sa->rtransid = trans->transid;
5047 	sa->rtime.sec = ct.tv_sec;
5048 	sa->rtime.nsec = ct.tv_nsec;
5049 
5050 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5051 				       BTRFS_UUID_SIZE);
5052 	if (received_uuid_changed &&
5053 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
5054 		ret = btrfs_uuid_tree_rem(trans, fs_info,
5055 					  root_item->received_uuid,
5056 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5057 					  root->root_key.objectid);
5058 		if (ret && ret != -ENOENT) {
5059 		        btrfs_abort_transaction(trans, ret);
5060 		        btrfs_end_transaction(trans);
5061 		        goto out;
5062 		}
5063 	}
5064 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5065 	btrfs_set_root_stransid(root_item, sa->stransid);
5066 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5067 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5068 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5069 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5070 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5071 
5072 	ret = btrfs_update_root(trans, fs_info->tree_root,
5073 				&root->root_key, &root->root_item);
5074 	if (ret < 0) {
5075 		btrfs_end_transaction(trans);
5076 		goto out;
5077 	}
5078 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5079 		ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5080 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5081 					  root->root_key.objectid);
5082 		if (ret < 0 && ret != -EEXIST) {
5083 			btrfs_abort_transaction(trans, ret);
5084 			btrfs_end_transaction(trans);
5085 			goto out;
5086 		}
5087 	}
5088 	ret = btrfs_commit_transaction(trans);
5089 out:
5090 	up_write(&fs_info->subvol_sem);
5091 	mnt_drop_write_file(file);
5092 	return ret;
5093 }
5094 
5095 #ifdef CONFIG_64BIT
5096 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5097 						void __user *arg)
5098 {
5099 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5100 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5101 	int ret = 0;
5102 
5103 	args32 = memdup_user(arg, sizeof(*args32));
5104 	if (IS_ERR(args32))
5105 		return PTR_ERR(args32);
5106 
5107 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5108 	if (!args64) {
5109 		ret = -ENOMEM;
5110 		goto out;
5111 	}
5112 
5113 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5114 	args64->stransid = args32->stransid;
5115 	args64->rtransid = args32->rtransid;
5116 	args64->stime.sec = args32->stime.sec;
5117 	args64->stime.nsec = args32->stime.nsec;
5118 	args64->rtime.sec = args32->rtime.sec;
5119 	args64->rtime.nsec = args32->rtime.nsec;
5120 	args64->flags = args32->flags;
5121 
5122 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5123 	if (ret)
5124 		goto out;
5125 
5126 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5127 	args32->stransid = args64->stransid;
5128 	args32->rtransid = args64->rtransid;
5129 	args32->stime.sec = args64->stime.sec;
5130 	args32->stime.nsec = args64->stime.nsec;
5131 	args32->rtime.sec = args64->rtime.sec;
5132 	args32->rtime.nsec = args64->rtime.nsec;
5133 	args32->flags = args64->flags;
5134 
5135 	ret = copy_to_user(arg, args32, sizeof(*args32));
5136 	if (ret)
5137 		ret = -EFAULT;
5138 
5139 out:
5140 	kfree(args32);
5141 	kfree(args64);
5142 	return ret;
5143 }
5144 #endif
5145 
5146 static long btrfs_ioctl_set_received_subvol(struct file *file,
5147 					    void __user *arg)
5148 {
5149 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5150 	int ret = 0;
5151 
5152 	sa = memdup_user(arg, sizeof(*sa));
5153 	if (IS_ERR(sa))
5154 		return PTR_ERR(sa);
5155 
5156 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5157 
5158 	if (ret)
5159 		goto out;
5160 
5161 	ret = copy_to_user(arg, sa, sizeof(*sa));
5162 	if (ret)
5163 		ret = -EFAULT;
5164 
5165 out:
5166 	kfree(sa);
5167 	return ret;
5168 }
5169 
5170 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5171 {
5172 	struct inode *inode = file_inode(file);
5173 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5174 	size_t len;
5175 	int ret;
5176 	char label[BTRFS_LABEL_SIZE];
5177 
5178 	spin_lock(&fs_info->super_lock);
5179 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5180 	spin_unlock(&fs_info->super_lock);
5181 
5182 	len = strnlen(label, BTRFS_LABEL_SIZE);
5183 
5184 	if (len == BTRFS_LABEL_SIZE) {
5185 		btrfs_warn(fs_info,
5186 			   "label is too long, return the first %zu bytes",
5187 			   --len);
5188 	}
5189 
5190 	ret = copy_to_user(arg, label, len);
5191 
5192 	return ret ? -EFAULT : 0;
5193 }
5194 
5195 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5196 {
5197 	struct inode *inode = file_inode(file);
5198 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5199 	struct btrfs_root *root = BTRFS_I(inode)->root;
5200 	struct btrfs_super_block *super_block = fs_info->super_copy;
5201 	struct btrfs_trans_handle *trans;
5202 	char label[BTRFS_LABEL_SIZE];
5203 	int ret;
5204 
5205 	if (!capable(CAP_SYS_ADMIN))
5206 		return -EPERM;
5207 
5208 	if (copy_from_user(label, arg, sizeof(label)))
5209 		return -EFAULT;
5210 
5211 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5212 		btrfs_err(fs_info,
5213 			  "unable to set label with more than %d bytes",
5214 			  BTRFS_LABEL_SIZE - 1);
5215 		return -EINVAL;
5216 	}
5217 
5218 	ret = mnt_want_write_file(file);
5219 	if (ret)
5220 		return ret;
5221 
5222 	trans = btrfs_start_transaction(root, 0);
5223 	if (IS_ERR(trans)) {
5224 		ret = PTR_ERR(trans);
5225 		goto out_unlock;
5226 	}
5227 
5228 	spin_lock(&fs_info->super_lock);
5229 	strcpy(super_block->label, label);
5230 	spin_unlock(&fs_info->super_lock);
5231 	ret = btrfs_commit_transaction(trans);
5232 
5233 out_unlock:
5234 	mnt_drop_write_file(file);
5235 	return ret;
5236 }
5237 
5238 #define INIT_FEATURE_FLAGS(suffix) \
5239 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5240 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5241 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5242 
5243 int btrfs_ioctl_get_supported_features(void __user *arg)
5244 {
5245 	static const struct btrfs_ioctl_feature_flags features[3] = {
5246 		INIT_FEATURE_FLAGS(SUPP),
5247 		INIT_FEATURE_FLAGS(SAFE_SET),
5248 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5249 	};
5250 
5251 	if (copy_to_user(arg, &features, sizeof(features)))
5252 		return -EFAULT;
5253 
5254 	return 0;
5255 }
5256 
5257 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5258 {
5259 	struct inode *inode = file_inode(file);
5260 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5261 	struct btrfs_super_block *super_block = fs_info->super_copy;
5262 	struct btrfs_ioctl_feature_flags features;
5263 
5264 	features.compat_flags = btrfs_super_compat_flags(super_block);
5265 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5266 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5267 
5268 	if (copy_to_user(arg, &features, sizeof(features)))
5269 		return -EFAULT;
5270 
5271 	return 0;
5272 }
5273 
5274 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5275 			      enum btrfs_feature_set set,
5276 			      u64 change_mask, u64 flags, u64 supported_flags,
5277 			      u64 safe_set, u64 safe_clear)
5278 {
5279 	const char *type = btrfs_feature_set_names[set];
5280 	char *names;
5281 	u64 disallowed, unsupported;
5282 	u64 set_mask = flags & change_mask;
5283 	u64 clear_mask = ~flags & change_mask;
5284 
5285 	unsupported = set_mask & ~supported_flags;
5286 	if (unsupported) {
5287 		names = btrfs_printable_features(set, unsupported);
5288 		if (names) {
5289 			btrfs_warn(fs_info,
5290 				   "this kernel does not support the %s feature bit%s",
5291 				   names, strchr(names, ',') ? "s" : "");
5292 			kfree(names);
5293 		} else
5294 			btrfs_warn(fs_info,
5295 				   "this kernel does not support %s bits 0x%llx",
5296 				   type, unsupported);
5297 		return -EOPNOTSUPP;
5298 	}
5299 
5300 	disallowed = set_mask & ~safe_set;
5301 	if (disallowed) {
5302 		names = btrfs_printable_features(set, disallowed);
5303 		if (names) {
5304 			btrfs_warn(fs_info,
5305 				   "can't set the %s feature bit%s while mounted",
5306 				   names, strchr(names, ',') ? "s" : "");
5307 			kfree(names);
5308 		} else
5309 			btrfs_warn(fs_info,
5310 				   "can't set %s bits 0x%llx while mounted",
5311 				   type, disallowed);
5312 		return -EPERM;
5313 	}
5314 
5315 	disallowed = clear_mask & ~safe_clear;
5316 	if (disallowed) {
5317 		names = btrfs_printable_features(set, disallowed);
5318 		if (names) {
5319 			btrfs_warn(fs_info,
5320 				   "can't clear the %s feature bit%s while mounted",
5321 				   names, strchr(names, ',') ? "s" : "");
5322 			kfree(names);
5323 		} else
5324 			btrfs_warn(fs_info,
5325 				   "can't clear %s bits 0x%llx while mounted",
5326 				   type, disallowed);
5327 		return -EPERM;
5328 	}
5329 
5330 	return 0;
5331 }
5332 
5333 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5334 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5335 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5336 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5337 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5338 
5339 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5340 {
5341 	struct inode *inode = file_inode(file);
5342 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5343 	struct btrfs_root *root = BTRFS_I(inode)->root;
5344 	struct btrfs_super_block *super_block = fs_info->super_copy;
5345 	struct btrfs_ioctl_feature_flags flags[2];
5346 	struct btrfs_trans_handle *trans;
5347 	u64 newflags;
5348 	int ret;
5349 
5350 	if (!capable(CAP_SYS_ADMIN))
5351 		return -EPERM;
5352 
5353 	if (copy_from_user(flags, arg, sizeof(flags)))
5354 		return -EFAULT;
5355 
5356 	/* Nothing to do */
5357 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5358 	    !flags[0].incompat_flags)
5359 		return 0;
5360 
5361 	ret = check_feature(fs_info, flags[0].compat_flags,
5362 			    flags[1].compat_flags, COMPAT);
5363 	if (ret)
5364 		return ret;
5365 
5366 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5367 			    flags[1].compat_ro_flags, COMPAT_RO);
5368 	if (ret)
5369 		return ret;
5370 
5371 	ret = check_feature(fs_info, flags[0].incompat_flags,
5372 			    flags[1].incompat_flags, INCOMPAT);
5373 	if (ret)
5374 		return ret;
5375 
5376 	ret = mnt_want_write_file(file);
5377 	if (ret)
5378 		return ret;
5379 
5380 	trans = btrfs_start_transaction(root, 0);
5381 	if (IS_ERR(trans)) {
5382 		ret = PTR_ERR(trans);
5383 		goto out_drop_write;
5384 	}
5385 
5386 	spin_lock(&fs_info->super_lock);
5387 	newflags = btrfs_super_compat_flags(super_block);
5388 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5389 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5390 	btrfs_set_super_compat_flags(super_block, newflags);
5391 
5392 	newflags = btrfs_super_compat_ro_flags(super_block);
5393 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5394 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5395 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5396 
5397 	newflags = btrfs_super_incompat_flags(super_block);
5398 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5399 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5400 	btrfs_set_super_incompat_flags(super_block, newflags);
5401 	spin_unlock(&fs_info->super_lock);
5402 
5403 	ret = btrfs_commit_transaction(trans);
5404 out_drop_write:
5405 	mnt_drop_write_file(file);
5406 
5407 	return ret;
5408 }
5409 
5410 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5411 {
5412 	struct btrfs_ioctl_send_args *arg;
5413 	int ret;
5414 
5415 	if (compat) {
5416 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5417 		struct btrfs_ioctl_send_args_32 args32;
5418 
5419 		ret = copy_from_user(&args32, argp, sizeof(args32));
5420 		if (ret)
5421 			return -EFAULT;
5422 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5423 		if (!arg)
5424 			return -ENOMEM;
5425 		arg->send_fd = args32.send_fd;
5426 		arg->clone_sources_count = args32.clone_sources_count;
5427 		arg->clone_sources = compat_ptr(args32.clone_sources);
5428 		arg->parent_root = args32.parent_root;
5429 		arg->flags = args32.flags;
5430 		memcpy(arg->reserved, args32.reserved,
5431 		       sizeof(args32.reserved));
5432 #else
5433 		return -ENOTTY;
5434 #endif
5435 	} else {
5436 		arg = memdup_user(argp, sizeof(*arg));
5437 		if (IS_ERR(arg))
5438 			return PTR_ERR(arg);
5439 	}
5440 	ret = btrfs_ioctl_send(file, arg);
5441 	kfree(arg);
5442 	return ret;
5443 }
5444 
5445 long btrfs_ioctl(struct file *file, unsigned int
5446 		cmd, unsigned long arg)
5447 {
5448 	struct inode *inode = file_inode(file);
5449 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5450 	struct btrfs_root *root = BTRFS_I(inode)->root;
5451 	void __user *argp = (void __user *)arg;
5452 
5453 	switch (cmd) {
5454 	case FS_IOC_GETFLAGS:
5455 		return btrfs_ioctl_getflags(file, argp);
5456 	case FS_IOC_SETFLAGS:
5457 		return btrfs_ioctl_setflags(file, argp);
5458 	case FS_IOC_GETVERSION:
5459 		return btrfs_ioctl_getversion(file, argp);
5460 	case FITRIM:
5461 		return btrfs_ioctl_fitrim(file, argp);
5462 	case BTRFS_IOC_SNAP_CREATE:
5463 		return btrfs_ioctl_snap_create(file, argp, 0);
5464 	case BTRFS_IOC_SNAP_CREATE_V2:
5465 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5466 	case BTRFS_IOC_SUBVOL_CREATE:
5467 		return btrfs_ioctl_snap_create(file, argp, 1);
5468 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5469 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5470 	case BTRFS_IOC_SNAP_DESTROY:
5471 		return btrfs_ioctl_snap_destroy(file, argp);
5472 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5473 		return btrfs_ioctl_subvol_getflags(file, argp);
5474 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5475 		return btrfs_ioctl_subvol_setflags(file, argp);
5476 	case BTRFS_IOC_DEFAULT_SUBVOL:
5477 		return btrfs_ioctl_default_subvol(file, argp);
5478 	case BTRFS_IOC_DEFRAG:
5479 		return btrfs_ioctl_defrag(file, NULL);
5480 	case BTRFS_IOC_DEFRAG_RANGE:
5481 		return btrfs_ioctl_defrag(file, argp);
5482 	case BTRFS_IOC_RESIZE:
5483 		return btrfs_ioctl_resize(file, argp);
5484 	case BTRFS_IOC_ADD_DEV:
5485 		return btrfs_ioctl_add_dev(fs_info, argp);
5486 	case BTRFS_IOC_RM_DEV:
5487 		return btrfs_ioctl_rm_dev(file, argp);
5488 	case BTRFS_IOC_RM_DEV_V2:
5489 		return btrfs_ioctl_rm_dev_v2(file, argp);
5490 	case BTRFS_IOC_FS_INFO:
5491 		return btrfs_ioctl_fs_info(fs_info, argp);
5492 	case BTRFS_IOC_DEV_INFO:
5493 		return btrfs_ioctl_dev_info(fs_info, argp);
5494 	case BTRFS_IOC_BALANCE:
5495 		return btrfs_ioctl_balance(file, NULL);
5496 	case BTRFS_IOC_TREE_SEARCH:
5497 		return btrfs_ioctl_tree_search(file, argp);
5498 	case BTRFS_IOC_TREE_SEARCH_V2:
5499 		return btrfs_ioctl_tree_search_v2(file, argp);
5500 	case BTRFS_IOC_INO_LOOKUP:
5501 		return btrfs_ioctl_ino_lookup(file, argp);
5502 	case BTRFS_IOC_INO_PATHS:
5503 		return btrfs_ioctl_ino_to_path(root, argp);
5504 	case BTRFS_IOC_LOGICAL_INO:
5505 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5506 	case BTRFS_IOC_LOGICAL_INO_V2:
5507 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5508 	case BTRFS_IOC_SPACE_INFO:
5509 		return btrfs_ioctl_space_info(fs_info, argp);
5510 	case BTRFS_IOC_SYNC: {
5511 		int ret;
5512 
5513 		ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5514 		if (ret)
5515 			return ret;
5516 		ret = btrfs_sync_fs(inode->i_sb, 1);
5517 		/*
5518 		 * The transaction thread may want to do more work,
5519 		 * namely it pokes the cleaner kthread that will start
5520 		 * processing uncleaned subvols.
5521 		 */
5522 		wake_up_process(fs_info->transaction_kthread);
5523 		return ret;
5524 	}
5525 	case BTRFS_IOC_START_SYNC:
5526 		return btrfs_ioctl_start_sync(root, argp);
5527 	case BTRFS_IOC_WAIT_SYNC:
5528 		return btrfs_ioctl_wait_sync(fs_info, argp);
5529 	case BTRFS_IOC_SCRUB:
5530 		return btrfs_ioctl_scrub(file, argp);
5531 	case BTRFS_IOC_SCRUB_CANCEL:
5532 		return btrfs_ioctl_scrub_cancel(fs_info);
5533 	case BTRFS_IOC_SCRUB_PROGRESS:
5534 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5535 	case BTRFS_IOC_BALANCE_V2:
5536 		return btrfs_ioctl_balance(file, argp);
5537 	case BTRFS_IOC_BALANCE_CTL:
5538 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5539 	case BTRFS_IOC_BALANCE_PROGRESS:
5540 		return btrfs_ioctl_balance_progress(fs_info, argp);
5541 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5542 		return btrfs_ioctl_set_received_subvol(file, argp);
5543 #ifdef CONFIG_64BIT
5544 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5545 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5546 #endif
5547 	case BTRFS_IOC_SEND:
5548 		return _btrfs_ioctl_send(file, argp, false);
5549 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5550 	case BTRFS_IOC_SEND_32:
5551 		return _btrfs_ioctl_send(file, argp, true);
5552 #endif
5553 	case BTRFS_IOC_GET_DEV_STATS:
5554 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5555 	case BTRFS_IOC_QUOTA_CTL:
5556 		return btrfs_ioctl_quota_ctl(file, argp);
5557 	case BTRFS_IOC_QGROUP_ASSIGN:
5558 		return btrfs_ioctl_qgroup_assign(file, argp);
5559 	case BTRFS_IOC_QGROUP_CREATE:
5560 		return btrfs_ioctl_qgroup_create(file, argp);
5561 	case BTRFS_IOC_QGROUP_LIMIT:
5562 		return btrfs_ioctl_qgroup_limit(file, argp);
5563 	case BTRFS_IOC_QUOTA_RESCAN:
5564 		return btrfs_ioctl_quota_rescan(file, argp);
5565 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5566 		return btrfs_ioctl_quota_rescan_status(file, argp);
5567 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5568 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5569 	case BTRFS_IOC_DEV_REPLACE:
5570 		return btrfs_ioctl_dev_replace(fs_info, argp);
5571 	case BTRFS_IOC_GET_FSLABEL:
5572 		return btrfs_ioctl_get_fslabel(file, argp);
5573 	case BTRFS_IOC_SET_FSLABEL:
5574 		return btrfs_ioctl_set_fslabel(file, argp);
5575 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5576 		return btrfs_ioctl_get_supported_features(argp);
5577 	case BTRFS_IOC_GET_FEATURES:
5578 		return btrfs_ioctl_get_features(file, argp);
5579 	case BTRFS_IOC_SET_FEATURES:
5580 		return btrfs_ioctl_set_features(file, argp);
5581 	}
5582 
5583 	return -ENOTTY;
5584 }
5585 
5586 #ifdef CONFIG_COMPAT
5587 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5588 {
5589 	/*
5590 	 * These all access 32-bit values anyway so no further
5591 	 * handling is necessary.
5592 	 */
5593 	switch (cmd) {
5594 	case FS_IOC32_GETFLAGS:
5595 		cmd = FS_IOC_GETFLAGS;
5596 		break;
5597 	case FS_IOC32_SETFLAGS:
5598 		cmd = FS_IOC_SETFLAGS;
5599 		break;
5600 	case FS_IOC32_GETVERSION:
5601 		cmd = FS_IOC_GETVERSION;
5602 		break;
5603 	}
5604 
5605 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5606 }
5607 #endif
5608