1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "transaction.h" 32 #include "btrfs_inode.h" 33 #include "print-tree.h" 34 #include "volumes.h" 35 #include "locking.h" 36 #include "inode-map.h" 37 #include "backref.h" 38 #include "rcu-string.h" 39 #include "send.h" 40 #include "dev-replace.h" 41 #include "props.h" 42 #include "sysfs.h" 43 #include "qgroup.h" 44 #include "tree-log.h" 45 #include "compression.h" 46 #include "space-info.h" 47 #include "delalloc-space.h" 48 #include "block-group.h" 49 50 #ifdef CONFIG_64BIT 51 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 52 * structures are incorrect, as the timespec structure from userspace 53 * is 4 bytes too small. We define these alternatives here to teach 54 * the kernel about the 32-bit struct packing. 55 */ 56 struct btrfs_ioctl_timespec_32 { 57 __u64 sec; 58 __u32 nsec; 59 } __attribute__ ((__packed__)); 60 61 struct btrfs_ioctl_received_subvol_args_32 { 62 char uuid[BTRFS_UUID_SIZE]; /* in */ 63 __u64 stransid; /* in */ 64 __u64 rtransid; /* out */ 65 struct btrfs_ioctl_timespec_32 stime; /* in */ 66 struct btrfs_ioctl_timespec_32 rtime; /* out */ 67 __u64 flags; /* in */ 68 __u64 reserved[16]; /* in */ 69 } __attribute__ ((__packed__)); 70 71 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 72 struct btrfs_ioctl_received_subvol_args_32) 73 #endif 74 75 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 76 struct btrfs_ioctl_send_args_32 { 77 __s64 send_fd; /* in */ 78 __u64 clone_sources_count; /* in */ 79 compat_uptr_t clone_sources; /* in */ 80 __u64 parent_root; /* in */ 81 __u64 flags; /* in */ 82 __u64 reserved[4]; /* in */ 83 } __attribute__ ((__packed__)); 84 85 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 86 struct btrfs_ioctl_send_args_32) 87 #endif 88 89 static int btrfs_clone(struct inode *src, struct inode *inode, 90 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 91 int no_time_update); 92 93 /* Mask out flags that are inappropriate for the given type of inode. */ 94 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 95 unsigned int flags) 96 { 97 if (S_ISDIR(inode->i_mode)) 98 return flags; 99 else if (S_ISREG(inode->i_mode)) 100 return flags & ~FS_DIRSYNC_FL; 101 else 102 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 103 } 104 105 /* 106 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 107 * ioctl. 108 */ 109 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 110 { 111 unsigned int iflags = 0; 112 113 if (flags & BTRFS_INODE_SYNC) 114 iflags |= FS_SYNC_FL; 115 if (flags & BTRFS_INODE_IMMUTABLE) 116 iflags |= FS_IMMUTABLE_FL; 117 if (flags & BTRFS_INODE_APPEND) 118 iflags |= FS_APPEND_FL; 119 if (flags & BTRFS_INODE_NODUMP) 120 iflags |= FS_NODUMP_FL; 121 if (flags & BTRFS_INODE_NOATIME) 122 iflags |= FS_NOATIME_FL; 123 if (flags & BTRFS_INODE_DIRSYNC) 124 iflags |= FS_DIRSYNC_FL; 125 if (flags & BTRFS_INODE_NODATACOW) 126 iflags |= FS_NOCOW_FL; 127 128 if (flags & BTRFS_INODE_NOCOMPRESS) 129 iflags |= FS_NOCOMP_FL; 130 else if (flags & BTRFS_INODE_COMPRESS) 131 iflags |= FS_COMPR_FL; 132 133 return iflags; 134 } 135 136 /* 137 * Update inode->i_flags based on the btrfs internal flags. 138 */ 139 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 140 { 141 struct btrfs_inode *binode = BTRFS_I(inode); 142 unsigned int new_fl = 0; 143 144 if (binode->flags & BTRFS_INODE_SYNC) 145 new_fl |= S_SYNC; 146 if (binode->flags & BTRFS_INODE_IMMUTABLE) 147 new_fl |= S_IMMUTABLE; 148 if (binode->flags & BTRFS_INODE_APPEND) 149 new_fl |= S_APPEND; 150 if (binode->flags & BTRFS_INODE_NOATIME) 151 new_fl |= S_NOATIME; 152 if (binode->flags & BTRFS_INODE_DIRSYNC) 153 new_fl |= S_DIRSYNC; 154 155 set_mask_bits(&inode->i_flags, 156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 157 new_fl); 158 } 159 160 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 161 { 162 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 163 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 164 165 if (copy_to_user(arg, &flags, sizeof(flags))) 166 return -EFAULT; 167 return 0; 168 } 169 170 /* Check if @flags are a supported and valid set of FS_*_FL flags */ 171 static int check_fsflags(unsigned int flags) 172 { 173 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 174 FS_NOATIME_FL | FS_NODUMP_FL | \ 175 FS_SYNC_FL | FS_DIRSYNC_FL | \ 176 FS_NOCOMP_FL | FS_COMPR_FL | 177 FS_NOCOW_FL)) 178 return -EOPNOTSUPP; 179 180 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 181 return -EINVAL; 182 183 return 0; 184 } 185 186 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 187 { 188 struct inode *inode = file_inode(file); 189 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 190 struct btrfs_inode *binode = BTRFS_I(inode); 191 struct btrfs_root *root = binode->root; 192 struct btrfs_trans_handle *trans; 193 unsigned int fsflags, old_fsflags; 194 int ret; 195 const char *comp = NULL; 196 u32 binode_flags = binode->flags; 197 198 if (!inode_owner_or_capable(inode)) 199 return -EPERM; 200 201 if (btrfs_root_readonly(root)) 202 return -EROFS; 203 204 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 205 return -EFAULT; 206 207 ret = check_fsflags(fsflags); 208 if (ret) 209 return ret; 210 211 ret = mnt_want_write_file(file); 212 if (ret) 213 return ret; 214 215 inode_lock(inode); 216 217 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 218 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 219 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 220 if (ret) 221 goto out_unlock; 222 223 if (fsflags & FS_SYNC_FL) 224 binode_flags |= BTRFS_INODE_SYNC; 225 else 226 binode_flags &= ~BTRFS_INODE_SYNC; 227 if (fsflags & FS_IMMUTABLE_FL) 228 binode_flags |= BTRFS_INODE_IMMUTABLE; 229 else 230 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 231 if (fsflags & FS_APPEND_FL) 232 binode_flags |= BTRFS_INODE_APPEND; 233 else 234 binode_flags &= ~BTRFS_INODE_APPEND; 235 if (fsflags & FS_NODUMP_FL) 236 binode_flags |= BTRFS_INODE_NODUMP; 237 else 238 binode_flags &= ~BTRFS_INODE_NODUMP; 239 if (fsflags & FS_NOATIME_FL) 240 binode_flags |= BTRFS_INODE_NOATIME; 241 else 242 binode_flags &= ~BTRFS_INODE_NOATIME; 243 if (fsflags & FS_DIRSYNC_FL) 244 binode_flags |= BTRFS_INODE_DIRSYNC; 245 else 246 binode_flags &= ~BTRFS_INODE_DIRSYNC; 247 if (fsflags & FS_NOCOW_FL) { 248 if (S_ISREG(inode->i_mode)) { 249 /* 250 * It's safe to turn csums off here, no extents exist. 251 * Otherwise we want the flag to reflect the real COW 252 * status of the file and will not set it. 253 */ 254 if (inode->i_size == 0) 255 binode_flags |= BTRFS_INODE_NODATACOW | 256 BTRFS_INODE_NODATASUM; 257 } else { 258 binode_flags |= BTRFS_INODE_NODATACOW; 259 } 260 } else { 261 /* 262 * Revert back under same assumptions as above 263 */ 264 if (S_ISREG(inode->i_mode)) { 265 if (inode->i_size == 0) 266 binode_flags &= ~(BTRFS_INODE_NODATACOW | 267 BTRFS_INODE_NODATASUM); 268 } else { 269 binode_flags &= ~BTRFS_INODE_NODATACOW; 270 } 271 } 272 273 /* 274 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 275 * flag may be changed automatically if compression code won't make 276 * things smaller. 277 */ 278 if (fsflags & FS_NOCOMP_FL) { 279 binode_flags &= ~BTRFS_INODE_COMPRESS; 280 binode_flags |= BTRFS_INODE_NOCOMPRESS; 281 } else if (fsflags & FS_COMPR_FL) { 282 283 if (IS_SWAPFILE(inode)) { 284 ret = -ETXTBSY; 285 goto out_unlock; 286 } 287 288 binode_flags |= BTRFS_INODE_COMPRESS; 289 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 290 291 comp = btrfs_compress_type2str(fs_info->compress_type); 292 if (!comp || comp[0] == 0) 293 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 294 } else { 295 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 296 } 297 298 /* 299 * 1 for inode item 300 * 2 for properties 301 */ 302 trans = btrfs_start_transaction(root, 3); 303 if (IS_ERR(trans)) { 304 ret = PTR_ERR(trans); 305 goto out_unlock; 306 } 307 308 if (comp) { 309 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 310 strlen(comp), 0); 311 if (ret) { 312 btrfs_abort_transaction(trans, ret); 313 goto out_end_trans; 314 } 315 } else { 316 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 317 0, 0); 318 if (ret && ret != -ENODATA) { 319 btrfs_abort_transaction(trans, ret); 320 goto out_end_trans; 321 } 322 } 323 324 binode->flags = binode_flags; 325 btrfs_sync_inode_flags_to_i_flags(inode); 326 inode_inc_iversion(inode); 327 inode->i_ctime = current_time(inode); 328 ret = btrfs_update_inode(trans, root, inode); 329 330 out_end_trans: 331 btrfs_end_transaction(trans); 332 out_unlock: 333 inode_unlock(inode); 334 mnt_drop_write_file(file); 335 return ret; 336 } 337 338 /* 339 * Translate btrfs internal inode flags to xflags as expected by the 340 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 341 * silently dropped. 342 */ 343 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 344 { 345 unsigned int xflags = 0; 346 347 if (flags & BTRFS_INODE_APPEND) 348 xflags |= FS_XFLAG_APPEND; 349 if (flags & BTRFS_INODE_IMMUTABLE) 350 xflags |= FS_XFLAG_IMMUTABLE; 351 if (flags & BTRFS_INODE_NOATIME) 352 xflags |= FS_XFLAG_NOATIME; 353 if (flags & BTRFS_INODE_NODUMP) 354 xflags |= FS_XFLAG_NODUMP; 355 if (flags & BTRFS_INODE_SYNC) 356 xflags |= FS_XFLAG_SYNC; 357 358 return xflags; 359 } 360 361 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 362 static int check_xflags(unsigned int flags) 363 { 364 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 365 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 366 return -EOPNOTSUPP; 367 return 0; 368 } 369 370 /* 371 * Set the xflags from the internal inode flags. The remaining items of fsxattr 372 * are zeroed. 373 */ 374 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 375 { 376 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 377 struct fsxattr fa; 378 379 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 380 if (copy_to_user(arg, &fa, sizeof(fa))) 381 return -EFAULT; 382 383 return 0; 384 } 385 386 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 387 { 388 struct inode *inode = file_inode(file); 389 struct btrfs_inode *binode = BTRFS_I(inode); 390 struct btrfs_root *root = binode->root; 391 struct btrfs_trans_handle *trans; 392 struct fsxattr fa, old_fa; 393 unsigned old_flags; 394 unsigned old_i_flags; 395 int ret = 0; 396 397 if (!inode_owner_or_capable(inode)) 398 return -EPERM; 399 400 if (btrfs_root_readonly(root)) 401 return -EROFS; 402 403 if (copy_from_user(&fa, arg, sizeof(fa))) 404 return -EFAULT; 405 406 ret = check_xflags(fa.fsx_xflags); 407 if (ret) 408 return ret; 409 410 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 411 return -EOPNOTSUPP; 412 413 ret = mnt_want_write_file(file); 414 if (ret) 415 return ret; 416 417 inode_lock(inode); 418 419 old_flags = binode->flags; 420 old_i_flags = inode->i_flags; 421 422 simple_fill_fsxattr(&old_fa, 423 btrfs_inode_flags_to_xflags(binode->flags)); 424 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 425 if (ret) 426 goto out_unlock; 427 428 if (fa.fsx_xflags & FS_XFLAG_SYNC) 429 binode->flags |= BTRFS_INODE_SYNC; 430 else 431 binode->flags &= ~BTRFS_INODE_SYNC; 432 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 433 binode->flags |= BTRFS_INODE_IMMUTABLE; 434 else 435 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 436 if (fa.fsx_xflags & FS_XFLAG_APPEND) 437 binode->flags |= BTRFS_INODE_APPEND; 438 else 439 binode->flags &= ~BTRFS_INODE_APPEND; 440 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 441 binode->flags |= BTRFS_INODE_NODUMP; 442 else 443 binode->flags &= ~BTRFS_INODE_NODUMP; 444 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 445 binode->flags |= BTRFS_INODE_NOATIME; 446 else 447 binode->flags &= ~BTRFS_INODE_NOATIME; 448 449 /* 1 item for the inode */ 450 trans = btrfs_start_transaction(root, 1); 451 if (IS_ERR(trans)) { 452 ret = PTR_ERR(trans); 453 goto out_unlock; 454 } 455 456 btrfs_sync_inode_flags_to_i_flags(inode); 457 inode_inc_iversion(inode); 458 inode->i_ctime = current_time(inode); 459 ret = btrfs_update_inode(trans, root, inode); 460 461 btrfs_end_transaction(trans); 462 463 out_unlock: 464 if (ret) { 465 binode->flags = old_flags; 466 inode->i_flags = old_i_flags; 467 } 468 469 inode_unlock(inode); 470 mnt_drop_write_file(file); 471 472 return ret; 473 } 474 475 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 476 { 477 struct inode *inode = file_inode(file); 478 479 return put_user(inode->i_generation, arg); 480 } 481 482 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 483 { 484 struct inode *inode = file_inode(file); 485 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 486 struct btrfs_device *device; 487 struct request_queue *q; 488 struct fstrim_range range; 489 u64 minlen = ULLONG_MAX; 490 u64 num_devices = 0; 491 int ret; 492 493 if (!capable(CAP_SYS_ADMIN)) 494 return -EPERM; 495 496 /* 497 * If the fs is mounted with nologreplay, which requires it to be 498 * mounted in RO mode as well, we can not allow discard on free space 499 * inside block groups, because log trees refer to extents that are not 500 * pinned in a block group's free space cache (pinning the extents is 501 * precisely the first phase of replaying a log tree). 502 */ 503 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 504 return -EROFS; 505 506 rcu_read_lock(); 507 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 508 dev_list) { 509 if (!device->bdev) 510 continue; 511 q = bdev_get_queue(device->bdev); 512 if (blk_queue_discard(q)) { 513 num_devices++; 514 minlen = min_t(u64, q->limits.discard_granularity, 515 minlen); 516 } 517 } 518 rcu_read_unlock(); 519 520 if (!num_devices) 521 return -EOPNOTSUPP; 522 if (copy_from_user(&range, arg, sizeof(range))) 523 return -EFAULT; 524 525 /* 526 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 527 * block group is in the logical address space, which can be any 528 * sectorsize aligned bytenr in the range [0, U64_MAX]. 529 */ 530 if (range.len < fs_info->sb->s_blocksize) 531 return -EINVAL; 532 533 range.minlen = max(range.minlen, minlen); 534 ret = btrfs_trim_fs(fs_info, &range); 535 if (ret < 0) 536 return ret; 537 538 if (copy_to_user(arg, &range, sizeof(range))) 539 return -EFAULT; 540 541 return 0; 542 } 543 544 int btrfs_is_empty_uuid(u8 *uuid) 545 { 546 int i; 547 548 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 549 if (uuid[i]) 550 return 0; 551 } 552 return 1; 553 } 554 555 static noinline int create_subvol(struct inode *dir, 556 struct dentry *dentry, 557 const char *name, int namelen, 558 u64 *async_transid, 559 struct btrfs_qgroup_inherit *inherit) 560 { 561 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 562 struct btrfs_trans_handle *trans; 563 struct btrfs_key key; 564 struct btrfs_root_item *root_item; 565 struct btrfs_inode_item *inode_item; 566 struct extent_buffer *leaf; 567 struct btrfs_root *root = BTRFS_I(dir)->root; 568 struct btrfs_root *new_root; 569 struct btrfs_block_rsv block_rsv; 570 struct timespec64 cur_time = current_time(dir); 571 struct inode *inode; 572 int ret; 573 int err; 574 u64 objectid; 575 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 576 u64 index = 0; 577 uuid_le new_uuid; 578 579 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 580 if (!root_item) 581 return -ENOMEM; 582 583 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 584 if (ret) 585 goto fail_free; 586 587 /* 588 * Don't create subvolume whose level is not zero. Or qgroup will be 589 * screwed up since it assumes subvolume qgroup's level to be 0. 590 */ 591 if (btrfs_qgroup_level(objectid)) { 592 ret = -ENOSPC; 593 goto fail_free; 594 } 595 596 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 597 /* 598 * The same as the snapshot creation, please see the comment 599 * of create_snapshot(). 600 */ 601 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 602 if (ret) 603 goto fail_free; 604 605 trans = btrfs_start_transaction(root, 0); 606 if (IS_ERR(trans)) { 607 ret = PTR_ERR(trans); 608 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 609 goto fail_free; 610 } 611 trans->block_rsv = &block_rsv; 612 trans->bytes_reserved = block_rsv.size; 613 614 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 615 if (ret) 616 goto fail; 617 618 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 619 if (IS_ERR(leaf)) { 620 ret = PTR_ERR(leaf); 621 goto fail; 622 } 623 624 btrfs_mark_buffer_dirty(leaf); 625 626 inode_item = &root_item->inode; 627 btrfs_set_stack_inode_generation(inode_item, 1); 628 btrfs_set_stack_inode_size(inode_item, 3); 629 btrfs_set_stack_inode_nlink(inode_item, 1); 630 btrfs_set_stack_inode_nbytes(inode_item, 631 fs_info->nodesize); 632 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 633 634 btrfs_set_root_flags(root_item, 0); 635 btrfs_set_root_limit(root_item, 0); 636 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 637 638 btrfs_set_root_bytenr(root_item, leaf->start); 639 btrfs_set_root_generation(root_item, trans->transid); 640 btrfs_set_root_level(root_item, 0); 641 btrfs_set_root_refs(root_item, 1); 642 btrfs_set_root_used(root_item, leaf->len); 643 btrfs_set_root_last_snapshot(root_item, 0); 644 645 btrfs_set_root_generation_v2(root_item, 646 btrfs_root_generation(root_item)); 647 uuid_le_gen(&new_uuid); 648 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 649 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 650 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 651 root_item->ctime = root_item->otime; 652 btrfs_set_root_ctransid(root_item, trans->transid); 653 btrfs_set_root_otransid(root_item, trans->transid); 654 655 btrfs_tree_unlock(leaf); 656 free_extent_buffer(leaf); 657 leaf = NULL; 658 659 btrfs_set_root_dirid(root_item, new_dirid); 660 661 key.objectid = objectid; 662 key.offset = 0; 663 key.type = BTRFS_ROOT_ITEM_KEY; 664 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 665 root_item); 666 if (ret) 667 goto fail; 668 669 key.offset = (u64)-1; 670 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 671 if (IS_ERR(new_root)) { 672 ret = PTR_ERR(new_root); 673 btrfs_abort_transaction(trans, ret); 674 goto fail; 675 } 676 677 btrfs_record_root_in_trans(trans, new_root); 678 679 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 680 if (ret) { 681 /* We potentially lose an unused inode item here */ 682 btrfs_abort_transaction(trans, ret); 683 goto fail; 684 } 685 686 mutex_lock(&new_root->objectid_mutex); 687 new_root->highest_objectid = new_dirid; 688 mutex_unlock(&new_root->objectid_mutex); 689 690 /* 691 * insert the directory item 692 */ 693 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 694 if (ret) { 695 btrfs_abort_transaction(trans, ret); 696 goto fail; 697 } 698 699 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 700 BTRFS_FT_DIR, index); 701 if (ret) { 702 btrfs_abort_transaction(trans, ret); 703 goto fail; 704 } 705 706 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 707 ret = btrfs_update_inode(trans, root, dir); 708 BUG_ON(ret); 709 710 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 711 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 712 BUG_ON(ret); 713 714 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 715 BTRFS_UUID_KEY_SUBVOL, objectid); 716 if (ret) 717 btrfs_abort_transaction(trans, ret); 718 719 fail: 720 kfree(root_item); 721 trans->block_rsv = NULL; 722 trans->bytes_reserved = 0; 723 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 724 725 if (async_transid) { 726 *async_transid = trans->transid; 727 err = btrfs_commit_transaction_async(trans, 1); 728 if (err) 729 err = btrfs_commit_transaction(trans); 730 } else { 731 err = btrfs_commit_transaction(trans); 732 } 733 if (err && !ret) 734 ret = err; 735 736 if (!ret) { 737 inode = btrfs_lookup_dentry(dir, dentry); 738 if (IS_ERR(inode)) 739 return PTR_ERR(inode); 740 d_instantiate(dentry, inode); 741 } 742 return ret; 743 744 fail_free: 745 kfree(root_item); 746 return ret; 747 } 748 749 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 750 struct dentry *dentry, 751 u64 *async_transid, bool readonly, 752 struct btrfs_qgroup_inherit *inherit) 753 { 754 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 755 struct inode *inode; 756 struct btrfs_pending_snapshot *pending_snapshot; 757 struct btrfs_trans_handle *trans; 758 int ret; 759 bool snapshot_force_cow = false; 760 761 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 762 return -EINVAL; 763 764 if (atomic_read(&root->nr_swapfiles)) { 765 btrfs_warn(fs_info, 766 "cannot snapshot subvolume with active swapfile"); 767 return -ETXTBSY; 768 } 769 770 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 771 if (!pending_snapshot) 772 return -ENOMEM; 773 774 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 775 GFP_KERNEL); 776 pending_snapshot->path = btrfs_alloc_path(); 777 if (!pending_snapshot->root_item || !pending_snapshot->path) { 778 ret = -ENOMEM; 779 goto free_pending; 780 } 781 782 /* 783 * Force new buffered writes to reserve space even when NOCOW is 784 * possible. This is to avoid later writeback (running dealloc) to 785 * fallback to COW mode and unexpectedly fail with ENOSPC. 786 */ 787 atomic_inc(&root->will_be_snapshotted); 788 smp_mb__after_atomic(); 789 /* wait for no snapshot writes */ 790 wait_event(root->subv_writers->wait, 791 percpu_counter_sum(&root->subv_writers->counter) == 0); 792 793 ret = btrfs_start_delalloc_snapshot(root); 794 if (ret) 795 goto dec_and_free; 796 797 /* 798 * All previous writes have started writeback in NOCOW mode, so now 799 * we force future writes to fallback to COW mode during snapshot 800 * creation. 801 */ 802 atomic_inc(&root->snapshot_force_cow); 803 snapshot_force_cow = true; 804 805 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 806 807 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 808 BTRFS_BLOCK_RSV_TEMP); 809 /* 810 * 1 - parent dir inode 811 * 2 - dir entries 812 * 1 - root item 813 * 2 - root ref/backref 814 * 1 - root of snapshot 815 * 1 - UUID item 816 */ 817 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 818 &pending_snapshot->block_rsv, 8, 819 false); 820 if (ret) 821 goto dec_and_free; 822 823 pending_snapshot->dentry = dentry; 824 pending_snapshot->root = root; 825 pending_snapshot->readonly = readonly; 826 pending_snapshot->dir = dir; 827 pending_snapshot->inherit = inherit; 828 829 trans = btrfs_start_transaction(root, 0); 830 if (IS_ERR(trans)) { 831 ret = PTR_ERR(trans); 832 goto fail; 833 } 834 835 spin_lock(&fs_info->trans_lock); 836 list_add(&pending_snapshot->list, 837 &trans->transaction->pending_snapshots); 838 spin_unlock(&fs_info->trans_lock); 839 if (async_transid) { 840 *async_transid = trans->transid; 841 ret = btrfs_commit_transaction_async(trans, 1); 842 if (ret) 843 ret = btrfs_commit_transaction(trans); 844 } else { 845 ret = btrfs_commit_transaction(trans); 846 } 847 if (ret) 848 goto fail; 849 850 ret = pending_snapshot->error; 851 if (ret) 852 goto fail; 853 854 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 855 if (ret) 856 goto fail; 857 858 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 859 if (IS_ERR(inode)) { 860 ret = PTR_ERR(inode); 861 goto fail; 862 } 863 864 d_instantiate(dentry, inode); 865 ret = 0; 866 fail: 867 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 868 dec_and_free: 869 if (snapshot_force_cow) 870 atomic_dec(&root->snapshot_force_cow); 871 if (atomic_dec_and_test(&root->will_be_snapshotted)) 872 wake_up_var(&root->will_be_snapshotted); 873 free_pending: 874 kfree(pending_snapshot->root_item); 875 btrfs_free_path(pending_snapshot->path); 876 kfree(pending_snapshot); 877 878 return ret; 879 } 880 881 /* copy of may_delete in fs/namei.c() 882 * Check whether we can remove a link victim from directory dir, check 883 * whether the type of victim is right. 884 * 1. We can't do it if dir is read-only (done in permission()) 885 * 2. We should have write and exec permissions on dir 886 * 3. We can't remove anything from append-only dir 887 * 4. We can't do anything with immutable dir (done in permission()) 888 * 5. If the sticky bit on dir is set we should either 889 * a. be owner of dir, or 890 * b. be owner of victim, or 891 * c. have CAP_FOWNER capability 892 * 6. If the victim is append-only or immutable we can't do anything with 893 * links pointing to it. 894 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 895 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 896 * 9. We can't remove a root or mountpoint. 897 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 898 * nfs_async_unlink(). 899 */ 900 901 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 902 { 903 int error; 904 905 if (d_really_is_negative(victim)) 906 return -ENOENT; 907 908 BUG_ON(d_inode(victim->d_parent) != dir); 909 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 910 911 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 912 if (error) 913 return error; 914 if (IS_APPEND(dir)) 915 return -EPERM; 916 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 917 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 918 return -EPERM; 919 if (isdir) { 920 if (!d_is_dir(victim)) 921 return -ENOTDIR; 922 if (IS_ROOT(victim)) 923 return -EBUSY; 924 } else if (d_is_dir(victim)) 925 return -EISDIR; 926 if (IS_DEADDIR(dir)) 927 return -ENOENT; 928 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 929 return -EBUSY; 930 return 0; 931 } 932 933 /* copy of may_create in fs/namei.c() */ 934 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 935 { 936 if (d_really_is_positive(child)) 937 return -EEXIST; 938 if (IS_DEADDIR(dir)) 939 return -ENOENT; 940 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 941 } 942 943 /* 944 * Create a new subvolume below @parent. This is largely modeled after 945 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 946 * inside this filesystem so it's quite a bit simpler. 947 */ 948 static noinline int btrfs_mksubvol(const struct path *parent, 949 const char *name, int namelen, 950 struct btrfs_root *snap_src, 951 u64 *async_transid, bool readonly, 952 struct btrfs_qgroup_inherit *inherit) 953 { 954 struct inode *dir = d_inode(parent->dentry); 955 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 956 struct dentry *dentry; 957 int error; 958 959 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 960 if (error == -EINTR) 961 return error; 962 963 dentry = lookup_one_len(name, parent->dentry, namelen); 964 error = PTR_ERR(dentry); 965 if (IS_ERR(dentry)) 966 goto out_unlock; 967 968 error = btrfs_may_create(dir, dentry); 969 if (error) 970 goto out_dput; 971 972 /* 973 * even if this name doesn't exist, we may get hash collisions. 974 * check for them now when we can safely fail 975 */ 976 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 977 dir->i_ino, name, 978 namelen); 979 if (error) 980 goto out_dput; 981 982 down_read(&fs_info->subvol_sem); 983 984 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 985 goto out_up_read; 986 987 if (snap_src) { 988 error = create_snapshot(snap_src, dir, dentry, 989 async_transid, readonly, inherit); 990 } else { 991 error = create_subvol(dir, dentry, name, namelen, 992 async_transid, inherit); 993 } 994 if (!error) 995 fsnotify_mkdir(dir, dentry); 996 out_up_read: 997 up_read(&fs_info->subvol_sem); 998 out_dput: 999 dput(dentry); 1000 out_unlock: 1001 inode_unlock(dir); 1002 return error; 1003 } 1004 1005 /* 1006 * When we're defragging a range, we don't want to kick it off again 1007 * if it is really just waiting for delalloc to send it down. 1008 * If we find a nice big extent or delalloc range for the bytes in the 1009 * file you want to defrag, we return 0 to let you know to skip this 1010 * part of the file 1011 */ 1012 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1013 { 1014 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1015 struct extent_map *em = NULL; 1016 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1017 u64 end; 1018 1019 read_lock(&em_tree->lock); 1020 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1021 read_unlock(&em_tree->lock); 1022 1023 if (em) { 1024 end = extent_map_end(em); 1025 free_extent_map(em); 1026 if (end - offset > thresh) 1027 return 0; 1028 } 1029 /* if we already have a nice delalloc here, just stop */ 1030 thresh /= 2; 1031 end = count_range_bits(io_tree, &offset, offset + thresh, 1032 thresh, EXTENT_DELALLOC, 1); 1033 if (end >= thresh) 1034 return 0; 1035 return 1; 1036 } 1037 1038 /* 1039 * helper function to walk through a file and find extents 1040 * newer than a specific transid, and smaller than thresh. 1041 * 1042 * This is used by the defragging code to find new and small 1043 * extents 1044 */ 1045 static int find_new_extents(struct btrfs_root *root, 1046 struct inode *inode, u64 newer_than, 1047 u64 *off, u32 thresh) 1048 { 1049 struct btrfs_path *path; 1050 struct btrfs_key min_key; 1051 struct extent_buffer *leaf; 1052 struct btrfs_file_extent_item *extent; 1053 int type; 1054 int ret; 1055 u64 ino = btrfs_ino(BTRFS_I(inode)); 1056 1057 path = btrfs_alloc_path(); 1058 if (!path) 1059 return -ENOMEM; 1060 1061 min_key.objectid = ino; 1062 min_key.type = BTRFS_EXTENT_DATA_KEY; 1063 min_key.offset = *off; 1064 1065 while (1) { 1066 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1067 if (ret != 0) 1068 goto none; 1069 process_slot: 1070 if (min_key.objectid != ino) 1071 goto none; 1072 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1073 goto none; 1074 1075 leaf = path->nodes[0]; 1076 extent = btrfs_item_ptr(leaf, path->slots[0], 1077 struct btrfs_file_extent_item); 1078 1079 type = btrfs_file_extent_type(leaf, extent); 1080 if (type == BTRFS_FILE_EXTENT_REG && 1081 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1082 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1083 *off = min_key.offset; 1084 btrfs_free_path(path); 1085 return 0; 1086 } 1087 1088 path->slots[0]++; 1089 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1090 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1091 goto process_slot; 1092 } 1093 1094 if (min_key.offset == (u64)-1) 1095 goto none; 1096 1097 min_key.offset++; 1098 btrfs_release_path(path); 1099 } 1100 none: 1101 btrfs_free_path(path); 1102 return -ENOENT; 1103 } 1104 1105 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1106 { 1107 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1108 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1109 struct extent_map *em; 1110 u64 len = PAGE_SIZE; 1111 1112 /* 1113 * hopefully we have this extent in the tree already, try without 1114 * the full extent lock 1115 */ 1116 read_lock(&em_tree->lock); 1117 em = lookup_extent_mapping(em_tree, start, len); 1118 read_unlock(&em_tree->lock); 1119 1120 if (!em) { 1121 struct extent_state *cached = NULL; 1122 u64 end = start + len - 1; 1123 1124 /* get the big lock and read metadata off disk */ 1125 lock_extent_bits(io_tree, start, end, &cached); 1126 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 1127 unlock_extent_cached(io_tree, start, end, &cached); 1128 1129 if (IS_ERR(em)) 1130 return NULL; 1131 } 1132 1133 return em; 1134 } 1135 1136 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1137 { 1138 struct extent_map *next; 1139 bool ret = true; 1140 1141 /* this is the last extent */ 1142 if (em->start + em->len >= i_size_read(inode)) 1143 return false; 1144 1145 next = defrag_lookup_extent(inode, em->start + em->len); 1146 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1147 ret = false; 1148 else if ((em->block_start + em->block_len == next->block_start) && 1149 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1150 ret = false; 1151 1152 free_extent_map(next); 1153 return ret; 1154 } 1155 1156 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1157 u64 *last_len, u64 *skip, u64 *defrag_end, 1158 int compress) 1159 { 1160 struct extent_map *em; 1161 int ret = 1; 1162 bool next_mergeable = true; 1163 bool prev_mergeable = true; 1164 1165 /* 1166 * make sure that once we start defragging an extent, we keep on 1167 * defragging it 1168 */ 1169 if (start < *defrag_end) 1170 return 1; 1171 1172 *skip = 0; 1173 1174 em = defrag_lookup_extent(inode, start); 1175 if (!em) 1176 return 0; 1177 1178 /* this will cover holes, and inline extents */ 1179 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1180 ret = 0; 1181 goto out; 1182 } 1183 1184 if (!*defrag_end) 1185 prev_mergeable = false; 1186 1187 next_mergeable = defrag_check_next_extent(inode, em); 1188 /* 1189 * we hit a real extent, if it is big or the next extent is not a 1190 * real extent, don't bother defragging it 1191 */ 1192 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1193 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1194 ret = 0; 1195 out: 1196 /* 1197 * last_len ends up being a counter of how many bytes we've defragged. 1198 * every time we choose not to defrag an extent, we reset *last_len 1199 * so that the next tiny extent will force a defrag. 1200 * 1201 * The end result of this is that tiny extents before a single big 1202 * extent will force at least part of that big extent to be defragged. 1203 */ 1204 if (ret) { 1205 *defrag_end = extent_map_end(em); 1206 } else { 1207 *last_len = 0; 1208 *skip = extent_map_end(em); 1209 *defrag_end = 0; 1210 } 1211 1212 free_extent_map(em); 1213 return ret; 1214 } 1215 1216 /* 1217 * it doesn't do much good to defrag one or two pages 1218 * at a time. This pulls in a nice chunk of pages 1219 * to COW and defrag. 1220 * 1221 * It also makes sure the delalloc code has enough 1222 * dirty data to avoid making new small extents as part 1223 * of the defrag 1224 * 1225 * It's a good idea to start RA on this range 1226 * before calling this. 1227 */ 1228 static int cluster_pages_for_defrag(struct inode *inode, 1229 struct page **pages, 1230 unsigned long start_index, 1231 unsigned long num_pages) 1232 { 1233 unsigned long file_end; 1234 u64 isize = i_size_read(inode); 1235 u64 page_start; 1236 u64 page_end; 1237 u64 page_cnt; 1238 int ret; 1239 int i; 1240 int i_done; 1241 struct btrfs_ordered_extent *ordered; 1242 struct extent_state *cached_state = NULL; 1243 struct extent_io_tree *tree; 1244 struct extent_changeset *data_reserved = NULL; 1245 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1246 1247 file_end = (isize - 1) >> PAGE_SHIFT; 1248 if (!isize || start_index > file_end) 1249 return 0; 1250 1251 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1252 1253 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1254 start_index << PAGE_SHIFT, 1255 page_cnt << PAGE_SHIFT); 1256 if (ret) 1257 return ret; 1258 i_done = 0; 1259 tree = &BTRFS_I(inode)->io_tree; 1260 1261 /* step one, lock all the pages */ 1262 for (i = 0; i < page_cnt; i++) { 1263 struct page *page; 1264 again: 1265 page = find_or_create_page(inode->i_mapping, 1266 start_index + i, mask); 1267 if (!page) 1268 break; 1269 1270 page_start = page_offset(page); 1271 page_end = page_start + PAGE_SIZE - 1; 1272 while (1) { 1273 lock_extent_bits(tree, page_start, page_end, 1274 &cached_state); 1275 ordered = btrfs_lookup_ordered_extent(inode, 1276 page_start); 1277 unlock_extent_cached(tree, page_start, page_end, 1278 &cached_state); 1279 if (!ordered) 1280 break; 1281 1282 unlock_page(page); 1283 btrfs_start_ordered_extent(inode, ordered, 1); 1284 btrfs_put_ordered_extent(ordered); 1285 lock_page(page); 1286 /* 1287 * we unlocked the page above, so we need check if 1288 * it was released or not. 1289 */ 1290 if (page->mapping != inode->i_mapping) { 1291 unlock_page(page); 1292 put_page(page); 1293 goto again; 1294 } 1295 } 1296 1297 if (!PageUptodate(page)) { 1298 btrfs_readpage(NULL, page); 1299 lock_page(page); 1300 if (!PageUptodate(page)) { 1301 unlock_page(page); 1302 put_page(page); 1303 ret = -EIO; 1304 break; 1305 } 1306 } 1307 1308 if (page->mapping != inode->i_mapping) { 1309 unlock_page(page); 1310 put_page(page); 1311 goto again; 1312 } 1313 1314 pages[i] = page; 1315 i_done++; 1316 } 1317 if (!i_done || ret) 1318 goto out; 1319 1320 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1321 goto out; 1322 1323 /* 1324 * so now we have a nice long stream of locked 1325 * and up to date pages, lets wait on them 1326 */ 1327 for (i = 0; i < i_done; i++) 1328 wait_on_page_writeback(pages[i]); 1329 1330 page_start = page_offset(pages[0]); 1331 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1332 1333 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1334 page_start, page_end - 1, &cached_state); 1335 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1336 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1337 EXTENT_DEFRAG, 0, 0, &cached_state); 1338 1339 if (i_done != page_cnt) { 1340 spin_lock(&BTRFS_I(inode)->lock); 1341 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1342 spin_unlock(&BTRFS_I(inode)->lock); 1343 btrfs_delalloc_release_space(inode, data_reserved, 1344 start_index << PAGE_SHIFT, 1345 (page_cnt - i_done) << PAGE_SHIFT, true); 1346 } 1347 1348 1349 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1350 &cached_state); 1351 1352 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1353 page_start, page_end - 1, &cached_state); 1354 1355 for (i = 0; i < i_done; i++) { 1356 clear_page_dirty_for_io(pages[i]); 1357 ClearPageChecked(pages[i]); 1358 set_page_extent_mapped(pages[i]); 1359 set_page_dirty(pages[i]); 1360 unlock_page(pages[i]); 1361 put_page(pages[i]); 1362 } 1363 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1364 false); 1365 extent_changeset_free(data_reserved); 1366 return i_done; 1367 out: 1368 for (i = 0; i < i_done; i++) { 1369 unlock_page(pages[i]); 1370 put_page(pages[i]); 1371 } 1372 btrfs_delalloc_release_space(inode, data_reserved, 1373 start_index << PAGE_SHIFT, 1374 page_cnt << PAGE_SHIFT, true); 1375 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1376 true); 1377 extent_changeset_free(data_reserved); 1378 return ret; 1379 1380 } 1381 1382 int btrfs_defrag_file(struct inode *inode, struct file *file, 1383 struct btrfs_ioctl_defrag_range_args *range, 1384 u64 newer_than, unsigned long max_to_defrag) 1385 { 1386 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1387 struct btrfs_root *root = BTRFS_I(inode)->root; 1388 struct file_ra_state *ra = NULL; 1389 unsigned long last_index; 1390 u64 isize = i_size_read(inode); 1391 u64 last_len = 0; 1392 u64 skip = 0; 1393 u64 defrag_end = 0; 1394 u64 newer_off = range->start; 1395 unsigned long i; 1396 unsigned long ra_index = 0; 1397 int ret; 1398 int defrag_count = 0; 1399 int compress_type = BTRFS_COMPRESS_ZLIB; 1400 u32 extent_thresh = range->extent_thresh; 1401 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1402 unsigned long cluster = max_cluster; 1403 u64 new_align = ~((u64)SZ_128K - 1); 1404 struct page **pages = NULL; 1405 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1406 1407 if (isize == 0) 1408 return 0; 1409 1410 if (range->start >= isize) 1411 return -EINVAL; 1412 1413 if (do_compress) { 1414 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1415 return -EINVAL; 1416 if (range->compress_type) 1417 compress_type = range->compress_type; 1418 } 1419 1420 if (extent_thresh == 0) 1421 extent_thresh = SZ_256K; 1422 1423 /* 1424 * If we were not given a file, allocate a readahead context. As 1425 * readahead is just an optimization, defrag will work without it so 1426 * we don't error out. 1427 */ 1428 if (!file) { 1429 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1430 if (ra) 1431 file_ra_state_init(ra, inode->i_mapping); 1432 } else { 1433 ra = &file->f_ra; 1434 } 1435 1436 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1437 if (!pages) { 1438 ret = -ENOMEM; 1439 goto out_ra; 1440 } 1441 1442 /* find the last page to defrag */ 1443 if (range->start + range->len > range->start) { 1444 last_index = min_t(u64, isize - 1, 1445 range->start + range->len - 1) >> PAGE_SHIFT; 1446 } else { 1447 last_index = (isize - 1) >> PAGE_SHIFT; 1448 } 1449 1450 if (newer_than) { 1451 ret = find_new_extents(root, inode, newer_than, 1452 &newer_off, SZ_64K); 1453 if (!ret) { 1454 range->start = newer_off; 1455 /* 1456 * we always align our defrag to help keep 1457 * the extents in the file evenly spaced 1458 */ 1459 i = (newer_off & new_align) >> PAGE_SHIFT; 1460 } else 1461 goto out_ra; 1462 } else { 1463 i = range->start >> PAGE_SHIFT; 1464 } 1465 if (!max_to_defrag) 1466 max_to_defrag = last_index - i + 1; 1467 1468 /* 1469 * make writeback starts from i, so the defrag range can be 1470 * written sequentially. 1471 */ 1472 if (i < inode->i_mapping->writeback_index) 1473 inode->i_mapping->writeback_index = i; 1474 1475 while (i <= last_index && defrag_count < max_to_defrag && 1476 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1477 /* 1478 * make sure we stop running if someone unmounts 1479 * the FS 1480 */ 1481 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1482 break; 1483 1484 if (btrfs_defrag_cancelled(fs_info)) { 1485 btrfs_debug(fs_info, "defrag_file cancelled"); 1486 ret = -EAGAIN; 1487 break; 1488 } 1489 1490 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1491 extent_thresh, &last_len, &skip, 1492 &defrag_end, do_compress)){ 1493 unsigned long next; 1494 /* 1495 * the should_defrag function tells us how much to skip 1496 * bump our counter by the suggested amount 1497 */ 1498 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1499 i = max(i + 1, next); 1500 continue; 1501 } 1502 1503 if (!newer_than) { 1504 cluster = (PAGE_ALIGN(defrag_end) >> 1505 PAGE_SHIFT) - i; 1506 cluster = min(cluster, max_cluster); 1507 } else { 1508 cluster = max_cluster; 1509 } 1510 1511 if (i + cluster > ra_index) { 1512 ra_index = max(i, ra_index); 1513 if (ra) 1514 page_cache_sync_readahead(inode->i_mapping, ra, 1515 file, ra_index, cluster); 1516 ra_index += cluster; 1517 } 1518 1519 inode_lock(inode); 1520 if (IS_SWAPFILE(inode)) { 1521 ret = -ETXTBSY; 1522 } else { 1523 if (do_compress) 1524 BTRFS_I(inode)->defrag_compress = compress_type; 1525 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1526 } 1527 if (ret < 0) { 1528 inode_unlock(inode); 1529 goto out_ra; 1530 } 1531 1532 defrag_count += ret; 1533 balance_dirty_pages_ratelimited(inode->i_mapping); 1534 inode_unlock(inode); 1535 1536 if (newer_than) { 1537 if (newer_off == (u64)-1) 1538 break; 1539 1540 if (ret > 0) 1541 i += ret; 1542 1543 newer_off = max(newer_off + 1, 1544 (u64)i << PAGE_SHIFT); 1545 1546 ret = find_new_extents(root, inode, newer_than, 1547 &newer_off, SZ_64K); 1548 if (!ret) { 1549 range->start = newer_off; 1550 i = (newer_off & new_align) >> PAGE_SHIFT; 1551 } else { 1552 break; 1553 } 1554 } else { 1555 if (ret > 0) { 1556 i += ret; 1557 last_len += ret << PAGE_SHIFT; 1558 } else { 1559 i++; 1560 last_len = 0; 1561 } 1562 } 1563 } 1564 1565 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1566 filemap_flush(inode->i_mapping); 1567 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1568 &BTRFS_I(inode)->runtime_flags)) 1569 filemap_flush(inode->i_mapping); 1570 } 1571 1572 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1573 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1574 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1575 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1576 } 1577 1578 ret = defrag_count; 1579 1580 out_ra: 1581 if (do_compress) { 1582 inode_lock(inode); 1583 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1584 inode_unlock(inode); 1585 } 1586 if (!file) 1587 kfree(ra); 1588 kfree(pages); 1589 return ret; 1590 } 1591 1592 static noinline int btrfs_ioctl_resize(struct file *file, 1593 void __user *arg) 1594 { 1595 struct inode *inode = file_inode(file); 1596 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1597 u64 new_size; 1598 u64 old_size; 1599 u64 devid = 1; 1600 struct btrfs_root *root = BTRFS_I(inode)->root; 1601 struct btrfs_ioctl_vol_args *vol_args; 1602 struct btrfs_trans_handle *trans; 1603 struct btrfs_device *device = NULL; 1604 char *sizestr; 1605 char *retptr; 1606 char *devstr = NULL; 1607 int ret = 0; 1608 int mod = 0; 1609 1610 if (!capable(CAP_SYS_ADMIN)) 1611 return -EPERM; 1612 1613 ret = mnt_want_write_file(file); 1614 if (ret) 1615 return ret; 1616 1617 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1618 mnt_drop_write_file(file); 1619 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1620 } 1621 1622 vol_args = memdup_user(arg, sizeof(*vol_args)); 1623 if (IS_ERR(vol_args)) { 1624 ret = PTR_ERR(vol_args); 1625 goto out; 1626 } 1627 1628 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1629 1630 sizestr = vol_args->name; 1631 devstr = strchr(sizestr, ':'); 1632 if (devstr) { 1633 sizestr = devstr + 1; 1634 *devstr = '\0'; 1635 devstr = vol_args->name; 1636 ret = kstrtoull(devstr, 10, &devid); 1637 if (ret) 1638 goto out_free; 1639 if (!devid) { 1640 ret = -EINVAL; 1641 goto out_free; 1642 } 1643 btrfs_info(fs_info, "resizing devid %llu", devid); 1644 } 1645 1646 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 1647 if (!device) { 1648 btrfs_info(fs_info, "resizer unable to find device %llu", 1649 devid); 1650 ret = -ENODEV; 1651 goto out_free; 1652 } 1653 1654 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1655 btrfs_info(fs_info, 1656 "resizer unable to apply on readonly device %llu", 1657 devid); 1658 ret = -EPERM; 1659 goto out_free; 1660 } 1661 1662 if (!strcmp(sizestr, "max")) 1663 new_size = device->bdev->bd_inode->i_size; 1664 else { 1665 if (sizestr[0] == '-') { 1666 mod = -1; 1667 sizestr++; 1668 } else if (sizestr[0] == '+') { 1669 mod = 1; 1670 sizestr++; 1671 } 1672 new_size = memparse(sizestr, &retptr); 1673 if (*retptr != '\0' || new_size == 0) { 1674 ret = -EINVAL; 1675 goto out_free; 1676 } 1677 } 1678 1679 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1680 ret = -EPERM; 1681 goto out_free; 1682 } 1683 1684 old_size = btrfs_device_get_total_bytes(device); 1685 1686 if (mod < 0) { 1687 if (new_size > old_size) { 1688 ret = -EINVAL; 1689 goto out_free; 1690 } 1691 new_size = old_size - new_size; 1692 } else if (mod > 0) { 1693 if (new_size > ULLONG_MAX - old_size) { 1694 ret = -ERANGE; 1695 goto out_free; 1696 } 1697 new_size = old_size + new_size; 1698 } 1699 1700 if (new_size < SZ_256M) { 1701 ret = -EINVAL; 1702 goto out_free; 1703 } 1704 if (new_size > device->bdev->bd_inode->i_size) { 1705 ret = -EFBIG; 1706 goto out_free; 1707 } 1708 1709 new_size = round_down(new_size, fs_info->sectorsize); 1710 1711 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1712 rcu_str_deref(device->name), new_size); 1713 1714 if (new_size > old_size) { 1715 trans = btrfs_start_transaction(root, 0); 1716 if (IS_ERR(trans)) { 1717 ret = PTR_ERR(trans); 1718 goto out_free; 1719 } 1720 ret = btrfs_grow_device(trans, device, new_size); 1721 btrfs_commit_transaction(trans); 1722 } else if (new_size < old_size) { 1723 ret = btrfs_shrink_device(device, new_size); 1724 } /* equal, nothing need to do */ 1725 1726 out_free: 1727 kfree(vol_args); 1728 out: 1729 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1730 mnt_drop_write_file(file); 1731 return ret; 1732 } 1733 1734 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1735 const char *name, unsigned long fd, int subvol, 1736 u64 *transid, bool readonly, 1737 struct btrfs_qgroup_inherit *inherit) 1738 { 1739 int namelen; 1740 int ret = 0; 1741 1742 if (!S_ISDIR(file_inode(file)->i_mode)) 1743 return -ENOTDIR; 1744 1745 ret = mnt_want_write_file(file); 1746 if (ret) 1747 goto out; 1748 1749 namelen = strlen(name); 1750 if (strchr(name, '/')) { 1751 ret = -EINVAL; 1752 goto out_drop_write; 1753 } 1754 1755 if (name[0] == '.' && 1756 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1757 ret = -EEXIST; 1758 goto out_drop_write; 1759 } 1760 1761 if (subvol) { 1762 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1763 NULL, transid, readonly, inherit); 1764 } else { 1765 struct fd src = fdget(fd); 1766 struct inode *src_inode; 1767 if (!src.file) { 1768 ret = -EINVAL; 1769 goto out_drop_write; 1770 } 1771 1772 src_inode = file_inode(src.file); 1773 if (src_inode->i_sb != file_inode(file)->i_sb) { 1774 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1775 "Snapshot src from another FS"); 1776 ret = -EXDEV; 1777 } else if (!inode_owner_or_capable(src_inode)) { 1778 /* 1779 * Subvolume creation is not restricted, but snapshots 1780 * are limited to own subvolumes only 1781 */ 1782 ret = -EPERM; 1783 } else { 1784 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1785 BTRFS_I(src_inode)->root, 1786 transid, readonly, inherit); 1787 } 1788 fdput(src); 1789 } 1790 out_drop_write: 1791 mnt_drop_write_file(file); 1792 out: 1793 return ret; 1794 } 1795 1796 static noinline int btrfs_ioctl_snap_create(struct file *file, 1797 void __user *arg, int subvol) 1798 { 1799 struct btrfs_ioctl_vol_args *vol_args; 1800 int ret; 1801 1802 if (!S_ISDIR(file_inode(file)->i_mode)) 1803 return -ENOTDIR; 1804 1805 vol_args = memdup_user(arg, sizeof(*vol_args)); 1806 if (IS_ERR(vol_args)) 1807 return PTR_ERR(vol_args); 1808 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1809 1810 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1811 vol_args->fd, subvol, 1812 NULL, false, NULL); 1813 1814 kfree(vol_args); 1815 return ret; 1816 } 1817 1818 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1819 void __user *arg, int subvol) 1820 { 1821 struct btrfs_ioctl_vol_args_v2 *vol_args; 1822 int ret; 1823 u64 transid = 0; 1824 u64 *ptr = NULL; 1825 bool readonly = false; 1826 struct btrfs_qgroup_inherit *inherit = NULL; 1827 1828 if (!S_ISDIR(file_inode(file)->i_mode)) 1829 return -ENOTDIR; 1830 1831 vol_args = memdup_user(arg, sizeof(*vol_args)); 1832 if (IS_ERR(vol_args)) 1833 return PTR_ERR(vol_args); 1834 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1835 1836 if (vol_args->flags & 1837 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1838 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1839 ret = -EOPNOTSUPP; 1840 goto free_args; 1841 } 1842 1843 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1844 struct inode *inode = file_inode(file); 1845 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1846 1847 btrfs_warn(fs_info, 1848 "SNAP_CREATE_V2 ioctl with CREATE_ASYNC is deprecated and will be removed in kernel 5.7"); 1849 1850 ptr = &transid; 1851 } 1852 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1853 readonly = true; 1854 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1855 if (vol_args->size > PAGE_SIZE) { 1856 ret = -EINVAL; 1857 goto free_args; 1858 } 1859 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1860 if (IS_ERR(inherit)) { 1861 ret = PTR_ERR(inherit); 1862 goto free_args; 1863 } 1864 } 1865 1866 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1867 vol_args->fd, subvol, ptr, 1868 readonly, inherit); 1869 if (ret) 1870 goto free_inherit; 1871 1872 if (ptr && copy_to_user(arg + 1873 offsetof(struct btrfs_ioctl_vol_args_v2, 1874 transid), 1875 ptr, sizeof(*ptr))) 1876 ret = -EFAULT; 1877 1878 free_inherit: 1879 kfree(inherit); 1880 free_args: 1881 kfree(vol_args); 1882 return ret; 1883 } 1884 1885 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1886 void __user *arg) 1887 { 1888 struct inode *inode = file_inode(file); 1889 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1890 struct btrfs_root *root = BTRFS_I(inode)->root; 1891 int ret = 0; 1892 u64 flags = 0; 1893 1894 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1895 return -EINVAL; 1896 1897 down_read(&fs_info->subvol_sem); 1898 if (btrfs_root_readonly(root)) 1899 flags |= BTRFS_SUBVOL_RDONLY; 1900 up_read(&fs_info->subvol_sem); 1901 1902 if (copy_to_user(arg, &flags, sizeof(flags))) 1903 ret = -EFAULT; 1904 1905 return ret; 1906 } 1907 1908 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1909 void __user *arg) 1910 { 1911 struct inode *inode = file_inode(file); 1912 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1913 struct btrfs_root *root = BTRFS_I(inode)->root; 1914 struct btrfs_trans_handle *trans; 1915 u64 root_flags; 1916 u64 flags; 1917 int ret = 0; 1918 1919 if (!inode_owner_or_capable(inode)) 1920 return -EPERM; 1921 1922 ret = mnt_want_write_file(file); 1923 if (ret) 1924 goto out; 1925 1926 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1927 ret = -EINVAL; 1928 goto out_drop_write; 1929 } 1930 1931 if (copy_from_user(&flags, arg, sizeof(flags))) { 1932 ret = -EFAULT; 1933 goto out_drop_write; 1934 } 1935 1936 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1937 ret = -EINVAL; 1938 goto out_drop_write; 1939 } 1940 1941 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1942 ret = -EOPNOTSUPP; 1943 goto out_drop_write; 1944 } 1945 1946 down_write(&fs_info->subvol_sem); 1947 1948 /* nothing to do */ 1949 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1950 goto out_drop_sem; 1951 1952 root_flags = btrfs_root_flags(&root->root_item); 1953 if (flags & BTRFS_SUBVOL_RDONLY) { 1954 btrfs_set_root_flags(&root->root_item, 1955 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1956 } else { 1957 /* 1958 * Block RO -> RW transition if this subvolume is involved in 1959 * send 1960 */ 1961 spin_lock(&root->root_item_lock); 1962 if (root->send_in_progress == 0) { 1963 btrfs_set_root_flags(&root->root_item, 1964 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1965 spin_unlock(&root->root_item_lock); 1966 } else { 1967 spin_unlock(&root->root_item_lock); 1968 btrfs_warn(fs_info, 1969 "Attempt to set subvolume %llu read-write during send", 1970 root->root_key.objectid); 1971 ret = -EPERM; 1972 goto out_drop_sem; 1973 } 1974 } 1975 1976 trans = btrfs_start_transaction(root, 1); 1977 if (IS_ERR(trans)) { 1978 ret = PTR_ERR(trans); 1979 goto out_reset; 1980 } 1981 1982 ret = btrfs_update_root(trans, fs_info->tree_root, 1983 &root->root_key, &root->root_item); 1984 if (ret < 0) { 1985 btrfs_end_transaction(trans); 1986 goto out_reset; 1987 } 1988 1989 ret = btrfs_commit_transaction(trans); 1990 1991 out_reset: 1992 if (ret) 1993 btrfs_set_root_flags(&root->root_item, root_flags); 1994 out_drop_sem: 1995 up_write(&fs_info->subvol_sem); 1996 out_drop_write: 1997 mnt_drop_write_file(file); 1998 out: 1999 return ret; 2000 } 2001 2002 static noinline int key_in_sk(struct btrfs_key *key, 2003 struct btrfs_ioctl_search_key *sk) 2004 { 2005 struct btrfs_key test; 2006 int ret; 2007 2008 test.objectid = sk->min_objectid; 2009 test.type = sk->min_type; 2010 test.offset = sk->min_offset; 2011 2012 ret = btrfs_comp_cpu_keys(key, &test); 2013 if (ret < 0) 2014 return 0; 2015 2016 test.objectid = sk->max_objectid; 2017 test.type = sk->max_type; 2018 test.offset = sk->max_offset; 2019 2020 ret = btrfs_comp_cpu_keys(key, &test); 2021 if (ret > 0) 2022 return 0; 2023 return 1; 2024 } 2025 2026 static noinline int copy_to_sk(struct btrfs_path *path, 2027 struct btrfs_key *key, 2028 struct btrfs_ioctl_search_key *sk, 2029 size_t *buf_size, 2030 char __user *ubuf, 2031 unsigned long *sk_offset, 2032 int *num_found) 2033 { 2034 u64 found_transid; 2035 struct extent_buffer *leaf; 2036 struct btrfs_ioctl_search_header sh; 2037 struct btrfs_key test; 2038 unsigned long item_off; 2039 unsigned long item_len; 2040 int nritems; 2041 int i; 2042 int slot; 2043 int ret = 0; 2044 2045 leaf = path->nodes[0]; 2046 slot = path->slots[0]; 2047 nritems = btrfs_header_nritems(leaf); 2048 2049 if (btrfs_header_generation(leaf) > sk->max_transid) { 2050 i = nritems; 2051 goto advance_key; 2052 } 2053 found_transid = btrfs_header_generation(leaf); 2054 2055 for (i = slot; i < nritems; i++) { 2056 item_off = btrfs_item_ptr_offset(leaf, i); 2057 item_len = btrfs_item_size_nr(leaf, i); 2058 2059 btrfs_item_key_to_cpu(leaf, key, i); 2060 if (!key_in_sk(key, sk)) 2061 continue; 2062 2063 if (sizeof(sh) + item_len > *buf_size) { 2064 if (*num_found) { 2065 ret = 1; 2066 goto out; 2067 } 2068 2069 /* 2070 * return one empty item back for v1, which does not 2071 * handle -EOVERFLOW 2072 */ 2073 2074 *buf_size = sizeof(sh) + item_len; 2075 item_len = 0; 2076 ret = -EOVERFLOW; 2077 } 2078 2079 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2080 ret = 1; 2081 goto out; 2082 } 2083 2084 sh.objectid = key->objectid; 2085 sh.offset = key->offset; 2086 sh.type = key->type; 2087 sh.len = item_len; 2088 sh.transid = found_transid; 2089 2090 /* copy search result header */ 2091 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2092 ret = -EFAULT; 2093 goto out; 2094 } 2095 2096 *sk_offset += sizeof(sh); 2097 2098 if (item_len) { 2099 char __user *up = ubuf + *sk_offset; 2100 /* copy the item */ 2101 if (read_extent_buffer_to_user(leaf, up, 2102 item_off, item_len)) { 2103 ret = -EFAULT; 2104 goto out; 2105 } 2106 2107 *sk_offset += item_len; 2108 } 2109 (*num_found)++; 2110 2111 if (ret) /* -EOVERFLOW from above */ 2112 goto out; 2113 2114 if (*num_found >= sk->nr_items) { 2115 ret = 1; 2116 goto out; 2117 } 2118 } 2119 advance_key: 2120 ret = 0; 2121 test.objectid = sk->max_objectid; 2122 test.type = sk->max_type; 2123 test.offset = sk->max_offset; 2124 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2125 ret = 1; 2126 else if (key->offset < (u64)-1) 2127 key->offset++; 2128 else if (key->type < (u8)-1) { 2129 key->offset = 0; 2130 key->type++; 2131 } else if (key->objectid < (u64)-1) { 2132 key->offset = 0; 2133 key->type = 0; 2134 key->objectid++; 2135 } else 2136 ret = 1; 2137 out: 2138 /* 2139 * 0: all items from this leaf copied, continue with next 2140 * 1: * more items can be copied, but unused buffer is too small 2141 * * all items were found 2142 * Either way, it will stops the loop which iterates to the next 2143 * leaf 2144 * -EOVERFLOW: item was to large for buffer 2145 * -EFAULT: could not copy extent buffer back to userspace 2146 */ 2147 return ret; 2148 } 2149 2150 static noinline int search_ioctl(struct inode *inode, 2151 struct btrfs_ioctl_search_key *sk, 2152 size_t *buf_size, 2153 char __user *ubuf) 2154 { 2155 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2156 struct btrfs_root *root; 2157 struct btrfs_key key; 2158 struct btrfs_path *path; 2159 int ret; 2160 int num_found = 0; 2161 unsigned long sk_offset = 0; 2162 2163 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2164 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2165 return -EOVERFLOW; 2166 } 2167 2168 path = btrfs_alloc_path(); 2169 if (!path) 2170 return -ENOMEM; 2171 2172 if (sk->tree_id == 0) { 2173 /* search the root of the inode that was passed */ 2174 root = BTRFS_I(inode)->root; 2175 } else { 2176 key.objectid = sk->tree_id; 2177 key.type = BTRFS_ROOT_ITEM_KEY; 2178 key.offset = (u64)-1; 2179 root = btrfs_read_fs_root_no_name(info, &key); 2180 if (IS_ERR(root)) { 2181 btrfs_free_path(path); 2182 return PTR_ERR(root); 2183 } 2184 } 2185 2186 key.objectid = sk->min_objectid; 2187 key.type = sk->min_type; 2188 key.offset = sk->min_offset; 2189 2190 while (1) { 2191 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2192 if (ret != 0) { 2193 if (ret > 0) 2194 ret = 0; 2195 goto err; 2196 } 2197 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2198 &sk_offset, &num_found); 2199 btrfs_release_path(path); 2200 if (ret) 2201 break; 2202 2203 } 2204 if (ret > 0) 2205 ret = 0; 2206 err: 2207 sk->nr_items = num_found; 2208 btrfs_free_path(path); 2209 return ret; 2210 } 2211 2212 static noinline int btrfs_ioctl_tree_search(struct file *file, 2213 void __user *argp) 2214 { 2215 struct btrfs_ioctl_search_args __user *uargs; 2216 struct btrfs_ioctl_search_key sk; 2217 struct inode *inode; 2218 int ret; 2219 size_t buf_size; 2220 2221 if (!capable(CAP_SYS_ADMIN)) 2222 return -EPERM; 2223 2224 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2225 2226 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2227 return -EFAULT; 2228 2229 buf_size = sizeof(uargs->buf); 2230 2231 inode = file_inode(file); 2232 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2233 2234 /* 2235 * In the origin implementation an overflow is handled by returning a 2236 * search header with a len of zero, so reset ret. 2237 */ 2238 if (ret == -EOVERFLOW) 2239 ret = 0; 2240 2241 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2242 ret = -EFAULT; 2243 return ret; 2244 } 2245 2246 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2247 void __user *argp) 2248 { 2249 struct btrfs_ioctl_search_args_v2 __user *uarg; 2250 struct btrfs_ioctl_search_args_v2 args; 2251 struct inode *inode; 2252 int ret; 2253 size_t buf_size; 2254 const size_t buf_limit = SZ_16M; 2255 2256 if (!capable(CAP_SYS_ADMIN)) 2257 return -EPERM; 2258 2259 /* copy search header and buffer size */ 2260 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2261 if (copy_from_user(&args, uarg, sizeof(args))) 2262 return -EFAULT; 2263 2264 buf_size = args.buf_size; 2265 2266 /* limit result size to 16MB */ 2267 if (buf_size > buf_limit) 2268 buf_size = buf_limit; 2269 2270 inode = file_inode(file); 2271 ret = search_ioctl(inode, &args.key, &buf_size, 2272 (char __user *)(&uarg->buf[0])); 2273 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2274 ret = -EFAULT; 2275 else if (ret == -EOVERFLOW && 2276 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2277 ret = -EFAULT; 2278 2279 return ret; 2280 } 2281 2282 /* 2283 * Search INODE_REFs to identify path name of 'dirid' directory 2284 * in a 'tree_id' tree. and sets path name to 'name'. 2285 */ 2286 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2287 u64 tree_id, u64 dirid, char *name) 2288 { 2289 struct btrfs_root *root; 2290 struct btrfs_key key; 2291 char *ptr; 2292 int ret = -1; 2293 int slot; 2294 int len; 2295 int total_len = 0; 2296 struct btrfs_inode_ref *iref; 2297 struct extent_buffer *l; 2298 struct btrfs_path *path; 2299 2300 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2301 name[0]='\0'; 2302 return 0; 2303 } 2304 2305 path = btrfs_alloc_path(); 2306 if (!path) 2307 return -ENOMEM; 2308 2309 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2310 2311 key.objectid = tree_id; 2312 key.type = BTRFS_ROOT_ITEM_KEY; 2313 key.offset = (u64)-1; 2314 root = btrfs_read_fs_root_no_name(info, &key); 2315 if (IS_ERR(root)) { 2316 ret = PTR_ERR(root); 2317 goto out; 2318 } 2319 2320 key.objectid = dirid; 2321 key.type = BTRFS_INODE_REF_KEY; 2322 key.offset = (u64)-1; 2323 2324 while (1) { 2325 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2326 if (ret < 0) 2327 goto out; 2328 else if (ret > 0) { 2329 ret = btrfs_previous_item(root, path, dirid, 2330 BTRFS_INODE_REF_KEY); 2331 if (ret < 0) 2332 goto out; 2333 else if (ret > 0) { 2334 ret = -ENOENT; 2335 goto out; 2336 } 2337 } 2338 2339 l = path->nodes[0]; 2340 slot = path->slots[0]; 2341 btrfs_item_key_to_cpu(l, &key, slot); 2342 2343 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2344 len = btrfs_inode_ref_name_len(l, iref); 2345 ptr -= len + 1; 2346 total_len += len + 1; 2347 if (ptr < name) { 2348 ret = -ENAMETOOLONG; 2349 goto out; 2350 } 2351 2352 *(ptr + len) = '/'; 2353 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2354 2355 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2356 break; 2357 2358 btrfs_release_path(path); 2359 key.objectid = key.offset; 2360 key.offset = (u64)-1; 2361 dirid = key.objectid; 2362 } 2363 memmove(name, ptr, total_len); 2364 name[total_len] = '\0'; 2365 ret = 0; 2366 out: 2367 btrfs_free_path(path); 2368 return ret; 2369 } 2370 2371 static int btrfs_search_path_in_tree_user(struct inode *inode, 2372 struct btrfs_ioctl_ino_lookup_user_args *args) 2373 { 2374 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2375 struct super_block *sb = inode->i_sb; 2376 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2377 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2378 u64 dirid = args->dirid; 2379 unsigned long item_off; 2380 unsigned long item_len; 2381 struct btrfs_inode_ref *iref; 2382 struct btrfs_root_ref *rref; 2383 struct btrfs_root *root; 2384 struct btrfs_path *path; 2385 struct btrfs_key key, key2; 2386 struct extent_buffer *leaf; 2387 struct inode *temp_inode; 2388 char *ptr; 2389 int slot; 2390 int len; 2391 int total_len = 0; 2392 int ret; 2393 2394 path = btrfs_alloc_path(); 2395 if (!path) 2396 return -ENOMEM; 2397 2398 /* 2399 * If the bottom subvolume does not exist directly under upper_limit, 2400 * construct the path in from the bottom up. 2401 */ 2402 if (dirid != upper_limit.objectid) { 2403 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2404 2405 key.objectid = treeid; 2406 key.type = BTRFS_ROOT_ITEM_KEY; 2407 key.offset = (u64)-1; 2408 root = btrfs_read_fs_root_no_name(fs_info, &key); 2409 if (IS_ERR(root)) { 2410 ret = PTR_ERR(root); 2411 goto out; 2412 } 2413 2414 key.objectid = dirid; 2415 key.type = BTRFS_INODE_REF_KEY; 2416 key.offset = (u64)-1; 2417 while (1) { 2418 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2419 if (ret < 0) { 2420 goto out; 2421 } else if (ret > 0) { 2422 ret = btrfs_previous_item(root, path, dirid, 2423 BTRFS_INODE_REF_KEY); 2424 if (ret < 0) { 2425 goto out; 2426 } else if (ret > 0) { 2427 ret = -ENOENT; 2428 goto out; 2429 } 2430 } 2431 2432 leaf = path->nodes[0]; 2433 slot = path->slots[0]; 2434 btrfs_item_key_to_cpu(leaf, &key, slot); 2435 2436 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2437 len = btrfs_inode_ref_name_len(leaf, iref); 2438 ptr -= len + 1; 2439 total_len += len + 1; 2440 if (ptr < args->path) { 2441 ret = -ENAMETOOLONG; 2442 goto out; 2443 } 2444 2445 *(ptr + len) = '/'; 2446 read_extent_buffer(leaf, ptr, 2447 (unsigned long)(iref + 1), len); 2448 2449 /* Check the read+exec permission of this directory */ 2450 ret = btrfs_previous_item(root, path, dirid, 2451 BTRFS_INODE_ITEM_KEY); 2452 if (ret < 0) { 2453 goto out; 2454 } else if (ret > 0) { 2455 ret = -ENOENT; 2456 goto out; 2457 } 2458 2459 leaf = path->nodes[0]; 2460 slot = path->slots[0]; 2461 btrfs_item_key_to_cpu(leaf, &key2, slot); 2462 if (key2.objectid != dirid) { 2463 ret = -ENOENT; 2464 goto out; 2465 } 2466 2467 temp_inode = btrfs_iget(sb, &key2, root, NULL); 2468 if (IS_ERR(temp_inode)) { 2469 ret = PTR_ERR(temp_inode); 2470 goto out; 2471 } 2472 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2473 iput(temp_inode); 2474 if (ret) { 2475 ret = -EACCES; 2476 goto out; 2477 } 2478 2479 if (key.offset == upper_limit.objectid) 2480 break; 2481 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2482 ret = -EACCES; 2483 goto out; 2484 } 2485 2486 btrfs_release_path(path); 2487 key.objectid = key.offset; 2488 key.offset = (u64)-1; 2489 dirid = key.objectid; 2490 } 2491 2492 memmove(args->path, ptr, total_len); 2493 args->path[total_len] = '\0'; 2494 btrfs_release_path(path); 2495 } 2496 2497 /* Get the bottom subvolume's name from ROOT_REF */ 2498 root = fs_info->tree_root; 2499 key.objectid = treeid; 2500 key.type = BTRFS_ROOT_REF_KEY; 2501 key.offset = args->treeid; 2502 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2503 if (ret < 0) { 2504 goto out; 2505 } else if (ret > 0) { 2506 ret = -ENOENT; 2507 goto out; 2508 } 2509 2510 leaf = path->nodes[0]; 2511 slot = path->slots[0]; 2512 btrfs_item_key_to_cpu(leaf, &key, slot); 2513 2514 item_off = btrfs_item_ptr_offset(leaf, slot); 2515 item_len = btrfs_item_size_nr(leaf, slot); 2516 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2517 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2518 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2519 ret = -EINVAL; 2520 goto out; 2521 } 2522 2523 /* Copy subvolume's name */ 2524 item_off += sizeof(struct btrfs_root_ref); 2525 item_len -= sizeof(struct btrfs_root_ref); 2526 read_extent_buffer(leaf, args->name, item_off, item_len); 2527 args->name[item_len] = 0; 2528 2529 out: 2530 btrfs_free_path(path); 2531 return ret; 2532 } 2533 2534 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2535 void __user *argp) 2536 { 2537 struct btrfs_ioctl_ino_lookup_args *args; 2538 struct inode *inode; 2539 int ret = 0; 2540 2541 args = memdup_user(argp, sizeof(*args)); 2542 if (IS_ERR(args)) 2543 return PTR_ERR(args); 2544 2545 inode = file_inode(file); 2546 2547 /* 2548 * Unprivileged query to obtain the containing subvolume root id. The 2549 * path is reset so it's consistent with btrfs_search_path_in_tree. 2550 */ 2551 if (args->treeid == 0) 2552 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2553 2554 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2555 args->name[0] = 0; 2556 goto out; 2557 } 2558 2559 if (!capable(CAP_SYS_ADMIN)) { 2560 ret = -EPERM; 2561 goto out; 2562 } 2563 2564 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2565 args->treeid, args->objectid, 2566 args->name); 2567 2568 out: 2569 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2570 ret = -EFAULT; 2571 2572 kfree(args); 2573 return ret; 2574 } 2575 2576 /* 2577 * Version of ino_lookup ioctl (unprivileged) 2578 * 2579 * The main differences from ino_lookup ioctl are: 2580 * 2581 * 1. Read + Exec permission will be checked using inode_permission() during 2582 * path construction. -EACCES will be returned in case of failure. 2583 * 2. Path construction will be stopped at the inode number which corresponds 2584 * to the fd with which this ioctl is called. If constructed path does not 2585 * exist under fd's inode, -EACCES will be returned. 2586 * 3. The name of bottom subvolume is also searched and filled. 2587 */ 2588 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2589 { 2590 struct btrfs_ioctl_ino_lookup_user_args *args; 2591 struct inode *inode; 2592 int ret; 2593 2594 args = memdup_user(argp, sizeof(*args)); 2595 if (IS_ERR(args)) 2596 return PTR_ERR(args); 2597 2598 inode = file_inode(file); 2599 2600 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2601 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2602 /* 2603 * The subvolume does not exist under fd with which this is 2604 * called 2605 */ 2606 kfree(args); 2607 return -EACCES; 2608 } 2609 2610 ret = btrfs_search_path_in_tree_user(inode, args); 2611 2612 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2613 ret = -EFAULT; 2614 2615 kfree(args); 2616 return ret; 2617 } 2618 2619 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2620 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2621 { 2622 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2623 struct btrfs_fs_info *fs_info; 2624 struct btrfs_root *root; 2625 struct btrfs_path *path; 2626 struct btrfs_key key; 2627 struct btrfs_root_item *root_item; 2628 struct btrfs_root_ref *rref; 2629 struct extent_buffer *leaf; 2630 unsigned long item_off; 2631 unsigned long item_len; 2632 struct inode *inode; 2633 int slot; 2634 int ret = 0; 2635 2636 path = btrfs_alloc_path(); 2637 if (!path) 2638 return -ENOMEM; 2639 2640 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2641 if (!subvol_info) { 2642 btrfs_free_path(path); 2643 return -ENOMEM; 2644 } 2645 2646 inode = file_inode(file); 2647 fs_info = BTRFS_I(inode)->root->fs_info; 2648 2649 /* Get root_item of inode's subvolume */ 2650 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2651 key.type = BTRFS_ROOT_ITEM_KEY; 2652 key.offset = (u64)-1; 2653 root = btrfs_read_fs_root_no_name(fs_info, &key); 2654 if (IS_ERR(root)) { 2655 ret = PTR_ERR(root); 2656 goto out; 2657 } 2658 root_item = &root->root_item; 2659 2660 subvol_info->treeid = key.objectid; 2661 2662 subvol_info->generation = btrfs_root_generation(root_item); 2663 subvol_info->flags = btrfs_root_flags(root_item); 2664 2665 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2666 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2667 BTRFS_UUID_SIZE); 2668 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2669 BTRFS_UUID_SIZE); 2670 2671 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2672 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2673 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2674 2675 subvol_info->otransid = btrfs_root_otransid(root_item); 2676 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2677 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2678 2679 subvol_info->stransid = btrfs_root_stransid(root_item); 2680 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2681 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2682 2683 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2684 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2685 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2686 2687 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2688 /* Search root tree for ROOT_BACKREF of this subvolume */ 2689 root = fs_info->tree_root; 2690 2691 key.type = BTRFS_ROOT_BACKREF_KEY; 2692 key.offset = 0; 2693 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2694 if (ret < 0) { 2695 goto out; 2696 } else if (path->slots[0] >= 2697 btrfs_header_nritems(path->nodes[0])) { 2698 ret = btrfs_next_leaf(root, path); 2699 if (ret < 0) { 2700 goto out; 2701 } else if (ret > 0) { 2702 ret = -EUCLEAN; 2703 goto out; 2704 } 2705 } 2706 2707 leaf = path->nodes[0]; 2708 slot = path->slots[0]; 2709 btrfs_item_key_to_cpu(leaf, &key, slot); 2710 if (key.objectid == subvol_info->treeid && 2711 key.type == BTRFS_ROOT_BACKREF_KEY) { 2712 subvol_info->parent_id = key.offset; 2713 2714 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2715 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2716 2717 item_off = btrfs_item_ptr_offset(leaf, slot) 2718 + sizeof(struct btrfs_root_ref); 2719 item_len = btrfs_item_size_nr(leaf, slot) 2720 - sizeof(struct btrfs_root_ref); 2721 read_extent_buffer(leaf, subvol_info->name, 2722 item_off, item_len); 2723 } else { 2724 ret = -ENOENT; 2725 goto out; 2726 } 2727 } 2728 2729 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2730 ret = -EFAULT; 2731 2732 out: 2733 btrfs_free_path(path); 2734 kzfree(subvol_info); 2735 return ret; 2736 } 2737 2738 /* 2739 * Return ROOT_REF information of the subvolume containing this inode 2740 * except the subvolume name. 2741 */ 2742 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2743 { 2744 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2745 struct btrfs_root_ref *rref; 2746 struct btrfs_root *root; 2747 struct btrfs_path *path; 2748 struct btrfs_key key; 2749 struct extent_buffer *leaf; 2750 struct inode *inode; 2751 u64 objectid; 2752 int slot; 2753 int ret; 2754 u8 found; 2755 2756 path = btrfs_alloc_path(); 2757 if (!path) 2758 return -ENOMEM; 2759 2760 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2761 if (IS_ERR(rootrefs)) { 2762 btrfs_free_path(path); 2763 return PTR_ERR(rootrefs); 2764 } 2765 2766 inode = file_inode(file); 2767 root = BTRFS_I(inode)->root->fs_info->tree_root; 2768 objectid = BTRFS_I(inode)->root->root_key.objectid; 2769 2770 key.objectid = objectid; 2771 key.type = BTRFS_ROOT_REF_KEY; 2772 key.offset = rootrefs->min_treeid; 2773 found = 0; 2774 2775 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2776 if (ret < 0) { 2777 goto out; 2778 } else if (path->slots[0] >= 2779 btrfs_header_nritems(path->nodes[0])) { 2780 ret = btrfs_next_leaf(root, path); 2781 if (ret < 0) { 2782 goto out; 2783 } else if (ret > 0) { 2784 ret = -EUCLEAN; 2785 goto out; 2786 } 2787 } 2788 while (1) { 2789 leaf = path->nodes[0]; 2790 slot = path->slots[0]; 2791 2792 btrfs_item_key_to_cpu(leaf, &key, slot); 2793 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2794 ret = 0; 2795 goto out; 2796 } 2797 2798 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2799 ret = -EOVERFLOW; 2800 goto out; 2801 } 2802 2803 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2804 rootrefs->rootref[found].treeid = key.offset; 2805 rootrefs->rootref[found].dirid = 2806 btrfs_root_ref_dirid(leaf, rref); 2807 found++; 2808 2809 ret = btrfs_next_item(root, path); 2810 if (ret < 0) { 2811 goto out; 2812 } else if (ret > 0) { 2813 ret = -EUCLEAN; 2814 goto out; 2815 } 2816 } 2817 2818 out: 2819 if (!ret || ret == -EOVERFLOW) { 2820 rootrefs->num_items = found; 2821 /* update min_treeid for next search */ 2822 if (found) 2823 rootrefs->min_treeid = 2824 rootrefs->rootref[found - 1].treeid + 1; 2825 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2826 ret = -EFAULT; 2827 } 2828 2829 kfree(rootrefs); 2830 btrfs_free_path(path); 2831 2832 return ret; 2833 } 2834 2835 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2836 void __user *arg) 2837 { 2838 struct dentry *parent = file->f_path.dentry; 2839 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2840 struct dentry *dentry; 2841 struct inode *dir = d_inode(parent); 2842 struct inode *inode; 2843 struct btrfs_root *root = BTRFS_I(dir)->root; 2844 struct btrfs_root *dest = NULL; 2845 struct btrfs_ioctl_vol_args *vol_args; 2846 int namelen; 2847 int err = 0; 2848 2849 if (!S_ISDIR(dir->i_mode)) 2850 return -ENOTDIR; 2851 2852 vol_args = memdup_user(arg, sizeof(*vol_args)); 2853 if (IS_ERR(vol_args)) 2854 return PTR_ERR(vol_args); 2855 2856 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2857 namelen = strlen(vol_args->name); 2858 if (strchr(vol_args->name, '/') || 2859 strncmp(vol_args->name, "..", namelen) == 0) { 2860 err = -EINVAL; 2861 goto out; 2862 } 2863 2864 err = mnt_want_write_file(file); 2865 if (err) 2866 goto out; 2867 2868 2869 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2870 if (err == -EINTR) 2871 goto out_drop_write; 2872 dentry = lookup_one_len(vol_args->name, parent, namelen); 2873 if (IS_ERR(dentry)) { 2874 err = PTR_ERR(dentry); 2875 goto out_unlock_dir; 2876 } 2877 2878 if (d_really_is_negative(dentry)) { 2879 err = -ENOENT; 2880 goto out_dput; 2881 } 2882 2883 inode = d_inode(dentry); 2884 dest = BTRFS_I(inode)->root; 2885 if (!capable(CAP_SYS_ADMIN)) { 2886 /* 2887 * Regular user. Only allow this with a special mount 2888 * option, when the user has write+exec access to the 2889 * subvol root, and when rmdir(2) would have been 2890 * allowed. 2891 * 2892 * Note that this is _not_ check that the subvol is 2893 * empty or doesn't contain data that we wouldn't 2894 * otherwise be able to delete. 2895 * 2896 * Users who want to delete empty subvols should try 2897 * rmdir(2). 2898 */ 2899 err = -EPERM; 2900 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2901 goto out_dput; 2902 2903 /* 2904 * Do not allow deletion if the parent dir is the same 2905 * as the dir to be deleted. That means the ioctl 2906 * must be called on the dentry referencing the root 2907 * of the subvol, not a random directory contained 2908 * within it. 2909 */ 2910 err = -EINVAL; 2911 if (root == dest) 2912 goto out_dput; 2913 2914 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2915 if (err) 2916 goto out_dput; 2917 } 2918 2919 /* check if subvolume may be deleted by a user */ 2920 err = btrfs_may_delete(dir, dentry, 1); 2921 if (err) 2922 goto out_dput; 2923 2924 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2925 err = -EINVAL; 2926 goto out_dput; 2927 } 2928 2929 inode_lock(inode); 2930 err = btrfs_delete_subvolume(dir, dentry); 2931 inode_unlock(inode); 2932 if (!err) { 2933 fsnotify_rmdir(dir, dentry); 2934 d_delete(dentry); 2935 } 2936 2937 out_dput: 2938 dput(dentry); 2939 out_unlock_dir: 2940 inode_unlock(dir); 2941 out_drop_write: 2942 mnt_drop_write_file(file); 2943 out: 2944 kfree(vol_args); 2945 return err; 2946 } 2947 2948 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2949 { 2950 struct inode *inode = file_inode(file); 2951 struct btrfs_root *root = BTRFS_I(inode)->root; 2952 struct btrfs_ioctl_defrag_range_args *range; 2953 int ret; 2954 2955 ret = mnt_want_write_file(file); 2956 if (ret) 2957 return ret; 2958 2959 if (btrfs_root_readonly(root)) { 2960 ret = -EROFS; 2961 goto out; 2962 } 2963 2964 switch (inode->i_mode & S_IFMT) { 2965 case S_IFDIR: 2966 if (!capable(CAP_SYS_ADMIN)) { 2967 ret = -EPERM; 2968 goto out; 2969 } 2970 ret = btrfs_defrag_root(root); 2971 break; 2972 case S_IFREG: 2973 /* 2974 * Note that this does not check the file descriptor for write 2975 * access. This prevents defragmenting executables that are 2976 * running and allows defrag on files open in read-only mode. 2977 */ 2978 if (!capable(CAP_SYS_ADMIN) && 2979 inode_permission(inode, MAY_WRITE)) { 2980 ret = -EPERM; 2981 goto out; 2982 } 2983 2984 range = kzalloc(sizeof(*range), GFP_KERNEL); 2985 if (!range) { 2986 ret = -ENOMEM; 2987 goto out; 2988 } 2989 2990 if (argp) { 2991 if (copy_from_user(range, argp, 2992 sizeof(*range))) { 2993 ret = -EFAULT; 2994 kfree(range); 2995 goto out; 2996 } 2997 /* compression requires us to start the IO */ 2998 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2999 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3000 range->extent_thresh = (u32)-1; 3001 } 3002 } else { 3003 /* the rest are all set to zero by kzalloc */ 3004 range->len = (u64)-1; 3005 } 3006 ret = btrfs_defrag_file(file_inode(file), file, 3007 range, BTRFS_OLDEST_GENERATION, 0); 3008 if (ret > 0) 3009 ret = 0; 3010 kfree(range); 3011 break; 3012 default: 3013 ret = -EINVAL; 3014 } 3015 out: 3016 mnt_drop_write_file(file); 3017 return ret; 3018 } 3019 3020 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3021 { 3022 struct btrfs_ioctl_vol_args *vol_args; 3023 int ret; 3024 3025 if (!capable(CAP_SYS_ADMIN)) 3026 return -EPERM; 3027 3028 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 3029 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3030 3031 vol_args = memdup_user(arg, sizeof(*vol_args)); 3032 if (IS_ERR(vol_args)) { 3033 ret = PTR_ERR(vol_args); 3034 goto out; 3035 } 3036 3037 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3038 ret = btrfs_init_new_device(fs_info, vol_args->name); 3039 3040 if (!ret) 3041 btrfs_info(fs_info, "disk added %s", vol_args->name); 3042 3043 kfree(vol_args); 3044 out: 3045 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3046 return ret; 3047 } 3048 3049 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3050 { 3051 struct inode *inode = file_inode(file); 3052 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3053 struct btrfs_ioctl_vol_args_v2 *vol_args; 3054 int ret; 3055 3056 if (!capable(CAP_SYS_ADMIN)) 3057 return -EPERM; 3058 3059 ret = mnt_want_write_file(file); 3060 if (ret) 3061 return ret; 3062 3063 vol_args = memdup_user(arg, sizeof(*vol_args)); 3064 if (IS_ERR(vol_args)) { 3065 ret = PTR_ERR(vol_args); 3066 goto err_drop; 3067 } 3068 3069 /* Check for compatibility reject unknown flags */ 3070 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) { 3071 ret = -EOPNOTSUPP; 3072 goto out; 3073 } 3074 3075 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3076 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3077 goto out; 3078 } 3079 3080 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3081 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3082 } else { 3083 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3084 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3085 } 3086 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3087 3088 if (!ret) { 3089 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3090 btrfs_info(fs_info, "device deleted: id %llu", 3091 vol_args->devid); 3092 else 3093 btrfs_info(fs_info, "device deleted: %s", 3094 vol_args->name); 3095 } 3096 out: 3097 kfree(vol_args); 3098 err_drop: 3099 mnt_drop_write_file(file); 3100 return ret; 3101 } 3102 3103 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3104 { 3105 struct inode *inode = file_inode(file); 3106 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3107 struct btrfs_ioctl_vol_args *vol_args; 3108 int ret; 3109 3110 if (!capable(CAP_SYS_ADMIN)) 3111 return -EPERM; 3112 3113 ret = mnt_want_write_file(file); 3114 if (ret) 3115 return ret; 3116 3117 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3118 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3119 goto out_drop_write; 3120 } 3121 3122 vol_args = memdup_user(arg, sizeof(*vol_args)); 3123 if (IS_ERR(vol_args)) { 3124 ret = PTR_ERR(vol_args); 3125 goto out; 3126 } 3127 3128 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3129 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3130 3131 if (!ret) 3132 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3133 kfree(vol_args); 3134 out: 3135 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3136 out_drop_write: 3137 mnt_drop_write_file(file); 3138 3139 return ret; 3140 } 3141 3142 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3143 void __user *arg) 3144 { 3145 struct btrfs_ioctl_fs_info_args *fi_args; 3146 struct btrfs_device *device; 3147 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3148 int ret = 0; 3149 3150 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 3151 if (!fi_args) 3152 return -ENOMEM; 3153 3154 rcu_read_lock(); 3155 fi_args->num_devices = fs_devices->num_devices; 3156 3157 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3158 if (device->devid > fi_args->max_id) 3159 fi_args->max_id = device->devid; 3160 } 3161 rcu_read_unlock(); 3162 3163 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3164 fi_args->nodesize = fs_info->nodesize; 3165 fi_args->sectorsize = fs_info->sectorsize; 3166 fi_args->clone_alignment = fs_info->sectorsize; 3167 3168 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3169 ret = -EFAULT; 3170 3171 kfree(fi_args); 3172 return ret; 3173 } 3174 3175 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3176 void __user *arg) 3177 { 3178 struct btrfs_ioctl_dev_info_args *di_args; 3179 struct btrfs_device *dev; 3180 int ret = 0; 3181 char *s_uuid = NULL; 3182 3183 di_args = memdup_user(arg, sizeof(*di_args)); 3184 if (IS_ERR(di_args)) 3185 return PTR_ERR(di_args); 3186 3187 if (!btrfs_is_empty_uuid(di_args->uuid)) 3188 s_uuid = di_args->uuid; 3189 3190 rcu_read_lock(); 3191 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3192 NULL, true); 3193 3194 if (!dev) { 3195 ret = -ENODEV; 3196 goto out; 3197 } 3198 3199 di_args->devid = dev->devid; 3200 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3201 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3202 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3203 if (dev->name) { 3204 strncpy(di_args->path, rcu_str_deref(dev->name), 3205 sizeof(di_args->path) - 1); 3206 di_args->path[sizeof(di_args->path) - 1] = 0; 3207 } else { 3208 di_args->path[0] = '\0'; 3209 } 3210 3211 out: 3212 rcu_read_unlock(); 3213 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3214 ret = -EFAULT; 3215 3216 kfree(di_args); 3217 return ret; 3218 } 3219 3220 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 3221 struct inode *inode2, u64 loff2, u64 len) 3222 { 3223 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3224 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3225 } 3226 3227 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 3228 struct inode *inode2, u64 loff2, u64 len) 3229 { 3230 if (inode1 < inode2) { 3231 swap(inode1, inode2); 3232 swap(loff1, loff2); 3233 } else if (inode1 == inode2 && loff2 < loff1) { 3234 swap(loff1, loff2); 3235 } 3236 lock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3237 lock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3238 } 3239 3240 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 len, 3241 struct inode *dst, u64 dst_loff) 3242 { 3243 int ret; 3244 3245 /* 3246 * Lock destination range to serialize with concurrent readpages() and 3247 * source range to serialize with relocation. 3248 */ 3249 btrfs_double_extent_lock(src, loff, dst, dst_loff, len); 3250 ret = btrfs_clone(src, dst, loff, len, len, dst_loff, 1); 3251 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3252 3253 return ret; 3254 } 3255 3256 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3257 3258 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3259 struct inode *dst, u64 dst_loff) 3260 { 3261 int ret; 3262 u64 i, tail_len, chunk_count; 3263 struct btrfs_root *root_dst = BTRFS_I(dst)->root; 3264 3265 spin_lock(&root_dst->root_item_lock); 3266 if (root_dst->send_in_progress) { 3267 btrfs_warn_rl(root_dst->fs_info, 3268 "cannot deduplicate to root %llu while send operations are using it (%d in progress)", 3269 root_dst->root_key.objectid, 3270 root_dst->send_in_progress); 3271 spin_unlock(&root_dst->root_item_lock); 3272 return -EAGAIN; 3273 } 3274 root_dst->dedupe_in_progress++; 3275 spin_unlock(&root_dst->root_item_lock); 3276 3277 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 3278 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 3279 3280 for (i = 0; i < chunk_count; i++) { 3281 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 3282 dst, dst_loff); 3283 if (ret) 3284 goto out; 3285 3286 loff += BTRFS_MAX_DEDUPE_LEN; 3287 dst_loff += BTRFS_MAX_DEDUPE_LEN; 3288 } 3289 3290 if (tail_len > 0) 3291 ret = btrfs_extent_same_range(src, loff, tail_len, dst, 3292 dst_loff); 3293 out: 3294 spin_lock(&root_dst->root_item_lock); 3295 root_dst->dedupe_in_progress--; 3296 spin_unlock(&root_dst->root_item_lock); 3297 3298 return ret; 3299 } 3300 3301 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3302 struct inode *inode, 3303 u64 endoff, 3304 const u64 destoff, 3305 const u64 olen, 3306 int no_time_update) 3307 { 3308 struct btrfs_root *root = BTRFS_I(inode)->root; 3309 int ret; 3310 3311 inode_inc_iversion(inode); 3312 if (!no_time_update) 3313 inode->i_mtime = inode->i_ctime = current_time(inode); 3314 /* 3315 * We round up to the block size at eof when determining which 3316 * extents to clone above, but shouldn't round up the file size. 3317 */ 3318 if (endoff > destoff + olen) 3319 endoff = destoff + olen; 3320 if (endoff > inode->i_size) 3321 btrfs_i_size_write(BTRFS_I(inode), endoff); 3322 3323 ret = btrfs_update_inode(trans, root, inode); 3324 if (ret) { 3325 btrfs_abort_transaction(trans, ret); 3326 btrfs_end_transaction(trans); 3327 goto out; 3328 } 3329 ret = btrfs_end_transaction(trans); 3330 out: 3331 return ret; 3332 } 3333 3334 /* 3335 * Make sure we do not end up inserting an inline extent into a file that has 3336 * already other (non-inline) extents. If a file has an inline extent it can 3337 * not have any other extents and the (single) inline extent must start at the 3338 * file offset 0. Failing to respect these rules will lead to file corruption, 3339 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3340 * 3341 * We can have extents that have been already written to disk or we can have 3342 * dirty ranges still in delalloc, in which case the extent maps and items are 3343 * created only when we run delalloc, and the delalloc ranges might fall outside 3344 * the range we are currently locking in the inode's io tree. So we check the 3345 * inode's i_size because of that (i_size updates are done while holding the 3346 * i_mutex, which we are holding here). 3347 * We also check to see if the inode has a size not greater than "datal" but has 3348 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3349 * protected against such concurrent fallocate calls by the i_mutex). 3350 * 3351 * If the file has no extents but a size greater than datal, do not allow the 3352 * copy because we would need turn the inline extent into a non-inline one (even 3353 * with NO_HOLES enabled). If we find our destination inode only has one inline 3354 * extent, just overwrite it with the source inline extent if its size is less 3355 * than the source extent's size, or we could copy the source inline extent's 3356 * data into the destination inode's inline extent if the later is greater then 3357 * the former. 3358 */ 3359 static int clone_copy_inline_extent(struct inode *dst, 3360 struct btrfs_trans_handle *trans, 3361 struct btrfs_path *path, 3362 struct btrfs_key *new_key, 3363 const u64 drop_start, 3364 const u64 datal, 3365 const u64 skip, 3366 const u64 size, 3367 char *inline_data) 3368 { 3369 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3370 struct btrfs_root *root = BTRFS_I(dst)->root; 3371 const u64 aligned_end = ALIGN(new_key->offset + datal, 3372 fs_info->sectorsize); 3373 int ret; 3374 struct btrfs_key key; 3375 3376 if (new_key->offset > 0) 3377 return -EOPNOTSUPP; 3378 3379 key.objectid = btrfs_ino(BTRFS_I(dst)); 3380 key.type = BTRFS_EXTENT_DATA_KEY; 3381 key.offset = 0; 3382 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3383 if (ret < 0) { 3384 return ret; 3385 } else if (ret > 0) { 3386 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3387 ret = btrfs_next_leaf(root, path); 3388 if (ret < 0) 3389 return ret; 3390 else if (ret > 0) 3391 goto copy_inline_extent; 3392 } 3393 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3394 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3395 key.type == BTRFS_EXTENT_DATA_KEY) { 3396 ASSERT(key.offset > 0); 3397 return -EOPNOTSUPP; 3398 } 3399 } else if (i_size_read(dst) <= datal) { 3400 struct btrfs_file_extent_item *ei; 3401 u64 ext_len; 3402 3403 /* 3404 * If the file size is <= datal, make sure there are no other 3405 * extents following (can happen do to an fallocate call with 3406 * the flag FALLOC_FL_KEEP_SIZE). 3407 */ 3408 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3409 struct btrfs_file_extent_item); 3410 /* 3411 * If it's an inline extent, it can not have other extents 3412 * following it. 3413 */ 3414 if (btrfs_file_extent_type(path->nodes[0], ei) == 3415 BTRFS_FILE_EXTENT_INLINE) 3416 goto copy_inline_extent; 3417 3418 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3419 if (ext_len > aligned_end) 3420 return -EOPNOTSUPP; 3421 3422 ret = btrfs_next_item(root, path); 3423 if (ret < 0) { 3424 return ret; 3425 } else if (ret == 0) { 3426 btrfs_item_key_to_cpu(path->nodes[0], &key, 3427 path->slots[0]); 3428 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3429 key.type == BTRFS_EXTENT_DATA_KEY) 3430 return -EOPNOTSUPP; 3431 } 3432 } 3433 3434 copy_inline_extent: 3435 /* 3436 * We have no extent items, or we have an extent at offset 0 which may 3437 * or may not be inlined. All these cases are dealt the same way. 3438 */ 3439 if (i_size_read(dst) > datal) { 3440 /* 3441 * If the destination inode has an inline extent... 3442 * This would require copying the data from the source inline 3443 * extent into the beginning of the destination's inline extent. 3444 * But this is really complex, both extents can be compressed 3445 * or just one of them, which would require decompressing and 3446 * re-compressing data (which could increase the new compressed 3447 * size, not allowing the compressed data to fit anymore in an 3448 * inline extent). 3449 * So just don't support this case for now (it should be rare, 3450 * we are not really saving space when cloning inline extents). 3451 */ 3452 return -EOPNOTSUPP; 3453 } 3454 3455 btrfs_release_path(path); 3456 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3457 if (ret) 3458 return ret; 3459 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3460 if (ret) 3461 return ret; 3462 3463 if (skip) { 3464 const u32 start = btrfs_file_extent_calc_inline_size(0); 3465 3466 memmove(inline_data + start, inline_data + start + skip, datal); 3467 } 3468 3469 write_extent_buffer(path->nodes[0], inline_data, 3470 btrfs_item_ptr_offset(path->nodes[0], 3471 path->slots[0]), 3472 size); 3473 inode_add_bytes(dst, datal); 3474 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(dst)->runtime_flags); 3475 3476 return 0; 3477 } 3478 3479 /** 3480 * btrfs_clone() - clone a range from inode file to another 3481 * 3482 * @src: Inode to clone from 3483 * @inode: Inode to clone to 3484 * @off: Offset within source to start clone from 3485 * @olen: Original length, passed by user, of range to clone 3486 * @olen_aligned: Block-aligned value of olen 3487 * @destoff: Offset within @inode to start clone 3488 * @no_time_update: Whether to update mtime/ctime on the target inode 3489 */ 3490 static int btrfs_clone(struct inode *src, struct inode *inode, 3491 const u64 off, const u64 olen, const u64 olen_aligned, 3492 const u64 destoff, int no_time_update) 3493 { 3494 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3495 struct btrfs_root *root = BTRFS_I(inode)->root; 3496 struct btrfs_path *path = NULL; 3497 struct extent_buffer *leaf; 3498 struct btrfs_trans_handle *trans; 3499 char *buf = NULL; 3500 struct btrfs_key key; 3501 u32 nritems; 3502 int slot; 3503 int ret; 3504 const u64 len = olen_aligned; 3505 u64 last_dest_end = destoff; 3506 3507 ret = -ENOMEM; 3508 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3509 if (!buf) 3510 return ret; 3511 3512 path = btrfs_alloc_path(); 3513 if (!path) { 3514 kvfree(buf); 3515 return ret; 3516 } 3517 3518 path->reada = READA_FORWARD; 3519 /* clone data */ 3520 key.objectid = btrfs_ino(BTRFS_I(src)); 3521 key.type = BTRFS_EXTENT_DATA_KEY; 3522 key.offset = off; 3523 3524 while (1) { 3525 u64 next_key_min_offset = key.offset + 1; 3526 struct btrfs_file_extent_item *extent; 3527 int type; 3528 u32 size; 3529 struct btrfs_key new_key; 3530 u64 disko = 0, diskl = 0; 3531 u64 datao = 0, datal = 0; 3532 u8 comp; 3533 u64 drop_start; 3534 3535 /* 3536 * note the key will change type as we walk through the 3537 * tree. 3538 */ 3539 path->leave_spinning = 1; 3540 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3541 0, 0); 3542 if (ret < 0) 3543 goto out; 3544 /* 3545 * First search, if no extent item that starts at offset off was 3546 * found but the previous item is an extent item, it's possible 3547 * it might overlap our target range, therefore process it. 3548 */ 3549 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3550 btrfs_item_key_to_cpu(path->nodes[0], &key, 3551 path->slots[0] - 1); 3552 if (key.type == BTRFS_EXTENT_DATA_KEY) 3553 path->slots[0]--; 3554 } 3555 3556 nritems = btrfs_header_nritems(path->nodes[0]); 3557 process_slot: 3558 if (path->slots[0] >= nritems) { 3559 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3560 if (ret < 0) 3561 goto out; 3562 if (ret > 0) 3563 break; 3564 nritems = btrfs_header_nritems(path->nodes[0]); 3565 } 3566 leaf = path->nodes[0]; 3567 slot = path->slots[0]; 3568 3569 btrfs_item_key_to_cpu(leaf, &key, slot); 3570 if (key.type > BTRFS_EXTENT_DATA_KEY || 3571 key.objectid != btrfs_ino(BTRFS_I(src))) 3572 break; 3573 3574 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY); 3575 3576 extent = btrfs_item_ptr(leaf, slot, 3577 struct btrfs_file_extent_item); 3578 comp = btrfs_file_extent_compression(leaf, extent); 3579 type = btrfs_file_extent_type(leaf, extent); 3580 if (type == BTRFS_FILE_EXTENT_REG || 3581 type == BTRFS_FILE_EXTENT_PREALLOC) { 3582 disko = btrfs_file_extent_disk_bytenr(leaf, extent); 3583 diskl = btrfs_file_extent_disk_num_bytes(leaf, extent); 3584 datao = btrfs_file_extent_offset(leaf, extent); 3585 datal = btrfs_file_extent_num_bytes(leaf, extent); 3586 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3587 /* Take upper bound, may be compressed */ 3588 datal = btrfs_file_extent_ram_bytes(leaf, extent); 3589 } 3590 3591 /* 3592 * The first search might have left us at an extent item that 3593 * ends before our target range's start, can happen if we have 3594 * holes and NO_HOLES feature enabled. 3595 */ 3596 if (key.offset + datal <= off) { 3597 path->slots[0]++; 3598 goto process_slot; 3599 } else if (key.offset >= off + len) { 3600 break; 3601 } 3602 next_key_min_offset = key.offset + datal; 3603 size = btrfs_item_size_nr(leaf, slot); 3604 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, slot), 3605 size); 3606 3607 btrfs_release_path(path); 3608 path->leave_spinning = 0; 3609 3610 memcpy(&new_key, &key, sizeof(new_key)); 3611 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 3612 if (off <= key.offset) 3613 new_key.offset = key.offset + destoff - off; 3614 else 3615 new_key.offset = destoff; 3616 3617 /* 3618 * Deal with a hole that doesn't have an extent item that 3619 * represents it (NO_HOLES feature enabled). 3620 * This hole is either in the middle of the cloning range or at 3621 * the beginning (fully overlaps it or partially overlaps it). 3622 */ 3623 if (new_key.offset != last_dest_end) 3624 drop_start = last_dest_end; 3625 else 3626 drop_start = new_key.offset; 3627 3628 if (type == BTRFS_FILE_EXTENT_REG || 3629 type == BTRFS_FILE_EXTENT_PREALLOC) { 3630 struct btrfs_clone_extent_info clone_info; 3631 3632 /* 3633 * a | --- range to clone ---| b 3634 * | ------------- extent ------------- | 3635 */ 3636 3637 /* Subtract range b */ 3638 if (key.offset + datal > off + len) 3639 datal = off + len - key.offset; 3640 3641 /* Subtract range a */ 3642 if (off > key.offset) { 3643 datao += off - key.offset; 3644 datal -= off - key.offset; 3645 } 3646 3647 clone_info.disk_offset = disko; 3648 clone_info.disk_len = diskl; 3649 clone_info.data_offset = datao; 3650 clone_info.data_len = datal; 3651 clone_info.file_offset = new_key.offset; 3652 clone_info.extent_buf = buf; 3653 clone_info.item_size = size; 3654 ret = btrfs_punch_hole_range(inode, path, 3655 drop_start, 3656 new_key.offset + datal - 1, 3657 &clone_info, &trans); 3658 if (ret) 3659 goto out; 3660 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3661 u64 skip = 0; 3662 u64 trim = 0; 3663 3664 if (off > key.offset) { 3665 skip = off - key.offset; 3666 new_key.offset += skip; 3667 } 3668 3669 if (key.offset + datal > off + len) 3670 trim = key.offset + datal - (off + len); 3671 3672 if (comp && (skip || trim)) { 3673 ret = -EINVAL; 3674 goto out; 3675 } 3676 size -= skip + trim; 3677 datal -= skip + trim; 3678 3679 /* 3680 * If our extent is inline, we know we will drop or 3681 * adjust at most 1 extent item in the destination root. 3682 * 3683 * 1 - adjusting old extent (we may have to split it) 3684 * 1 - add new extent 3685 * 1 - inode update 3686 */ 3687 trans = btrfs_start_transaction(root, 3); 3688 if (IS_ERR(trans)) { 3689 ret = PTR_ERR(trans); 3690 goto out; 3691 } 3692 3693 ret = clone_copy_inline_extent(inode, trans, path, 3694 &new_key, drop_start, 3695 datal, skip, size, buf); 3696 if (ret) { 3697 if (ret != -EOPNOTSUPP) 3698 btrfs_abort_transaction(trans, ret); 3699 btrfs_end_transaction(trans); 3700 goto out; 3701 } 3702 } 3703 3704 btrfs_release_path(path); 3705 3706 last_dest_end = ALIGN(new_key.offset + datal, 3707 fs_info->sectorsize); 3708 ret = clone_finish_inode_update(trans, inode, last_dest_end, 3709 destoff, olen, no_time_update); 3710 if (ret) 3711 goto out; 3712 if (new_key.offset + datal >= destoff + len) 3713 break; 3714 3715 btrfs_release_path(path); 3716 key.offset = next_key_min_offset; 3717 3718 if (fatal_signal_pending(current)) { 3719 ret = -EINTR; 3720 goto out; 3721 } 3722 } 3723 ret = 0; 3724 3725 if (last_dest_end < destoff + len) { 3726 struct btrfs_clone_extent_info clone_info = { 0 }; 3727 /* 3728 * We have an implicit hole (NO_HOLES feature is enabled) that 3729 * fully or partially overlaps our cloning range at its end. 3730 */ 3731 btrfs_release_path(path); 3732 path->leave_spinning = 0; 3733 3734 /* 3735 * We are dealing with a hole and our clone_info already has a 3736 * disk_offset of 0, we only need to fill the data length and 3737 * file offset. 3738 */ 3739 clone_info.data_len = destoff + len - last_dest_end; 3740 clone_info.file_offset = last_dest_end; 3741 ret = btrfs_punch_hole_range(inode, path, 3742 last_dest_end, destoff + len - 1, 3743 &clone_info, &trans); 3744 if (ret) 3745 goto out; 3746 3747 ret = clone_finish_inode_update(trans, inode, destoff + len, 3748 destoff, olen, no_time_update); 3749 } 3750 3751 out: 3752 btrfs_free_path(path); 3753 kvfree(buf); 3754 return ret; 3755 } 3756 3757 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3758 u64 off, u64 olen, u64 destoff) 3759 { 3760 struct inode *inode = file_inode(file); 3761 struct inode *src = file_inode(file_src); 3762 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3763 int ret; 3764 u64 len = olen; 3765 u64 bs = fs_info->sb->s_blocksize; 3766 3767 /* 3768 * TODO: 3769 * - split compressed inline extents. annoying: we need to 3770 * decompress into destination's address_space (the file offset 3771 * may change, so source mapping won't do), then recompress (or 3772 * otherwise reinsert) a subrange. 3773 * 3774 * - split destination inode's inline extents. The inline extents can 3775 * be either compressed or non-compressed. 3776 */ 3777 3778 /* 3779 * VFS's generic_remap_file_range_prep() protects us from cloning the 3780 * eof block into the middle of a file, which would result in corruption 3781 * if the file size is not blocksize aligned. So we don't need to check 3782 * for that case here. 3783 */ 3784 if (off + len == src->i_size) 3785 len = ALIGN(src->i_size, bs) - off; 3786 3787 if (destoff > inode->i_size) { 3788 const u64 wb_start = ALIGN_DOWN(inode->i_size, bs); 3789 3790 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3791 if (ret) 3792 return ret; 3793 /* 3794 * We may have truncated the last block if the inode's size is 3795 * not sector size aligned, so we need to wait for writeback to 3796 * complete before proceeding further, otherwise we can race 3797 * with cloning and attempt to increment a reference to an 3798 * extent that no longer exists (writeback completed right after 3799 * we found the previous extent covering eof and before we 3800 * attempted to increment its reference count). 3801 */ 3802 ret = btrfs_wait_ordered_range(inode, wb_start, 3803 destoff - wb_start); 3804 if (ret) 3805 return ret; 3806 } 3807 3808 /* 3809 * Lock destination range to serialize with concurrent readpages() and 3810 * source range to serialize with relocation. 3811 */ 3812 btrfs_double_extent_lock(src, off, inode, destoff, len); 3813 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3814 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3815 /* 3816 * Truncate page cache pages so that future reads will see the cloned 3817 * data immediately and not the previous data. 3818 */ 3819 truncate_inode_pages_range(&inode->i_data, 3820 round_down(destoff, PAGE_SIZE), 3821 round_up(destoff + len, PAGE_SIZE) - 1); 3822 3823 return ret; 3824 } 3825 3826 static int btrfs_remap_file_range_prep(struct file *file_in, loff_t pos_in, 3827 struct file *file_out, loff_t pos_out, 3828 loff_t *len, unsigned int remap_flags) 3829 { 3830 struct inode *inode_in = file_inode(file_in); 3831 struct inode *inode_out = file_inode(file_out); 3832 u64 bs = BTRFS_I(inode_out)->root->fs_info->sb->s_blocksize; 3833 bool same_inode = inode_out == inode_in; 3834 u64 wb_len; 3835 int ret; 3836 3837 if (!(remap_flags & REMAP_FILE_DEDUP)) { 3838 struct btrfs_root *root_out = BTRFS_I(inode_out)->root; 3839 3840 if (btrfs_root_readonly(root_out)) 3841 return -EROFS; 3842 3843 if (file_in->f_path.mnt != file_out->f_path.mnt || 3844 inode_in->i_sb != inode_out->i_sb) 3845 return -EXDEV; 3846 } 3847 3848 /* don't make the dst file partly checksummed */ 3849 if ((BTRFS_I(inode_in)->flags & BTRFS_INODE_NODATASUM) != 3850 (BTRFS_I(inode_out)->flags & BTRFS_INODE_NODATASUM)) { 3851 return -EINVAL; 3852 } 3853 3854 /* 3855 * Now that the inodes are locked, we need to start writeback ourselves 3856 * and can not rely on the writeback from the VFS's generic helper 3857 * generic_remap_file_range_prep() because: 3858 * 3859 * 1) For compression we must call filemap_fdatawrite_range() range 3860 * twice (btrfs_fdatawrite_range() does it for us), and the generic 3861 * helper only calls it once; 3862 * 3863 * 2) filemap_fdatawrite_range(), called by the generic helper only 3864 * waits for the writeback to complete, i.e. for IO to be done, and 3865 * not for the ordered extents to complete. We need to wait for them 3866 * to complete so that new file extent items are in the fs tree. 3867 */ 3868 if (*len == 0 && !(remap_flags & REMAP_FILE_DEDUP)) 3869 wb_len = ALIGN(inode_in->i_size, bs) - ALIGN_DOWN(pos_in, bs); 3870 else 3871 wb_len = ALIGN(*len, bs); 3872 3873 /* 3874 * Since we don't lock ranges, wait for ongoing lockless dio writes (as 3875 * any in progress could create its ordered extents after we wait for 3876 * existing ordered extents below). 3877 */ 3878 inode_dio_wait(inode_in); 3879 if (!same_inode) 3880 inode_dio_wait(inode_out); 3881 3882 /* 3883 * Workaround to make sure NOCOW buffered write reach disk as NOCOW. 3884 * 3885 * Btrfs' back references do not have a block level granularity, they 3886 * work at the whole extent level. 3887 * NOCOW buffered write without data space reserved may not be able 3888 * to fall back to CoW due to lack of data space, thus could cause 3889 * data loss. 3890 * 3891 * Here we take a shortcut by flushing the whole inode, so that all 3892 * nocow write should reach disk as nocow before we increase the 3893 * reference of the extent. We could do better by only flushing NOCOW 3894 * data, but that needs extra accounting. 3895 * 3896 * Also we don't need to check ASYNC_EXTENT, as async extent will be 3897 * CoWed anyway, not affecting nocow part. 3898 */ 3899 ret = filemap_flush(inode_in->i_mapping); 3900 if (ret < 0) 3901 return ret; 3902 3903 ret = btrfs_wait_ordered_range(inode_in, ALIGN_DOWN(pos_in, bs), 3904 wb_len); 3905 if (ret < 0) 3906 return ret; 3907 ret = btrfs_wait_ordered_range(inode_out, ALIGN_DOWN(pos_out, bs), 3908 wb_len); 3909 if (ret < 0) 3910 return ret; 3911 3912 return generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 3913 len, remap_flags); 3914 } 3915 3916 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 3917 struct file *dst_file, loff_t destoff, loff_t len, 3918 unsigned int remap_flags) 3919 { 3920 struct inode *src_inode = file_inode(src_file); 3921 struct inode *dst_inode = file_inode(dst_file); 3922 bool same_inode = dst_inode == src_inode; 3923 int ret; 3924 3925 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 3926 return -EINVAL; 3927 3928 if (same_inode) 3929 inode_lock(src_inode); 3930 else 3931 lock_two_nondirectories(src_inode, dst_inode); 3932 3933 ret = btrfs_remap_file_range_prep(src_file, off, dst_file, destoff, 3934 &len, remap_flags); 3935 if (ret < 0 || len == 0) 3936 goto out_unlock; 3937 3938 if (remap_flags & REMAP_FILE_DEDUP) 3939 ret = btrfs_extent_same(src_inode, off, len, dst_inode, destoff); 3940 else 3941 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 3942 3943 out_unlock: 3944 if (same_inode) 3945 inode_unlock(src_inode); 3946 else 3947 unlock_two_nondirectories(src_inode, dst_inode); 3948 3949 return ret < 0 ? ret : len; 3950 } 3951 3952 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3953 { 3954 struct inode *inode = file_inode(file); 3955 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3956 struct btrfs_root *root = BTRFS_I(inode)->root; 3957 struct btrfs_root *new_root; 3958 struct btrfs_dir_item *di; 3959 struct btrfs_trans_handle *trans; 3960 struct btrfs_path *path; 3961 struct btrfs_key location; 3962 struct btrfs_disk_key disk_key; 3963 u64 objectid = 0; 3964 u64 dir_id; 3965 int ret; 3966 3967 if (!capable(CAP_SYS_ADMIN)) 3968 return -EPERM; 3969 3970 ret = mnt_want_write_file(file); 3971 if (ret) 3972 return ret; 3973 3974 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3975 ret = -EFAULT; 3976 goto out; 3977 } 3978 3979 if (!objectid) 3980 objectid = BTRFS_FS_TREE_OBJECTID; 3981 3982 location.objectid = objectid; 3983 location.type = BTRFS_ROOT_ITEM_KEY; 3984 location.offset = (u64)-1; 3985 3986 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 3987 if (IS_ERR(new_root)) { 3988 ret = PTR_ERR(new_root); 3989 goto out; 3990 } 3991 if (!is_fstree(new_root->root_key.objectid)) { 3992 ret = -ENOENT; 3993 goto out; 3994 } 3995 3996 path = btrfs_alloc_path(); 3997 if (!path) { 3998 ret = -ENOMEM; 3999 goto out; 4000 } 4001 path->leave_spinning = 1; 4002 4003 trans = btrfs_start_transaction(root, 1); 4004 if (IS_ERR(trans)) { 4005 btrfs_free_path(path); 4006 ret = PTR_ERR(trans); 4007 goto out; 4008 } 4009 4010 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4011 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4012 dir_id, "default", 7, 1); 4013 if (IS_ERR_OR_NULL(di)) { 4014 btrfs_free_path(path); 4015 btrfs_end_transaction(trans); 4016 btrfs_err(fs_info, 4017 "Umm, you don't have the default diritem, this isn't going to work"); 4018 ret = -ENOENT; 4019 goto out; 4020 } 4021 4022 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4023 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4024 btrfs_mark_buffer_dirty(path->nodes[0]); 4025 btrfs_free_path(path); 4026 4027 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4028 btrfs_end_transaction(trans); 4029 out: 4030 mnt_drop_write_file(file); 4031 return ret; 4032 } 4033 4034 static void get_block_group_info(struct list_head *groups_list, 4035 struct btrfs_ioctl_space_info *space) 4036 { 4037 struct btrfs_block_group_cache *block_group; 4038 4039 space->total_bytes = 0; 4040 space->used_bytes = 0; 4041 space->flags = 0; 4042 list_for_each_entry(block_group, groups_list, list) { 4043 space->flags = block_group->flags; 4044 space->total_bytes += block_group->key.offset; 4045 space->used_bytes += 4046 btrfs_block_group_used(&block_group->item); 4047 } 4048 } 4049 4050 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4051 void __user *arg) 4052 { 4053 struct btrfs_ioctl_space_args space_args; 4054 struct btrfs_ioctl_space_info space; 4055 struct btrfs_ioctl_space_info *dest; 4056 struct btrfs_ioctl_space_info *dest_orig; 4057 struct btrfs_ioctl_space_info __user *user_dest; 4058 struct btrfs_space_info *info; 4059 static const u64 types[] = { 4060 BTRFS_BLOCK_GROUP_DATA, 4061 BTRFS_BLOCK_GROUP_SYSTEM, 4062 BTRFS_BLOCK_GROUP_METADATA, 4063 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 4064 }; 4065 int num_types = 4; 4066 int alloc_size; 4067 int ret = 0; 4068 u64 slot_count = 0; 4069 int i, c; 4070 4071 if (copy_from_user(&space_args, 4072 (struct btrfs_ioctl_space_args __user *)arg, 4073 sizeof(space_args))) 4074 return -EFAULT; 4075 4076 for (i = 0; i < num_types; i++) { 4077 struct btrfs_space_info *tmp; 4078 4079 info = NULL; 4080 rcu_read_lock(); 4081 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4082 list) { 4083 if (tmp->flags == types[i]) { 4084 info = tmp; 4085 break; 4086 } 4087 } 4088 rcu_read_unlock(); 4089 4090 if (!info) 4091 continue; 4092 4093 down_read(&info->groups_sem); 4094 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4095 if (!list_empty(&info->block_groups[c])) 4096 slot_count++; 4097 } 4098 up_read(&info->groups_sem); 4099 } 4100 4101 /* 4102 * Global block reserve, exported as a space_info 4103 */ 4104 slot_count++; 4105 4106 /* space_slots == 0 means they are asking for a count */ 4107 if (space_args.space_slots == 0) { 4108 space_args.total_spaces = slot_count; 4109 goto out; 4110 } 4111 4112 slot_count = min_t(u64, space_args.space_slots, slot_count); 4113 4114 alloc_size = sizeof(*dest) * slot_count; 4115 4116 /* we generally have at most 6 or so space infos, one for each raid 4117 * level. So, a whole page should be more than enough for everyone 4118 */ 4119 if (alloc_size > PAGE_SIZE) 4120 return -ENOMEM; 4121 4122 space_args.total_spaces = 0; 4123 dest = kmalloc(alloc_size, GFP_KERNEL); 4124 if (!dest) 4125 return -ENOMEM; 4126 dest_orig = dest; 4127 4128 /* now we have a buffer to copy into */ 4129 for (i = 0; i < num_types; i++) { 4130 struct btrfs_space_info *tmp; 4131 4132 if (!slot_count) 4133 break; 4134 4135 info = NULL; 4136 rcu_read_lock(); 4137 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4138 list) { 4139 if (tmp->flags == types[i]) { 4140 info = tmp; 4141 break; 4142 } 4143 } 4144 rcu_read_unlock(); 4145 4146 if (!info) 4147 continue; 4148 down_read(&info->groups_sem); 4149 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4150 if (!list_empty(&info->block_groups[c])) { 4151 get_block_group_info(&info->block_groups[c], 4152 &space); 4153 memcpy(dest, &space, sizeof(space)); 4154 dest++; 4155 space_args.total_spaces++; 4156 slot_count--; 4157 } 4158 if (!slot_count) 4159 break; 4160 } 4161 up_read(&info->groups_sem); 4162 } 4163 4164 /* 4165 * Add global block reserve 4166 */ 4167 if (slot_count) { 4168 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4169 4170 spin_lock(&block_rsv->lock); 4171 space.total_bytes = block_rsv->size; 4172 space.used_bytes = block_rsv->size - block_rsv->reserved; 4173 spin_unlock(&block_rsv->lock); 4174 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4175 memcpy(dest, &space, sizeof(space)); 4176 space_args.total_spaces++; 4177 } 4178 4179 user_dest = (struct btrfs_ioctl_space_info __user *) 4180 (arg + sizeof(struct btrfs_ioctl_space_args)); 4181 4182 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4183 ret = -EFAULT; 4184 4185 kfree(dest_orig); 4186 out: 4187 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4188 ret = -EFAULT; 4189 4190 return ret; 4191 } 4192 4193 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4194 void __user *argp) 4195 { 4196 struct btrfs_trans_handle *trans; 4197 u64 transid; 4198 int ret; 4199 4200 btrfs_warn(root->fs_info, 4201 "START_SYNC ioctl is deprecated and will be removed in kernel 5.7"); 4202 4203 trans = btrfs_attach_transaction_barrier(root); 4204 if (IS_ERR(trans)) { 4205 if (PTR_ERR(trans) != -ENOENT) 4206 return PTR_ERR(trans); 4207 4208 /* No running transaction, don't bother */ 4209 transid = root->fs_info->last_trans_committed; 4210 goto out; 4211 } 4212 transid = trans->transid; 4213 ret = btrfs_commit_transaction_async(trans, 0); 4214 if (ret) { 4215 btrfs_end_transaction(trans); 4216 return ret; 4217 } 4218 out: 4219 if (argp) 4220 if (copy_to_user(argp, &transid, sizeof(transid))) 4221 return -EFAULT; 4222 return 0; 4223 } 4224 4225 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4226 void __user *argp) 4227 { 4228 u64 transid; 4229 4230 btrfs_warn(fs_info, 4231 "WAIT_SYNC ioctl is deprecated and will be removed in kernel 5.7"); 4232 4233 if (argp) { 4234 if (copy_from_user(&transid, argp, sizeof(transid))) 4235 return -EFAULT; 4236 } else { 4237 transid = 0; /* current trans */ 4238 } 4239 return btrfs_wait_for_commit(fs_info, transid); 4240 } 4241 4242 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4243 { 4244 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4245 struct btrfs_ioctl_scrub_args *sa; 4246 int ret; 4247 4248 if (!capable(CAP_SYS_ADMIN)) 4249 return -EPERM; 4250 4251 sa = memdup_user(arg, sizeof(*sa)); 4252 if (IS_ERR(sa)) 4253 return PTR_ERR(sa); 4254 4255 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4256 ret = mnt_want_write_file(file); 4257 if (ret) 4258 goto out; 4259 } 4260 4261 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4262 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4263 0); 4264 4265 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4266 ret = -EFAULT; 4267 4268 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4269 mnt_drop_write_file(file); 4270 out: 4271 kfree(sa); 4272 return ret; 4273 } 4274 4275 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4276 { 4277 if (!capable(CAP_SYS_ADMIN)) 4278 return -EPERM; 4279 4280 return btrfs_scrub_cancel(fs_info); 4281 } 4282 4283 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4284 void __user *arg) 4285 { 4286 struct btrfs_ioctl_scrub_args *sa; 4287 int ret; 4288 4289 if (!capable(CAP_SYS_ADMIN)) 4290 return -EPERM; 4291 4292 sa = memdup_user(arg, sizeof(*sa)); 4293 if (IS_ERR(sa)) 4294 return PTR_ERR(sa); 4295 4296 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4297 4298 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4299 ret = -EFAULT; 4300 4301 kfree(sa); 4302 return ret; 4303 } 4304 4305 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4306 void __user *arg) 4307 { 4308 struct btrfs_ioctl_get_dev_stats *sa; 4309 int ret; 4310 4311 sa = memdup_user(arg, sizeof(*sa)); 4312 if (IS_ERR(sa)) 4313 return PTR_ERR(sa); 4314 4315 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4316 kfree(sa); 4317 return -EPERM; 4318 } 4319 4320 ret = btrfs_get_dev_stats(fs_info, sa); 4321 4322 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 4323 ret = -EFAULT; 4324 4325 kfree(sa); 4326 return ret; 4327 } 4328 4329 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4330 void __user *arg) 4331 { 4332 struct btrfs_ioctl_dev_replace_args *p; 4333 int ret; 4334 4335 if (!capable(CAP_SYS_ADMIN)) 4336 return -EPERM; 4337 4338 p = memdup_user(arg, sizeof(*p)); 4339 if (IS_ERR(p)) 4340 return PTR_ERR(p); 4341 4342 switch (p->cmd) { 4343 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4344 if (sb_rdonly(fs_info->sb)) { 4345 ret = -EROFS; 4346 goto out; 4347 } 4348 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4349 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4350 } else { 4351 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4352 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4353 } 4354 break; 4355 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4356 btrfs_dev_replace_status(fs_info, p); 4357 ret = 0; 4358 break; 4359 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4360 p->result = btrfs_dev_replace_cancel(fs_info); 4361 ret = 0; 4362 break; 4363 default: 4364 ret = -EINVAL; 4365 break; 4366 } 4367 4368 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 4369 ret = -EFAULT; 4370 out: 4371 kfree(p); 4372 return ret; 4373 } 4374 4375 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4376 { 4377 int ret = 0; 4378 int i; 4379 u64 rel_ptr; 4380 int size; 4381 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4382 struct inode_fs_paths *ipath = NULL; 4383 struct btrfs_path *path; 4384 4385 if (!capable(CAP_DAC_READ_SEARCH)) 4386 return -EPERM; 4387 4388 path = btrfs_alloc_path(); 4389 if (!path) { 4390 ret = -ENOMEM; 4391 goto out; 4392 } 4393 4394 ipa = memdup_user(arg, sizeof(*ipa)); 4395 if (IS_ERR(ipa)) { 4396 ret = PTR_ERR(ipa); 4397 ipa = NULL; 4398 goto out; 4399 } 4400 4401 size = min_t(u32, ipa->size, 4096); 4402 ipath = init_ipath(size, root, path); 4403 if (IS_ERR(ipath)) { 4404 ret = PTR_ERR(ipath); 4405 ipath = NULL; 4406 goto out; 4407 } 4408 4409 ret = paths_from_inode(ipa->inum, ipath); 4410 if (ret < 0) 4411 goto out; 4412 4413 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4414 rel_ptr = ipath->fspath->val[i] - 4415 (u64)(unsigned long)ipath->fspath->val; 4416 ipath->fspath->val[i] = rel_ptr; 4417 } 4418 4419 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4420 ipath->fspath, size); 4421 if (ret) { 4422 ret = -EFAULT; 4423 goto out; 4424 } 4425 4426 out: 4427 btrfs_free_path(path); 4428 free_ipath(ipath); 4429 kfree(ipa); 4430 4431 return ret; 4432 } 4433 4434 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4435 { 4436 struct btrfs_data_container *inodes = ctx; 4437 const size_t c = 3 * sizeof(u64); 4438 4439 if (inodes->bytes_left >= c) { 4440 inodes->bytes_left -= c; 4441 inodes->val[inodes->elem_cnt] = inum; 4442 inodes->val[inodes->elem_cnt + 1] = offset; 4443 inodes->val[inodes->elem_cnt + 2] = root; 4444 inodes->elem_cnt += 3; 4445 } else { 4446 inodes->bytes_missing += c - inodes->bytes_left; 4447 inodes->bytes_left = 0; 4448 inodes->elem_missed += 3; 4449 } 4450 4451 return 0; 4452 } 4453 4454 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4455 void __user *arg, int version) 4456 { 4457 int ret = 0; 4458 int size; 4459 struct btrfs_ioctl_logical_ino_args *loi; 4460 struct btrfs_data_container *inodes = NULL; 4461 struct btrfs_path *path = NULL; 4462 bool ignore_offset; 4463 4464 if (!capable(CAP_SYS_ADMIN)) 4465 return -EPERM; 4466 4467 loi = memdup_user(arg, sizeof(*loi)); 4468 if (IS_ERR(loi)) 4469 return PTR_ERR(loi); 4470 4471 if (version == 1) { 4472 ignore_offset = false; 4473 size = min_t(u32, loi->size, SZ_64K); 4474 } else { 4475 /* All reserved bits must be 0 for now */ 4476 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4477 ret = -EINVAL; 4478 goto out_loi; 4479 } 4480 /* Only accept flags we have defined so far */ 4481 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4482 ret = -EINVAL; 4483 goto out_loi; 4484 } 4485 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4486 size = min_t(u32, loi->size, SZ_16M); 4487 } 4488 4489 path = btrfs_alloc_path(); 4490 if (!path) { 4491 ret = -ENOMEM; 4492 goto out; 4493 } 4494 4495 inodes = init_data_container(size); 4496 if (IS_ERR(inodes)) { 4497 ret = PTR_ERR(inodes); 4498 inodes = NULL; 4499 goto out; 4500 } 4501 4502 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4503 build_ino_list, inodes, ignore_offset); 4504 if (ret == -EINVAL) 4505 ret = -ENOENT; 4506 if (ret < 0) 4507 goto out; 4508 4509 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4510 size); 4511 if (ret) 4512 ret = -EFAULT; 4513 4514 out: 4515 btrfs_free_path(path); 4516 kvfree(inodes); 4517 out_loi: 4518 kfree(loi); 4519 4520 return ret; 4521 } 4522 4523 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4524 struct btrfs_ioctl_balance_args *bargs) 4525 { 4526 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4527 4528 bargs->flags = bctl->flags; 4529 4530 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4531 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4532 if (atomic_read(&fs_info->balance_pause_req)) 4533 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4534 if (atomic_read(&fs_info->balance_cancel_req)) 4535 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4536 4537 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4538 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4539 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4540 4541 spin_lock(&fs_info->balance_lock); 4542 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4543 spin_unlock(&fs_info->balance_lock); 4544 } 4545 4546 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4547 { 4548 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4549 struct btrfs_fs_info *fs_info = root->fs_info; 4550 struct btrfs_ioctl_balance_args *bargs; 4551 struct btrfs_balance_control *bctl; 4552 bool need_unlock; /* for mut. excl. ops lock */ 4553 int ret; 4554 4555 if (!capable(CAP_SYS_ADMIN)) 4556 return -EPERM; 4557 4558 ret = mnt_want_write_file(file); 4559 if (ret) 4560 return ret; 4561 4562 again: 4563 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4564 mutex_lock(&fs_info->balance_mutex); 4565 need_unlock = true; 4566 goto locked; 4567 } 4568 4569 /* 4570 * mut. excl. ops lock is locked. Three possibilities: 4571 * (1) some other op is running 4572 * (2) balance is running 4573 * (3) balance is paused -- special case (think resume) 4574 */ 4575 mutex_lock(&fs_info->balance_mutex); 4576 if (fs_info->balance_ctl) { 4577 /* this is either (2) or (3) */ 4578 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4579 mutex_unlock(&fs_info->balance_mutex); 4580 /* 4581 * Lock released to allow other waiters to continue, 4582 * we'll reexamine the status again. 4583 */ 4584 mutex_lock(&fs_info->balance_mutex); 4585 4586 if (fs_info->balance_ctl && 4587 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4588 /* this is (3) */ 4589 need_unlock = false; 4590 goto locked; 4591 } 4592 4593 mutex_unlock(&fs_info->balance_mutex); 4594 goto again; 4595 } else { 4596 /* this is (2) */ 4597 mutex_unlock(&fs_info->balance_mutex); 4598 ret = -EINPROGRESS; 4599 goto out; 4600 } 4601 } else { 4602 /* this is (1) */ 4603 mutex_unlock(&fs_info->balance_mutex); 4604 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4605 goto out; 4606 } 4607 4608 locked: 4609 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 4610 4611 if (arg) { 4612 bargs = memdup_user(arg, sizeof(*bargs)); 4613 if (IS_ERR(bargs)) { 4614 ret = PTR_ERR(bargs); 4615 goto out_unlock; 4616 } 4617 4618 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4619 if (!fs_info->balance_ctl) { 4620 ret = -ENOTCONN; 4621 goto out_bargs; 4622 } 4623 4624 bctl = fs_info->balance_ctl; 4625 spin_lock(&fs_info->balance_lock); 4626 bctl->flags |= BTRFS_BALANCE_RESUME; 4627 spin_unlock(&fs_info->balance_lock); 4628 4629 goto do_balance; 4630 } 4631 } else { 4632 bargs = NULL; 4633 } 4634 4635 if (fs_info->balance_ctl) { 4636 ret = -EINPROGRESS; 4637 goto out_bargs; 4638 } 4639 4640 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4641 if (!bctl) { 4642 ret = -ENOMEM; 4643 goto out_bargs; 4644 } 4645 4646 if (arg) { 4647 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4648 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4649 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4650 4651 bctl->flags = bargs->flags; 4652 } else { 4653 /* balance everything - no filters */ 4654 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4655 } 4656 4657 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4658 ret = -EINVAL; 4659 goto out_bctl; 4660 } 4661 4662 do_balance: 4663 /* 4664 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to 4665 * btrfs_balance. bctl is freed in reset_balance_state, or, if 4666 * restriper was paused all the way until unmount, in free_fs_info. 4667 * The flag should be cleared after reset_balance_state. 4668 */ 4669 need_unlock = false; 4670 4671 ret = btrfs_balance(fs_info, bctl, bargs); 4672 bctl = NULL; 4673 4674 if ((ret == 0 || ret == -ECANCELED) && arg) { 4675 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4676 ret = -EFAULT; 4677 } 4678 4679 out_bctl: 4680 kfree(bctl); 4681 out_bargs: 4682 kfree(bargs); 4683 out_unlock: 4684 mutex_unlock(&fs_info->balance_mutex); 4685 if (need_unlock) 4686 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4687 out: 4688 mnt_drop_write_file(file); 4689 return ret; 4690 } 4691 4692 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4693 { 4694 if (!capable(CAP_SYS_ADMIN)) 4695 return -EPERM; 4696 4697 switch (cmd) { 4698 case BTRFS_BALANCE_CTL_PAUSE: 4699 return btrfs_pause_balance(fs_info); 4700 case BTRFS_BALANCE_CTL_CANCEL: 4701 return btrfs_cancel_balance(fs_info); 4702 } 4703 4704 return -EINVAL; 4705 } 4706 4707 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4708 void __user *arg) 4709 { 4710 struct btrfs_ioctl_balance_args *bargs; 4711 int ret = 0; 4712 4713 if (!capable(CAP_SYS_ADMIN)) 4714 return -EPERM; 4715 4716 mutex_lock(&fs_info->balance_mutex); 4717 if (!fs_info->balance_ctl) { 4718 ret = -ENOTCONN; 4719 goto out; 4720 } 4721 4722 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4723 if (!bargs) { 4724 ret = -ENOMEM; 4725 goto out; 4726 } 4727 4728 btrfs_update_ioctl_balance_args(fs_info, bargs); 4729 4730 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4731 ret = -EFAULT; 4732 4733 kfree(bargs); 4734 out: 4735 mutex_unlock(&fs_info->balance_mutex); 4736 return ret; 4737 } 4738 4739 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4740 { 4741 struct inode *inode = file_inode(file); 4742 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4743 struct btrfs_ioctl_quota_ctl_args *sa; 4744 int ret; 4745 4746 if (!capable(CAP_SYS_ADMIN)) 4747 return -EPERM; 4748 4749 ret = mnt_want_write_file(file); 4750 if (ret) 4751 return ret; 4752 4753 sa = memdup_user(arg, sizeof(*sa)); 4754 if (IS_ERR(sa)) { 4755 ret = PTR_ERR(sa); 4756 goto drop_write; 4757 } 4758 4759 down_write(&fs_info->subvol_sem); 4760 4761 switch (sa->cmd) { 4762 case BTRFS_QUOTA_CTL_ENABLE: 4763 ret = btrfs_quota_enable(fs_info); 4764 break; 4765 case BTRFS_QUOTA_CTL_DISABLE: 4766 ret = btrfs_quota_disable(fs_info); 4767 break; 4768 default: 4769 ret = -EINVAL; 4770 break; 4771 } 4772 4773 kfree(sa); 4774 up_write(&fs_info->subvol_sem); 4775 drop_write: 4776 mnt_drop_write_file(file); 4777 return ret; 4778 } 4779 4780 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4781 { 4782 struct inode *inode = file_inode(file); 4783 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4784 struct btrfs_root *root = BTRFS_I(inode)->root; 4785 struct btrfs_ioctl_qgroup_assign_args *sa; 4786 struct btrfs_trans_handle *trans; 4787 int ret; 4788 int err; 4789 4790 if (!capable(CAP_SYS_ADMIN)) 4791 return -EPERM; 4792 4793 ret = mnt_want_write_file(file); 4794 if (ret) 4795 return ret; 4796 4797 sa = memdup_user(arg, sizeof(*sa)); 4798 if (IS_ERR(sa)) { 4799 ret = PTR_ERR(sa); 4800 goto drop_write; 4801 } 4802 4803 trans = btrfs_join_transaction(root); 4804 if (IS_ERR(trans)) { 4805 ret = PTR_ERR(trans); 4806 goto out; 4807 } 4808 4809 if (sa->assign) { 4810 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4811 } else { 4812 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4813 } 4814 4815 /* update qgroup status and info */ 4816 err = btrfs_run_qgroups(trans); 4817 if (err < 0) 4818 btrfs_handle_fs_error(fs_info, err, 4819 "failed to update qgroup status and info"); 4820 err = btrfs_end_transaction(trans); 4821 if (err && !ret) 4822 ret = err; 4823 4824 out: 4825 kfree(sa); 4826 drop_write: 4827 mnt_drop_write_file(file); 4828 return ret; 4829 } 4830 4831 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4832 { 4833 struct inode *inode = file_inode(file); 4834 struct btrfs_root *root = BTRFS_I(inode)->root; 4835 struct btrfs_ioctl_qgroup_create_args *sa; 4836 struct btrfs_trans_handle *trans; 4837 int ret; 4838 int err; 4839 4840 if (!capable(CAP_SYS_ADMIN)) 4841 return -EPERM; 4842 4843 ret = mnt_want_write_file(file); 4844 if (ret) 4845 return ret; 4846 4847 sa = memdup_user(arg, sizeof(*sa)); 4848 if (IS_ERR(sa)) { 4849 ret = PTR_ERR(sa); 4850 goto drop_write; 4851 } 4852 4853 if (!sa->qgroupid) { 4854 ret = -EINVAL; 4855 goto out; 4856 } 4857 4858 trans = btrfs_join_transaction(root); 4859 if (IS_ERR(trans)) { 4860 ret = PTR_ERR(trans); 4861 goto out; 4862 } 4863 4864 if (sa->create) { 4865 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4866 } else { 4867 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4868 } 4869 4870 err = btrfs_end_transaction(trans); 4871 if (err && !ret) 4872 ret = err; 4873 4874 out: 4875 kfree(sa); 4876 drop_write: 4877 mnt_drop_write_file(file); 4878 return ret; 4879 } 4880 4881 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4882 { 4883 struct inode *inode = file_inode(file); 4884 struct btrfs_root *root = BTRFS_I(inode)->root; 4885 struct btrfs_ioctl_qgroup_limit_args *sa; 4886 struct btrfs_trans_handle *trans; 4887 int ret; 4888 int err; 4889 u64 qgroupid; 4890 4891 if (!capable(CAP_SYS_ADMIN)) 4892 return -EPERM; 4893 4894 ret = mnt_want_write_file(file); 4895 if (ret) 4896 return ret; 4897 4898 sa = memdup_user(arg, sizeof(*sa)); 4899 if (IS_ERR(sa)) { 4900 ret = PTR_ERR(sa); 4901 goto drop_write; 4902 } 4903 4904 trans = btrfs_join_transaction(root); 4905 if (IS_ERR(trans)) { 4906 ret = PTR_ERR(trans); 4907 goto out; 4908 } 4909 4910 qgroupid = sa->qgroupid; 4911 if (!qgroupid) { 4912 /* take the current subvol as qgroup */ 4913 qgroupid = root->root_key.objectid; 4914 } 4915 4916 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4917 4918 err = btrfs_end_transaction(trans); 4919 if (err && !ret) 4920 ret = err; 4921 4922 out: 4923 kfree(sa); 4924 drop_write: 4925 mnt_drop_write_file(file); 4926 return ret; 4927 } 4928 4929 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4930 { 4931 struct inode *inode = file_inode(file); 4932 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4933 struct btrfs_ioctl_quota_rescan_args *qsa; 4934 int ret; 4935 4936 if (!capable(CAP_SYS_ADMIN)) 4937 return -EPERM; 4938 4939 ret = mnt_want_write_file(file); 4940 if (ret) 4941 return ret; 4942 4943 qsa = memdup_user(arg, sizeof(*qsa)); 4944 if (IS_ERR(qsa)) { 4945 ret = PTR_ERR(qsa); 4946 goto drop_write; 4947 } 4948 4949 if (qsa->flags) { 4950 ret = -EINVAL; 4951 goto out; 4952 } 4953 4954 ret = btrfs_qgroup_rescan(fs_info); 4955 4956 out: 4957 kfree(qsa); 4958 drop_write: 4959 mnt_drop_write_file(file); 4960 return ret; 4961 } 4962 4963 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 4964 { 4965 struct inode *inode = file_inode(file); 4966 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4967 struct btrfs_ioctl_quota_rescan_args *qsa; 4968 int ret = 0; 4969 4970 if (!capable(CAP_SYS_ADMIN)) 4971 return -EPERM; 4972 4973 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4974 if (!qsa) 4975 return -ENOMEM; 4976 4977 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4978 qsa->flags = 1; 4979 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4980 } 4981 4982 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4983 ret = -EFAULT; 4984 4985 kfree(qsa); 4986 return ret; 4987 } 4988 4989 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 4990 { 4991 struct inode *inode = file_inode(file); 4992 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4993 4994 if (!capable(CAP_SYS_ADMIN)) 4995 return -EPERM; 4996 4997 return btrfs_qgroup_wait_for_completion(fs_info, true); 4998 } 4999 5000 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5001 struct btrfs_ioctl_received_subvol_args *sa) 5002 { 5003 struct inode *inode = file_inode(file); 5004 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5005 struct btrfs_root *root = BTRFS_I(inode)->root; 5006 struct btrfs_root_item *root_item = &root->root_item; 5007 struct btrfs_trans_handle *trans; 5008 struct timespec64 ct = current_time(inode); 5009 int ret = 0; 5010 int received_uuid_changed; 5011 5012 if (!inode_owner_or_capable(inode)) 5013 return -EPERM; 5014 5015 ret = mnt_want_write_file(file); 5016 if (ret < 0) 5017 return ret; 5018 5019 down_write(&fs_info->subvol_sem); 5020 5021 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5022 ret = -EINVAL; 5023 goto out; 5024 } 5025 5026 if (btrfs_root_readonly(root)) { 5027 ret = -EROFS; 5028 goto out; 5029 } 5030 5031 /* 5032 * 1 - root item 5033 * 2 - uuid items (received uuid + subvol uuid) 5034 */ 5035 trans = btrfs_start_transaction(root, 3); 5036 if (IS_ERR(trans)) { 5037 ret = PTR_ERR(trans); 5038 trans = NULL; 5039 goto out; 5040 } 5041 5042 sa->rtransid = trans->transid; 5043 sa->rtime.sec = ct.tv_sec; 5044 sa->rtime.nsec = ct.tv_nsec; 5045 5046 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5047 BTRFS_UUID_SIZE); 5048 if (received_uuid_changed && 5049 !btrfs_is_empty_uuid(root_item->received_uuid)) { 5050 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 5051 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5052 root->root_key.objectid); 5053 if (ret && ret != -ENOENT) { 5054 btrfs_abort_transaction(trans, ret); 5055 btrfs_end_transaction(trans); 5056 goto out; 5057 } 5058 } 5059 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5060 btrfs_set_root_stransid(root_item, sa->stransid); 5061 btrfs_set_root_rtransid(root_item, sa->rtransid); 5062 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5063 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5064 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5065 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5066 5067 ret = btrfs_update_root(trans, fs_info->tree_root, 5068 &root->root_key, &root->root_item); 5069 if (ret < 0) { 5070 btrfs_end_transaction(trans); 5071 goto out; 5072 } 5073 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5074 ret = btrfs_uuid_tree_add(trans, sa->uuid, 5075 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5076 root->root_key.objectid); 5077 if (ret < 0 && ret != -EEXIST) { 5078 btrfs_abort_transaction(trans, ret); 5079 btrfs_end_transaction(trans); 5080 goto out; 5081 } 5082 } 5083 ret = btrfs_commit_transaction(trans); 5084 out: 5085 up_write(&fs_info->subvol_sem); 5086 mnt_drop_write_file(file); 5087 return ret; 5088 } 5089 5090 #ifdef CONFIG_64BIT 5091 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5092 void __user *arg) 5093 { 5094 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5095 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5096 int ret = 0; 5097 5098 args32 = memdup_user(arg, sizeof(*args32)); 5099 if (IS_ERR(args32)) 5100 return PTR_ERR(args32); 5101 5102 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5103 if (!args64) { 5104 ret = -ENOMEM; 5105 goto out; 5106 } 5107 5108 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5109 args64->stransid = args32->stransid; 5110 args64->rtransid = args32->rtransid; 5111 args64->stime.sec = args32->stime.sec; 5112 args64->stime.nsec = args32->stime.nsec; 5113 args64->rtime.sec = args32->rtime.sec; 5114 args64->rtime.nsec = args32->rtime.nsec; 5115 args64->flags = args32->flags; 5116 5117 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5118 if (ret) 5119 goto out; 5120 5121 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5122 args32->stransid = args64->stransid; 5123 args32->rtransid = args64->rtransid; 5124 args32->stime.sec = args64->stime.sec; 5125 args32->stime.nsec = args64->stime.nsec; 5126 args32->rtime.sec = args64->rtime.sec; 5127 args32->rtime.nsec = args64->rtime.nsec; 5128 args32->flags = args64->flags; 5129 5130 ret = copy_to_user(arg, args32, sizeof(*args32)); 5131 if (ret) 5132 ret = -EFAULT; 5133 5134 out: 5135 kfree(args32); 5136 kfree(args64); 5137 return ret; 5138 } 5139 #endif 5140 5141 static long btrfs_ioctl_set_received_subvol(struct file *file, 5142 void __user *arg) 5143 { 5144 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5145 int ret = 0; 5146 5147 sa = memdup_user(arg, sizeof(*sa)); 5148 if (IS_ERR(sa)) 5149 return PTR_ERR(sa); 5150 5151 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5152 5153 if (ret) 5154 goto out; 5155 5156 ret = copy_to_user(arg, sa, sizeof(*sa)); 5157 if (ret) 5158 ret = -EFAULT; 5159 5160 out: 5161 kfree(sa); 5162 return ret; 5163 } 5164 5165 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5166 { 5167 struct inode *inode = file_inode(file); 5168 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5169 size_t len; 5170 int ret; 5171 char label[BTRFS_LABEL_SIZE]; 5172 5173 spin_lock(&fs_info->super_lock); 5174 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5175 spin_unlock(&fs_info->super_lock); 5176 5177 len = strnlen(label, BTRFS_LABEL_SIZE); 5178 5179 if (len == BTRFS_LABEL_SIZE) { 5180 btrfs_warn(fs_info, 5181 "label is too long, return the first %zu bytes", 5182 --len); 5183 } 5184 5185 ret = copy_to_user(arg, label, len); 5186 5187 return ret ? -EFAULT : 0; 5188 } 5189 5190 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5191 { 5192 struct inode *inode = file_inode(file); 5193 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5194 struct btrfs_root *root = BTRFS_I(inode)->root; 5195 struct btrfs_super_block *super_block = fs_info->super_copy; 5196 struct btrfs_trans_handle *trans; 5197 char label[BTRFS_LABEL_SIZE]; 5198 int ret; 5199 5200 if (!capable(CAP_SYS_ADMIN)) 5201 return -EPERM; 5202 5203 if (copy_from_user(label, arg, sizeof(label))) 5204 return -EFAULT; 5205 5206 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5207 btrfs_err(fs_info, 5208 "unable to set label with more than %d bytes", 5209 BTRFS_LABEL_SIZE - 1); 5210 return -EINVAL; 5211 } 5212 5213 ret = mnt_want_write_file(file); 5214 if (ret) 5215 return ret; 5216 5217 trans = btrfs_start_transaction(root, 0); 5218 if (IS_ERR(trans)) { 5219 ret = PTR_ERR(trans); 5220 goto out_unlock; 5221 } 5222 5223 spin_lock(&fs_info->super_lock); 5224 strcpy(super_block->label, label); 5225 spin_unlock(&fs_info->super_lock); 5226 ret = btrfs_commit_transaction(trans); 5227 5228 out_unlock: 5229 mnt_drop_write_file(file); 5230 return ret; 5231 } 5232 5233 #define INIT_FEATURE_FLAGS(suffix) \ 5234 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5235 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5236 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5237 5238 int btrfs_ioctl_get_supported_features(void __user *arg) 5239 { 5240 static const struct btrfs_ioctl_feature_flags features[3] = { 5241 INIT_FEATURE_FLAGS(SUPP), 5242 INIT_FEATURE_FLAGS(SAFE_SET), 5243 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5244 }; 5245 5246 if (copy_to_user(arg, &features, sizeof(features))) 5247 return -EFAULT; 5248 5249 return 0; 5250 } 5251 5252 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5253 { 5254 struct inode *inode = file_inode(file); 5255 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5256 struct btrfs_super_block *super_block = fs_info->super_copy; 5257 struct btrfs_ioctl_feature_flags features; 5258 5259 features.compat_flags = btrfs_super_compat_flags(super_block); 5260 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5261 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5262 5263 if (copy_to_user(arg, &features, sizeof(features))) 5264 return -EFAULT; 5265 5266 return 0; 5267 } 5268 5269 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5270 enum btrfs_feature_set set, 5271 u64 change_mask, u64 flags, u64 supported_flags, 5272 u64 safe_set, u64 safe_clear) 5273 { 5274 const char *type = btrfs_feature_set_name(set); 5275 char *names; 5276 u64 disallowed, unsupported; 5277 u64 set_mask = flags & change_mask; 5278 u64 clear_mask = ~flags & change_mask; 5279 5280 unsupported = set_mask & ~supported_flags; 5281 if (unsupported) { 5282 names = btrfs_printable_features(set, unsupported); 5283 if (names) { 5284 btrfs_warn(fs_info, 5285 "this kernel does not support the %s feature bit%s", 5286 names, strchr(names, ',') ? "s" : ""); 5287 kfree(names); 5288 } else 5289 btrfs_warn(fs_info, 5290 "this kernel does not support %s bits 0x%llx", 5291 type, unsupported); 5292 return -EOPNOTSUPP; 5293 } 5294 5295 disallowed = set_mask & ~safe_set; 5296 if (disallowed) { 5297 names = btrfs_printable_features(set, disallowed); 5298 if (names) { 5299 btrfs_warn(fs_info, 5300 "can't set the %s feature bit%s while mounted", 5301 names, strchr(names, ',') ? "s" : ""); 5302 kfree(names); 5303 } else 5304 btrfs_warn(fs_info, 5305 "can't set %s bits 0x%llx while mounted", 5306 type, disallowed); 5307 return -EPERM; 5308 } 5309 5310 disallowed = clear_mask & ~safe_clear; 5311 if (disallowed) { 5312 names = btrfs_printable_features(set, disallowed); 5313 if (names) { 5314 btrfs_warn(fs_info, 5315 "can't clear the %s feature bit%s while mounted", 5316 names, strchr(names, ',') ? "s" : ""); 5317 kfree(names); 5318 } else 5319 btrfs_warn(fs_info, 5320 "can't clear %s bits 0x%llx while mounted", 5321 type, disallowed); 5322 return -EPERM; 5323 } 5324 5325 return 0; 5326 } 5327 5328 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5329 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5330 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5331 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5332 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5333 5334 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5335 { 5336 struct inode *inode = file_inode(file); 5337 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5338 struct btrfs_root *root = BTRFS_I(inode)->root; 5339 struct btrfs_super_block *super_block = fs_info->super_copy; 5340 struct btrfs_ioctl_feature_flags flags[2]; 5341 struct btrfs_trans_handle *trans; 5342 u64 newflags; 5343 int ret; 5344 5345 if (!capable(CAP_SYS_ADMIN)) 5346 return -EPERM; 5347 5348 if (copy_from_user(flags, arg, sizeof(flags))) 5349 return -EFAULT; 5350 5351 /* Nothing to do */ 5352 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5353 !flags[0].incompat_flags) 5354 return 0; 5355 5356 ret = check_feature(fs_info, flags[0].compat_flags, 5357 flags[1].compat_flags, COMPAT); 5358 if (ret) 5359 return ret; 5360 5361 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5362 flags[1].compat_ro_flags, COMPAT_RO); 5363 if (ret) 5364 return ret; 5365 5366 ret = check_feature(fs_info, flags[0].incompat_flags, 5367 flags[1].incompat_flags, INCOMPAT); 5368 if (ret) 5369 return ret; 5370 5371 ret = mnt_want_write_file(file); 5372 if (ret) 5373 return ret; 5374 5375 trans = btrfs_start_transaction(root, 0); 5376 if (IS_ERR(trans)) { 5377 ret = PTR_ERR(trans); 5378 goto out_drop_write; 5379 } 5380 5381 spin_lock(&fs_info->super_lock); 5382 newflags = btrfs_super_compat_flags(super_block); 5383 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5384 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5385 btrfs_set_super_compat_flags(super_block, newflags); 5386 5387 newflags = btrfs_super_compat_ro_flags(super_block); 5388 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5389 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5390 btrfs_set_super_compat_ro_flags(super_block, newflags); 5391 5392 newflags = btrfs_super_incompat_flags(super_block); 5393 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5394 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5395 btrfs_set_super_incompat_flags(super_block, newflags); 5396 spin_unlock(&fs_info->super_lock); 5397 5398 ret = btrfs_commit_transaction(trans); 5399 out_drop_write: 5400 mnt_drop_write_file(file); 5401 5402 return ret; 5403 } 5404 5405 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 5406 { 5407 struct btrfs_ioctl_send_args *arg; 5408 int ret; 5409 5410 if (compat) { 5411 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5412 struct btrfs_ioctl_send_args_32 args32; 5413 5414 ret = copy_from_user(&args32, argp, sizeof(args32)); 5415 if (ret) 5416 return -EFAULT; 5417 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5418 if (!arg) 5419 return -ENOMEM; 5420 arg->send_fd = args32.send_fd; 5421 arg->clone_sources_count = args32.clone_sources_count; 5422 arg->clone_sources = compat_ptr(args32.clone_sources); 5423 arg->parent_root = args32.parent_root; 5424 arg->flags = args32.flags; 5425 memcpy(arg->reserved, args32.reserved, 5426 sizeof(args32.reserved)); 5427 #else 5428 return -ENOTTY; 5429 #endif 5430 } else { 5431 arg = memdup_user(argp, sizeof(*arg)); 5432 if (IS_ERR(arg)) 5433 return PTR_ERR(arg); 5434 } 5435 ret = btrfs_ioctl_send(file, arg); 5436 kfree(arg); 5437 return ret; 5438 } 5439 5440 long btrfs_ioctl(struct file *file, unsigned int 5441 cmd, unsigned long arg) 5442 { 5443 struct inode *inode = file_inode(file); 5444 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5445 struct btrfs_root *root = BTRFS_I(inode)->root; 5446 void __user *argp = (void __user *)arg; 5447 5448 switch (cmd) { 5449 case FS_IOC_GETFLAGS: 5450 return btrfs_ioctl_getflags(file, argp); 5451 case FS_IOC_SETFLAGS: 5452 return btrfs_ioctl_setflags(file, argp); 5453 case FS_IOC_GETVERSION: 5454 return btrfs_ioctl_getversion(file, argp); 5455 case FS_IOC_GETFSLABEL: 5456 return btrfs_ioctl_get_fslabel(file, argp); 5457 case FS_IOC_SETFSLABEL: 5458 return btrfs_ioctl_set_fslabel(file, argp); 5459 case FITRIM: 5460 return btrfs_ioctl_fitrim(file, argp); 5461 case BTRFS_IOC_SNAP_CREATE: 5462 return btrfs_ioctl_snap_create(file, argp, 0); 5463 case BTRFS_IOC_SNAP_CREATE_V2: 5464 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5465 case BTRFS_IOC_SUBVOL_CREATE: 5466 return btrfs_ioctl_snap_create(file, argp, 1); 5467 case BTRFS_IOC_SUBVOL_CREATE_V2: 5468 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5469 case BTRFS_IOC_SNAP_DESTROY: 5470 return btrfs_ioctl_snap_destroy(file, argp); 5471 case BTRFS_IOC_SUBVOL_GETFLAGS: 5472 return btrfs_ioctl_subvol_getflags(file, argp); 5473 case BTRFS_IOC_SUBVOL_SETFLAGS: 5474 return btrfs_ioctl_subvol_setflags(file, argp); 5475 case BTRFS_IOC_DEFAULT_SUBVOL: 5476 return btrfs_ioctl_default_subvol(file, argp); 5477 case BTRFS_IOC_DEFRAG: 5478 return btrfs_ioctl_defrag(file, NULL); 5479 case BTRFS_IOC_DEFRAG_RANGE: 5480 return btrfs_ioctl_defrag(file, argp); 5481 case BTRFS_IOC_RESIZE: 5482 return btrfs_ioctl_resize(file, argp); 5483 case BTRFS_IOC_ADD_DEV: 5484 return btrfs_ioctl_add_dev(fs_info, argp); 5485 case BTRFS_IOC_RM_DEV: 5486 return btrfs_ioctl_rm_dev(file, argp); 5487 case BTRFS_IOC_RM_DEV_V2: 5488 return btrfs_ioctl_rm_dev_v2(file, argp); 5489 case BTRFS_IOC_FS_INFO: 5490 return btrfs_ioctl_fs_info(fs_info, argp); 5491 case BTRFS_IOC_DEV_INFO: 5492 return btrfs_ioctl_dev_info(fs_info, argp); 5493 case BTRFS_IOC_BALANCE: 5494 return btrfs_ioctl_balance(file, NULL); 5495 case BTRFS_IOC_TREE_SEARCH: 5496 return btrfs_ioctl_tree_search(file, argp); 5497 case BTRFS_IOC_TREE_SEARCH_V2: 5498 return btrfs_ioctl_tree_search_v2(file, argp); 5499 case BTRFS_IOC_INO_LOOKUP: 5500 return btrfs_ioctl_ino_lookup(file, argp); 5501 case BTRFS_IOC_INO_PATHS: 5502 return btrfs_ioctl_ino_to_path(root, argp); 5503 case BTRFS_IOC_LOGICAL_INO: 5504 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5505 case BTRFS_IOC_LOGICAL_INO_V2: 5506 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5507 case BTRFS_IOC_SPACE_INFO: 5508 return btrfs_ioctl_space_info(fs_info, argp); 5509 case BTRFS_IOC_SYNC: { 5510 int ret; 5511 5512 ret = btrfs_start_delalloc_roots(fs_info, -1); 5513 if (ret) 5514 return ret; 5515 ret = btrfs_sync_fs(inode->i_sb, 1); 5516 /* 5517 * The transaction thread may want to do more work, 5518 * namely it pokes the cleaner kthread that will start 5519 * processing uncleaned subvols. 5520 */ 5521 wake_up_process(fs_info->transaction_kthread); 5522 return ret; 5523 } 5524 case BTRFS_IOC_START_SYNC: 5525 return btrfs_ioctl_start_sync(root, argp); 5526 case BTRFS_IOC_WAIT_SYNC: 5527 return btrfs_ioctl_wait_sync(fs_info, argp); 5528 case BTRFS_IOC_SCRUB: 5529 return btrfs_ioctl_scrub(file, argp); 5530 case BTRFS_IOC_SCRUB_CANCEL: 5531 return btrfs_ioctl_scrub_cancel(fs_info); 5532 case BTRFS_IOC_SCRUB_PROGRESS: 5533 return btrfs_ioctl_scrub_progress(fs_info, argp); 5534 case BTRFS_IOC_BALANCE_V2: 5535 return btrfs_ioctl_balance(file, argp); 5536 case BTRFS_IOC_BALANCE_CTL: 5537 return btrfs_ioctl_balance_ctl(fs_info, arg); 5538 case BTRFS_IOC_BALANCE_PROGRESS: 5539 return btrfs_ioctl_balance_progress(fs_info, argp); 5540 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5541 return btrfs_ioctl_set_received_subvol(file, argp); 5542 #ifdef CONFIG_64BIT 5543 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5544 return btrfs_ioctl_set_received_subvol_32(file, argp); 5545 #endif 5546 case BTRFS_IOC_SEND: 5547 return _btrfs_ioctl_send(file, argp, false); 5548 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5549 case BTRFS_IOC_SEND_32: 5550 return _btrfs_ioctl_send(file, argp, true); 5551 #endif 5552 case BTRFS_IOC_GET_DEV_STATS: 5553 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5554 case BTRFS_IOC_QUOTA_CTL: 5555 return btrfs_ioctl_quota_ctl(file, argp); 5556 case BTRFS_IOC_QGROUP_ASSIGN: 5557 return btrfs_ioctl_qgroup_assign(file, argp); 5558 case BTRFS_IOC_QGROUP_CREATE: 5559 return btrfs_ioctl_qgroup_create(file, argp); 5560 case BTRFS_IOC_QGROUP_LIMIT: 5561 return btrfs_ioctl_qgroup_limit(file, argp); 5562 case BTRFS_IOC_QUOTA_RESCAN: 5563 return btrfs_ioctl_quota_rescan(file, argp); 5564 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5565 return btrfs_ioctl_quota_rescan_status(file, argp); 5566 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5567 return btrfs_ioctl_quota_rescan_wait(file, argp); 5568 case BTRFS_IOC_DEV_REPLACE: 5569 return btrfs_ioctl_dev_replace(fs_info, argp); 5570 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5571 return btrfs_ioctl_get_supported_features(argp); 5572 case BTRFS_IOC_GET_FEATURES: 5573 return btrfs_ioctl_get_features(file, argp); 5574 case BTRFS_IOC_SET_FEATURES: 5575 return btrfs_ioctl_set_features(file, argp); 5576 case FS_IOC_FSGETXATTR: 5577 return btrfs_ioctl_fsgetxattr(file, argp); 5578 case FS_IOC_FSSETXATTR: 5579 return btrfs_ioctl_fssetxattr(file, argp); 5580 case BTRFS_IOC_GET_SUBVOL_INFO: 5581 return btrfs_ioctl_get_subvol_info(file, argp); 5582 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5583 return btrfs_ioctl_get_subvol_rootref(file, argp); 5584 case BTRFS_IOC_INO_LOOKUP_USER: 5585 return btrfs_ioctl_ino_lookup_user(file, argp); 5586 } 5587 5588 return -ENOTTY; 5589 } 5590 5591 #ifdef CONFIG_COMPAT 5592 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5593 { 5594 /* 5595 * These all access 32-bit values anyway so no further 5596 * handling is necessary. 5597 */ 5598 switch (cmd) { 5599 case FS_IOC32_GETFLAGS: 5600 cmd = FS_IOC_GETFLAGS; 5601 break; 5602 case FS_IOC32_SETFLAGS: 5603 cmd = FS_IOC_SETFLAGS; 5604 break; 5605 case FS_IOC32_GETVERSION: 5606 cmd = FS_IOC_GETVERSION; 5607 break; 5608 } 5609 5610 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5611 } 5612 #endif 5613