xref: /linux/fs/btrfs/ioctl.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/mm.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
46 #include <linux/iversion.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 #include "tree-log.h"
63 #include "compression.h"
64 
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67  * structures are incorrect, as the timespec structure from userspace
68  * is 4 bytes too small. We define these alternatives here to teach
69  * the kernel about the 32-bit struct packing.
70  */
71 struct btrfs_ioctl_timespec_32 {
72 	__u64 sec;
73 	__u32 nsec;
74 } __attribute__ ((__packed__));
75 
76 struct btrfs_ioctl_received_subvol_args_32 {
77 	char	uuid[BTRFS_UUID_SIZE];	/* in */
78 	__u64	stransid;		/* in */
79 	__u64	rtransid;		/* out */
80 	struct btrfs_ioctl_timespec_32 stime; /* in */
81 	struct btrfs_ioctl_timespec_32 rtime; /* out */
82 	__u64	flags;			/* in */
83 	__u64	reserved[16];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 				struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89 
90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91 struct btrfs_ioctl_send_args_32 {
92 	__s64 send_fd;			/* in */
93 	__u64 clone_sources_count;	/* in */
94 	compat_uptr_t clone_sources;	/* in */
95 	__u64 parent_root;		/* in */
96 	__u64 flags;			/* in */
97 	__u64 reserved[4];		/* in */
98 } __attribute__ ((__packed__));
99 
100 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
101 			       struct btrfs_ioctl_send_args_32)
102 #endif
103 
104 static int btrfs_clone(struct inode *src, struct inode *inode,
105 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
106 		       int no_time_update);
107 
108 /* Mask out flags that are inappropriate for the given type of inode. */
109 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
110 {
111 	if (S_ISDIR(mode))
112 		return flags;
113 	else if (S_ISREG(mode))
114 		return flags & ~FS_DIRSYNC_FL;
115 	else
116 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
117 }
118 
119 /*
120  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
121  */
122 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
123 {
124 	unsigned int iflags = 0;
125 
126 	if (flags & BTRFS_INODE_SYNC)
127 		iflags |= FS_SYNC_FL;
128 	if (flags & BTRFS_INODE_IMMUTABLE)
129 		iflags |= FS_IMMUTABLE_FL;
130 	if (flags & BTRFS_INODE_APPEND)
131 		iflags |= FS_APPEND_FL;
132 	if (flags & BTRFS_INODE_NODUMP)
133 		iflags |= FS_NODUMP_FL;
134 	if (flags & BTRFS_INODE_NOATIME)
135 		iflags |= FS_NOATIME_FL;
136 	if (flags & BTRFS_INODE_DIRSYNC)
137 		iflags |= FS_DIRSYNC_FL;
138 	if (flags & BTRFS_INODE_NODATACOW)
139 		iflags |= FS_NOCOW_FL;
140 
141 	if (flags & BTRFS_INODE_NOCOMPRESS)
142 		iflags |= FS_NOCOMP_FL;
143 	else if (flags & BTRFS_INODE_COMPRESS)
144 		iflags |= FS_COMPR_FL;
145 
146 	return iflags;
147 }
148 
149 /*
150  * Update inode->i_flags based on the btrfs internal flags.
151  */
152 void btrfs_update_iflags(struct inode *inode)
153 {
154 	struct btrfs_inode *ip = BTRFS_I(inode);
155 	unsigned int new_fl = 0;
156 
157 	if (ip->flags & BTRFS_INODE_SYNC)
158 		new_fl |= S_SYNC;
159 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
160 		new_fl |= S_IMMUTABLE;
161 	if (ip->flags & BTRFS_INODE_APPEND)
162 		new_fl |= S_APPEND;
163 	if (ip->flags & BTRFS_INODE_NOATIME)
164 		new_fl |= S_NOATIME;
165 	if (ip->flags & BTRFS_INODE_DIRSYNC)
166 		new_fl |= S_DIRSYNC;
167 
168 	set_mask_bits(&inode->i_flags,
169 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
170 		      new_fl);
171 }
172 
173 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
174 {
175 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
176 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
177 
178 	if (copy_to_user(arg, &flags, sizeof(flags)))
179 		return -EFAULT;
180 	return 0;
181 }
182 
183 static int check_flags(unsigned int flags)
184 {
185 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
186 		      FS_NOATIME_FL | FS_NODUMP_FL | \
187 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
188 		      FS_NOCOMP_FL | FS_COMPR_FL |
189 		      FS_NOCOW_FL))
190 		return -EOPNOTSUPP;
191 
192 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
193 		return -EINVAL;
194 
195 	return 0;
196 }
197 
198 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
199 {
200 	struct inode *inode = file_inode(file);
201 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
202 	struct btrfs_inode *ip = BTRFS_I(inode);
203 	struct btrfs_root *root = ip->root;
204 	struct btrfs_trans_handle *trans;
205 	unsigned int flags, oldflags;
206 	int ret;
207 	u64 ip_oldflags;
208 	unsigned int i_oldflags;
209 	umode_t mode;
210 
211 	if (!inode_owner_or_capable(inode))
212 		return -EPERM;
213 
214 	if (btrfs_root_readonly(root))
215 		return -EROFS;
216 
217 	if (copy_from_user(&flags, arg, sizeof(flags)))
218 		return -EFAULT;
219 
220 	ret = check_flags(flags);
221 	if (ret)
222 		return ret;
223 
224 	ret = mnt_want_write_file(file);
225 	if (ret)
226 		return ret;
227 
228 	inode_lock(inode);
229 
230 	ip_oldflags = ip->flags;
231 	i_oldflags = inode->i_flags;
232 	mode = inode->i_mode;
233 
234 	flags = btrfs_mask_flags(inode->i_mode, flags);
235 	oldflags = btrfs_flags_to_ioctl(ip->flags);
236 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
237 		if (!capable(CAP_LINUX_IMMUTABLE)) {
238 			ret = -EPERM;
239 			goto out_unlock;
240 		}
241 	}
242 
243 	if (flags & FS_SYNC_FL)
244 		ip->flags |= BTRFS_INODE_SYNC;
245 	else
246 		ip->flags &= ~BTRFS_INODE_SYNC;
247 	if (flags & FS_IMMUTABLE_FL)
248 		ip->flags |= BTRFS_INODE_IMMUTABLE;
249 	else
250 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
251 	if (flags & FS_APPEND_FL)
252 		ip->flags |= BTRFS_INODE_APPEND;
253 	else
254 		ip->flags &= ~BTRFS_INODE_APPEND;
255 	if (flags & FS_NODUMP_FL)
256 		ip->flags |= BTRFS_INODE_NODUMP;
257 	else
258 		ip->flags &= ~BTRFS_INODE_NODUMP;
259 	if (flags & FS_NOATIME_FL)
260 		ip->flags |= BTRFS_INODE_NOATIME;
261 	else
262 		ip->flags &= ~BTRFS_INODE_NOATIME;
263 	if (flags & FS_DIRSYNC_FL)
264 		ip->flags |= BTRFS_INODE_DIRSYNC;
265 	else
266 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
267 	if (flags & FS_NOCOW_FL) {
268 		if (S_ISREG(mode)) {
269 			/*
270 			 * It's safe to turn csums off here, no extents exist.
271 			 * Otherwise we want the flag to reflect the real COW
272 			 * status of the file and will not set it.
273 			 */
274 			if (inode->i_size == 0)
275 				ip->flags |= BTRFS_INODE_NODATACOW
276 					   | BTRFS_INODE_NODATASUM;
277 		} else {
278 			ip->flags |= BTRFS_INODE_NODATACOW;
279 		}
280 	} else {
281 		/*
282 		 * Revert back under same assumptions as above
283 		 */
284 		if (S_ISREG(mode)) {
285 			if (inode->i_size == 0)
286 				ip->flags &= ~(BTRFS_INODE_NODATACOW
287 				             | BTRFS_INODE_NODATASUM);
288 		} else {
289 			ip->flags &= ~BTRFS_INODE_NODATACOW;
290 		}
291 	}
292 
293 	/*
294 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
295 	 * flag may be changed automatically if compression code won't make
296 	 * things smaller.
297 	 */
298 	if (flags & FS_NOCOMP_FL) {
299 		ip->flags &= ~BTRFS_INODE_COMPRESS;
300 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
301 
302 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
303 		if (ret && ret != -ENODATA)
304 			goto out_drop;
305 	} else if (flags & FS_COMPR_FL) {
306 		const char *comp;
307 
308 		ip->flags |= BTRFS_INODE_COMPRESS;
309 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
310 
311 		comp = btrfs_compress_type2str(fs_info->compress_type);
312 		if (!comp || comp[0] == 0)
313 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
314 
315 		ret = btrfs_set_prop(inode, "btrfs.compression",
316 				     comp, strlen(comp), 0);
317 		if (ret)
318 			goto out_drop;
319 
320 	} else {
321 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
322 		if (ret && ret != -ENODATA)
323 			goto out_drop;
324 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
325 	}
326 
327 	trans = btrfs_start_transaction(root, 1);
328 	if (IS_ERR(trans)) {
329 		ret = PTR_ERR(trans);
330 		goto out_drop;
331 	}
332 
333 	btrfs_update_iflags(inode);
334 	inode_inc_iversion(inode);
335 	inode->i_ctime = current_time(inode);
336 	ret = btrfs_update_inode(trans, root, inode);
337 
338 	btrfs_end_transaction(trans);
339  out_drop:
340 	if (ret) {
341 		ip->flags = ip_oldflags;
342 		inode->i_flags = i_oldflags;
343 	}
344 
345  out_unlock:
346 	inode_unlock(inode);
347 	mnt_drop_write_file(file);
348 	return ret;
349 }
350 
351 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
352 {
353 	struct inode *inode = file_inode(file);
354 
355 	return put_user(inode->i_generation, arg);
356 }
357 
358 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
359 {
360 	struct inode *inode = file_inode(file);
361 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
362 	struct btrfs_device *device;
363 	struct request_queue *q;
364 	struct fstrim_range range;
365 	u64 minlen = ULLONG_MAX;
366 	u64 num_devices = 0;
367 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
368 	int ret;
369 
370 	if (!capable(CAP_SYS_ADMIN))
371 		return -EPERM;
372 
373 	rcu_read_lock();
374 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
375 				dev_list) {
376 		if (!device->bdev)
377 			continue;
378 		q = bdev_get_queue(device->bdev);
379 		if (blk_queue_discard(q)) {
380 			num_devices++;
381 			minlen = min_t(u64, q->limits.discard_granularity,
382 				     minlen);
383 		}
384 	}
385 	rcu_read_unlock();
386 
387 	if (!num_devices)
388 		return -EOPNOTSUPP;
389 	if (copy_from_user(&range, arg, sizeof(range)))
390 		return -EFAULT;
391 	if (range.start > total_bytes ||
392 	    range.len < fs_info->sb->s_blocksize)
393 		return -EINVAL;
394 
395 	range.len = min(range.len, total_bytes - range.start);
396 	range.minlen = max(range.minlen, minlen);
397 	ret = btrfs_trim_fs(fs_info, &range);
398 	if (ret < 0)
399 		return ret;
400 
401 	if (copy_to_user(arg, &range, sizeof(range)))
402 		return -EFAULT;
403 
404 	return 0;
405 }
406 
407 int btrfs_is_empty_uuid(u8 *uuid)
408 {
409 	int i;
410 
411 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
412 		if (uuid[i])
413 			return 0;
414 	}
415 	return 1;
416 }
417 
418 static noinline int create_subvol(struct inode *dir,
419 				  struct dentry *dentry,
420 				  const char *name, int namelen,
421 				  u64 *async_transid,
422 				  struct btrfs_qgroup_inherit *inherit)
423 {
424 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
425 	struct btrfs_trans_handle *trans;
426 	struct btrfs_key key;
427 	struct btrfs_root_item *root_item;
428 	struct btrfs_inode_item *inode_item;
429 	struct extent_buffer *leaf;
430 	struct btrfs_root *root = BTRFS_I(dir)->root;
431 	struct btrfs_root *new_root;
432 	struct btrfs_block_rsv block_rsv;
433 	struct timespec cur_time = current_time(dir);
434 	struct inode *inode;
435 	int ret;
436 	int err;
437 	u64 objectid;
438 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
439 	u64 index = 0;
440 	u64 qgroup_reserved;
441 	uuid_le new_uuid;
442 
443 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
444 	if (!root_item)
445 		return -ENOMEM;
446 
447 	ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
448 	if (ret)
449 		goto fail_free;
450 
451 	/*
452 	 * Don't create subvolume whose level is not zero. Or qgroup will be
453 	 * screwed up since it assumes subvolume qgroup's level to be 0.
454 	 */
455 	if (btrfs_qgroup_level(objectid)) {
456 		ret = -ENOSPC;
457 		goto fail_free;
458 	}
459 
460 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
461 	/*
462 	 * The same as the snapshot creation, please see the comment
463 	 * of create_snapshot().
464 	 */
465 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
466 					       8, &qgroup_reserved, false);
467 	if (ret)
468 		goto fail_free;
469 
470 	trans = btrfs_start_transaction(root, 0);
471 	if (IS_ERR(trans)) {
472 		ret = PTR_ERR(trans);
473 		btrfs_subvolume_release_metadata(fs_info, &block_rsv);
474 		goto fail_free;
475 	}
476 	trans->block_rsv = &block_rsv;
477 	trans->bytes_reserved = block_rsv.size;
478 
479 	ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
480 	if (ret)
481 		goto fail;
482 
483 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
484 	if (IS_ERR(leaf)) {
485 		ret = PTR_ERR(leaf);
486 		goto fail;
487 	}
488 
489 	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
490 	btrfs_set_header_bytenr(leaf, leaf->start);
491 	btrfs_set_header_generation(leaf, trans->transid);
492 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
493 	btrfs_set_header_owner(leaf, objectid);
494 
495 	write_extent_buffer_fsid(leaf, fs_info->fsid);
496 	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
497 	btrfs_mark_buffer_dirty(leaf);
498 
499 	inode_item = &root_item->inode;
500 	btrfs_set_stack_inode_generation(inode_item, 1);
501 	btrfs_set_stack_inode_size(inode_item, 3);
502 	btrfs_set_stack_inode_nlink(inode_item, 1);
503 	btrfs_set_stack_inode_nbytes(inode_item,
504 				     fs_info->nodesize);
505 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
506 
507 	btrfs_set_root_flags(root_item, 0);
508 	btrfs_set_root_limit(root_item, 0);
509 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
510 
511 	btrfs_set_root_bytenr(root_item, leaf->start);
512 	btrfs_set_root_generation(root_item, trans->transid);
513 	btrfs_set_root_level(root_item, 0);
514 	btrfs_set_root_refs(root_item, 1);
515 	btrfs_set_root_used(root_item, leaf->len);
516 	btrfs_set_root_last_snapshot(root_item, 0);
517 
518 	btrfs_set_root_generation_v2(root_item,
519 			btrfs_root_generation(root_item));
520 	uuid_le_gen(&new_uuid);
521 	memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
522 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
523 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
524 	root_item->ctime = root_item->otime;
525 	btrfs_set_root_ctransid(root_item, trans->transid);
526 	btrfs_set_root_otransid(root_item, trans->transid);
527 
528 	btrfs_tree_unlock(leaf);
529 	free_extent_buffer(leaf);
530 	leaf = NULL;
531 
532 	btrfs_set_root_dirid(root_item, new_dirid);
533 
534 	key.objectid = objectid;
535 	key.offset = 0;
536 	key.type = BTRFS_ROOT_ITEM_KEY;
537 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
538 				root_item);
539 	if (ret)
540 		goto fail;
541 
542 	key.offset = (u64)-1;
543 	new_root = btrfs_read_fs_root_no_name(fs_info, &key);
544 	if (IS_ERR(new_root)) {
545 		ret = PTR_ERR(new_root);
546 		btrfs_abort_transaction(trans, ret);
547 		goto fail;
548 	}
549 
550 	btrfs_record_root_in_trans(trans, new_root);
551 
552 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
553 	if (ret) {
554 		/* We potentially lose an unused inode item here */
555 		btrfs_abort_transaction(trans, ret);
556 		goto fail;
557 	}
558 
559 	mutex_lock(&new_root->objectid_mutex);
560 	new_root->highest_objectid = new_dirid;
561 	mutex_unlock(&new_root->objectid_mutex);
562 
563 	/*
564 	 * insert the directory item
565 	 */
566 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
567 	if (ret) {
568 		btrfs_abort_transaction(trans, ret);
569 		goto fail;
570 	}
571 
572 	ret = btrfs_insert_dir_item(trans, root,
573 				    name, namelen, BTRFS_I(dir), &key,
574 				    BTRFS_FT_DIR, index);
575 	if (ret) {
576 		btrfs_abort_transaction(trans, ret);
577 		goto fail;
578 	}
579 
580 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
581 	ret = btrfs_update_inode(trans, root, dir);
582 	BUG_ON(ret);
583 
584 	ret = btrfs_add_root_ref(trans, fs_info,
585 				 objectid, root->root_key.objectid,
586 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
587 	BUG_ON(ret);
588 
589 	ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
590 				  BTRFS_UUID_KEY_SUBVOL, objectid);
591 	if (ret)
592 		btrfs_abort_transaction(trans, ret);
593 
594 fail:
595 	kfree(root_item);
596 	trans->block_rsv = NULL;
597 	trans->bytes_reserved = 0;
598 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
599 
600 	if (async_transid) {
601 		*async_transid = trans->transid;
602 		err = btrfs_commit_transaction_async(trans, 1);
603 		if (err)
604 			err = btrfs_commit_transaction(trans);
605 	} else {
606 		err = btrfs_commit_transaction(trans);
607 	}
608 	if (err && !ret)
609 		ret = err;
610 
611 	if (!ret) {
612 		inode = btrfs_lookup_dentry(dir, dentry);
613 		if (IS_ERR(inode))
614 			return PTR_ERR(inode);
615 		d_instantiate(dentry, inode);
616 	}
617 	return ret;
618 
619 fail_free:
620 	kfree(root_item);
621 	return ret;
622 }
623 
624 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
625 			   struct dentry *dentry,
626 			   u64 *async_transid, bool readonly,
627 			   struct btrfs_qgroup_inherit *inherit)
628 {
629 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
630 	struct inode *inode;
631 	struct btrfs_pending_snapshot *pending_snapshot;
632 	struct btrfs_trans_handle *trans;
633 	int ret;
634 
635 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
636 		return -EINVAL;
637 
638 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
639 	if (!pending_snapshot)
640 		return -ENOMEM;
641 
642 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
643 			GFP_KERNEL);
644 	pending_snapshot->path = btrfs_alloc_path();
645 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
646 		ret = -ENOMEM;
647 		goto free_pending;
648 	}
649 
650 	atomic_inc(&root->will_be_snapshotted);
651 	smp_mb__after_atomic();
652 	/* wait for no snapshot writes */
653 	wait_event(root->subv_writers->wait,
654 		   percpu_counter_sum(&root->subv_writers->counter) == 0);
655 
656 	ret = btrfs_start_delalloc_inodes(root, 0);
657 	if (ret)
658 		goto dec_and_free;
659 
660 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
661 
662 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
663 			     BTRFS_BLOCK_RSV_TEMP);
664 	/*
665 	 * 1 - parent dir inode
666 	 * 2 - dir entries
667 	 * 1 - root item
668 	 * 2 - root ref/backref
669 	 * 1 - root of snapshot
670 	 * 1 - UUID item
671 	 */
672 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
673 					&pending_snapshot->block_rsv, 8,
674 					&pending_snapshot->qgroup_reserved,
675 					false);
676 	if (ret)
677 		goto dec_and_free;
678 
679 	pending_snapshot->dentry = dentry;
680 	pending_snapshot->root = root;
681 	pending_snapshot->readonly = readonly;
682 	pending_snapshot->dir = dir;
683 	pending_snapshot->inherit = inherit;
684 
685 	trans = btrfs_start_transaction(root, 0);
686 	if (IS_ERR(trans)) {
687 		ret = PTR_ERR(trans);
688 		goto fail;
689 	}
690 
691 	spin_lock(&fs_info->trans_lock);
692 	list_add(&pending_snapshot->list,
693 		 &trans->transaction->pending_snapshots);
694 	spin_unlock(&fs_info->trans_lock);
695 	if (async_transid) {
696 		*async_transid = trans->transid;
697 		ret = btrfs_commit_transaction_async(trans, 1);
698 		if (ret)
699 			ret = btrfs_commit_transaction(trans);
700 	} else {
701 		ret = btrfs_commit_transaction(trans);
702 	}
703 	if (ret)
704 		goto fail;
705 
706 	ret = pending_snapshot->error;
707 	if (ret)
708 		goto fail;
709 
710 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
711 	if (ret)
712 		goto fail;
713 
714 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
715 	if (IS_ERR(inode)) {
716 		ret = PTR_ERR(inode);
717 		goto fail;
718 	}
719 
720 	d_instantiate(dentry, inode);
721 	ret = 0;
722 fail:
723 	btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
724 dec_and_free:
725 	if (atomic_dec_and_test(&root->will_be_snapshotted))
726 		wake_up_atomic_t(&root->will_be_snapshotted);
727 free_pending:
728 	kfree(pending_snapshot->root_item);
729 	btrfs_free_path(pending_snapshot->path);
730 	kfree(pending_snapshot);
731 
732 	return ret;
733 }
734 
735 /*  copy of may_delete in fs/namei.c()
736  *	Check whether we can remove a link victim from directory dir, check
737  *  whether the type of victim is right.
738  *  1. We can't do it if dir is read-only (done in permission())
739  *  2. We should have write and exec permissions on dir
740  *  3. We can't remove anything from append-only dir
741  *  4. We can't do anything with immutable dir (done in permission())
742  *  5. If the sticky bit on dir is set we should either
743  *	a. be owner of dir, or
744  *	b. be owner of victim, or
745  *	c. have CAP_FOWNER capability
746  *  6. If the victim is append-only or immutable we can't do anything with
747  *     links pointing to it.
748  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
749  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
750  *  9. We can't remove a root or mountpoint.
751  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
752  *     nfs_async_unlink().
753  */
754 
755 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
756 {
757 	int error;
758 
759 	if (d_really_is_negative(victim))
760 		return -ENOENT;
761 
762 	BUG_ON(d_inode(victim->d_parent) != dir);
763 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
764 
765 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
766 	if (error)
767 		return error;
768 	if (IS_APPEND(dir))
769 		return -EPERM;
770 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
771 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
772 		return -EPERM;
773 	if (isdir) {
774 		if (!d_is_dir(victim))
775 			return -ENOTDIR;
776 		if (IS_ROOT(victim))
777 			return -EBUSY;
778 	} else if (d_is_dir(victim))
779 		return -EISDIR;
780 	if (IS_DEADDIR(dir))
781 		return -ENOENT;
782 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
783 		return -EBUSY;
784 	return 0;
785 }
786 
787 /* copy of may_create in fs/namei.c() */
788 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
789 {
790 	if (d_really_is_positive(child))
791 		return -EEXIST;
792 	if (IS_DEADDIR(dir))
793 		return -ENOENT;
794 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
795 }
796 
797 /*
798  * Create a new subvolume below @parent.  This is largely modeled after
799  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
800  * inside this filesystem so it's quite a bit simpler.
801  */
802 static noinline int btrfs_mksubvol(const struct path *parent,
803 				   const char *name, int namelen,
804 				   struct btrfs_root *snap_src,
805 				   u64 *async_transid, bool readonly,
806 				   struct btrfs_qgroup_inherit *inherit)
807 {
808 	struct inode *dir = d_inode(parent->dentry);
809 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
810 	struct dentry *dentry;
811 	int error;
812 
813 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
814 	if (error == -EINTR)
815 		return error;
816 
817 	dentry = lookup_one_len(name, parent->dentry, namelen);
818 	error = PTR_ERR(dentry);
819 	if (IS_ERR(dentry))
820 		goto out_unlock;
821 
822 	error = btrfs_may_create(dir, dentry);
823 	if (error)
824 		goto out_dput;
825 
826 	/*
827 	 * even if this name doesn't exist, we may get hash collisions.
828 	 * check for them now when we can safely fail
829 	 */
830 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
831 					       dir->i_ino, name,
832 					       namelen);
833 	if (error)
834 		goto out_dput;
835 
836 	down_read(&fs_info->subvol_sem);
837 
838 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
839 		goto out_up_read;
840 
841 	if (snap_src) {
842 		error = create_snapshot(snap_src, dir, dentry,
843 					async_transid, readonly, inherit);
844 	} else {
845 		error = create_subvol(dir, dentry, name, namelen,
846 				      async_transid, inherit);
847 	}
848 	if (!error)
849 		fsnotify_mkdir(dir, dentry);
850 out_up_read:
851 	up_read(&fs_info->subvol_sem);
852 out_dput:
853 	dput(dentry);
854 out_unlock:
855 	inode_unlock(dir);
856 	return error;
857 }
858 
859 /*
860  * When we're defragging a range, we don't want to kick it off again
861  * if it is really just waiting for delalloc to send it down.
862  * If we find a nice big extent or delalloc range for the bytes in the
863  * file you want to defrag, we return 0 to let you know to skip this
864  * part of the file
865  */
866 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
867 {
868 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
869 	struct extent_map *em = NULL;
870 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
871 	u64 end;
872 
873 	read_lock(&em_tree->lock);
874 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
875 	read_unlock(&em_tree->lock);
876 
877 	if (em) {
878 		end = extent_map_end(em);
879 		free_extent_map(em);
880 		if (end - offset > thresh)
881 			return 0;
882 	}
883 	/* if we already have a nice delalloc here, just stop */
884 	thresh /= 2;
885 	end = count_range_bits(io_tree, &offset, offset + thresh,
886 			       thresh, EXTENT_DELALLOC, 1);
887 	if (end >= thresh)
888 		return 0;
889 	return 1;
890 }
891 
892 /*
893  * helper function to walk through a file and find extents
894  * newer than a specific transid, and smaller than thresh.
895  *
896  * This is used by the defragging code to find new and small
897  * extents
898  */
899 static int find_new_extents(struct btrfs_root *root,
900 			    struct inode *inode, u64 newer_than,
901 			    u64 *off, u32 thresh)
902 {
903 	struct btrfs_path *path;
904 	struct btrfs_key min_key;
905 	struct extent_buffer *leaf;
906 	struct btrfs_file_extent_item *extent;
907 	int type;
908 	int ret;
909 	u64 ino = btrfs_ino(BTRFS_I(inode));
910 
911 	path = btrfs_alloc_path();
912 	if (!path)
913 		return -ENOMEM;
914 
915 	min_key.objectid = ino;
916 	min_key.type = BTRFS_EXTENT_DATA_KEY;
917 	min_key.offset = *off;
918 
919 	while (1) {
920 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
921 		if (ret != 0)
922 			goto none;
923 process_slot:
924 		if (min_key.objectid != ino)
925 			goto none;
926 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
927 			goto none;
928 
929 		leaf = path->nodes[0];
930 		extent = btrfs_item_ptr(leaf, path->slots[0],
931 					struct btrfs_file_extent_item);
932 
933 		type = btrfs_file_extent_type(leaf, extent);
934 		if (type == BTRFS_FILE_EXTENT_REG &&
935 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
936 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
937 			*off = min_key.offset;
938 			btrfs_free_path(path);
939 			return 0;
940 		}
941 
942 		path->slots[0]++;
943 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
944 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
945 			goto process_slot;
946 		}
947 
948 		if (min_key.offset == (u64)-1)
949 			goto none;
950 
951 		min_key.offset++;
952 		btrfs_release_path(path);
953 	}
954 none:
955 	btrfs_free_path(path);
956 	return -ENOENT;
957 }
958 
959 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
960 {
961 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
962 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
963 	struct extent_map *em;
964 	u64 len = PAGE_SIZE;
965 
966 	/*
967 	 * hopefully we have this extent in the tree already, try without
968 	 * the full extent lock
969 	 */
970 	read_lock(&em_tree->lock);
971 	em = lookup_extent_mapping(em_tree, start, len);
972 	read_unlock(&em_tree->lock);
973 
974 	if (!em) {
975 		struct extent_state *cached = NULL;
976 		u64 end = start + len - 1;
977 
978 		/* get the big lock and read metadata off disk */
979 		lock_extent_bits(io_tree, start, end, &cached);
980 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
981 		unlock_extent_cached(io_tree, start, end, &cached);
982 
983 		if (IS_ERR(em))
984 			return NULL;
985 	}
986 
987 	return em;
988 }
989 
990 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
991 {
992 	struct extent_map *next;
993 	bool ret = true;
994 
995 	/* this is the last extent */
996 	if (em->start + em->len >= i_size_read(inode))
997 		return false;
998 
999 	next = defrag_lookup_extent(inode, em->start + em->len);
1000 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1001 		ret = false;
1002 	else if ((em->block_start + em->block_len == next->block_start) &&
1003 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1004 		ret = false;
1005 
1006 	free_extent_map(next);
1007 	return ret;
1008 }
1009 
1010 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1011 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1012 			       int compress)
1013 {
1014 	struct extent_map *em;
1015 	int ret = 1;
1016 	bool next_mergeable = true;
1017 	bool prev_mergeable = true;
1018 
1019 	/*
1020 	 * make sure that once we start defragging an extent, we keep on
1021 	 * defragging it
1022 	 */
1023 	if (start < *defrag_end)
1024 		return 1;
1025 
1026 	*skip = 0;
1027 
1028 	em = defrag_lookup_extent(inode, start);
1029 	if (!em)
1030 		return 0;
1031 
1032 	/* this will cover holes, and inline extents */
1033 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1034 		ret = 0;
1035 		goto out;
1036 	}
1037 
1038 	if (!*defrag_end)
1039 		prev_mergeable = false;
1040 
1041 	next_mergeable = defrag_check_next_extent(inode, em);
1042 	/*
1043 	 * we hit a real extent, if it is big or the next extent is not a
1044 	 * real extent, don't bother defragging it
1045 	 */
1046 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1047 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1048 		ret = 0;
1049 out:
1050 	/*
1051 	 * last_len ends up being a counter of how many bytes we've defragged.
1052 	 * every time we choose not to defrag an extent, we reset *last_len
1053 	 * so that the next tiny extent will force a defrag.
1054 	 *
1055 	 * The end result of this is that tiny extents before a single big
1056 	 * extent will force at least part of that big extent to be defragged.
1057 	 */
1058 	if (ret) {
1059 		*defrag_end = extent_map_end(em);
1060 	} else {
1061 		*last_len = 0;
1062 		*skip = extent_map_end(em);
1063 		*defrag_end = 0;
1064 	}
1065 
1066 	free_extent_map(em);
1067 	return ret;
1068 }
1069 
1070 /*
1071  * it doesn't do much good to defrag one or two pages
1072  * at a time.  This pulls in a nice chunk of pages
1073  * to COW and defrag.
1074  *
1075  * It also makes sure the delalloc code has enough
1076  * dirty data to avoid making new small extents as part
1077  * of the defrag
1078  *
1079  * It's a good idea to start RA on this range
1080  * before calling this.
1081  */
1082 static int cluster_pages_for_defrag(struct inode *inode,
1083 				    struct page **pages,
1084 				    unsigned long start_index,
1085 				    unsigned long num_pages)
1086 {
1087 	unsigned long file_end;
1088 	u64 isize = i_size_read(inode);
1089 	u64 page_start;
1090 	u64 page_end;
1091 	u64 page_cnt;
1092 	int ret;
1093 	int i;
1094 	int i_done;
1095 	struct btrfs_ordered_extent *ordered;
1096 	struct extent_state *cached_state = NULL;
1097 	struct extent_io_tree *tree;
1098 	struct extent_changeset *data_reserved = NULL;
1099 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1100 
1101 	file_end = (isize - 1) >> PAGE_SHIFT;
1102 	if (!isize || start_index > file_end)
1103 		return 0;
1104 
1105 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1106 
1107 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1108 			start_index << PAGE_SHIFT,
1109 			page_cnt << PAGE_SHIFT);
1110 	if (ret)
1111 		return ret;
1112 	i_done = 0;
1113 	tree = &BTRFS_I(inode)->io_tree;
1114 
1115 	/* step one, lock all the pages */
1116 	for (i = 0; i < page_cnt; i++) {
1117 		struct page *page;
1118 again:
1119 		page = find_or_create_page(inode->i_mapping,
1120 					   start_index + i, mask);
1121 		if (!page)
1122 			break;
1123 
1124 		page_start = page_offset(page);
1125 		page_end = page_start + PAGE_SIZE - 1;
1126 		while (1) {
1127 			lock_extent_bits(tree, page_start, page_end,
1128 					 &cached_state);
1129 			ordered = btrfs_lookup_ordered_extent(inode,
1130 							      page_start);
1131 			unlock_extent_cached(tree, page_start, page_end,
1132 					     &cached_state);
1133 			if (!ordered)
1134 				break;
1135 
1136 			unlock_page(page);
1137 			btrfs_start_ordered_extent(inode, ordered, 1);
1138 			btrfs_put_ordered_extent(ordered);
1139 			lock_page(page);
1140 			/*
1141 			 * we unlocked the page above, so we need check if
1142 			 * it was released or not.
1143 			 */
1144 			if (page->mapping != inode->i_mapping) {
1145 				unlock_page(page);
1146 				put_page(page);
1147 				goto again;
1148 			}
1149 		}
1150 
1151 		if (!PageUptodate(page)) {
1152 			btrfs_readpage(NULL, page);
1153 			lock_page(page);
1154 			if (!PageUptodate(page)) {
1155 				unlock_page(page);
1156 				put_page(page);
1157 				ret = -EIO;
1158 				break;
1159 			}
1160 		}
1161 
1162 		if (page->mapping != inode->i_mapping) {
1163 			unlock_page(page);
1164 			put_page(page);
1165 			goto again;
1166 		}
1167 
1168 		pages[i] = page;
1169 		i_done++;
1170 	}
1171 	if (!i_done || ret)
1172 		goto out;
1173 
1174 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1175 		goto out;
1176 
1177 	/*
1178 	 * so now we have a nice long stream of locked
1179 	 * and up to date pages, lets wait on them
1180 	 */
1181 	for (i = 0; i < i_done; i++)
1182 		wait_on_page_writeback(pages[i]);
1183 
1184 	page_start = page_offset(pages[0]);
1185 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1186 
1187 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1188 			 page_start, page_end - 1, &cached_state);
1189 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1190 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1191 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1192 			  &cached_state);
1193 
1194 	if (i_done != page_cnt) {
1195 		spin_lock(&BTRFS_I(inode)->lock);
1196 		BTRFS_I(inode)->outstanding_extents++;
1197 		spin_unlock(&BTRFS_I(inode)->lock);
1198 		btrfs_delalloc_release_space(inode, data_reserved,
1199 				start_index << PAGE_SHIFT,
1200 				(page_cnt - i_done) << PAGE_SHIFT);
1201 	}
1202 
1203 
1204 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1205 			  &cached_state);
1206 
1207 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1208 			     page_start, page_end - 1, &cached_state);
1209 
1210 	for (i = 0; i < i_done; i++) {
1211 		clear_page_dirty_for_io(pages[i]);
1212 		ClearPageChecked(pages[i]);
1213 		set_page_extent_mapped(pages[i]);
1214 		set_page_dirty(pages[i]);
1215 		unlock_page(pages[i]);
1216 		put_page(pages[i]);
1217 	}
1218 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1219 	extent_changeset_free(data_reserved);
1220 	return i_done;
1221 out:
1222 	for (i = 0; i < i_done; i++) {
1223 		unlock_page(pages[i]);
1224 		put_page(pages[i]);
1225 	}
1226 	btrfs_delalloc_release_space(inode, data_reserved,
1227 			start_index << PAGE_SHIFT,
1228 			page_cnt << PAGE_SHIFT);
1229 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1230 	extent_changeset_free(data_reserved);
1231 	return ret;
1232 
1233 }
1234 
1235 int btrfs_defrag_file(struct inode *inode, struct file *file,
1236 		      struct btrfs_ioctl_defrag_range_args *range,
1237 		      u64 newer_than, unsigned long max_to_defrag)
1238 {
1239 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1240 	struct btrfs_root *root = BTRFS_I(inode)->root;
1241 	struct file_ra_state *ra = NULL;
1242 	unsigned long last_index;
1243 	u64 isize = i_size_read(inode);
1244 	u64 last_len = 0;
1245 	u64 skip = 0;
1246 	u64 defrag_end = 0;
1247 	u64 newer_off = range->start;
1248 	unsigned long i;
1249 	unsigned long ra_index = 0;
1250 	int ret;
1251 	int defrag_count = 0;
1252 	int compress_type = BTRFS_COMPRESS_ZLIB;
1253 	u32 extent_thresh = range->extent_thresh;
1254 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1255 	unsigned long cluster = max_cluster;
1256 	u64 new_align = ~((u64)SZ_128K - 1);
1257 	struct page **pages = NULL;
1258 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1259 
1260 	if (isize == 0)
1261 		return 0;
1262 
1263 	if (range->start >= isize)
1264 		return -EINVAL;
1265 
1266 	if (do_compress) {
1267 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1268 			return -EINVAL;
1269 		if (range->compress_type)
1270 			compress_type = range->compress_type;
1271 	}
1272 
1273 	if (extent_thresh == 0)
1274 		extent_thresh = SZ_256K;
1275 
1276 	/*
1277 	 * If we were not given a file, allocate a readahead context. As
1278 	 * readahead is just an optimization, defrag will work without it so
1279 	 * we don't error out.
1280 	 */
1281 	if (!file) {
1282 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1283 		if (ra)
1284 			file_ra_state_init(ra, inode->i_mapping);
1285 	} else {
1286 		ra = &file->f_ra;
1287 	}
1288 
1289 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1290 	if (!pages) {
1291 		ret = -ENOMEM;
1292 		goto out_ra;
1293 	}
1294 
1295 	/* find the last page to defrag */
1296 	if (range->start + range->len > range->start) {
1297 		last_index = min_t(u64, isize - 1,
1298 			 range->start + range->len - 1) >> PAGE_SHIFT;
1299 	} else {
1300 		last_index = (isize - 1) >> PAGE_SHIFT;
1301 	}
1302 
1303 	if (newer_than) {
1304 		ret = find_new_extents(root, inode, newer_than,
1305 				       &newer_off, SZ_64K);
1306 		if (!ret) {
1307 			range->start = newer_off;
1308 			/*
1309 			 * we always align our defrag to help keep
1310 			 * the extents in the file evenly spaced
1311 			 */
1312 			i = (newer_off & new_align) >> PAGE_SHIFT;
1313 		} else
1314 			goto out_ra;
1315 	} else {
1316 		i = range->start >> PAGE_SHIFT;
1317 	}
1318 	if (!max_to_defrag)
1319 		max_to_defrag = last_index - i + 1;
1320 
1321 	/*
1322 	 * make writeback starts from i, so the defrag range can be
1323 	 * written sequentially.
1324 	 */
1325 	if (i < inode->i_mapping->writeback_index)
1326 		inode->i_mapping->writeback_index = i;
1327 
1328 	while (i <= last_index && defrag_count < max_to_defrag &&
1329 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1330 		/*
1331 		 * make sure we stop running if someone unmounts
1332 		 * the FS
1333 		 */
1334 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1335 			break;
1336 
1337 		if (btrfs_defrag_cancelled(fs_info)) {
1338 			btrfs_debug(fs_info, "defrag_file cancelled");
1339 			ret = -EAGAIN;
1340 			break;
1341 		}
1342 
1343 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1344 					 extent_thresh, &last_len, &skip,
1345 					 &defrag_end, do_compress)){
1346 			unsigned long next;
1347 			/*
1348 			 * the should_defrag function tells us how much to skip
1349 			 * bump our counter by the suggested amount
1350 			 */
1351 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1352 			i = max(i + 1, next);
1353 			continue;
1354 		}
1355 
1356 		if (!newer_than) {
1357 			cluster = (PAGE_ALIGN(defrag_end) >>
1358 				   PAGE_SHIFT) - i;
1359 			cluster = min(cluster, max_cluster);
1360 		} else {
1361 			cluster = max_cluster;
1362 		}
1363 
1364 		if (i + cluster > ra_index) {
1365 			ra_index = max(i, ra_index);
1366 			if (ra)
1367 				page_cache_sync_readahead(inode->i_mapping, ra,
1368 						file, ra_index, cluster);
1369 			ra_index += cluster;
1370 		}
1371 
1372 		inode_lock(inode);
1373 		if (do_compress)
1374 			BTRFS_I(inode)->defrag_compress = compress_type;
1375 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1376 		if (ret < 0) {
1377 			inode_unlock(inode);
1378 			goto out_ra;
1379 		}
1380 
1381 		defrag_count += ret;
1382 		balance_dirty_pages_ratelimited(inode->i_mapping);
1383 		inode_unlock(inode);
1384 
1385 		if (newer_than) {
1386 			if (newer_off == (u64)-1)
1387 				break;
1388 
1389 			if (ret > 0)
1390 				i += ret;
1391 
1392 			newer_off = max(newer_off + 1,
1393 					(u64)i << PAGE_SHIFT);
1394 
1395 			ret = find_new_extents(root, inode, newer_than,
1396 					       &newer_off, SZ_64K);
1397 			if (!ret) {
1398 				range->start = newer_off;
1399 				i = (newer_off & new_align) >> PAGE_SHIFT;
1400 			} else {
1401 				break;
1402 			}
1403 		} else {
1404 			if (ret > 0) {
1405 				i += ret;
1406 				last_len += ret << PAGE_SHIFT;
1407 			} else {
1408 				i++;
1409 				last_len = 0;
1410 			}
1411 		}
1412 	}
1413 
1414 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1415 		filemap_flush(inode->i_mapping);
1416 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1417 			     &BTRFS_I(inode)->runtime_flags))
1418 			filemap_flush(inode->i_mapping);
1419 	}
1420 
1421 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1422 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1423 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1424 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1425 	}
1426 
1427 	ret = defrag_count;
1428 
1429 out_ra:
1430 	if (do_compress) {
1431 		inode_lock(inode);
1432 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1433 		inode_unlock(inode);
1434 	}
1435 	if (!file)
1436 		kfree(ra);
1437 	kfree(pages);
1438 	return ret;
1439 }
1440 
1441 static noinline int btrfs_ioctl_resize(struct file *file,
1442 					void __user *arg)
1443 {
1444 	struct inode *inode = file_inode(file);
1445 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1446 	u64 new_size;
1447 	u64 old_size;
1448 	u64 devid = 1;
1449 	struct btrfs_root *root = BTRFS_I(inode)->root;
1450 	struct btrfs_ioctl_vol_args *vol_args;
1451 	struct btrfs_trans_handle *trans;
1452 	struct btrfs_device *device = NULL;
1453 	char *sizestr;
1454 	char *retptr;
1455 	char *devstr = NULL;
1456 	int ret = 0;
1457 	int mod = 0;
1458 
1459 	if (!capable(CAP_SYS_ADMIN))
1460 		return -EPERM;
1461 
1462 	ret = mnt_want_write_file(file);
1463 	if (ret)
1464 		return ret;
1465 
1466 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1467 		mnt_drop_write_file(file);
1468 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1469 	}
1470 
1471 	mutex_lock(&fs_info->volume_mutex);
1472 	vol_args = memdup_user(arg, sizeof(*vol_args));
1473 	if (IS_ERR(vol_args)) {
1474 		ret = PTR_ERR(vol_args);
1475 		goto out;
1476 	}
1477 
1478 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1479 
1480 	sizestr = vol_args->name;
1481 	devstr = strchr(sizestr, ':');
1482 	if (devstr) {
1483 		sizestr = devstr + 1;
1484 		*devstr = '\0';
1485 		devstr = vol_args->name;
1486 		ret = kstrtoull(devstr, 10, &devid);
1487 		if (ret)
1488 			goto out_free;
1489 		if (!devid) {
1490 			ret = -EINVAL;
1491 			goto out_free;
1492 		}
1493 		btrfs_info(fs_info, "resizing devid %llu", devid);
1494 	}
1495 
1496 	device = btrfs_find_device(fs_info, devid, NULL, NULL);
1497 	if (!device) {
1498 		btrfs_info(fs_info, "resizer unable to find device %llu",
1499 			   devid);
1500 		ret = -ENODEV;
1501 		goto out_free;
1502 	}
1503 
1504 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1505 		btrfs_info(fs_info,
1506 			   "resizer unable to apply on readonly device %llu",
1507 		       devid);
1508 		ret = -EPERM;
1509 		goto out_free;
1510 	}
1511 
1512 	if (!strcmp(sizestr, "max"))
1513 		new_size = device->bdev->bd_inode->i_size;
1514 	else {
1515 		if (sizestr[0] == '-') {
1516 			mod = -1;
1517 			sizestr++;
1518 		} else if (sizestr[0] == '+') {
1519 			mod = 1;
1520 			sizestr++;
1521 		}
1522 		new_size = memparse(sizestr, &retptr);
1523 		if (*retptr != '\0' || new_size == 0) {
1524 			ret = -EINVAL;
1525 			goto out_free;
1526 		}
1527 	}
1528 
1529 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1530 		ret = -EPERM;
1531 		goto out_free;
1532 	}
1533 
1534 	old_size = btrfs_device_get_total_bytes(device);
1535 
1536 	if (mod < 0) {
1537 		if (new_size > old_size) {
1538 			ret = -EINVAL;
1539 			goto out_free;
1540 		}
1541 		new_size = old_size - new_size;
1542 	} else if (mod > 0) {
1543 		if (new_size > ULLONG_MAX - old_size) {
1544 			ret = -ERANGE;
1545 			goto out_free;
1546 		}
1547 		new_size = old_size + new_size;
1548 	}
1549 
1550 	if (new_size < SZ_256M) {
1551 		ret = -EINVAL;
1552 		goto out_free;
1553 	}
1554 	if (new_size > device->bdev->bd_inode->i_size) {
1555 		ret = -EFBIG;
1556 		goto out_free;
1557 	}
1558 
1559 	new_size = round_down(new_size, fs_info->sectorsize);
1560 
1561 	btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1562 			  rcu_str_deref(device->name), new_size);
1563 
1564 	if (new_size > old_size) {
1565 		trans = btrfs_start_transaction(root, 0);
1566 		if (IS_ERR(trans)) {
1567 			ret = PTR_ERR(trans);
1568 			goto out_free;
1569 		}
1570 		ret = btrfs_grow_device(trans, device, new_size);
1571 		btrfs_commit_transaction(trans);
1572 	} else if (new_size < old_size) {
1573 		ret = btrfs_shrink_device(device, new_size);
1574 	} /* equal, nothing need to do */
1575 
1576 out_free:
1577 	kfree(vol_args);
1578 out:
1579 	mutex_unlock(&fs_info->volume_mutex);
1580 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1581 	mnt_drop_write_file(file);
1582 	return ret;
1583 }
1584 
1585 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1586 				const char *name, unsigned long fd, int subvol,
1587 				u64 *transid, bool readonly,
1588 				struct btrfs_qgroup_inherit *inherit)
1589 {
1590 	int namelen;
1591 	int ret = 0;
1592 
1593 	if (!S_ISDIR(file_inode(file)->i_mode))
1594 		return -ENOTDIR;
1595 
1596 	ret = mnt_want_write_file(file);
1597 	if (ret)
1598 		goto out;
1599 
1600 	namelen = strlen(name);
1601 	if (strchr(name, '/')) {
1602 		ret = -EINVAL;
1603 		goto out_drop_write;
1604 	}
1605 
1606 	if (name[0] == '.' &&
1607 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1608 		ret = -EEXIST;
1609 		goto out_drop_write;
1610 	}
1611 
1612 	if (subvol) {
1613 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1614 				     NULL, transid, readonly, inherit);
1615 	} else {
1616 		struct fd src = fdget(fd);
1617 		struct inode *src_inode;
1618 		if (!src.file) {
1619 			ret = -EINVAL;
1620 			goto out_drop_write;
1621 		}
1622 
1623 		src_inode = file_inode(src.file);
1624 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1625 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1626 				   "Snapshot src from another FS");
1627 			ret = -EXDEV;
1628 		} else if (!inode_owner_or_capable(src_inode)) {
1629 			/*
1630 			 * Subvolume creation is not restricted, but snapshots
1631 			 * are limited to own subvolumes only
1632 			 */
1633 			ret = -EPERM;
1634 		} else {
1635 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1636 					     BTRFS_I(src_inode)->root,
1637 					     transid, readonly, inherit);
1638 		}
1639 		fdput(src);
1640 	}
1641 out_drop_write:
1642 	mnt_drop_write_file(file);
1643 out:
1644 	return ret;
1645 }
1646 
1647 static noinline int btrfs_ioctl_snap_create(struct file *file,
1648 					    void __user *arg, int subvol)
1649 {
1650 	struct btrfs_ioctl_vol_args *vol_args;
1651 	int ret;
1652 
1653 	if (!S_ISDIR(file_inode(file)->i_mode))
1654 		return -ENOTDIR;
1655 
1656 	vol_args = memdup_user(arg, sizeof(*vol_args));
1657 	if (IS_ERR(vol_args))
1658 		return PTR_ERR(vol_args);
1659 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1660 
1661 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1662 					      vol_args->fd, subvol,
1663 					      NULL, false, NULL);
1664 
1665 	kfree(vol_args);
1666 	return ret;
1667 }
1668 
1669 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1670 					       void __user *arg, int subvol)
1671 {
1672 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1673 	int ret;
1674 	u64 transid = 0;
1675 	u64 *ptr = NULL;
1676 	bool readonly = false;
1677 	struct btrfs_qgroup_inherit *inherit = NULL;
1678 
1679 	if (!S_ISDIR(file_inode(file)->i_mode))
1680 		return -ENOTDIR;
1681 
1682 	vol_args = memdup_user(arg, sizeof(*vol_args));
1683 	if (IS_ERR(vol_args))
1684 		return PTR_ERR(vol_args);
1685 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1686 
1687 	if (vol_args->flags &
1688 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1689 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1690 		ret = -EOPNOTSUPP;
1691 		goto free_args;
1692 	}
1693 
1694 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1695 		ptr = &transid;
1696 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1697 		readonly = true;
1698 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1699 		if (vol_args->size > PAGE_SIZE) {
1700 			ret = -EINVAL;
1701 			goto free_args;
1702 		}
1703 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1704 		if (IS_ERR(inherit)) {
1705 			ret = PTR_ERR(inherit);
1706 			goto free_args;
1707 		}
1708 	}
1709 
1710 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1711 					      vol_args->fd, subvol, ptr,
1712 					      readonly, inherit);
1713 	if (ret)
1714 		goto free_inherit;
1715 
1716 	if (ptr && copy_to_user(arg +
1717 				offsetof(struct btrfs_ioctl_vol_args_v2,
1718 					transid),
1719 				ptr, sizeof(*ptr)))
1720 		ret = -EFAULT;
1721 
1722 free_inherit:
1723 	kfree(inherit);
1724 free_args:
1725 	kfree(vol_args);
1726 	return ret;
1727 }
1728 
1729 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1730 						void __user *arg)
1731 {
1732 	struct inode *inode = file_inode(file);
1733 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1734 	struct btrfs_root *root = BTRFS_I(inode)->root;
1735 	int ret = 0;
1736 	u64 flags = 0;
1737 
1738 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1739 		return -EINVAL;
1740 
1741 	down_read(&fs_info->subvol_sem);
1742 	if (btrfs_root_readonly(root))
1743 		flags |= BTRFS_SUBVOL_RDONLY;
1744 	up_read(&fs_info->subvol_sem);
1745 
1746 	if (copy_to_user(arg, &flags, sizeof(flags)))
1747 		ret = -EFAULT;
1748 
1749 	return ret;
1750 }
1751 
1752 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1753 					      void __user *arg)
1754 {
1755 	struct inode *inode = file_inode(file);
1756 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1757 	struct btrfs_root *root = BTRFS_I(inode)->root;
1758 	struct btrfs_trans_handle *trans;
1759 	u64 root_flags;
1760 	u64 flags;
1761 	int ret = 0;
1762 
1763 	if (!inode_owner_or_capable(inode))
1764 		return -EPERM;
1765 
1766 	ret = mnt_want_write_file(file);
1767 	if (ret)
1768 		goto out;
1769 
1770 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1771 		ret = -EINVAL;
1772 		goto out_drop_write;
1773 	}
1774 
1775 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1776 		ret = -EFAULT;
1777 		goto out_drop_write;
1778 	}
1779 
1780 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1781 		ret = -EINVAL;
1782 		goto out_drop_write;
1783 	}
1784 
1785 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1786 		ret = -EOPNOTSUPP;
1787 		goto out_drop_write;
1788 	}
1789 
1790 	down_write(&fs_info->subvol_sem);
1791 
1792 	/* nothing to do */
1793 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1794 		goto out_drop_sem;
1795 
1796 	root_flags = btrfs_root_flags(&root->root_item);
1797 	if (flags & BTRFS_SUBVOL_RDONLY) {
1798 		btrfs_set_root_flags(&root->root_item,
1799 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1800 	} else {
1801 		/*
1802 		 * Block RO -> RW transition if this subvolume is involved in
1803 		 * send
1804 		 */
1805 		spin_lock(&root->root_item_lock);
1806 		if (root->send_in_progress == 0) {
1807 			btrfs_set_root_flags(&root->root_item,
1808 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1809 			spin_unlock(&root->root_item_lock);
1810 		} else {
1811 			spin_unlock(&root->root_item_lock);
1812 			btrfs_warn(fs_info,
1813 				   "Attempt to set subvolume %llu read-write during send",
1814 				   root->root_key.objectid);
1815 			ret = -EPERM;
1816 			goto out_drop_sem;
1817 		}
1818 	}
1819 
1820 	trans = btrfs_start_transaction(root, 1);
1821 	if (IS_ERR(trans)) {
1822 		ret = PTR_ERR(trans);
1823 		goto out_reset;
1824 	}
1825 
1826 	ret = btrfs_update_root(trans, fs_info->tree_root,
1827 				&root->root_key, &root->root_item);
1828 	if (ret < 0) {
1829 		btrfs_end_transaction(trans);
1830 		goto out_reset;
1831 	}
1832 
1833 	ret = btrfs_commit_transaction(trans);
1834 
1835 out_reset:
1836 	if (ret)
1837 		btrfs_set_root_flags(&root->root_item, root_flags);
1838 out_drop_sem:
1839 	up_write(&fs_info->subvol_sem);
1840 out_drop_write:
1841 	mnt_drop_write_file(file);
1842 out:
1843 	return ret;
1844 }
1845 
1846 /*
1847  * helper to check if the subvolume references other subvolumes
1848  */
1849 static noinline int may_destroy_subvol(struct btrfs_root *root)
1850 {
1851 	struct btrfs_fs_info *fs_info = root->fs_info;
1852 	struct btrfs_path *path;
1853 	struct btrfs_dir_item *di;
1854 	struct btrfs_key key;
1855 	u64 dir_id;
1856 	int ret;
1857 
1858 	path = btrfs_alloc_path();
1859 	if (!path)
1860 		return -ENOMEM;
1861 
1862 	/* Make sure this root isn't set as the default subvol */
1863 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1864 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1865 				   dir_id, "default", 7, 0);
1866 	if (di && !IS_ERR(di)) {
1867 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1868 		if (key.objectid == root->root_key.objectid) {
1869 			ret = -EPERM;
1870 			btrfs_err(fs_info,
1871 				  "deleting default subvolume %llu is not allowed",
1872 				  key.objectid);
1873 			goto out;
1874 		}
1875 		btrfs_release_path(path);
1876 	}
1877 
1878 	key.objectid = root->root_key.objectid;
1879 	key.type = BTRFS_ROOT_REF_KEY;
1880 	key.offset = (u64)-1;
1881 
1882 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1883 	if (ret < 0)
1884 		goto out;
1885 	BUG_ON(ret == 0);
1886 
1887 	ret = 0;
1888 	if (path->slots[0] > 0) {
1889 		path->slots[0]--;
1890 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1891 		if (key.objectid == root->root_key.objectid &&
1892 		    key.type == BTRFS_ROOT_REF_KEY)
1893 			ret = -ENOTEMPTY;
1894 	}
1895 out:
1896 	btrfs_free_path(path);
1897 	return ret;
1898 }
1899 
1900 static noinline int key_in_sk(struct btrfs_key *key,
1901 			      struct btrfs_ioctl_search_key *sk)
1902 {
1903 	struct btrfs_key test;
1904 	int ret;
1905 
1906 	test.objectid = sk->min_objectid;
1907 	test.type = sk->min_type;
1908 	test.offset = sk->min_offset;
1909 
1910 	ret = btrfs_comp_cpu_keys(key, &test);
1911 	if (ret < 0)
1912 		return 0;
1913 
1914 	test.objectid = sk->max_objectid;
1915 	test.type = sk->max_type;
1916 	test.offset = sk->max_offset;
1917 
1918 	ret = btrfs_comp_cpu_keys(key, &test);
1919 	if (ret > 0)
1920 		return 0;
1921 	return 1;
1922 }
1923 
1924 static noinline int copy_to_sk(struct btrfs_path *path,
1925 			       struct btrfs_key *key,
1926 			       struct btrfs_ioctl_search_key *sk,
1927 			       size_t *buf_size,
1928 			       char __user *ubuf,
1929 			       unsigned long *sk_offset,
1930 			       int *num_found)
1931 {
1932 	u64 found_transid;
1933 	struct extent_buffer *leaf;
1934 	struct btrfs_ioctl_search_header sh;
1935 	struct btrfs_key test;
1936 	unsigned long item_off;
1937 	unsigned long item_len;
1938 	int nritems;
1939 	int i;
1940 	int slot;
1941 	int ret = 0;
1942 
1943 	leaf = path->nodes[0];
1944 	slot = path->slots[0];
1945 	nritems = btrfs_header_nritems(leaf);
1946 
1947 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1948 		i = nritems;
1949 		goto advance_key;
1950 	}
1951 	found_transid = btrfs_header_generation(leaf);
1952 
1953 	for (i = slot; i < nritems; i++) {
1954 		item_off = btrfs_item_ptr_offset(leaf, i);
1955 		item_len = btrfs_item_size_nr(leaf, i);
1956 
1957 		btrfs_item_key_to_cpu(leaf, key, i);
1958 		if (!key_in_sk(key, sk))
1959 			continue;
1960 
1961 		if (sizeof(sh) + item_len > *buf_size) {
1962 			if (*num_found) {
1963 				ret = 1;
1964 				goto out;
1965 			}
1966 
1967 			/*
1968 			 * return one empty item back for v1, which does not
1969 			 * handle -EOVERFLOW
1970 			 */
1971 
1972 			*buf_size = sizeof(sh) + item_len;
1973 			item_len = 0;
1974 			ret = -EOVERFLOW;
1975 		}
1976 
1977 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1978 			ret = 1;
1979 			goto out;
1980 		}
1981 
1982 		sh.objectid = key->objectid;
1983 		sh.offset = key->offset;
1984 		sh.type = key->type;
1985 		sh.len = item_len;
1986 		sh.transid = found_transid;
1987 
1988 		/* copy search result header */
1989 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1990 			ret = -EFAULT;
1991 			goto out;
1992 		}
1993 
1994 		*sk_offset += sizeof(sh);
1995 
1996 		if (item_len) {
1997 			char __user *up = ubuf + *sk_offset;
1998 			/* copy the item */
1999 			if (read_extent_buffer_to_user(leaf, up,
2000 						       item_off, item_len)) {
2001 				ret = -EFAULT;
2002 				goto out;
2003 			}
2004 
2005 			*sk_offset += item_len;
2006 		}
2007 		(*num_found)++;
2008 
2009 		if (ret) /* -EOVERFLOW from above */
2010 			goto out;
2011 
2012 		if (*num_found >= sk->nr_items) {
2013 			ret = 1;
2014 			goto out;
2015 		}
2016 	}
2017 advance_key:
2018 	ret = 0;
2019 	test.objectid = sk->max_objectid;
2020 	test.type = sk->max_type;
2021 	test.offset = sk->max_offset;
2022 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2023 		ret = 1;
2024 	else if (key->offset < (u64)-1)
2025 		key->offset++;
2026 	else if (key->type < (u8)-1) {
2027 		key->offset = 0;
2028 		key->type++;
2029 	} else if (key->objectid < (u64)-1) {
2030 		key->offset = 0;
2031 		key->type = 0;
2032 		key->objectid++;
2033 	} else
2034 		ret = 1;
2035 out:
2036 	/*
2037 	 *  0: all items from this leaf copied, continue with next
2038 	 *  1: * more items can be copied, but unused buffer is too small
2039 	 *     * all items were found
2040 	 *     Either way, it will stops the loop which iterates to the next
2041 	 *     leaf
2042 	 *  -EOVERFLOW: item was to large for buffer
2043 	 *  -EFAULT: could not copy extent buffer back to userspace
2044 	 */
2045 	return ret;
2046 }
2047 
2048 static noinline int search_ioctl(struct inode *inode,
2049 				 struct btrfs_ioctl_search_key *sk,
2050 				 size_t *buf_size,
2051 				 char __user *ubuf)
2052 {
2053 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2054 	struct btrfs_root *root;
2055 	struct btrfs_key key;
2056 	struct btrfs_path *path;
2057 	int ret;
2058 	int num_found = 0;
2059 	unsigned long sk_offset = 0;
2060 
2061 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2062 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2063 		return -EOVERFLOW;
2064 	}
2065 
2066 	path = btrfs_alloc_path();
2067 	if (!path)
2068 		return -ENOMEM;
2069 
2070 	if (sk->tree_id == 0) {
2071 		/* search the root of the inode that was passed */
2072 		root = BTRFS_I(inode)->root;
2073 	} else {
2074 		key.objectid = sk->tree_id;
2075 		key.type = BTRFS_ROOT_ITEM_KEY;
2076 		key.offset = (u64)-1;
2077 		root = btrfs_read_fs_root_no_name(info, &key);
2078 		if (IS_ERR(root)) {
2079 			btrfs_free_path(path);
2080 			return -ENOENT;
2081 		}
2082 	}
2083 
2084 	key.objectid = sk->min_objectid;
2085 	key.type = sk->min_type;
2086 	key.offset = sk->min_offset;
2087 
2088 	while (1) {
2089 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2090 		if (ret != 0) {
2091 			if (ret > 0)
2092 				ret = 0;
2093 			goto err;
2094 		}
2095 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2096 				 &sk_offset, &num_found);
2097 		btrfs_release_path(path);
2098 		if (ret)
2099 			break;
2100 
2101 	}
2102 	if (ret > 0)
2103 		ret = 0;
2104 err:
2105 	sk->nr_items = num_found;
2106 	btrfs_free_path(path);
2107 	return ret;
2108 }
2109 
2110 static noinline int btrfs_ioctl_tree_search(struct file *file,
2111 					   void __user *argp)
2112 {
2113 	struct btrfs_ioctl_search_args __user *uargs;
2114 	struct btrfs_ioctl_search_key sk;
2115 	struct inode *inode;
2116 	int ret;
2117 	size_t buf_size;
2118 
2119 	if (!capable(CAP_SYS_ADMIN))
2120 		return -EPERM;
2121 
2122 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2123 
2124 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2125 		return -EFAULT;
2126 
2127 	buf_size = sizeof(uargs->buf);
2128 
2129 	inode = file_inode(file);
2130 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2131 
2132 	/*
2133 	 * In the origin implementation an overflow is handled by returning a
2134 	 * search header with a len of zero, so reset ret.
2135 	 */
2136 	if (ret == -EOVERFLOW)
2137 		ret = 0;
2138 
2139 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2140 		ret = -EFAULT;
2141 	return ret;
2142 }
2143 
2144 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2145 					       void __user *argp)
2146 {
2147 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2148 	struct btrfs_ioctl_search_args_v2 args;
2149 	struct inode *inode;
2150 	int ret;
2151 	size_t buf_size;
2152 	const size_t buf_limit = SZ_16M;
2153 
2154 	if (!capable(CAP_SYS_ADMIN))
2155 		return -EPERM;
2156 
2157 	/* copy search header and buffer size */
2158 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2159 	if (copy_from_user(&args, uarg, sizeof(args)))
2160 		return -EFAULT;
2161 
2162 	buf_size = args.buf_size;
2163 
2164 	/* limit result size to 16MB */
2165 	if (buf_size > buf_limit)
2166 		buf_size = buf_limit;
2167 
2168 	inode = file_inode(file);
2169 	ret = search_ioctl(inode, &args.key, &buf_size,
2170 			   (char __user *)(&uarg->buf[0]));
2171 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2172 		ret = -EFAULT;
2173 	else if (ret == -EOVERFLOW &&
2174 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2175 		ret = -EFAULT;
2176 
2177 	return ret;
2178 }
2179 
2180 /*
2181  * Search INODE_REFs to identify path name of 'dirid' directory
2182  * in a 'tree_id' tree. and sets path name to 'name'.
2183  */
2184 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2185 				u64 tree_id, u64 dirid, char *name)
2186 {
2187 	struct btrfs_root *root;
2188 	struct btrfs_key key;
2189 	char *ptr;
2190 	int ret = -1;
2191 	int slot;
2192 	int len;
2193 	int total_len = 0;
2194 	struct btrfs_inode_ref *iref;
2195 	struct extent_buffer *l;
2196 	struct btrfs_path *path;
2197 
2198 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2199 		name[0]='\0';
2200 		return 0;
2201 	}
2202 
2203 	path = btrfs_alloc_path();
2204 	if (!path)
2205 		return -ENOMEM;
2206 
2207 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2208 
2209 	key.objectid = tree_id;
2210 	key.type = BTRFS_ROOT_ITEM_KEY;
2211 	key.offset = (u64)-1;
2212 	root = btrfs_read_fs_root_no_name(info, &key);
2213 	if (IS_ERR(root)) {
2214 		btrfs_err(info, "could not find root %llu", tree_id);
2215 		ret = -ENOENT;
2216 		goto out;
2217 	}
2218 
2219 	key.objectid = dirid;
2220 	key.type = BTRFS_INODE_REF_KEY;
2221 	key.offset = (u64)-1;
2222 
2223 	while (1) {
2224 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2225 		if (ret < 0)
2226 			goto out;
2227 		else if (ret > 0) {
2228 			ret = btrfs_previous_item(root, path, dirid,
2229 						  BTRFS_INODE_REF_KEY);
2230 			if (ret < 0)
2231 				goto out;
2232 			else if (ret > 0) {
2233 				ret = -ENOENT;
2234 				goto out;
2235 			}
2236 		}
2237 
2238 		l = path->nodes[0];
2239 		slot = path->slots[0];
2240 		btrfs_item_key_to_cpu(l, &key, slot);
2241 
2242 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2243 		len = btrfs_inode_ref_name_len(l, iref);
2244 		ptr -= len + 1;
2245 		total_len += len + 1;
2246 		if (ptr < name) {
2247 			ret = -ENAMETOOLONG;
2248 			goto out;
2249 		}
2250 
2251 		*(ptr + len) = '/';
2252 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2253 
2254 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2255 			break;
2256 
2257 		btrfs_release_path(path);
2258 		key.objectid = key.offset;
2259 		key.offset = (u64)-1;
2260 		dirid = key.objectid;
2261 	}
2262 	memmove(name, ptr, total_len);
2263 	name[total_len] = '\0';
2264 	ret = 0;
2265 out:
2266 	btrfs_free_path(path);
2267 	return ret;
2268 }
2269 
2270 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2271 					   void __user *argp)
2272 {
2273 	 struct btrfs_ioctl_ino_lookup_args *args;
2274 	 struct inode *inode;
2275 	int ret = 0;
2276 
2277 	args = memdup_user(argp, sizeof(*args));
2278 	if (IS_ERR(args))
2279 		return PTR_ERR(args);
2280 
2281 	inode = file_inode(file);
2282 
2283 	/*
2284 	 * Unprivileged query to obtain the containing subvolume root id. The
2285 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2286 	 */
2287 	if (args->treeid == 0)
2288 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2289 
2290 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2291 		args->name[0] = 0;
2292 		goto out;
2293 	}
2294 
2295 	if (!capable(CAP_SYS_ADMIN)) {
2296 		ret = -EPERM;
2297 		goto out;
2298 	}
2299 
2300 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2301 					args->treeid, args->objectid,
2302 					args->name);
2303 
2304 out:
2305 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2306 		ret = -EFAULT;
2307 
2308 	kfree(args);
2309 	return ret;
2310 }
2311 
2312 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2313 					     void __user *arg)
2314 {
2315 	struct dentry *parent = file->f_path.dentry;
2316 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2317 	struct dentry *dentry;
2318 	struct inode *dir = d_inode(parent);
2319 	struct inode *inode;
2320 	struct btrfs_root *root = BTRFS_I(dir)->root;
2321 	struct btrfs_root *dest = NULL;
2322 	struct btrfs_ioctl_vol_args *vol_args;
2323 	struct btrfs_trans_handle *trans;
2324 	struct btrfs_block_rsv block_rsv;
2325 	u64 root_flags;
2326 	u64 qgroup_reserved;
2327 	int namelen;
2328 	int ret;
2329 	int err = 0;
2330 
2331 	if (!S_ISDIR(dir->i_mode))
2332 		return -ENOTDIR;
2333 
2334 	vol_args = memdup_user(arg, sizeof(*vol_args));
2335 	if (IS_ERR(vol_args))
2336 		return PTR_ERR(vol_args);
2337 
2338 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2339 	namelen = strlen(vol_args->name);
2340 	if (strchr(vol_args->name, '/') ||
2341 	    strncmp(vol_args->name, "..", namelen) == 0) {
2342 		err = -EINVAL;
2343 		goto out;
2344 	}
2345 
2346 	err = mnt_want_write_file(file);
2347 	if (err)
2348 		goto out;
2349 
2350 
2351 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2352 	if (err == -EINTR)
2353 		goto out_drop_write;
2354 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2355 	if (IS_ERR(dentry)) {
2356 		err = PTR_ERR(dentry);
2357 		goto out_unlock_dir;
2358 	}
2359 
2360 	if (d_really_is_negative(dentry)) {
2361 		err = -ENOENT;
2362 		goto out_dput;
2363 	}
2364 
2365 	inode = d_inode(dentry);
2366 	dest = BTRFS_I(inode)->root;
2367 	if (!capable(CAP_SYS_ADMIN)) {
2368 		/*
2369 		 * Regular user.  Only allow this with a special mount
2370 		 * option, when the user has write+exec access to the
2371 		 * subvol root, and when rmdir(2) would have been
2372 		 * allowed.
2373 		 *
2374 		 * Note that this is _not_ check that the subvol is
2375 		 * empty or doesn't contain data that we wouldn't
2376 		 * otherwise be able to delete.
2377 		 *
2378 		 * Users who want to delete empty subvols should try
2379 		 * rmdir(2).
2380 		 */
2381 		err = -EPERM;
2382 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2383 			goto out_dput;
2384 
2385 		/*
2386 		 * Do not allow deletion if the parent dir is the same
2387 		 * as the dir to be deleted.  That means the ioctl
2388 		 * must be called on the dentry referencing the root
2389 		 * of the subvol, not a random directory contained
2390 		 * within it.
2391 		 */
2392 		err = -EINVAL;
2393 		if (root == dest)
2394 			goto out_dput;
2395 
2396 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2397 		if (err)
2398 			goto out_dput;
2399 	}
2400 
2401 	/* check if subvolume may be deleted by a user */
2402 	err = btrfs_may_delete(dir, dentry, 1);
2403 	if (err)
2404 		goto out_dput;
2405 
2406 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2407 		err = -EINVAL;
2408 		goto out_dput;
2409 	}
2410 
2411 	inode_lock(inode);
2412 
2413 	/*
2414 	 * Don't allow to delete a subvolume with send in progress. This is
2415 	 * inside the i_mutex so the error handling that has to drop the bit
2416 	 * again is not run concurrently.
2417 	 */
2418 	spin_lock(&dest->root_item_lock);
2419 	root_flags = btrfs_root_flags(&dest->root_item);
2420 	if (dest->send_in_progress == 0) {
2421 		btrfs_set_root_flags(&dest->root_item,
2422 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2423 		spin_unlock(&dest->root_item_lock);
2424 	} else {
2425 		spin_unlock(&dest->root_item_lock);
2426 		btrfs_warn(fs_info,
2427 			   "Attempt to delete subvolume %llu during send",
2428 			   dest->root_key.objectid);
2429 		err = -EPERM;
2430 		goto out_unlock_inode;
2431 	}
2432 
2433 	down_write(&fs_info->subvol_sem);
2434 
2435 	err = may_destroy_subvol(dest);
2436 	if (err)
2437 		goto out_up_write;
2438 
2439 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2440 	/*
2441 	 * One for dir inode, two for dir entries, two for root
2442 	 * ref/backref.
2443 	 */
2444 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2445 					       5, &qgroup_reserved, true);
2446 	if (err)
2447 		goto out_up_write;
2448 
2449 	trans = btrfs_start_transaction(root, 0);
2450 	if (IS_ERR(trans)) {
2451 		err = PTR_ERR(trans);
2452 		goto out_release;
2453 	}
2454 	trans->block_rsv = &block_rsv;
2455 	trans->bytes_reserved = block_rsv.size;
2456 
2457 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2458 
2459 	ret = btrfs_unlink_subvol(trans, root, dir,
2460 				dest->root_key.objectid,
2461 				dentry->d_name.name,
2462 				dentry->d_name.len);
2463 	if (ret) {
2464 		err = ret;
2465 		btrfs_abort_transaction(trans, ret);
2466 		goto out_end_trans;
2467 	}
2468 
2469 	btrfs_record_root_in_trans(trans, dest);
2470 
2471 	memset(&dest->root_item.drop_progress, 0,
2472 		sizeof(dest->root_item.drop_progress));
2473 	dest->root_item.drop_level = 0;
2474 	btrfs_set_root_refs(&dest->root_item, 0);
2475 
2476 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2477 		ret = btrfs_insert_orphan_item(trans,
2478 					fs_info->tree_root,
2479 					dest->root_key.objectid);
2480 		if (ret) {
2481 			btrfs_abort_transaction(trans, ret);
2482 			err = ret;
2483 			goto out_end_trans;
2484 		}
2485 	}
2486 
2487 	ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2488 				  BTRFS_UUID_KEY_SUBVOL,
2489 				  dest->root_key.objectid);
2490 	if (ret && ret != -ENOENT) {
2491 		btrfs_abort_transaction(trans, ret);
2492 		err = ret;
2493 		goto out_end_trans;
2494 	}
2495 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2496 		ret = btrfs_uuid_tree_rem(trans, fs_info,
2497 					  dest->root_item.received_uuid,
2498 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2499 					  dest->root_key.objectid);
2500 		if (ret && ret != -ENOENT) {
2501 			btrfs_abort_transaction(trans, ret);
2502 			err = ret;
2503 			goto out_end_trans;
2504 		}
2505 	}
2506 
2507 out_end_trans:
2508 	trans->block_rsv = NULL;
2509 	trans->bytes_reserved = 0;
2510 	ret = btrfs_end_transaction(trans);
2511 	if (ret && !err)
2512 		err = ret;
2513 	inode->i_flags |= S_DEAD;
2514 out_release:
2515 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2516 out_up_write:
2517 	up_write(&fs_info->subvol_sem);
2518 	if (err) {
2519 		spin_lock(&dest->root_item_lock);
2520 		root_flags = btrfs_root_flags(&dest->root_item);
2521 		btrfs_set_root_flags(&dest->root_item,
2522 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2523 		spin_unlock(&dest->root_item_lock);
2524 	}
2525 out_unlock_inode:
2526 	inode_unlock(inode);
2527 	if (!err) {
2528 		d_invalidate(dentry);
2529 		btrfs_invalidate_inodes(dest);
2530 		d_delete(dentry);
2531 		ASSERT(dest->send_in_progress == 0);
2532 
2533 		/* the last ref */
2534 		if (dest->ino_cache_inode) {
2535 			iput(dest->ino_cache_inode);
2536 			dest->ino_cache_inode = NULL;
2537 		}
2538 	}
2539 out_dput:
2540 	dput(dentry);
2541 out_unlock_dir:
2542 	inode_unlock(dir);
2543 out_drop_write:
2544 	mnt_drop_write_file(file);
2545 out:
2546 	kfree(vol_args);
2547 	return err;
2548 }
2549 
2550 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2551 {
2552 	struct inode *inode = file_inode(file);
2553 	struct btrfs_root *root = BTRFS_I(inode)->root;
2554 	struct btrfs_ioctl_defrag_range_args *range;
2555 	int ret;
2556 
2557 	ret = mnt_want_write_file(file);
2558 	if (ret)
2559 		return ret;
2560 
2561 	if (btrfs_root_readonly(root)) {
2562 		ret = -EROFS;
2563 		goto out;
2564 	}
2565 
2566 	switch (inode->i_mode & S_IFMT) {
2567 	case S_IFDIR:
2568 		if (!capable(CAP_SYS_ADMIN)) {
2569 			ret = -EPERM;
2570 			goto out;
2571 		}
2572 		ret = btrfs_defrag_root(root);
2573 		break;
2574 	case S_IFREG:
2575 		if (!(file->f_mode & FMODE_WRITE)) {
2576 			ret = -EINVAL;
2577 			goto out;
2578 		}
2579 
2580 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2581 		if (!range) {
2582 			ret = -ENOMEM;
2583 			goto out;
2584 		}
2585 
2586 		if (argp) {
2587 			if (copy_from_user(range, argp,
2588 					   sizeof(*range))) {
2589 				ret = -EFAULT;
2590 				kfree(range);
2591 				goto out;
2592 			}
2593 			/* compression requires us to start the IO */
2594 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2595 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2596 				range->extent_thresh = (u32)-1;
2597 			}
2598 		} else {
2599 			/* the rest are all set to zero by kzalloc */
2600 			range->len = (u64)-1;
2601 		}
2602 		ret = btrfs_defrag_file(file_inode(file), file,
2603 					range, 0, 0);
2604 		if (ret > 0)
2605 			ret = 0;
2606 		kfree(range);
2607 		break;
2608 	default:
2609 		ret = -EINVAL;
2610 	}
2611 out:
2612 	mnt_drop_write_file(file);
2613 	return ret;
2614 }
2615 
2616 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2617 {
2618 	struct btrfs_ioctl_vol_args *vol_args;
2619 	int ret;
2620 
2621 	if (!capable(CAP_SYS_ADMIN))
2622 		return -EPERM;
2623 
2624 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2625 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2626 
2627 	mutex_lock(&fs_info->volume_mutex);
2628 	vol_args = memdup_user(arg, sizeof(*vol_args));
2629 	if (IS_ERR(vol_args)) {
2630 		ret = PTR_ERR(vol_args);
2631 		goto out;
2632 	}
2633 
2634 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2635 	ret = btrfs_init_new_device(fs_info, vol_args->name);
2636 
2637 	if (!ret)
2638 		btrfs_info(fs_info, "disk added %s", vol_args->name);
2639 
2640 	kfree(vol_args);
2641 out:
2642 	mutex_unlock(&fs_info->volume_mutex);
2643 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2644 	return ret;
2645 }
2646 
2647 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2648 {
2649 	struct inode *inode = file_inode(file);
2650 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2651 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2652 	int ret;
2653 
2654 	if (!capable(CAP_SYS_ADMIN))
2655 		return -EPERM;
2656 
2657 	ret = mnt_want_write_file(file);
2658 	if (ret)
2659 		return ret;
2660 
2661 	vol_args = memdup_user(arg, sizeof(*vol_args));
2662 	if (IS_ERR(vol_args)) {
2663 		ret = PTR_ERR(vol_args);
2664 		goto err_drop;
2665 	}
2666 
2667 	/* Check for compatibility reject unknown flags */
2668 	if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2669 		return -EOPNOTSUPP;
2670 
2671 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2672 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2673 		goto out;
2674 	}
2675 
2676 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2677 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2678 	} else {
2679 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2680 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2681 	}
2682 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2683 
2684 	if (!ret) {
2685 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2686 			btrfs_info(fs_info, "device deleted: id %llu",
2687 					vol_args->devid);
2688 		else
2689 			btrfs_info(fs_info, "device deleted: %s",
2690 					vol_args->name);
2691 	}
2692 out:
2693 	kfree(vol_args);
2694 err_drop:
2695 	mnt_drop_write_file(file);
2696 	return ret;
2697 }
2698 
2699 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2700 {
2701 	struct inode *inode = file_inode(file);
2702 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2703 	struct btrfs_ioctl_vol_args *vol_args;
2704 	int ret;
2705 
2706 	if (!capable(CAP_SYS_ADMIN))
2707 		return -EPERM;
2708 
2709 	ret = mnt_want_write_file(file);
2710 	if (ret)
2711 		return ret;
2712 
2713 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2714 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2715 		goto out_drop_write;
2716 	}
2717 
2718 	vol_args = memdup_user(arg, sizeof(*vol_args));
2719 	if (IS_ERR(vol_args)) {
2720 		ret = PTR_ERR(vol_args);
2721 		goto out;
2722 	}
2723 
2724 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2725 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2726 
2727 	if (!ret)
2728 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2729 	kfree(vol_args);
2730 out:
2731 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2732 out_drop_write:
2733 	mnt_drop_write_file(file);
2734 
2735 	return ret;
2736 }
2737 
2738 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2739 				void __user *arg)
2740 {
2741 	struct btrfs_ioctl_fs_info_args *fi_args;
2742 	struct btrfs_device *device;
2743 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2744 	int ret = 0;
2745 
2746 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2747 	if (!fi_args)
2748 		return -ENOMEM;
2749 
2750 	rcu_read_lock();
2751 	fi_args->num_devices = fs_devices->num_devices;
2752 
2753 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2754 		if (device->devid > fi_args->max_id)
2755 			fi_args->max_id = device->devid;
2756 	}
2757 	rcu_read_unlock();
2758 
2759 	memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2760 	fi_args->nodesize = fs_info->nodesize;
2761 	fi_args->sectorsize = fs_info->sectorsize;
2762 	fi_args->clone_alignment = fs_info->sectorsize;
2763 
2764 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2765 		ret = -EFAULT;
2766 
2767 	kfree(fi_args);
2768 	return ret;
2769 }
2770 
2771 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2772 				 void __user *arg)
2773 {
2774 	struct btrfs_ioctl_dev_info_args *di_args;
2775 	struct btrfs_device *dev;
2776 	int ret = 0;
2777 	char *s_uuid = NULL;
2778 
2779 	di_args = memdup_user(arg, sizeof(*di_args));
2780 	if (IS_ERR(di_args))
2781 		return PTR_ERR(di_args);
2782 
2783 	if (!btrfs_is_empty_uuid(di_args->uuid))
2784 		s_uuid = di_args->uuid;
2785 
2786 	rcu_read_lock();
2787 	dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2788 
2789 	if (!dev) {
2790 		ret = -ENODEV;
2791 		goto out;
2792 	}
2793 
2794 	di_args->devid = dev->devid;
2795 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2796 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2797 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2798 	if (dev->name) {
2799 		struct rcu_string *name;
2800 
2801 		name = rcu_dereference(dev->name);
2802 		strncpy(di_args->path, name->str, sizeof(di_args->path) - 1);
2803 		di_args->path[sizeof(di_args->path) - 1] = 0;
2804 	} else {
2805 		di_args->path[0] = '\0';
2806 	}
2807 
2808 out:
2809 	rcu_read_unlock();
2810 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2811 		ret = -EFAULT;
2812 
2813 	kfree(di_args);
2814 	return ret;
2815 }
2816 
2817 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2818 {
2819 	struct page *page;
2820 
2821 	page = grab_cache_page(inode->i_mapping, index);
2822 	if (!page)
2823 		return ERR_PTR(-ENOMEM);
2824 
2825 	if (!PageUptodate(page)) {
2826 		int ret;
2827 
2828 		ret = btrfs_readpage(NULL, page);
2829 		if (ret)
2830 			return ERR_PTR(ret);
2831 		lock_page(page);
2832 		if (!PageUptodate(page)) {
2833 			unlock_page(page);
2834 			put_page(page);
2835 			return ERR_PTR(-EIO);
2836 		}
2837 		if (page->mapping != inode->i_mapping) {
2838 			unlock_page(page);
2839 			put_page(page);
2840 			return ERR_PTR(-EAGAIN);
2841 		}
2842 	}
2843 
2844 	return page;
2845 }
2846 
2847 static int gather_extent_pages(struct inode *inode, struct page **pages,
2848 			       int num_pages, u64 off)
2849 {
2850 	int i;
2851 	pgoff_t index = off >> PAGE_SHIFT;
2852 
2853 	for (i = 0; i < num_pages; i++) {
2854 again:
2855 		pages[i] = extent_same_get_page(inode, index + i);
2856 		if (IS_ERR(pages[i])) {
2857 			int err = PTR_ERR(pages[i]);
2858 
2859 			if (err == -EAGAIN)
2860 				goto again;
2861 			pages[i] = NULL;
2862 			return err;
2863 		}
2864 	}
2865 	return 0;
2866 }
2867 
2868 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2869 			     bool retry_range_locking)
2870 {
2871 	/*
2872 	 * Do any pending delalloc/csum calculations on inode, one way or
2873 	 * another, and lock file content.
2874 	 * The locking order is:
2875 	 *
2876 	 *   1) pages
2877 	 *   2) range in the inode's io tree
2878 	 */
2879 	while (1) {
2880 		struct btrfs_ordered_extent *ordered;
2881 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2882 		ordered = btrfs_lookup_first_ordered_extent(inode,
2883 							    off + len - 1);
2884 		if ((!ordered ||
2885 		     ordered->file_offset + ordered->len <= off ||
2886 		     ordered->file_offset >= off + len) &&
2887 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2888 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2889 			if (ordered)
2890 				btrfs_put_ordered_extent(ordered);
2891 			break;
2892 		}
2893 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2894 		if (ordered)
2895 			btrfs_put_ordered_extent(ordered);
2896 		if (!retry_range_locking)
2897 			return -EAGAIN;
2898 		btrfs_wait_ordered_range(inode, off, len);
2899 	}
2900 	return 0;
2901 }
2902 
2903 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2904 {
2905 	inode_unlock(inode1);
2906 	inode_unlock(inode2);
2907 }
2908 
2909 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2910 {
2911 	if (inode1 < inode2)
2912 		swap(inode1, inode2);
2913 
2914 	inode_lock_nested(inode1, I_MUTEX_PARENT);
2915 	inode_lock_nested(inode2, I_MUTEX_CHILD);
2916 }
2917 
2918 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2919 				      struct inode *inode2, u64 loff2, u64 len)
2920 {
2921 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2922 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2923 }
2924 
2925 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2926 				    struct inode *inode2, u64 loff2, u64 len,
2927 				    bool retry_range_locking)
2928 {
2929 	int ret;
2930 
2931 	if (inode1 < inode2) {
2932 		swap(inode1, inode2);
2933 		swap(loff1, loff2);
2934 	}
2935 	ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2936 	if (ret)
2937 		return ret;
2938 	ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2939 	if (ret)
2940 		unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2941 			      loff1 + len - 1);
2942 	return ret;
2943 }
2944 
2945 struct cmp_pages {
2946 	int		num_pages;
2947 	struct page	**src_pages;
2948 	struct page	**dst_pages;
2949 };
2950 
2951 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2952 {
2953 	int i;
2954 	struct page *pg;
2955 
2956 	for (i = 0; i < cmp->num_pages; i++) {
2957 		pg = cmp->src_pages[i];
2958 		if (pg) {
2959 			unlock_page(pg);
2960 			put_page(pg);
2961 		}
2962 		pg = cmp->dst_pages[i];
2963 		if (pg) {
2964 			unlock_page(pg);
2965 			put_page(pg);
2966 		}
2967 	}
2968 	kfree(cmp->src_pages);
2969 	kfree(cmp->dst_pages);
2970 }
2971 
2972 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2973 				  struct inode *dst, u64 dst_loff,
2974 				  u64 len, struct cmp_pages *cmp)
2975 {
2976 	int ret;
2977 	int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2978 	struct page **src_pgarr, **dst_pgarr;
2979 
2980 	/*
2981 	 * We must gather up all the pages before we initiate our
2982 	 * extent locking. We use an array for the page pointers. Size
2983 	 * of the array is bounded by len, which is in turn bounded by
2984 	 * BTRFS_MAX_DEDUPE_LEN.
2985 	 */
2986 	src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2987 	dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2988 	if (!src_pgarr || !dst_pgarr) {
2989 		kfree(src_pgarr);
2990 		kfree(dst_pgarr);
2991 		return -ENOMEM;
2992 	}
2993 	cmp->num_pages = num_pages;
2994 	cmp->src_pages = src_pgarr;
2995 	cmp->dst_pages = dst_pgarr;
2996 
2997 	/*
2998 	 * If deduping ranges in the same inode, locking rules make it mandatory
2999 	 * to always lock pages in ascending order to avoid deadlocks with
3000 	 * concurrent tasks (such as starting writeback/delalloc).
3001 	 */
3002 	if (src == dst && dst_loff < loff) {
3003 		swap(src_pgarr, dst_pgarr);
3004 		swap(loff, dst_loff);
3005 	}
3006 
3007 	ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
3008 	if (ret)
3009 		goto out;
3010 
3011 	ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3012 
3013 out:
3014 	if (ret)
3015 		btrfs_cmp_data_free(cmp);
3016 	return ret;
3017 }
3018 
3019 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3020 {
3021 	int ret = 0;
3022 	int i;
3023 	struct page *src_page, *dst_page;
3024 	unsigned int cmp_len = PAGE_SIZE;
3025 	void *addr, *dst_addr;
3026 
3027 	i = 0;
3028 	while (len) {
3029 		if (len < PAGE_SIZE)
3030 			cmp_len = len;
3031 
3032 		BUG_ON(i >= cmp->num_pages);
3033 
3034 		src_page = cmp->src_pages[i];
3035 		dst_page = cmp->dst_pages[i];
3036 		ASSERT(PageLocked(src_page));
3037 		ASSERT(PageLocked(dst_page));
3038 
3039 		addr = kmap_atomic(src_page);
3040 		dst_addr = kmap_atomic(dst_page);
3041 
3042 		flush_dcache_page(src_page);
3043 		flush_dcache_page(dst_page);
3044 
3045 		if (memcmp(addr, dst_addr, cmp_len))
3046 			ret = -EBADE;
3047 
3048 		kunmap_atomic(addr);
3049 		kunmap_atomic(dst_addr);
3050 
3051 		if (ret)
3052 			break;
3053 
3054 		len -= cmp_len;
3055 		i++;
3056 	}
3057 
3058 	return ret;
3059 }
3060 
3061 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3062 				     u64 olen)
3063 {
3064 	u64 len = *plen;
3065 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3066 
3067 	if (off + olen > inode->i_size || off + olen < off)
3068 		return -EINVAL;
3069 
3070 	/* if we extend to eof, continue to block boundary */
3071 	if (off + len == inode->i_size)
3072 		*plen = len = ALIGN(inode->i_size, bs) - off;
3073 
3074 	/* Check that we are block aligned - btrfs_clone() requires this */
3075 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3076 		return -EINVAL;
3077 
3078 	return 0;
3079 }
3080 
3081 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3082 			     struct inode *dst, u64 dst_loff)
3083 {
3084 	int ret;
3085 	u64 len = olen;
3086 	struct cmp_pages cmp;
3087 	bool same_inode = (src == dst);
3088 	u64 same_lock_start = 0;
3089 	u64 same_lock_len = 0;
3090 
3091 	if (len == 0)
3092 		return 0;
3093 
3094 	if (same_inode)
3095 		inode_lock(src);
3096 	else
3097 		btrfs_double_inode_lock(src, dst);
3098 
3099 	ret = extent_same_check_offsets(src, loff, &len, olen);
3100 	if (ret)
3101 		goto out_unlock;
3102 
3103 	ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3104 	if (ret)
3105 		goto out_unlock;
3106 
3107 	if (same_inode) {
3108 		/*
3109 		 * Single inode case wants the same checks, except we
3110 		 * don't want our length pushed out past i_size as
3111 		 * comparing that data range makes no sense.
3112 		 *
3113 		 * extent_same_check_offsets() will do this for an
3114 		 * unaligned length at i_size, so catch it here and
3115 		 * reject the request.
3116 		 *
3117 		 * This effectively means we require aligned extents
3118 		 * for the single-inode case, whereas the other cases
3119 		 * allow an unaligned length so long as it ends at
3120 		 * i_size.
3121 		 */
3122 		if (len != olen) {
3123 			ret = -EINVAL;
3124 			goto out_unlock;
3125 		}
3126 
3127 		/* Check for overlapping ranges */
3128 		if (dst_loff + len > loff && dst_loff < loff + len) {
3129 			ret = -EINVAL;
3130 			goto out_unlock;
3131 		}
3132 
3133 		same_lock_start = min_t(u64, loff, dst_loff);
3134 		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3135 	}
3136 
3137 	/* don't make the dst file partly checksummed */
3138 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3139 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3140 		ret = -EINVAL;
3141 		goto out_unlock;
3142 	}
3143 
3144 again:
3145 	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3146 	if (ret)
3147 		goto out_unlock;
3148 
3149 	if (same_inode)
3150 		ret = lock_extent_range(src, same_lock_start, same_lock_len,
3151 					false);
3152 	else
3153 		ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3154 					       false);
3155 	/*
3156 	 * If one of the inodes has dirty pages in the respective range or
3157 	 * ordered extents, we need to flush dellaloc and wait for all ordered
3158 	 * extents in the range. We must unlock the pages and the ranges in the
3159 	 * io trees to avoid deadlocks when flushing delalloc (requires locking
3160 	 * pages) and when waiting for ordered extents to complete (they require
3161 	 * range locking).
3162 	 */
3163 	if (ret == -EAGAIN) {
3164 		/*
3165 		 * Ranges in the io trees already unlocked. Now unlock all
3166 		 * pages before waiting for all IO to complete.
3167 		 */
3168 		btrfs_cmp_data_free(&cmp);
3169 		if (same_inode) {
3170 			btrfs_wait_ordered_range(src, same_lock_start,
3171 						 same_lock_len);
3172 		} else {
3173 			btrfs_wait_ordered_range(src, loff, len);
3174 			btrfs_wait_ordered_range(dst, dst_loff, len);
3175 		}
3176 		goto again;
3177 	}
3178 	ASSERT(ret == 0);
3179 	if (WARN_ON(ret)) {
3180 		/* ranges in the io trees already unlocked */
3181 		btrfs_cmp_data_free(&cmp);
3182 		return ret;
3183 	}
3184 
3185 	/* pass original length for comparison so we stay within i_size */
3186 	ret = btrfs_cmp_data(olen, &cmp);
3187 	if (ret == 0)
3188 		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3189 
3190 	if (same_inode)
3191 		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3192 			      same_lock_start + same_lock_len - 1);
3193 	else
3194 		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3195 
3196 	btrfs_cmp_data_free(&cmp);
3197 out_unlock:
3198 	if (same_inode)
3199 		inode_unlock(src);
3200 	else
3201 		btrfs_double_inode_unlock(src, dst);
3202 
3203 	return ret;
3204 }
3205 
3206 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3207 
3208 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3209 				struct file *dst_file, u64 dst_loff)
3210 {
3211 	struct inode *src = file_inode(src_file);
3212 	struct inode *dst = file_inode(dst_file);
3213 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3214 	ssize_t res;
3215 
3216 	if (olen > BTRFS_MAX_DEDUPE_LEN)
3217 		olen = BTRFS_MAX_DEDUPE_LEN;
3218 
3219 	if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3220 		/*
3221 		 * Btrfs does not support blocksize < page_size. As a
3222 		 * result, btrfs_cmp_data() won't correctly handle
3223 		 * this situation without an update.
3224 		 */
3225 		return -EINVAL;
3226 	}
3227 
3228 	res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3229 	if (res)
3230 		return res;
3231 	return olen;
3232 }
3233 
3234 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3235 				     struct inode *inode,
3236 				     u64 endoff,
3237 				     const u64 destoff,
3238 				     const u64 olen,
3239 				     int no_time_update)
3240 {
3241 	struct btrfs_root *root = BTRFS_I(inode)->root;
3242 	int ret;
3243 
3244 	inode_inc_iversion(inode);
3245 	if (!no_time_update)
3246 		inode->i_mtime = inode->i_ctime = current_time(inode);
3247 	/*
3248 	 * We round up to the block size at eof when determining which
3249 	 * extents to clone above, but shouldn't round up the file size.
3250 	 */
3251 	if (endoff > destoff + olen)
3252 		endoff = destoff + olen;
3253 	if (endoff > inode->i_size)
3254 		btrfs_i_size_write(BTRFS_I(inode), endoff);
3255 
3256 	ret = btrfs_update_inode(trans, root, inode);
3257 	if (ret) {
3258 		btrfs_abort_transaction(trans, ret);
3259 		btrfs_end_transaction(trans);
3260 		goto out;
3261 	}
3262 	ret = btrfs_end_transaction(trans);
3263 out:
3264 	return ret;
3265 }
3266 
3267 static void clone_update_extent_map(struct btrfs_inode *inode,
3268 				    const struct btrfs_trans_handle *trans,
3269 				    const struct btrfs_path *path,
3270 				    const u64 hole_offset,
3271 				    const u64 hole_len)
3272 {
3273 	struct extent_map_tree *em_tree = &inode->extent_tree;
3274 	struct extent_map *em;
3275 	int ret;
3276 
3277 	em = alloc_extent_map();
3278 	if (!em) {
3279 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3280 		return;
3281 	}
3282 
3283 	if (path) {
3284 		struct btrfs_file_extent_item *fi;
3285 
3286 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3287 				    struct btrfs_file_extent_item);
3288 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3289 		em->generation = -1;
3290 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3291 		    BTRFS_FILE_EXTENT_INLINE)
3292 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3293 					&inode->runtime_flags);
3294 	} else {
3295 		em->start = hole_offset;
3296 		em->len = hole_len;
3297 		em->ram_bytes = em->len;
3298 		em->orig_start = hole_offset;
3299 		em->block_start = EXTENT_MAP_HOLE;
3300 		em->block_len = 0;
3301 		em->orig_block_len = 0;
3302 		em->compress_type = BTRFS_COMPRESS_NONE;
3303 		em->generation = trans->transid;
3304 	}
3305 
3306 	while (1) {
3307 		write_lock(&em_tree->lock);
3308 		ret = add_extent_mapping(em_tree, em, 1);
3309 		write_unlock(&em_tree->lock);
3310 		if (ret != -EEXIST) {
3311 			free_extent_map(em);
3312 			break;
3313 		}
3314 		btrfs_drop_extent_cache(inode, em->start,
3315 					em->start + em->len - 1, 0);
3316 	}
3317 
3318 	if (ret)
3319 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3320 }
3321 
3322 /*
3323  * Make sure we do not end up inserting an inline extent into a file that has
3324  * already other (non-inline) extents. If a file has an inline extent it can
3325  * not have any other extents and the (single) inline extent must start at the
3326  * file offset 0. Failing to respect these rules will lead to file corruption,
3327  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3328  *
3329  * We can have extents that have been already written to disk or we can have
3330  * dirty ranges still in delalloc, in which case the extent maps and items are
3331  * created only when we run delalloc, and the delalloc ranges might fall outside
3332  * the range we are currently locking in the inode's io tree. So we check the
3333  * inode's i_size because of that (i_size updates are done while holding the
3334  * i_mutex, which we are holding here).
3335  * We also check to see if the inode has a size not greater than "datal" but has
3336  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3337  * protected against such concurrent fallocate calls by the i_mutex).
3338  *
3339  * If the file has no extents but a size greater than datal, do not allow the
3340  * copy because we would need turn the inline extent into a non-inline one (even
3341  * with NO_HOLES enabled). If we find our destination inode only has one inline
3342  * extent, just overwrite it with the source inline extent if its size is less
3343  * than the source extent's size, or we could copy the source inline extent's
3344  * data into the destination inode's inline extent if the later is greater then
3345  * the former.
3346  */
3347 static int clone_copy_inline_extent(struct inode *dst,
3348 				    struct btrfs_trans_handle *trans,
3349 				    struct btrfs_path *path,
3350 				    struct btrfs_key *new_key,
3351 				    const u64 drop_start,
3352 				    const u64 datal,
3353 				    const u64 skip,
3354 				    const u64 size,
3355 				    char *inline_data)
3356 {
3357 	struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3358 	struct btrfs_root *root = BTRFS_I(dst)->root;
3359 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3360 				      fs_info->sectorsize);
3361 	int ret;
3362 	struct btrfs_key key;
3363 
3364 	if (new_key->offset > 0)
3365 		return -EOPNOTSUPP;
3366 
3367 	key.objectid = btrfs_ino(BTRFS_I(dst));
3368 	key.type = BTRFS_EXTENT_DATA_KEY;
3369 	key.offset = 0;
3370 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3371 	if (ret < 0) {
3372 		return ret;
3373 	} else if (ret > 0) {
3374 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3375 			ret = btrfs_next_leaf(root, path);
3376 			if (ret < 0)
3377 				return ret;
3378 			else if (ret > 0)
3379 				goto copy_inline_extent;
3380 		}
3381 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3382 		if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3383 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3384 			ASSERT(key.offset > 0);
3385 			return -EOPNOTSUPP;
3386 		}
3387 	} else if (i_size_read(dst) <= datal) {
3388 		struct btrfs_file_extent_item *ei;
3389 		u64 ext_len;
3390 
3391 		/*
3392 		 * If the file size is <= datal, make sure there are no other
3393 		 * extents following (can happen do to an fallocate call with
3394 		 * the flag FALLOC_FL_KEEP_SIZE).
3395 		 */
3396 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3397 				    struct btrfs_file_extent_item);
3398 		/*
3399 		 * If it's an inline extent, it can not have other extents
3400 		 * following it.
3401 		 */
3402 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3403 		    BTRFS_FILE_EXTENT_INLINE)
3404 			goto copy_inline_extent;
3405 
3406 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3407 		if (ext_len > aligned_end)
3408 			return -EOPNOTSUPP;
3409 
3410 		ret = btrfs_next_item(root, path);
3411 		if (ret < 0) {
3412 			return ret;
3413 		} else if (ret == 0) {
3414 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3415 					      path->slots[0]);
3416 			if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3417 			    key.type == BTRFS_EXTENT_DATA_KEY)
3418 				return -EOPNOTSUPP;
3419 		}
3420 	}
3421 
3422 copy_inline_extent:
3423 	/*
3424 	 * We have no extent items, or we have an extent at offset 0 which may
3425 	 * or may not be inlined. All these cases are dealt the same way.
3426 	 */
3427 	if (i_size_read(dst) > datal) {
3428 		/*
3429 		 * If the destination inode has an inline extent...
3430 		 * This would require copying the data from the source inline
3431 		 * extent into the beginning of the destination's inline extent.
3432 		 * But this is really complex, both extents can be compressed
3433 		 * or just one of them, which would require decompressing and
3434 		 * re-compressing data (which could increase the new compressed
3435 		 * size, not allowing the compressed data to fit anymore in an
3436 		 * inline extent).
3437 		 * So just don't support this case for now (it should be rare,
3438 		 * we are not really saving space when cloning inline extents).
3439 		 */
3440 		return -EOPNOTSUPP;
3441 	}
3442 
3443 	btrfs_release_path(path);
3444 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3445 	if (ret)
3446 		return ret;
3447 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3448 	if (ret)
3449 		return ret;
3450 
3451 	if (skip) {
3452 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3453 
3454 		memmove(inline_data + start, inline_data + start + skip, datal);
3455 	}
3456 
3457 	write_extent_buffer(path->nodes[0], inline_data,
3458 			    btrfs_item_ptr_offset(path->nodes[0],
3459 						  path->slots[0]),
3460 			    size);
3461 	inode_add_bytes(dst, datal);
3462 
3463 	return 0;
3464 }
3465 
3466 /**
3467  * btrfs_clone() - clone a range from inode file to another
3468  *
3469  * @src: Inode to clone from
3470  * @inode: Inode to clone to
3471  * @off: Offset within source to start clone from
3472  * @olen: Original length, passed by user, of range to clone
3473  * @olen_aligned: Block-aligned value of olen
3474  * @destoff: Offset within @inode to start clone
3475  * @no_time_update: Whether to update mtime/ctime on the target inode
3476  */
3477 static int btrfs_clone(struct inode *src, struct inode *inode,
3478 		       const u64 off, const u64 olen, const u64 olen_aligned,
3479 		       const u64 destoff, int no_time_update)
3480 {
3481 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3482 	struct btrfs_root *root = BTRFS_I(inode)->root;
3483 	struct btrfs_path *path = NULL;
3484 	struct extent_buffer *leaf;
3485 	struct btrfs_trans_handle *trans;
3486 	char *buf = NULL;
3487 	struct btrfs_key key;
3488 	u32 nritems;
3489 	int slot;
3490 	int ret;
3491 	const u64 len = olen_aligned;
3492 	u64 last_dest_end = destoff;
3493 
3494 	ret = -ENOMEM;
3495 	buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3496 	if (!buf)
3497 		return ret;
3498 
3499 	path = btrfs_alloc_path();
3500 	if (!path) {
3501 		kvfree(buf);
3502 		return ret;
3503 	}
3504 
3505 	path->reada = READA_FORWARD;
3506 	/* clone data */
3507 	key.objectid = btrfs_ino(BTRFS_I(src));
3508 	key.type = BTRFS_EXTENT_DATA_KEY;
3509 	key.offset = off;
3510 
3511 	while (1) {
3512 		u64 next_key_min_offset = key.offset + 1;
3513 
3514 		/*
3515 		 * note the key will change type as we walk through the
3516 		 * tree.
3517 		 */
3518 		path->leave_spinning = 1;
3519 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3520 				0, 0);
3521 		if (ret < 0)
3522 			goto out;
3523 		/*
3524 		 * First search, if no extent item that starts at offset off was
3525 		 * found but the previous item is an extent item, it's possible
3526 		 * it might overlap our target range, therefore process it.
3527 		 */
3528 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3529 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3530 					      path->slots[0] - 1);
3531 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3532 				path->slots[0]--;
3533 		}
3534 
3535 		nritems = btrfs_header_nritems(path->nodes[0]);
3536 process_slot:
3537 		if (path->slots[0] >= nritems) {
3538 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3539 			if (ret < 0)
3540 				goto out;
3541 			if (ret > 0)
3542 				break;
3543 			nritems = btrfs_header_nritems(path->nodes[0]);
3544 		}
3545 		leaf = path->nodes[0];
3546 		slot = path->slots[0];
3547 
3548 		btrfs_item_key_to_cpu(leaf, &key, slot);
3549 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3550 		    key.objectid != btrfs_ino(BTRFS_I(src)))
3551 			break;
3552 
3553 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3554 			struct btrfs_file_extent_item *extent;
3555 			int type;
3556 			u32 size;
3557 			struct btrfs_key new_key;
3558 			u64 disko = 0, diskl = 0;
3559 			u64 datao = 0, datal = 0;
3560 			u8 comp;
3561 			u64 drop_start;
3562 
3563 			extent = btrfs_item_ptr(leaf, slot,
3564 						struct btrfs_file_extent_item);
3565 			comp = btrfs_file_extent_compression(leaf, extent);
3566 			type = btrfs_file_extent_type(leaf, extent);
3567 			if (type == BTRFS_FILE_EXTENT_REG ||
3568 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3569 				disko = btrfs_file_extent_disk_bytenr(leaf,
3570 								      extent);
3571 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3572 								 extent);
3573 				datao = btrfs_file_extent_offset(leaf, extent);
3574 				datal = btrfs_file_extent_num_bytes(leaf,
3575 								    extent);
3576 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3577 				/* take upper bound, may be compressed */
3578 				datal = btrfs_file_extent_ram_bytes(leaf,
3579 								    extent);
3580 			}
3581 
3582 			/*
3583 			 * The first search might have left us at an extent
3584 			 * item that ends before our target range's start, can
3585 			 * happen if we have holes and NO_HOLES feature enabled.
3586 			 */
3587 			if (key.offset + datal <= off) {
3588 				path->slots[0]++;
3589 				goto process_slot;
3590 			} else if (key.offset >= off + len) {
3591 				break;
3592 			}
3593 			next_key_min_offset = key.offset + datal;
3594 			size = btrfs_item_size_nr(leaf, slot);
3595 			read_extent_buffer(leaf, buf,
3596 					   btrfs_item_ptr_offset(leaf, slot),
3597 					   size);
3598 
3599 			btrfs_release_path(path);
3600 			path->leave_spinning = 0;
3601 
3602 			memcpy(&new_key, &key, sizeof(new_key));
3603 			new_key.objectid = btrfs_ino(BTRFS_I(inode));
3604 			if (off <= key.offset)
3605 				new_key.offset = key.offset + destoff - off;
3606 			else
3607 				new_key.offset = destoff;
3608 
3609 			/*
3610 			 * Deal with a hole that doesn't have an extent item
3611 			 * that represents it (NO_HOLES feature enabled).
3612 			 * This hole is either in the middle of the cloning
3613 			 * range or at the beginning (fully overlaps it or
3614 			 * partially overlaps it).
3615 			 */
3616 			if (new_key.offset != last_dest_end)
3617 				drop_start = last_dest_end;
3618 			else
3619 				drop_start = new_key.offset;
3620 
3621 			/*
3622 			 * 1 - adjusting old extent (we may have to split it)
3623 			 * 1 - add new extent
3624 			 * 1 - inode update
3625 			 */
3626 			trans = btrfs_start_transaction(root, 3);
3627 			if (IS_ERR(trans)) {
3628 				ret = PTR_ERR(trans);
3629 				goto out;
3630 			}
3631 
3632 			if (type == BTRFS_FILE_EXTENT_REG ||
3633 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3634 				/*
3635 				 *    a  | --- range to clone ---|  b
3636 				 * | ------------- extent ------------- |
3637 				 */
3638 
3639 				/* subtract range b */
3640 				if (key.offset + datal > off + len)
3641 					datal = off + len - key.offset;
3642 
3643 				/* subtract range a */
3644 				if (off > key.offset) {
3645 					datao += off - key.offset;
3646 					datal -= off - key.offset;
3647 				}
3648 
3649 				ret = btrfs_drop_extents(trans, root, inode,
3650 							 drop_start,
3651 							 new_key.offset + datal,
3652 							 1);
3653 				if (ret) {
3654 					if (ret != -EOPNOTSUPP)
3655 						btrfs_abort_transaction(trans,
3656 									ret);
3657 					btrfs_end_transaction(trans);
3658 					goto out;
3659 				}
3660 
3661 				ret = btrfs_insert_empty_item(trans, root, path,
3662 							      &new_key, size);
3663 				if (ret) {
3664 					btrfs_abort_transaction(trans, ret);
3665 					btrfs_end_transaction(trans);
3666 					goto out;
3667 				}
3668 
3669 				leaf = path->nodes[0];
3670 				slot = path->slots[0];
3671 				write_extent_buffer(leaf, buf,
3672 					    btrfs_item_ptr_offset(leaf, slot),
3673 					    size);
3674 
3675 				extent = btrfs_item_ptr(leaf, slot,
3676 						struct btrfs_file_extent_item);
3677 
3678 				/* disko == 0 means it's a hole */
3679 				if (!disko)
3680 					datao = 0;
3681 
3682 				btrfs_set_file_extent_offset(leaf, extent,
3683 							     datao);
3684 				btrfs_set_file_extent_num_bytes(leaf, extent,
3685 								datal);
3686 
3687 				if (disko) {
3688 					inode_add_bytes(inode, datal);
3689 					ret = btrfs_inc_extent_ref(trans,
3690 							root,
3691 							disko, diskl, 0,
3692 							root->root_key.objectid,
3693 							btrfs_ino(BTRFS_I(inode)),
3694 							new_key.offset - datao);
3695 					if (ret) {
3696 						btrfs_abort_transaction(trans,
3697 									ret);
3698 						btrfs_end_transaction(trans);
3699 						goto out;
3700 
3701 					}
3702 				}
3703 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3704 				u64 skip = 0;
3705 				u64 trim = 0;
3706 
3707 				if (off > key.offset) {
3708 					skip = off - key.offset;
3709 					new_key.offset += skip;
3710 				}
3711 
3712 				if (key.offset + datal > off + len)
3713 					trim = key.offset + datal - (off + len);
3714 
3715 				if (comp && (skip || trim)) {
3716 					ret = -EINVAL;
3717 					btrfs_end_transaction(trans);
3718 					goto out;
3719 				}
3720 				size -= skip + trim;
3721 				datal -= skip + trim;
3722 
3723 				ret = clone_copy_inline_extent(inode,
3724 							       trans, path,
3725 							       &new_key,
3726 							       drop_start,
3727 							       datal,
3728 							       skip, size, buf);
3729 				if (ret) {
3730 					if (ret != -EOPNOTSUPP)
3731 						btrfs_abort_transaction(trans,
3732 									ret);
3733 					btrfs_end_transaction(trans);
3734 					goto out;
3735 				}
3736 				leaf = path->nodes[0];
3737 				slot = path->slots[0];
3738 			}
3739 
3740 			/* If we have an implicit hole (NO_HOLES feature). */
3741 			if (drop_start < new_key.offset)
3742 				clone_update_extent_map(BTRFS_I(inode), trans,
3743 						NULL, drop_start,
3744 						new_key.offset - drop_start);
3745 
3746 			clone_update_extent_map(BTRFS_I(inode), trans,
3747 					path, 0, 0);
3748 
3749 			btrfs_mark_buffer_dirty(leaf);
3750 			btrfs_release_path(path);
3751 
3752 			last_dest_end = ALIGN(new_key.offset + datal,
3753 					      fs_info->sectorsize);
3754 			ret = clone_finish_inode_update(trans, inode,
3755 							last_dest_end,
3756 							destoff, olen,
3757 							no_time_update);
3758 			if (ret)
3759 				goto out;
3760 			if (new_key.offset + datal >= destoff + len)
3761 				break;
3762 		}
3763 		btrfs_release_path(path);
3764 		key.offset = next_key_min_offset;
3765 
3766 		if (fatal_signal_pending(current)) {
3767 			ret = -EINTR;
3768 			goto out;
3769 		}
3770 	}
3771 	ret = 0;
3772 
3773 	if (last_dest_end < destoff + len) {
3774 		/*
3775 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3776 		 * fully or partially overlaps our cloning range at its end.
3777 		 */
3778 		btrfs_release_path(path);
3779 
3780 		/*
3781 		 * 1 - remove extent(s)
3782 		 * 1 - inode update
3783 		 */
3784 		trans = btrfs_start_transaction(root, 2);
3785 		if (IS_ERR(trans)) {
3786 			ret = PTR_ERR(trans);
3787 			goto out;
3788 		}
3789 		ret = btrfs_drop_extents(trans, root, inode,
3790 					 last_dest_end, destoff + len, 1);
3791 		if (ret) {
3792 			if (ret != -EOPNOTSUPP)
3793 				btrfs_abort_transaction(trans, ret);
3794 			btrfs_end_transaction(trans);
3795 			goto out;
3796 		}
3797 		clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3798 				last_dest_end,
3799 				destoff + len - last_dest_end);
3800 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3801 						destoff, olen, no_time_update);
3802 	}
3803 
3804 out:
3805 	btrfs_free_path(path);
3806 	kvfree(buf);
3807 	return ret;
3808 }
3809 
3810 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3811 					u64 off, u64 olen, u64 destoff)
3812 {
3813 	struct inode *inode = file_inode(file);
3814 	struct inode *src = file_inode(file_src);
3815 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3816 	struct btrfs_root *root = BTRFS_I(inode)->root;
3817 	int ret;
3818 	u64 len = olen;
3819 	u64 bs = fs_info->sb->s_blocksize;
3820 	int same_inode = src == inode;
3821 
3822 	/*
3823 	 * TODO:
3824 	 * - split compressed inline extents.  annoying: we need to
3825 	 *   decompress into destination's address_space (the file offset
3826 	 *   may change, so source mapping won't do), then recompress (or
3827 	 *   otherwise reinsert) a subrange.
3828 	 *
3829 	 * - split destination inode's inline extents.  The inline extents can
3830 	 *   be either compressed or non-compressed.
3831 	 */
3832 
3833 	if (btrfs_root_readonly(root))
3834 		return -EROFS;
3835 
3836 	if (file_src->f_path.mnt != file->f_path.mnt ||
3837 	    src->i_sb != inode->i_sb)
3838 		return -EXDEV;
3839 
3840 	/* don't make the dst file partly checksummed */
3841 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3842 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3843 		return -EINVAL;
3844 
3845 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3846 		return -EISDIR;
3847 
3848 	if (!same_inode) {
3849 		btrfs_double_inode_lock(src, inode);
3850 	} else {
3851 		inode_lock(src);
3852 	}
3853 
3854 	/* determine range to clone */
3855 	ret = -EINVAL;
3856 	if (off + len > src->i_size || off + len < off)
3857 		goto out_unlock;
3858 	if (len == 0)
3859 		olen = len = src->i_size - off;
3860 	/* if we extend to eof, continue to block boundary */
3861 	if (off + len == src->i_size)
3862 		len = ALIGN(src->i_size, bs) - off;
3863 
3864 	if (len == 0) {
3865 		ret = 0;
3866 		goto out_unlock;
3867 	}
3868 
3869 	/* verify the end result is block aligned */
3870 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3871 	    !IS_ALIGNED(destoff, bs))
3872 		goto out_unlock;
3873 
3874 	/* verify if ranges are overlapped within the same file */
3875 	if (same_inode) {
3876 		if (destoff + len > off && destoff < off + len)
3877 			goto out_unlock;
3878 	}
3879 
3880 	if (destoff > inode->i_size) {
3881 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3882 		if (ret)
3883 			goto out_unlock;
3884 	}
3885 
3886 	/*
3887 	 * Lock the target range too. Right after we replace the file extent
3888 	 * items in the fs tree (which now point to the cloned data), we might
3889 	 * have a worker replace them with extent items relative to a write
3890 	 * operation that was issued before this clone operation (i.e. confront
3891 	 * with inode.c:btrfs_finish_ordered_io).
3892 	 */
3893 	if (same_inode) {
3894 		u64 lock_start = min_t(u64, off, destoff);
3895 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3896 
3897 		ret = lock_extent_range(src, lock_start, lock_len, true);
3898 	} else {
3899 		ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3900 					       true);
3901 	}
3902 	ASSERT(ret == 0);
3903 	if (WARN_ON(ret)) {
3904 		/* ranges in the io trees already unlocked */
3905 		goto out_unlock;
3906 	}
3907 
3908 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3909 
3910 	if (same_inode) {
3911 		u64 lock_start = min_t(u64, off, destoff);
3912 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3913 
3914 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3915 	} else {
3916 		btrfs_double_extent_unlock(src, off, inode, destoff, len);
3917 	}
3918 	/*
3919 	 * Truncate page cache pages so that future reads will see the cloned
3920 	 * data immediately and not the previous data.
3921 	 */
3922 	truncate_inode_pages_range(&inode->i_data,
3923 				round_down(destoff, PAGE_SIZE),
3924 				round_up(destoff + len, PAGE_SIZE) - 1);
3925 out_unlock:
3926 	if (!same_inode)
3927 		btrfs_double_inode_unlock(src, inode);
3928 	else
3929 		inode_unlock(src);
3930 	return ret;
3931 }
3932 
3933 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3934 		struct file *dst_file, loff_t destoff, u64 len)
3935 {
3936 	return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3937 }
3938 
3939 /*
3940  * there are many ways the trans_start and trans_end ioctls can lead
3941  * to deadlocks.  They should only be used by applications that
3942  * basically own the machine, and have a very in depth understanding
3943  * of all the possible deadlocks and enospc problems.
3944  */
3945 static long btrfs_ioctl_trans_start(struct file *file)
3946 {
3947 	struct inode *inode = file_inode(file);
3948 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3949 	struct btrfs_root *root = BTRFS_I(inode)->root;
3950 	struct btrfs_trans_handle *trans;
3951 	struct btrfs_file_private *private;
3952 	int ret;
3953 	static bool warned = false;
3954 
3955 	ret = -EPERM;
3956 	if (!capable(CAP_SYS_ADMIN))
3957 		goto out;
3958 
3959 	if (!warned) {
3960 		btrfs_warn(fs_info,
3961 			"Userspace transaction mechanism is considered "
3962 			"deprecated and slated to be removed in 4.17. "
3963 			"If you have a valid use case please "
3964 			"speak up on the mailing list");
3965 		WARN_ON(1);
3966 		warned = true;
3967 	}
3968 
3969 	ret = -EINPROGRESS;
3970 	private = file->private_data;
3971 	if (private && private->trans)
3972 		goto out;
3973 	if (!private) {
3974 		private = kzalloc(sizeof(struct btrfs_file_private),
3975 				  GFP_KERNEL);
3976 		if (!private)
3977 			return -ENOMEM;
3978 		file->private_data = private;
3979 	}
3980 
3981 	ret = -EROFS;
3982 	if (btrfs_root_readonly(root))
3983 		goto out;
3984 
3985 	ret = mnt_want_write_file(file);
3986 	if (ret)
3987 		goto out;
3988 
3989 	atomic_inc(&fs_info->open_ioctl_trans);
3990 
3991 	ret = -ENOMEM;
3992 	trans = btrfs_start_ioctl_transaction(root);
3993 	if (IS_ERR(trans))
3994 		goto out_drop;
3995 
3996 	private->trans = trans;
3997 	return 0;
3998 
3999 out_drop:
4000 	atomic_dec(&fs_info->open_ioctl_trans);
4001 	mnt_drop_write_file(file);
4002 out:
4003 	return ret;
4004 }
4005 
4006 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4007 {
4008 	struct inode *inode = file_inode(file);
4009 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4010 	struct btrfs_root *root = BTRFS_I(inode)->root;
4011 	struct btrfs_root *new_root;
4012 	struct btrfs_dir_item *di;
4013 	struct btrfs_trans_handle *trans;
4014 	struct btrfs_path *path;
4015 	struct btrfs_key location;
4016 	struct btrfs_disk_key disk_key;
4017 	u64 objectid = 0;
4018 	u64 dir_id;
4019 	int ret;
4020 
4021 	if (!capable(CAP_SYS_ADMIN))
4022 		return -EPERM;
4023 
4024 	ret = mnt_want_write_file(file);
4025 	if (ret)
4026 		return ret;
4027 
4028 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4029 		ret = -EFAULT;
4030 		goto out;
4031 	}
4032 
4033 	if (!objectid)
4034 		objectid = BTRFS_FS_TREE_OBJECTID;
4035 
4036 	location.objectid = objectid;
4037 	location.type = BTRFS_ROOT_ITEM_KEY;
4038 	location.offset = (u64)-1;
4039 
4040 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4041 	if (IS_ERR(new_root)) {
4042 		ret = PTR_ERR(new_root);
4043 		goto out;
4044 	}
4045 	if (!is_fstree(new_root->objectid)) {
4046 		ret = -ENOENT;
4047 		goto out;
4048 	}
4049 
4050 	path = btrfs_alloc_path();
4051 	if (!path) {
4052 		ret = -ENOMEM;
4053 		goto out;
4054 	}
4055 	path->leave_spinning = 1;
4056 
4057 	trans = btrfs_start_transaction(root, 1);
4058 	if (IS_ERR(trans)) {
4059 		btrfs_free_path(path);
4060 		ret = PTR_ERR(trans);
4061 		goto out;
4062 	}
4063 
4064 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4065 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4066 				   dir_id, "default", 7, 1);
4067 	if (IS_ERR_OR_NULL(di)) {
4068 		btrfs_free_path(path);
4069 		btrfs_end_transaction(trans);
4070 		btrfs_err(fs_info,
4071 			  "Umm, you don't have the default diritem, this isn't going to work");
4072 		ret = -ENOENT;
4073 		goto out;
4074 	}
4075 
4076 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4077 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4078 	btrfs_mark_buffer_dirty(path->nodes[0]);
4079 	btrfs_free_path(path);
4080 
4081 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4082 	btrfs_end_transaction(trans);
4083 out:
4084 	mnt_drop_write_file(file);
4085 	return ret;
4086 }
4087 
4088 void btrfs_get_block_group_info(struct list_head *groups_list,
4089 				struct btrfs_ioctl_space_info *space)
4090 {
4091 	struct btrfs_block_group_cache *block_group;
4092 
4093 	space->total_bytes = 0;
4094 	space->used_bytes = 0;
4095 	space->flags = 0;
4096 	list_for_each_entry(block_group, groups_list, list) {
4097 		space->flags = block_group->flags;
4098 		space->total_bytes += block_group->key.offset;
4099 		space->used_bytes +=
4100 			btrfs_block_group_used(&block_group->item);
4101 	}
4102 }
4103 
4104 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4105 				   void __user *arg)
4106 {
4107 	struct btrfs_ioctl_space_args space_args;
4108 	struct btrfs_ioctl_space_info space;
4109 	struct btrfs_ioctl_space_info *dest;
4110 	struct btrfs_ioctl_space_info *dest_orig;
4111 	struct btrfs_ioctl_space_info __user *user_dest;
4112 	struct btrfs_space_info *info;
4113 	static const u64 types[] = {
4114 		BTRFS_BLOCK_GROUP_DATA,
4115 		BTRFS_BLOCK_GROUP_SYSTEM,
4116 		BTRFS_BLOCK_GROUP_METADATA,
4117 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4118 	};
4119 	int num_types = 4;
4120 	int alloc_size;
4121 	int ret = 0;
4122 	u64 slot_count = 0;
4123 	int i, c;
4124 
4125 	if (copy_from_user(&space_args,
4126 			   (struct btrfs_ioctl_space_args __user *)arg,
4127 			   sizeof(space_args)))
4128 		return -EFAULT;
4129 
4130 	for (i = 0; i < num_types; i++) {
4131 		struct btrfs_space_info *tmp;
4132 
4133 		info = NULL;
4134 		rcu_read_lock();
4135 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4136 					list) {
4137 			if (tmp->flags == types[i]) {
4138 				info = tmp;
4139 				break;
4140 			}
4141 		}
4142 		rcu_read_unlock();
4143 
4144 		if (!info)
4145 			continue;
4146 
4147 		down_read(&info->groups_sem);
4148 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4149 			if (!list_empty(&info->block_groups[c]))
4150 				slot_count++;
4151 		}
4152 		up_read(&info->groups_sem);
4153 	}
4154 
4155 	/*
4156 	 * Global block reserve, exported as a space_info
4157 	 */
4158 	slot_count++;
4159 
4160 	/* space_slots == 0 means they are asking for a count */
4161 	if (space_args.space_slots == 0) {
4162 		space_args.total_spaces = slot_count;
4163 		goto out;
4164 	}
4165 
4166 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4167 
4168 	alloc_size = sizeof(*dest) * slot_count;
4169 
4170 	/* we generally have at most 6 or so space infos, one for each raid
4171 	 * level.  So, a whole page should be more than enough for everyone
4172 	 */
4173 	if (alloc_size > PAGE_SIZE)
4174 		return -ENOMEM;
4175 
4176 	space_args.total_spaces = 0;
4177 	dest = kmalloc(alloc_size, GFP_KERNEL);
4178 	if (!dest)
4179 		return -ENOMEM;
4180 	dest_orig = dest;
4181 
4182 	/* now we have a buffer to copy into */
4183 	for (i = 0; i < num_types; i++) {
4184 		struct btrfs_space_info *tmp;
4185 
4186 		if (!slot_count)
4187 			break;
4188 
4189 		info = NULL;
4190 		rcu_read_lock();
4191 		list_for_each_entry_rcu(tmp, &fs_info->space_info,
4192 					list) {
4193 			if (tmp->flags == types[i]) {
4194 				info = tmp;
4195 				break;
4196 			}
4197 		}
4198 		rcu_read_unlock();
4199 
4200 		if (!info)
4201 			continue;
4202 		down_read(&info->groups_sem);
4203 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4204 			if (!list_empty(&info->block_groups[c])) {
4205 				btrfs_get_block_group_info(
4206 					&info->block_groups[c], &space);
4207 				memcpy(dest, &space, sizeof(space));
4208 				dest++;
4209 				space_args.total_spaces++;
4210 				slot_count--;
4211 			}
4212 			if (!slot_count)
4213 				break;
4214 		}
4215 		up_read(&info->groups_sem);
4216 	}
4217 
4218 	/*
4219 	 * Add global block reserve
4220 	 */
4221 	if (slot_count) {
4222 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4223 
4224 		spin_lock(&block_rsv->lock);
4225 		space.total_bytes = block_rsv->size;
4226 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4227 		spin_unlock(&block_rsv->lock);
4228 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4229 		memcpy(dest, &space, sizeof(space));
4230 		space_args.total_spaces++;
4231 	}
4232 
4233 	user_dest = (struct btrfs_ioctl_space_info __user *)
4234 		(arg + sizeof(struct btrfs_ioctl_space_args));
4235 
4236 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4237 		ret = -EFAULT;
4238 
4239 	kfree(dest_orig);
4240 out:
4241 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4242 		ret = -EFAULT;
4243 
4244 	return ret;
4245 }
4246 
4247 /*
4248  * there are many ways the trans_start and trans_end ioctls can lead
4249  * to deadlocks.  They should only be used by applications that
4250  * basically own the machine, and have a very in depth understanding
4251  * of all the possible deadlocks and enospc problems.
4252  */
4253 long btrfs_ioctl_trans_end(struct file *file)
4254 {
4255 	struct inode *inode = file_inode(file);
4256 	struct btrfs_root *root = BTRFS_I(inode)->root;
4257 	struct btrfs_file_private *private = file->private_data;
4258 
4259 	if (!private || !private->trans)
4260 		return -EINVAL;
4261 
4262 	btrfs_end_transaction(private->trans);
4263 	private->trans = NULL;
4264 
4265 	atomic_dec(&root->fs_info->open_ioctl_trans);
4266 
4267 	mnt_drop_write_file(file);
4268 	return 0;
4269 }
4270 
4271 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4272 					    void __user *argp)
4273 {
4274 	struct btrfs_trans_handle *trans;
4275 	u64 transid;
4276 	int ret;
4277 
4278 	trans = btrfs_attach_transaction_barrier(root);
4279 	if (IS_ERR(trans)) {
4280 		if (PTR_ERR(trans) != -ENOENT)
4281 			return PTR_ERR(trans);
4282 
4283 		/* No running transaction, don't bother */
4284 		transid = root->fs_info->last_trans_committed;
4285 		goto out;
4286 	}
4287 	transid = trans->transid;
4288 	ret = btrfs_commit_transaction_async(trans, 0);
4289 	if (ret) {
4290 		btrfs_end_transaction(trans);
4291 		return ret;
4292 	}
4293 out:
4294 	if (argp)
4295 		if (copy_to_user(argp, &transid, sizeof(transid)))
4296 			return -EFAULT;
4297 	return 0;
4298 }
4299 
4300 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4301 					   void __user *argp)
4302 {
4303 	u64 transid;
4304 
4305 	if (argp) {
4306 		if (copy_from_user(&transid, argp, sizeof(transid)))
4307 			return -EFAULT;
4308 	} else {
4309 		transid = 0;  /* current trans */
4310 	}
4311 	return btrfs_wait_for_commit(fs_info, transid);
4312 }
4313 
4314 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4315 {
4316 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4317 	struct btrfs_ioctl_scrub_args *sa;
4318 	int ret;
4319 
4320 	if (!capable(CAP_SYS_ADMIN))
4321 		return -EPERM;
4322 
4323 	sa = memdup_user(arg, sizeof(*sa));
4324 	if (IS_ERR(sa))
4325 		return PTR_ERR(sa);
4326 
4327 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4328 		ret = mnt_want_write_file(file);
4329 		if (ret)
4330 			goto out;
4331 	}
4332 
4333 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4334 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4335 			      0);
4336 
4337 	if (copy_to_user(arg, sa, sizeof(*sa)))
4338 		ret = -EFAULT;
4339 
4340 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4341 		mnt_drop_write_file(file);
4342 out:
4343 	kfree(sa);
4344 	return ret;
4345 }
4346 
4347 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4348 {
4349 	if (!capable(CAP_SYS_ADMIN))
4350 		return -EPERM;
4351 
4352 	return btrfs_scrub_cancel(fs_info);
4353 }
4354 
4355 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4356 				       void __user *arg)
4357 {
4358 	struct btrfs_ioctl_scrub_args *sa;
4359 	int ret;
4360 
4361 	if (!capable(CAP_SYS_ADMIN))
4362 		return -EPERM;
4363 
4364 	sa = memdup_user(arg, sizeof(*sa));
4365 	if (IS_ERR(sa))
4366 		return PTR_ERR(sa);
4367 
4368 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4369 
4370 	if (copy_to_user(arg, sa, sizeof(*sa)))
4371 		ret = -EFAULT;
4372 
4373 	kfree(sa);
4374 	return ret;
4375 }
4376 
4377 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4378 				      void __user *arg)
4379 {
4380 	struct btrfs_ioctl_get_dev_stats *sa;
4381 	int ret;
4382 
4383 	sa = memdup_user(arg, sizeof(*sa));
4384 	if (IS_ERR(sa))
4385 		return PTR_ERR(sa);
4386 
4387 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4388 		kfree(sa);
4389 		return -EPERM;
4390 	}
4391 
4392 	ret = btrfs_get_dev_stats(fs_info, sa);
4393 
4394 	if (copy_to_user(arg, sa, sizeof(*sa)))
4395 		ret = -EFAULT;
4396 
4397 	kfree(sa);
4398 	return ret;
4399 }
4400 
4401 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4402 				    void __user *arg)
4403 {
4404 	struct btrfs_ioctl_dev_replace_args *p;
4405 	int ret;
4406 
4407 	if (!capable(CAP_SYS_ADMIN))
4408 		return -EPERM;
4409 
4410 	p = memdup_user(arg, sizeof(*p));
4411 	if (IS_ERR(p))
4412 		return PTR_ERR(p);
4413 
4414 	switch (p->cmd) {
4415 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4416 		if (sb_rdonly(fs_info->sb)) {
4417 			ret = -EROFS;
4418 			goto out;
4419 		}
4420 		if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4421 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4422 		} else {
4423 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4424 			clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4425 		}
4426 		break;
4427 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4428 		btrfs_dev_replace_status(fs_info, p);
4429 		ret = 0;
4430 		break;
4431 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4432 		ret = btrfs_dev_replace_cancel(fs_info, p);
4433 		break;
4434 	default:
4435 		ret = -EINVAL;
4436 		break;
4437 	}
4438 
4439 	if (copy_to_user(arg, p, sizeof(*p)))
4440 		ret = -EFAULT;
4441 out:
4442 	kfree(p);
4443 	return ret;
4444 }
4445 
4446 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4447 {
4448 	int ret = 0;
4449 	int i;
4450 	u64 rel_ptr;
4451 	int size;
4452 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4453 	struct inode_fs_paths *ipath = NULL;
4454 	struct btrfs_path *path;
4455 
4456 	if (!capable(CAP_DAC_READ_SEARCH))
4457 		return -EPERM;
4458 
4459 	path = btrfs_alloc_path();
4460 	if (!path) {
4461 		ret = -ENOMEM;
4462 		goto out;
4463 	}
4464 
4465 	ipa = memdup_user(arg, sizeof(*ipa));
4466 	if (IS_ERR(ipa)) {
4467 		ret = PTR_ERR(ipa);
4468 		ipa = NULL;
4469 		goto out;
4470 	}
4471 
4472 	size = min_t(u32, ipa->size, 4096);
4473 	ipath = init_ipath(size, root, path);
4474 	if (IS_ERR(ipath)) {
4475 		ret = PTR_ERR(ipath);
4476 		ipath = NULL;
4477 		goto out;
4478 	}
4479 
4480 	ret = paths_from_inode(ipa->inum, ipath);
4481 	if (ret < 0)
4482 		goto out;
4483 
4484 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4485 		rel_ptr = ipath->fspath->val[i] -
4486 			  (u64)(unsigned long)ipath->fspath->val;
4487 		ipath->fspath->val[i] = rel_ptr;
4488 	}
4489 
4490 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4491 			   ipath->fspath, size);
4492 	if (ret) {
4493 		ret = -EFAULT;
4494 		goto out;
4495 	}
4496 
4497 out:
4498 	btrfs_free_path(path);
4499 	free_ipath(ipath);
4500 	kfree(ipa);
4501 
4502 	return ret;
4503 }
4504 
4505 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4506 {
4507 	struct btrfs_data_container *inodes = ctx;
4508 	const size_t c = 3 * sizeof(u64);
4509 
4510 	if (inodes->bytes_left >= c) {
4511 		inodes->bytes_left -= c;
4512 		inodes->val[inodes->elem_cnt] = inum;
4513 		inodes->val[inodes->elem_cnt + 1] = offset;
4514 		inodes->val[inodes->elem_cnt + 2] = root;
4515 		inodes->elem_cnt += 3;
4516 	} else {
4517 		inodes->bytes_missing += c - inodes->bytes_left;
4518 		inodes->bytes_left = 0;
4519 		inodes->elem_missed += 3;
4520 	}
4521 
4522 	return 0;
4523 }
4524 
4525 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4526 					void __user *arg, int version)
4527 {
4528 	int ret = 0;
4529 	int size;
4530 	struct btrfs_ioctl_logical_ino_args *loi;
4531 	struct btrfs_data_container *inodes = NULL;
4532 	struct btrfs_path *path = NULL;
4533 	bool ignore_offset;
4534 
4535 	if (!capable(CAP_SYS_ADMIN))
4536 		return -EPERM;
4537 
4538 	loi = memdup_user(arg, sizeof(*loi));
4539 	if (IS_ERR(loi))
4540 		return PTR_ERR(loi);
4541 
4542 	if (version == 1) {
4543 		ignore_offset = false;
4544 		size = min_t(u32, loi->size, SZ_64K);
4545 	} else {
4546 		/* All reserved bits must be 0 for now */
4547 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4548 			ret = -EINVAL;
4549 			goto out_loi;
4550 		}
4551 		/* Only accept flags we have defined so far */
4552 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4553 			ret = -EINVAL;
4554 			goto out_loi;
4555 		}
4556 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4557 		size = min_t(u32, loi->size, SZ_16M);
4558 	}
4559 
4560 	path = btrfs_alloc_path();
4561 	if (!path) {
4562 		ret = -ENOMEM;
4563 		goto out;
4564 	}
4565 
4566 	inodes = init_data_container(size);
4567 	if (IS_ERR(inodes)) {
4568 		ret = PTR_ERR(inodes);
4569 		inodes = NULL;
4570 		goto out;
4571 	}
4572 
4573 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4574 					  build_ino_list, inodes, ignore_offset);
4575 	if (ret == -EINVAL)
4576 		ret = -ENOENT;
4577 	if (ret < 0)
4578 		goto out;
4579 
4580 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4581 			   size);
4582 	if (ret)
4583 		ret = -EFAULT;
4584 
4585 out:
4586 	btrfs_free_path(path);
4587 	kvfree(inodes);
4588 out_loi:
4589 	kfree(loi);
4590 
4591 	return ret;
4592 }
4593 
4594 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4595 			       struct btrfs_ioctl_balance_args *bargs)
4596 {
4597 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4598 
4599 	bargs->flags = bctl->flags;
4600 
4601 	if (atomic_read(&fs_info->balance_running))
4602 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4603 	if (atomic_read(&fs_info->balance_pause_req))
4604 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4605 	if (atomic_read(&fs_info->balance_cancel_req))
4606 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4607 
4608 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4609 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4610 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4611 
4612 	if (lock) {
4613 		spin_lock(&fs_info->balance_lock);
4614 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4615 		spin_unlock(&fs_info->balance_lock);
4616 	} else {
4617 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4618 	}
4619 }
4620 
4621 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4622 {
4623 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4624 	struct btrfs_fs_info *fs_info = root->fs_info;
4625 	struct btrfs_ioctl_balance_args *bargs;
4626 	struct btrfs_balance_control *bctl;
4627 	bool need_unlock; /* for mut. excl. ops lock */
4628 	int ret;
4629 
4630 	if (!capable(CAP_SYS_ADMIN))
4631 		return -EPERM;
4632 
4633 	ret = mnt_want_write_file(file);
4634 	if (ret)
4635 		return ret;
4636 
4637 again:
4638 	if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4639 		mutex_lock(&fs_info->volume_mutex);
4640 		mutex_lock(&fs_info->balance_mutex);
4641 		need_unlock = true;
4642 		goto locked;
4643 	}
4644 
4645 	/*
4646 	 * mut. excl. ops lock is locked.  Three possibilities:
4647 	 *   (1) some other op is running
4648 	 *   (2) balance is running
4649 	 *   (3) balance is paused -- special case (think resume)
4650 	 */
4651 	mutex_lock(&fs_info->balance_mutex);
4652 	if (fs_info->balance_ctl) {
4653 		/* this is either (2) or (3) */
4654 		if (!atomic_read(&fs_info->balance_running)) {
4655 			mutex_unlock(&fs_info->balance_mutex);
4656 			if (!mutex_trylock(&fs_info->volume_mutex))
4657 				goto again;
4658 			mutex_lock(&fs_info->balance_mutex);
4659 
4660 			if (fs_info->balance_ctl &&
4661 			    !atomic_read(&fs_info->balance_running)) {
4662 				/* this is (3) */
4663 				need_unlock = false;
4664 				goto locked;
4665 			}
4666 
4667 			mutex_unlock(&fs_info->balance_mutex);
4668 			mutex_unlock(&fs_info->volume_mutex);
4669 			goto again;
4670 		} else {
4671 			/* this is (2) */
4672 			mutex_unlock(&fs_info->balance_mutex);
4673 			ret = -EINPROGRESS;
4674 			goto out;
4675 		}
4676 	} else {
4677 		/* this is (1) */
4678 		mutex_unlock(&fs_info->balance_mutex);
4679 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4680 		goto out;
4681 	}
4682 
4683 locked:
4684 	BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4685 
4686 	if (arg) {
4687 		bargs = memdup_user(arg, sizeof(*bargs));
4688 		if (IS_ERR(bargs)) {
4689 			ret = PTR_ERR(bargs);
4690 			goto out_unlock;
4691 		}
4692 
4693 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4694 			if (!fs_info->balance_ctl) {
4695 				ret = -ENOTCONN;
4696 				goto out_bargs;
4697 			}
4698 
4699 			bctl = fs_info->balance_ctl;
4700 			spin_lock(&fs_info->balance_lock);
4701 			bctl->flags |= BTRFS_BALANCE_RESUME;
4702 			spin_unlock(&fs_info->balance_lock);
4703 
4704 			goto do_balance;
4705 		}
4706 	} else {
4707 		bargs = NULL;
4708 	}
4709 
4710 	if (fs_info->balance_ctl) {
4711 		ret = -EINPROGRESS;
4712 		goto out_bargs;
4713 	}
4714 
4715 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4716 	if (!bctl) {
4717 		ret = -ENOMEM;
4718 		goto out_bargs;
4719 	}
4720 
4721 	bctl->fs_info = fs_info;
4722 	if (arg) {
4723 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4724 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4725 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4726 
4727 		bctl->flags = bargs->flags;
4728 	} else {
4729 		/* balance everything - no filters */
4730 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4731 	}
4732 
4733 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4734 		ret = -EINVAL;
4735 		goto out_bctl;
4736 	}
4737 
4738 do_balance:
4739 	/*
4740 	 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4741 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4742 	 * or, if restriper was paused all the way until unmount, in
4743 	 * free_fs_info.  The flag is cleared in __cancel_balance.
4744 	 */
4745 	need_unlock = false;
4746 
4747 	ret = btrfs_balance(bctl, bargs);
4748 	bctl = NULL;
4749 
4750 	if (arg) {
4751 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4752 			ret = -EFAULT;
4753 	}
4754 
4755 out_bctl:
4756 	kfree(bctl);
4757 out_bargs:
4758 	kfree(bargs);
4759 out_unlock:
4760 	mutex_unlock(&fs_info->balance_mutex);
4761 	mutex_unlock(&fs_info->volume_mutex);
4762 	if (need_unlock)
4763 		clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4764 out:
4765 	mnt_drop_write_file(file);
4766 	return ret;
4767 }
4768 
4769 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4770 {
4771 	if (!capable(CAP_SYS_ADMIN))
4772 		return -EPERM;
4773 
4774 	switch (cmd) {
4775 	case BTRFS_BALANCE_CTL_PAUSE:
4776 		return btrfs_pause_balance(fs_info);
4777 	case BTRFS_BALANCE_CTL_CANCEL:
4778 		return btrfs_cancel_balance(fs_info);
4779 	}
4780 
4781 	return -EINVAL;
4782 }
4783 
4784 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4785 					 void __user *arg)
4786 {
4787 	struct btrfs_ioctl_balance_args *bargs;
4788 	int ret = 0;
4789 
4790 	if (!capable(CAP_SYS_ADMIN))
4791 		return -EPERM;
4792 
4793 	mutex_lock(&fs_info->balance_mutex);
4794 	if (!fs_info->balance_ctl) {
4795 		ret = -ENOTCONN;
4796 		goto out;
4797 	}
4798 
4799 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4800 	if (!bargs) {
4801 		ret = -ENOMEM;
4802 		goto out;
4803 	}
4804 
4805 	update_ioctl_balance_args(fs_info, 1, bargs);
4806 
4807 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4808 		ret = -EFAULT;
4809 
4810 	kfree(bargs);
4811 out:
4812 	mutex_unlock(&fs_info->balance_mutex);
4813 	return ret;
4814 }
4815 
4816 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4817 {
4818 	struct inode *inode = file_inode(file);
4819 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4820 	struct btrfs_ioctl_quota_ctl_args *sa;
4821 	struct btrfs_trans_handle *trans = NULL;
4822 	int ret;
4823 	int err;
4824 
4825 	if (!capable(CAP_SYS_ADMIN))
4826 		return -EPERM;
4827 
4828 	ret = mnt_want_write_file(file);
4829 	if (ret)
4830 		return ret;
4831 
4832 	sa = memdup_user(arg, sizeof(*sa));
4833 	if (IS_ERR(sa)) {
4834 		ret = PTR_ERR(sa);
4835 		goto drop_write;
4836 	}
4837 
4838 	down_write(&fs_info->subvol_sem);
4839 	trans = btrfs_start_transaction(fs_info->tree_root, 2);
4840 	if (IS_ERR(trans)) {
4841 		ret = PTR_ERR(trans);
4842 		goto out;
4843 	}
4844 
4845 	switch (sa->cmd) {
4846 	case BTRFS_QUOTA_CTL_ENABLE:
4847 		ret = btrfs_quota_enable(trans, fs_info);
4848 		break;
4849 	case BTRFS_QUOTA_CTL_DISABLE:
4850 		ret = btrfs_quota_disable(trans, fs_info);
4851 		break;
4852 	default:
4853 		ret = -EINVAL;
4854 		break;
4855 	}
4856 
4857 	err = btrfs_commit_transaction(trans);
4858 	if (err && !ret)
4859 		ret = err;
4860 out:
4861 	kfree(sa);
4862 	up_write(&fs_info->subvol_sem);
4863 drop_write:
4864 	mnt_drop_write_file(file);
4865 	return ret;
4866 }
4867 
4868 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4869 {
4870 	struct inode *inode = file_inode(file);
4871 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4872 	struct btrfs_root *root = BTRFS_I(inode)->root;
4873 	struct btrfs_ioctl_qgroup_assign_args *sa;
4874 	struct btrfs_trans_handle *trans;
4875 	int ret;
4876 	int err;
4877 
4878 	if (!capable(CAP_SYS_ADMIN))
4879 		return -EPERM;
4880 
4881 	ret = mnt_want_write_file(file);
4882 	if (ret)
4883 		return ret;
4884 
4885 	sa = memdup_user(arg, sizeof(*sa));
4886 	if (IS_ERR(sa)) {
4887 		ret = PTR_ERR(sa);
4888 		goto drop_write;
4889 	}
4890 
4891 	trans = btrfs_join_transaction(root);
4892 	if (IS_ERR(trans)) {
4893 		ret = PTR_ERR(trans);
4894 		goto out;
4895 	}
4896 
4897 	if (sa->assign) {
4898 		ret = btrfs_add_qgroup_relation(trans, fs_info,
4899 						sa->src, sa->dst);
4900 	} else {
4901 		ret = btrfs_del_qgroup_relation(trans, fs_info,
4902 						sa->src, sa->dst);
4903 	}
4904 
4905 	/* update qgroup status and info */
4906 	err = btrfs_run_qgroups(trans, fs_info);
4907 	if (err < 0)
4908 		btrfs_handle_fs_error(fs_info, err,
4909 				      "failed to update qgroup status and info");
4910 	err = btrfs_end_transaction(trans);
4911 	if (err && !ret)
4912 		ret = err;
4913 
4914 out:
4915 	kfree(sa);
4916 drop_write:
4917 	mnt_drop_write_file(file);
4918 	return ret;
4919 }
4920 
4921 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4922 {
4923 	struct inode *inode = file_inode(file);
4924 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4925 	struct btrfs_root *root = BTRFS_I(inode)->root;
4926 	struct btrfs_ioctl_qgroup_create_args *sa;
4927 	struct btrfs_trans_handle *trans;
4928 	int ret;
4929 	int err;
4930 
4931 	if (!capable(CAP_SYS_ADMIN))
4932 		return -EPERM;
4933 
4934 	ret = mnt_want_write_file(file);
4935 	if (ret)
4936 		return ret;
4937 
4938 	sa = memdup_user(arg, sizeof(*sa));
4939 	if (IS_ERR(sa)) {
4940 		ret = PTR_ERR(sa);
4941 		goto drop_write;
4942 	}
4943 
4944 	if (!sa->qgroupid) {
4945 		ret = -EINVAL;
4946 		goto out;
4947 	}
4948 
4949 	trans = btrfs_join_transaction(root);
4950 	if (IS_ERR(trans)) {
4951 		ret = PTR_ERR(trans);
4952 		goto out;
4953 	}
4954 
4955 	if (sa->create) {
4956 		ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4957 	} else {
4958 		ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4959 	}
4960 
4961 	err = btrfs_end_transaction(trans);
4962 	if (err && !ret)
4963 		ret = err;
4964 
4965 out:
4966 	kfree(sa);
4967 drop_write:
4968 	mnt_drop_write_file(file);
4969 	return ret;
4970 }
4971 
4972 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4973 {
4974 	struct inode *inode = file_inode(file);
4975 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4976 	struct btrfs_root *root = BTRFS_I(inode)->root;
4977 	struct btrfs_ioctl_qgroup_limit_args *sa;
4978 	struct btrfs_trans_handle *trans;
4979 	int ret;
4980 	int err;
4981 	u64 qgroupid;
4982 
4983 	if (!capable(CAP_SYS_ADMIN))
4984 		return -EPERM;
4985 
4986 	ret = mnt_want_write_file(file);
4987 	if (ret)
4988 		return ret;
4989 
4990 	sa = memdup_user(arg, sizeof(*sa));
4991 	if (IS_ERR(sa)) {
4992 		ret = PTR_ERR(sa);
4993 		goto drop_write;
4994 	}
4995 
4996 	trans = btrfs_join_transaction(root);
4997 	if (IS_ERR(trans)) {
4998 		ret = PTR_ERR(trans);
4999 		goto out;
5000 	}
5001 
5002 	qgroupid = sa->qgroupid;
5003 	if (!qgroupid) {
5004 		/* take the current subvol as qgroup */
5005 		qgroupid = root->root_key.objectid;
5006 	}
5007 
5008 	ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
5009 
5010 	err = btrfs_end_transaction(trans);
5011 	if (err && !ret)
5012 		ret = err;
5013 
5014 out:
5015 	kfree(sa);
5016 drop_write:
5017 	mnt_drop_write_file(file);
5018 	return ret;
5019 }
5020 
5021 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5022 {
5023 	struct inode *inode = file_inode(file);
5024 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5025 	struct btrfs_ioctl_quota_rescan_args *qsa;
5026 	int ret;
5027 
5028 	if (!capable(CAP_SYS_ADMIN))
5029 		return -EPERM;
5030 
5031 	ret = mnt_want_write_file(file);
5032 	if (ret)
5033 		return ret;
5034 
5035 	qsa = memdup_user(arg, sizeof(*qsa));
5036 	if (IS_ERR(qsa)) {
5037 		ret = PTR_ERR(qsa);
5038 		goto drop_write;
5039 	}
5040 
5041 	if (qsa->flags) {
5042 		ret = -EINVAL;
5043 		goto out;
5044 	}
5045 
5046 	ret = btrfs_qgroup_rescan(fs_info);
5047 
5048 out:
5049 	kfree(qsa);
5050 drop_write:
5051 	mnt_drop_write_file(file);
5052 	return ret;
5053 }
5054 
5055 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5056 {
5057 	struct inode *inode = file_inode(file);
5058 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5059 	struct btrfs_ioctl_quota_rescan_args *qsa;
5060 	int ret = 0;
5061 
5062 	if (!capable(CAP_SYS_ADMIN))
5063 		return -EPERM;
5064 
5065 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5066 	if (!qsa)
5067 		return -ENOMEM;
5068 
5069 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5070 		qsa->flags = 1;
5071 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5072 	}
5073 
5074 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5075 		ret = -EFAULT;
5076 
5077 	kfree(qsa);
5078 	return ret;
5079 }
5080 
5081 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5082 {
5083 	struct inode *inode = file_inode(file);
5084 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5085 
5086 	if (!capable(CAP_SYS_ADMIN))
5087 		return -EPERM;
5088 
5089 	return btrfs_qgroup_wait_for_completion(fs_info, true);
5090 }
5091 
5092 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5093 					    struct btrfs_ioctl_received_subvol_args *sa)
5094 {
5095 	struct inode *inode = file_inode(file);
5096 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5097 	struct btrfs_root *root = BTRFS_I(inode)->root;
5098 	struct btrfs_root_item *root_item = &root->root_item;
5099 	struct btrfs_trans_handle *trans;
5100 	struct timespec ct = current_time(inode);
5101 	int ret = 0;
5102 	int received_uuid_changed;
5103 
5104 	if (!inode_owner_or_capable(inode))
5105 		return -EPERM;
5106 
5107 	ret = mnt_want_write_file(file);
5108 	if (ret < 0)
5109 		return ret;
5110 
5111 	down_write(&fs_info->subvol_sem);
5112 
5113 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5114 		ret = -EINVAL;
5115 		goto out;
5116 	}
5117 
5118 	if (btrfs_root_readonly(root)) {
5119 		ret = -EROFS;
5120 		goto out;
5121 	}
5122 
5123 	/*
5124 	 * 1 - root item
5125 	 * 2 - uuid items (received uuid + subvol uuid)
5126 	 */
5127 	trans = btrfs_start_transaction(root, 3);
5128 	if (IS_ERR(trans)) {
5129 		ret = PTR_ERR(trans);
5130 		trans = NULL;
5131 		goto out;
5132 	}
5133 
5134 	sa->rtransid = trans->transid;
5135 	sa->rtime.sec = ct.tv_sec;
5136 	sa->rtime.nsec = ct.tv_nsec;
5137 
5138 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5139 				       BTRFS_UUID_SIZE);
5140 	if (received_uuid_changed &&
5141 	    !btrfs_is_empty_uuid(root_item->received_uuid))
5142 		btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5143 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5144 				    root->root_key.objectid);
5145 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5146 	btrfs_set_root_stransid(root_item, sa->stransid);
5147 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5148 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5149 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5150 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5151 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5152 
5153 	ret = btrfs_update_root(trans, fs_info->tree_root,
5154 				&root->root_key, &root->root_item);
5155 	if (ret < 0) {
5156 		btrfs_end_transaction(trans);
5157 		goto out;
5158 	}
5159 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5160 		ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5161 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5162 					  root->root_key.objectid);
5163 		if (ret < 0 && ret != -EEXIST) {
5164 			btrfs_abort_transaction(trans, ret);
5165 			btrfs_end_transaction(trans);
5166 			goto out;
5167 		}
5168 	}
5169 	ret = btrfs_commit_transaction(trans);
5170 out:
5171 	up_write(&fs_info->subvol_sem);
5172 	mnt_drop_write_file(file);
5173 	return ret;
5174 }
5175 
5176 #ifdef CONFIG_64BIT
5177 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5178 						void __user *arg)
5179 {
5180 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5181 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5182 	int ret = 0;
5183 
5184 	args32 = memdup_user(arg, sizeof(*args32));
5185 	if (IS_ERR(args32))
5186 		return PTR_ERR(args32);
5187 
5188 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5189 	if (!args64) {
5190 		ret = -ENOMEM;
5191 		goto out;
5192 	}
5193 
5194 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5195 	args64->stransid = args32->stransid;
5196 	args64->rtransid = args32->rtransid;
5197 	args64->stime.sec = args32->stime.sec;
5198 	args64->stime.nsec = args32->stime.nsec;
5199 	args64->rtime.sec = args32->rtime.sec;
5200 	args64->rtime.nsec = args32->rtime.nsec;
5201 	args64->flags = args32->flags;
5202 
5203 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5204 	if (ret)
5205 		goto out;
5206 
5207 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5208 	args32->stransid = args64->stransid;
5209 	args32->rtransid = args64->rtransid;
5210 	args32->stime.sec = args64->stime.sec;
5211 	args32->stime.nsec = args64->stime.nsec;
5212 	args32->rtime.sec = args64->rtime.sec;
5213 	args32->rtime.nsec = args64->rtime.nsec;
5214 	args32->flags = args64->flags;
5215 
5216 	ret = copy_to_user(arg, args32, sizeof(*args32));
5217 	if (ret)
5218 		ret = -EFAULT;
5219 
5220 out:
5221 	kfree(args32);
5222 	kfree(args64);
5223 	return ret;
5224 }
5225 #endif
5226 
5227 static long btrfs_ioctl_set_received_subvol(struct file *file,
5228 					    void __user *arg)
5229 {
5230 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5231 	int ret = 0;
5232 
5233 	sa = memdup_user(arg, sizeof(*sa));
5234 	if (IS_ERR(sa))
5235 		return PTR_ERR(sa);
5236 
5237 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5238 
5239 	if (ret)
5240 		goto out;
5241 
5242 	ret = copy_to_user(arg, sa, sizeof(*sa));
5243 	if (ret)
5244 		ret = -EFAULT;
5245 
5246 out:
5247 	kfree(sa);
5248 	return ret;
5249 }
5250 
5251 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5252 {
5253 	struct inode *inode = file_inode(file);
5254 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5255 	size_t len;
5256 	int ret;
5257 	char label[BTRFS_LABEL_SIZE];
5258 
5259 	spin_lock(&fs_info->super_lock);
5260 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5261 	spin_unlock(&fs_info->super_lock);
5262 
5263 	len = strnlen(label, BTRFS_LABEL_SIZE);
5264 
5265 	if (len == BTRFS_LABEL_SIZE) {
5266 		btrfs_warn(fs_info,
5267 			   "label is too long, return the first %zu bytes",
5268 			   --len);
5269 	}
5270 
5271 	ret = copy_to_user(arg, label, len);
5272 
5273 	return ret ? -EFAULT : 0;
5274 }
5275 
5276 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5277 {
5278 	struct inode *inode = file_inode(file);
5279 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5280 	struct btrfs_root *root = BTRFS_I(inode)->root;
5281 	struct btrfs_super_block *super_block = fs_info->super_copy;
5282 	struct btrfs_trans_handle *trans;
5283 	char label[BTRFS_LABEL_SIZE];
5284 	int ret;
5285 
5286 	if (!capable(CAP_SYS_ADMIN))
5287 		return -EPERM;
5288 
5289 	if (copy_from_user(label, arg, sizeof(label)))
5290 		return -EFAULT;
5291 
5292 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5293 		btrfs_err(fs_info,
5294 			  "unable to set label with more than %d bytes",
5295 			  BTRFS_LABEL_SIZE - 1);
5296 		return -EINVAL;
5297 	}
5298 
5299 	ret = mnt_want_write_file(file);
5300 	if (ret)
5301 		return ret;
5302 
5303 	trans = btrfs_start_transaction(root, 0);
5304 	if (IS_ERR(trans)) {
5305 		ret = PTR_ERR(trans);
5306 		goto out_unlock;
5307 	}
5308 
5309 	spin_lock(&fs_info->super_lock);
5310 	strcpy(super_block->label, label);
5311 	spin_unlock(&fs_info->super_lock);
5312 	ret = btrfs_commit_transaction(trans);
5313 
5314 out_unlock:
5315 	mnt_drop_write_file(file);
5316 	return ret;
5317 }
5318 
5319 #define INIT_FEATURE_FLAGS(suffix) \
5320 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5321 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5322 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5323 
5324 int btrfs_ioctl_get_supported_features(void __user *arg)
5325 {
5326 	static const struct btrfs_ioctl_feature_flags features[3] = {
5327 		INIT_FEATURE_FLAGS(SUPP),
5328 		INIT_FEATURE_FLAGS(SAFE_SET),
5329 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5330 	};
5331 
5332 	if (copy_to_user(arg, &features, sizeof(features)))
5333 		return -EFAULT;
5334 
5335 	return 0;
5336 }
5337 
5338 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5339 {
5340 	struct inode *inode = file_inode(file);
5341 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5342 	struct btrfs_super_block *super_block = fs_info->super_copy;
5343 	struct btrfs_ioctl_feature_flags features;
5344 
5345 	features.compat_flags = btrfs_super_compat_flags(super_block);
5346 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5347 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5348 
5349 	if (copy_to_user(arg, &features, sizeof(features)))
5350 		return -EFAULT;
5351 
5352 	return 0;
5353 }
5354 
5355 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5356 			      enum btrfs_feature_set set,
5357 			      u64 change_mask, u64 flags, u64 supported_flags,
5358 			      u64 safe_set, u64 safe_clear)
5359 {
5360 	const char *type = btrfs_feature_set_names[set];
5361 	char *names;
5362 	u64 disallowed, unsupported;
5363 	u64 set_mask = flags & change_mask;
5364 	u64 clear_mask = ~flags & change_mask;
5365 
5366 	unsupported = set_mask & ~supported_flags;
5367 	if (unsupported) {
5368 		names = btrfs_printable_features(set, unsupported);
5369 		if (names) {
5370 			btrfs_warn(fs_info,
5371 				   "this kernel does not support the %s feature bit%s",
5372 				   names, strchr(names, ',') ? "s" : "");
5373 			kfree(names);
5374 		} else
5375 			btrfs_warn(fs_info,
5376 				   "this kernel does not support %s bits 0x%llx",
5377 				   type, unsupported);
5378 		return -EOPNOTSUPP;
5379 	}
5380 
5381 	disallowed = set_mask & ~safe_set;
5382 	if (disallowed) {
5383 		names = btrfs_printable_features(set, disallowed);
5384 		if (names) {
5385 			btrfs_warn(fs_info,
5386 				   "can't set the %s feature bit%s while mounted",
5387 				   names, strchr(names, ',') ? "s" : "");
5388 			kfree(names);
5389 		} else
5390 			btrfs_warn(fs_info,
5391 				   "can't set %s bits 0x%llx while mounted",
5392 				   type, disallowed);
5393 		return -EPERM;
5394 	}
5395 
5396 	disallowed = clear_mask & ~safe_clear;
5397 	if (disallowed) {
5398 		names = btrfs_printable_features(set, disallowed);
5399 		if (names) {
5400 			btrfs_warn(fs_info,
5401 				   "can't clear the %s feature bit%s while mounted",
5402 				   names, strchr(names, ',') ? "s" : "");
5403 			kfree(names);
5404 		} else
5405 			btrfs_warn(fs_info,
5406 				   "can't clear %s bits 0x%llx while mounted",
5407 				   type, disallowed);
5408 		return -EPERM;
5409 	}
5410 
5411 	return 0;
5412 }
5413 
5414 #define check_feature(fs_info, change_mask, flags, mask_base)	\
5415 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
5416 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5417 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5418 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5419 
5420 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5421 {
5422 	struct inode *inode = file_inode(file);
5423 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5424 	struct btrfs_root *root = BTRFS_I(inode)->root;
5425 	struct btrfs_super_block *super_block = fs_info->super_copy;
5426 	struct btrfs_ioctl_feature_flags flags[2];
5427 	struct btrfs_trans_handle *trans;
5428 	u64 newflags;
5429 	int ret;
5430 
5431 	if (!capable(CAP_SYS_ADMIN))
5432 		return -EPERM;
5433 
5434 	if (copy_from_user(flags, arg, sizeof(flags)))
5435 		return -EFAULT;
5436 
5437 	/* Nothing to do */
5438 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5439 	    !flags[0].incompat_flags)
5440 		return 0;
5441 
5442 	ret = check_feature(fs_info, flags[0].compat_flags,
5443 			    flags[1].compat_flags, COMPAT);
5444 	if (ret)
5445 		return ret;
5446 
5447 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
5448 			    flags[1].compat_ro_flags, COMPAT_RO);
5449 	if (ret)
5450 		return ret;
5451 
5452 	ret = check_feature(fs_info, flags[0].incompat_flags,
5453 			    flags[1].incompat_flags, INCOMPAT);
5454 	if (ret)
5455 		return ret;
5456 
5457 	ret = mnt_want_write_file(file);
5458 	if (ret)
5459 		return ret;
5460 
5461 	trans = btrfs_start_transaction(root, 0);
5462 	if (IS_ERR(trans)) {
5463 		ret = PTR_ERR(trans);
5464 		goto out_drop_write;
5465 	}
5466 
5467 	spin_lock(&fs_info->super_lock);
5468 	newflags = btrfs_super_compat_flags(super_block);
5469 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5470 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5471 	btrfs_set_super_compat_flags(super_block, newflags);
5472 
5473 	newflags = btrfs_super_compat_ro_flags(super_block);
5474 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5475 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5476 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5477 
5478 	newflags = btrfs_super_incompat_flags(super_block);
5479 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5480 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5481 	btrfs_set_super_incompat_flags(super_block, newflags);
5482 	spin_unlock(&fs_info->super_lock);
5483 
5484 	ret = btrfs_commit_transaction(trans);
5485 out_drop_write:
5486 	mnt_drop_write_file(file);
5487 
5488 	return ret;
5489 }
5490 
5491 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5492 {
5493 	struct btrfs_ioctl_send_args *arg;
5494 	int ret;
5495 
5496 	if (compat) {
5497 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5498 		struct btrfs_ioctl_send_args_32 args32;
5499 
5500 		ret = copy_from_user(&args32, argp, sizeof(args32));
5501 		if (ret)
5502 			return -EFAULT;
5503 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5504 		if (!arg)
5505 			return -ENOMEM;
5506 		arg->send_fd = args32.send_fd;
5507 		arg->clone_sources_count = args32.clone_sources_count;
5508 		arg->clone_sources = compat_ptr(args32.clone_sources);
5509 		arg->parent_root = args32.parent_root;
5510 		arg->flags = args32.flags;
5511 		memcpy(arg->reserved, args32.reserved,
5512 		       sizeof(args32.reserved));
5513 #else
5514 		return -ENOTTY;
5515 #endif
5516 	} else {
5517 		arg = memdup_user(argp, sizeof(*arg));
5518 		if (IS_ERR(arg))
5519 			return PTR_ERR(arg);
5520 	}
5521 	ret = btrfs_ioctl_send(file, arg);
5522 	kfree(arg);
5523 	return ret;
5524 }
5525 
5526 long btrfs_ioctl(struct file *file, unsigned int
5527 		cmd, unsigned long arg)
5528 {
5529 	struct inode *inode = file_inode(file);
5530 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5531 	struct btrfs_root *root = BTRFS_I(inode)->root;
5532 	void __user *argp = (void __user *)arg;
5533 
5534 	switch (cmd) {
5535 	case FS_IOC_GETFLAGS:
5536 		return btrfs_ioctl_getflags(file, argp);
5537 	case FS_IOC_SETFLAGS:
5538 		return btrfs_ioctl_setflags(file, argp);
5539 	case FS_IOC_GETVERSION:
5540 		return btrfs_ioctl_getversion(file, argp);
5541 	case FITRIM:
5542 		return btrfs_ioctl_fitrim(file, argp);
5543 	case BTRFS_IOC_SNAP_CREATE:
5544 		return btrfs_ioctl_snap_create(file, argp, 0);
5545 	case BTRFS_IOC_SNAP_CREATE_V2:
5546 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5547 	case BTRFS_IOC_SUBVOL_CREATE:
5548 		return btrfs_ioctl_snap_create(file, argp, 1);
5549 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5550 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5551 	case BTRFS_IOC_SNAP_DESTROY:
5552 		return btrfs_ioctl_snap_destroy(file, argp);
5553 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5554 		return btrfs_ioctl_subvol_getflags(file, argp);
5555 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5556 		return btrfs_ioctl_subvol_setflags(file, argp);
5557 	case BTRFS_IOC_DEFAULT_SUBVOL:
5558 		return btrfs_ioctl_default_subvol(file, argp);
5559 	case BTRFS_IOC_DEFRAG:
5560 		return btrfs_ioctl_defrag(file, NULL);
5561 	case BTRFS_IOC_DEFRAG_RANGE:
5562 		return btrfs_ioctl_defrag(file, argp);
5563 	case BTRFS_IOC_RESIZE:
5564 		return btrfs_ioctl_resize(file, argp);
5565 	case BTRFS_IOC_ADD_DEV:
5566 		return btrfs_ioctl_add_dev(fs_info, argp);
5567 	case BTRFS_IOC_RM_DEV:
5568 		return btrfs_ioctl_rm_dev(file, argp);
5569 	case BTRFS_IOC_RM_DEV_V2:
5570 		return btrfs_ioctl_rm_dev_v2(file, argp);
5571 	case BTRFS_IOC_FS_INFO:
5572 		return btrfs_ioctl_fs_info(fs_info, argp);
5573 	case BTRFS_IOC_DEV_INFO:
5574 		return btrfs_ioctl_dev_info(fs_info, argp);
5575 	case BTRFS_IOC_BALANCE:
5576 		return btrfs_ioctl_balance(file, NULL);
5577 	case BTRFS_IOC_TRANS_START:
5578 		return btrfs_ioctl_trans_start(file);
5579 	case BTRFS_IOC_TRANS_END:
5580 		return btrfs_ioctl_trans_end(file);
5581 	case BTRFS_IOC_TREE_SEARCH:
5582 		return btrfs_ioctl_tree_search(file, argp);
5583 	case BTRFS_IOC_TREE_SEARCH_V2:
5584 		return btrfs_ioctl_tree_search_v2(file, argp);
5585 	case BTRFS_IOC_INO_LOOKUP:
5586 		return btrfs_ioctl_ino_lookup(file, argp);
5587 	case BTRFS_IOC_INO_PATHS:
5588 		return btrfs_ioctl_ino_to_path(root, argp);
5589 	case BTRFS_IOC_LOGICAL_INO:
5590 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5591 	case BTRFS_IOC_LOGICAL_INO_V2:
5592 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5593 	case BTRFS_IOC_SPACE_INFO:
5594 		return btrfs_ioctl_space_info(fs_info, argp);
5595 	case BTRFS_IOC_SYNC: {
5596 		int ret;
5597 
5598 		ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5599 		if (ret)
5600 			return ret;
5601 		ret = btrfs_sync_fs(inode->i_sb, 1);
5602 		/*
5603 		 * The transaction thread may want to do more work,
5604 		 * namely it pokes the cleaner kthread that will start
5605 		 * processing uncleaned subvols.
5606 		 */
5607 		wake_up_process(fs_info->transaction_kthread);
5608 		return ret;
5609 	}
5610 	case BTRFS_IOC_START_SYNC:
5611 		return btrfs_ioctl_start_sync(root, argp);
5612 	case BTRFS_IOC_WAIT_SYNC:
5613 		return btrfs_ioctl_wait_sync(fs_info, argp);
5614 	case BTRFS_IOC_SCRUB:
5615 		return btrfs_ioctl_scrub(file, argp);
5616 	case BTRFS_IOC_SCRUB_CANCEL:
5617 		return btrfs_ioctl_scrub_cancel(fs_info);
5618 	case BTRFS_IOC_SCRUB_PROGRESS:
5619 		return btrfs_ioctl_scrub_progress(fs_info, argp);
5620 	case BTRFS_IOC_BALANCE_V2:
5621 		return btrfs_ioctl_balance(file, argp);
5622 	case BTRFS_IOC_BALANCE_CTL:
5623 		return btrfs_ioctl_balance_ctl(fs_info, arg);
5624 	case BTRFS_IOC_BALANCE_PROGRESS:
5625 		return btrfs_ioctl_balance_progress(fs_info, argp);
5626 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5627 		return btrfs_ioctl_set_received_subvol(file, argp);
5628 #ifdef CONFIG_64BIT
5629 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5630 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5631 #endif
5632 	case BTRFS_IOC_SEND:
5633 		return _btrfs_ioctl_send(file, argp, false);
5634 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5635 	case BTRFS_IOC_SEND_32:
5636 		return _btrfs_ioctl_send(file, argp, true);
5637 #endif
5638 	case BTRFS_IOC_GET_DEV_STATS:
5639 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
5640 	case BTRFS_IOC_QUOTA_CTL:
5641 		return btrfs_ioctl_quota_ctl(file, argp);
5642 	case BTRFS_IOC_QGROUP_ASSIGN:
5643 		return btrfs_ioctl_qgroup_assign(file, argp);
5644 	case BTRFS_IOC_QGROUP_CREATE:
5645 		return btrfs_ioctl_qgroup_create(file, argp);
5646 	case BTRFS_IOC_QGROUP_LIMIT:
5647 		return btrfs_ioctl_qgroup_limit(file, argp);
5648 	case BTRFS_IOC_QUOTA_RESCAN:
5649 		return btrfs_ioctl_quota_rescan(file, argp);
5650 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5651 		return btrfs_ioctl_quota_rescan_status(file, argp);
5652 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5653 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5654 	case BTRFS_IOC_DEV_REPLACE:
5655 		return btrfs_ioctl_dev_replace(fs_info, argp);
5656 	case BTRFS_IOC_GET_FSLABEL:
5657 		return btrfs_ioctl_get_fslabel(file, argp);
5658 	case BTRFS_IOC_SET_FSLABEL:
5659 		return btrfs_ioctl_set_fslabel(file, argp);
5660 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5661 		return btrfs_ioctl_get_supported_features(argp);
5662 	case BTRFS_IOC_GET_FEATURES:
5663 		return btrfs_ioctl_get_features(file, argp);
5664 	case BTRFS_IOC_SET_FEATURES:
5665 		return btrfs_ioctl_set_features(file, argp);
5666 	}
5667 
5668 	return -ENOTTY;
5669 }
5670 
5671 #ifdef CONFIG_COMPAT
5672 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5673 {
5674 	/*
5675 	 * These all access 32-bit values anyway so no further
5676 	 * handling is necessary.
5677 	 */
5678 	switch (cmd) {
5679 	case FS_IOC32_GETFLAGS:
5680 		cmd = FS_IOC_GETFLAGS;
5681 		break;
5682 	case FS_IOC32_SETFLAGS:
5683 		cmd = FS_IOC_SETFLAGS;
5684 		break;
5685 	case FS_IOC32_GETVERSION:
5686 		cmd = FS_IOC_GETVERSION;
5687 		break;
5688 	}
5689 
5690 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5691 }
5692 #endif
5693