1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include "compat.h" 45 #include "ctree.h" 46 #include "disk-io.h" 47 #include "transaction.h" 48 #include "btrfs_inode.h" 49 #include "ioctl.h" 50 #include "print-tree.h" 51 #include "volumes.h" 52 #include "locking.h" 53 #include "inode-map.h" 54 55 /* Mask out flags that are inappropriate for the given type of inode. */ 56 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 57 { 58 if (S_ISDIR(mode)) 59 return flags; 60 else if (S_ISREG(mode)) 61 return flags & ~FS_DIRSYNC_FL; 62 else 63 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 64 } 65 66 /* 67 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 68 */ 69 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 70 { 71 unsigned int iflags = 0; 72 73 if (flags & BTRFS_INODE_SYNC) 74 iflags |= FS_SYNC_FL; 75 if (flags & BTRFS_INODE_IMMUTABLE) 76 iflags |= FS_IMMUTABLE_FL; 77 if (flags & BTRFS_INODE_APPEND) 78 iflags |= FS_APPEND_FL; 79 if (flags & BTRFS_INODE_NODUMP) 80 iflags |= FS_NODUMP_FL; 81 if (flags & BTRFS_INODE_NOATIME) 82 iflags |= FS_NOATIME_FL; 83 if (flags & BTRFS_INODE_DIRSYNC) 84 iflags |= FS_DIRSYNC_FL; 85 if (flags & BTRFS_INODE_NODATACOW) 86 iflags |= FS_NOCOW_FL; 87 88 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 89 iflags |= FS_COMPR_FL; 90 else if (flags & BTRFS_INODE_NOCOMPRESS) 91 iflags |= FS_NOCOMP_FL; 92 93 return iflags; 94 } 95 96 /* 97 * Update inode->i_flags based on the btrfs internal flags. 98 */ 99 void btrfs_update_iflags(struct inode *inode) 100 { 101 struct btrfs_inode *ip = BTRFS_I(inode); 102 103 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 104 105 if (ip->flags & BTRFS_INODE_SYNC) 106 inode->i_flags |= S_SYNC; 107 if (ip->flags & BTRFS_INODE_IMMUTABLE) 108 inode->i_flags |= S_IMMUTABLE; 109 if (ip->flags & BTRFS_INODE_APPEND) 110 inode->i_flags |= S_APPEND; 111 if (ip->flags & BTRFS_INODE_NOATIME) 112 inode->i_flags |= S_NOATIME; 113 if (ip->flags & BTRFS_INODE_DIRSYNC) 114 inode->i_flags |= S_DIRSYNC; 115 } 116 117 /* 118 * Inherit flags from the parent inode. 119 * 120 * Unlike extN we don't have any flags we don't want to inherit currently. 121 */ 122 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 123 { 124 unsigned int flags; 125 126 if (!dir) 127 return; 128 129 flags = BTRFS_I(dir)->flags; 130 131 if (S_ISREG(inode->i_mode)) 132 flags &= ~BTRFS_INODE_DIRSYNC; 133 else if (!S_ISDIR(inode->i_mode)) 134 flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME); 135 136 BTRFS_I(inode)->flags = flags; 137 btrfs_update_iflags(inode); 138 } 139 140 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 141 { 142 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode); 143 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 144 145 if (copy_to_user(arg, &flags, sizeof(flags))) 146 return -EFAULT; 147 return 0; 148 } 149 150 static int check_flags(unsigned int flags) 151 { 152 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 153 FS_NOATIME_FL | FS_NODUMP_FL | \ 154 FS_SYNC_FL | FS_DIRSYNC_FL | \ 155 FS_NOCOMP_FL | FS_COMPR_FL | 156 FS_NOCOW_FL)) 157 return -EOPNOTSUPP; 158 159 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 160 return -EINVAL; 161 162 return 0; 163 } 164 165 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 166 { 167 struct inode *inode = file->f_path.dentry->d_inode; 168 struct btrfs_inode *ip = BTRFS_I(inode); 169 struct btrfs_root *root = ip->root; 170 struct btrfs_trans_handle *trans; 171 unsigned int flags, oldflags; 172 int ret; 173 174 if (btrfs_root_readonly(root)) 175 return -EROFS; 176 177 if (copy_from_user(&flags, arg, sizeof(flags))) 178 return -EFAULT; 179 180 ret = check_flags(flags); 181 if (ret) 182 return ret; 183 184 if (!inode_owner_or_capable(inode)) 185 return -EACCES; 186 187 mutex_lock(&inode->i_mutex); 188 189 flags = btrfs_mask_flags(inode->i_mode, flags); 190 oldflags = btrfs_flags_to_ioctl(ip->flags); 191 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 192 if (!capable(CAP_LINUX_IMMUTABLE)) { 193 ret = -EPERM; 194 goto out_unlock; 195 } 196 } 197 198 ret = mnt_want_write(file->f_path.mnt); 199 if (ret) 200 goto out_unlock; 201 202 if (flags & FS_SYNC_FL) 203 ip->flags |= BTRFS_INODE_SYNC; 204 else 205 ip->flags &= ~BTRFS_INODE_SYNC; 206 if (flags & FS_IMMUTABLE_FL) 207 ip->flags |= BTRFS_INODE_IMMUTABLE; 208 else 209 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 210 if (flags & FS_APPEND_FL) 211 ip->flags |= BTRFS_INODE_APPEND; 212 else 213 ip->flags &= ~BTRFS_INODE_APPEND; 214 if (flags & FS_NODUMP_FL) 215 ip->flags |= BTRFS_INODE_NODUMP; 216 else 217 ip->flags &= ~BTRFS_INODE_NODUMP; 218 if (flags & FS_NOATIME_FL) 219 ip->flags |= BTRFS_INODE_NOATIME; 220 else 221 ip->flags &= ~BTRFS_INODE_NOATIME; 222 if (flags & FS_DIRSYNC_FL) 223 ip->flags |= BTRFS_INODE_DIRSYNC; 224 else 225 ip->flags &= ~BTRFS_INODE_DIRSYNC; 226 if (flags & FS_NOCOW_FL) 227 ip->flags |= BTRFS_INODE_NODATACOW; 228 else 229 ip->flags &= ~BTRFS_INODE_NODATACOW; 230 231 /* 232 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 233 * flag may be changed automatically if compression code won't make 234 * things smaller. 235 */ 236 if (flags & FS_NOCOMP_FL) { 237 ip->flags &= ~BTRFS_INODE_COMPRESS; 238 ip->flags |= BTRFS_INODE_NOCOMPRESS; 239 } else if (flags & FS_COMPR_FL) { 240 ip->flags |= BTRFS_INODE_COMPRESS; 241 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 242 } else { 243 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 244 } 245 246 trans = btrfs_join_transaction(root); 247 BUG_ON(IS_ERR(trans)); 248 249 ret = btrfs_update_inode(trans, root, inode); 250 BUG_ON(ret); 251 252 btrfs_update_iflags(inode); 253 inode->i_ctime = CURRENT_TIME; 254 btrfs_end_transaction(trans, root); 255 256 mnt_drop_write(file->f_path.mnt); 257 258 ret = 0; 259 out_unlock: 260 mutex_unlock(&inode->i_mutex); 261 return ret; 262 } 263 264 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 265 { 266 struct inode *inode = file->f_path.dentry->d_inode; 267 268 return put_user(inode->i_generation, arg); 269 } 270 271 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 272 { 273 struct btrfs_root *root = fdentry(file)->d_sb->s_fs_info; 274 struct btrfs_fs_info *fs_info = root->fs_info; 275 struct btrfs_device *device; 276 struct request_queue *q; 277 struct fstrim_range range; 278 u64 minlen = ULLONG_MAX; 279 u64 num_devices = 0; 280 int ret; 281 282 if (!capable(CAP_SYS_ADMIN)) 283 return -EPERM; 284 285 rcu_read_lock(); 286 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 287 dev_list) { 288 if (!device->bdev) 289 continue; 290 q = bdev_get_queue(device->bdev); 291 if (blk_queue_discard(q)) { 292 num_devices++; 293 minlen = min((u64)q->limits.discard_granularity, 294 minlen); 295 } 296 } 297 rcu_read_unlock(); 298 if (!num_devices) 299 return -EOPNOTSUPP; 300 301 if (copy_from_user(&range, arg, sizeof(range))) 302 return -EFAULT; 303 304 range.minlen = max(range.minlen, minlen); 305 ret = btrfs_trim_fs(root, &range); 306 if (ret < 0) 307 return ret; 308 309 if (copy_to_user(arg, &range, sizeof(range))) 310 return -EFAULT; 311 312 return 0; 313 } 314 315 static noinline int create_subvol(struct btrfs_root *root, 316 struct dentry *dentry, 317 char *name, int namelen, 318 u64 *async_transid) 319 { 320 struct btrfs_trans_handle *trans; 321 struct btrfs_key key; 322 struct btrfs_root_item root_item; 323 struct btrfs_inode_item *inode_item; 324 struct extent_buffer *leaf; 325 struct btrfs_root *new_root; 326 struct dentry *parent = dget_parent(dentry); 327 struct inode *dir; 328 int ret; 329 int err; 330 u64 objectid; 331 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 332 u64 index = 0; 333 334 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 335 if (ret) { 336 dput(parent); 337 return ret; 338 } 339 340 dir = parent->d_inode; 341 342 /* 343 * 1 - inode item 344 * 2 - refs 345 * 1 - root item 346 * 2 - dir items 347 */ 348 trans = btrfs_start_transaction(root, 6); 349 if (IS_ERR(trans)) { 350 dput(parent); 351 return PTR_ERR(trans); 352 } 353 354 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 355 0, objectid, NULL, 0, 0, 0); 356 if (IS_ERR(leaf)) { 357 ret = PTR_ERR(leaf); 358 goto fail; 359 } 360 361 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 362 btrfs_set_header_bytenr(leaf, leaf->start); 363 btrfs_set_header_generation(leaf, trans->transid); 364 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 365 btrfs_set_header_owner(leaf, objectid); 366 367 write_extent_buffer(leaf, root->fs_info->fsid, 368 (unsigned long)btrfs_header_fsid(leaf), 369 BTRFS_FSID_SIZE); 370 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 371 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 372 BTRFS_UUID_SIZE); 373 btrfs_mark_buffer_dirty(leaf); 374 375 inode_item = &root_item.inode; 376 memset(inode_item, 0, sizeof(*inode_item)); 377 inode_item->generation = cpu_to_le64(1); 378 inode_item->size = cpu_to_le64(3); 379 inode_item->nlink = cpu_to_le32(1); 380 inode_item->nbytes = cpu_to_le64(root->leafsize); 381 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 382 383 root_item.flags = 0; 384 root_item.byte_limit = 0; 385 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT); 386 387 btrfs_set_root_bytenr(&root_item, leaf->start); 388 btrfs_set_root_generation(&root_item, trans->transid); 389 btrfs_set_root_level(&root_item, 0); 390 btrfs_set_root_refs(&root_item, 1); 391 btrfs_set_root_used(&root_item, leaf->len); 392 btrfs_set_root_last_snapshot(&root_item, 0); 393 394 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress)); 395 root_item.drop_level = 0; 396 397 btrfs_tree_unlock(leaf); 398 free_extent_buffer(leaf); 399 leaf = NULL; 400 401 btrfs_set_root_dirid(&root_item, new_dirid); 402 403 key.objectid = objectid; 404 key.offset = 0; 405 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 406 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 407 &root_item); 408 if (ret) 409 goto fail; 410 411 key.offset = (u64)-1; 412 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 413 BUG_ON(IS_ERR(new_root)); 414 415 btrfs_record_root_in_trans(trans, new_root); 416 417 ret = btrfs_create_subvol_root(trans, new_root, new_dirid); 418 /* 419 * insert the directory item 420 */ 421 ret = btrfs_set_inode_index(dir, &index); 422 BUG_ON(ret); 423 424 ret = btrfs_insert_dir_item(trans, root, 425 name, namelen, dir, &key, 426 BTRFS_FT_DIR, index); 427 if (ret) 428 goto fail; 429 430 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 431 ret = btrfs_update_inode(trans, root, dir); 432 BUG_ON(ret); 433 434 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 435 objectid, root->root_key.objectid, 436 btrfs_ino(dir), index, name, namelen); 437 438 BUG_ON(ret); 439 440 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry)); 441 fail: 442 dput(parent); 443 if (async_transid) { 444 *async_transid = trans->transid; 445 err = btrfs_commit_transaction_async(trans, root, 1); 446 } else { 447 err = btrfs_commit_transaction(trans, root); 448 } 449 if (err && !ret) 450 ret = err; 451 return ret; 452 } 453 454 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry, 455 char *name, int namelen, u64 *async_transid, 456 bool readonly) 457 { 458 struct inode *inode; 459 struct dentry *parent; 460 struct btrfs_pending_snapshot *pending_snapshot; 461 struct btrfs_trans_handle *trans; 462 int ret; 463 464 if (!root->ref_cows) 465 return -EINVAL; 466 467 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 468 if (!pending_snapshot) 469 return -ENOMEM; 470 471 btrfs_init_block_rsv(&pending_snapshot->block_rsv); 472 pending_snapshot->dentry = dentry; 473 pending_snapshot->root = root; 474 pending_snapshot->readonly = readonly; 475 476 trans = btrfs_start_transaction(root->fs_info->extent_root, 5); 477 if (IS_ERR(trans)) { 478 ret = PTR_ERR(trans); 479 goto fail; 480 } 481 482 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot); 483 BUG_ON(ret); 484 485 list_add(&pending_snapshot->list, 486 &trans->transaction->pending_snapshots); 487 if (async_transid) { 488 *async_transid = trans->transid; 489 ret = btrfs_commit_transaction_async(trans, 490 root->fs_info->extent_root, 1); 491 } else { 492 ret = btrfs_commit_transaction(trans, 493 root->fs_info->extent_root); 494 } 495 BUG_ON(ret); 496 497 ret = pending_snapshot->error; 498 if (ret) 499 goto fail; 500 501 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 502 if (ret) 503 goto fail; 504 505 parent = dget_parent(dentry); 506 inode = btrfs_lookup_dentry(parent->d_inode, dentry); 507 dput(parent); 508 if (IS_ERR(inode)) { 509 ret = PTR_ERR(inode); 510 goto fail; 511 } 512 BUG_ON(!inode); 513 d_instantiate(dentry, inode); 514 ret = 0; 515 fail: 516 kfree(pending_snapshot); 517 return ret; 518 } 519 520 /* copy of check_sticky in fs/namei.c() 521 * It's inline, so penalty for filesystems that don't use sticky bit is 522 * minimal. 523 */ 524 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode) 525 { 526 uid_t fsuid = current_fsuid(); 527 528 if (!(dir->i_mode & S_ISVTX)) 529 return 0; 530 if (inode->i_uid == fsuid) 531 return 0; 532 if (dir->i_uid == fsuid) 533 return 0; 534 return !capable(CAP_FOWNER); 535 } 536 537 /* copy of may_delete in fs/namei.c() 538 * Check whether we can remove a link victim from directory dir, check 539 * whether the type of victim is right. 540 * 1. We can't do it if dir is read-only (done in permission()) 541 * 2. We should have write and exec permissions on dir 542 * 3. We can't remove anything from append-only dir 543 * 4. We can't do anything with immutable dir (done in permission()) 544 * 5. If the sticky bit on dir is set we should either 545 * a. be owner of dir, or 546 * b. be owner of victim, or 547 * c. have CAP_FOWNER capability 548 * 6. If the victim is append-only or immutable we can't do antyhing with 549 * links pointing to it. 550 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 551 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 552 * 9. We can't remove a root or mountpoint. 553 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 554 * nfs_async_unlink(). 555 */ 556 557 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir) 558 { 559 int error; 560 561 if (!victim->d_inode) 562 return -ENOENT; 563 564 BUG_ON(victim->d_parent->d_inode != dir); 565 audit_inode_child(victim, dir); 566 567 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 568 if (error) 569 return error; 570 if (IS_APPEND(dir)) 571 return -EPERM; 572 if (btrfs_check_sticky(dir, victim->d_inode)|| 573 IS_APPEND(victim->d_inode)|| 574 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 575 return -EPERM; 576 if (isdir) { 577 if (!S_ISDIR(victim->d_inode->i_mode)) 578 return -ENOTDIR; 579 if (IS_ROOT(victim)) 580 return -EBUSY; 581 } else if (S_ISDIR(victim->d_inode->i_mode)) 582 return -EISDIR; 583 if (IS_DEADDIR(dir)) 584 return -ENOENT; 585 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 586 return -EBUSY; 587 return 0; 588 } 589 590 /* copy of may_create in fs/namei.c() */ 591 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 592 { 593 if (child->d_inode) 594 return -EEXIST; 595 if (IS_DEADDIR(dir)) 596 return -ENOENT; 597 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 598 } 599 600 /* 601 * Create a new subvolume below @parent. This is largely modeled after 602 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 603 * inside this filesystem so it's quite a bit simpler. 604 */ 605 static noinline int btrfs_mksubvol(struct path *parent, 606 char *name, int namelen, 607 struct btrfs_root *snap_src, 608 u64 *async_transid, bool readonly) 609 { 610 struct inode *dir = parent->dentry->d_inode; 611 struct dentry *dentry; 612 int error; 613 614 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 615 616 dentry = lookup_one_len(name, parent->dentry, namelen); 617 error = PTR_ERR(dentry); 618 if (IS_ERR(dentry)) 619 goto out_unlock; 620 621 error = -EEXIST; 622 if (dentry->d_inode) 623 goto out_dput; 624 625 error = mnt_want_write(parent->mnt); 626 if (error) 627 goto out_dput; 628 629 error = btrfs_may_create(dir, dentry); 630 if (error) 631 goto out_drop_write; 632 633 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 634 635 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 636 goto out_up_read; 637 638 if (snap_src) { 639 error = create_snapshot(snap_src, dentry, 640 name, namelen, async_transid, readonly); 641 } else { 642 error = create_subvol(BTRFS_I(dir)->root, dentry, 643 name, namelen, async_transid); 644 } 645 if (!error) 646 fsnotify_mkdir(dir, dentry); 647 out_up_read: 648 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 649 out_drop_write: 650 mnt_drop_write(parent->mnt); 651 out_dput: 652 dput(dentry); 653 out_unlock: 654 mutex_unlock(&dir->i_mutex); 655 return error; 656 } 657 658 /* 659 * When we're defragging a range, we don't want to kick it off again 660 * if it is really just waiting for delalloc to send it down. 661 * If we find a nice big extent or delalloc range for the bytes in the 662 * file you want to defrag, we return 0 to let you know to skip this 663 * part of the file 664 */ 665 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh) 666 { 667 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 668 struct extent_map *em = NULL; 669 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 670 u64 end; 671 672 read_lock(&em_tree->lock); 673 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 674 read_unlock(&em_tree->lock); 675 676 if (em) { 677 end = extent_map_end(em); 678 free_extent_map(em); 679 if (end - offset > thresh) 680 return 0; 681 } 682 /* if we already have a nice delalloc here, just stop */ 683 thresh /= 2; 684 end = count_range_bits(io_tree, &offset, offset + thresh, 685 thresh, EXTENT_DELALLOC, 1); 686 if (end >= thresh) 687 return 0; 688 return 1; 689 } 690 691 /* 692 * helper function to walk through a file and find extents 693 * newer than a specific transid, and smaller than thresh. 694 * 695 * This is used by the defragging code to find new and small 696 * extents 697 */ 698 static int find_new_extents(struct btrfs_root *root, 699 struct inode *inode, u64 newer_than, 700 u64 *off, int thresh) 701 { 702 struct btrfs_path *path; 703 struct btrfs_key min_key; 704 struct btrfs_key max_key; 705 struct extent_buffer *leaf; 706 struct btrfs_file_extent_item *extent; 707 int type; 708 int ret; 709 u64 ino = btrfs_ino(inode); 710 711 path = btrfs_alloc_path(); 712 if (!path) 713 return -ENOMEM; 714 715 min_key.objectid = ino; 716 min_key.type = BTRFS_EXTENT_DATA_KEY; 717 min_key.offset = *off; 718 719 max_key.objectid = ino; 720 max_key.type = (u8)-1; 721 max_key.offset = (u64)-1; 722 723 path->keep_locks = 1; 724 725 while(1) { 726 ret = btrfs_search_forward(root, &min_key, &max_key, 727 path, 0, newer_than); 728 if (ret != 0) 729 goto none; 730 if (min_key.objectid != ino) 731 goto none; 732 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 733 goto none; 734 735 leaf = path->nodes[0]; 736 extent = btrfs_item_ptr(leaf, path->slots[0], 737 struct btrfs_file_extent_item); 738 739 type = btrfs_file_extent_type(leaf, extent); 740 if (type == BTRFS_FILE_EXTENT_REG && 741 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 742 check_defrag_in_cache(inode, min_key.offset, thresh)) { 743 *off = min_key.offset; 744 btrfs_free_path(path); 745 return 0; 746 } 747 748 if (min_key.offset == (u64)-1) 749 goto none; 750 751 min_key.offset++; 752 btrfs_release_path(path); 753 } 754 none: 755 btrfs_free_path(path); 756 return -ENOENT; 757 } 758 759 static int should_defrag_range(struct inode *inode, u64 start, u64 len, 760 int thresh, u64 *last_len, u64 *skip, 761 u64 *defrag_end) 762 { 763 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 764 struct extent_map *em = NULL; 765 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 766 int ret = 1; 767 768 /* 769 * make sure that once we start defragging and extent, we keep on 770 * defragging it 771 */ 772 if (start < *defrag_end) 773 return 1; 774 775 *skip = 0; 776 777 /* 778 * hopefully we have this extent in the tree already, try without 779 * the full extent lock 780 */ 781 read_lock(&em_tree->lock); 782 em = lookup_extent_mapping(em_tree, start, len); 783 read_unlock(&em_tree->lock); 784 785 if (!em) { 786 /* get the big lock and read metadata off disk */ 787 lock_extent(io_tree, start, start + len - 1, GFP_NOFS); 788 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 789 unlock_extent(io_tree, start, start + len - 1, GFP_NOFS); 790 791 if (IS_ERR(em)) 792 return 0; 793 } 794 795 /* this will cover holes, and inline extents */ 796 if (em->block_start >= EXTENT_MAP_LAST_BYTE) 797 ret = 0; 798 799 /* 800 * we hit a real extent, if it is big don't bother defragging it again 801 */ 802 if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh) 803 ret = 0; 804 805 /* 806 * last_len ends up being a counter of how many bytes we've defragged. 807 * every time we choose not to defrag an extent, we reset *last_len 808 * so that the next tiny extent will force a defrag. 809 * 810 * The end result of this is that tiny extents before a single big 811 * extent will force at least part of that big extent to be defragged. 812 */ 813 if (ret) { 814 *last_len += len; 815 *defrag_end = extent_map_end(em); 816 } else { 817 *last_len = 0; 818 *skip = extent_map_end(em); 819 *defrag_end = 0; 820 } 821 822 free_extent_map(em); 823 return ret; 824 } 825 826 /* 827 * it doesn't do much good to defrag one or two pages 828 * at a time. This pulls in a nice chunk of pages 829 * to COW and defrag. 830 * 831 * It also makes sure the delalloc code has enough 832 * dirty data to avoid making new small extents as part 833 * of the defrag 834 * 835 * It's a good idea to start RA on this range 836 * before calling this. 837 */ 838 static int cluster_pages_for_defrag(struct inode *inode, 839 struct page **pages, 840 unsigned long start_index, 841 int num_pages) 842 { 843 unsigned long file_end; 844 u64 isize = i_size_read(inode); 845 u64 page_start; 846 u64 page_end; 847 int ret; 848 int i; 849 int i_done; 850 struct btrfs_ordered_extent *ordered; 851 struct extent_state *cached_state = NULL; 852 853 if (isize == 0) 854 return 0; 855 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 856 857 ret = btrfs_delalloc_reserve_space(inode, 858 num_pages << PAGE_CACHE_SHIFT); 859 if (ret) 860 return ret; 861 again: 862 ret = 0; 863 i_done = 0; 864 865 /* step one, lock all the pages */ 866 for (i = 0; i < num_pages; i++) { 867 struct page *page; 868 page = grab_cache_page(inode->i_mapping, 869 start_index + i); 870 if (!page) 871 break; 872 873 if (!PageUptodate(page)) { 874 btrfs_readpage(NULL, page); 875 lock_page(page); 876 if (!PageUptodate(page)) { 877 unlock_page(page); 878 page_cache_release(page); 879 ret = -EIO; 880 break; 881 } 882 } 883 isize = i_size_read(inode); 884 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 885 if (!isize || page->index > file_end || 886 page->mapping != inode->i_mapping) { 887 /* whoops, we blew past eof, skip this page */ 888 unlock_page(page); 889 page_cache_release(page); 890 break; 891 } 892 pages[i] = page; 893 i_done++; 894 } 895 if (!i_done || ret) 896 goto out; 897 898 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 899 goto out; 900 901 /* 902 * so now we have a nice long stream of locked 903 * and up to date pages, lets wait on them 904 */ 905 for (i = 0; i < i_done; i++) 906 wait_on_page_writeback(pages[i]); 907 908 page_start = page_offset(pages[0]); 909 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 910 911 lock_extent_bits(&BTRFS_I(inode)->io_tree, 912 page_start, page_end - 1, 0, &cached_state, 913 GFP_NOFS); 914 ordered = btrfs_lookup_first_ordered_extent(inode, page_end - 1); 915 if (ordered && 916 ordered->file_offset + ordered->len > page_start && 917 ordered->file_offset < page_end) { 918 btrfs_put_ordered_extent(ordered); 919 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 920 page_start, page_end - 1, 921 &cached_state, GFP_NOFS); 922 for (i = 0; i < i_done; i++) { 923 unlock_page(pages[i]); 924 page_cache_release(pages[i]); 925 } 926 btrfs_wait_ordered_range(inode, page_start, 927 page_end - page_start); 928 goto again; 929 } 930 if (ordered) 931 btrfs_put_ordered_extent(ordered); 932 933 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 934 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 935 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state, 936 GFP_NOFS); 937 938 if (i_done != num_pages) { 939 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 940 btrfs_delalloc_release_space(inode, 941 (num_pages - i_done) << PAGE_CACHE_SHIFT); 942 } 943 944 945 btrfs_set_extent_delalloc(inode, page_start, page_end - 1, 946 &cached_state); 947 948 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 949 page_start, page_end - 1, &cached_state, 950 GFP_NOFS); 951 952 for (i = 0; i < i_done; i++) { 953 clear_page_dirty_for_io(pages[i]); 954 ClearPageChecked(pages[i]); 955 set_page_extent_mapped(pages[i]); 956 set_page_dirty(pages[i]); 957 unlock_page(pages[i]); 958 page_cache_release(pages[i]); 959 } 960 return i_done; 961 out: 962 for (i = 0; i < i_done; i++) { 963 unlock_page(pages[i]); 964 page_cache_release(pages[i]); 965 } 966 btrfs_delalloc_release_space(inode, num_pages << PAGE_CACHE_SHIFT); 967 return ret; 968 969 } 970 971 int btrfs_defrag_file(struct inode *inode, struct file *file, 972 struct btrfs_ioctl_defrag_range_args *range, 973 u64 newer_than, unsigned long max_to_defrag) 974 { 975 struct btrfs_root *root = BTRFS_I(inode)->root; 976 struct btrfs_super_block *disk_super; 977 struct file_ra_state *ra = NULL; 978 unsigned long last_index; 979 u64 features; 980 u64 last_len = 0; 981 u64 skip = 0; 982 u64 defrag_end = 0; 983 u64 newer_off = range->start; 984 int newer_left = 0; 985 unsigned long i; 986 int ret; 987 int defrag_count = 0; 988 int compress_type = BTRFS_COMPRESS_ZLIB; 989 int extent_thresh = range->extent_thresh; 990 int newer_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 991 u64 new_align = ~((u64)128 * 1024 - 1); 992 struct page **pages = NULL; 993 994 if (extent_thresh == 0) 995 extent_thresh = 256 * 1024; 996 997 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 998 if (range->compress_type > BTRFS_COMPRESS_TYPES) 999 return -EINVAL; 1000 if (range->compress_type) 1001 compress_type = range->compress_type; 1002 } 1003 1004 if (inode->i_size == 0) 1005 return 0; 1006 1007 /* 1008 * if we were not given a file, allocate a readahead 1009 * context 1010 */ 1011 if (!file) { 1012 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1013 if (!ra) 1014 return -ENOMEM; 1015 file_ra_state_init(ra, inode->i_mapping); 1016 } else { 1017 ra = &file->f_ra; 1018 } 1019 1020 pages = kmalloc(sizeof(struct page *) * newer_cluster, 1021 GFP_NOFS); 1022 if (!pages) { 1023 ret = -ENOMEM; 1024 goto out_ra; 1025 } 1026 1027 /* find the last page to defrag */ 1028 if (range->start + range->len > range->start) { 1029 last_index = min_t(u64, inode->i_size - 1, 1030 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1031 } else { 1032 last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT; 1033 } 1034 1035 if (newer_than) { 1036 ret = find_new_extents(root, inode, newer_than, 1037 &newer_off, 64 * 1024); 1038 if (!ret) { 1039 range->start = newer_off; 1040 /* 1041 * we always align our defrag to help keep 1042 * the extents in the file evenly spaced 1043 */ 1044 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1045 newer_left = newer_cluster; 1046 } else 1047 goto out_ra; 1048 } else { 1049 i = range->start >> PAGE_CACHE_SHIFT; 1050 } 1051 if (!max_to_defrag) 1052 max_to_defrag = last_index - 1; 1053 1054 while (i <= last_index && defrag_count < max_to_defrag) { 1055 /* 1056 * make sure we stop running if someone unmounts 1057 * the FS 1058 */ 1059 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1060 break; 1061 1062 if (!newer_than && 1063 !should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1064 PAGE_CACHE_SIZE, 1065 extent_thresh, 1066 &last_len, &skip, 1067 &defrag_end)) { 1068 unsigned long next; 1069 /* 1070 * the should_defrag function tells us how much to skip 1071 * bump our counter by the suggested amount 1072 */ 1073 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1074 i = max(i + 1, next); 1075 continue; 1076 } 1077 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1078 BTRFS_I(inode)->force_compress = compress_type; 1079 1080 btrfs_force_ra(inode->i_mapping, ra, file, i, newer_cluster); 1081 1082 ret = cluster_pages_for_defrag(inode, pages, i, newer_cluster); 1083 if (ret < 0) 1084 goto out_ra; 1085 1086 defrag_count += ret; 1087 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret); 1088 i += ret; 1089 1090 if (newer_than) { 1091 if (newer_off == (u64)-1) 1092 break; 1093 1094 newer_off = max(newer_off + 1, 1095 (u64)i << PAGE_CACHE_SHIFT); 1096 1097 ret = find_new_extents(root, inode, 1098 newer_than, &newer_off, 1099 64 * 1024); 1100 if (!ret) { 1101 range->start = newer_off; 1102 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1103 newer_left = newer_cluster; 1104 } else { 1105 break; 1106 } 1107 } else { 1108 i++; 1109 } 1110 } 1111 1112 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) 1113 filemap_flush(inode->i_mapping); 1114 1115 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1116 /* the filemap_flush will queue IO into the worker threads, but 1117 * we have to make sure the IO is actually started and that 1118 * ordered extents get created before we return 1119 */ 1120 atomic_inc(&root->fs_info->async_submit_draining); 1121 while (atomic_read(&root->fs_info->nr_async_submits) || 1122 atomic_read(&root->fs_info->async_delalloc_pages)) { 1123 wait_event(root->fs_info->async_submit_wait, 1124 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1125 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1126 } 1127 atomic_dec(&root->fs_info->async_submit_draining); 1128 1129 mutex_lock(&inode->i_mutex); 1130 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1131 mutex_unlock(&inode->i_mutex); 1132 } 1133 1134 disk_super = &root->fs_info->super_copy; 1135 features = btrfs_super_incompat_flags(disk_super); 1136 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1137 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; 1138 btrfs_set_super_incompat_flags(disk_super, features); 1139 } 1140 1141 if (!file) 1142 kfree(ra); 1143 return defrag_count; 1144 1145 out_ra: 1146 if (!file) 1147 kfree(ra); 1148 kfree(pages); 1149 return ret; 1150 } 1151 1152 static noinline int btrfs_ioctl_resize(struct btrfs_root *root, 1153 void __user *arg) 1154 { 1155 u64 new_size; 1156 u64 old_size; 1157 u64 devid = 1; 1158 struct btrfs_ioctl_vol_args *vol_args; 1159 struct btrfs_trans_handle *trans; 1160 struct btrfs_device *device = NULL; 1161 char *sizestr; 1162 char *devstr = NULL; 1163 int ret = 0; 1164 int mod = 0; 1165 1166 if (root->fs_info->sb->s_flags & MS_RDONLY) 1167 return -EROFS; 1168 1169 if (!capable(CAP_SYS_ADMIN)) 1170 return -EPERM; 1171 1172 vol_args = memdup_user(arg, sizeof(*vol_args)); 1173 if (IS_ERR(vol_args)) 1174 return PTR_ERR(vol_args); 1175 1176 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1177 1178 mutex_lock(&root->fs_info->volume_mutex); 1179 sizestr = vol_args->name; 1180 devstr = strchr(sizestr, ':'); 1181 if (devstr) { 1182 char *end; 1183 sizestr = devstr + 1; 1184 *devstr = '\0'; 1185 devstr = vol_args->name; 1186 devid = simple_strtoull(devstr, &end, 10); 1187 printk(KERN_INFO "resizing devid %llu\n", 1188 (unsigned long long)devid); 1189 } 1190 device = btrfs_find_device(root, devid, NULL, NULL); 1191 if (!device) { 1192 printk(KERN_INFO "resizer unable to find device %llu\n", 1193 (unsigned long long)devid); 1194 ret = -EINVAL; 1195 goto out_unlock; 1196 } 1197 if (!strcmp(sizestr, "max")) 1198 new_size = device->bdev->bd_inode->i_size; 1199 else { 1200 if (sizestr[0] == '-') { 1201 mod = -1; 1202 sizestr++; 1203 } else if (sizestr[0] == '+') { 1204 mod = 1; 1205 sizestr++; 1206 } 1207 new_size = memparse(sizestr, NULL); 1208 if (new_size == 0) { 1209 ret = -EINVAL; 1210 goto out_unlock; 1211 } 1212 } 1213 1214 old_size = device->total_bytes; 1215 1216 if (mod < 0) { 1217 if (new_size > old_size) { 1218 ret = -EINVAL; 1219 goto out_unlock; 1220 } 1221 new_size = old_size - new_size; 1222 } else if (mod > 0) { 1223 new_size = old_size + new_size; 1224 } 1225 1226 if (new_size < 256 * 1024 * 1024) { 1227 ret = -EINVAL; 1228 goto out_unlock; 1229 } 1230 if (new_size > device->bdev->bd_inode->i_size) { 1231 ret = -EFBIG; 1232 goto out_unlock; 1233 } 1234 1235 do_div(new_size, root->sectorsize); 1236 new_size *= root->sectorsize; 1237 1238 printk(KERN_INFO "new size for %s is %llu\n", 1239 device->name, (unsigned long long)new_size); 1240 1241 if (new_size > old_size) { 1242 trans = btrfs_start_transaction(root, 0); 1243 if (IS_ERR(trans)) { 1244 ret = PTR_ERR(trans); 1245 goto out_unlock; 1246 } 1247 ret = btrfs_grow_device(trans, device, new_size); 1248 btrfs_commit_transaction(trans, root); 1249 } else { 1250 ret = btrfs_shrink_device(device, new_size); 1251 } 1252 1253 out_unlock: 1254 mutex_unlock(&root->fs_info->volume_mutex); 1255 kfree(vol_args); 1256 return ret; 1257 } 1258 1259 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1260 char *name, 1261 unsigned long fd, 1262 int subvol, 1263 u64 *transid, 1264 bool readonly) 1265 { 1266 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 1267 struct file *src_file; 1268 int namelen; 1269 int ret = 0; 1270 1271 if (root->fs_info->sb->s_flags & MS_RDONLY) 1272 return -EROFS; 1273 1274 namelen = strlen(name); 1275 if (strchr(name, '/')) { 1276 ret = -EINVAL; 1277 goto out; 1278 } 1279 1280 if (subvol) { 1281 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1282 NULL, transid, readonly); 1283 } else { 1284 struct inode *src_inode; 1285 src_file = fget(fd); 1286 if (!src_file) { 1287 ret = -EINVAL; 1288 goto out; 1289 } 1290 1291 src_inode = src_file->f_path.dentry->d_inode; 1292 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) { 1293 printk(KERN_INFO "btrfs: Snapshot src from " 1294 "another FS\n"); 1295 ret = -EINVAL; 1296 fput(src_file); 1297 goto out; 1298 } 1299 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1300 BTRFS_I(src_inode)->root, 1301 transid, readonly); 1302 fput(src_file); 1303 } 1304 out: 1305 return ret; 1306 } 1307 1308 static noinline int btrfs_ioctl_snap_create(struct file *file, 1309 void __user *arg, int subvol) 1310 { 1311 struct btrfs_ioctl_vol_args *vol_args; 1312 int ret; 1313 1314 vol_args = memdup_user(arg, sizeof(*vol_args)); 1315 if (IS_ERR(vol_args)) 1316 return PTR_ERR(vol_args); 1317 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1318 1319 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1320 vol_args->fd, subvol, 1321 NULL, false); 1322 1323 kfree(vol_args); 1324 return ret; 1325 } 1326 1327 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1328 void __user *arg, int subvol) 1329 { 1330 struct btrfs_ioctl_vol_args_v2 *vol_args; 1331 int ret; 1332 u64 transid = 0; 1333 u64 *ptr = NULL; 1334 bool readonly = false; 1335 1336 vol_args = memdup_user(arg, sizeof(*vol_args)); 1337 if (IS_ERR(vol_args)) 1338 return PTR_ERR(vol_args); 1339 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1340 1341 if (vol_args->flags & 1342 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) { 1343 ret = -EOPNOTSUPP; 1344 goto out; 1345 } 1346 1347 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1348 ptr = &transid; 1349 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1350 readonly = true; 1351 1352 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1353 vol_args->fd, subvol, 1354 ptr, readonly); 1355 1356 if (ret == 0 && ptr && 1357 copy_to_user(arg + 1358 offsetof(struct btrfs_ioctl_vol_args_v2, 1359 transid), ptr, sizeof(*ptr))) 1360 ret = -EFAULT; 1361 out: 1362 kfree(vol_args); 1363 return ret; 1364 } 1365 1366 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1367 void __user *arg) 1368 { 1369 struct inode *inode = fdentry(file)->d_inode; 1370 struct btrfs_root *root = BTRFS_I(inode)->root; 1371 int ret = 0; 1372 u64 flags = 0; 1373 1374 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1375 return -EINVAL; 1376 1377 down_read(&root->fs_info->subvol_sem); 1378 if (btrfs_root_readonly(root)) 1379 flags |= BTRFS_SUBVOL_RDONLY; 1380 up_read(&root->fs_info->subvol_sem); 1381 1382 if (copy_to_user(arg, &flags, sizeof(flags))) 1383 ret = -EFAULT; 1384 1385 return ret; 1386 } 1387 1388 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1389 void __user *arg) 1390 { 1391 struct inode *inode = fdentry(file)->d_inode; 1392 struct btrfs_root *root = BTRFS_I(inode)->root; 1393 struct btrfs_trans_handle *trans; 1394 u64 root_flags; 1395 u64 flags; 1396 int ret = 0; 1397 1398 if (root->fs_info->sb->s_flags & MS_RDONLY) 1399 return -EROFS; 1400 1401 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1402 return -EINVAL; 1403 1404 if (copy_from_user(&flags, arg, sizeof(flags))) 1405 return -EFAULT; 1406 1407 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) 1408 return -EINVAL; 1409 1410 if (flags & ~BTRFS_SUBVOL_RDONLY) 1411 return -EOPNOTSUPP; 1412 1413 if (!inode_owner_or_capable(inode)) 1414 return -EACCES; 1415 1416 down_write(&root->fs_info->subvol_sem); 1417 1418 /* nothing to do */ 1419 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1420 goto out; 1421 1422 root_flags = btrfs_root_flags(&root->root_item); 1423 if (flags & BTRFS_SUBVOL_RDONLY) 1424 btrfs_set_root_flags(&root->root_item, 1425 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1426 else 1427 btrfs_set_root_flags(&root->root_item, 1428 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1429 1430 trans = btrfs_start_transaction(root, 1); 1431 if (IS_ERR(trans)) { 1432 ret = PTR_ERR(trans); 1433 goto out_reset; 1434 } 1435 1436 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1437 &root->root_key, &root->root_item); 1438 1439 btrfs_commit_transaction(trans, root); 1440 out_reset: 1441 if (ret) 1442 btrfs_set_root_flags(&root->root_item, root_flags); 1443 out: 1444 up_write(&root->fs_info->subvol_sem); 1445 return ret; 1446 } 1447 1448 /* 1449 * helper to check if the subvolume references other subvolumes 1450 */ 1451 static noinline int may_destroy_subvol(struct btrfs_root *root) 1452 { 1453 struct btrfs_path *path; 1454 struct btrfs_key key; 1455 int ret; 1456 1457 path = btrfs_alloc_path(); 1458 if (!path) 1459 return -ENOMEM; 1460 1461 key.objectid = root->root_key.objectid; 1462 key.type = BTRFS_ROOT_REF_KEY; 1463 key.offset = (u64)-1; 1464 1465 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1466 &key, path, 0, 0); 1467 if (ret < 0) 1468 goto out; 1469 BUG_ON(ret == 0); 1470 1471 ret = 0; 1472 if (path->slots[0] > 0) { 1473 path->slots[0]--; 1474 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1475 if (key.objectid == root->root_key.objectid && 1476 key.type == BTRFS_ROOT_REF_KEY) 1477 ret = -ENOTEMPTY; 1478 } 1479 out: 1480 btrfs_free_path(path); 1481 return ret; 1482 } 1483 1484 static noinline int key_in_sk(struct btrfs_key *key, 1485 struct btrfs_ioctl_search_key *sk) 1486 { 1487 struct btrfs_key test; 1488 int ret; 1489 1490 test.objectid = sk->min_objectid; 1491 test.type = sk->min_type; 1492 test.offset = sk->min_offset; 1493 1494 ret = btrfs_comp_cpu_keys(key, &test); 1495 if (ret < 0) 1496 return 0; 1497 1498 test.objectid = sk->max_objectid; 1499 test.type = sk->max_type; 1500 test.offset = sk->max_offset; 1501 1502 ret = btrfs_comp_cpu_keys(key, &test); 1503 if (ret > 0) 1504 return 0; 1505 return 1; 1506 } 1507 1508 static noinline int copy_to_sk(struct btrfs_root *root, 1509 struct btrfs_path *path, 1510 struct btrfs_key *key, 1511 struct btrfs_ioctl_search_key *sk, 1512 char *buf, 1513 unsigned long *sk_offset, 1514 int *num_found) 1515 { 1516 u64 found_transid; 1517 struct extent_buffer *leaf; 1518 struct btrfs_ioctl_search_header sh; 1519 unsigned long item_off; 1520 unsigned long item_len; 1521 int nritems; 1522 int i; 1523 int slot; 1524 int ret = 0; 1525 1526 leaf = path->nodes[0]; 1527 slot = path->slots[0]; 1528 nritems = btrfs_header_nritems(leaf); 1529 1530 if (btrfs_header_generation(leaf) > sk->max_transid) { 1531 i = nritems; 1532 goto advance_key; 1533 } 1534 found_transid = btrfs_header_generation(leaf); 1535 1536 for (i = slot; i < nritems; i++) { 1537 item_off = btrfs_item_ptr_offset(leaf, i); 1538 item_len = btrfs_item_size_nr(leaf, i); 1539 1540 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE) 1541 item_len = 0; 1542 1543 if (sizeof(sh) + item_len + *sk_offset > 1544 BTRFS_SEARCH_ARGS_BUFSIZE) { 1545 ret = 1; 1546 goto overflow; 1547 } 1548 1549 btrfs_item_key_to_cpu(leaf, key, i); 1550 if (!key_in_sk(key, sk)) 1551 continue; 1552 1553 sh.objectid = key->objectid; 1554 sh.offset = key->offset; 1555 sh.type = key->type; 1556 sh.len = item_len; 1557 sh.transid = found_transid; 1558 1559 /* copy search result header */ 1560 memcpy(buf + *sk_offset, &sh, sizeof(sh)); 1561 *sk_offset += sizeof(sh); 1562 1563 if (item_len) { 1564 char *p = buf + *sk_offset; 1565 /* copy the item */ 1566 read_extent_buffer(leaf, p, 1567 item_off, item_len); 1568 *sk_offset += item_len; 1569 } 1570 (*num_found)++; 1571 1572 if (*num_found >= sk->nr_items) 1573 break; 1574 } 1575 advance_key: 1576 ret = 0; 1577 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 1578 key->offset++; 1579 else if (key->type < (u8)-1 && key->type < sk->max_type) { 1580 key->offset = 0; 1581 key->type++; 1582 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 1583 key->offset = 0; 1584 key->type = 0; 1585 key->objectid++; 1586 } else 1587 ret = 1; 1588 overflow: 1589 return ret; 1590 } 1591 1592 static noinline int search_ioctl(struct inode *inode, 1593 struct btrfs_ioctl_search_args *args) 1594 { 1595 struct btrfs_root *root; 1596 struct btrfs_key key; 1597 struct btrfs_key max_key; 1598 struct btrfs_path *path; 1599 struct btrfs_ioctl_search_key *sk = &args->key; 1600 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 1601 int ret; 1602 int num_found = 0; 1603 unsigned long sk_offset = 0; 1604 1605 path = btrfs_alloc_path(); 1606 if (!path) 1607 return -ENOMEM; 1608 1609 if (sk->tree_id == 0) { 1610 /* search the root of the inode that was passed */ 1611 root = BTRFS_I(inode)->root; 1612 } else { 1613 key.objectid = sk->tree_id; 1614 key.type = BTRFS_ROOT_ITEM_KEY; 1615 key.offset = (u64)-1; 1616 root = btrfs_read_fs_root_no_name(info, &key); 1617 if (IS_ERR(root)) { 1618 printk(KERN_ERR "could not find root %llu\n", 1619 sk->tree_id); 1620 btrfs_free_path(path); 1621 return -ENOENT; 1622 } 1623 } 1624 1625 key.objectid = sk->min_objectid; 1626 key.type = sk->min_type; 1627 key.offset = sk->min_offset; 1628 1629 max_key.objectid = sk->max_objectid; 1630 max_key.type = sk->max_type; 1631 max_key.offset = sk->max_offset; 1632 1633 path->keep_locks = 1; 1634 1635 while(1) { 1636 ret = btrfs_search_forward(root, &key, &max_key, path, 0, 1637 sk->min_transid); 1638 if (ret != 0) { 1639 if (ret > 0) 1640 ret = 0; 1641 goto err; 1642 } 1643 ret = copy_to_sk(root, path, &key, sk, args->buf, 1644 &sk_offset, &num_found); 1645 btrfs_release_path(path); 1646 if (ret || num_found >= sk->nr_items) 1647 break; 1648 1649 } 1650 ret = 0; 1651 err: 1652 sk->nr_items = num_found; 1653 btrfs_free_path(path); 1654 return ret; 1655 } 1656 1657 static noinline int btrfs_ioctl_tree_search(struct file *file, 1658 void __user *argp) 1659 { 1660 struct btrfs_ioctl_search_args *args; 1661 struct inode *inode; 1662 int ret; 1663 1664 if (!capable(CAP_SYS_ADMIN)) 1665 return -EPERM; 1666 1667 args = memdup_user(argp, sizeof(*args)); 1668 if (IS_ERR(args)) 1669 return PTR_ERR(args); 1670 1671 inode = fdentry(file)->d_inode; 1672 ret = search_ioctl(inode, args); 1673 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1674 ret = -EFAULT; 1675 kfree(args); 1676 return ret; 1677 } 1678 1679 /* 1680 * Search INODE_REFs to identify path name of 'dirid' directory 1681 * in a 'tree_id' tree. and sets path name to 'name'. 1682 */ 1683 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1684 u64 tree_id, u64 dirid, char *name) 1685 { 1686 struct btrfs_root *root; 1687 struct btrfs_key key; 1688 char *ptr; 1689 int ret = -1; 1690 int slot; 1691 int len; 1692 int total_len = 0; 1693 struct btrfs_inode_ref *iref; 1694 struct extent_buffer *l; 1695 struct btrfs_path *path; 1696 1697 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1698 name[0]='\0'; 1699 return 0; 1700 } 1701 1702 path = btrfs_alloc_path(); 1703 if (!path) 1704 return -ENOMEM; 1705 1706 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 1707 1708 key.objectid = tree_id; 1709 key.type = BTRFS_ROOT_ITEM_KEY; 1710 key.offset = (u64)-1; 1711 root = btrfs_read_fs_root_no_name(info, &key); 1712 if (IS_ERR(root)) { 1713 printk(KERN_ERR "could not find root %llu\n", tree_id); 1714 ret = -ENOENT; 1715 goto out; 1716 } 1717 1718 key.objectid = dirid; 1719 key.type = BTRFS_INODE_REF_KEY; 1720 key.offset = (u64)-1; 1721 1722 while(1) { 1723 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1724 if (ret < 0) 1725 goto out; 1726 1727 l = path->nodes[0]; 1728 slot = path->slots[0]; 1729 if (ret > 0 && slot > 0) 1730 slot--; 1731 btrfs_item_key_to_cpu(l, &key, slot); 1732 1733 if (ret > 0 && (key.objectid != dirid || 1734 key.type != BTRFS_INODE_REF_KEY)) { 1735 ret = -ENOENT; 1736 goto out; 1737 } 1738 1739 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1740 len = btrfs_inode_ref_name_len(l, iref); 1741 ptr -= len + 1; 1742 total_len += len + 1; 1743 if (ptr < name) 1744 goto out; 1745 1746 *(ptr + len) = '/'; 1747 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len); 1748 1749 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1750 break; 1751 1752 btrfs_release_path(path); 1753 key.objectid = key.offset; 1754 key.offset = (u64)-1; 1755 dirid = key.objectid; 1756 1757 } 1758 if (ptr < name) 1759 goto out; 1760 memcpy(name, ptr, total_len); 1761 name[total_len]='\0'; 1762 ret = 0; 1763 out: 1764 btrfs_free_path(path); 1765 return ret; 1766 } 1767 1768 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 1769 void __user *argp) 1770 { 1771 struct btrfs_ioctl_ino_lookup_args *args; 1772 struct inode *inode; 1773 int ret; 1774 1775 if (!capable(CAP_SYS_ADMIN)) 1776 return -EPERM; 1777 1778 args = memdup_user(argp, sizeof(*args)); 1779 if (IS_ERR(args)) 1780 return PTR_ERR(args); 1781 1782 inode = fdentry(file)->d_inode; 1783 1784 if (args->treeid == 0) 1785 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 1786 1787 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 1788 args->treeid, args->objectid, 1789 args->name); 1790 1791 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1792 ret = -EFAULT; 1793 1794 kfree(args); 1795 return ret; 1796 } 1797 1798 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 1799 void __user *arg) 1800 { 1801 struct dentry *parent = fdentry(file); 1802 struct dentry *dentry; 1803 struct inode *dir = parent->d_inode; 1804 struct inode *inode; 1805 struct btrfs_root *root = BTRFS_I(dir)->root; 1806 struct btrfs_root *dest = NULL; 1807 struct btrfs_ioctl_vol_args *vol_args; 1808 struct btrfs_trans_handle *trans; 1809 int namelen; 1810 int ret; 1811 int err = 0; 1812 1813 vol_args = memdup_user(arg, sizeof(*vol_args)); 1814 if (IS_ERR(vol_args)) 1815 return PTR_ERR(vol_args); 1816 1817 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1818 namelen = strlen(vol_args->name); 1819 if (strchr(vol_args->name, '/') || 1820 strncmp(vol_args->name, "..", namelen) == 0) { 1821 err = -EINVAL; 1822 goto out; 1823 } 1824 1825 err = mnt_want_write(file->f_path.mnt); 1826 if (err) 1827 goto out; 1828 1829 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 1830 dentry = lookup_one_len(vol_args->name, parent, namelen); 1831 if (IS_ERR(dentry)) { 1832 err = PTR_ERR(dentry); 1833 goto out_unlock_dir; 1834 } 1835 1836 if (!dentry->d_inode) { 1837 err = -ENOENT; 1838 goto out_dput; 1839 } 1840 1841 inode = dentry->d_inode; 1842 dest = BTRFS_I(inode)->root; 1843 if (!capable(CAP_SYS_ADMIN)){ 1844 /* 1845 * Regular user. Only allow this with a special mount 1846 * option, when the user has write+exec access to the 1847 * subvol root, and when rmdir(2) would have been 1848 * allowed. 1849 * 1850 * Note that this is _not_ check that the subvol is 1851 * empty or doesn't contain data that we wouldn't 1852 * otherwise be able to delete. 1853 * 1854 * Users who want to delete empty subvols should try 1855 * rmdir(2). 1856 */ 1857 err = -EPERM; 1858 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 1859 goto out_dput; 1860 1861 /* 1862 * Do not allow deletion if the parent dir is the same 1863 * as the dir to be deleted. That means the ioctl 1864 * must be called on the dentry referencing the root 1865 * of the subvol, not a random directory contained 1866 * within it. 1867 */ 1868 err = -EINVAL; 1869 if (root == dest) 1870 goto out_dput; 1871 1872 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 1873 if (err) 1874 goto out_dput; 1875 1876 /* check if subvolume may be deleted by a non-root user */ 1877 err = btrfs_may_delete(dir, dentry, 1); 1878 if (err) 1879 goto out_dput; 1880 } 1881 1882 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1883 err = -EINVAL; 1884 goto out_dput; 1885 } 1886 1887 mutex_lock(&inode->i_mutex); 1888 err = d_invalidate(dentry); 1889 if (err) 1890 goto out_unlock; 1891 1892 down_write(&root->fs_info->subvol_sem); 1893 1894 err = may_destroy_subvol(dest); 1895 if (err) 1896 goto out_up_write; 1897 1898 trans = btrfs_start_transaction(root, 0); 1899 if (IS_ERR(trans)) { 1900 err = PTR_ERR(trans); 1901 goto out_up_write; 1902 } 1903 trans->block_rsv = &root->fs_info->global_block_rsv; 1904 1905 ret = btrfs_unlink_subvol(trans, root, dir, 1906 dest->root_key.objectid, 1907 dentry->d_name.name, 1908 dentry->d_name.len); 1909 BUG_ON(ret); 1910 1911 btrfs_record_root_in_trans(trans, dest); 1912 1913 memset(&dest->root_item.drop_progress, 0, 1914 sizeof(dest->root_item.drop_progress)); 1915 dest->root_item.drop_level = 0; 1916 btrfs_set_root_refs(&dest->root_item, 0); 1917 1918 if (!xchg(&dest->orphan_item_inserted, 1)) { 1919 ret = btrfs_insert_orphan_item(trans, 1920 root->fs_info->tree_root, 1921 dest->root_key.objectid); 1922 BUG_ON(ret); 1923 } 1924 1925 ret = btrfs_end_transaction(trans, root); 1926 BUG_ON(ret); 1927 inode->i_flags |= S_DEAD; 1928 out_up_write: 1929 up_write(&root->fs_info->subvol_sem); 1930 out_unlock: 1931 mutex_unlock(&inode->i_mutex); 1932 if (!err) { 1933 shrink_dcache_sb(root->fs_info->sb); 1934 btrfs_invalidate_inodes(dest); 1935 d_delete(dentry); 1936 } 1937 out_dput: 1938 dput(dentry); 1939 out_unlock_dir: 1940 mutex_unlock(&dir->i_mutex); 1941 mnt_drop_write(file->f_path.mnt); 1942 out: 1943 kfree(vol_args); 1944 return err; 1945 } 1946 1947 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 1948 { 1949 struct inode *inode = fdentry(file)->d_inode; 1950 struct btrfs_root *root = BTRFS_I(inode)->root; 1951 struct btrfs_ioctl_defrag_range_args *range; 1952 int ret; 1953 1954 if (btrfs_root_readonly(root)) 1955 return -EROFS; 1956 1957 ret = mnt_want_write(file->f_path.mnt); 1958 if (ret) 1959 return ret; 1960 1961 switch (inode->i_mode & S_IFMT) { 1962 case S_IFDIR: 1963 if (!capable(CAP_SYS_ADMIN)) { 1964 ret = -EPERM; 1965 goto out; 1966 } 1967 ret = btrfs_defrag_root(root, 0); 1968 if (ret) 1969 goto out; 1970 ret = btrfs_defrag_root(root->fs_info->extent_root, 0); 1971 break; 1972 case S_IFREG: 1973 if (!(file->f_mode & FMODE_WRITE)) { 1974 ret = -EINVAL; 1975 goto out; 1976 } 1977 1978 range = kzalloc(sizeof(*range), GFP_KERNEL); 1979 if (!range) { 1980 ret = -ENOMEM; 1981 goto out; 1982 } 1983 1984 if (argp) { 1985 if (copy_from_user(range, argp, 1986 sizeof(*range))) { 1987 ret = -EFAULT; 1988 kfree(range); 1989 goto out; 1990 } 1991 /* compression requires us to start the IO */ 1992 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1993 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 1994 range->extent_thresh = (u32)-1; 1995 } 1996 } else { 1997 /* the rest are all set to zero by kzalloc */ 1998 range->len = (u64)-1; 1999 } 2000 ret = btrfs_defrag_file(fdentry(file)->d_inode, file, 2001 range, 0, 0); 2002 if (ret > 0) 2003 ret = 0; 2004 kfree(range); 2005 break; 2006 default: 2007 ret = -EINVAL; 2008 } 2009 out: 2010 mnt_drop_write(file->f_path.mnt); 2011 return ret; 2012 } 2013 2014 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2015 { 2016 struct btrfs_ioctl_vol_args *vol_args; 2017 int ret; 2018 2019 if (!capable(CAP_SYS_ADMIN)) 2020 return -EPERM; 2021 2022 vol_args = memdup_user(arg, sizeof(*vol_args)); 2023 if (IS_ERR(vol_args)) 2024 return PTR_ERR(vol_args); 2025 2026 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2027 ret = btrfs_init_new_device(root, vol_args->name); 2028 2029 kfree(vol_args); 2030 return ret; 2031 } 2032 2033 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg) 2034 { 2035 struct btrfs_ioctl_vol_args *vol_args; 2036 int ret; 2037 2038 if (!capable(CAP_SYS_ADMIN)) 2039 return -EPERM; 2040 2041 if (root->fs_info->sb->s_flags & MS_RDONLY) 2042 return -EROFS; 2043 2044 vol_args = memdup_user(arg, sizeof(*vol_args)); 2045 if (IS_ERR(vol_args)) 2046 return PTR_ERR(vol_args); 2047 2048 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2049 ret = btrfs_rm_device(root, vol_args->name); 2050 2051 kfree(vol_args); 2052 return ret; 2053 } 2054 2055 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2056 { 2057 struct btrfs_ioctl_fs_info_args fi_args; 2058 struct btrfs_device *device; 2059 struct btrfs_device *next; 2060 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2061 2062 if (!capable(CAP_SYS_ADMIN)) 2063 return -EPERM; 2064 2065 fi_args.num_devices = fs_devices->num_devices; 2066 fi_args.max_id = 0; 2067 memcpy(&fi_args.fsid, root->fs_info->fsid, sizeof(fi_args.fsid)); 2068 2069 mutex_lock(&fs_devices->device_list_mutex); 2070 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2071 if (device->devid > fi_args.max_id) 2072 fi_args.max_id = device->devid; 2073 } 2074 mutex_unlock(&fs_devices->device_list_mutex); 2075 2076 if (copy_to_user(arg, &fi_args, sizeof(fi_args))) 2077 return -EFAULT; 2078 2079 return 0; 2080 } 2081 2082 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2083 { 2084 struct btrfs_ioctl_dev_info_args *di_args; 2085 struct btrfs_device *dev; 2086 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2087 int ret = 0; 2088 char *s_uuid = NULL; 2089 char empty_uuid[BTRFS_UUID_SIZE] = {0}; 2090 2091 if (!capable(CAP_SYS_ADMIN)) 2092 return -EPERM; 2093 2094 di_args = memdup_user(arg, sizeof(*di_args)); 2095 if (IS_ERR(di_args)) 2096 return PTR_ERR(di_args); 2097 2098 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0) 2099 s_uuid = di_args->uuid; 2100 2101 mutex_lock(&fs_devices->device_list_mutex); 2102 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL); 2103 mutex_unlock(&fs_devices->device_list_mutex); 2104 2105 if (!dev) { 2106 ret = -ENODEV; 2107 goto out; 2108 } 2109 2110 di_args->devid = dev->devid; 2111 di_args->bytes_used = dev->bytes_used; 2112 di_args->total_bytes = dev->total_bytes; 2113 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2114 strncpy(di_args->path, dev->name, sizeof(di_args->path)); 2115 2116 out: 2117 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2118 ret = -EFAULT; 2119 2120 kfree(di_args); 2121 return ret; 2122 } 2123 2124 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 2125 u64 off, u64 olen, u64 destoff) 2126 { 2127 struct inode *inode = fdentry(file)->d_inode; 2128 struct btrfs_root *root = BTRFS_I(inode)->root; 2129 struct file *src_file; 2130 struct inode *src; 2131 struct btrfs_trans_handle *trans; 2132 struct btrfs_path *path; 2133 struct extent_buffer *leaf; 2134 char *buf; 2135 struct btrfs_key key; 2136 u32 nritems; 2137 int slot; 2138 int ret; 2139 u64 len = olen; 2140 u64 bs = root->fs_info->sb->s_blocksize; 2141 u64 hint_byte; 2142 2143 /* 2144 * TODO: 2145 * - split compressed inline extents. annoying: we need to 2146 * decompress into destination's address_space (the file offset 2147 * may change, so source mapping won't do), then recompress (or 2148 * otherwise reinsert) a subrange. 2149 * - allow ranges within the same file to be cloned (provided 2150 * they don't overlap)? 2151 */ 2152 2153 /* the destination must be opened for writing */ 2154 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 2155 return -EINVAL; 2156 2157 if (btrfs_root_readonly(root)) 2158 return -EROFS; 2159 2160 ret = mnt_want_write(file->f_path.mnt); 2161 if (ret) 2162 return ret; 2163 2164 src_file = fget(srcfd); 2165 if (!src_file) { 2166 ret = -EBADF; 2167 goto out_drop_write; 2168 } 2169 2170 src = src_file->f_dentry->d_inode; 2171 2172 ret = -EINVAL; 2173 if (src == inode) 2174 goto out_fput; 2175 2176 /* the src must be open for reading */ 2177 if (!(src_file->f_mode & FMODE_READ)) 2178 goto out_fput; 2179 2180 ret = -EISDIR; 2181 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 2182 goto out_fput; 2183 2184 ret = -EXDEV; 2185 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root) 2186 goto out_fput; 2187 2188 ret = -ENOMEM; 2189 buf = vmalloc(btrfs_level_size(root, 0)); 2190 if (!buf) 2191 goto out_fput; 2192 2193 path = btrfs_alloc_path(); 2194 if (!path) { 2195 vfree(buf); 2196 goto out_fput; 2197 } 2198 path->reada = 2; 2199 2200 if (inode < src) { 2201 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 2202 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 2203 } else { 2204 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 2205 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 2206 } 2207 2208 /* determine range to clone */ 2209 ret = -EINVAL; 2210 if (off + len > src->i_size || off + len < off) 2211 goto out_unlock; 2212 if (len == 0) 2213 olen = len = src->i_size - off; 2214 /* if we extend to eof, continue to block boundary */ 2215 if (off + len == src->i_size) 2216 len = ALIGN(src->i_size, bs) - off; 2217 2218 /* verify the end result is block aligned */ 2219 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 2220 !IS_ALIGNED(destoff, bs)) 2221 goto out_unlock; 2222 2223 /* do any pending delalloc/csum calc on src, one way or 2224 another, and lock file content */ 2225 while (1) { 2226 struct btrfs_ordered_extent *ordered; 2227 lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 2228 ordered = btrfs_lookup_first_ordered_extent(src, off+len); 2229 if (!ordered && 2230 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len, 2231 EXTENT_DELALLOC, 0, NULL)) 2232 break; 2233 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 2234 if (ordered) 2235 btrfs_put_ordered_extent(ordered); 2236 btrfs_wait_ordered_range(src, off, len); 2237 } 2238 2239 /* clone data */ 2240 key.objectid = btrfs_ino(src); 2241 key.type = BTRFS_EXTENT_DATA_KEY; 2242 key.offset = 0; 2243 2244 while (1) { 2245 /* 2246 * note the key will change type as we walk through the 2247 * tree. 2248 */ 2249 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2250 if (ret < 0) 2251 goto out; 2252 2253 nritems = btrfs_header_nritems(path->nodes[0]); 2254 if (path->slots[0] >= nritems) { 2255 ret = btrfs_next_leaf(root, path); 2256 if (ret < 0) 2257 goto out; 2258 if (ret > 0) 2259 break; 2260 nritems = btrfs_header_nritems(path->nodes[0]); 2261 } 2262 leaf = path->nodes[0]; 2263 slot = path->slots[0]; 2264 2265 btrfs_item_key_to_cpu(leaf, &key, slot); 2266 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || 2267 key.objectid != btrfs_ino(src)) 2268 break; 2269 2270 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { 2271 struct btrfs_file_extent_item *extent; 2272 int type; 2273 u32 size; 2274 struct btrfs_key new_key; 2275 u64 disko = 0, diskl = 0; 2276 u64 datao = 0, datal = 0; 2277 u8 comp; 2278 u64 endoff; 2279 2280 size = btrfs_item_size_nr(leaf, slot); 2281 read_extent_buffer(leaf, buf, 2282 btrfs_item_ptr_offset(leaf, slot), 2283 size); 2284 2285 extent = btrfs_item_ptr(leaf, slot, 2286 struct btrfs_file_extent_item); 2287 comp = btrfs_file_extent_compression(leaf, extent); 2288 type = btrfs_file_extent_type(leaf, extent); 2289 if (type == BTRFS_FILE_EXTENT_REG || 2290 type == BTRFS_FILE_EXTENT_PREALLOC) { 2291 disko = btrfs_file_extent_disk_bytenr(leaf, 2292 extent); 2293 diskl = btrfs_file_extent_disk_num_bytes(leaf, 2294 extent); 2295 datao = btrfs_file_extent_offset(leaf, extent); 2296 datal = btrfs_file_extent_num_bytes(leaf, 2297 extent); 2298 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2299 /* take upper bound, may be compressed */ 2300 datal = btrfs_file_extent_ram_bytes(leaf, 2301 extent); 2302 } 2303 btrfs_release_path(path); 2304 2305 if (key.offset + datal <= off || 2306 key.offset >= off+len) 2307 goto next; 2308 2309 memcpy(&new_key, &key, sizeof(new_key)); 2310 new_key.objectid = btrfs_ino(inode); 2311 if (off <= key.offset) 2312 new_key.offset = key.offset + destoff - off; 2313 else 2314 new_key.offset = destoff; 2315 2316 trans = btrfs_start_transaction(root, 1); 2317 if (IS_ERR(trans)) { 2318 ret = PTR_ERR(trans); 2319 goto out; 2320 } 2321 2322 if (type == BTRFS_FILE_EXTENT_REG || 2323 type == BTRFS_FILE_EXTENT_PREALLOC) { 2324 if (off > key.offset) { 2325 datao += off - key.offset; 2326 datal -= off - key.offset; 2327 } 2328 2329 if (key.offset + datal > off + len) 2330 datal = off + len - key.offset; 2331 2332 ret = btrfs_drop_extents(trans, inode, 2333 new_key.offset, 2334 new_key.offset + datal, 2335 &hint_byte, 1); 2336 BUG_ON(ret); 2337 2338 ret = btrfs_insert_empty_item(trans, root, path, 2339 &new_key, size); 2340 BUG_ON(ret); 2341 2342 leaf = path->nodes[0]; 2343 slot = path->slots[0]; 2344 write_extent_buffer(leaf, buf, 2345 btrfs_item_ptr_offset(leaf, slot), 2346 size); 2347 2348 extent = btrfs_item_ptr(leaf, slot, 2349 struct btrfs_file_extent_item); 2350 2351 /* disko == 0 means it's a hole */ 2352 if (!disko) 2353 datao = 0; 2354 2355 btrfs_set_file_extent_offset(leaf, extent, 2356 datao); 2357 btrfs_set_file_extent_num_bytes(leaf, extent, 2358 datal); 2359 if (disko) { 2360 inode_add_bytes(inode, datal); 2361 ret = btrfs_inc_extent_ref(trans, root, 2362 disko, diskl, 0, 2363 root->root_key.objectid, 2364 btrfs_ino(inode), 2365 new_key.offset - datao); 2366 BUG_ON(ret); 2367 } 2368 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2369 u64 skip = 0; 2370 u64 trim = 0; 2371 if (off > key.offset) { 2372 skip = off - key.offset; 2373 new_key.offset += skip; 2374 } 2375 2376 if (key.offset + datal > off+len) 2377 trim = key.offset + datal - (off+len); 2378 2379 if (comp && (skip || trim)) { 2380 ret = -EINVAL; 2381 btrfs_end_transaction(trans, root); 2382 goto out; 2383 } 2384 size -= skip + trim; 2385 datal -= skip + trim; 2386 2387 ret = btrfs_drop_extents(trans, inode, 2388 new_key.offset, 2389 new_key.offset + datal, 2390 &hint_byte, 1); 2391 BUG_ON(ret); 2392 2393 ret = btrfs_insert_empty_item(trans, root, path, 2394 &new_key, size); 2395 BUG_ON(ret); 2396 2397 if (skip) { 2398 u32 start = 2399 btrfs_file_extent_calc_inline_size(0); 2400 memmove(buf+start, buf+start+skip, 2401 datal); 2402 } 2403 2404 leaf = path->nodes[0]; 2405 slot = path->slots[0]; 2406 write_extent_buffer(leaf, buf, 2407 btrfs_item_ptr_offset(leaf, slot), 2408 size); 2409 inode_add_bytes(inode, datal); 2410 } 2411 2412 btrfs_mark_buffer_dirty(leaf); 2413 btrfs_release_path(path); 2414 2415 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2416 2417 /* 2418 * we round up to the block size at eof when 2419 * determining which extents to clone above, 2420 * but shouldn't round up the file size 2421 */ 2422 endoff = new_key.offset + datal; 2423 if (endoff > destoff+olen) 2424 endoff = destoff+olen; 2425 if (endoff > inode->i_size) 2426 btrfs_i_size_write(inode, endoff); 2427 2428 BTRFS_I(inode)->flags = BTRFS_I(src)->flags; 2429 ret = btrfs_update_inode(trans, root, inode); 2430 BUG_ON(ret); 2431 btrfs_end_transaction(trans, root); 2432 } 2433 next: 2434 btrfs_release_path(path); 2435 key.offset++; 2436 } 2437 ret = 0; 2438 out: 2439 btrfs_release_path(path); 2440 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS); 2441 out_unlock: 2442 mutex_unlock(&src->i_mutex); 2443 mutex_unlock(&inode->i_mutex); 2444 vfree(buf); 2445 btrfs_free_path(path); 2446 out_fput: 2447 fput(src_file); 2448 out_drop_write: 2449 mnt_drop_write(file->f_path.mnt); 2450 return ret; 2451 } 2452 2453 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 2454 { 2455 struct btrfs_ioctl_clone_range_args args; 2456 2457 if (copy_from_user(&args, argp, sizeof(args))) 2458 return -EFAULT; 2459 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 2460 args.src_length, args.dest_offset); 2461 } 2462 2463 /* 2464 * there are many ways the trans_start and trans_end ioctls can lead 2465 * to deadlocks. They should only be used by applications that 2466 * basically own the machine, and have a very in depth understanding 2467 * of all the possible deadlocks and enospc problems. 2468 */ 2469 static long btrfs_ioctl_trans_start(struct file *file) 2470 { 2471 struct inode *inode = fdentry(file)->d_inode; 2472 struct btrfs_root *root = BTRFS_I(inode)->root; 2473 struct btrfs_trans_handle *trans; 2474 int ret; 2475 2476 ret = -EPERM; 2477 if (!capable(CAP_SYS_ADMIN)) 2478 goto out; 2479 2480 ret = -EINPROGRESS; 2481 if (file->private_data) 2482 goto out; 2483 2484 ret = -EROFS; 2485 if (btrfs_root_readonly(root)) 2486 goto out; 2487 2488 ret = mnt_want_write(file->f_path.mnt); 2489 if (ret) 2490 goto out; 2491 2492 atomic_inc(&root->fs_info->open_ioctl_trans); 2493 2494 ret = -ENOMEM; 2495 trans = btrfs_start_ioctl_transaction(root); 2496 if (IS_ERR(trans)) 2497 goto out_drop; 2498 2499 file->private_data = trans; 2500 return 0; 2501 2502 out_drop: 2503 atomic_dec(&root->fs_info->open_ioctl_trans); 2504 mnt_drop_write(file->f_path.mnt); 2505 out: 2506 return ret; 2507 } 2508 2509 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2510 { 2511 struct inode *inode = fdentry(file)->d_inode; 2512 struct btrfs_root *root = BTRFS_I(inode)->root; 2513 struct btrfs_root *new_root; 2514 struct btrfs_dir_item *di; 2515 struct btrfs_trans_handle *trans; 2516 struct btrfs_path *path; 2517 struct btrfs_key location; 2518 struct btrfs_disk_key disk_key; 2519 struct btrfs_super_block *disk_super; 2520 u64 features; 2521 u64 objectid = 0; 2522 u64 dir_id; 2523 2524 if (!capable(CAP_SYS_ADMIN)) 2525 return -EPERM; 2526 2527 if (copy_from_user(&objectid, argp, sizeof(objectid))) 2528 return -EFAULT; 2529 2530 if (!objectid) 2531 objectid = root->root_key.objectid; 2532 2533 location.objectid = objectid; 2534 location.type = BTRFS_ROOT_ITEM_KEY; 2535 location.offset = (u64)-1; 2536 2537 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 2538 if (IS_ERR(new_root)) 2539 return PTR_ERR(new_root); 2540 2541 if (btrfs_root_refs(&new_root->root_item) == 0) 2542 return -ENOENT; 2543 2544 path = btrfs_alloc_path(); 2545 if (!path) 2546 return -ENOMEM; 2547 path->leave_spinning = 1; 2548 2549 trans = btrfs_start_transaction(root, 1); 2550 if (IS_ERR(trans)) { 2551 btrfs_free_path(path); 2552 return PTR_ERR(trans); 2553 } 2554 2555 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy); 2556 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 2557 dir_id, "default", 7, 1); 2558 if (IS_ERR_OR_NULL(di)) { 2559 btrfs_free_path(path); 2560 btrfs_end_transaction(trans, root); 2561 printk(KERN_ERR "Umm, you don't have the default dir item, " 2562 "this isn't going to work\n"); 2563 return -ENOENT; 2564 } 2565 2566 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2567 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2568 btrfs_mark_buffer_dirty(path->nodes[0]); 2569 btrfs_free_path(path); 2570 2571 disk_super = &root->fs_info->super_copy; 2572 features = btrfs_super_incompat_flags(disk_super); 2573 if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) { 2574 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL; 2575 btrfs_set_super_incompat_flags(disk_super, features); 2576 } 2577 btrfs_end_transaction(trans, root); 2578 2579 return 0; 2580 } 2581 2582 static void get_block_group_info(struct list_head *groups_list, 2583 struct btrfs_ioctl_space_info *space) 2584 { 2585 struct btrfs_block_group_cache *block_group; 2586 2587 space->total_bytes = 0; 2588 space->used_bytes = 0; 2589 space->flags = 0; 2590 list_for_each_entry(block_group, groups_list, list) { 2591 space->flags = block_group->flags; 2592 space->total_bytes += block_group->key.offset; 2593 space->used_bytes += 2594 btrfs_block_group_used(&block_group->item); 2595 } 2596 } 2597 2598 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 2599 { 2600 struct btrfs_ioctl_space_args space_args; 2601 struct btrfs_ioctl_space_info space; 2602 struct btrfs_ioctl_space_info *dest; 2603 struct btrfs_ioctl_space_info *dest_orig; 2604 struct btrfs_ioctl_space_info __user *user_dest; 2605 struct btrfs_space_info *info; 2606 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 2607 BTRFS_BLOCK_GROUP_SYSTEM, 2608 BTRFS_BLOCK_GROUP_METADATA, 2609 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 2610 int num_types = 4; 2611 int alloc_size; 2612 int ret = 0; 2613 u64 slot_count = 0; 2614 int i, c; 2615 2616 if (copy_from_user(&space_args, 2617 (struct btrfs_ioctl_space_args __user *)arg, 2618 sizeof(space_args))) 2619 return -EFAULT; 2620 2621 for (i = 0; i < num_types; i++) { 2622 struct btrfs_space_info *tmp; 2623 2624 info = NULL; 2625 rcu_read_lock(); 2626 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2627 list) { 2628 if (tmp->flags == types[i]) { 2629 info = tmp; 2630 break; 2631 } 2632 } 2633 rcu_read_unlock(); 2634 2635 if (!info) 2636 continue; 2637 2638 down_read(&info->groups_sem); 2639 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2640 if (!list_empty(&info->block_groups[c])) 2641 slot_count++; 2642 } 2643 up_read(&info->groups_sem); 2644 } 2645 2646 /* space_slots == 0 means they are asking for a count */ 2647 if (space_args.space_slots == 0) { 2648 space_args.total_spaces = slot_count; 2649 goto out; 2650 } 2651 2652 slot_count = min_t(u64, space_args.space_slots, slot_count); 2653 2654 alloc_size = sizeof(*dest) * slot_count; 2655 2656 /* we generally have at most 6 or so space infos, one for each raid 2657 * level. So, a whole page should be more than enough for everyone 2658 */ 2659 if (alloc_size > PAGE_CACHE_SIZE) 2660 return -ENOMEM; 2661 2662 space_args.total_spaces = 0; 2663 dest = kmalloc(alloc_size, GFP_NOFS); 2664 if (!dest) 2665 return -ENOMEM; 2666 dest_orig = dest; 2667 2668 /* now we have a buffer to copy into */ 2669 for (i = 0; i < num_types; i++) { 2670 struct btrfs_space_info *tmp; 2671 2672 if (!slot_count) 2673 break; 2674 2675 info = NULL; 2676 rcu_read_lock(); 2677 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2678 list) { 2679 if (tmp->flags == types[i]) { 2680 info = tmp; 2681 break; 2682 } 2683 } 2684 rcu_read_unlock(); 2685 2686 if (!info) 2687 continue; 2688 down_read(&info->groups_sem); 2689 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2690 if (!list_empty(&info->block_groups[c])) { 2691 get_block_group_info(&info->block_groups[c], 2692 &space); 2693 memcpy(dest, &space, sizeof(space)); 2694 dest++; 2695 space_args.total_spaces++; 2696 slot_count--; 2697 } 2698 if (!slot_count) 2699 break; 2700 } 2701 up_read(&info->groups_sem); 2702 } 2703 2704 user_dest = (struct btrfs_ioctl_space_info *) 2705 (arg + sizeof(struct btrfs_ioctl_space_args)); 2706 2707 if (copy_to_user(user_dest, dest_orig, alloc_size)) 2708 ret = -EFAULT; 2709 2710 kfree(dest_orig); 2711 out: 2712 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 2713 ret = -EFAULT; 2714 2715 return ret; 2716 } 2717 2718 /* 2719 * there are many ways the trans_start and trans_end ioctls can lead 2720 * to deadlocks. They should only be used by applications that 2721 * basically own the machine, and have a very in depth understanding 2722 * of all the possible deadlocks and enospc problems. 2723 */ 2724 long btrfs_ioctl_trans_end(struct file *file) 2725 { 2726 struct inode *inode = fdentry(file)->d_inode; 2727 struct btrfs_root *root = BTRFS_I(inode)->root; 2728 struct btrfs_trans_handle *trans; 2729 2730 trans = file->private_data; 2731 if (!trans) 2732 return -EINVAL; 2733 file->private_data = NULL; 2734 2735 btrfs_end_transaction(trans, root); 2736 2737 atomic_dec(&root->fs_info->open_ioctl_trans); 2738 2739 mnt_drop_write(file->f_path.mnt); 2740 return 0; 2741 } 2742 2743 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp) 2744 { 2745 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 2746 struct btrfs_trans_handle *trans; 2747 u64 transid; 2748 int ret; 2749 2750 trans = btrfs_start_transaction(root, 0); 2751 if (IS_ERR(trans)) 2752 return PTR_ERR(trans); 2753 transid = trans->transid; 2754 ret = btrfs_commit_transaction_async(trans, root, 0); 2755 if (ret) { 2756 btrfs_end_transaction(trans, root); 2757 return ret; 2758 } 2759 2760 if (argp) 2761 if (copy_to_user(argp, &transid, sizeof(transid))) 2762 return -EFAULT; 2763 return 0; 2764 } 2765 2766 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp) 2767 { 2768 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root; 2769 u64 transid; 2770 2771 if (argp) { 2772 if (copy_from_user(&transid, argp, sizeof(transid))) 2773 return -EFAULT; 2774 } else { 2775 transid = 0; /* current trans */ 2776 } 2777 return btrfs_wait_for_commit(root, transid); 2778 } 2779 2780 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg) 2781 { 2782 int ret; 2783 struct btrfs_ioctl_scrub_args *sa; 2784 2785 if (!capable(CAP_SYS_ADMIN)) 2786 return -EPERM; 2787 2788 sa = memdup_user(arg, sizeof(*sa)); 2789 if (IS_ERR(sa)) 2790 return PTR_ERR(sa); 2791 2792 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end, 2793 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY); 2794 2795 if (copy_to_user(arg, sa, sizeof(*sa))) 2796 ret = -EFAULT; 2797 2798 kfree(sa); 2799 return ret; 2800 } 2801 2802 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 2803 { 2804 if (!capable(CAP_SYS_ADMIN)) 2805 return -EPERM; 2806 2807 return btrfs_scrub_cancel(root); 2808 } 2809 2810 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 2811 void __user *arg) 2812 { 2813 struct btrfs_ioctl_scrub_args *sa; 2814 int ret; 2815 2816 if (!capable(CAP_SYS_ADMIN)) 2817 return -EPERM; 2818 2819 sa = memdup_user(arg, sizeof(*sa)); 2820 if (IS_ERR(sa)) 2821 return PTR_ERR(sa); 2822 2823 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 2824 2825 if (copy_to_user(arg, sa, sizeof(*sa))) 2826 ret = -EFAULT; 2827 2828 kfree(sa); 2829 return ret; 2830 } 2831 2832 long btrfs_ioctl(struct file *file, unsigned int 2833 cmd, unsigned long arg) 2834 { 2835 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 2836 void __user *argp = (void __user *)arg; 2837 2838 switch (cmd) { 2839 case FS_IOC_GETFLAGS: 2840 return btrfs_ioctl_getflags(file, argp); 2841 case FS_IOC_SETFLAGS: 2842 return btrfs_ioctl_setflags(file, argp); 2843 case FS_IOC_GETVERSION: 2844 return btrfs_ioctl_getversion(file, argp); 2845 case FITRIM: 2846 return btrfs_ioctl_fitrim(file, argp); 2847 case BTRFS_IOC_SNAP_CREATE: 2848 return btrfs_ioctl_snap_create(file, argp, 0); 2849 case BTRFS_IOC_SNAP_CREATE_V2: 2850 return btrfs_ioctl_snap_create_v2(file, argp, 0); 2851 case BTRFS_IOC_SUBVOL_CREATE: 2852 return btrfs_ioctl_snap_create(file, argp, 1); 2853 case BTRFS_IOC_SNAP_DESTROY: 2854 return btrfs_ioctl_snap_destroy(file, argp); 2855 case BTRFS_IOC_SUBVOL_GETFLAGS: 2856 return btrfs_ioctl_subvol_getflags(file, argp); 2857 case BTRFS_IOC_SUBVOL_SETFLAGS: 2858 return btrfs_ioctl_subvol_setflags(file, argp); 2859 case BTRFS_IOC_DEFAULT_SUBVOL: 2860 return btrfs_ioctl_default_subvol(file, argp); 2861 case BTRFS_IOC_DEFRAG: 2862 return btrfs_ioctl_defrag(file, NULL); 2863 case BTRFS_IOC_DEFRAG_RANGE: 2864 return btrfs_ioctl_defrag(file, argp); 2865 case BTRFS_IOC_RESIZE: 2866 return btrfs_ioctl_resize(root, argp); 2867 case BTRFS_IOC_ADD_DEV: 2868 return btrfs_ioctl_add_dev(root, argp); 2869 case BTRFS_IOC_RM_DEV: 2870 return btrfs_ioctl_rm_dev(root, argp); 2871 case BTRFS_IOC_FS_INFO: 2872 return btrfs_ioctl_fs_info(root, argp); 2873 case BTRFS_IOC_DEV_INFO: 2874 return btrfs_ioctl_dev_info(root, argp); 2875 case BTRFS_IOC_BALANCE: 2876 return btrfs_balance(root->fs_info->dev_root); 2877 case BTRFS_IOC_CLONE: 2878 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 2879 case BTRFS_IOC_CLONE_RANGE: 2880 return btrfs_ioctl_clone_range(file, argp); 2881 case BTRFS_IOC_TRANS_START: 2882 return btrfs_ioctl_trans_start(file); 2883 case BTRFS_IOC_TRANS_END: 2884 return btrfs_ioctl_trans_end(file); 2885 case BTRFS_IOC_TREE_SEARCH: 2886 return btrfs_ioctl_tree_search(file, argp); 2887 case BTRFS_IOC_INO_LOOKUP: 2888 return btrfs_ioctl_ino_lookup(file, argp); 2889 case BTRFS_IOC_SPACE_INFO: 2890 return btrfs_ioctl_space_info(root, argp); 2891 case BTRFS_IOC_SYNC: 2892 btrfs_sync_fs(file->f_dentry->d_sb, 1); 2893 return 0; 2894 case BTRFS_IOC_START_SYNC: 2895 return btrfs_ioctl_start_sync(file, argp); 2896 case BTRFS_IOC_WAIT_SYNC: 2897 return btrfs_ioctl_wait_sync(file, argp); 2898 case BTRFS_IOC_SCRUB: 2899 return btrfs_ioctl_scrub(root, argp); 2900 case BTRFS_IOC_SCRUB_CANCEL: 2901 return btrfs_ioctl_scrub_cancel(root, argp); 2902 case BTRFS_IOC_SCRUB_PROGRESS: 2903 return btrfs_ioctl_scrub_progress(root, argp); 2904 } 2905 2906 return -ENOTTY; 2907 } 2908