1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "export.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "rcu-string.h" 42 #include "send.h" 43 #include "dev-replace.h" 44 #include "props.h" 45 #include "sysfs.h" 46 #include "qgroup.h" 47 #include "tree-log.h" 48 #include "compression.h" 49 #include "space-info.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "subpage.h" 53 #include "fs.h" 54 #include "accessors.h" 55 #include "extent-tree.h" 56 #include "root-tree.h" 57 #include "defrag.h" 58 #include "dir-item.h" 59 #include "uuid-tree.h" 60 #include "ioctl.h" 61 #include "file.h" 62 #include "scrub.h" 63 #include "super.h" 64 65 #ifdef CONFIG_64BIT 66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 67 * structures are incorrect, as the timespec structure from userspace 68 * is 4 bytes too small. We define these alternatives here to teach 69 * the kernel about the 32-bit struct packing. 70 */ 71 struct btrfs_ioctl_timespec_32 { 72 __u64 sec; 73 __u32 nsec; 74 } __attribute__ ((__packed__)); 75 76 struct btrfs_ioctl_received_subvol_args_32 { 77 char uuid[BTRFS_UUID_SIZE]; /* in */ 78 __u64 stransid; /* in */ 79 __u64 rtransid; /* out */ 80 struct btrfs_ioctl_timespec_32 stime; /* in */ 81 struct btrfs_ioctl_timespec_32 rtime; /* out */ 82 __u64 flags; /* in */ 83 __u64 reserved[16]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 87 struct btrfs_ioctl_received_subvol_args_32) 88 #endif 89 90 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 91 struct btrfs_ioctl_send_args_32 { 92 __s64 send_fd; /* in */ 93 __u64 clone_sources_count; /* in */ 94 compat_uptr_t clone_sources; /* in */ 95 __u64 parent_root; /* in */ 96 __u64 flags; /* in */ 97 __u32 version; /* in */ 98 __u8 reserved[28]; /* in */ 99 } __attribute__ ((__packed__)); 100 101 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 102 struct btrfs_ioctl_send_args_32) 103 104 struct btrfs_ioctl_encoded_io_args_32 { 105 compat_uptr_t iov; 106 compat_ulong_t iovcnt; 107 __s64 offset; 108 __u64 flags; 109 __u64 len; 110 __u64 unencoded_len; 111 __u64 unencoded_offset; 112 __u32 compression; 113 __u32 encryption; 114 __u8 reserved[64]; 115 }; 116 117 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 118 struct btrfs_ioctl_encoded_io_args_32) 119 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 120 struct btrfs_ioctl_encoded_io_args_32) 121 #endif 122 123 /* Mask out flags that are inappropriate for the given type of inode. */ 124 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 125 unsigned int flags) 126 { 127 if (S_ISDIR(inode->i_mode)) 128 return flags; 129 else if (S_ISREG(inode->i_mode)) 130 return flags & ~FS_DIRSYNC_FL; 131 else 132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 133 } 134 135 /* 136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 137 * ioctl. 138 */ 139 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 140 { 141 unsigned int iflags = 0; 142 u32 flags = binode->flags; 143 u32 ro_flags = binode->ro_flags; 144 145 if (flags & BTRFS_INODE_SYNC) 146 iflags |= FS_SYNC_FL; 147 if (flags & BTRFS_INODE_IMMUTABLE) 148 iflags |= FS_IMMUTABLE_FL; 149 if (flags & BTRFS_INODE_APPEND) 150 iflags |= FS_APPEND_FL; 151 if (flags & BTRFS_INODE_NODUMP) 152 iflags |= FS_NODUMP_FL; 153 if (flags & BTRFS_INODE_NOATIME) 154 iflags |= FS_NOATIME_FL; 155 if (flags & BTRFS_INODE_DIRSYNC) 156 iflags |= FS_DIRSYNC_FL; 157 if (flags & BTRFS_INODE_NODATACOW) 158 iflags |= FS_NOCOW_FL; 159 if (ro_flags & BTRFS_INODE_RO_VERITY) 160 iflags |= FS_VERITY_FL; 161 162 if (flags & BTRFS_INODE_NOCOMPRESS) 163 iflags |= FS_NOCOMP_FL; 164 else if (flags & BTRFS_INODE_COMPRESS) 165 iflags |= FS_COMPR_FL; 166 167 return iflags; 168 } 169 170 /* 171 * Update inode->i_flags based on the btrfs internal flags. 172 */ 173 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 174 { 175 struct btrfs_inode *binode = BTRFS_I(inode); 176 unsigned int new_fl = 0; 177 178 if (binode->flags & BTRFS_INODE_SYNC) 179 new_fl |= S_SYNC; 180 if (binode->flags & BTRFS_INODE_IMMUTABLE) 181 new_fl |= S_IMMUTABLE; 182 if (binode->flags & BTRFS_INODE_APPEND) 183 new_fl |= S_APPEND; 184 if (binode->flags & BTRFS_INODE_NOATIME) 185 new_fl |= S_NOATIME; 186 if (binode->flags & BTRFS_INODE_DIRSYNC) 187 new_fl |= S_DIRSYNC; 188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 189 new_fl |= S_VERITY; 190 191 set_mask_bits(&inode->i_flags, 192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 193 S_VERITY, new_fl); 194 } 195 196 /* 197 * Check if @flags are a supported and valid set of FS_*_FL flags and that 198 * the old and new flags are not conflicting 199 */ 200 static int check_fsflags(unsigned int old_flags, unsigned int flags) 201 { 202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 203 FS_NOATIME_FL | FS_NODUMP_FL | \ 204 FS_SYNC_FL | FS_DIRSYNC_FL | \ 205 FS_NOCOMP_FL | FS_COMPR_FL | 206 FS_NOCOW_FL)) 207 return -EOPNOTSUPP; 208 209 /* COMPR and NOCOMP on new/old are valid */ 210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 211 return -EINVAL; 212 213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 214 return -EINVAL; 215 216 /* NOCOW and compression options are mutually exclusive */ 217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 218 return -EINVAL; 219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 220 return -EINVAL; 221 222 return 0; 223 } 224 225 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 226 unsigned int flags) 227 { 228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 229 return -EPERM; 230 231 return 0; 232 } 233 234 /* 235 * Set flags/xflags from the internal inode flags. The remaining items of 236 * fsxattr are zeroed. 237 */ 238 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 239 { 240 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 241 242 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 243 return 0; 244 } 245 246 int btrfs_fileattr_set(struct mnt_idmap *idmap, 247 struct dentry *dentry, struct fileattr *fa) 248 { 249 struct inode *inode = d_inode(dentry); 250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 251 struct btrfs_inode *binode = BTRFS_I(inode); 252 struct btrfs_root *root = binode->root; 253 struct btrfs_trans_handle *trans; 254 unsigned int fsflags, old_fsflags; 255 int ret; 256 const char *comp = NULL; 257 u32 binode_flags; 258 259 if (btrfs_root_readonly(root)) 260 return -EROFS; 261 262 if (fileattr_has_fsx(fa)) 263 return -EOPNOTSUPP; 264 265 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 266 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 267 ret = check_fsflags(old_fsflags, fsflags); 268 if (ret) 269 return ret; 270 271 ret = check_fsflags_compatible(fs_info, fsflags); 272 if (ret) 273 return ret; 274 275 binode_flags = binode->flags; 276 if (fsflags & FS_SYNC_FL) 277 binode_flags |= BTRFS_INODE_SYNC; 278 else 279 binode_flags &= ~BTRFS_INODE_SYNC; 280 if (fsflags & FS_IMMUTABLE_FL) 281 binode_flags |= BTRFS_INODE_IMMUTABLE; 282 else 283 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 284 if (fsflags & FS_APPEND_FL) 285 binode_flags |= BTRFS_INODE_APPEND; 286 else 287 binode_flags &= ~BTRFS_INODE_APPEND; 288 if (fsflags & FS_NODUMP_FL) 289 binode_flags |= BTRFS_INODE_NODUMP; 290 else 291 binode_flags &= ~BTRFS_INODE_NODUMP; 292 if (fsflags & FS_NOATIME_FL) 293 binode_flags |= BTRFS_INODE_NOATIME; 294 else 295 binode_flags &= ~BTRFS_INODE_NOATIME; 296 297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 298 if (!fa->flags_valid) { 299 /* 1 item for the inode */ 300 trans = btrfs_start_transaction(root, 1); 301 if (IS_ERR(trans)) 302 return PTR_ERR(trans); 303 goto update_flags; 304 } 305 306 if (fsflags & FS_DIRSYNC_FL) 307 binode_flags |= BTRFS_INODE_DIRSYNC; 308 else 309 binode_flags &= ~BTRFS_INODE_DIRSYNC; 310 if (fsflags & FS_NOCOW_FL) { 311 if (S_ISREG(inode->i_mode)) { 312 /* 313 * It's safe to turn csums off here, no extents exist. 314 * Otherwise we want the flag to reflect the real COW 315 * status of the file and will not set it. 316 */ 317 if (inode->i_size == 0) 318 binode_flags |= BTRFS_INODE_NODATACOW | 319 BTRFS_INODE_NODATASUM; 320 } else { 321 binode_flags |= BTRFS_INODE_NODATACOW; 322 } 323 } else { 324 /* 325 * Revert back under same assumptions as above 326 */ 327 if (S_ISREG(inode->i_mode)) { 328 if (inode->i_size == 0) 329 binode_flags &= ~(BTRFS_INODE_NODATACOW | 330 BTRFS_INODE_NODATASUM); 331 } else { 332 binode_flags &= ~BTRFS_INODE_NODATACOW; 333 } 334 } 335 336 /* 337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 338 * flag may be changed automatically if compression code won't make 339 * things smaller. 340 */ 341 if (fsflags & FS_NOCOMP_FL) { 342 binode_flags &= ~BTRFS_INODE_COMPRESS; 343 binode_flags |= BTRFS_INODE_NOCOMPRESS; 344 } else if (fsflags & FS_COMPR_FL) { 345 346 if (IS_SWAPFILE(inode)) 347 return -ETXTBSY; 348 349 binode_flags |= BTRFS_INODE_COMPRESS; 350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 351 352 comp = btrfs_compress_type2str(fs_info->compress_type); 353 if (!comp || comp[0] == 0) 354 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 355 } else { 356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 357 } 358 359 /* 360 * 1 for inode item 361 * 2 for properties 362 */ 363 trans = btrfs_start_transaction(root, 3); 364 if (IS_ERR(trans)) 365 return PTR_ERR(trans); 366 367 if (comp) { 368 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 369 strlen(comp), 0); 370 if (ret) { 371 btrfs_abort_transaction(trans, ret); 372 goto out_end_trans; 373 } 374 } else { 375 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 376 0, 0); 377 if (ret && ret != -ENODATA) { 378 btrfs_abort_transaction(trans, ret); 379 goto out_end_trans; 380 } 381 } 382 383 update_flags: 384 binode->flags = binode_flags; 385 btrfs_sync_inode_flags_to_i_flags(inode); 386 inode_inc_iversion(inode); 387 inode->i_ctime = current_time(inode); 388 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 389 390 out_end_trans: 391 btrfs_end_transaction(trans); 392 return ret; 393 } 394 395 /* 396 * Start exclusive operation @type, return true on success 397 */ 398 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 399 enum btrfs_exclusive_operation type) 400 { 401 bool ret = false; 402 403 spin_lock(&fs_info->super_lock); 404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 405 fs_info->exclusive_operation = type; 406 ret = true; 407 } 408 spin_unlock(&fs_info->super_lock); 409 410 return ret; 411 } 412 413 /* 414 * Conditionally allow to enter the exclusive operation in case it's compatible 415 * with the running one. This must be paired with btrfs_exclop_start_unlock and 416 * btrfs_exclop_finish. 417 * 418 * Compatibility: 419 * - the same type is already running 420 * - when trying to add a device and balance has been paused 421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 422 * must check the condition first that would allow none -> @type 423 */ 424 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 425 enum btrfs_exclusive_operation type) 426 { 427 spin_lock(&fs_info->super_lock); 428 if (fs_info->exclusive_operation == type || 429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 430 type == BTRFS_EXCLOP_DEV_ADD)) 431 return true; 432 433 spin_unlock(&fs_info->super_lock); 434 return false; 435 } 436 437 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 438 { 439 spin_unlock(&fs_info->super_lock); 440 } 441 442 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 443 { 444 spin_lock(&fs_info->super_lock); 445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 446 spin_unlock(&fs_info->super_lock); 447 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 448 } 449 450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 451 enum btrfs_exclusive_operation op) 452 { 453 switch (op) { 454 case BTRFS_EXCLOP_BALANCE_PAUSED: 455 spin_lock(&fs_info->super_lock); 456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD); 458 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 459 spin_unlock(&fs_info->super_lock); 460 break; 461 case BTRFS_EXCLOP_BALANCE: 462 spin_lock(&fs_info->super_lock); 463 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 464 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 465 spin_unlock(&fs_info->super_lock); 466 break; 467 default: 468 btrfs_warn(fs_info, 469 "invalid exclop balance operation %d requested", op); 470 } 471 } 472 473 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 474 { 475 return put_user(inode->i_generation, arg); 476 } 477 478 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 479 void __user *arg) 480 { 481 struct btrfs_device *device; 482 struct fstrim_range range; 483 u64 minlen = ULLONG_MAX; 484 u64 num_devices = 0; 485 int ret; 486 487 if (!capable(CAP_SYS_ADMIN)) 488 return -EPERM; 489 490 /* 491 * btrfs_trim_block_group() depends on space cache, which is not 492 * available in zoned filesystem. So, disallow fitrim on a zoned 493 * filesystem for now. 494 */ 495 if (btrfs_is_zoned(fs_info)) 496 return -EOPNOTSUPP; 497 498 /* 499 * If the fs is mounted with nologreplay, which requires it to be 500 * mounted in RO mode as well, we can not allow discard on free space 501 * inside block groups, because log trees refer to extents that are not 502 * pinned in a block group's free space cache (pinning the extents is 503 * precisely the first phase of replaying a log tree). 504 */ 505 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 506 return -EROFS; 507 508 rcu_read_lock(); 509 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 510 dev_list) { 511 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 512 continue; 513 num_devices++; 514 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 515 minlen); 516 } 517 rcu_read_unlock(); 518 519 if (!num_devices) 520 return -EOPNOTSUPP; 521 if (copy_from_user(&range, arg, sizeof(range))) 522 return -EFAULT; 523 524 /* 525 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 526 * block group is in the logical address space, which can be any 527 * sectorsize aligned bytenr in the range [0, U64_MAX]. 528 */ 529 if (range.len < fs_info->sb->s_blocksize) 530 return -EINVAL; 531 532 range.minlen = max(range.minlen, minlen); 533 ret = btrfs_trim_fs(fs_info, &range); 534 if (ret < 0) 535 return ret; 536 537 if (copy_to_user(arg, &range, sizeof(range))) 538 return -EFAULT; 539 540 return 0; 541 } 542 543 int __pure btrfs_is_empty_uuid(u8 *uuid) 544 { 545 int i; 546 547 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 548 if (uuid[i]) 549 return 0; 550 } 551 return 1; 552 } 553 554 /* 555 * Calculate the number of transaction items to reserve for creating a subvolume 556 * or snapshot, not including the inode, directory entries, or parent directory. 557 */ 558 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) 559 { 560 /* 561 * 1 to add root block 562 * 1 to add root item 563 * 1 to add root ref 564 * 1 to add root backref 565 * 1 to add UUID item 566 * 1 to add qgroup info 567 * 1 to add qgroup limit 568 * 569 * Ideally the last two would only be accounted if qgroups are enabled, 570 * but that can change between now and the time we would insert them. 571 */ 572 unsigned int num_items = 7; 573 574 if (inherit) { 575 /* 2 to add qgroup relations for each inherited qgroup */ 576 num_items += 2 * inherit->num_qgroups; 577 } 578 return num_items; 579 } 580 581 static noinline int create_subvol(struct mnt_idmap *idmap, 582 struct inode *dir, struct dentry *dentry, 583 struct btrfs_qgroup_inherit *inherit) 584 { 585 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 586 struct btrfs_trans_handle *trans; 587 struct btrfs_key key; 588 struct btrfs_root_item *root_item; 589 struct btrfs_inode_item *inode_item; 590 struct extent_buffer *leaf; 591 struct btrfs_root *root = BTRFS_I(dir)->root; 592 struct btrfs_root *new_root; 593 struct btrfs_block_rsv block_rsv; 594 struct timespec64 cur_time = current_time(dir); 595 struct btrfs_new_inode_args new_inode_args = { 596 .dir = dir, 597 .dentry = dentry, 598 .subvol = true, 599 }; 600 unsigned int trans_num_items; 601 int ret; 602 dev_t anon_dev; 603 u64 objectid; 604 605 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 606 if (!root_item) 607 return -ENOMEM; 608 609 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 610 if (ret) 611 goto out_root_item; 612 613 /* 614 * Don't create subvolume whose level is not zero. Or qgroup will be 615 * screwed up since it assumes subvolume qgroup's level to be 0. 616 */ 617 if (btrfs_qgroup_level(objectid)) { 618 ret = -ENOSPC; 619 goto out_root_item; 620 } 621 622 ret = get_anon_bdev(&anon_dev); 623 if (ret < 0) 624 goto out_root_item; 625 626 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir); 627 if (!new_inode_args.inode) { 628 ret = -ENOMEM; 629 goto out_anon_dev; 630 } 631 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 632 if (ret) 633 goto out_inode; 634 trans_num_items += create_subvol_num_items(inherit); 635 636 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 637 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 638 trans_num_items, false); 639 if (ret) 640 goto out_new_inode_args; 641 642 trans = btrfs_start_transaction(root, 0); 643 if (IS_ERR(trans)) { 644 ret = PTR_ERR(trans); 645 btrfs_subvolume_release_metadata(root, &block_rsv); 646 goto out_new_inode_args; 647 } 648 trans->block_rsv = &block_rsv; 649 trans->bytes_reserved = block_rsv.size; 650 651 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 652 if (ret) 653 goto out; 654 655 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 656 BTRFS_NESTING_NORMAL); 657 if (IS_ERR(leaf)) { 658 ret = PTR_ERR(leaf); 659 goto out; 660 } 661 662 btrfs_mark_buffer_dirty(leaf); 663 664 inode_item = &root_item->inode; 665 btrfs_set_stack_inode_generation(inode_item, 1); 666 btrfs_set_stack_inode_size(inode_item, 3); 667 btrfs_set_stack_inode_nlink(inode_item, 1); 668 btrfs_set_stack_inode_nbytes(inode_item, 669 fs_info->nodesize); 670 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 671 672 btrfs_set_root_flags(root_item, 0); 673 btrfs_set_root_limit(root_item, 0); 674 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 675 676 btrfs_set_root_bytenr(root_item, leaf->start); 677 btrfs_set_root_generation(root_item, trans->transid); 678 btrfs_set_root_level(root_item, 0); 679 btrfs_set_root_refs(root_item, 1); 680 btrfs_set_root_used(root_item, leaf->len); 681 btrfs_set_root_last_snapshot(root_item, 0); 682 683 btrfs_set_root_generation_v2(root_item, 684 btrfs_root_generation(root_item)); 685 generate_random_guid(root_item->uuid); 686 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 687 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 688 root_item->ctime = root_item->otime; 689 btrfs_set_root_ctransid(root_item, trans->transid); 690 btrfs_set_root_otransid(root_item, trans->transid); 691 692 btrfs_tree_unlock(leaf); 693 694 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 695 696 key.objectid = objectid; 697 key.offset = 0; 698 key.type = BTRFS_ROOT_ITEM_KEY; 699 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 700 root_item); 701 if (ret) { 702 /* 703 * Since we don't abort the transaction in this case, free the 704 * tree block so that we don't leak space and leave the 705 * filesystem in an inconsistent state (an extent item in the 706 * extent tree with a backreference for a root that does not 707 * exists). 708 */ 709 btrfs_tree_lock(leaf); 710 btrfs_clear_buffer_dirty(trans, leaf); 711 btrfs_tree_unlock(leaf); 712 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 713 free_extent_buffer(leaf); 714 goto out; 715 } 716 717 free_extent_buffer(leaf); 718 leaf = NULL; 719 720 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 721 if (IS_ERR(new_root)) { 722 ret = PTR_ERR(new_root); 723 btrfs_abort_transaction(trans, ret); 724 goto out; 725 } 726 /* anon_dev is owned by new_root now. */ 727 anon_dev = 0; 728 BTRFS_I(new_inode_args.inode)->root = new_root; 729 /* ... and new_root is owned by new_inode_args.inode now. */ 730 731 ret = btrfs_record_root_in_trans(trans, new_root); 732 if (ret) { 733 btrfs_abort_transaction(trans, ret); 734 goto out; 735 } 736 737 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 738 BTRFS_UUID_KEY_SUBVOL, objectid); 739 if (ret) { 740 btrfs_abort_transaction(trans, ret); 741 goto out; 742 } 743 744 ret = btrfs_create_new_inode(trans, &new_inode_args); 745 if (ret) { 746 btrfs_abort_transaction(trans, ret); 747 goto out; 748 } 749 750 d_instantiate_new(dentry, new_inode_args.inode); 751 new_inode_args.inode = NULL; 752 753 out: 754 trans->block_rsv = NULL; 755 trans->bytes_reserved = 0; 756 btrfs_subvolume_release_metadata(root, &block_rsv); 757 758 if (ret) 759 btrfs_end_transaction(trans); 760 else 761 ret = btrfs_commit_transaction(trans); 762 out_new_inode_args: 763 btrfs_new_inode_args_destroy(&new_inode_args); 764 out_inode: 765 iput(new_inode_args.inode); 766 out_anon_dev: 767 if (anon_dev) 768 free_anon_bdev(anon_dev); 769 out_root_item: 770 kfree(root_item); 771 return ret; 772 } 773 774 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 775 struct dentry *dentry, bool readonly, 776 struct btrfs_qgroup_inherit *inherit) 777 { 778 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 779 struct inode *inode; 780 struct btrfs_pending_snapshot *pending_snapshot; 781 unsigned int trans_num_items; 782 struct btrfs_trans_handle *trans; 783 int ret; 784 785 /* We do not support snapshotting right now. */ 786 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 787 btrfs_warn(fs_info, 788 "extent tree v2 doesn't support snapshotting yet"); 789 return -EOPNOTSUPP; 790 } 791 792 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 793 return -EINVAL; 794 795 if (atomic_read(&root->nr_swapfiles)) { 796 btrfs_warn(fs_info, 797 "cannot snapshot subvolume with active swapfile"); 798 return -ETXTBSY; 799 } 800 801 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 802 if (!pending_snapshot) 803 return -ENOMEM; 804 805 ret = get_anon_bdev(&pending_snapshot->anon_dev); 806 if (ret < 0) 807 goto free_pending; 808 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 809 GFP_KERNEL); 810 pending_snapshot->path = btrfs_alloc_path(); 811 if (!pending_snapshot->root_item || !pending_snapshot->path) { 812 ret = -ENOMEM; 813 goto free_pending; 814 } 815 816 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 817 BTRFS_BLOCK_RSV_TEMP); 818 /* 819 * 1 to add dir item 820 * 1 to add dir index 821 * 1 to update parent inode item 822 */ 823 trans_num_items = create_subvol_num_items(inherit) + 3; 824 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 825 &pending_snapshot->block_rsv, 826 trans_num_items, false); 827 if (ret) 828 goto free_pending; 829 830 pending_snapshot->dentry = dentry; 831 pending_snapshot->root = root; 832 pending_snapshot->readonly = readonly; 833 pending_snapshot->dir = dir; 834 pending_snapshot->inherit = inherit; 835 836 trans = btrfs_start_transaction(root, 0); 837 if (IS_ERR(trans)) { 838 ret = PTR_ERR(trans); 839 goto fail; 840 } 841 842 trans->pending_snapshot = pending_snapshot; 843 844 ret = btrfs_commit_transaction(trans); 845 if (ret) 846 goto fail; 847 848 ret = pending_snapshot->error; 849 if (ret) 850 goto fail; 851 852 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 853 if (ret) 854 goto fail; 855 856 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 857 if (IS_ERR(inode)) { 858 ret = PTR_ERR(inode); 859 goto fail; 860 } 861 862 d_instantiate(dentry, inode); 863 ret = 0; 864 pending_snapshot->anon_dev = 0; 865 fail: 866 /* Prevent double freeing of anon_dev */ 867 if (ret && pending_snapshot->snap) 868 pending_snapshot->snap->anon_dev = 0; 869 btrfs_put_root(pending_snapshot->snap); 870 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 871 free_pending: 872 if (pending_snapshot->anon_dev) 873 free_anon_bdev(pending_snapshot->anon_dev); 874 kfree(pending_snapshot->root_item); 875 btrfs_free_path(pending_snapshot->path); 876 kfree(pending_snapshot); 877 878 return ret; 879 } 880 881 /* copy of may_delete in fs/namei.c() 882 * Check whether we can remove a link victim from directory dir, check 883 * whether the type of victim is right. 884 * 1. We can't do it if dir is read-only (done in permission()) 885 * 2. We should have write and exec permissions on dir 886 * 3. We can't remove anything from append-only dir 887 * 4. We can't do anything with immutable dir (done in permission()) 888 * 5. If the sticky bit on dir is set we should either 889 * a. be owner of dir, or 890 * b. be owner of victim, or 891 * c. have CAP_FOWNER capability 892 * 6. If the victim is append-only or immutable we can't do anything with 893 * links pointing to it. 894 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 895 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 896 * 9. We can't remove a root or mountpoint. 897 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 898 * nfs_async_unlink(). 899 */ 900 901 static int btrfs_may_delete(struct mnt_idmap *idmap, 902 struct inode *dir, struct dentry *victim, int isdir) 903 { 904 int error; 905 906 if (d_really_is_negative(victim)) 907 return -ENOENT; 908 909 BUG_ON(d_inode(victim->d_parent) != dir); 910 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 911 912 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 913 if (error) 914 return error; 915 if (IS_APPEND(dir)) 916 return -EPERM; 917 if (check_sticky(idmap, dir, d_inode(victim)) || 918 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 919 IS_SWAPFILE(d_inode(victim))) 920 return -EPERM; 921 if (isdir) { 922 if (!d_is_dir(victim)) 923 return -ENOTDIR; 924 if (IS_ROOT(victim)) 925 return -EBUSY; 926 } else if (d_is_dir(victim)) 927 return -EISDIR; 928 if (IS_DEADDIR(dir)) 929 return -ENOENT; 930 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 931 return -EBUSY; 932 return 0; 933 } 934 935 /* copy of may_create in fs/namei.c() */ 936 static inline int btrfs_may_create(struct mnt_idmap *idmap, 937 struct inode *dir, struct dentry *child) 938 { 939 if (d_really_is_positive(child)) 940 return -EEXIST; 941 if (IS_DEADDIR(dir)) 942 return -ENOENT; 943 if (!fsuidgid_has_mapping(dir->i_sb, idmap)) 944 return -EOVERFLOW; 945 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC); 946 } 947 948 /* 949 * Create a new subvolume below @parent. This is largely modeled after 950 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 951 * inside this filesystem so it's quite a bit simpler. 952 */ 953 static noinline int btrfs_mksubvol(const struct path *parent, 954 struct mnt_idmap *idmap, 955 const char *name, int namelen, 956 struct btrfs_root *snap_src, 957 bool readonly, 958 struct btrfs_qgroup_inherit *inherit) 959 { 960 struct inode *dir = d_inode(parent->dentry); 961 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 962 struct dentry *dentry; 963 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen); 964 int error; 965 966 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 967 if (error == -EINTR) 968 return error; 969 970 dentry = lookup_one(idmap, name, parent->dentry, namelen); 971 error = PTR_ERR(dentry); 972 if (IS_ERR(dentry)) 973 goto out_unlock; 974 975 error = btrfs_may_create(idmap, dir, dentry); 976 if (error) 977 goto out_dput; 978 979 /* 980 * even if this name doesn't exist, we may get hash collisions. 981 * check for them now when we can safely fail 982 */ 983 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 984 dir->i_ino, &name_str); 985 if (error) 986 goto out_dput; 987 988 down_read(&fs_info->subvol_sem); 989 990 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 991 goto out_up_read; 992 993 if (snap_src) 994 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 995 else 996 error = create_subvol(idmap, dir, dentry, inherit); 997 998 if (!error) 999 fsnotify_mkdir(dir, dentry); 1000 out_up_read: 1001 up_read(&fs_info->subvol_sem); 1002 out_dput: 1003 dput(dentry); 1004 out_unlock: 1005 btrfs_inode_unlock(BTRFS_I(dir), 0); 1006 return error; 1007 } 1008 1009 static noinline int btrfs_mksnapshot(const struct path *parent, 1010 struct mnt_idmap *idmap, 1011 const char *name, int namelen, 1012 struct btrfs_root *root, 1013 bool readonly, 1014 struct btrfs_qgroup_inherit *inherit) 1015 { 1016 int ret; 1017 bool snapshot_force_cow = false; 1018 1019 /* 1020 * Force new buffered writes to reserve space even when NOCOW is 1021 * possible. This is to avoid later writeback (running dealloc) to 1022 * fallback to COW mode and unexpectedly fail with ENOSPC. 1023 */ 1024 btrfs_drew_read_lock(&root->snapshot_lock); 1025 1026 ret = btrfs_start_delalloc_snapshot(root, false); 1027 if (ret) 1028 goto out; 1029 1030 /* 1031 * All previous writes have started writeback in NOCOW mode, so now 1032 * we force future writes to fallback to COW mode during snapshot 1033 * creation. 1034 */ 1035 atomic_inc(&root->snapshot_force_cow); 1036 snapshot_force_cow = true; 1037 1038 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1039 1040 ret = btrfs_mksubvol(parent, idmap, name, namelen, 1041 root, readonly, inherit); 1042 out: 1043 if (snapshot_force_cow) 1044 atomic_dec(&root->snapshot_force_cow); 1045 btrfs_drew_read_unlock(&root->snapshot_lock); 1046 return ret; 1047 } 1048 1049 /* 1050 * Try to start exclusive operation @type or cancel it if it's running. 1051 * 1052 * Return: 1053 * 0 - normal mode, newly claimed op started 1054 * >0 - normal mode, something else is running, 1055 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1056 * ECANCELED - cancel mode, successful cancel 1057 * ENOTCONN - cancel mode, operation not running anymore 1058 */ 1059 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1060 enum btrfs_exclusive_operation type, bool cancel) 1061 { 1062 if (!cancel) { 1063 /* Start normal op */ 1064 if (!btrfs_exclop_start(fs_info, type)) 1065 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1066 /* Exclusive operation is now claimed */ 1067 return 0; 1068 } 1069 1070 /* Cancel running op */ 1071 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1072 /* 1073 * This blocks any exclop finish from setting it to NONE, so we 1074 * request cancellation. Either it runs and we will wait for it, 1075 * or it has finished and no waiting will happen. 1076 */ 1077 atomic_inc(&fs_info->reloc_cancel_req); 1078 btrfs_exclop_start_unlock(fs_info); 1079 1080 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1081 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1082 TASK_INTERRUPTIBLE); 1083 1084 return -ECANCELED; 1085 } 1086 1087 /* Something else is running or none */ 1088 return -ENOTCONN; 1089 } 1090 1091 static noinline int btrfs_ioctl_resize(struct file *file, 1092 void __user *arg) 1093 { 1094 BTRFS_DEV_LOOKUP_ARGS(args); 1095 struct inode *inode = file_inode(file); 1096 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1097 u64 new_size; 1098 u64 old_size; 1099 u64 devid = 1; 1100 struct btrfs_root *root = BTRFS_I(inode)->root; 1101 struct btrfs_ioctl_vol_args *vol_args; 1102 struct btrfs_trans_handle *trans; 1103 struct btrfs_device *device = NULL; 1104 char *sizestr; 1105 char *retptr; 1106 char *devstr = NULL; 1107 int ret = 0; 1108 int mod = 0; 1109 bool cancel; 1110 1111 if (!capable(CAP_SYS_ADMIN)) 1112 return -EPERM; 1113 1114 ret = mnt_want_write_file(file); 1115 if (ret) 1116 return ret; 1117 1118 /* 1119 * Read the arguments before checking exclusivity to be able to 1120 * distinguish regular resize and cancel 1121 */ 1122 vol_args = memdup_user(arg, sizeof(*vol_args)); 1123 if (IS_ERR(vol_args)) { 1124 ret = PTR_ERR(vol_args); 1125 goto out_drop; 1126 } 1127 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1128 sizestr = vol_args->name; 1129 cancel = (strcmp("cancel", sizestr) == 0); 1130 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1131 if (ret) 1132 goto out_free; 1133 /* Exclusive operation is now claimed */ 1134 1135 devstr = strchr(sizestr, ':'); 1136 if (devstr) { 1137 sizestr = devstr + 1; 1138 *devstr = '\0'; 1139 devstr = vol_args->name; 1140 ret = kstrtoull(devstr, 10, &devid); 1141 if (ret) 1142 goto out_finish; 1143 if (!devid) { 1144 ret = -EINVAL; 1145 goto out_finish; 1146 } 1147 btrfs_info(fs_info, "resizing devid %llu", devid); 1148 } 1149 1150 args.devid = devid; 1151 device = btrfs_find_device(fs_info->fs_devices, &args); 1152 if (!device) { 1153 btrfs_info(fs_info, "resizer unable to find device %llu", 1154 devid); 1155 ret = -ENODEV; 1156 goto out_finish; 1157 } 1158 1159 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1160 btrfs_info(fs_info, 1161 "resizer unable to apply on readonly device %llu", 1162 devid); 1163 ret = -EPERM; 1164 goto out_finish; 1165 } 1166 1167 if (!strcmp(sizestr, "max")) 1168 new_size = bdev_nr_bytes(device->bdev); 1169 else { 1170 if (sizestr[0] == '-') { 1171 mod = -1; 1172 sizestr++; 1173 } else if (sizestr[0] == '+') { 1174 mod = 1; 1175 sizestr++; 1176 } 1177 new_size = memparse(sizestr, &retptr); 1178 if (*retptr != '\0' || new_size == 0) { 1179 ret = -EINVAL; 1180 goto out_finish; 1181 } 1182 } 1183 1184 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1185 ret = -EPERM; 1186 goto out_finish; 1187 } 1188 1189 old_size = btrfs_device_get_total_bytes(device); 1190 1191 if (mod < 0) { 1192 if (new_size > old_size) { 1193 ret = -EINVAL; 1194 goto out_finish; 1195 } 1196 new_size = old_size - new_size; 1197 } else if (mod > 0) { 1198 if (new_size > ULLONG_MAX - old_size) { 1199 ret = -ERANGE; 1200 goto out_finish; 1201 } 1202 new_size = old_size + new_size; 1203 } 1204 1205 if (new_size < SZ_256M) { 1206 ret = -EINVAL; 1207 goto out_finish; 1208 } 1209 if (new_size > bdev_nr_bytes(device->bdev)) { 1210 ret = -EFBIG; 1211 goto out_finish; 1212 } 1213 1214 new_size = round_down(new_size, fs_info->sectorsize); 1215 1216 if (new_size > old_size) { 1217 trans = btrfs_start_transaction(root, 0); 1218 if (IS_ERR(trans)) { 1219 ret = PTR_ERR(trans); 1220 goto out_finish; 1221 } 1222 ret = btrfs_grow_device(trans, device, new_size); 1223 btrfs_commit_transaction(trans); 1224 } else if (new_size < old_size) { 1225 ret = btrfs_shrink_device(device, new_size); 1226 } /* equal, nothing need to do */ 1227 1228 if (ret == 0 && new_size != old_size) 1229 btrfs_info_in_rcu(fs_info, 1230 "resize device %s (devid %llu) from %llu to %llu", 1231 btrfs_dev_name(device), device->devid, 1232 old_size, new_size); 1233 out_finish: 1234 btrfs_exclop_finish(fs_info); 1235 out_free: 1236 kfree(vol_args); 1237 out_drop: 1238 mnt_drop_write_file(file); 1239 return ret; 1240 } 1241 1242 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1243 struct mnt_idmap *idmap, 1244 const char *name, unsigned long fd, int subvol, 1245 bool readonly, 1246 struct btrfs_qgroup_inherit *inherit) 1247 { 1248 int namelen; 1249 int ret = 0; 1250 1251 if (!S_ISDIR(file_inode(file)->i_mode)) 1252 return -ENOTDIR; 1253 1254 ret = mnt_want_write_file(file); 1255 if (ret) 1256 goto out; 1257 1258 namelen = strlen(name); 1259 if (strchr(name, '/')) { 1260 ret = -EINVAL; 1261 goto out_drop_write; 1262 } 1263 1264 if (name[0] == '.' && 1265 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1266 ret = -EEXIST; 1267 goto out_drop_write; 1268 } 1269 1270 if (subvol) { 1271 ret = btrfs_mksubvol(&file->f_path, idmap, name, 1272 namelen, NULL, readonly, inherit); 1273 } else { 1274 struct fd src = fdget(fd); 1275 struct inode *src_inode; 1276 if (!src.file) { 1277 ret = -EINVAL; 1278 goto out_drop_write; 1279 } 1280 1281 src_inode = file_inode(src.file); 1282 if (src_inode->i_sb != file_inode(file)->i_sb) { 1283 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1284 "Snapshot src from another FS"); 1285 ret = -EXDEV; 1286 } else if (!inode_owner_or_capable(idmap, src_inode)) { 1287 /* 1288 * Subvolume creation is not restricted, but snapshots 1289 * are limited to own subvolumes only 1290 */ 1291 ret = -EPERM; 1292 } else { 1293 ret = btrfs_mksnapshot(&file->f_path, idmap, 1294 name, namelen, 1295 BTRFS_I(src_inode)->root, 1296 readonly, inherit); 1297 } 1298 fdput(src); 1299 } 1300 out_drop_write: 1301 mnt_drop_write_file(file); 1302 out: 1303 return ret; 1304 } 1305 1306 static noinline int btrfs_ioctl_snap_create(struct file *file, 1307 void __user *arg, int subvol) 1308 { 1309 struct btrfs_ioctl_vol_args *vol_args; 1310 int ret; 1311 1312 if (!S_ISDIR(file_inode(file)->i_mode)) 1313 return -ENOTDIR; 1314 1315 vol_args = memdup_user(arg, sizeof(*vol_args)); 1316 if (IS_ERR(vol_args)) 1317 return PTR_ERR(vol_args); 1318 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1319 1320 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1321 vol_args->name, vol_args->fd, subvol, 1322 false, NULL); 1323 1324 kfree(vol_args); 1325 return ret; 1326 } 1327 1328 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1329 void __user *arg, int subvol) 1330 { 1331 struct btrfs_ioctl_vol_args_v2 *vol_args; 1332 int ret; 1333 bool readonly = false; 1334 struct btrfs_qgroup_inherit *inherit = NULL; 1335 1336 if (!S_ISDIR(file_inode(file)->i_mode)) 1337 return -ENOTDIR; 1338 1339 vol_args = memdup_user(arg, sizeof(*vol_args)); 1340 if (IS_ERR(vol_args)) 1341 return PTR_ERR(vol_args); 1342 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1343 1344 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1345 ret = -EOPNOTSUPP; 1346 goto free_args; 1347 } 1348 1349 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1350 readonly = true; 1351 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1352 u64 nums; 1353 1354 if (vol_args->size < sizeof(*inherit) || 1355 vol_args->size > PAGE_SIZE) { 1356 ret = -EINVAL; 1357 goto free_args; 1358 } 1359 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1360 if (IS_ERR(inherit)) { 1361 ret = PTR_ERR(inherit); 1362 goto free_args; 1363 } 1364 1365 if (inherit->num_qgroups > PAGE_SIZE || 1366 inherit->num_ref_copies > PAGE_SIZE || 1367 inherit->num_excl_copies > PAGE_SIZE) { 1368 ret = -EINVAL; 1369 goto free_inherit; 1370 } 1371 1372 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1373 2 * inherit->num_excl_copies; 1374 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1375 ret = -EINVAL; 1376 goto free_inherit; 1377 } 1378 } 1379 1380 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file), 1381 vol_args->name, vol_args->fd, subvol, 1382 readonly, inherit); 1383 if (ret) 1384 goto free_inherit; 1385 free_inherit: 1386 kfree(inherit); 1387 free_args: 1388 kfree(vol_args); 1389 return ret; 1390 } 1391 1392 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 1393 void __user *arg) 1394 { 1395 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1396 struct btrfs_root *root = BTRFS_I(inode)->root; 1397 int ret = 0; 1398 u64 flags = 0; 1399 1400 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1401 return -EINVAL; 1402 1403 down_read(&fs_info->subvol_sem); 1404 if (btrfs_root_readonly(root)) 1405 flags |= BTRFS_SUBVOL_RDONLY; 1406 up_read(&fs_info->subvol_sem); 1407 1408 if (copy_to_user(arg, &flags, sizeof(flags))) 1409 ret = -EFAULT; 1410 1411 return ret; 1412 } 1413 1414 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1415 void __user *arg) 1416 { 1417 struct inode *inode = file_inode(file); 1418 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1419 struct btrfs_root *root = BTRFS_I(inode)->root; 1420 struct btrfs_trans_handle *trans; 1421 u64 root_flags; 1422 u64 flags; 1423 int ret = 0; 1424 1425 if (!inode_owner_or_capable(file_mnt_idmap(file), inode)) 1426 return -EPERM; 1427 1428 ret = mnt_want_write_file(file); 1429 if (ret) 1430 goto out; 1431 1432 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1433 ret = -EINVAL; 1434 goto out_drop_write; 1435 } 1436 1437 if (copy_from_user(&flags, arg, sizeof(flags))) { 1438 ret = -EFAULT; 1439 goto out_drop_write; 1440 } 1441 1442 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1443 ret = -EOPNOTSUPP; 1444 goto out_drop_write; 1445 } 1446 1447 down_write(&fs_info->subvol_sem); 1448 1449 /* nothing to do */ 1450 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1451 goto out_drop_sem; 1452 1453 root_flags = btrfs_root_flags(&root->root_item); 1454 if (flags & BTRFS_SUBVOL_RDONLY) { 1455 btrfs_set_root_flags(&root->root_item, 1456 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1457 } else { 1458 /* 1459 * Block RO -> RW transition if this subvolume is involved in 1460 * send 1461 */ 1462 spin_lock(&root->root_item_lock); 1463 if (root->send_in_progress == 0) { 1464 btrfs_set_root_flags(&root->root_item, 1465 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1466 spin_unlock(&root->root_item_lock); 1467 } else { 1468 spin_unlock(&root->root_item_lock); 1469 btrfs_warn(fs_info, 1470 "Attempt to set subvolume %llu read-write during send", 1471 root->root_key.objectid); 1472 ret = -EPERM; 1473 goto out_drop_sem; 1474 } 1475 } 1476 1477 trans = btrfs_start_transaction(root, 1); 1478 if (IS_ERR(trans)) { 1479 ret = PTR_ERR(trans); 1480 goto out_reset; 1481 } 1482 1483 ret = btrfs_update_root(trans, fs_info->tree_root, 1484 &root->root_key, &root->root_item); 1485 if (ret < 0) { 1486 btrfs_end_transaction(trans); 1487 goto out_reset; 1488 } 1489 1490 ret = btrfs_commit_transaction(trans); 1491 1492 out_reset: 1493 if (ret) 1494 btrfs_set_root_flags(&root->root_item, root_flags); 1495 out_drop_sem: 1496 up_write(&fs_info->subvol_sem); 1497 out_drop_write: 1498 mnt_drop_write_file(file); 1499 out: 1500 return ret; 1501 } 1502 1503 static noinline int key_in_sk(struct btrfs_key *key, 1504 struct btrfs_ioctl_search_key *sk) 1505 { 1506 struct btrfs_key test; 1507 int ret; 1508 1509 test.objectid = sk->min_objectid; 1510 test.type = sk->min_type; 1511 test.offset = sk->min_offset; 1512 1513 ret = btrfs_comp_cpu_keys(key, &test); 1514 if (ret < 0) 1515 return 0; 1516 1517 test.objectid = sk->max_objectid; 1518 test.type = sk->max_type; 1519 test.offset = sk->max_offset; 1520 1521 ret = btrfs_comp_cpu_keys(key, &test); 1522 if (ret > 0) 1523 return 0; 1524 return 1; 1525 } 1526 1527 static noinline int copy_to_sk(struct btrfs_path *path, 1528 struct btrfs_key *key, 1529 struct btrfs_ioctl_search_key *sk, 1530 size_t *buf_size, 1531 char __user *ubuf, 1532 unsigned long *sk_offset, 1533 int *num_found) 1534 { 1535 u64 found_transid; 1536 struct extent_buffer *leaf; 1537 struct btrfs_ioctl_search_header sh; 1538 struct btrfs_key test; 1539 unsigned long item_off; 1540 unsigned long item_len; 1541 int nritems; 1542 int i; 1543 int slot; 1544 int ret = 0; 1545 1546 leaf = path->nodes[0]; 1547 slot = path->slots[0]; 1548 nritems = btrfs_header_nritems(leaf); 1549 1550 if (btrfs_header_generation(leaf) > sk->max_transid) { 1551 i = nritems; 1552 goto advance_key; 1553 } 1554 found_transid = btrfs_header_generation(leaf); 1555 1556 for (i = slot; i < nritems; i++) { 1557 item_off = btrfs_item_ptr_offset(leaf, i); 1558 item_len = btrfs_item_size(leaf, i); 1559 1560 btrfs_item_key_to_cpu(leaf, key, i); 1561 if (!key_in_sk(key, sk)) 1562 continue; 1563 1564 if (sizeof(sh) + item_len > *buf_size) { 1565 if (*num_found) { 1566 ret = 1; 1567 goto out; 1568 } 1569 1570 /* 1571 * return one empty item back for v1, which does not 1572 * handle -EOVERFLOW 1573 */ 1574 1575 *buf_size = sizeof(sh) + item_len; 1576 item_len = 0; 1577 ret = -EOVERFLOW; 1578 } 1579 1580 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1581 ret = 1; 1582 goto out; 1583 } 1584 1585 sh.objectid = key->objectid; 1586 sh.offset = key->offset; 1587 sh.type = key->type; 1588 sh.len = item_len; 1589 sh.transid = found_transid; 1590 1591 /* 1592 * Copy search result header. If we fault then loop again so we 1593 * can fault in the pages and -EFAULT there if there's a 1594 * problem. Otherwise we'll fault and then copy the buffer in 1595 * properly this next time through 1596 */ 1597 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 1598 ret = 0; 1599 goto out; 1600 } 1601 1602 *sk_offset += sizeof(sh); 1603 1604 if (item_len) { 1605 char __user *up = ubuf + *sk_offset; 1606 /* 1607 * Copy the item, same behavior as above, but reset the 1608 * * sk_offset so we copy the full thing again. 1609 */ 1610 if (read_extent_buffer_to_user_nofault(leaf, up, 1611 item_off, item_len)) { 1612 ret = 0; 1613 *sk_offset -= sizeof(sh); 1614 goto out; 1615 } 1616 1617 *sk_offset += item_len; 1618 } 1619 (*num_found)++; 1620 1621 if (ret) /* -EOVERFLOW from above */ 1622 goto out; 1623 1624 if (*num_found >= sk->nr_items) { 1625 ret = 1; 1626 goto out; 1627 } 1628 } 1629 advance_key: 1630 ret = 0; 1631 test.objectid = sk->max_objectid; 1632 test.type = sk->max_type; 1633 test.offset = sk->max_offset; 1634 if (btrfs_comp_cpu_keys(key, &test) >= 0) 1635 ret = 1; 1636 else if (key->offset < (u64)-1) 1637 key->offset++; 1638 else if (key->type < (u8)-1) { 1639 key->offset = 0; 1640 key->type++; 1641 } else if (key->objectid < (u64)-1) { 1642 key->offset = 0; 1643 key->type = 0; 1644 key->objectid++; 1645 } else 1646 ret = 1; 1647 out: 1648 /* 1649 * 0: all items from this leaf copied, continue with next 1650 * 1: * more items can be copied, but unused buffer is too small 1651 * * all items were found 1652 * Either way, it will stops the loop which iterates to the next 1653 * leaf 1654 * -EOVERFLOW: item was to large for buffer 1655 * -EFAULT: could not copy extent buffer back to userspace 1656 */ 1657 return ret; 1658 } 1659 1660 static noinline int search_ioctl(struct inode *inode, 1661 struct btrfs_ioctl_search_key *sk, 1662 size_t *buf_size, 1663 char __user *ubuf) 1664 { 1665 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 1666 struct btrfs_root *root; 1667 struct btrfs_key key; 1668 struct btrfs_path *path; 1669 int ret; 1670 int num_found = 0; 1671 unsigned long sk_offset = 0; 1672 1673 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 1674 *buf_size = sizeof(struct btrfs_ioctl_search_header); 1675 return -EOVERFLOW; 1676 } 1677 1678 path = btrfs_alloc_path(); 1679 if (!path) 1680 return -ENOMEM; 1681 1682 if (sk->tree_id == 0) { 1683 /* search the root of the inode that was passed */ 1684 root = btrfs_grab_root(BTRFS_I(inode)->root); 1685 } else { 1686 root = btrfs_get_fs_root(info, sk->tree_id, true); 1687 if (IS_ERR(root)) { 1688 btrfs_free_path(path); 1689 return PTR_ERR(root); 1690 } 1691 } 1692 1693 key.objectid = sk->min_objectid; 1694 key.type = sk->min_type; 1695 key.offset = sk->min_offset; 1696 1697 while (1) { 1698 ret = -EFAULT; 1699 /* 1700 * Ensure that the whole user buffer is faulted in at sub-page 1701 * granularity, otherwise the loop may live-lock. 1702 */ 1703 if (fault_in_subpage_writeable(ubuf + sk_offset, 1704 *buf_size - sk_offset)) 1705 break; 1706 1707 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1708 if (ret != 0) { 1709 if (ret > 0) 1710 ret = 0; 1711 goto err; 1712 } 1713 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 1714 &sk_offset, &num_found); 1715 btrfs_release_path(path); 1716 if (ret) 1717 break; 1718 1719 } 1720 if (ret > 0) 1721 ret = 0; 1722 err: 1723 sk->nr_items = num_found; 1724 btrfs_put_root(root); 1725 btrfs_free_path(path); 1726 return ret; 1727 } 1728 1729 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 1730 void __user *argp) 1731 { 1732 struct btrfs_ioctl_search_args __user *uargs = argp; 1733 struct btrfs_ioctl_search_key sk; 1734 int ret; 1735 size_t buf_size; 1736 1737 if (!capable(CAP_SYS_ADMIN)) 1738 return -EPERM; 1739 1740 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 1741 return -EFAULT; 1742 1743 buf_size = sizeof(uargs->buf); 1744 1745 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 1746 1747 /* 1748 * In the origin implementation an overflow is handled by returning a 1749 * search header with a len of zero, so reset ret. 1750 */ 1751 if (ret == -EOVERFLOW) 1752 ret = 0; 1753 1754 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 1755 ret = -EFAULT; 1756 return ret; 1757 } 1758 1759 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 1760 void __user *argp) 1761 { 1762 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 1763 struct btrfs_ioctl_search_args_v2 args; 1764 int ret; 1765 size_t buf_size; 1766 const size_t buf_limit = SZ_16M; 1767 1768 if (!capable(CAP_SYS_ADMIN)) 1769 return -EPERM; 1770 1771 /* copy search header and buffer size */ 1772 if (copy_from_user(&args, uarg, sizeof(args))) 1773 return -EFAULT; 1774 1775 buf_size = args.buf_size; 1776 1777 /* limit result size to 16MB */ 1778 if (buf_size > buf_limit) 1779 buf_size = buf_limit; 1780 1781 ret = search_ioctl(inode, &args.key, &buf_size, 1782 (char __user *)(&uarg->buf[0])); 1783 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 1784 ret = -EFAULT; 1785 else if (ret == -EOVERFLOW && 1786 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 1787 ret = -EFAULT; 1788 1789 return ret; 1790 } 1791 1792 /* 1793 * Search INODE_REFs to identify path name of 'dirid' directory 1794 * in a 'tree_id' tree. and sets path name to 'name'. 1795 */ 1796 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1797 u64 tree_id, u64 dirid, char *name) 1798 { 1799 struct btrfs_root *root; 1800 struct btrfs_key key; 1801 char *ptr; 1802 int ret = -1; 1803 int slot; 1804 int len; 1805 int total_len = 0; 1806 struct btrfs_inode_ref *iref; 1807 struct extent_buffer *l; 1808 struct btrfs_path *path; 1809 1810 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1811 name[0]='\0'; 1812 return 0; 1813 } 1814 1815 path = btrfs_alloc_path(); 1816 if (!path) 1817 return -ENOMEM; 1818 1819 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 1820 1821 root = btrfs_get_fs_root(info, tree_id, true); 1822 if (IS_ERR(root)) { 1823 ret = PTR_ERR(root); 1824 root = NULL; 1825 goto out; 1826 } 1827 1828 key.objectid = dirid; 1829 key.type = BTRFS_INODE_REF_KEY; 1830 key.offset = (u64)-1; 1831 1832 while (1) { 1833 ret = btrfs_search_backwards(root, &key, path); 1834 if (ret < 0) 1835 goto out; 1836 else if (ret > 0) { 1837 ret = -ENOENT; 1838 goto out; 1839 } 1840 1841 l = path->nodes[0]; 1842 slot = path->slots[0]; 1843 1844 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1845 len = btrfs_inode_ref_name_len(l, iref); 1846 ptr -= len + 1; 1847 total_len += len + 1; 1848 if (ptr < name) { 1849 ret = -ENAMETOOLONG; 1850 goto out; 1851 } 1852 1853 *(ptr + len) = '/'; 1854 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 1855 1856 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1857 break; 1858 1859 btrfs_release_path(path); 1860 key.objectid = key.offset; 1861 key.offset = (u64)-1; 1862 dirid = key.objectid; 1863 } 1864 memmove(name, ptr, total_len); 1865 name[total_len] = '\0'; 1866 ret = 0; 1867 out: 1868 btrfs_put_root(root); 1869 btrfs_free_path(path); 1870 return ret; 1871 } 1872 1873 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap, 1874 struct inode *inode, 1875 struct btrfs_ioctl_ino_lookup_user_args *args) 1876 { 1877 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1878 struct super_block *sb = inode->i_sb; 1879 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 1880 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 1881 u64 dirid = args->dirid; 1882 unsigned long item_off; 1883 unsigned long item_len; 1884 struct btrfs_inode_ref *iref; 1885 struct btrfs_root_ref *rref; 1886 struct btrfs_root *root = NULL; 1887 struct btrfs_path *path; 1888 struct btrfs_key key, key2; 1889 struct extent_buffer *leaf; 1890 struct inode *temp_inode; 1891 char *ptr; 1892 int slot; 1893 int len; 1894 int total_len = 0; 1895 int ret; 1896 1897 path = btrfs_alloc_path(); 1898 if (!path) 1899 return -ENOMEM; 1900 1901 /* 1902 * If the bottom subvolume does not exist directly under upper_limit, 1903 * construct the path in from the bottom up. 1904 */ 1905 if (dirid != upper_limit.objectid) { 1906 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 1907 1908 root = btrfs_get_fs_root(fs_info, treeid, true); 1909 if (IS_ERR(root)) { 1910 ret = PTR_ERR(root); 1911 goto out; 1912 } 1913 1914 key.objectid = dirid; 1915 key.type = BTRFS_INODE_REF_KEY; 1916 key.offset = (u64)-1; 1917 while (1) { 1918 ret = btrfs_search_backwards(root, &key, path); 1919 if (ret < 0) 1920 goto out_put; 1921 else if (ret > 0) { 1922 ret = -ENOENT; 1923 goto out_put; 1924 } 1925 1926 leaf = path->nodes[0]; 1927 slot = path->slots[0]; 1928 1929 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 1930 len = btrfs_inode_ref_name_len(leaf, iref); 1931 ptr -= len + 1; 1932 total_len += len + 1; 1933 if (ptr < args->path) { 1934 ret = -ENAMETOOLONG; 1935 goto out_put; 1936 } 1937 1938 *(ptr + len) = '/'; 1939 read_extent_buffer(leaf, ptr, 1940 (unsigned long)(iref + 1), len); 1941 1942 /* Check the read+exec permission of this directory */ 1943 ret = btrfs_previous_item(root, path, dirid, 1944 BTRFS_INODE_ITEM_KEY); 1945 if (ret < 0) { 1946 goto out_put; 1947 } else if (ret > 0) { 1948 ret = -ENOENT; 1949 goto out_put; 1950 } 1951 1952 leaf = path->nodes[0]; 1953 slot = path->slots[0]; 1954 btrfs_item_key_to_cpu(leaf, &key2, slot); 1955 if (key2.objectid != dirid) { 1956 ret = -ENOENT; 1957 goto out_put; 1958 } 1959 1960 temp_inode = btrfs_iget(sb, key2.objectid, root); 1961 if (IS_ERR(temp_inode)) { 1962 ret = PTR_ERR(temp_inode); 1963 goto out_put; 1964 } 1965 ret = inode_permission(idmap, temp_inode, 1966 MAY_READ | MAY_EXEC); 1967 iput(temp_inode); 1968 if (ret) { 1969 ret = -EACCES; 1970 goto out_put; 1971 } 1972 1973 if (key.offset == upper_limit.objectid) 1974 break; 1975 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 1976 ret = -EACCES; 1977 goto out_put; 1978 } 1979 1980 btrfs_release_path(path); 1981 key.objectid = key.offset; 1982 key.offset = (u64)-1; 1983 dirid = key.objectid; 1984 } 1985 1986 memmove(args->path, ptr, total_len); 1987 args->path[total_len] = '\0'; 1988 btrfs_put_root(root); 1989 root = NULL; 1990 btrfs_release_path(path); 1991 } 1992 1993 /* Get the bottom subvolume's name from ROOT_REF */ 1994 key.objectid = treeid; 1995 key.type = BTRFS_ROOT_REF_KEY; 1996 key.offset = args->treeid; 1997 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1998 if (ret < 0) { 1999 goto out; 2000 } else if (ret > 0) { 2001 ret = -ENOENT; 2002 goto out; 2003 } 2004 2005 leaf = path->nodes[0]; 2006 slot = path->slots[0]; 2007 btrfs_item_key_to_cpu(leaf, &key, slot); 2008 2009 item_off = btrfs_item_ptr_offset(leaf, slot); 2010 item_len = btrfs_item_size(leaf, slot); 2011 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2012 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2013 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2014 ret = -EINVAL; 2015 goto out; 2016 } 2017 2018 /* Copy subvolume's name */ 2019 item_off += sizeof(struct btrfs_root_ref); 2020 item_len -= sizeof(struct btrfs_root_ref); 2021 read_extent_buffer(leaf, args->name, item_off, item_len); 2022 args->name[item_len] = 0; 2023 2024 out_put: 2025 btrfs_put_root(root); 2026 out: 2027 btrfs_free_path(path); 2028 return ret; 2029 } 2030 2031 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2032 void __user *argp) 2033 { 2034 struct btrfs_ioctl_ino_lookup_args *args; 2035 int ret = 0; 2036 2037 args = memdup_user(argp, sizeof(*args)); 2038 if (IS_ERR(args)) 2039 return PTR_ERR(args); 2040 2041 /* 2042 * Unprivileged query to obtain the containing subvolume root id. The 2043 * path is reset so it's consistent with btrfs_search_path_in_tree. 2044 */ 2045 if (args->treeid == 0) 2046 args->treeid = root->root_key.objectid; 2047 2048 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2049 args->name[0] = 0; 2050 goto out; 2051 } 2052 2053 if (!capable(CAP_SYS_ADMIN)) { 2054 ret = -EPERM; 2055 goto out; 2056 } 2057 2058 ret = btrfs_search_path_in_tree(root->fs_info, 2059 args->treeid, args->objectid, 2060 args->name); 2061 2062 out: 2063 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2064 ret = -EFAULT; 2065 2066 kfree(args); 2067 return ret; 2068 } 2069 2070 /* 2071 * Version of ino_lookup ioctl (unprivileged) 2072 * 2073 * The main differences from ino_lookup ioctl are: 2074 * 2075 * 1. Read + Exec permission will be checked using inode_permission() during 2076 * path construction. -EACCES will be returned in case of failure. 2077 * 2. Path construction will be stopped at the inode number which corresponds 2078 * to the fd with which this ioctl is called. If constructed path does not 2079 * exist under fd's inode, -EACCES will be returned. 2080 * 3. The name of bottom subvolume is also searched and filled. 2081 */ 2082 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2083 { 2084 struct btrfs_ioctl_ino_lookup_user_args *args; 2085 struct inode *inode; 2086 int ret; 2087 2088 args = memdup_user(argp, sizeof(*args)); 2089 if (IS_ERR(args)) 2090 return PTR_ERR(args); 2091 2092 inode = file_inode(file); 2093 2094 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2095 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2096 /* 2097 * The subvolume does not exist under fd with which this is 2098 * called 2099 */ 2100 kfree(args); 2101 return -EACCES; 2102 } 2103 2104 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args); 2105 2106 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2107 ret = -EFAULT; 2108 2109 kfree(args); 2110 return ret; 2111 } 2112 2113 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2114 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2115 { 2116 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2117 struct btrfs_fs_info *fs_info; 2118 struct btrfs_root *root; 2119 struct btrfs_path *path; 2120 struct btrfs_key key; 2121 struct btrfs_root_item *root_item; 2122 struct btrfs_root_ref *rref; 2123 struct extent_buffer *leaf; 2124 unsigned long item_off; 2125 unsigned long item_len; 2126 int slot; 2127 int ret = 0; 2128 2129 path = btrfs_alloc_path(); 2130 if (!path) 2131 return -ENOMEM; 2132 2133 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2134 if (!subvol_info) { 2135 btrfs_free_path(path); 2136 return -ENOMEM; 2137 } 2138 2139 fs_info = BTRFS_I(inode)->root->fs_info; 2140 2141 /* Get root_item of inode's subvolume */ 2142 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2143 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2144 if (IS_ERR(root)) { 2145 ret = PTR_ERR(root); 2146 goto out_free; 2147 } 2148 root_item = &root->root_item; 2149 2150 subvol_info->treeid = key.objectid; 2151 2152 subvol_info->generation = btrfs_root_generation(root_item); 2153 subvol_info->flags = btrfs_root_flags(root_item); 2154 2155 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2156 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2157 BTRFS_UUID_SIZE); 2158 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2159 BTRFS_UUID_SIZE); 2160 2161 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2162 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2163 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2164 2165 subvol_info->otransid = btrfs_root_otransid(root_item); 2166 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2167 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2168 2169 subvol_info->stransid = btrfs_root_stransid(root_item); 2170 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2171 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2172 2173 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2174 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2175 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2176 2177 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2178 /* Search root tree for ROOT_BACKREF of this subvolume */ 2179 key.type = BTRFS_ROOT_BACKREF_KEY; 2180 key.offset = 0; 2181 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2182 if (ret < 0) { 2183 goto out; 2184 } else if (path->slots[0] >= 2185 btrfs_header_nritems(path->nodes[0])) { 2186 ret = btrfs_next_leaf(fs_info->tree_root, path); 2187 if (ret < 0) { 2188 goto out; 2189 } else if (ret > 0) { 2190 ret = -EUCLEAN; 2191 goto out; 2192 } 2193 } 2194 2195 leaf = path->nodes[0]; 2196 slot = path->slots[0]; 2197 btrfs_item_key_to_cpu(leaf, &key, slot); 2198 if (key.objectid == subvol_info->treeid && 2199 key.type == BTRFS_ROOT_BACKREF_KEY) { 2200 subvol_info->parent_id = key.offset; 2201 2202 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2203 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2204 2205 item_off = btrfs_item_ptr_offset(leaf, slot) 2206 + sizeof(struct btrfs_root_ref); 2207 item_len = btrfs_item_size(leaf, slot) 2208 - sizeof(struct btrfs_root_ref); 2209 read_extent_buffer(leaf, subvol_info->name, 2210 item_off, item_len); 2211 } else { 2212 ret = -ENOENT; 2213 goto out; 2214 } 2215 } 2216 2217 btrfs_free_path(path); 2218 path = NULL; 2219 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2220 ret = -EFAULT; 2221 2222 out: 2223 btrfs_put_root(root); 2224 out_free: 2225 btrfs_free_path(path); 2226 kfree(subvol_info); 2227 return ret; 2228 } 2229 2230 /* 2231 * Return ROOT_REF information of the subvolume containing this inode 2232 * except the subvolume name. 2233 */ 2234 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 2235 void __user *argp) 2236 { 2237 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2238 struct btrfs_root_ref *rref; 2239 struct btrfs_path *path; 2240 struct btrfs_key key; 2241 struct extent_buffer *leaf; 2242 u64 objectid; 2243 int slot; 2244 int ret; 2245 u8 found; 2246 2247 path = btrfs_alloc_path(); 2248 if (!path) 2249 return -ENOMEM; 2250 2251 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2252 if (IS_ERR(rootrefs)) { 2253 btrfs_free_path(path); 2254 return PTR_ERR(rootrefs); 2255 } 2256 2257 objectid = root->root_key.objectid; 2258 key.objectid = objectid; 2259 key.type = BTRFS_ROOT_REF_KEY; 2260 key.offset = rootrefs->min_treeid; 2261 found = 0; 2262 2263 root = root->fs_info->tree_root; 2264 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2265 if (ret < 0) { 2266 goto out; 2267 } else if (path->slots[0] >= 2268 btrfs_header_nritems(path->nodes[0])) { 2269 ret = btrfs_next_leaf(root, path); 2270 if (ret < 0) { 2271 goto out; 2272 } else if (ret > 0) { 2273 ret = -EUCLEAN; 2274 goto out; 2275 } 2276 } 2277 while (1) { 2278 leaf = path->nodes[0]; 2279 slot = path->slots[0]; 2280 2281 btrfs_item_key_to_cpu(leaf, &key, slot); 2282 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2283 ret = 0; 2284 goto out; 2285 } 2286 2287 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2288 ret = -EOVERFLOW; 2289 goto out; 2290 } 2291 2292 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2293 rootrefs->rootref[found].treeid = key.offset; 2294 rootrefs->rootref[found].dirid = 2295 btrfs_root_ref_dirid(leaf, rref); 2296 found++; 2297 2298 ret = btrfs_next_item(root, path); 2299 if (ret < 0) { 2300 goto out; 2301 } else if (ret > 0) { 2302 ret = -EUCLEAN; 2303 goto out; 2304 } 2305 } 2306 2307 out: 2308 btrfs_free_path(path); 2309 2310 if (!ret || ret == -EOVERFLOW) { 2311 rootrefs->num_items = found; 2312 /* update min_treeid for next search */ 2313 if (found) 2314 rootrefs->min_treeid = 2315 rootrefs->rootref[found - 1].treeid + 1; 2316 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2317 ret = -EFAULT; 2318 } 2319 2320 kfree(rootrefs); 2321 2322 return ret; 2323 } 2324 2325 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2326 void __user *arg, 2327 bool destroy_v2) 2328 { 2329 struct dentry *parent = file->f_path.dentry; 2330 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2331 struct dentry *dentry; 2332 struct inode *dir = d_inode(parent); 2333 struct inode *inode; 2334 struct btrfs_root *root = BTRFS_I(dir)->root; 2335 struct btrfs_root *dest = NULL; 2336 struct btrfs_ioctl_vol_args *vol_args = NULL; 2337 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2338 struct mnt_idmap *idmap = file_mnt_idmap(file); 2339 char *subvol_name, *subvol_name_ptr = NULL; 2340 int subvol_namelen; 2341 int err = 0; 2342 bool destroy_parent = false; 2343 2344 /* We don't support snapshots with extent tree v2 yet. */ 2345 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2346 btrfs_err(fs_info, 2347 "extent tree v2 doesn't support snapshot deletion yet"); 2348 return -EOPNOTSUPP; 2349 } 2350 2351 if (destroy_v2) { 2352 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2353 if (IS_ERR(vol_args2)) 2354 return PTR_ERR(vol_args2); 2355 2356 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2357 err = -EOPNOTSUPP; 2358 goto out; 2359 } 2360 2361 /* 2362 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2363 * name, same as v1 currently does. 2364 */ 2365 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2366 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2367 subvol_name = vol_args2->name; 2368 2369 err = mnt_want_write_file(file); 2370 if (err) 2371 goto out; 2372 } else { 2373 struct inode *old_dir; 2374 2375 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2376 err = -EINVAL; 2377 goto out; 2378 } 2379 2380 err = mnt_want_write_file(file); 2381 if (err) 2382 goto out; 2383 2384 dentry = btrfs_get_dentry(fs_info->sb, 2385 BTRFS_FIRST_FREE_OBJECTID, 2386 vol_args2->subvolid, 0); 2387 if (IS_ERR(dentry)) { 2388 err = PTR_ERR(dentry); 2389 goto out_drop_write; 2390 } 2391 2392 /* 2393 * Change the default parent since the subvolume being 2394 * deleted can be outside of the current mount point. 2395 */ 2396 parent = btrfs_get_parent(dentry); 2397 2398 /* 2399 * At this point dentry->d_name can point to '/' if the 2400 * subvolume we want to destroy is outsite of the 2401 * current mount point, so we need to release the 2402 * current dentry and execute the lookup to return a new 2403 * one with ->d_name pointing to the 2404 * <mount point>/subvol_name. 2405 */ 2406 dput(dentry); 2407 if (IS_ERR(parent)) { 2408 err = PTR_ERR(parent); 2409 goto out_drop_write; 2410 } 2411 old_dir = dir; 2412 dir = d_inode(parent); 2413 2414 /* 2415 * If v2 was used with SPEC_BY_ID, a new parent was 2416 * allocated since the subvolume can be outside of the 2417 * current mount point. Later on we need to release this 2418 * new parent dentry. 2419 */ 2420 destroy_parent = true; 2421 2422 /* 2423 * On idmapped mounts, deletion via subvolid is 2424 * restricted to subvolumes that are immediate 2425 * ancestors of the inode referenced by the file 2426 * descriptor in the ioctl. Otherwise the idmapping 2427 * could potentially be abused to delete subvolumes 2428 * anywhere in the filesystem the user wouldn't be able 2429 * to delete without an idmapped mount. 2430 */ 2431 if (old_dir != dir && idmap != &nop_mnt_idmap) { 2432 err = -EOPNOTSUPP; 2433 goto free_parent; 2434 } 2435 2436 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2437 fs_info, vol_args2->subvolid); 2438 if (IS_ERR(subvol_name_ptr)) { 2439 err = PTR_ERR(subvol_name_ptr); 2440 goto free_parent; 2441 } 2442 /* subvol_name_ptr is already nul terminated */ 2443 subvol_name = (char *)kbasename(subvol_name_ptr); 2444 } 2445 } else { 2446 vol_args = memdup_user(arg, sizeof(*vol_args)); 2447 if (IS_ERR(vol_args)) 2448 return PTR_ERR(vol_args); 2449 2450 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2451 subvol_name = vol_args->name; 2452 2453 err = mnt_want_write_file(file); 2454 if (err) 2455 goto out; 2456 } 2457 2458 subvol_namelen = strlen(subvol_name); 2459 2460 if (strchr(subvol_name, '/') || 2461 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2462 err = -EINVAL; 2463 goto free_subvol_name; 2464 } 2465 2466 if (!S_ISDIR(dir->i_mode)) { 2467 err = -ENOTDIR; 2468 goto free_subvol_name; 2469 } 2470 2471 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2472 if (err == -EINTR) 2473 goto free_subvol_name; 2474 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen); 2475 if (IS_ERR(dentry)) { 2476 err = PTR_ERR(dentry); 2477 goto out_unlock_dir; 2478 } 2479 2480 if (d_really_is_negative(dentry)) { 2481 err = -ENOENT; 2482 goto out_dput; 2483 } 2484 2485 inode = d_inode(dentry); 2486 dest = BTRFS_I(inode)->root; 2487 if (!capable(CAP_SYS_ADMIN)) { 2488 /* 2489 * Regular user. Only allow this with a special mount 2490 * option, when the user has write+exec access to the 2491 * subvol root, and when rmdir(2) would have been 2492 * allowed. 2493 * 2494 * Note that this is _not_ check that the subvol is 2495 * empty or doesn't contain data that we wouldn't 2496 * otherwise be able to delete. 2497 * 2498 * Users who want to delete empty subvols should try 2499 * rmdir(2). 2500 */ 2501 err = -EPERM; 2502 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2503 goto out_dput; 2504 2505 /* 2506 * Do not allow deletion if the parent dir is the same 2507 * as the dir to be deleted. That means the ioctl 2508 * must be called on the dentry referencing the root 2509 * of the subvol, not a random directory contained 2510 * within it. 2511 */ 2512 err = -EINVAL; 2513 if (root == dest) 2514 goto out_dput; 2515 2516 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC); 2517 if (err) 2518 goto out_dput; 2519 } 2520 2521 /* check if subvolume may be deleted by a user */ 2522 err = btrfs_may_delete(idmap, dir, dentry, 1); 2523 if (err) 2524 goto out_dput; 2525 2526 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2527 err = -EINVAL; 2528 goto out_dput; 2529 } 2530 2531 btrfs_inode_lock(BTRFS_I(inode), 0); 2532 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry); 2533 btrfs_inode_unlock(BTRFS_I(inode), 0); 2534 if (!err) 2535 d_delete_notify(dir, dentry); 2536 2537 out_dput: 2538 dput(dentry); 2539 out_unlock_dir: 2540 btrfs_inode_unlock(BTRFS_I(dir), 0); 2541 free_subvol_name: 2542 kfree(subvol_name_ptr); 2543 free_parent: 2544 if (destroy_parent) 2545 dput(parent); 2546 out_drop_write: 2547 mnt_drop_write_file(file); 2548 out: 2549 kfree(vol_args2); 2550 kfree(vol_args); 2551 return err; 2552 } 2553 2554 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2555 { 2556 struct inode *inode = file_inode(file); 2557 struct btrfs_root *root = BTRFS_I(inode)->root; 2558 struct btrfs_ioctl_defrag_range_args range = {0}; 2559 int ret; 2560 2561 ret = mnt_want_write_file(file); 2562 if (ret) 2563 return ret; 2564 2565 if (btrfs_root_readonly(root)) { 2566 ret = -EROFS; 2567 goto out; 2568 } 2569 2570 switch (inode->i_mode & S_IFMT) { 2571 case S_IFDIR: 2572 if (!capable(CAP_SYS_ADMIN)) { 2573 ret = -EPERM; 2574 goto out; 2575 } 2576 ret = btrfs_defrag_root(root); 2577 break; 2578 case S_IFREG: 2579 /* 2580 * Note that this does not check the file descriptor for write 2581 * access. This prevents defragmenting executables that are 2582 * running and allows defrag on files open in read-only mode. 2583 */ 2584 if (!capable(CAP_SYS_ADMIN) && 2585 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) { 2586 ret = -EPERM; 2587 goto out; 2588 } 2589 2590 if (argp) { 2591 if (copy_from_user(&range, argp, sizeof(range))) { 2592 ret = -EFAULT; 2593 goto out; 2594 } 2595 /* compression requires us to start the IO */ 2596 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2597 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 2598 range.extent_thresh = (u32)-1; 2599 } 2600 } else { 2601 /* the rest are all set to zero by kzalloc */ 2602 range.len = (u64)-1; 2603 } 2604 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 2605 &range, BTRFS_OLDEST_GENERATION, 0); 2606 if (ret > 0) 2607 ret = 0; 2608 break; 2609 default: 2610 ret = -EINVAL; 2611 } 2612 out: 2613 mnt_drop_write_file(file); 2614 return ret; 2615 } 2616 2617 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2618 { 2619 struct btrfs_ioctl_vol_args *vol_args; 2620 bool restore_op = false; 2621 int ret; 2622 2623 if (!capable(CAP_SYS_ADMIN)) 2624 return -EPERM; 2625 2626 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2627 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 2628 return -EINVAL; 2629 } 2630 2631 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 2632 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 2633 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2634 2635 /* 2636 * We can do the device add because we have a paused balanced, 2637 * change the exclusive op type and remember we should bring 2638 * back the paused balance 2639 */ 2640 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 2641 btrfs_exclop_start_unlock(fs_info); 2642 restore_op = true; 2643 } 2644 2645 vol_args = memdup_user(arg, sizeof(*vol_args)); 2646 if (IS_ERR(vol_args)) { 2647 ret = PTR_ERR(vol_args); 2648 goto out; 2649 } 2650 2651 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2652 ret = btrfs_init_new_device(fs_info, vol_args->name); 2653 2654 if (!ret) 2655 btrfs_info(fs_info, "disk added %s", vol_args->name); 2656 2657 kfree(vol_args); 2658 out: 2659 if (restore_op) 2660 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 2661 else 2662 btrfs_exclop_finish(fs_info); 2663 return ret; 2664 } 2665 2666 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2667 { 2668 BTRFS_DEV_LOOKUP_ARGS(args); 2669 struct inode *inode = file_inode(file); 2670 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2671 struct btrfs_ioctl_vol_args_v2 *vol_args; 2672 struct block_device *bdev = NULL; 2673 fmode_t mode; 2674 int ret; 2675 bool cancel = false; 2676 2677 if (!capable(CAP_SYS_ADMIN)) 2678 return -EPERM; 2679 2680 vol_args = memdup_user(arg, sizeof(*vol_args)); 2681 if (IS_ERR(vol_args)) 2682 return PTR_ERR(vol_args); 2683 2684 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 2685 ret = -EOPNOTSUPP; 2686 goto out; 2687 } 2688 2689 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2690 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2691 args.devid = vol_args->devid; 2692 } else if (!strcmp("cancel", vol_args->name)) { 2693 cancel = true; 2694 } else { 2695 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2696 if (ret) 2697 goto out; 2698 } 2699 2700 ret = mnt_want_write_file(file); 2701 if (ret) 2702 goto out; 2703 2704 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2705 cancel); 2706 if (ret) 2707 goto err_drop; 2708 2709 /* Exclusive operation is now claimed */ 2710 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 2711 2712 btrfs_exclop_finish(fs_info); 2713 2714 if (!ret) { 2715 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2716 btrfs_info(fs_info, "device deleted: id %llu", 2717 vol_args->devid); 2718 else 2719 btrfs_info(fs_info, "device deleted: %s", 2720 vol_args->name); 2721 } 2722 err_drop: 2723 mnt_drop_write_file(file); 2724 if (bdev) 2725 blkdev_put(bdev, mode); 2726 out: 2727 btrfs_put_dev_args_from_path(&args); 2728 kfree(vol_args); 2729 return ret; 2730 } 2731 2732 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2733 { 2734 BTRFS_DEV_LOOKUP_ARGS(args); 2735 struct inode *inode = file_inode(file); 2736 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2737 struct btrfs_ioctl_vol_args *vol_args; 2738 struct block_device *bdev = NULL; 2739 fmode_t mode; 2740 int ret; 2741 bool cancel = false; 2742 2743 if (!capable(CAP_SYS_ADMIN)) 2744 return -EPERM; 2745 2746 vol_args = memdup_user(arg, sizeof(*vol_args)); 2747 if (IS_ERR(vol_args)) 2748 return PTR_ERR(vol_args); 2749 2750 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2751 if (!strcmp("cancel", vol_args->name)) { 2752 cancel = true; 2753 } else { 2754 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2755 if (ret) 2756 goto out; 2757 } 2758 2759 ret = mnt_want_write_file(file); 2760 if (ret) 2761 goto out; 2762 2763 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2764 cancel); 2765 if (ret == 0) { 2766 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 2767 if (!ret) 2768 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2769 btrfs_exclop_finish(fs_info); 2770 } 2771 2772 mnt_drop_write_file(file); 2773 if (bdev) 2774 blkdev_put(bdev, mode); 2775 out: 2776 btrfs_put_dev_args_from_path(&args); 2777 kfree(vol_args); 2778 return ret; 2779 } 2780 2781 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2782 void __user *arg) 2783 { 2784 struct btrfs_ioctl_fs_info_args *fi_args; 2785 struct btrfs_device *device; 2786 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2787 u64 flags_in; 2788 int ret = 0; 2789 2790 fi_args = memdup_user(arg, sizeof(*fi_args)); 2791 if (IS_ERR(fi_args)) 2792 return PTR_ERR(fi_args); 2793 2794 flags_in = fi_args->flags; 2795 memset(fi_args, 0, sizeof(*fi_args)); 2796 2797 rcu_read_lock(); 2798 fi_args->num_devices = fs_devices->num_devices; 2799 2800 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2801 if (device->devid > fi_args->max_id) 2802 fi_args->max_id = device->devid; 2803 } 2804 rcu_read_unlock(); 2805 2806 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 2807 fi_args->nodesize = fs_info->nodesize; 2808 fi_args->sectorsize = fs_info->sectorsize; 2809 fi_args->clone_alignment = fs_info->sectorsize; 2810 2811 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 2812 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 2813 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 2814 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 2815 } 2816 2817 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 2818 fi_args->generation = fs_info->generation; 2819 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 2820 } 2821 2822 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 2823 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 2824 sizeof(fi_args->metadata_uuid)); 2825 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 2826 } 2827 2828 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2829 ret = -EFAULT; 2830 2831 kfree(fi_args); 2832 return ret; 2833 } 2834 2835 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2836 void __user *arg) 2837 { 2838 BTRFS_DEV_LOOKUP_ARGS(args); 2839 struct btrfs_ioctl_dev_info_args *di_args; 2840 struct btrfs_device *dev; 2841 int ret = 0; 2842 2843 di_args = memdup_user(arg, sizeof(*di_args)); 2844 if (IS_ERR(di_args)) 2845 return PTR_ERR(di_args); 2846 2847 args.devid = di_args->devid; 2848 if (!btrfs_is_empty_uuid(di_args->uuid)) 2849 args.uuid = di_args->uuid; 2850 2851 rcu_read_lock(); 2852 dev = btrfs_find_device(fs_info->fs_devices, &args); 2853 if (!dev) { 2854 ret = -ENODEV; 2855 goto out; 2856 } 2857 2858 di_args->devid = dev->devid; 2859 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2860 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2861 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2862 if (dev->name) 2863 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path)); 2864 else 2865 di_args->path[0] = '\0'; 2866 2867 out: 2868 rcu_read_unlock(); 2869 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2870 ret = -EFAULT; 2871 2872 kfree(di_args); 2873 return ret; 2874 } 2875 2876 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2877 { 2878 struct inode *inode = file_inode(file); 2879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2880 struct btrfs_root *root = BTRFS_I(inode)->root; 2881 struct btrfs_root *new_root; 2882 struct btrfs_dir_item *di; 2883 struct btrfs_trans_handle *trans; 2884 struct btrfs_path *path = NULL; 2885 struct btrfs_disk_key disk_key; 2886 struct fscrypt_str name = FSTR_INIT("default", 7); 2887 u64 objectid = 0; 2888 u64 dir_id; 2889 int ret; 2890 2891 if (!capable(CAP_SYS_ADMIN)) 2892 return -EPERM; 2893 2894 ret = mnt_want_write_file(file); 2895 if (ret) 2896 return ret; 2897 2898 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2899 ret = -EFAULT; 2900 goto out; 2901 } 2902 2903 if (!objectid) 2904 objectid = BTRFS_FS_TREE_OBJECTID; 2905 2906 new_root = btrfs_get_fs_root(fs_info, objectid, true); 2907 if (IS_ERR(new_root)) { 2908 ret = PTR_ERR(new_root); 2909 goto out; 2910 } 2911 if (!is_fstree(new_root->root_key.objectid)) { 2912 ret = -ENOENT; 2913 goto out_free; 2914 } 2915 2916 path = btrfs_alloc_path(); 2917 if (!path) { 2918 ret = -ENOMEM; 2919 goto out_free; 2920 } 2921 2922 trans = btrfs_start_transaction(root, 1); 2923 if (IS_ERR(trans)) { 2924 ret = PTR_ERR(trans); 2925 goto out_free; 2926 } 2927 2928 dir_id = btrfs_super_root_dir(fs_info->super_copy); 2929 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 2930 dir_id, &name, 1); 2931 if (IS_ERR_OR_NULL(di)) { 2932 btrfs_release_path(path); 2933 btrfs_end_transaction(trans); 2934 btrfs_err(fs_info, 2935 "Umm, you don't have the default diritem, this isn't going to work"); 2936 ret = -ENOENT; 2937 goto out_free; 2938 } 2939 2940 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2941 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2942 btrfs_mark_buffer_dirty(path->nodes[0]); 2943 btrfs_release_path(path); 2944 2945 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 2946 btrfs_end_transaction(trans); 2947 out_free: 2948 btrfs_put_root(new_root); 2949 btrfs_free_path(path); 2950 out: 2951 mnt_drop_write_file(file); 2952 return ret; 2953 } 2954 2955 static void get_block_group_info(struct list_head *groups_list, 2956 struct btrfs_ioctl_space_info *space) 2957 { 2958 struct btrfs_block_group *block_group; 2959 2960 space->total_bytes = 0; 2961 space->used_bytes = 0; 2962 space->flags = 0; 2963 list_for_each_entry(block_group, groups_list, list) { 2964 space->flags = block_group->flags; 2965 space->total_bytes += block_group->length; 2966 space->used_bytes += block_group->used; 2967 } 2968 } 2969 2970 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 2971 void __user *arg) 2972 { 2973 struct btrfs_ioctl_space_args space_args; 2974 struct btrfs_ioctl_space_info space; 2975 struct btrfs_ioctl_space_info *dest; 2976 struct btrfs_ioctl_space_info *dest_orig; 2977 struct btrfs_ioctl_space_info __user *user_dest; 2978 struct btrfs_space_info *info; 2979 static const u64 types[] = { 2980 BTRFS_BLOCK_GROUP_DATA, 2981 BTRFS_BLOCK_GROUP_SYSTEM, 2982 BTRFS_BLOCK_GROUP_METADATA, 2983 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 2984 }; 2985 int num_types = 4; 2986 int alloc_size; 2987 int ret = 0; 2988 u64 slot_count = 0; 2989 int i, c; 2990 2991 if (copy_from_user(&space_args, 2992 (struct btrfs_ioctl_space_args __user *)arg, 2993 sizeof(space_args))) 2994 return -EFAULT; 2995 2996 for (i = 0; i < num_types; i++) { 2997 struct btrfs_space_info *tmp; 2998 2999 info = NULL; 3000 list_for_each_entry(tmp, &fs_info->space_info, list) { 3001 if (tmp->flags == types[i]) { 3002 info = tmp; 3003 break; 3004 } 3005 } 3006 3007 if (!info) 3008 continue; 3009 3010 down_read(&info->groups_sem); 3011 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3012 if (!list_empty(&info->block_groups[c])) 3013 slot_count++; 3014 } 3015 up_read(&info->groups_sem); 3016 } 3017 3018 /* 3019 * Global block reserve, exported as a space_info 3020 */ 3021 slot_count++; 3022 3023 /* space_slots == 0 means they are asking for a count */ 3024 if (space_args.space_slots == 0) { 3025 space_args.total_spaces = slot_count; 3026 goto out; 3027 } 3028 3029 slot_count = min_t(u64, space_args.space_slots, slot_count); 3030 3031 alloc_size = sizeof(*dest) * slot_count; 3032 3033 /* we generally have at most 6 or so space infos, one for each raid 3034 * level. So, a whole page should be more than enough for everyone 3035 */ 3036 if (alloc_size > PAGE_SIZE) 3037 return -ENOMEM; 3038 3039 space_args.total_spaces = 0; 3040 dest = kmalloc(alloc_size, GFP_KERNEL); 3041 if (!dest) 3042 return -ENOMEM; 3043 dest_orig = dest; 3044 3045 /* now we have a buffer to copy into */ 3046 for (i = 0; i < num_types; i++) { 3047 struct btrfs_space_info *tmp; 3048 3049 if (!slot_count) 3050 break; 3051 3052 info = NULL; 3053 list_for_each_entry(tmp, &fs_info->space_info, list) { 3054 if (tmp->flags == types[i]) { 3055 info = tmp; 3056 break; 3057 } 3058 } 3059 3060 if (!info) 3061 continue; 3062 down_read(&info->groups_sem); 3063 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3064 if (!list_empty(&info->block_groups[c])) { 3065 get_block_group_info(&info->block_groups[c], 3066 &space); 3067 memcpy(dest, &space, sizeof(space)); 3068 dest++; 3069 space_args.total_spaces++; 3070 slot_count--; 3071 } 3072 if (!slot_count) 3073 break; 3074 } 3075 up_read(&info->groups_sem); 3076 } 3077 3078 /* 3079 * Add global block reserve 3080 */ 3081 if (slot_count) { 3082 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3083 3084 spin_lock(&block_rsv->lock); 3085 space.total_bytes = block_rsv->size; 3086 space.used_bytes = block_rsv->size - block_rsv->reserved; 3087 spin_unlock(&block_rsv->lock); 3088 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3089 memcpy(dest, &space, sizeof(space)); 3090 space_args.total_spaces++; 3091 } 3092 3093 user_dest = (struct btrfs_ioctl_space_info __user *) 3094 (arg + sizeof(struct btrfs_ioctl_space_args)); 3095 3096 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3097 ret = -EFAULT; 3098 3099 kfree(dest_orig); 3100 out: 3101 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3102 ret = -EFAULT; 3103 3104 return ret; 3105 } 3106 3107 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3108 void __user *argp) 3109 { 3110 struct btrfs_trans_handle *trans; 3111 u64 transid; 3112 3113 trans = btrfs_attach_transaction_barrier(root); 3114 if (IS_ERR(trans)) { 3115 if (PTR_ERR(trans) != -ENOENT) 3116 return PTR_ERR(trans); 3117 3118 /* No running transaction, don't bother */ 3119 transid = root->fs_info->last_trans_committed; 3120 goto out; 3121 } 3122 transid = trans->transid; 3123 btrfs_commit_transaction_async(trans); 3124 out: 3125 if (argp) 3126 if (copy_to_user(argp, &transid, sizeof(transid))) 3127 return -EFAULT; 3128 return 0; 3129 } 3130 3131 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3132 void __user *argp) 3133 { 3134 u64 transid; 3135 3136 if (argp) { 3137 if (copy_from_user(&transid, argp, sizeof(transid))) 3138 return -EFAULT; 3139 } else { 3140 transid = 0; /* current trans */ 3141 } 3142 return btrfs_wait_for_commit(fs_info, transid); 3143 } 3144 3145 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3146 { 3147 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3148 struct btrfs_ioctl_scrub_args *sa; 3149 int ret; 3150 3151 if (!capable(CAP_SYS_ADMIN)) 3152 return -EPERM; 3153 3154 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3155 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 3156 return -EINVAL; 3157 } 3158 3159 sa = memdup_user(arg, sizeof(*sa)); 3160 if (IS_ERR(sa)) 3161 return PTR_ERR(sa); 3162 3163 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3164 ret = mnt_want_write_file(file); 3165 if (ret) 3166 goto out; 3167 } 3168 3169 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3170 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3171 0); 3172 3173 /* 3174 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3175 * error. This is important as it allows user space to know how much 3176 * progress scrub has done. For example, if scrub is canceled we get 3177 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3178 * space. Later user space can inspect the progress from the structure 3179 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3180 * previously (btrfs-progs does this). 3181 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3182 * then return -EFAULT to signal the structure was not copied or it may 3183 * be corrupt and unreliable due to a partial copy. 3184 */ 3185 if (copy_to_user(arg, sa, sizeof(*sa))) 3186 ret = -EFAULT; 3187 3188 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3189 mnt_drop_write_file(file); 3190 out: 3191 kfree(sa); 3192 return ret; 3193 } 3194 3195 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3196 { 3197 if (!capable(CAP_SYS_ADMIN)) 3198 return -EPERM; 3199 3200 return btrfs_scrub_cancel(fs_info); 3201 } 3202 3203 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3204 void __user *arg) 3205 { 3206 struct btrfs_ioctl_scrub_args *sa; 3207 int ret; 3208 3209 if (!capable(CAP_SYS_ADMIN)) 3210 return -EPERM; 3211 3212 sa = memdup_user(arg, sizeof(*sa)); 3213 if (IS_ERR(sa)) 3214 return PTR_ERR(sa); 3215 3216 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3217 3218 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3219 ret = -EFAULT; 3220 3221 kfree(sa); 3222 return ret; 3223 } 3224 3225 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3226 void __user *arg) 3227 { 3228 struct btrfs_ioctl_get_dev_stats *sa; 3229 int ret; 3230 3231 sa = memdup_user(arg, sizeof(*sa)); 3232 if (IS_ERR(sa)) 3233 return PTR_ERR(sa); 3234 3235 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3236 kfree(sa); 3237 return -EPERM; 3238 } 3239 3240 ret = btrfs_get_dev_stats(fs_info, sa); 3241 3242 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3243 ret = -EFAULT; 3244 3245 kfree(sa); 3246 return ret; 3247 } 3248 3249 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3250 void __user *arg) 3251 { 3252 struct btrfs_ioctl_dev_replace_args *p; 3253 int ret; 3254 3255 if (!capable(CAP_SYS_ADMIN)) 3256 return -EPERM; 3257 3258 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3259 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 3260 return -EINVAL; 3261 } 3262 3263 p = memdup_user(arg, sizeof(*p)); 3264 if (IS_ERR(p)) 3265 return PTR_ERR(p); 3266 3267 switch (p->cmd) { 3268 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3269 if (sb_rdonly(fs_info->sb)) { 3270 ret = -EROFS; 3271 goto out; 3272 } 3273 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3274 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3275 } else { 3276 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3277 btrfs_exclop_finish(fs_info); 3278 } 3279 break; 3280 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3281 btrfs_dev_replace_status(fs_info, p); 3282 ret = 0; 3283 break; 3284 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3285 p->result = btrfs_dev_replace_cancel(fs_info); 3286 ret = 0; 3287 break; 3288 default: 3289 ret = -EINVAL; 3290 break; 3291 } 3292 3293 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3294 ret = -EFAULT; 3295 out: 3296 kfree(p); 3297 return ret; 3298 } 3299 3300 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3301 { 3302 int ret = 0; 3303 int i; 3304 u64 rel_ptr; 3305 int size; 3306 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3307 struct inode_fs_paths *ipath = NULL; 3308 struct btrfs_path *path; 3309 3310 if (!capable(CAP_DAC_READ_SEARCH)) 3311 return -EPERM; 3312 3313 path = btrfs_alloc_path(); 3314 if (!path) { 3315 ret = -ENOMEM; 3316 goto out; 3317 } 3318 3319 ipa = memdup_user(arg, sizeof(*ipa)); 3320 if (IS_ERR(ipa)) { 3321 ret = PTR_ERR(ipa); 3322 ipa = NULL; 3323 goto out; 3324 } 3325 3326 size = min_t(u32, ipa->size, 4096); 3327 ipath = init_ipath(size, root, path); 3328 if (IS_ERR(ipath)) { 3329 ret = PTR_ERR(ipath); 3330 ipath = NULL; 3331 goto out; 3332 } 3333 3334 ret = paths_from_inode(ipa->inum, ipath); 3335 if (ret < 0) 3336 goto out; 3337 3338 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3339 rel_ptr = ipath->fspath->val[i] - 3340 (u64)(unsigned long)ipath->fspath->val; 3341 ipath->fspath->val[i] = rel_ptr; 3342 } 3343 3344 btrfs_free_path(path); 3345 path = NULL; 3346 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3347 ipath->fspath, size); 3348 if (ret) { 3349 ret = -EFAULT; 3350 goto out; 3351 } 3352 3353 out: 3354 btrfs_free_path(path); 3355 free_ipath(ipath); 3356 kfree(ipa); 3357 3358 return ret; 3359 } 3360 3361 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3362 void __user *arg, int version) 3363 { 3364 int ret = 0; 3365 int size; 3366 struct btrfs_ioctl_logical_ino_args *loi; 3367 struct btrfs_data_container *inodes = NULL; 3368 struct btrfs_path *path = NULL; 3369 bool ignore_offset; 3370 3371 if (!capable(CAP_SYS_ADMIN)) 3372 return -EPERM; 3373 3374 loi = memdup_user(arg, sizeof(*loi)); 3375 if (IS_ERR(loi)) 3376 return PTR_ERR(loi); 3377 3378 if (version == 1) { 3379 ignore_offset = false; 3380 size = min_t(u32, loi->size, SZ_64K); 3381 } else { 3382 /* All reserved bits must be 0 for now */ 3383 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3384 ret = -EINVAL; 3385 goto out_loi; 3386 } 3387 /* Only accept flags we have defined so far */ 3388 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3389 ret = -EINVAL; 3390 goto out_loi; 3391 } 3392 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3393 size = min_t(u32, loi->size, SZ_16M); 3394 } 3395 3396 inodes = init_data_container(size); 3397 if (IS_ERR(inodes)) { 3398 ret = PTR_ERR(inodes); 3399 goto out_loi; 3400 } 3401 3402 path = btrfs_alloc_path(); 3403 if (!path) { 3404 ret = -ENOMEM; 3405 goto out; 3406 } 3407 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3408 inodes, ignore_offset); 3409 btrfs_free_path(path); 3410 if (ret == -EINVAL) 3411 ret = -ENOENT; 3412 if (ret < 0) 3413 goto out; 3414 3415 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3416 size); 3417 if (ret) 3418 ret = -EFAULT; 3419 3420 out: 3421 kvfree(inodes); 3422 out_loi: 3423 kfree(loi); 3424 3425 return ret; 3426 } 3427 3428 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3429 struct btrfs_ioctl_balance_args *bargs) 3430 { 3431 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3432 3433 bargs->flags = bctl->flags; 3434 3435 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3436 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3437 if (atomic_read(&fs_info->balance_pause_req)) 3438 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3439 if (atomic_read(&fs_info->balance_cancel_req)) 3440 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3441 3442 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3443 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3444 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3445 3446 spin_lock(&fs_info->balance_lock); 3447 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3448 spin_unlock(&fs_info->balance_lock); 3449 } 3450 3451 /* 3452 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 3453 * required. 3454 * 3455 * @fs_info: the filesystem 3456 * @excl_acquired: ptr to boolean value which is set to false in case balance 3457 * is being resumed 3458 * 3459 * Return 0 on success in which case both fs_info::balance is acquired as well 3460 * as exclusive ops are blocked. In case of failure return an error code. 3461 */ 3462 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 3463 { 3464 int ret; 3465 3466 /* 3467 * Exclusive operation is locked. Three possibilities: 3468 * (1) some other op is running 3469 * (2) balance is running 3470 * (3) balance is paused -- special case (think resume) 3471 */ 3472 while (1) { 3473 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3474 *excl_acquired = true; 3475 mutex_lock(&fs_info->balance_mutex); 3476 return 0; 3477 } 3478 3479 mutex_lock(&fs_info->balance_mutex); 3480 if (fs_info->balance_ctl) { 3481 /* This is either (2) or (3) */ 3482 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3483 /* This is (2) */ 3484 ret = -EINPROGRESS; 3485 goto out_failure; 3486 3487 } else { 3488 mutex_unlock(&fs_info->balance_mutex); 3489 /* 3490 * Lock released to allow other waiters to 3491 * continue, we'll reexamine the status again. 3492 */ 3493 mutex_lock(&fs_info->balance_mutex); 3494 3495 if (fs_info->balance_ctl && 3496 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3497 /* This is (3) */ 3498 *excl_acquired = false; 3499 return 0; 3500 } 3501 } 3502 } else { 3503 /* This is (1) */ 3504 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3505 goto out_failure; 3506 } 3507 3508 mutex_unlock(&fs_info->balance_mutex); 3509 } 3510 3511 out_failure: 3512 mutex_unlock(&fs_info->balance_mutex); 3513 *excl_acquired = false; 3514 return ret; 3515 } 3516 3517 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3518 { 3519 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3520 struct btrfs_fs_info *fs_info = root->fs_info; 3521 struct btrfs_ioctl_balance_args *bargs; 3522 struct btrfs_balance_control *bctl; 3523 bool need_unlock = true; 3524 int ret; 3525 3526 if (!capable(CAP_SYS_ADMIN)) 3527 return -EPERM; 3528 3529 ret = mnt_want_write_file(file); 3530 if (ret) 3531 return ret; 3532 3533 bargs = memdup_user(arg, sizeof(*bargs)); 3534 if (IS_ERR(bargs)) { 3535 ret = PTR_ERR(bargs); 3536 bargs = NULL; 3537 goto out; 3538 } 3539 3540 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 3541 if (ret) 3542 goto out; 3543 3544 lockdep_assert_held(&fs_info->balance_mutex); 3545 3546 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3547 if (!fs_info->balance_ctl) { 3548 ret = -ENOTCONN; 3549 goto out_unlock; 3550 } 3551 3552 bctl = fs_info->balance_ctl; 3553 spin_lock(&fs_info->balance_lock); 3554 bctl->flags |= BTRFS_BALANCE_RESUME; 3555 spin_unlock(&fs_info->balance_lock); 3556 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 3557 3558 goto do_balance; 3559 } 3560 3561 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3562 ret = -EINVAL; 3563 goto out_unlock; 3564 } 3565 3566 if (fs_info->balance_ctl) { 3567 ret = -EINPROGRESS; 3568 goto out_unlock; 3569 } 3570 3571 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3572 if (!bctl) { 3573 ret = -ENOMEM; 3574 goto out_unlock; 3575 } 3576 3577 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3578 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3579 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3580 3581 bctl->flags = bargs->flags; 3582 do_balance: 3583 /* 3584 * Ownership of bctl and exclusive operation goes to btrfs_balance. 3585 * bctl is freed in reset_balance_state, or, if restriper was paused 3586 * all the way until unmount, in free_fs_info. The flag should be 3587 * cleared after reset_balance_state. 3588 */ 3589 need_unlock = false; 3590 3591 ret = btrfs_balance(fs_info, bctl, bargs); 3592 bctl = NULL; 3593 3594 if (ret == 0 || ret == -ECANCELED) { 3595 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3596 ret = -EFAULT; 3597 } 3598 3599 kfree(bctl); 3600 out_unlock: 3601 mutex_unlock(&fs_info->balance_mutex); 3602 if (need_unlock) 3603 btrfs_exclop_finish(fs_info); 3604 out: 3605 mnt_drop_write_file(file); 3606 kfree(bargs); 3607 return ret; 3608 } 3609 3610 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 3611 { 3612 if (!capable(CAP_SYS_ADMIN)) 3613 return -EPERM; 3614 3615 switch (cmd) { 3616 case BTRFS_BALANCE_CTL_PAUSE: 3617 return btrfs_pause_balance(fs_info); 3618 case BTRFS_BALANCE_CTL_CANCEL: 3619 return btrfs_cancel_balance(fs_info); 3620 } 3621 3622 return -EINVAL; 3623 } 3624 3625 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 3626 void __user *arg) 3627 { 3628 struct btrfs_ioctl_balance_args *bargs; 3629 int ret = 0; 3630 3631 if (!capable(CAP_SYS_ADMIN)) 3632 return -EPERM; 3633 3634 mutex_lock(&fs_info->balance_mutex); 3635 if (!fs_info->balance_ctl) { 3636 ret = -ENOTCONN; 3637 goto out; 3638 } 3639 3640 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 3641 if (!bargs) { 3642 ret = -ENOMEM; 3643 goto out; 3644 } 3645 3646 btrfs_update_ioctl_balance_args(fs_info, bargs); 3647 3648 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3649 ret = -EFAULT; 3650 3651 kfree(bargs); 3652 out: 3653 mutex_unlock(&fs_info->balance_mutex); 3654 return ret; 3655 } 3656 3657 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3658 { 3659 struct inode *inode = file_inode(file); 3660 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3661 struct btrfs_ioctl_quota_ctl_args *sa; 3662 int ret; 3663 3664 if (!capable(CAP_SYS_ADMIN)) 3665 return -EPERM; 3666 3667 ret = mnt_want_write_file(file); 3668 if (ret) 3669 return ret; 3670 3671 sa = memdup_user(arg, sizeof(*sa)); 3672 if (IS_ERR(sa)) { 3673 ret = PTR_ERR(sa); 3674 goto drop_write; 3675 } 3676 3677 down_write(&fs_info->subvol_sem); 3678 3679 switch (sa->cmd) { 3680 case BTRFS_QUOTA_CTL_ENABLE: 3681 ret = btrfs_quota_enable(fs_info); 3682 break; 3683 case BTRFS_QUOTA_CTL_DISABLE: 3684 ret = btrfs_quota_disable(fs_info); 3685 break; 3686 default: 3687 ret = -EINVAL; 3688 break; 3689 } 3690 3691 kfree(sa); 3692 up_write(&fs_info->subvol_sem); 3693 drop_write: 3694 mnt_drop_write_file(file); 3695 return ret; 3696 } 3697 3698 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3699 { 3700 struct inode *inode = file_inode(file); 3701 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3702 struct btrfs_root *root = BTRFS_I(inode)->root; 3703 struct btrfs_ioctl_qgroup_assign_args *sa; 3704 struct btrfs_trans_handle *trans; 3705 int ret; 3706 int err; 3707 3708 if (!capable(CAP_SYS_ADMIN)) 3709 return -EPERM; 3710 3711 ret = mnt_want_write_file(file); 3712 if (ret) 3713 return ret; 3714 3715 sa = memdup_user(arg, sizeof(*sa)); 3716 if (IS_ERR(sa)) { 3717 ret = PTR_ERR(sa); 3718 goto drop_write; 3719 } 3720 3721 trans = btrfs_join_transaction(root); 3722 if (IS_ERR(trans)) { 3723 ret = PTR_ERR(trans); 3724 goto out; 3725 } 3726 3727 if (sa->assign) { 3728 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 3729 } else { 3730 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 3731 } 3732 3733 /* update qgroup status and info */ 3734 err = btrfs_run_qgroups(trans); 3735 if (err < 0) 3736 btrfs_handle_fs_error(fs_info, err, 3737 "failed to update qgroup status and info"); 3738 err = btrfs_end_transaction(trans); 3739 if (err && !ret) 3740 ret = err; 3741 3742 out: 3743 kfree(sa); 3744 drop_write: 3745 mnt_drop_write_file(file); 3746 return ret; 3747 } 3748 3749 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3750 { 3751 struct inode *inode = file_inode(file); 3752 struct btrfs_root *root = BTRFS_I(inode)->root; 3753 struct btrfs_ioctl_qgroup_create_args *sa; 3754 struct btrfs_trans_handle *trans; 3755 int ret; 3756 int err; 3757 3758 if (!capable(CAP_SYS_ADMIN)) 3759 return -EPERM; 3760 3761 ret = mnt_want_write_file(file); 3762 if (ret) 3763 return ret; 3764 3765 sa = memdup_user(arg, sizeof(*sa)); 3766 if (IS_ERR(sa)) { 3767 ret = PTR_ERR(sa); 3768 goto drop_write; 3769 } 3770 3771 if (!sa->qgroupid) { 3772 ret = -EINVAL; 3773 goto out; 3774 } 3775 3776 trans = btrfs_join_transaction(root); 3777 if (IS_ERR(trans)) { 3778 ret = PTR_ERR(trans); 3779 goto out; 3780 } 3781 3782 if (sa->create) { 3783 ret = btrfs_create_qgroup(trans, sa->qgroupid); 3784 } else { 3785 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 3786 } 3787 3788 err = btrfs_end_transaction(trans); 3789 if (err && !ret) 3790 ret = err; 3791 3792 out: 3793 kfree(sa); 3794 drop_write: 3795 mnt_drop_write_file(file); 3796 return ret; 3797 } 3798 3799 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3800 { 3801 struct inode *inode = file_inode(file); 3802 struct btrfs_root *root = BTRFS_I(inode)->root; 3803 struct btrfs_ioctl_qgroup_limit_args *sa; 3804 struct btrfs_trans_handle *trans; 3805 int ret; 3806 int err; 3807 u64 qgroupid; 3808 3809 if (!capable(CAP_SYS_ADMIN)) 3810 return -EPERM; 3811 3812 ret = mnt_want_write_file(file); 3813 if (ret) 3814 return ret; 3815 3816 sa = memdup_user(arg, sizeof(*sa)); 3817 if (IS_ERR(sa)) { 3818 ret = PTR_ERR(sa); 3819 goto drop_write; 3820 } 3821 3822 trans = btrfs_join_transaction(root); 3823 if (IS_ERR(trans)) { 3824 ret = PTR_ERR(trans); 3825 goto out; 3826 } 3827 3828 qgroupid = sa->qgroupid; 3829 if (!qgroupid) { 3830 /* take the current subvol as qgroup */ 3831 qgroupid = root->root_key.objectid; 3832 } 3833 3834 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 3835 3836 err = btrfs_end_transaction(trans); 3837 if (err && !ret) 3838 ret = err; 3839 3840 out: 3841 kfree(sa); 3842 drop_write: 3843 mnt_drop_write_file(file); 3844 return ret; 3845 } 3846 3847 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 3848 { 3849 struct inode *inode = file_inode(file); 3850 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3851 struct btrfs_ioctl_quota_rescan_args *qsa; 3852 int ret; 3853 3854 if (!capable(CAP_SYS_ADMIN)) 3855 return -EPERM; 3856 3857 ret = mnt_want_write_file(file); 3858 if (ret) 3859 return ret; 3860 3861 qsa = memdup_user(arg, sizeof(*qsa)); 3862 if (IS_ERR(qsa)) { 3863 ret = PTR_ERR(qsa); 3864 goto drop_write; 3865 } 3866 3867 if (qsa->flags) { 3868 ret = -EINVAL; 3869 goto out; 3870 } 3871 3872 ret = btrfs_qgroup_rescan(fs_info); 3873 3874 out: 3875 kfree(qsa); 3876 drop_write: 3877 mnt_drop_write_file(file); 3878 return ret; 3879 } 3880 3881 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 3882 void __user *arg) 3883 { 3884 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 3885 3886 if (!capable(CAP_SYS_ADMIN)) 3887 return -EPERM; 3888 3889 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 3890 qsa.flags = 1; 3891 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 3892 } 3893 3894 if (copy_to_user(arg, &qsa, sizeof(qsa))) 3895 return -EFAULT; 3896 3897 return 0; 3898 } 3899 3900 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 3901 void __user *arg) 3902 { 3903 if (!capable(CAP_SYS_ADMIN)) 3904 return -EPERM; 3905 3906 return btrfs_qgroup_wait_for_completion(fs_info, true); 3907 } 3908 3909 static long _btrfs_ioctl_set_received_subvol(struct file *file, 3910 struct mnt_idmap *idmap, 3911 struct btrfs_ioctl_received_subvol_args *sa) 3912 { 3913 struct inode *inode = file_inode(file); 3914 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3915 struct btrfs_root *root = BTRFS_I(inode)->root; 3916 struct btrfs_root_item *root_item = &root->root_item; 3917 struct btrfs_trans_handle *trans; 3918 struct timespec64 ct = current_time(inode); 3919 int ret = 0; 3920 int received_uuid_changed; 3921 3922 if (!inode_owner_or_capable(idmap, inode)) 3923 return -EPERM; 3924 3925 ret = mnt_want_write_file(file); 3926 if (ret < 0) 3927 return ret; 3928 3929 down_write(&fs_info->subvol_sem); 3930 3931 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3932 ret = -EINVAL; 3933 goto out; 3934 } 3935 3936 if (btrfs_root_readonly(root)) { 3937 ret = -EROFS; 3938 goto out; 3939 } 3940 3941 /* 3942 * 1 - root item 3943 * 2 - uuid items (received uuid + subvol uuid) 3944 */ 3945 trans = btrfs_start_transaction(root, 3); 3946 if (IS_ERR(trans)) { 3947 ret = PTR_ERR(trans); 3948 trans = NULL; 3949 goto out; 3950 } 3951 3952 sa->rtransid = trans->transid; 3953 sa->rtime.sec = ct.tv_sec; 3954 sa->rtime.nsec = ct.tv_nsec; 3955 3956 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 3957 BTRFS_UUID_SIZE); 3958 if (received_uuid_changed && 3959 !btrfs_is_empty_uuid(root_item->received_uuid)) { 3960 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 3961 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3962 root->root_key.objectid); 3963 if (ret && ret != -ENOENT) { 3964 btrfs_abort_transaction(trans, ret); 3965 btrfs_end_transaction(trans); 3966 goto out; 3967 } 3968 } 3969 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 3970 btrfs_set_root_stransid(root_item, sa->stransid); 3971 btrfs_set_root_rtransid(root_item, sa->rtransid); 3972 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 3973 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 3974 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 3975 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 3976 3977 ret = btrfs_update_root(trans, fs_info->tree_root, 3978 &root->root_key, &root->root_item); 3979 if (ret < 0) { 3980 btrfs_end_transaction(trans); 3981 goto out; 3982 } 3983 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 3984 ret = btrfs_uuid_tree_add(trans, sa->uuid, 3985 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3986 root->root_key.objectid); 3987 if (ret < 0 && ret != -EEXIST) { 3988 btrfs_abort_transaction(trans, ret); 3989 btrfs_end_transaction(trans); 3990 goto out; 3991 } 3992 } 3993 ret = btrfs_commit_transaction(trans); 3994 out: 3995 up_write(&fs_info->subvol_sem); 3996 mnt_drop_write_file(file); 3997 return ret; 3998 } 3999 4000 #ifdef CONFIG_64BIT 4001 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4002 void __user *arg) 4003 { 4004 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4005 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4006 int ret = 0; 4007 4008 args32 = memdup_user(arg, sizeof(*args32)); 4009 if (IS_ERR(args32)) 4010 return PTR_ERR(args32); 4011 4012 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4013 if (!args64) { 4014 ret = -ENOMEM; 4015 goto out; 4016 } 4017 4018 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4019 args64->stransid = args32->stransid; 4020 args64->rtransid = args32->rtransid; 4021 args64->stime.sec = args32->stime.sec; 4022 args64->stime.nsec = args32->stime.nsec; 4023 args64->rtime.sec = args32->rtime.sec; 4024 args64->rtime.nsec = args32->rtime.nsec; 4025 args64->flags = args32->flags; 4026 4027 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64); 4028 if (ret) 4029 goto out; 4030 4031 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4032 args32->stransid = args64->stransid; 4033 args32->rtransid = args64->rtransid; 4034 args32->stime.sec = args64->stime.sec; 4035 args32->stime.nsec = args64->stime.nsec; 4036 args32->rtime.sec = args64->rtime.sec; 4037 args32->rtime.nsec = args64->rtime.nsec; 4038 args32->flags = args64->flags; 4039 4040 ret = copy_to_user(arg, args32, sizeof(*args32)); 4041 if (ret) 4042 ret = -EFAULT; 4043 4044 out: 4045 kfree(args32); 4046 kfree(args64); 4047 return ret; 4048 } 4049 #endif 4050 4051 static long btrfs_ioctl_set_received_subvol(struct file *file, 4052 void __user *arg) 4053 { 4054 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4055 int ret = 0; 4056 4057 sa = memdup_user(arg, sizeof(*sa)); 4058 if (IS_ERR(sa)) 4059 return PTR_ERR(sa); 4060 4061 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa); 4062 4063 if (ret) 4064 goto out; 4065 4066 ret = copy_to_user(arg, sa, sizeof(*sa)); 4067 if (ret) 4068 ret = -EFAULT; 4069 4070 out: 4071 kfree(sa); 4072 return ret; 4073 } 4074 4075 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4076 void __user *arg) 4077 { 4078 size_t len; 4079 int ret; 4080 char label[BTRFS_LABEL_SIZE]; 4081 4082 spin_lock(&fs_info->super_lock); 4083 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4084 spin_unlock(&fs_info->super_lock); 4085 4086 len = strnlen(label, BTRFS_LABEL_SIZE); 4087 4088 if (len == BTRFS_LABEL_SIZE) { 4089 btrfs_warn(fs_info, 4090 "label is too long, return the first %zu bytes", 4091 --len); 4092 } 4093 4094 ret = copy_to_user(arg, label, len); 4095 4096 return ret ? -EFAULT : 0; 4097 } 4098 4099 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4100 { 4101 struct inode *inode = file_inode(file); 4102 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4103 struct btrfs_root *root = BTRFS_I(inode)->root; 4104 struct btrfs_super_block *super_block = fs_info->super_copy; 4105 struct btrfs_trans_handle *trans; 4106 char label[BTRFS_LABEL_SIZE]; 4107 int ret; 4108 4109 if (!capable(CAP_SYS_ADMIN)) 4110 return -EPERM; 4111 4112 if (copy_from_user(label, arg, sizeof(label))) 4113 return -EFAULT; 4114 4115 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4116 btrfs_err(fs_info, 4117 "unable to set label with more than %d bytes", 4118 BTRFS_LABEL_SIZE - 1); 4119 return -EINVAL; 4120 } 4121 4122 ret = mnt_want_write_file(file); 4123 if (ret) 4124 return ret; 4125 4126 trans = btrfs_start_transaction(root, 0); 4127 if (IS_ERR(trans)) { 4128 ret = PTR_ERR(trans); 4129 goto out_unlock; 4130 } 4131 4132 spin_lock(&fs_info->super_lock); 4133 strcpy(super_block->label, label); 4134 spin_unlock(&fs_info->super_lock); 4135 ret = btrfs_commit_transaction(trans); 4136 4137 out_unlock: 4138 mnt_drop_write_file(file); 4139 return ret; 4140 } 4141 4142 #define INIT_FEATURE_FLAGS(suffix) \ 4143 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4144 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4145 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4146 4147 int btrfs_ioctl_get_supported_features(void __user *arg) 4148 { 4149 static const struct btrfs_ioctl_feature_flags features[3] = { 4150 INIT_FEATURE_FLAGS(SUPP), 4151 INIT_FEATURE_FLAGS(SAFE_SET), 4152 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4153 }; 4154 4155 if (copy_to_user(arg, &features, sizeof(features))) 4156 return -EFAULT; 4157 4158 return 0; 4159 } 4160 4161 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4162 void __user *arg) 4163 { 4164 struct btrfs_super_block *super_block = fs_info->super_copy; 4165 struct btrfs_ioctl_feature_flags features; 4166 4167 features.compat_flags = btrfs_super_compat_flags(super_block); 4168 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4169 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4170 4171 if (copy_to_user(arg, &features, sizeof(features))) 4172 return -EFAULT; 4173 4174 return 0; 4175 } 4176 4177 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4178 enum btrfs_feature_set set, 4179 u64 change_mask, u64 flags, u64 supported_flags, 4180 u64 safe_set, u64 safe_clear) 4181 { 4182 const char *type = btrfs_feature_set_name(set); 4183 char *names; 4184 u64 disallowed, unsupported; 4185 u64 set_mask = flags & change_mask; 4186 u64 clear_mask = ~flags & change_mask; 4187 4188 unsupported = set_mask & ~supported_flags; 4189 if (unsupported) { 4190 names = btrfs_printable_features(set, unsupported); 4191 if (names) { 4192 btrfs_warn(fs_info, 4193 "this kernel does not support the %s feature bit%s", 4194 names, strchr(names, ',') ? "s" : ""); 4195 kfree(names); 4196 } else 4197 btrfs_warn(fs_info, 4198 "this kernel does not support %s bits 0x%llx", 4199 type, unsupported); 4200 return -EOPNOTSUPP; 4201 } 4202 4203 disallowed = set_mask & ~safe_set; 4204 if (disallowed) { 4205 names = btrfs_printable_features(set, disallowed); 4206 if (names) { 4207 btrfs_warn(fs_info, 4208 "can't set the %s feature bit%s while mounted", 4209 names, strchr(names, ',') ? "s" : ""); 4210 kfree(names); 4211 } else 4212 btrfs_warn(fs_info, 4213 "can't set %s bits 0x%llx while mounted", 4214 type, disallowed); 4215 return -EPERM; 4216 } 4217 4218 disallowed = clear_mask & ~safe_clear; 4219 if (disallowed) { 4220 names = btrfs_printable_features(set, disallowed); 4221 if (names) { 4222 btrfs_warn(fs_info, 4223 "can't clear the %s feature bit%s while mounted", 4224 names, strchr(names, ',') ? "s" : ""); 4225 kfree(names); 4226 } else 4227 btrfs_warn(fs_info, 4228 "can't clear %s bits 0x%llx while mounted", 4229 type, disallowed); 4230 return -EPERM; 4231 } 4232 4233 return 0; 4234 } 4235 4236 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4237 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4238 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4239 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4240 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4241 4242 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4243 { 4244 struct inode *inode = file_inode(file); 4245 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4246 struct btrfs_root *root = BTRFS_I(inode)->root; 4247 struct btrfs_super_block *super_block = fs_info->super_copy; 4248 struct btrfs_ioctl_feature_flags flags[2]; 4249 struct btrfs_trans_handle *trans; 4250 u64 newflags; 4251 int ret; 4252 4253 if (!capable(CAP_SYS_ADMIN)) 4254 return -EPERM; 4255 4256 if (copy_from_user(flags, arg, sizeof(flags))) 4257 return -EFAULT; 4258 4259 /* Nothing to do */ 4260 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4261 !flags[0].incompat_flags) 4262 return 0; 4263 4264 ret = check_feature(fs_info, flags[0].compat_flags, 4265 flags[1].compat_flags, COMPAT); 4266 if (ret) 4267 return ret; 4268 4269 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4270 flags[1].compat_ro_flags, COMPAT_RO); 4271 if (ret) 4272 return ret; 4273 4274 ret = check_feature(fs_info, flags[0].incompat_flags, 4275 flags[1].incompat_flags, INCOMPAT); 4276 if (ret) 4277 return ret; 4278 4279 ret = mnt_want_write_file(file); 4280 if (ret) 4281 return ret; 4282 4283 trans = btrfs_start_transaction(root, 0); 4284 if (IS_ERR(trans)) { 4285 ret = PTR_ERR(trans); 4286 goto out_drop_write; 4287 } 4288 4289 spin_lock(&fs_info->super_lock); 4290 newflags = btrfs_super_compat_flags(super_block); 4291 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4292 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4293 btrfs_set_super_compat_flags(super_block, newflags); 4294 4295 newflags = btrfs_super_compat_ro_flags(super_block); 4296 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4297 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4298 btrfs_set_super_compat_ro_flags(super_block, newflags); 4299 4300 newflags = btrfs_super_incompat_flags(super_block); 4301 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4302 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4303 btrfs_set_super_incompat_flags(super_block, newflags); 4304 spin_unlock(&fs_info->super_lock); 4305 4306 ret = btrfs_commit_transaction(trans); 4307 out_drop_write: 4308 mnt_drop_write_file(file); 4309 4310 return ret; 4311 } 4312 4313 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) 4314 { 4315 struct btrfs_ioctl_send_args *arg; 4316 int ret; 4317 4318 if (compat) { 4319 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4320 struct btrfs_ioctl_send_args_32 args32; 4321 4322 ret = copy_from_user(&args32, argp, sizeof(args32)); 4323 if (ret) 4324 return -EFAULT; 4325 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4326 if (!arg) 4327 return -ENOMEM; 4328 arg->send_fd = args32.send_fd; 4329 arg->clone_sources_count = args32.clone_sources_count; 4330 arg->clone_sources = compat_ptr(args32.clone_sources); 4331 arg->parent_root = args32.parent_root; 4332 arg->flags = args32.flags; 4333 memcpy(arg->reserved, args32.reserved, 4334 sizeof(args32.reserved)); 4335 #else 4336 return -ENOTTY; 4337 #endif 4338 } else { 4339 arg = memdup_user(argp, sizeof(*arg)); 4340 if (IS_ERR(arg)) 4341 return PTR_ERR(arg); 4342 } 4343 ret = btrfs_ioctl_send(inode, arg); 4344 kfree(arg); 4345 return ret; 4346 } 4347 4348 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 4349 bool compat) 4350 { 4351 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4352 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 4353 flags); 4354 size_t copy_end; 4355 struct iovec iovstack[UIO_FASTIOV]; 4356 struct iovec *iov = iovstack; 4357 struct iov_iter iter; 4358 loff_t pos; 4359 struct kiocb kiocb; 4360 ssize_t ret; 4361 4362 if (!capable(CAP_SYS_ADMIN)) { 4363 ret = -EPERM; 4364 goto out_acct; 4365 } 4366 4367 if (compat) { 4368 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4369 struct btrfs_ioctl_encoded_io_args_32 args32; 4370 4371 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 4372 flags); 4373 if (copy_from_user(&args32, argp, copy_end)) { 4374 ret = -EFAULT; 4375 goto out_acct; 4376 } 4377 args.iov = compat_ptr(args32.iov); 4378 args.iovcnt = args32.iovcnt; 4379 args.offset = args32.offset; 4380 args.flags = args32.flags; 4381 #else 4382 return -ENOTTY; 4383 #endif 4384 } else { 4385 copy_end = copy_end_kernel; 4386 if (copy_from_user(&args, argp, copy_end)) { 4387 ret = -EFAULT; 4388 goto out_acct; 4389 } 4390 } 4391 if (args.flags != 0) { 4392 ret = -EINVAL; 4393 goto out_acct; 4394 } 4395 4396 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4397 &iov, &iter); 4398 if (ret < 0) 4399 goto out_acct; 4400 4401 if (iov_iter_count(&iter) == 0) { 4402 ret = 0; 4403 goto out_iov; 4404 } 4405 pos = args.offset; 4406 ret = rw_verify_area(READ, file, &pos, args.len); 4407 if (ret < 0) 4408 goto out_iov; 4409 4410 init_sync_kiocb(&kiocb, file); 4411 kiocb.ki_pos = pos; 4412 4413 ret = btrfs_encoded_read(&kiocb, &iter, &args); 4414 if (ret >= 0) { 4415 fsnotify_access(file); 4416 if (copy_to_user(argp + copy_end, 4417 (char *)&args + copy_end_kernel, 4418 sizeof(args) - copy_end_kernel)) 4419 ret = -EFAULT; 4420 } 4421 4422 out_iov: 4423 kfree(iov); 4424 out_acct: 4425 if (ret > 0) 4426 add_rchar(current, ret); 4427 inc_syscr(current); 4428 return ret; 4429 } 4430 4431 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 4432 { 4433 struct btrfs_ioctl_encoded_io_args args; 4434 struct iovec iovstack[UIO_FASTIOV]; 4435 struct iovec *iov = iovstack; 4436 struct iov_iter iter; 4437 loff_t pos; 4438 struct kiocb kiocb; 4439 ssize_t ret; 4440 4441 if (!capable(CAP_SYS_ADMIN)) { 4442 ret = -EPERM; 4443 goto out_acct; 4444 } 4445 4446 if (!(file->f_mode & FMODE_WRITE)) { 4447 ret = -EBADF; 4448 goto out_acct; 4449 } 4450 4451 if (compat) { 4452 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4453 struct btrfs_ioctl_encoded_io_args_32 args32; 4454 4455 if (copy_from_user(&args32, argp, sizeof(args32))) { 4456 ret = -EFAULT; 4457 goto out_acct; 4458 } 4459 args.iov = compat_ptr(args32.iov); 4460 args.iovcnt = args32.iovcnt; 4461 args.offset = args32.offset; 4462 args.flags = args32.flags; 4463 args.len = args32.len; 4464 args.unencoded_len = args32.unencoded_len; 4465 args.unencoded_offset = args32.unencoded_offset; 4466 args.compression = args32.compression; 4467 args.encryption = args32.encryption; 4468 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 4469 #else 4470 return -ENOTTY; 4471 #endif 4472 } else { 4473 if (copy_from_user(&args, argp, sizeof(args))) { 4474 ret = -EFAULT; 4475 goto out_acct; 4476 } 4477 } 4478 4479 ret = -EINVAL; 4480 if (args.flags != 0) 4481 goto out_acct; 4482 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 4483 goto out_acct; 4484 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4485 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4486 goto out_acct; 4487 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4488 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4489 goto out_acct; 4490 if (args.unencoded_offset > args.unencoded_len) 4491 goto out_acct; 4492 if (args.len > args.unencoded_len - args.unencoded_offset) 4493 goto out_acct; 4494 4495 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4496 &iov, &iter); 4497 if (ret < 0) 4498 goto out_acct; 4499 4500 file_start_write(file); 4501 4502 if (iov_iter_count(&iter) == 0) { 4503 ret = 0; 4504 goto out_end_write; 4505 } 4506 pos = args.offset; 4507 ret = rw_verify_area(WRITE, file, &pos, args.len); 4508 if (ret < 0) 4509 goto out_end_write; 4510 4511 init_sync_kiocb(&kiocb, file); 4512 ret = kiocb_set_rw_flags(&kiocb, 0); 4513 if (ret) 4514 goto out_end_write; 4515 kiocb.ki_pos = pos; 4516 4517 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 4518 if (ret > 0) 4519 fsnotify_modify(file); 4520 4521 out_end_write: 4522 file_end_write(file); 4523 kfree(iov); 4524 out_acct: 4525 if (ret > 0) 4526 add_wchar(current, ret); 4527 inc_syscw(current); 4528 return ret; 4529 } 4530 4531 long btrfs_ioctl(struct file *file, unsigned int 4532 cmd, unsigned long arg) 4533 { 4534 struct inode *inode = file_inode(file); 4535 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4536 struct btrfs_root *root = BTRFS_I(inode)->root; 4537 void __user *argp = (void __user *)arg; 4538 4539 switch (cmd) { 4540 case FS_IOC_GETVERSION: 4541 return btrfs_ioctl_getversion(inode, argp); 4542 case FS_IOC_GETFSLABEL: 4543 return btrfs_ioctl_get_fslabel(fs_info, argp); 4544 case FS_IOC_SETFSLABEL: 4545 return btrfs_ioctl_set_fslabel(file, argp); 4546 case FITRIM: 4547 return btrfs_ioctl_fitrim(fs_info, argp); 4548 case BTRFS_IOC_SNAP_CREATE: 4549 return btrfs_ioctl_snap_create(file, argp, 0); 4550 case BTRFS_IOC_SNAP_CREATE_V2: 4551 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4552 case BTRFS_IOC_SUBVOL_CREATE: 4553 return btrfs_ioctl_snap_create(file, argp, 1); 4554 case BTRFS_IOC_SUBVOL_CREATE_V2: 4555 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4556 case BTRFS_IOC_SNAP_DESTROY: 4557 return btrfs_ioctl_snap_destroy(file, argp, false); 4558 case BTRFS_IOC_SNAP_DESTROY_V2: 4559 return btrfs_ioctl_snap_destroy(file, argp, true); 4560 case BTRFS_IOC_SUBVOL_GETFLAGS: 4561 return btrfs_ioctl_subvol_getflags(inode, argp); 4562 case BTRFS_IOC_SUBVOL_SETFLAGS: 4563 return btrfs_ioctl_subvol_setflags(file, argp); 4564 case BTRFS_IOC_DEFAULT_SUBVOL: 4565 return btrfs_ioctl_default_subvol(file, argp); 4566 case BTRFS_IOC_DEFRAG: 4567 return btrfs_ioctl_defrag(file, NULL); 4568 case BTRFS_IOC_DEFRAG_RANGE: 4569 return btrfs_ioctl_defrag(file, argp); 4570 case BTRFS_IOC_RESIZE: 4571 return btrfs_ioctl_resize(file, argp); 4572 case BTRFS_IOC_ADD_DEV: 4573 return btrfs_ioctl_add_dev(fs_info, argp); 4574 case BTRFS_IOC_RM_DEV: 4575 return btrfs_ioctl_rm_dev(file, argp); 4576 case BTRFS_IOC_RM_DEV_V2: 4577 return btrfs_ioctl_rm_dev_v2(file, argp); 4578 case BTRFS_IOC_FS_INFO: 4579 return btrfs_ioctl_fs_info(fs_info, argp); 4580 case BTRFS_IOC_DEV_INFO: 4581 return btrfs_ioctl_dev_info(fs_info, argp); 4582 case BTRFS_IOC_TREE_SEARCH: 4583 return btrfs_ioctl_tree_search(inode, argp); 4584 case BTRFS_IOC_TREE_SEARCH_V2: 4585 return btrfs_ioctl_tree_search_v2(inode, argp); 4586 case BTRFS_IOC_INO_LOOKUP: 4587 return btrfs_ioctl_ino_lookup(root, argp); 4588 case BTRFS_IOC_INO_PATHS: 4589 return btrfs_ioctl_ino_to_path(root, argp); 4590 case BTRFS_IOC_LOGICAL_INO: 4591 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4592 case BTRFS_IOC_LOGICAL_INO_V2: 4593 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4594 case BTRFS_IOC_SPACE_INFO: 4595 return btrfs_ioctl_space_info(fs_info, argp); 4596 case BTRFS_IOC_SYNC: { 4597 int ret; 4598 4599 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4600 if (ret) 4601 return ret; 4602 ret = btrfs_sync_fs(inode->i_sb, 1); 4603 /* 4604 * The transaction thread may want to do more work, 4605 * namely it pokes the cleaner kthread that will start 4606 * processing uncleaned subvols. 4607 */ 4608 wake_up_process(fs_info->transaction_kthread); 4609 return ret; 4610 } 4611 case BTRFS_IOC_START_SYNC: 4612 return btrfs_ioctl_start_sync(root, argp); 4613 case BTRFS_IOC_WAIT_SYNC: 4614 return btrfs_ioctl_wait_sync(fs_info, argp); 4615 case BTRFS_IOC_SCRUB: 4616 return btrfs_ioctl_scrub(file, argp); 4617 case BTRFS_IOC_SCRUB_CANCEL: 4618 return btrfs_ioctl_scrub_cancel(fs_info); 4619 case BTRFS_IOC_SCRUB_PROGRESS: 4620 return btrfs_ioctl_scrub_progress(fs_info, argp); 4621 case BTRFS_IOC_BALANCE_V2: 4622 return btrfs_ioctl_balance(file, argp); 4623 case BTRFS_IOC_BALANCE_CTL: 4624 return btrfs_ioctl_balance_ctl(fs_info, arg); 4625 case BTRFS_IOC_BALANCE_PROGRESS: 4626 return btrfs_ioctl_balance_progress(fs_info, argp); 4627 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4628 return btrfs_ioctl_set_received_subvol(file, argp); 4629 #ifdef CONFIG_64BIT 4630 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4631 return btrfs_ioctl_set_received_subvol_32(file, argp); 4632 #endif 4633 case BTRFS_IOC_SEND: 4634 return _btrfs_ioctl_send(inode, argp, false); 4635 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4636 case BTRFS_IOC_SEND_32: 4637 return _btrfs_ioctl_send(inode, argp, true); 4638 #endif 4639 case BTRFS_IOC_GET_DEV_STATS: 4640 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4641 case BTRFS_IOC_QUOTA_CTL: 4642 return btrfs_ioctl_quota_ctl(file, argp); 4643 case BTRFS_IOC_QGROUP_ASSIGN: 4644 return btrfs_ioctl_qgroup_assign(file, argp); 4645 case BTRFS_IOC_QGROUP_CREATE: 4646 return btrfs_ioctl_qgroup_create(file, argp); 4647 case BTRFS_IOC_QGROUP_LIMIT: 4648 return btrfs_ioctl_qgroup_limit(file, argp); 4649 case BTRFS_IOC_QUOTA_RESCAN: 4650 return btrfs_ioctl_quota_rescan(file, argp); 4651 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4652 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4653 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4654 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4655 case BTRFS_IOC_DEV_REPLACE: 4656 return btrfs_ioctl_dev_replace(fs_info, argp); 4657 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4658 return btrfs_ioctl_get_supported_features(argp); 4659 case BTRFS_IOC_GET_FEATURES: 4660 return btrfs_ioctl_get_features(fs_info, argp); 4661 case BTRFS_IOC_SET_FEATURES: 4662 return btrfs_ioctl_set_features(file, argp); 4663 case BTRFS_IOC_GET_SUBVOL_INFO: 4664 return btrfs_ioctl_get_subvol_info(inode, argp); 4665 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4666 return btrfs_ioctl_get_subvol_rootref(root, argp); 4667 case BTRFS_IOC_INO_LOOKUP_USER: 4668 return btrfs_ioctl_ino_lookup_user(file, argp); 4669 case FS_IOC_ENABLE_VERITY: 4670 return fsverity_ioctl_enable(file, (const void __user *)argp); 4671 case FS_IOC_MEASURE_VERITY: 4672 return fsverity_ioctl_measure(file, argp); 4673 case BTRFS_IOC_ENCODED_READ: 4674 return btrfs_ioctl_encoded_read(file, argp, false); 4675 case BTRFS_IOC_ENCODED_WRITE: 4676 return btrfs_ioctl_encoded_write(file, argp, false); 4677 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4678 case BTRFS_IOC_ENCODED_READ_32: 4679 return btrfs_ioctl_encoded_read(file, argp, true); 4680 case BTRFS_IOC_ENCODED_WRITE_32: 4681 return btrfs_ioctl_encoded_write(file, argp, true); 4682 #endif 4683 } 4684 4685 return -ENOTTY; 4686 } 4687 4688 #ifdef CONFIG_COMPAT 4689 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4690 { 4691 /* 4692 * These all access 32-bit values anyway so no further 4693 * handling is necessary. 4694 */ 4695 switch (cmd) { 4696 case FS_IOC32_GETVERSION: 4697 cmd = FS_IOC_GETVERSION; 4698 break; 4699 } 4700 4701 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4702 } 4703 #endif 4704