1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include "compat.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "ioctl.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 #include "dev-replace.h" 59 60 /* Mask out flags that are inappropriate for the given type of inode. */ 61 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 62 { 63 if (S_ISDIR(mode)) 64 return flags; 65 else if (S_ISREG(mode)) 66 return flags & ~FS_DIRSYNC_FL; 67 else 68 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 69 } 70 71 /* 72 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 73 */ 74 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 75 { 76 unsigned int iflags = 0; 77 78 if (flags & BTRFS_INODE_SYNC) 79 iflags |= FS_SYNC_FL; 80 if (flags & BTRFS_INODE_IMMUTABLE) 81 iflags |= FS_IMMUTABLE_FL; 82 if (flags & BTRFS_INODE_APPEND) 83 iflags |= FS_APPEND_FL; 84 if (flags & BTRFS_INODE_NODUMP) 85 iflags |= FS_NODUMP_FL; 86 if (flags & BTRFS_INODE_NOATIME) 87 iflags |= FS_NOATIME_FL; 88 if (flags & BTRFS_INODE_DIRSYNC) 89 iflags |= FS_DIRSYNC_FL; 90 if (flags & BTRFS_INODE_NODATACOW) 91 iflags |= FS_NOCOW_FL; 92 93 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 94 iflags |= FS_COMPR_FL; 95 else if (flags & BTRFS_INODE_NOCOMPRESS) 96 iflags |= FS_NOCOMP_FL; 97 98 return iflags; 99 } 100 101 /* 102 * Update inode->i_flags based on the btrfs internal flags. 103 */ 104 void btrfs_update_iflags(struct inode *inode) 105 { 106 struct btrfs_inode *ip = BTRFS_I(inode); 107 108 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 109 110 if (ip->flags & BTRFS_INODE_SYNC) 111 inode->i_flags |= S_SYNC; 112 if (ip->flags & BTRFS_INODE_IMMUTABLE) 113 inode->i_flags |= S_IMMUTABLE; 114 if (ip->flags & BTRFS_INODE_APPEND) 115 inode->i_flags |= S_APPEND; 116 if (ip->flags & BTRFS_INODE_NOATIME) 117 inode->i_flags |= S_NOATIME; 118 if (ip->flags & BTRFS_INODE_DIRSYNC) 119 inode->i_flags |= S_DIRSYNC; 120 } 121 122 /* 123 * Inherit flags from the parent inode. 124 * 125 * Currently only the compression flags and the cow flags are inherited. 126 */ 127 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 128 { 129 unsigned int flags; 130 131 if (!dir) 132 return; 133 134 flags = BTRFS_I(dir)->flags; 135 136 if (flags & BTRFS_INODE_NOCOMPRESS) { 137 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 138 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 139 } else if (flags & BTRFS_INODE_COMPRESS) { 140 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 141 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 142 } 143 144 if (flags & BTRFS_INODE_NODATACOW) { 145 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 146 if (S_ISREG(inode->i_mode)) 147 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 148 } 149 150 btrfs_update_iflags(inode); 151 } 152 153 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 154 { 155 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode); 156 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 157 158 if (copy_to_user(arg, &flags, sizeof(flags))) 159 return -EFAULT; 160 return 0; 161 } 162 163 static int check_flags(unsigned int flags) 164 { 165 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 166 FS_NOATIME_FL | FS_NODUMP_FL | \ 167 FS_SYNC_FL | FS_DIRSYNC_FL | \ 168 FS_NOCOMP_FL | FS_COMPR_FL | 169 FS_NOCOW_FL)) 170 return -EOPNOTSUPP; 171 172 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 173 return -EINVAL; 174 175 return 0; 176 } 177 178 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 179 { 180 struct inode *inode = file->f_path.dentry->d_inode; 181 struct btrfs_inode *ip = BTRFS_I(inode); 182 struct btrfs_root *root = ip->root; 183 struct btrfs_trans_handle *trans; 184 unsigned int flags, oldflags; 185 int ret; 186 u64 ip_oldflags; 187 unsigned int i_oldflags; 188 umode_t mode; 189 190 if (btrfs_root_readonly(root)) 191 return -EROFS; 192 193 if (copy_from_user(&flags, arg, sizeof(flags))) 194 return -EFAULT; 195 196 ret = check_flags(flags); 197 if (ret) 198 return ret; 199 200 if (!inode_owner_or_capable(inode)) 201 return -EACCES; 202 203 ret = mnt_want_write_file(file); 204 if (ret) 205 return ret; 206 207 mutex_lock(&inode->i_mutex); 208 209 ip_oldflags = ip->flags; 210 i_oldflags = inode->i_flags; 211 mode = inode->i_mode; 212 213 flags = btrfs_mask_flags(inode->i_mode, flags); 214 oldflags = btrfs_flags_to_ioctl(ip->flags); 215 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 216 if (!capable(CAP_LINUX_IMMUTABLE)) { 217 ret = -EPERM; 218 goto out_unlock; 219 } 220 } 221 222 if (flags & FS_SYNC_FL) 223 ip->flags |= BTRFS_INODE_SYNC; 224 else 225 ip->flags &= ~BTRFS_INODE_SYNC; 226 if (flags & FS_IMMUTABLE_FL) 227 ip->flags |= BTRFS_INODE_IMMUTABLE; 228 else 229 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 230 if (flags & FS_APPEND_FL) 231 ip->flags |= BTRFS_INODE_APPEND; 232 else 233 ip->flags &= ~BTRFS_INODE_APPEND; 234 if (flags & FS_NODUMP_FL) 235 ip->flags |= BTRFS_INODE_NODUMP; 236 else 237 ip->flags &= ~BTRFS_INODE_NODUMP; 238 if (flags & FS_NOATIME_FL) 239 ip->flags |= BTRFS_INODE_NOATIME; 240 else 241 ip->flags &= ~BTRFS_INODE_NOATIME; 242 if (flags & FS_DIRSYNC_FL) 243 ip->flags |= BTRFS_INODE_DIRSYNC; 244 else 245 ip->flags &= ~BTRFS_INODE_DIRSYNC; 246 if (flags & FS_NOCOW_FL) { 247 if (S_ISREG(mode)) { 248 /* 249 * It's safe to turn csums off here, no extents exist. 250 * Otherwise we want the flag to reflect the real COW 251 * status of the file and will not set it. 252 */ 253 if (inode->i_size == 0) 254 ip->flags |= BTRFS_INODE_NODATACOW 255 | BTRFS_INODE_NODATASUM; 256 } else { 257 ip->flags |= BTRFS_INODE_NODATACOW; 258 } 259 } else { 260 /* 261 * Revert back under same assuptions as above 262 */ 263 if (S_ISREG(mode)) { 264 if (inode->i_size == 0) 265 ip->flags &= ~(BTRFS_INODE_NODATACOW 266 | BTRFS_INODE_NODATASUM); 267 } else { 268 ip->flags &= ~BTRFS_INODE_NODATACOW; 269 } 270 } 271 272 /* 273 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 274 * flag may be changed automatically if compression code won't make 275 * things smaller. 276 */ 277 if (flags & FS_NOCOMP_FL) { 278 ip->flags &= ~BTRFS_INODE_COMPRESS; 279 ip->flags |= BTRFS_INODE_NOCOMPRESS; 280 } else if (flags & FS_COMPR_FL) { 281 ip->flags |= BTRFS_INODE_COMPRESS; 282 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 283 } else { 284 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 285 } 286 287 trans = btrfs_start_transaction(root, 1); 288 if (IS_ERR(trans)) { 289 ret = PTR_ERR(trans); 290 goto out_drop; 291 } 292 293 btrfs_update_iflags(inode); 294 inode_inc_iversion(inode); 295 inode->i_ctime = CURRENT_TIME; 296 ret = btrfs_update_inode(trans, root, inode); 297 298 btrfs_end_transaction(trans, root); 299 out_drop: 300 if (ret) { 301 ip->flags = ip_oldflags; 302 inode->i_flags = i_oldflags; 303 } 304 305 out_unlock: 306 mutex_unlock(&inode->i_mutex); 307 mnt_drop_write_file(file); 308 return ret; 309 } 310 311 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 312 { 313 struct inode *inode = file->f_path.dentry->d_inode; 314 315 return put_user(inode->i_generation, arg); 316 } 317 318 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 319 { 320 struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb); 321 struct btrfs_device *device; 322 struct request_queue *q; 323 struct fstrim_range range; 324 u64 minlen = ULLONG_MAX; 325 u64 num_devices = 0; 326 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 327 int ret; 328 329 if (!capable(CAP_SYS_ADMIN)) 330 return -EPERM; 331 332 rcu_read_lock(); 333 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 334 dev_list) { 335 if (!device->bdev) 336 continue; 337 q = bdev_get_queue(device->bdev); 338 if (blk_queue_discard(q)) { 339 num_devices++; 340 minlen = min((u64)q->limits.discard_granularity, 341 minlen); 342 } 343 } 344 rcu_read_unlock(); 345 346 if (!num_devices) 347 return -EOPNOTSUPP; 348 if (copy_from_user(&range, arg, sizeof(range))) 349 return -EFAULT; 350 if (range.start > total_bytes || 351 range.len < fs_info->sb->s_blocksize) 352 return -EINVAL; 353 354 range.len = min(range.len, total_bytes - range.start); 355 range.minlen = max(range.minlen, minlen); 356 ret = btrfs_trim_fs(fs_info->tree_root, &range); 357 if (ret < 0) 358 return ret; 359 360 if (copy_to_user(arg, &range, sizeof(range))) 361 return -EFAULT; 362 363 return 0; 364 } 365 366 static noinline int create_subvol(struct btrfs_root *root, 367 struct dentry *dentry, 368 char *name, int namelen, 369 u64 *async_transid, 370 struct btrfs_qgroup_inherit **inherit) 371 { 372 struct btrfs_trans_handle *trans; 373 struct btrfs_key key; 374 struct btrfs_root_item root_item; 375 struct btrfs_inode_item *inode_item; 376 struct extent_buffer *leaf; 377 struct btrfs_root *new_root; 378 struct dentry *parent = dentry->d_parent; 379 struct inode *dir; 380 struct timespec cur_time = CURRENT_TIME; 381 int ret; 382 int err; 383 u64 objectid; 384 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 385 u64 index = 0; 386 uuid_le new_uuid; 387 388 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 389 if (ret) 390 return ret; 391 392 dir = parent->d_inode; 393 394 /* 395 * 1 - inode item 396 * 2 - refs 397 * 1 - root item 398 * 2 - dir items 399 */ 400 trans = btrfs_start_transaction(root, 6); 401 if (IS_ERR(trans)) 402 return PTR_ERR(trans); 403 404 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, 405 inherit ? *inherit : NULL); 406 if (ret) 407 goto fail; 408 409 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 410 0, objectid, NULL, 0, 0, 0); 411 if (IS_ERR(leaf)) { 412 ret = PTR_ERR(leaf); 413 goto fail; 414 } 415 416 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 417 btrfs_set_header_bytenr(leaf, leaf->start); 418 btrfs_set_header_generation(leaf, trans->transid); 419 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 420 btrfs_set_header_owner(leaf, objectid); 421 422 write_extent_buffer(leaf, root->fs_info->fsid, 423 (unsigned long)btrfs_header_fsid(leaf), 424 BTRFS_FSID_SIZE); 425 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 426 (unsigned long)btrfs_header_chunk_tree_uuid(leaf), 427 BTRFS_UUID_SIZE); 428 btrfs_mark_buffer_dirty(leaf); 429 430 memset(&root_item, 0, sizeof(root_item)); 431 432 inode_item = &root_item.inode; 433 inode_item->generation = cpu_to_le64(1); 434 inode_item->size = cpu_to_le64(3); 435 inode_item->nlink = cpu_to_le32(1); 436 inode_item->nbytes = cpu_to_le64(root->leafsize); 437 inode_item->mode = cpu_to_le32(S_IFDIR | 0755); 438 439 root_item.flags = 0; 440 root_item.byte_limit = 0; 441 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT); 442 443 btrfs_set_root_bytenr(&root_item, leaf->start); 444 btrfs_set_root_generation(&root_item, trans->transid); 445 btrfs_set_root_level(&root_item, 0); 446 btrfs_set_root_refs(&root_item, 1); 447 btrfs_set_root_used(&root_item, leaf->len); 448 btrfs_set_root_last_snapshot(&root_item, 0); 449 450 btrfs_set_root_generation_v2(&root_item, 451 btrfs_root_generation(&root_item)); 452 uuid_le_gen(&new_uuid); 453 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE); 454 root_item.otime.sec = cpu_to_le64(cur_time.tv_sec); 455 root_item.otime.nsec = cpu_to_le32(cur_time.tv_nsec); 456 root_item.ctime = root_item.otime; 457 btrfs_set_root_ctransid(&root_item, trans->transid); 458 btrfs_set_root_otransid(&root_item, trans->transid); 459 460 btrfs_tree_unlock(leaf); 461 free_extent_buffer(leaf); 462 leaf = NULL; 463 464 btrfs_set_root_dirid(&root_item, new_dirid); 465 466 key.objectid = objectid; 467 key.offset = 0; 468 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 469 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 470 &root_item); 471 if (ret) 472 goto fail; 473 474 key.offset = (u64)-1; 475 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 476 if (IS_ERR(new_root)) { 477 btrfs_abort_transaction(trans, root, PTR_ERR(new_root)); 478 ret = PTR_ERR(new_root); 479 goto fail; 480 } 481 482 btrfs_record_root_in_trans(trans, new_root); 483 484 ret = btrfs_create_subvol_root(trans, new_root, new_dirid); 485 if (ret) { 486 /* We potentially lose an unused inode item here */ 487 btrfs_abort_transaction(trans, root, ret); 488 goto fail; 489 } 490 491 /* 492 * insert the directory item 493 */ 494 ret = btrfs_set_inode_index(dir, &index); 495 if (ret) { 496 btrfs_abort_transaction(trans, root, ret); 497 goto fail; 498 } 499 500 ret = btrfs_insert_dir_item(trans, root, 501 name, namelen, dir, &key, 502 BTRFS_FT_DIR, index); 503 if (ret) { 504 btrfs_abort_transaction(trans, root, ret); 505 goto fail; 506 } 507 508 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 509 ret = btrfs_update_inode(trans, root, dir); 510 BUG_ON(ret); 511 512 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 513 objectid, root->root_key.objectid, 514 btrfs_ino(dir), index, name, namelen); 515 516 BUG_ON(ret); 517 518 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry)); 519 fail: 520 if (async_transid) { 521 *async_transid = trans->transid; 522 err = btrfs_commit_transaction_async(trans, root, 1); 523 } else { 524 err = btrfs_commit_transaction(trans, root); 525 } 526 if (err && !ret) 527 ret = err; 528 return ret; 529 } 530 531 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry, 532 char *name, int namelen, u64 *async_transid, 533 bool readonly, struct btrfs_qgroup_inherit **inherit) 534 { 535 struct inode *inode; 536 struct btrfs_pending_snapshot *pending_snapshot; 537 struct btrfs_trans_handle *trans; 538 int ret; 539 540 if (!root->ref_cows) 541 return -EINVAL; 542 543 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 544 if (!pending_snapshot) 545 return -ENOMEM; 546 547 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 548 BTRFS_BLOCK_RSV_TEMP); 549 pending_snapshot->dentry = dentry; 550 pending_snapshot->root = root; 551 pending_snapshot->readonly = readonly; 552 if (inherit) { 553 pending_snapshot->inherit = *inherit; 554 *inherit = NULL; /* take responsibility to free it */ 555 } 556 557 trans = btrfs_start_transaction(root->fs_info->extent_root, 6); 558 if (IS_ERR(trans)) { 559 ret = PTR_ERR(trans); 560 goto fail; 561 } 562 563 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot); 564 BUG_ON(ret); 565 566 spin_lock(&root->fs_info->trans_lock); 567 list_add(&pending_snapshot->list, 568 &trans->transaction->pending_snapshots); 569 spin_unlock(&root->fs_info->trans_lock); 570 if (async_transid) { 571 *async_transid = trans->transid; 572 ret = btrfs_commit_transaction_async(trans, 573 root->fs_info->extent_root, 1); 574 } else { 575 ret = btrfs_commit_transaction(trans, 576 root->fs_info->extent_root); 577 } 578 if (ret) { 579 /* cleanup_transaction has freed this for us */ 580 if (trans->aborted) 581 pending_snapshot = NULL; 582 goto fail; 583 } 584 585 ret = pending_snapshot->error; 586 if (ret) 587 goto fail; 588 589 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 590 if (ret) 591 goto fail; 592 593 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry); 594 if (IS_ERR(inode)) { 595 ret = PTR_ERR(inode); 596 goto fail; 597 } 598 BUG_ON(!inode); 599 d_instantiate(dentry, inode); 600 ret = 0; 601 fail: 602 kfree(pending_snapshot); 603 return ret; 604 } 605 606 /* copy of check_sticky in fs/namei.c() 607 * It's inline, so penalty for filesystems that don't use sticky bit is 608 * minimal. 609 */ 610 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode) 611 { 612 kuid_t fsuid = current_fsuid(); 613 614 if (!(dir->i_mode & S_ISVTX)) 615 return 0; 616 if (uid_eq(inode->i_uid, fsuid)) 617 return 0; 618 if (uid_eq(dir->i_uid, fsuid)) 619 return 0; 620 return !capable(CAP_FOWNER); 621 } 622 623 /* copy of may_delete in fs/namei.c() 624 * Check whether we can remove a link victim from directory dir, check 625 * whether the type of victim is right. 626 * 1. We can't do it if dir is read-only (done in permission()) 627 * 2. We should have write and exec permissions on dir 628 * 3. We can't remove anything from append-only dir 629 * 4. We can't do anything with immutable dir (done in permission()) 630 * 5. If the sticky bit on dir is set we should either 631 * a. be owner of dir, or 632 * b. be owner of victim, or 633 * c. have CAP_FOWNER capability 634 * 6. If the victim is append-only or immutable we can't do antyhing with 635 * links pointing to it. 636 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 637 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 638 * 9. We can't remove a root or mountpoint. 639 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 640 * nfs_async_unlink(). 641 */ 642 643 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir) 644 { 645 int error; 646 647 if (!victim->d_inode) 648 return -ENOENT; 649 650 BUG_ON(victim->d_parent->d_inode != dir); 651 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 652 653 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 654 if (error) 655 return error; 656 if (IS_APPEND(dir)) 657 return -EPERM; 658 if (btrfs_check_sticky(dir, victim->d_inode)|| 659 IS_APPEND(victim->d_inode)|| 660 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 661 return -EPERM; 662 if (isdir) { 663 if (!S_ISDIR(victim->d_inode->i_mode)) 664 return -ENOTDIR; 665 if (IS_ROOT(victim)) 666 return -EBUSY; 667 } else if (S_ISDIR(victim->d_inode->i_mode)) 668 return -EISDIR; 669 if (IS_DEADDIR(dir)) 670 return -ENOENT; 671 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 672 return -EBUSY; 673 return 0; 674 } 675 676 /* copy of may_create in fs/namei.c() */ 677 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 678 { 679 if (child->d_inode) 680 return -EEXIST; 681 if (IS_DEADDIR(dir)) 682 return -ENOENT; 683 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 684 } 685 686 /* 687 * Create a new subvolume below @parent. This is largely modeled after 688 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 689 * inside this filesystem so it's quite a bit simpler. 690 */ 691 static noinline int btrfs_mksubvol(struct path *parent, 692 char *name, int namelen, 693 struct btrfs_root *snap_src, 694 u64 *async_transid, bool readonly, 695 struct btrfs_qgroup_inherit **inherit) 696 { 697 struct inode *dir = parent->dentry->d_inode; 698 struct dentry *dentry; 699 int error; 700 701 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 702 703 dentry = lookup_one_len(name, parent->dentry, namelen); 704 error = PTR_ERR(dentry); 705 if (IS_ERR(dentry)) 706 goto out_unlock; 707 708 error = -EEXIST; 709 if (dentry->d_inode) 710 goto out_dput; 711 712 error = btrfs_may_create(dir, dentry); 713 if (error) 714 goto out_dput; 715 716 /* 717 * even if this name doesn't exist, we may get hash collisions. 718 * check for them now when we can safely fail 719 */ 720 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 721 dir->i_ino, name, 722 namelen); 723 if (error) 724 goto out_dput; 725 726 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 727 728 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 729 goto out_up_read; 730 731 if (snap_src) { 732 error = create_snapshot(snap_src, dentry, name, namelen, 733 async_transid, readonly, inherit); 734 } else { 735 error = create_subvol(BTRFS_I(dir)->root, dentry, 736 name, namelen, async_transid, inherit); 737 } 738 if (!error) 739 fsnotify_mkdir(dir, dentry); 740 out_up_read: 741 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 742 out_dput: 743 dput(dentry); 744 out_unlock: 745 mutex_unlock(&dir->i_mutex); 746 return error; 747 } 748 749 /* 750 * When we're defragging a range, we don't want to kick it off again 751 * if it is really just waiting for delalloc to send it down. 752 * If we find a nice big extent or delalloc range for the bytes in the 753 * file you want to defrag, we return 0 to let you know to skip this 754 * part of the file 755 */ 756 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh) 757 { 758 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 759 struct extent_map *em = NULL; 760 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 761 u64 end; 762 763 read_lock(&em_tree->lock); 764 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 765 read_unlock(&em_tree->lock); 766 767 if (em) { 768 end = extent_map_end(em); 769 free_extent_map(em); 770 if (end - offset > thresh) 771 return 0; 772 } 773 /* if we already have a nice delalloc here, just stop */ 774 thresh /= 2; 775 end = count_range_bits(io_tree, &offset, offset + thresh, 776 thresh, EXTENT_DELALLOC, 1); 777 if (end >= thresh) 778 return 0; 779 return 1; 780 } 781 782 /* 783 * helper function to walk through a file and find extents 784 * newer than a specific transid, and smaller than thresh. 785 * 786 * This is used by the defragging code to find new and small 787 * extents 788 */ 789 static int find_new_extents(struct btrfs_root *root, 790 struct inode *inode, u64 newer_than, 791 u64 *off, int thresh) 792 { 793 struct btrfs_path *path; 794 struct btrfs_key min_key; 795 struct btrfs_key max_key; 796 struct extent_buffer *leaf; 797 struct btrfs_file_extent_item *extent; 798 int type; 799 int ret; 800 u64 ino = btrfs_ino(inode); 801 802 path = btrfs_alloc_path(); 803 if (!path) 804 return -ENOMEM; 805 806 min_key.objectid = ino; 807 min_key.type = BTRFS_EXTENT_DATA_KEY; 808 min_key.offset = *off; 809 810 max_key.objectid = ino; 811 max_key.type = (u8)-1; 812 max_key.offset = (u64)-1; 813 814 path->keep_locks = 1; 815 816 while(1) { 817 ret = btrfs_search_forward(root, &min_key, &max_key, 818 path, 0, newer_than); 819 if (ret != 0) 820 goto none; 821 if (min_key.objectid != ino) 822 goto none; 823 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 824 goto none; 825 826 leaf = path->nodes[0]; 827 extent = btrfs_item_ptr(leaf, path->slots[0], 828 struct btrfs_file_extent_item); 829 830 type = btrfs_file_extent_type(leaf, extent); 831 if (type == BTRFS_FILE_EXTENT_REG && 832 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 833 check_defrag_in_cache(inode, min_key.offset, thresh)) { 834 *off = min_key.offset; 835 btrfs_free_path(path); 836 return 0; 837 } 838 839 if (min_key.offset == (u64)-1) 840 goto none; 841 842 min_key.offset++; 843 btrfs_release_path(path); 844 } 845 none: 846 btrfs_free_path(path); 847 return -ENOENT; 848 } 849 850 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 851 { 852 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 853 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 854 struct extent_map *em; 855 u64 len = PAGE_CACHE_SIZE; 856 857 /* 858 * hopefully we have this extent in the tree already, try without 859 * the full extent lock 860 */ 861 read_lock(&em_tree->lock); 862 em = lookup_extent_mapping(em_tree, start, len); 863 read_unlock(&em_tree->lock); 864 865 if (!em) { 866 /* get the big lock and read metadata off disk */ 867 lock_extent(io_tree, start, start + len - 1); 868 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 869 unlock_extent(io_tree, start, start + len - 1); 870 871 if (IS_ERR(em)) 872 return NULL; 873 } 874 875 return em; 876 } 877 878 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 879 { 880 struct extent_map *next; 881 bool ret = true; 882 883 /* this is the last extent */ 884 if (em->start + em->len >= i_size_read(inode)) 885 return false; 886 887 next = defrag_lookup_extent(inode, em->start + em->len); 888 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 889 ret = false; 890 891 free_extent_map(next); 892 return ret; 893 } 894 895 static int should_defrag_range(struct inode *inode, u64 start, int thresh, 896 u64 *last_len, u64 *skip, u64 *defrag_end, 897 int compress) 898 { 899 struct extent_map *em; 900 int ret = 1; 901 bool next_mergeable = true; 902 903 /* 904 * make sure that once we start defragging an extent, we keep on 905 * defragging it 906 */ 907 if (start < *defrag_end) 908 return 1; 909 910 *skip = 0; 911 912 em = defrag_lookup_extent(inode, start); 913 if (!em) 914 return 0; 915 916 /* this will cover holes, and inline extents */ 917 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 918 ret = 0; 919 goto out; 920 } 921 922 next_mergeable = defrag_check_next_extent(inode, em); 923 924 /* 925 * we hit a real extent, if it is big or the next extent is not a 926 * real extent, don't bother defragging it 927 */ 928 if (!compress && (*last_len == 0 || *last_len >= thresh) && 929 (em->len >= thresh || !next_mergeable)) 930 ret = 0; 931 out: 932 /* 933 * last_len ends up being a counter of how many bytes we've defragged. 934 * every time we choose not to defrag an extent, we reset *last_len 935 * so that the next tiny extent will force a defrag. 936 * 937 * The end result of this is that tiny extents before a single big 938 * extent will force at least part of that big extent to be defragged. 939 */ 940 if (ret) { 941 *defrag_end = extent_map_end(em); 942 } else { 943 *last_len = 0; 944 *skip = extent_map_end(em); 945 *defrag_end = 0; 946 } 947 948 free_extent_map(em); 949 return ret; 950 } 951 952 /* 953 * it doesn't do much good to defrag one or two pages 954 * at a time. This pulls in a nice chunk of pages 955 * to COW and defrag. 956 * 957 * It also makes sure the delalloc code has enough 958 * dirty data to avoid making new small extents as part 959 * of the defrag 960 * 961 * It's a good idea to start RA on this range 962 * before calling this. 963 */ 964 static int cluster_pages_for_defrag(struct inode *inode, 965 struct page **pages, 966 unsigned long start_index, 967 int num_pages) 968 { 969 unsigned long file_end; 970 u64 isize = i_size_read(inode); 971 u64 page_start; 972 u64 page_end; 973 u64 page_cnt; 974 int ret; 975 int i; 976 int i_done; 977 struct btrfs_ordered_extent *ordered; 978 struct extent_state *cached_state = NULL; 979 struct extent_io_tree *tree; 980 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 981 982 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 983 if (!isize || start_index > file_end) 984 return 0; 985 986 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 987 988 ret = btrfs_delalloc_reserve_space(inode, 989 page_cnt << PAGE_CACHE_SHIFT); 990 if (ret) 991 return ret; 992 i_done = 0; 993 tree = &BTRFS_I(inode)->io_tree; 994 995 /* step one, lock all the pages */ 996 for (i = 0; i < page_cnt; i++) { 997 struct page *page; 998 again: 999 page = find_or_create_page(inode->i_mapping, 1000 start_index + i, mask); 1001 if (!page) 1002 break; 1003 1004 page_start = page_offset(page); 1005 page_end = page_start + PAGE_CACHE_SIZE - 1; 1006 while (1) { 1007 lock_extent(tree, page_start, page_end); 1008 ordered = btrfs_lookup_ordered_extent(inode, 1009 page_start); 1010 unlock_extent(tree, page_start, page_end); 1011 if (!ordered) 1012 break; 1013 1014 unlock_page(page); 1015 btrfs_start_ordered_extent(inode, ordered, 1); 1016 btrfs_put_ordered_extent(ordered); 1017 lock_page(page); 1018 /* 1019 * we unlocked the page above, so we need check if 1020 * it was released or not. 1021 */ 1022 if (page->mapping != inode->i_mapping) { 1023 unlock_page(page); 1024 page_cache_release(page); 1025 goto again; 1026 } 1027 } 1028 1029 if (!PageUptodate(page)) { 1030 btrfs_readpage(NULL, page); 1031 lock_page(page); 1032 if (!PageUptodate(page)) { 1033 unlock_page(page); 1034 page_cache_release(page); 1035 ret = -EIO; 1036 break; 1037 } 1038 } 1039 1040 if (page->mapping != inode->i_mapping) { 1041 unlock_page(page); 1042 page_cache_release(page); 1043 goto again; 1044 } 1045 1046 pages[i] = page; 1047 i_done++; 1048 } 1049 if (!i_done || ret) 1050 goto out; 1051 1052 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1053 goto out; 1054 1055 /* 1056 * so now we have a nice long stream of locked 1057 * and up to date pages, lets wait on them 1058 */ 1059 for (i = 0; i < i_done; i++) 1060 wait_on_page_writeback(pages[i]); 1061 1062 page_start = page_offset(pages[0]); 1063 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 1064 1065 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1066 page_start, page_end - 1, 0, &cached_state); 1067 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1068 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1069 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1070 &cached_state, GFP_NOFS); 1071 1072 if (i_done != page_cnt) { 1073 spin_lock(&BTRFS_I(inode)->lock); 1074 BTRFS_I(inode)->outstanding_extents++; 1075 spin_unlock(&BTRFS_I(inode)->lock); 1076 btrfs_delalloc_release_space(inode, 1077 (page_cnt - i_done) << PAGE_CACHE_SHIFT); 1078 } 1079 1080 1081 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1082 &cached_state, GFP_NOFS); 1083 1084 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1085 page_start, page_end - 1, &cached_state, 1086 GFP_NOFS); 1087 1088 for (i = 0; i < i_done; i++) { 1089 clear_page_dirty_for_io(pages[i]); 1090 ClearPageChecked(pages[i]); 1091 set_page_extent_mapped(pages[i]); 1092 set_page_dirty(pages[i]); 1093 unlock_page(pages[i]); 1094 page_cache_release(pages[i]); 1095 } 1096 return i_done; 1097 out: 1098 for (i = 0; i < i_done; i++) { 1099 unlock_page(pages[i]); 1100 page_cache_release(pages[i]); 1101 } 1102 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT); 1103 return ret; 1104 1105 } 1106 1107 int btrfs_defrag_file(struct inode *inode, struct file *file, 1108 struct btrfs_ioctl_defrag_range_args *range, 1109 u64 newer_than, unsigned long max_to_defrag) 1110 { 1111 struct btrfs_root *root = BTRFS_I(inode)->root; 1112 struct file_ra_state *ra = NULL; 1113 unsigned long last_index; 1114 u64 isize = i_size_read(inode); 1115 u64 last_len = 0; 1116 u64 skip = 0; 1117 u64 defrag_end = 0; 1118 u64 newer_off = range->start; 1119 unsigned long i; 1120 unsigned long ra_index = 0; 1121 int ret; 1122 int defrag_count = 0; 1123 int compress_type = BTRFS_COMPRESS_ZLIB; 1124 int extent_thresh = range->extent_thresh; 1125 int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 1126 int cluster = max_cluster; 1127 u64 new_align = ~((u64)128 * 1024 - 1); 1128 struct page **pages = NULL; 1129 1130 if (extent_thresh == 0) 1131 extent_thresh = 256 * 1024; 1132 1133 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1134 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1135 return -EINVAL; 1136 if (range->compress_type) 1137 compress_type = range->compress_type; 1138 } 1139 1140 if (isize == 0) 1141 return 0; 1142 1143 /* 1144 * if we were not given a file, allocate a readahead 1145 * context 1146 */ 1147 if (!file) { 1148 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1149 if (!ra) 1150 return -ENOMEM; 1151 file_ra_state_init(ra, inode->i_mapping); 1152 } else { 1153 ra = &file->f_ra; 1154 } 1155 1156 pages = kmalloc(sizeof(struct page *) * max_cluster, 1157 GFP_NOFS); 1158 if (!pages) { 1159 ret = -ENOMEM; 1160 goto out_ra; 1161 } 1162 1163 /* find the last page to defrag */ 1164 if (range->start + range->len > range->start) { 1165 last_index = min_t(u64, isize - 1, 1166 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1167 } else { 1168 last_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1169 } 1170 1171 if (newer_than) { 1172 ret = find_new_extents(root, inode, newer_than, 1173 &newer_off, 64 * 1024); 1174 if (!ret) { 1175 range->start = newer_off; 1176 /* 1177 * we always align our defrag to help keep 1178 * the extents in the file evenly spaced 1179 */ 1180 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1181 } else 1182 goto out_ra; 1183 } else { 1184 i = range->start >> PAGE_CACHE_SHIFT; 1185 } 1186 if (!max_to_defrag) 1187 max_to_defrag = last_index + 1; 1188 1189 /* 1190 * make writeback starts from i, so the defrag range can be 1191 * written sequentially. 1192 */ 1193 if (i < inode->i_mapping->writeback_index) 1194 inode->i_mapping->writeback_index = i; 1195 1196 while (i <= last_index && defrag_count < max_to_defrag && 1197 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> 1198 PAGE_CACHE_SHIFT)) { 1199 /* 1200 * make sure we stop running if someone unmounts 1201 * the FS 1202 */ 1203 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1204 break; 1205 1206 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1207 extent_thresh, &last_len, &skip, 1208 &defrag_end, range->flags & 1209 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1210 unsigned long next; 1211 /* 1212 * the should_defrag function tells us how much to skip 1213 * bump our counter by the suggested amount 1214 */ 1215 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1216 i = max(i + 1, next); 1217 continue; 1218 } 1219 1220 if (!newer_than) { 1221 cluster = (PAGE_CACHE_ALIGN(defrag_end) >> 1222 PAGE_CACHE_SHIFT) - i; 1223 cluster = min(cluster, max_cluster); 1224 } else { 1225 cluster = max_cluster; 1226 } 1227 1228 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1229 BTRFS_I(inode)->force_compress = compress_type; 1230 1231 if (i + cluster > ra_index) { 1232 ra_index = max(i, ra_index); 1233 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1234 cluster); 1235 ra_index += max_cluster; 1236 } 1237 1238 mutex_lock(&inode->i_mutex); 1239 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1240 if (ret < 0) { 1241 mutex_unlock(&inode->i_mutex); 1242 goto out_ra; 1243 } 1244 1245 defrag_count += ret; 1246 balance_dirty_pages_ratelimited(inode->i_mapping); 1247 mutex_unlock(&inode->i_mutex); 1248 1249 if (newer_than) { 1250 if (newer_off == (u64)-1) 1251 break; 1252 1253 if (ret > 0) 1254 i += ret; 1255 1256 newer_off = max(newer_off + 1, 1257 (u64)i << PAGE_CACHE_SHIFT); 1258 1259 ret = find_new_extents(root, inode, 1260 newer_than, &newer_off, 1261 64 * 1024); 1262 if (!ret) { 1263 range->start = newer_off; 1264 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1265 } else { 1266 break; 1267 } 1268 } else { 1269 if (ret > 0) { 1270 i += ret; 1271 last_len += ret << PAGE_CACHE_SHIFT; 1272 } else { 1273 i++; 1274 last_len = 0; 1275 } 1276 } 1277 } 1278 1279 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) 1280 filemap_flush(inode->i_mapping); 1281 1282 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1283 /* the filemap_flush will queue IO into the worker threads, but 1284 * we have to make sure the IO is actually started and that 1285 * ordered extents get created before we return 1286 */ 1287 atomic_inc(&root->fs_info->async_submit_draining); 1288 while (atomic_read(&root->fs_info->nr_async_submits) || 1289 atomic_read(&root->fs_info->async_delalloc_pages)) { 1290 wait_event(root->fs_info->async_submit_wait, 1291 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1292 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1293 } 1294 atomic_dec(&root->fs_info->async_submit_draining); 1295 1296 mutex_lock(&inode->i_mutex); 1297 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1298 mutex_unlock(&inode->i_mutex); 1299 } 1300 1301 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1302 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1303 } 1304 1305 ret = defrag_count; 1306 1307 out_ra: 1308 if (!file) 1309 kfree(ra); 1310 kfree(pages); 1311 return ret; 1312 } 1313 1314 static noinline int btrfs_ioctl_resize(struct file *file, 1315 void __user *arg) 1316 { 1317 u64 new_size; 1318 u64 old_size; 1319 u64 devid = 1; 1320 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 1321 struct btrfs_ioctl_vol_args *vol_args; 1322 struct btrfs_trans_handle *trans; 1323 struct btrfs_device *device = NULL; 1324 char *sizestr; 1325 char *devstr = NULL; 1326 int ret = 0; 1327 int mod = 0; 1328 1329 if (root->fs_info->sb->s_flags & MS_RDONLY) 1330 return -EROFS; 1331 1332 if (!capable(CAP_SYS_ADMIN)) 1333 return -EPERM; 1334 1335 ret = mnt_want_write_file(file); 1336 if (ret) 1337 return ret; 1338 1339 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1340 1)) { 1341 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 1342 return -EINPROGRESS; 1343 } 1344 1345 mutex_lock(&root->fs_info->volume_mutex); 1346 vol_args = memdup_user(arg, sizeof(*vol_args)); 1347 if (IS_ERR(vol_args)) { 1348 ret = PTR_ERR(vol_args); 1349 goto out; 1350 } 1351 1352 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1353 1354 sizestr = vol_args->name; 1355 devstr = strchr(sizestr, ':'); 1356 if (devstr) { 1357 char *end; 1358 sizestr = devstr + 1; 1359 *devstr = '\0'; 1360 devstr = vol_args->name; 1361 devid = simple_strtoull(devstr, &end, 10); 1362 printk(KERN_INFO "btrfs: resizing devid %llu\n", 1363 (unsigned long long)devid); 1364 } 1365 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1366 if (!device) { 1367 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n", 1368 (unsigned long long)devid); 1369 ret = -EINVAL; 1370 goto out_free; 1371 } 1372 if (device->fs_devices && device->fs_devices->seeding) { 1373 printk(KERN_INFO "btrfs: resizer unable to apply on " 1374 "seeding device %llu\n", 1375 (unsigned long long)devid); 1376 ret = -EINVAL; 1377 goto out_free; 1378 } 1379 1380 if (!strcmp(sizestr, "max")) 1381 new_size = device->bdev->bd_inode->i_size; 1382 else { 1383 if (sizestr[0] == '-') { 1384 mod = -1; 1385 sizestr++; 1386 } else if (sizestr[0] == '+') { 1387 mod = 1; 1388 sizestr++; 1389 } 1390 new_size = memparse(sizestr, NULL); 1391 if (new_size == 0) { 1392 ret = -EINVAL; 1393 goto out_free; 1394 } 1395 } 1396 1397 if (device->is_tgtdev_for_dev_replace) { 1398 ret = -EINVAL; 1399 goto out_free; 1400 } 1401 1402 old_size = device->total_bytes; 1403 1404 if (mod < 0) { 1405 if (new_size > old_size) { 1406 ret = -EINVAL; 1407 goto out_free; 1408 } 1409 new_size = old_size - new_size; 1410 } else if (mod > 0) { 1411 new_size = old_size + new_size; 1412 } 1413 1414 if (new_size < 256 * 1024 * 1024) { 1415 ret = -EINVAL; 1416 goto out_free; 1417 } 1418 if (new_size > device->bdev->bd_inode->i_size) { 1419 ret = -EFBIG; 1420 goto out_free; 1421 } 1422 1423 do_div(new_size, root->sectorsize); 1424 new_size *= root->sectorsize; 1425 1426 printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n", 1427 rcu_str_deref(device->name), 1428 (unsigned long long)new_size); 1429 1430 if (new_size > old_size) { 1431 trans = btrfs_start_transaction(root, 0); 1432 if (IS_ERR(trans)) { 1433 ret = PTR_ERR(trans); 1434 goto out_free; 1435 } 1436 ret = btrfs_grow_device(trans, device, new_size); 1437 btrfs_commit_transaction(trans, root); 1438 } else if (new_size < old_size) { 1439 ret = btrfs_shrink_device(device, new_size); 1440 } /* equal, nothing need to do */ 1441 1442 out_free: 1443 kfree(vol_args); 1444 out: 1445 mutex_unlock(&root->fs_info->volume_mutex); 1446 mnt_drop_write_file(file); 1447 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1448 return ret; 1449 } 1450 1451 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1452 char *name, unsigned long fd, int subvol, 1453 u64 *transid, bool readonly, 1454 struct btrfs_qgroup_inherit **inherit) 1455 { 1456 int namelen; 1457 int ret = 0; 1458 1459 ret = mnt_want_write_file(file); 1460 if (ret) 1461 goto out; 1462 1463 namelen = strlen(name); 1464 if (strchr(name, '/')) { 1465 ret = -EINVAL; 1466 goto out_drop_write; 1467 } 1468 1469 if (name[0] == '.' && 1470 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1471 ret = -EEXIST; 1472 goto out_drop_write; 1473 } 1474 1475 if (subvol) { 1476 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1477 NULL, transid, readonly, inherit); 1478 } else { 1479 struct fd src = fdget(fd); 1480 struct inode *src_inode; 1481 if (!src.file) { 1482 ret = -EINVAL; 1483 goto out_drop_write; 1484 } 1485 1486 src_inode = src.file->f_path.dentry->d_inode; 1487 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) { 1488 printk(KERN_INFO "btrfs: Snapshot src from " 1489 "another FS\n"); 1490 ret = -EINVAL; 1491 } else { 1492 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1493 BTRFS_I(src_inode)->root, 1494 transid, readonly, inherit); 1495 } 1496 fdput(src); 1497 } 1498 out_drop_write: 1499 mnt_drop_write_file(file); 1500 out: 1501 return ret; 1502 } 1503 1504 static noinline int btrfs_ioctl_snap_create(struct file *file, 1505 void __user *arg, int subvol) 1506 { 1507 struct btrfs_ioctl_vol_args *vol_args; 1508 int ret; 1509 1510 vol_args = memdup_user(arg, sizeof(*vol_args)); 1511 if (IS_ERR(vol_args)) 1512 return PTR_ERR(vol_args); 1513 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1514 1515 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1516 vol_args->fd, subvol, 1517 NULL, false, NULL); 1518 1519 kfree(vol_args); 1520 return ret; 1521 } 1522 1523 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1524 void __user *arg, int subvol) 1525 { 1526 struct btrfs_ioctl_vol_args_v2 *vol_args; 1527 int ret; 1528 u64 transid = 0; 1529 u64 *ptr = NULL; 1530 bool readonly = false; 1531 struct btrfs_qgroup_inherit *inherit = NULL; 1532 1533 vol_args = memdup_user(arg, sizeof(*vol_args)); 1534 if (IS_ERR(vol_args)) 1535 return PTR_ERR(vol_args); 1536 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1537 1538 if (vol_args->flags & 1539 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1540 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1541 ret = -EOPNOTSUPP; 1542 goto out; 1543 } 1544 1545 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1546 ptr = &transid; 1547 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1548 readonly = true; 1549 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1550 if (vol_args->size > PAGE_CACHE_SIZE) { 1551 ret = -EINVAL; 1552 goto out; 1553 } 1554 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1555 if (IS_ERR(inherit)) { 1556 ret = PTR_ERR(inherit); 1557 goto out; 1558 } 1559 } 1560 1561 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1562 vol_args->fd, subvol, ptr, 1563 readonly, &inherit); 1564 1565 if (ret == 0 && ptr && 1566 copy_to_user(arg + 1567 offsetof(struct btrfs_ioctl_vol_args_v2, 1568 transid), ptr, sizeof(*ptr))) 1569 ret = -EFAULT; 1570 out: 1571 kfree(vol_args); 1572 kfree(inherit); 1573 return ret; 1574 } 1575 1576 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1577 void __user *arg) 1578 { 1579 struct inode *inode = fdentry(file)->d_inode; 1580 struct btrfs_root *root = BTRFS_I(inode)->root; 1581 int ret = 0; 1582 u64 flags = 0; 1583 1584 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1585 return -EINVAL; 1586 1587 down_read(&root->fs_info->subvol_sem); 1588 if (btrfs_root_readonly(root)) 1589 flags |= BTRFS_SUBVOL_RDONLY; 1590 up_read(&root->fs_info->subvol_sem); 1591 1592 if (copy_to_user(arg, &flags, sizeof(flags))) 1593 ret = -EFAULT; 1594 1595 return ret; 1596 } 1597 1598 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1599 void __user *arg) 1600 { 1601 struct inode *inode = fdentry(file)->d_inode; 1602 struct btrfs_root *root = BTRFS_I(inode)->root; 1603 struct btrfs_trans_handle *trans; 1604 u64 root_flags; 1605 u64 flags; 1606 int ret = 0; 1607 1608 ret = mnt_want_write_file(file); 1609 if (ret) 1610 goto out; 1611 1612 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1613 ret = -EINVAL; 1614 goto out_drop_write; 1615 } 1616 1617 if (copy_from_user(&flags, arg, sizeof(flags))) { 1618 ret = -EFAULT; 1619 goto out_drop_write; 1620 } 1621 1622 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1623 ret = -EINVAL; 1624 goto out_drop_write; 1625 } 1626 1627 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1628 ret = -EOPNOTSUPP; 1629 goto out_drop_write; 1630 } 1631 1632 if (!inode_owner_or_capable(inode)) { 1633 ret = -EACCES; 1634 goto out_drop_write; 1635 } 1636 1637 down_write(&root->fs_info->subvol_sem); 1638 1639 /* nothing to do */ 1640 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1641 goto out_drop_sem; 1642 1643 root_flags = btrfs_root_flags(&root->root_item); 1644 if (flags & BTRFS_SUBVOL_RDONLY) 1645 btrfs_set_root_flags(&root->root_item, 1646 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1647 else 1648 btrfs_set_root_flags(&root->root_item, 1649 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1650 1651 trans = btrfs_start_transaction(root, 1); 1652 if (IS_ERR(trans)) { 1653 ret = PTR_ERR(trans); 1654 goto out_reset; 1655 } 1656 1657 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1658 &root->root_key, &root->root_item); 1659 1660 btrfs_commit_transaction(trans, root); 1661 out_reset: 1662 if (ret) 1663 btrfs_set_root_flags(&root->root_item, root_flags); 1664 out_drop_sem: 1665 up_write(&root->fs_info->subvol_sem); 1666 out_drop_write: 1667 mnt_drop_write_file(file); 1668 out: 1669 return ret; 1670 } 1671 1672 /* 1673 * helper to check if the subvolume references other subvolumes 1674 */ 1675 static noinline int may_destroy_subvol(struct btrfs_root *root) 1676 { 1677 struct btrfs_path *path; 1678 struct btrfs_key key; 1679 int ret; 1680 1681 path = btrfs_alloc_path(); 1682 if (!path) 1683 return -ENOMEM; 1684 1685 key.objectid = root->root_key.objectid; 1686 key.type = BTRFS_ROOT_REF_KEY; 1687 key.offset = (u64)-1; 1688 1689 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1690 &key, path, 0, 0); 1691 if (ret < 0) 1692 goto out; 1693 BUG_ON(ret == 0); 1694 1695 ret = 0; 1696 if (path->slots[0] > 0) { 1697 path->slots[0]--; 1698 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1699 if (key.objectid == root->root_key.objectid && 1700 key.type == BTRFS_ROOT_REF_KEY) 1701 ret = -ENOTEMPTY; 1702 } 1703 out: 1704 btrfs_free_path(path); 1705 return ret; 1706 } 1707 1708 static noinline int key_in_sk(struct btrfs_key *key, 1709 struct btrfs_ioctl_search_key *sk) 1710 { 1711 struct btrfs_key test; 1712 int ret; 1713 1714 test.objectid = sk->min_objectid; 1715 test.type = sk->min_type; 1716 test.offset = sk->min_offset; 1717 1718 ret = btrfs_comp_cpu_keys(key, &test); 1719 if (ret < 0) 1720 return 0; 1721 1722 test.objectid = sk->max_objectid; 1723 test.type = sk->max_type; 1724 test.offset = sk->max_offset; 1725 1726 ret = btrfs_comp_cpu_keys(key, &test); 1727 if (ret > 0) 1728 return 0; 1729 return 1; 1730 } 1731 1732 static noinline int copy_to_sk(struct btrfs_root *root, 1733 struct btrfs_path *path, 1734 struct btrfs_key *key, 1735 struct btrfs_ioctl_search_key *sk, 1736 char *buf, 1737 unsigned long *sk_offset, 1738 int *num_found) 1739 { 1740 u64 found_transid; 1741 struct extent_buffer *leaf; 1742 struct btrfs_ioctl_search_header sh; 1743 unsigned long item_off; 1744 unsigned long item_len; 1745 int nritems; 1746 int i; 1747 int slot; 1748 int ret = 0; 1749 1750 leaf = path->nodes[0]; 1751 slot = path->slots[0]; 1752 nritems = btrfs_header_nritems(leaf); 1753 1754 if (btrfs_header_generation(leaf) > sk->max_transid) { 1755 i = nritems; 1756 goto advance_key; 1757 } 1758 found_transid = btrfs_header_generation(leaf); 1759 1760 for (i = slot; i < nritems; i++) { 1761 item_off = btrfs_item_ptr_offset(leaf, i); 1762 item_len = btrfs_item_size_nr(leaf, i); 1763 1764 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE) 1765 item_len = 0; 1766 1767 if (sizeof(sh) + item_len + *sk_offset > 1768 BTRFS_SEARCH_ARGS_BUFSIZE) { 1769 ret = 1; 1770 goto overflow; 1771 } 1772 1773 btrfs_item_key_to_cpu(leaf, key, i); 1774 if (!key_in_sk(key, sk)) 1775 continue; 1776 1777 sh.objectid = key->objectid; 1778 sh.offset = key->offset; 1779 sh.type = key->type; 1780 sh.len = item_len; 1781 sh.transid = found_transid; 1782 1783 /* copy search result header */ 1784 memcpy(buf + *sk_offset, &sh, sizeof(sh)); 1785 *sk_offset += sizeof(sh); 1786 1787 if (item_len) { 1788 char *p = buf + *sk_offset; 1789 /* copy the item */ 1790 read_extent_buffer(leaf, p, 1791 item_off, item_len); 1792 *sk_offset += item_len; 1793 } 1794 (*num_found)++; 1795 1796 if (*num_found >= sk->nr_items) 1797 break; 1798 } 1799 advance_key: 1800 ret = 0; 1801 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 1802 key->offset++; 1803 else if (key->type < (u8)-1 && key->type < sk->max_type) { 1804 key->offset = 0; 1805 key->type++; 1806 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 1807 key->offset = 0; 1808 key->type = 0; 1809 key->objectid++; 1810 } else 1811 ret = 1; 1812 overflow: 1813 return ret; 1814 } 1815 1816 static noinline int search_ioctl(struct inode *inode, 1817 struct btrfs_ioctl_search_args *args) 1818 { 1819 struct btrfs_root *root; 1820 struct btrfs_key key; 1821 struct btrfs_key max_key; 1822 struct btrfs_path *path; 1823 struct btrfs_ioctl_search_key *sk = &args->key; 1824 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 1825 int ret; 1826 int num_found = 0; 1827 unsigned long sk_offset = 0; 1828 1829 path = btrfs_alloc_path(); 1830 if (!path) 1831 return -ENOMEM; 1832 1833 if (sk->tree_id == 0) { 1834 /* search the root of the inode that was passed */ 1835 root = BTRFS_I(inode)->root; 1836 } else { 1837 key.objectid = sk->tree_id; 1838 key.type = BTRFS_ROOT_ITEM_KEY; 1839 key.offset = (u64)-1; 1840 root = btrfs_read_fs_root_no_name(info, &key); 1841 if (IS_ERR(root)) { 1842 printk(KERN_ERR "could not find root %llu\n", 1843 sk->tree_id); 1844 btrfs_free_path(path); 1845 return -ENOENT; 1846 } 1847 } 1848 1849 key.objectid = sk->min_objectid; 1850 key.type = sk->min_type; 1851 key.offset = sk->min_offset; 1852 1853 max_key.objectid = sk->max_objectid; 1854 max_key.type = sk->max_type; 1855 max_key.offset = sk->max_offset; 1856 1857 path->keep_locks = 1; 1858 1859 while(1) { 1860 ret = btrfs_search_forward(root, &key, &max_key, path, 0, 1861 sk->min_transid); 1862 if (ret != 0) { 1863 if (ret > 0) 1864 ret = 0; 1865 goto err; 1866 } 1867 ret = copy_to_sk(root, path, &key, sk, args->buf, 1868 &sk_offset, &num_found); 1869 btrfs_release_path(path); 1870 if (ret || num_found >= sk->nr_items) 1871 break; 1872 1873 } 1874 ret = 0; 1875 err: 1876 sk->nr_items = num_found; 1877 btrfs_free_path(path); 1878 return ret; 1879 } 1880 1881 static noinline int btrfs_ioctl_tree_search(struct file *file, 1882 void __user *argp) 1883 { 1884 struct btrfs_ioctl_search_args *args; 1885 struct inode *inode; 1886 int ret; 1887 1888 if (!capable(CAP_SYS_ADMIN)) 1889 return -EPERM; 1890 1891 args = memdup_user(argp, sizeof(*args)); 1892 if (IS_ERR(args)) 1893 return PTR_ERR(args); 1894 1895 inode = fdentry(file)->d_inode; 1896 ret = search_ioctl(inode, args); 1897 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 1898 ret = -EFAULT; 1899 kfree(args); 1900 return ret; 1901 } 1902 1903 /* 1904 * Search INODE_REFs to identify path name of 'dirid' directory 1905 * in a 'tree_id' tree. and sets path name to 'name'. 1906 */ 1907 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1908 u64 tree_id, u64 dirid, char *name) 1909 { 1910 struct btrfs_root *root; 1911 struct btrfs_key key; 1912 char *ptr; 1913 int ret = -1; 1914 int slot; 1915 int len; 1916 int total_len = 0; 1917 struct btrfs_inode_ref *iref; 1918 struct extent_buffer *l; 1919 struct btrfs_path *path; 1920 1921 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1922 name[0]='\0'; 1923 return 0; 1924 } 1925 1926 path = btrfs_alloc_path(); 1927 if (!path) 1928 return -ENOMEM; 1929 1930 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 1931 1932 key.objectid = tree_id; 1933 key.type = BTRFS_ROOT_ITEM_KEY; 1934 key.offset = (u64)-1; 1935 root = btrfs_read_fs_root_no_name(info, &key); 1936 if (IS_ERR(root)) { 1937 printk(KERN_ERR "could not find root %llu\n", tree_id); 1938 ret = -ENOENT; 1939 goto out; 1940 } 1941 1942 key.objectid = dirid; 1943 key.type = BTRFS_INODE_REF_KEY; 1944 key.offset = (u64)-1; 1945 1946 while(1) { 1947 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1948 if (ret < 0) 1949 goto out; 1950 1951 l = path->nodes[0]; 1952 slot = path->slots[0]; 1953 if (ret > 0 && slot > 0) 1954 slot--; 1955 btrfs_item_key_to_cpu(l, &key, slot); 1956 1957 if (ret > 0 && (key.objectid != dirid || 1958 key.type != BTRFS_INODE_REF_KEY)) { 1959 ret = -ENOENT; 1960 goto out; 1961 } 1962 1963 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1964 len = btrfs_inode_ref_name_len(l, iref); 1965 ptr -= len + 1; 1966 total_len += len + 1; 1967 if (ptr < name) 1968 goto out; 1969 1970 *(ptr + len) = '/'; 1971 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len); 1972 1973 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1974 break; 1975 1976 btrfs_release_path(path); 1977 key.objectid = key.offset; 1978 key.offset = (u64)-1; 1979 dirid = key.objectid; 1980 } 1981 if (ptr < name) 1982 goto out; 1983 memmove(name, ptr, total_len); 1984 name[total_len]='\0'; 1985 ret = 0; 1986 out: 1987 btrfs_free_path(path); 1988 return ret; 1989 } 1990 1991 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 1992 void __user *argp) 1993 { 1994 struct btrfs_ioctl_ino_lookup_args *args; 1995 struct inode *inode; 1996 int ret; 1997 1998 if (!capable(CAP_SYS_ADMIN)) 1999 return -EPERM; 2000 2001 args = memdup_user(argp, sizeof(*args)); 2002 if (IS_ERR(args)) 2003 return PTR_ERR(args); 2004 2005 inode = fdentry(file)->d_inode; 2006 2007 if (args->treeid == 0) 2008 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2009 2010 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2011 args->treeid, args->objectid, 2012 args->name); 2013 2014 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2015 ret = -EFAULT; 2016 2017 kfree(args); 2018 return ret; 2019 } 2020 2021 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2022 void __user *arg) 2023 { 2024 struct dentry *parent = fdentry(file); 2025 struct dentry *dentry; 2026 struct inode *dir = parent->d_inode; 2027 struct inode *inode; 2028 struct btrfs_root *root = BTRFS_I(dir)->root; 2029 struct btrfs_root *dest = NULL; 2030 struct btrfs_ioctl_vol_args *vol_args; 2031 struct btrfs_trans_handle *trans; 2032 int namelen; 2033 int ret; 2034 int err = 0; 2035 2036 vol_args = memdup_user(arg, sizeof(*vol_args)); 2037 if (IS_ERR(vol_args)) 2038 return PTR_ERR(vol_args); 2039 2040 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2041 namelen = strlen(vol_args->name); 2042 if (strchr(vol_args->name, '/') || 2043 strncmp(vol_args->name, "..", namelen) == 0) { 2044 err = -EINVAL; 2045 goto out; 2046 } 2047 2048 err = mnt_want_write_file(file); 2049 if (err) 2050 goto out; 2051 2052 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT); 2053 dentry = lookup_one_len(vol_args->name, parent, namelen); 2054 if (IS_ERR(dentry)) { 2055 err = PTR_ERR(dentry); 2056 goto out_unlock_dir; 2057 } 2058 2059 if (!dentry->d_inode) { 2060 err = -ENOENT; 2061 goto out_dput; 2062 } 2063 2064 inode = dentry->d_inode; 2065 dest = BTRFS_I(inode)->root; 2066 if (!capable(CAP_SYS_ADMIN)){ 2067 /* 2068 * Regular user. Only allow this with a special mount 2069 * option, when the user has write+exec access to the 2070 * subvol root, and when rmdir(2) would have been 2071 * allowed. 2072 * 2073 * Note that this is _not_ check that the subvol is 2074 * empty or doesn't contain data that we wouldn't 2075 * otherwise be able to delete. 2076 * 2077 * Users who want to delete empty subvols should try 2078 * rmdir(2). 2079 */ 2080 err = -EPERM; 2081 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2082 goto out_dput; 2083 2084 /* 2085 * Do not allow deletion if the parent dir is the same 2086 * as the dir to be deleted. That means the ioctl 2087 * must be called on the dentry referencing the root 2088 * of the subvol, not a random directory contained 2089 * within it. 2090 */ 2091 err = -EINVAL; 2092 if (root == dest) 2093 goto out_dput; 2094 2095 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2096 if (err) 2097 goto out_dput; 2098 2099 /* check if subvolume may be deleted by a non-root user */ 2100 err = btrfs_may_delete(dir, dentry, 1); 2101 if (err) 2102 goto out_dput; 2103 } 2104 2105 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2106 err = -EINVAL; 2107 goto out_dput; 2108 } 2109 2110 mutex_lock(&inode->i_mutex); 2111 err = d_invalidate(dentry); 2112 if (err) 2113 goto out_unlock; 2114 2115 down_write(&root->fs_info->subvol_sem); 2116 2117 err = may_destroy_subvol(dest); 2118 if (err) 2119 goto out_up_write; 2120 2121 trans = btrfs_start_transaction(root, 0); 2122 if (IS_ERR(trans)) { 2123 err = PTR_ERR(trans); 2124 goto out_up_write; 2125 } 2126 trans->block_rsv = &root->fs_info->global_block_rsv; 2127 2128 ret = btrfs_unlink_subvol(trans, root, dir, 2129 dest->root_key.objectid, 2130 dentry->d_name.name, 2131 dentry->d_name.len); 2132 if (ret) { 2133 err = ret; 2134 btrfs_abort_transaction(trans, root, ret); 2135 goto out_end_trans; 2136 } 2137 2138 btrfs_record_root_in_trans(trans, dest); 2139 2140 memset(&dest->root_item.drop_progress, 0, 2141 sizeof(dest->root_item.drop_progress)); 2142 dest->root_item.drop_level = 0; 2143 btrfs_set_root_refs(&dest->root_item, 0); 2144 2145 if (!xchg(&dest->orphan_item_inserted, 1)) { 2146 ret = btrfs_insert_orphan_item(trans, 2147 root->fs_info->tree_root, 2148 dest->root_key.objectid); 2149 if (ret) { 2150 btrfs_abort_transaction(trans, root, ret); 2151 err = ret; 2152 goto out_end_trans; 2153 } 2154 } 2155 out_end_trans: 2156 ret = btrfs_end_transaction(trans, root); 2157 if (ret && !err) 2158 err = ret; 2159 inode->i_flags |= S_DEAD; 2160 out_up_write: 2161 up_write(&root->fs_info->subvol_sem); 2162 out_unlock: 2163 mutex_unlock(&inode->i_mutex); 2164 if (!err) { 2165 shrink_dcache_sb(root->fs_info->sb); 2166 btrfs_invalidate_inodes(dest); 2167 d_delete(dentry); 2168 } 2169 out_dput: 2170 dput(dentry); 2171 out_unlock_dir: 2172 mutex_unlock(&dir->i_mutex); 2173 mnt_drop_write_file(file); 2174 out: 2175 kfree(vol_args); 2176 return err; 2177 } 2178 2179 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2180 { 2181 struct inode *inode = fdentry(file)->d_inode; 2182 struct btrfs_root *root = BTRFS_I(inode)->root; 2183 struct btrfs_ioctl_defrag_range_args *range; 2184 int ret; 2185 2186 if (btrfs_root_readonly(root)) 2187 return -EROFS; 2188 2189 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2190 1)) { 2191 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 2192 return -EINPROGRESS; 2193 } 2194 ret = mnt_want_write_file(file); 2195 if (ret) { 2196 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 2197 0); 2198 return ret; 2199 } 2200 2201 switch (inode->i_mode & S_IFMT) { 2202 case S_IFDIR: 2203 if (!capable(CAP_SYS_ADMIN)) { 2204 ret = -EPERM; 2205 goto out; 2206 } 2207 ret = btrfs_defrag_root(root, 0); 2208 if (ret) 2209 goto out; 2210 ret = btrfs_defrag_root(root->fs_info->extent_root, 0); 2211 break; 2212 case S_IFREG: 2213 if (!(file->f_mode & FMODE_WRITE)) { 2214 ret = -EINVAL; 2215 goto out; 2216 } 2217 2218 range = kzalloc(sizeof(*range), GFP_KERNEL); 2219 if (!range) { 2220 ret = -ENOMEM; 2221 goto out; 2222 } 2223 2224 if (argp) { 2225 if (copy_from_user(range, argp, 2226 sizeof(*range))) { 2227 ret = -EFAULT; 2228 kfree(range); 2229 goto out; 2230 } 2231 /* compression requires us to start the IO */ 2232 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2233 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2234 range->extent_thresh = (u32)-1; 2235 } 2236 } else { 2237 /* the rest are all set to zero by kzalloc */ 2238 range->len = (u64)-1; 2239 } 2240 ret = btrfs_defrag_file(fdentry(file)->d_inode, file, 2241 range, 0, 0); 2242 if (ret > 0) 2243 ret = 0; 2244 kfree(range); 2245 break; 2246 default: 2247 ret = -EINVAL; 2248 } 2249 out: 2250 mnt_drop_write_file(file); 2251 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2252 return ret; 2253 } 2254 2255 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2256 { 2257 struct btrfs_ioctl_vol_args *vol_args; 2258 int ret; 2259 2260 if (!capable(CAP_SYS_ADMIN)) 2261 return -EPERM; 2262 2263 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2264 1)) { 2265 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 2266 return -EINPROGRESS; 2267 } 2268 2269 mutex_lock(&root->fs_info->volume_mutex); 2270 vol_args = memdup_user(arg, sizeof(*vol_args)); 2271 if (IS_ERR(vol_args)) { 2272 ret = PTR_ERR(vol_args); 2273 goto out; 2274 } 2275 2276 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2277 ret = btrfs_init_new_device(root, vol_args->name); 2278 2279 kfree(vol_args); 2280 out: 2281 mutex_unlock(&root->fs_info->volume_mutex); 2282 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2283 return ret; 2284 } 2285 2286 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2287 { 2288 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 2289 struct btrfs_ioctl_vol_args *vol_args; 2290 int ret; 2291 2292 if (!capable(CAP_SYS_ADMIN)) 2293 return -EPERM; 2294 2295 ret = mnt_want_write_file(file); 2296 if (ret) 2297 return ret; 2298 2299 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2300 1)) { 2301 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 2302 mnt_drop_write_file(file); 2303 return -EINPROGRESS; 2304 } 2305 2306 mutex_lock(&root->fs_info->volume_mutex); 2307 vol_args = memdup_user(arg, sizeof(*vol_args)); 2308 if (IS_ERR(vol_args)) { 2309 ret = PTR_ERR(vol_args); 2310 goto out; 2311 } 2312 2313 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2314 ret = btrfs_rm_device(root, vol_args->name); 2315 2316 kfree(vol_args); 2317 out: 2318 mutex_unlock(&root->fs_info->volume_mutex); 2319 mnt_drop_write_file(file); 2320 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2321 return ret; 2322 } 2323 2324 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2325 { 2326 struct btrfs_ioctl_fs_info_args *fi_args; 2327 struct btrfs_device *device; 2328 struct btrfs_device *next; 2329 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2330 int ret = 0; 2331 2332 if (!capable(CAP_SYS_ADMIN)) 2333 return -EPERM; 2334 2335 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2336 if (!fi_args) 2337 return -ENOMEM; 2338 2339 fi_args->num_devices = fs_devices->num_devices; 2340 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2341 2342 mutex_lock(&fs_devices->device_list_mutex); 2343 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2344 if (device->devid > fi_args->max_id) 2345 fi_args->max_id = device->devid; 2346 } 2347 mutex_unlock(&fs_devices->device_list_mutex); 2348 2349 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2350 ret = -EFAULT; 2351 2352 kfree(fi_args); 2353 return ret; 2354 } 2355 2356 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2357 { 2358 struct btrfs_ioctl_dev_info_args *di_args; 2359 struct btrfs_device *dev; 2360 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2361 int ret = 0; 2362 char *s_uuid = NULL; 2363 char empty_uuid[BTRFS_UUID_SIZE] = {0}; 2364 2365 if (!capable(CAP_SYS_ADMIN)) 2366 return -EPERM; 2367 2368 di_args = memdup_user(arg, sizeof(*di_args)); 2369 if (IS_ERR(di_args)) 2370 return PTR_ERR(di_args); 2371 2372 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0) 2373 s_uuid = di_args->uuid; 2374 2375 mutex_lock(&fs_devices->device_list_mutex); 2376 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2377 mutex_unlock(&fs_devices->device_list_mutex); 2378 2379 if (!dev) { 2380 ret = -ENODEV; 2381 goto out; 2382 } 2383 2384 di_args->devid = dev->devid; 2385 di_args->bytes_used = dev->bytes_used; 2386 di_args->total_bytes = dev->total_bytes; 2387 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2388 if (dev->name) { 2389 struct rcu_string *name; 2390 2391 rcu_read_lock(); 2392 name = rcu_dereference(dev->name); 2393 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2394 rcu_read_unlock(); 2395 di_args->path[sizeof(di_args->path) - 1] = 0; 2396 } else { 2397 di_args->path[0] = '\0'; 2398 } 2399 2400 out: 2401 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2402 ret = -EFAULT; 2403 2404 kfree(di_args); 2405 return ret; 2406 } 2407 2408 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 2409 u64 off, u64 olen, u64 destoff) 2410 { 2411 struct inode *inode = fdentry(file)->d_inode; 2412 struct btrfs_root *root = BTRFS_I(inode)->root; 2413 struct fd src_file; 2414 struct inode *src; 2415 struct btrfs_trans_handle *trans; 2416 struct btrfs_path *path; 2417 struct extent_buffer *leaf; 2418 char *buf; 2419 struct btrfs_key key; 2420 u32 nritems; 2421 int slot; 2422 int ret; 2423 u64 len = olen; 2424 u64 bs = root->fs_info->sb->s_blocksize; 2425 2426 /* 2427 * TODO: 2428 * - split compressed inline extents. annoying: we need to 2429 * decompress into destination's address_space (the file offset 2430 * may change, so source mapping won't do), then recompress (or 2431 * otherwise reinsert) a subrange. 2432 * - allow ranges within the same file to be cloned (provided 2433 * they don't overlap)? 2434 */ 2435 2436 /* the destination must be opened for writing */ 2437 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 2438 return -EINVAL; 2439 2440 if (btrfs_root_readonly(root)) 2441 return -EROFS; 2442 2443 ret = mnt_want_write_file(file); 2444 if (ret) 2445 return ret; 2446 2447 src_file = fdget(srcfd); 2448 if (!src_file.file) { 2449 ret = -EBADF; 2450 goto out_drop_write; 2451 } 2452 2453 ret = -EXDEV; 2454 if (src_file.file->f_path.mnt != file->f_path.mnt) 2455 goto out_fput; 2456 2457 src = src_file.file->f_dentry->d_inode; 2458 2459 ret = -EINVAL; 2460 if (src == inode) 2461 goto out_fput; 2462 2463 /* the src must be open for reading */ 2464 if (!(src_file.file->f_mode & FMODE_READ)) 2465 goto out_fput; 2466 2467 /* don't make the dst file partly checksummed */ 2468 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 2469 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 2470 goto out_fput; 2471 2472 ret = -EISDIR; 2473 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 2474 goto out_fput; 2475 2476 ret = -EXDEV; 2477 if (src->i_sb != inode->i_sb) 2478 goto out_fput; 2479 2480 ret = -ENOMEM; 2481 buf = vmalloc(btrfs_level_size(root, 0)); 2482 if (!buf) 2483 goto out_fput; 2484 2485 path = btrfs_alloc_path(); 2486 if (!path) { 2487 vfree(buf); 2488 goto out_fput; 2489 } 2490 path->reada = 2; 2491 2492 if (inode < src) { 2493 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 2494 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 2495 } else { 2496 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 2497 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 2498 } 2499 2500 /* determine range to clone */ 2501 ret = -EINVAL; 2502 if (off + len > src->i_size || off + len < off) 2503 goto out_unlock; 2504 if (len == 0) 2505 olen = len = src->i_size - off; 2506 /* if we extend to eof, continue to block boundary */ 2507 if (off + len == src->i_size) 2508 len = ALIGN(src->i_size, bs) - off; 2509 2510 /* verify the end result is block aligned */ 2511 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 2512 !IS_ALIGNED(destoff, bs)) 2513 goto out_unlock; 2514 2515 if (destoff > inode->i_size) { 2516 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 2517 if (ret) 2518 goto out_unlock; 2519 } 2520 2521 /* truncate page cache pages from target inode range */ 2522 truncate_inode_pages_range(&inode->i_data, destoff, 2523 PAGE_CACHE_ALIGN(destoff + len) - 1); 2524 2525 /* do any pending delalloc/csum calc on src, one way or 2526 another, and lock file content */ 2527 while (1) { 2528 struct btrfs_ordered_extent *ordered; 2529 lock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 2530 ordered = btrfs_lookup_first_ordered_extent(src, off + len - 1); 2531 if (!ordered && 2532 !test_range_bit(&BTRFS_I(src)->io_tree, off, off + len - 1, 2533 EXTENT_DELALLOC, 0, NULL)) 2534 break; 2535 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 2536 if (ordered) 2537 btrfs_put_ordered_extent(ordered); 2538 btrfs_wait_ordered_range(src, off, len); 2539 } 2540 2541 /* clone data */ 2542 key.objectid = btrfs_ino(src); 2543 key.type = BTRFS_EXTENT_DATA_KEY; 2544 key.offset = 0; 2545 2546 while (1) { 2547 /* 2548 * note the key will change type as we walk through the 2549 * tree. 2550 */ 2551 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 2552 0, 0); 2553 if (ret < 0) 2554 goto out; 2555 2556 nritems = btrfs_header_nritems(path->nodes[0]); 2557 if (path->slots[0] >= nritems) { 2558 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 2559 if (ret < 0) 2560 goto out; 2561 if (ret > 0) 2562 break; 2563 nritems = btrfs_header_nritems(path->nodes[0]); 2564 } 2565 leaf = path->nodes[0]; 2566 slot = path->slots[0]; 2567 2568 btrfs_item_key_to_cpu(leaf, &key, slot); 2569 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || 2570 key.objectid != btrfs_ino(src)) 2571 break; 2572 2573 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { 2574 struct btrfs_file_extent_item *extent; 2575 int type; 2576 u32 size; 2577 struct btrfs_key new_key; 2578 u64 disko = 0, diskl = 0; 2579 u64 datao = 0, datal = 0; 2580 u8 comp; 2581 u64 endoff; 2582 2583 size = btrfs_item_size_nr(leaf, slot); 2584 read_extent_buffer(leaf, buf, 2585 btrfs_item_ptr_offset(leaf, slot), 2586 size); 2587 2588 extent = btrfs_item_ptr(leaf, slot, 2589 struct btrfs_file_extent_item); 2590 comp = btrfs_file_extent_compression(leaf, extent); 2591 type = btrfs_file_extent_type(leaf, extent); 2592 if (type == BTRFS_FILE_EXTENT_REG || 2593 type == BTRFS_FILE_EXTENT_PREALLOC) { 2594 disko = btrfs_file_extent_disk_bytenr(leaf, 2595 extent); 2596 diskl = btrfs_file_extent_disk_num_bytes(leaf, 2597 extent); 2598 datao = btrfs_file_extent_offset(leaf, extent); 2599 datal = btrfs_file_extent_num_bytes(leaf, 2600 extent); 2601 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2602 /* take upper bound, may be compressed */ 2603 datal = btrfs_file_extent_ram_bytes(leaf, 2604 extent); 2605 } 2606 btrfs_release_path(path); 2607 2608 if (key.offset + datal <= off || 2609 key.offset >= off + len - 1) 2610 goto next; 2611 2612 memcpy(&new_key, &key, sizeof(new_key)); 2613 new_key.objectid = btrfs_ino(inode); 2614 if (off <= key.offset) 2615 new_key.offset = key.offset + destoff - off; 2616 else 2617 new_key.offset = destoff; 2618 2619 /* 2620 * 1 - adjusting old extent (we may have to split it) 2621 * 1 - add new extent 2622 * 1 - inode update 2623 */ 2624 trans = btrfs_start_transaction(root, 3); 2625 if (IS_ERR(trans)) { 2626 ret = PTR_ERR(trans); 2627 goto out; 2628 } 2629 2630 if (type == BTRFS_FILE_EXTENT_REG || 2631 type == BTRFS_FILE_EXTENT_PREALLOC) { 2632 /* 2633 * a | --- range to clone ---| b 2634 * | ------------- extent ------------- | 2635 */ 2636 2637 /* substract range b */ 2638 if (key.offset + datal > off + len) 2639 datal = off + len - key.offset; 2640 2641 /* substract range a */ 2642 if (off > key.offset) { 2643 datao += off - key.offset; 2644 datal -= off - key.offset; 2645 } 2646 2647 ret = btrfs_drop_extents(trans, root, inode, 2648 new_key.offset, 2649 new_key.offset + datal, 2650 1); 2651 if (ret) { 2652 btrfs_abort_transaction(trans, root, 2653 ret); 2654 btrfs_end_transaction(trans, root); 2655 goto out; 2656 } 2657 2658 ret = btrfs_insert_empty_item(trans, root, path, 2659 &new_key, size); 2660 if (ret) { 2661 btrfs_abort_transaction(trans, root, 2662 ret); 2663 btrfs_end_transaction(trans, root); 2664 goto out; 2665 } 2666 2667 leaf = path->nodes[0]; 2668 slot = path->slots[0]; 2669 write_extent_buffer(leaf, buf, 2670 btrfs_item_ptr_offset(leaf, slot), 2671 size); 2672 2673 extent = btrfs_item_ptr(leaf, slot, 2674 struct btrfs_file_extent_item); 2675 2676 /* disko == 0 means it's a hole */ 2677 if (!disko) 2678 datao = 0; 2679 2680 btrfs_set_file_extent_offset(leaf, extent, 2681 datao); 2682 btrfs_set_file_extent_num_bytes(leaf, extent, 2683 datal); 2684 if (disko) { 2685 inode_add_bytes(inode, datal); 2686 ret = btrfs_inc_extent_ref(trans, root, 2687 disko, diskl, 0, 2688 root->root_key.objectid, 2689 btrfs_ino(inode), 2690 new_key.offset - datao, 2691 0); 2692 if (ret) { 2693 btrfs_abort_transaction(trans, 2694 root, 2695 ret); 2696 btrfs_end_transaction(trans, 2697 root); 2698 goto out; 2699 2700 } 2701 } 2702 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 2703 u64 skip = 0; 2704 u64 trim = 0; 2705 if (off > key.offset) { 2706 skip = off - key.offset; 2707 new_key.offset += skip; 2708 } 2709 2710 if (key.offset + datal > off + len) 2711 trim = key.offset + datal - (off + len); 2712 2713 if (comp && (skip || trim)) { 2714 ret = -EINVAL; 2715 btrfs_end_transaction(trans, root); 2716 goto out; 2717 } 2718 size -= skip + trim; 2719 datal -= skip + trim; 2720 2721 ret = btrfs_drop_extents(trans, root, inode, 2722 new_key.offset, 2723 new_key.offset + datal, 2724 1); 2725 if (ret) { 2726 btrfs_abort_transaction(trans, root, 2727 ret); 2728 btrfs_end_transaction(trans, root); 2729 goto out; 2730 } 2731 2732 ret = btrfs_insert_empty_item(trans, root, path, 2733 &new_key, size); 2734 if (ret) { 2735 btrfs_abort_transaction(trans, root, 2736 ret); 2737 btrfs_end_transaction(trans, root); 2738 goto out; 2739 } 2740 2741 if (skip) { 2742 u32 start = 2743 btrfs_file_extent_calc_inline_size(0); 2744 memmove(buf+start, buf+start+skip, 2745 datal); 2746 } 2747 2748 leaf = path->nodes[0]; 2749 slot = path->slots[0]; 2750 write_extent_buffer(leaf, buf, 2751 btrfs_item_ptr_offset(leaf, slot), 2752 size); 2753 inode_add_bytes(inode, datal); 2754 } 2755 2756 btrfs_mark_buffer_dirty(leaf); 2757 btrfs_release_path(path); 2758 2759 inode_inc_iversion(inode); 2760 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 2761 2762 /* 2763 * we round up to the block size at eof when 2764 * determining which extents to clone above, 2765 * but shouldn't round up the file size 2766 */ 2767 endoff = new_key.offset + datal; 2768 if (endoff > destoff+olen) 2769 endoff = destoff+olen; 2770 if (endoff > inode->i_size) 2771 btrfs_i_size_write(inode, endoff); 2772 2773 ret = btrfs_update_inode(trans, root, inode); 2774 if (ret) { 2775 btrfs_abort_transaction(trans, root, ret); 2776 btrfs_end_transaction(trans, root); 2777 goto out; 2778 } 2779 ret = btrfs_end_transaction(trans, root); 2780 } 2781 next: 2782 btrfs_release_path(path); 2783 key.offset++; 2784 } 2785 ret = 0; 2786 out: 2787 btrfs_release_path(path); 2788 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 2789 out_unlock: 2790 mutex_unlock(&src->i_mutex); 2791 mutex_unlock(&inode->i_mutex); 2792 vfree(buf); 2793 btrfs_free_path(path); 2794 out_fput: 2795 fdput(src_file); 2796 out_drop_write: 2797 mnt_drop_write_file(file); 2798 return ret; 2799 } 2800 2801 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 2802 { 2803 struct btrfs_ioctl_clone_range_args args; 2804 2805 if (copy_from_user(&args, argp, sizeof(args))) 2806 return -EFAULT; 2807 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 2808 args.src_length, args.dest_offset); 2809 } 2810 2811 /* 2812 * there are many ways the trans_start and trans_end ioctls can lead 2813 * to deadlocks. They should only be used by applications that 2814 * basically own the machine, and have a very in depth understanding 2815 * of all the possible deadlocks and enospc problems. 2816 */ 2817 static long btrfs_ioctl_trans_start(struct file *file) 2818 { 2819 struct inode *inode = fdentry(file)->d_inode; 2820 struct btrfs_root *root = BTRFS_I(inode)->root; 2821 struct btrfs_trans_handle *trans; 2822 int ret; 2823 2824 ret = -EPERM; 2825 if (!capable(CAP_SYS_ADMIN)) 2826 goto out; 2827 2828 ret = -EINPROGRESS; 2829 if (file->private_data) 2830 goto out; 2831 2832 ret = -EROFS; 2833 if (btrfs_root_readonly(root)) 2834 goto out; 2835 2836 ret = mnt_want_write_file(file); 2837 if (ret) 2838 goto out; 2839 2840 atomic_inc(&root->fs_info->open_ioctl_trans); 2841 2842 ret = -ENOMEM; 2843 trans = btrfs_start_ioctl_transaction(root); 2844 if (IS_ERR(trans)) 2845 goto out_drop; 2846 2847 file->private_data = trans; 2848 return 0; 2849 2850 out_drop: 2851 atomic_dec(&root->fs_info->open_ioctl_trans); 2852 mnt_drop_write_file(file); 2853 out: 2854 return ret; 2855 } 2856 2857 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2858 { 2859 struct inode *inode = fdentry(file)->d_inode; 2860 struct btrfs_root *root = BTRFS_I(inode)->root; 2861 struct btrfs_root *new_root; 2862 struct btrfs_dir_item *di; 2863 struct btrfs_trans_handle *trans; 2864 struct btrfs_path *path; 2865 struct btrfs_key location; 2866 struct btrfs_disk_key disk_key; 2867 u64 objectid = 0; 2868 u64 dir_id; 2869 int ret; 2870 2871 if (!capable(CAP_SYS_ADMIN)) 2872 return -EPERM; 2873 2874 ret = mnt_want_write_file(file); 2875 if (ret) 2876 return ret; 2877 2878 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2879 ret = -EFAULT; 2880 goto out; 2881 } 2882 2883 if (!objectid) 2884 objectid = root->root_key.objectid; 2885 2886 location.objectid = objectid; 2887 location.type = BTRFS_ROOT_ITEM_KEY; 2888 location.offset = (u64)-1; 2889 2890 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 2891 if (IS_ERR(new_root)) { 2892 ret = PTR_ERR(new_root); 2893 goto out; 2894 } 2895 2896 if (btrfs_root_refs(&new_root->root_item) == 0) { 2897 ret = -ENOENT; 2898 goto out; 2899 } 2900 2901 path = btrfs_alloc_path(); 2902 if (!path) { 2903 ret = -ENOMEM; 2904 goto out; 2905 } 2906 path->leave_spinning = 1; 2907 2908 trans = btrfs_start_transaction(root, 1); 2909 if (IS_ERR(trans)) { 2910 btrfs_free_path(path); 2911 ret = PTR_ERR(trans); 2912 goto out; 2913 } 2914 2915 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 2916 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 2917 dir_id, "default", 7, 1); 2918 if (IS_ERR_OR_NULL(di)) { 2919 btrfs_free_path(path); 2920 btrfs_end_transaction(trans, root); 2921 printk(KERN_ERR "Umm, you don't have the default dir item, " 2922 "this isn't going to work\n"); 2923 ret = -ENOENT; 2924 goto out; 2925 } 2926 2927 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2928 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2929 btrfs_mark_buffer_dirty(path->nodes[0]); 2930 btrfs_free_path(path); 2931 2932 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 2933 btrfs_end_transaction(trans, root); 2934 out: 2935 mnt_drop_write_file(file); 2936 return ret; 2937 } 2938 2939 void btrfs_get_block_group_info(struct list_head *groups_list, 2940 struct btrfs_ioctl_space_info *space) 2941 { 2942 struct btrfs_block_group_cache *block_group; 2943 2944 space->total_bytes = 0; 2945 space->used_bytes = 0; 2946 space->flags = 0; 2947 list_for_each_entry(block_group, groups_list, list) { 2948 space->flags = block_group->flags; 2949 space->total_bytes += block_group->key.offset; 2950 space->used_bytes += 2951 btrfs_block_group_used(&block_group->item); 2952 } 2953 } 2954 2955 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 2956 { 2957 struct btrfs_ioctl_space_args space_args; 2958 struct btrfs_ioctl_space_info space; 2959 struct btrfs_ioctl_space_info *dest; 2960 struct btrfs_ioctl_space_info *dest_orig; 2961 struct btrfs_ioctl_space_info __user *user_dest; 2962 struct btrfs_space_info *info; 2963 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 2964 BTRFS_BLOCK_GROUP_SYSTEM, 2965 BTRFS_BLOCK_GROUP_METADATA, 2966 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 2967 int num_types = 4; 2968 int alloc_size; 2969 int ret = 0; 2970 u64 slot_count = 0; 2971 int i, c; 2972 2973 if (copy_from_user(&space_args, 2974 (struct btrfs_ioctl_space_args __user *)arg, 2975 sizeof(space_args))) 2976 return -EFAULT; 2977 2978 for (i = 0; i < num_types; i++) { 2979 struct btrfs_space_info *tmp; 2980 2981 info = NULL; 2982 rcu_read_lock(); 2983 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 2984 list) { 2985 if (tmp->flags == types[i]) { 2986 info = tmp; 2987 break; 2988 } 2989 } 2990 rcu_read_unlock(); 2991 2992 if (!info) 2993 continue; 2994 2995 down_read(&info->groups_sem); 2996 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 2997 if (!list_empty(&info->block_groups[c])) 2998 slot_count++; 2999 } 3000 up_read(&info->groups_sem); 3001 } 3002 3003 /* space_slots == 0 means they are asking for a count */ 3004 if (space_args.space_slots == 0) { 3005 space_args.total_spaces = slot_count; 3006 goto out; 3007 } 3008 3009 slot_count = min_t(u64, space_args.space_slots, slot_count); 3010 3011 alloc_size = sizeof(*dest) * slot_count; 3012 3013 /* we generally have at most 6 or so space infos, one for each raid 3014 * level. So, a whole page should be more than enough for everyone 3015 */ 3016 if (alloc_size > PAGE_CACHE_SIZE) 3017 return -ENOMEM; 3018 3019 space_args.total_spaces = 0; 3020 dest = kmalloc(alloc_size, GFP_NOFS); 3021 if (!dest) 3022 return -ENOMEM; 3023 dest_orig = dest; 3024 3025 /* now we have a buffer to copy into */ 3026 for (i = 0; i < num_types; i++) { 3027 struct btrfs_space_info *tmp; 3028 3029 if (!slot_count) 3030 break; 3031 3032 info = NULL; 3033 rcu_read_lock(); 3034 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 3035 list) { 3036 if (tmp->flags == types[i]) { 3037 info = tmp; 3038 break; 3039 } 3040 } 3041 rcu_read_unlock(); 3042 3043 if (!info) 3044 continue; 3045 down_read(&info->groups_sem); 3046 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3047 if (!list_empty(&info->block_groups[c])) { 3048 btrfs_get_block_group_info( 3049 &info->block_groups[c], &space); 3050 memcpy(dest, &space, sizeof(space)); 3051 dest++; 3052 space_args.total_spaces++; 3053 slot_count--; 3054 } 3055 if (!slot_count) 3056 break; 3057 } 3058 up_read(&info->groups_sem); 3059 } 3060 3061 user_dest = (struct btrfs_ioctl_space_info __user *) 3062 (arg + sizeof(struct btrfs_ioctl_space_args)); 3063 3064 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3065 ret = -EFAULT; 3066 3067 kfree(dest_orig); 3068 out: 3069 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3070 ret = -EFAULT; 3071 3072 return ret; 3073 } 3074 3075 /* 3076 * there are many ways the trans_start and trans_end ioctls can lead 3077 * to deadlocks. They should only be used by applications that 3078 * basically own the machine, and have a very in depth understanding 3079 * of all the possible deadlocks and enospc problems. 3080 */ 3081 long btrfs_ioctl_trans_end(struct file *file) 3082 { 3083 struct inode *inode = fdentry(file)->d_inode; 3084 struct btrfs_root *root = BTRFS_I(inode)->root; 3085 struct btrfs_trans_handle *trans; 3086 3087 trans = file->private_data; 3088 if (!trans) 3089 return -EINVAL; 3090 file->private_data = NULL; 3091 3092 btrfs_end_transaction(trans, root); 3093 3094 atomic_dec(&root->fs_info->open_ioctl_trans); 3095 3096 mnt_drop_write_file(file); 3097 return 0; 3098 } 3099 3100 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3101 void __user *argp) 3102 { 3103 struct btrfs_trans_handle *trans; 3104 u64 transid; 3105 int ret; 3106 3107 trans = btrfs_attach_transaction(root); 3108 if (IS_ERR(trans)) { 3109 if (PTR_ERR(trans) != -ENOENT) 3110 return PTR_ERR(trans); 3111 3112 /* No running transaction, don't bother */ 3113 transid = root->fs_info->last_trans_committed; 3114 goto out; 3115 } 3116 transid = trans->transid; 3117 ret = btrfs_commit_transaction_async(trans, root, 0); 3118 if (ret) { 3119 btrfs_end_transaction(trans, root); 3120 return ret; 3121 } 3122 out: 3123 if (argp) 3124 if (copy_to_user(argp, &transid, sizeof(transid))) 3125 return -EFAULT; 3126 return 0; 3127 } 3128 3129 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 3130 void __user *argp) 3131 { 3132 u64 transid; 3133 3134 if (argp) { 3135 if (copy_from_user(&transid, argp, sizeof(transid))) 3136 return -EFAULT; 3137 } else { 3138 transid = 0; /* current trans */ 3139 } 3140 return btrfs_wait_for_commit(root, transid); 3141 } 3142 3143 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3144 { 3145 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3146 struct btrfs_ioctl_scrub_args *sa; 3147 int ret; 3148 3149 if (!capable(CAP_SYS_ADMIN)) 3150 return -EPERM; 3151 3152 sa = memdup_user(arg, sizeof(*sa)); 3153 if (IS_ERR(sa)) 3154 return PTR_ERR(sa); 3155 3156 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3157 ret = mnt_want_write_file(file); 3158 if (ret) 3159 goto out; 3160 } 3161 3162 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 3163 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3164 0); 3165 3166 if (copy_to_user(arg, sa, sizeof(*sa))) 3167 ret = -EFAULT; 3168 3169 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3170 mnt_drop_write_file(file); 3171 out: 3172 kfree(sa); 3173 return ret; 3174 } 3175 3176 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 3177 { 3178 if (!capable(CAP_SYS_ADMIN)) 3179 return -EPERM; 3180 3181 return btrfs_scrub_cancel(root->fs_info); 3182 } 3183 3184 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 3185 void __user *arg) 3186 { 3187 struct btrfs_ioctl_scrub_args *sa; 3188 int ret; 3189 3190 if (!capable(CAP_SYS_ADMIN)) 3191 return -EPERM; 3192 3193 sa = memdup_user(arg, sizeof(*sa)); 3194 if (IS_ERR(sa)) 3195 return PTR_ERR(sa); 3196 3197 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 3198 3199 if (copy_to_user(arg, sa, sizeof(*sa))) 3200 ret = -EFAULT; 3201 3202 kfree(sa); 3203 return ret; 3204 } 3205 3206 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 3207 void __user *arg) 3208 { 3209 struct btrfs_ioctl_get_dev_stats *sa; 3210 int ret; 3211 3212 sa = memdup_user(arg, sizeof(*sa)); 3213 if (IS_ERR(sa)) 3214 return PTR_ERR(sa); 3215 3216 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3217 kfree(sa); 3218 return -EPERM; 3219 } 3220 3221 ret = btrfs_get_dev_stats(root, sa); 3222 3223 if (copy_to_user(arg, sa, sizeof(*sa))) 3224 ret = -EFAULT; 3225 3226 kfree(sa); 3227 return ret; 3228 } 3229 3230 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 3231 { 3232 struct btrfs_ioctl_dev_replace_args *p; 3233 int ret; 3234 3235 if (!capable(CAP_SYS_ADMIN)) 3236 return -EPERM; 3237 3238 p = memdup_user(arg, sizeof(*p)); 3239 if (IS_ERR(p)) 3240 return PTR_ERR(p); 3241 3242 switch (p->cmd) { 3243 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3244 if (atomic_xchg( 3245 &root->fs_info->mutually_exclusive_operation_running, 3246 1)) { 3247 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 3248 ret = -EINPROGRESS; 3249 } else { 3250 ret = btrfs_dev_replace_start(root, p); 3251 atomic_set( 3252 &root->fs_info->mutually_exclusive_operation_running, 3253 0); 3254 } 3255 break; 3256 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3257 btrfs_dev_replace_status(root->fs_info, p); 3258 ret = 0; 3259 break; 3260 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3261 ret = btrfs_dev_replace_cancel(root->fs_info, p); 3262 break; 3263 default: 3264 ret = -EINVAL; 3265 break; 3266 } 3267 3268 if (copy_to_user(arg, p, sizeof(*p))) 3269 ret = -EFAULT; 3270 3271 kfree(p); 3272 return ret; 3273 } 3274 3275 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3276 { 3277 int ret = 0; 3278 int i; 3279 u64 rel_ptr; 3280 int size; 3281 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3282 struct inode_fs_paths *ipath = NULL; 3283 struct btrfs_path *path; 3284 3285 if (!capable(CAP_SYS_ADMIN)) 3286 return -EPERM; 3287 3288 path = btrfs_alloc_path(); 3289 if (!path) { 3290 ret = -ENOMEM; 3291 goto out; 3292 } 3293 3294 ipa = memdup_user(arg, sizeof(*ipa)); 3295 if (IS_ERR(ipa)) { 3296 ret = PTR_ERR(ipa); 3297 ipa = NULL; 3298 goto out; 3299 } 3300 3301 size = min_t(u32, ipa->size, 4096); 3302 ipath = init_ipath(size, root, path); 3303 if (IS_ERR(ipath)) { 3304 ret = PTR_ERR(ipath); 3305 ipath = NULL; 3306 goto out; 3307 } 3308 3309 ret = paths_from_inode(ipa->inum, ipath); 3310 if (ret < 0) 3311 goto out; 3312 3313 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3314 rel_ptr = ipath->fspath->val[i] - 3315 (u64)(unsigned long)ipath->fspath->val; 3316 ipath->fspath->val[i] = rel_ptr; 3317 } 3318 3319 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 3320 (void *)(unsigned long)ipath->fspath, size); 3321 if (ret) { 3322 ret = -EFAULT; 3323 goto out; 3324 } 3325 3326 out: 3327 btrfs_free_path(path); 3328 free_ipath(ipath); 3329 kfree(ipa); 3330 3331 return ret; 3332 } 3333 3334 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3335 { 3336 struct btrfs_data_container *inodes = ctx; 3337 const size_t c = 3 * sizeof(u64); 3338 3339 if (inodes->bytes_left >= c) { 3340 inodes->bytes_left -= c; 3341 inodes->val[inodes->elem_cnt] = inum; 3342 inodes->val[inodes->elem_cnt + 1] = offset; 3343 inodes->val[inodes->elem_cnt + 2] = root; 3344 inodes->elem_cnt += 3; 3345 } else { 3346 inodes->bytes_missing += c - inodes->bytes_left; 3347 inodes->bytes_left = 0; 3348 inodes->elem_missed += 3; 3349 } 3350 3351 return 0; 3352 } 3353 3354 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 3355 void __user *arg) 3356 { 3357 int ret = 0; 3358 int size; 3359 struct btrfs_ioctl_logical_ino_args *loi; 3360 struct btrfs_data_container *inodes = NULL; 3361 struct btrfs_path *path = NULL; 3362 3363 if (!capable(CAP_SYS_ADMIN)) 3364 return -EPERM; 3365 3366 loi = memdup_user(arg, sizeof(*loi)); 3367 if (IS_ERR(loi)) { 3368 ret = PTR_ERR(loi); 3369 loi = NULL; 3370 goto out; 3371 } 3372 3373 path = btrfs_alloc_path(); 3374 if (!path) { 3375 ret = -ENOMEM; 3376 goto out; 3377 } 3378 3379 size = min_t(u32, loi->size, 64 * 1024); 3380 inodes = init_data_container(size); 3381 if (IS_ERR(inodes)) { 3382 ret = PTR_ERR(inodes); 3383 inodes = NULL; 3384 goto out; 3385 } 3386 3387 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 3388 build_ino_list, inodes); 3389 if (ret == -EINVAL) 3390 ret = -ENOENT; 3391 if (ret < 0) 3392 goto out; 3393 3394 ret = copy_to_user((void *)(unsigned long)loi->inodes, 3395 (void *)(unsigned long)inodes, size); 3396 if (ret) 3397 ret = -EFAULT; 3398 3399 out: 3400 btrfs_free_path(path); 3401 vfree(inodes); 3402 kfree(loi); 3403 3404 return ret; 3405 } 3406 3407 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 3408 struct btrfs_ioctl_balance_args *bargs) 3409 { 3410 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3411 3412 bargs->flags = bctl->flags; 3413 3414 if (atomic_read(&fs_info->balance_running)) 3415 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3416 if (atomic_read(&fs_info->balance_pause_req)) 3417 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3418 if (atomic_read(&fs_info->balance_cancel_req)) 3419 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3420 3421 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3422 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3423 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3424 3425 if (lock) { 3426 spin_lock(&fs_info->balance_lock); 3427 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3428 spin_unlock(&fs_info->balance_lock); 3429 } else { 3430 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3431 } 3432 } 3433 3434 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3435 { 3436 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3437 struct btrfs_fs_info *fs_info = root->fs_info; 3438 struct btrfs_ioctl_balance_args *bargs; 3439 struct btrfs_balance_control *bctl; 3440 int ret; 3441 int need_to_clear_lock = 0; 3442 3443 if (!capable(CAP_SYS_ADMIN)) 3444 return -EPERM; 3445 3446 ret = mnt_want_write_file(file); 3447 if (ret) 3448 return ret; 3449 3450 mutex_lock(&fs_info->volume_mutex); 3451 mutex_lock(&fs_info->balance_mutex); 3452 3453 if (arg) { 3454 bargs = memdup_user(arg, sizeof(*bargs)); 3455 if (IS_ERR(bargs)) { 3456 ret = PTR_ERR(bargs); 3457 goto out; 3458 } 3459 3460 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3461 if (!fs_info->balance_ctl) { 3462 ret = -ENOTCONN; 3463 goto out_bargs; 3464 } 3465 3466 bctl = fs_info->balance_ctl; 3467 spin_lock(&fs_info->balance_lock); 3468 bctl->flags |= BTRFS_BALANCE_RESUME; 3469 spin_unlock(&fs_info->balance_lock); 3470 3471 goto do_balance; 3472 } 3473 } else { 3474 bargs = NULL; 3475 } 3476 3477 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 3478 1)) { 3479 pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n"); 3480 ret = -EINPROGRESS; 3481 goto out_bargs; 3482 } 3483 need_to_clear_lock = 1; 3484 3485 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3486 if (!bctl) { 3487 ret = -ENOMEM; 3488 goto out_bargs; 3489 } 3490 3491 bctl->fs_info = fs_info; 3492 if (arg) { 3493 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3494 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3495 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3496 3497 bctl->flags = bargs->flags; 3498 } else { 3499 /* balance everything - no filters */ 3500 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 3501 } 3502 3503 do_balance: 3504 ret = btrfs_balance(bctl, bargs); 3505 /* 3506 * bctl is freed in __cancel_balance or in free_fs_info if 3507 * restriper was paused all the way until unmount 3508 */ 3509 if (arg) { 3510 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3511 ret = -EFAULT; 3512 } 3513 3514 out_bargs: 3515 kfree(bargs); 3516 out: 3517 if (need_to_clear_lock) 3518 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 3519 0); 3520 mutex_unlock(&fs_info->balance_mutex); 3521 mutex_unlock(&fs_info->volume_mutex); 3522 mnt_drop_write_file(file); 3523 return ret; 3524 } 3525 3526 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 3527 { 3528 if (!capable(CAP_SYS_ADMIN)) 3529 return -EPERM; 3530 3531 switch (cmd) { 3532 case BTRFS_BALANCE_CTL_PAUSE: 3533 return btrfs_pause_balance(root->fs_info); 3534 case BTRFS_BALANCE_CTL_CANCEL: 3535 return btrfs_cancel_balance(root->fs_info); 3536 } 3537 3538 return -EINVAL; 3539 } 3540 3541 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 3542 void __user *arg) 3543 { 3544 struct btrfs_fs_info *fs_info = root->fs_info; 3545 struct btrfs_ioctl_balance_args *bargs; 3546 int ret = 0; 3547 3548 if (!capable(CAP_SYS_ADMIN)) 3549 return -EPERM; 3550 3551 mutex_lock(&fs_info->balance_mutex); 3552 if (!fs_info->balance_ctl) { 3553 ret = -ENOTCONN; 3554 goto out; 3555 } 3556 3557 bargs = kzalloc(sizeof(*bargs), GFP_NOFS); 3558 if (!bargs) { 3559 ret = -ENOMEM; 3560 goto out; 3561 } 3562 3563 update_ioctl_balance_args(fs_info, 1, bargs); 3564 3565 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3566 ret = -EFAULT; 3567 3568 kfree(bargs); 3569 out: 3570 mutex_unlock(&fs_info->balance_mutex); 3571 return ret; 3572 } 3573 3574 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3575 { 3576 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3577 struct btrfs_ioctl_quota_ctl_args *sa; 3578 struct btrfs_trans_handle *trans = NULL; 3579 int ret; 3580 int err; 3581 3582 if (!capable(CAP_SYS_ADMIN)) 3583 return -EPERM; 3584 3585 ret = mnt_want_write_file(file); 3586 if (ret) 3587 return ret; 3588 3589 sa = memdup_user(arg, sizeof(*sa)); 3590 if (IS_ERR(sa)) { 3591 ret = PTR_ERR(sa); 3592 goto drop_write; 3593 } 3594 3595 if (sa->cmd != BTRFS_QUOTA_CTL_RESCAN) { 3596 trans = btrfs_start_transaction(root, 2); 3597 if (IS_ERR(trans)) { 3598 ret = PTR_ERR(trans); 3599 goto out; 3600 } 3601 } 3602 3603 switch (sa->cmd) { 3604 case BTRFS_QUOTA_CTL_ENABLE: 3605 ret = btrfs_quota_enable(trans, root->fs_info); 3606 break; 3607 case BTRFS_QUOTA_CTL_DISABLE: 3608 ret = btrfs_quota_disable(trans, root->fs_info); 3609 break; 3610 case BTRFS_QUOTA_CTL_RESCAN: 3611 ret = btrfs_quota_rescan(root->fs_info); 3612 break; 3613 default: 3614 ret = -EINVAL; 3615 break; 3616 } 3617 3618 if (copy_to_user(arg, sa, sizeof(*sa))) 3619 ret = -EFAULT; 3620 3621 if (trans) { 3622 err = btrfs_commit_transaction(trans, root); 3623 if (err && !ret) 3624 ret = err; 3625 } 3626 out: 3627 kfree(sa); 3628 drop_write: 3629 mnt_drop_write_file(file); 3630 return ret; 3631 } 3632 3633 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3634 { 3635 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3636 struct btrfs_ioctl_qgroup_assign_args *sa; 3637 struct btrfs_trans_handle *trans; 3638 int ret; 3639 int err; 3640 3641 if (!capable(CAP_SYS_ADMIN)) 3642 return -EPERM; 3643 3644 ret = mnt_want_write_file(file); 3645 if (ret) 3646 return ret; 3647 3648 sa = memdup_user(arg, sizeof(*sa)); 3649 if (IS_ERR(sa)) { 3650 ret = PTR_ERR(sa); 3651 goto drop_write; 3652 } 3653 3654 trans = btrfs_join_transaction(root); 3655 if (IS_ERR(trans)) { 3656 ret = PTR_ERR(trans); 3657 goto out; 3658 } 3659 3660 /* FIXME: check if the IDs really exist */ 3661 if (sa->assign) { 3662 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 3663 sa->src, sa->dst); 3664 } else { 3665 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 3666 sa->src, sa->dst); 3667 } 3668 3669 err = btrfs_end_transaction(trans, root); 3670 if (err && !ret) 3671 ret = err; 3672 3673 out: 3674 kfree(sa); 3675 drop_write: 3676 mnt_drop_write_file(file); 3677 return ret; 3678 } 3679 3680 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3681 { 3682 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3683 struct btrfs_ioctl_qgroup_create_args *sa; 3684 struct btrfs_trans_handle *trans; 3685 int ret; 3686 int err; 3687 3688 if (!capable(CAP_SYS_ADMIN)) 3689 return -EPERM; 3690 3691 ret = mnt_want_write_file(file); 3692 if (ret) 3693 return ret; 3694 3695 sa = memdup_user(arg, sizeof(*sa)); 3696 if (IS_ERR(sa)) { 3697 ret = PTR_ERR(sa); 3698 goto drop_write; 3699 } 3700 3701 trans = btrfs_join_transaction(root); 3702 if (IS_ERR(trans)) { 3703 ret = PTR_ERR(trans); 3704 goto out; 3705 } 3706 3707 /* FIXME: check if the IDs really exist */ 3708 if (sa->create) { 3709 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid, 3710 NULL); 3711 } else { 3712 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 3713 } 3714 3715 err = btrfs_end_transaction(trans, root); 3716 if (err && !ret) 3717 ret = err; 3718 3719 out: 3720 kfree(sa); 3721 drop_write: 3722 mnt_drop_write_file(file); 3723 return ret; 3724 } 3725 3726 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3727 { 3728 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3729 struct btrfs_ioctl_qgroup_limit_args *sa; 3730 struct btrfs_trans_handle *trans; 3731 int ret; 3732 int err; 3733 u64 qgroupid; 3734 3735 if (!capable(CAP_SYS_ADMIN)) 3736 return -EPERM; 3737 3738 ret = mnt_want_write_file(file); 3739 if (ret) 3740 return ret; 3741 3742 sa = memdup_user(arg, sizeof(*sa)); 3743 if (IS_ERR(sa)) { 3744 ret = PTR_ERR(sa); 3745 goto drop_write; 3746 } 3747 3748 trans = btrfs_join_transaction(root); 3749 if (IS_ERR(trans)) { 3750 ret = PTR_ERR(trans); 3751 goto out; 3752 } 3753 3754 qgroupid = sa->qgroupid; 3755 if (!qgroupid) { 3756 /* take the current subvol as qgroup */ 3757 qgroupid = root->root_key.objectid; 3758 } 3759 3760 /* FIXME: check if the IDs really exist */ 3761 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 3762 3763 err = btrfs_end_transaction(trans, root); 3764 if (err && !ret) 3765 ret = err; 3766 3767 out: 3768 kfree(sa); 3769 drop_write: 3770 mnt_drop_write_file(file); 3771 return ret; 3772 } 3773 3774 static long btrfs_ioctl_set_received_subvol(struct file *file, 3775 void __user *arg) 3776 { 3777 struct btrfs_ioctl_received_subvol_args *sa = NULL; 3778 struct inode *inode = fdentry(file)->d_inode; 3779 struct btrfs_root *root = BTRFS_I(inode)->root; 3780 struct btrfs_root_item *root_item = &root->root_item; 3781 struct btrfs_trans_handle *trans; 3782 struct timespec ct = CURRENT_TIME; 3783 int ret = 0; 3784 3785 ret = mnt_want_write_file(file); 3786 if (ret < 0) 3787 return ret; 3788 3789 down_write(&root->fs_info->subvol_sem); 3790 3791 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 3792 ret = -EINVAL; 3793 goto out; 3794 } 3795 3796 if (btrfs_root_readonly(root)) { 3797 ret = -EROFS; 3798 goto out; 3799 } 3800 3801 if (!inode_owner_or_capable(inode)) { 3802 ret = -EACCES; 3803 goto out; 3804 } 3805 3806 sa = memdup_user(arg, sizeof(*sa)); 3807 if (IS_ERR(sa)) { 3808 ret = PTR_ERR(sa); 3809 sa = NULL; 3810 goto out; 3811 } 3812 3813 trans = btrfs_start_transaction(root, 1); 3814 if (IS_ERR(trans)) { 3815 ret = PTR_ERR(trans); 3816 trans = NULL; 3817 goto out; 3818 } 3819 3820 sa->rtransid = trans->transid; 3821 sa->rtime.sec = ct.tv_sec; 3822 sa->rtime.nsec = ct.tv_nsec; 3823 3824 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 3825 btrfs_set_root_stransid(root_item, sa->stransid); 3826 btrfs_set_root_rtransid(root_item, sa->rtransid); 3827 root_item->stime.sec = cpu_to_le64(sa->stime.sec); 3828 root_item->stime.nsec = cpu_to_le32(sa->stime.nsec); 3829 root_item->rtime.sec = cpu_to_le64(sa->rtime.sec); 3830 root_item->rtime.nsec = cpu_to_le32(sa->rtime.nsec); 3831 3832 ret = btrfs_update_root(trans, root->fs_info->tree_root, 3833 &root->root_key, &root->root_item); 3834 if (ret < 0) { 3835 btrfs_end_transaction(trans, root); 3836 trans = NULL; 3837 goto out; 3838 } else { 3839 ret = btrfs_commit_transaction(trans, root); 3840 if (ret < 0) 3841 goto out; 3842 } 3843 3844 ret = copy_to_user(arg, sa, sizeof(*sa)); 3845 if (ret) 3846 ret = -EFAULT; 3847 3848 out: 3849 kfree(sa); 3850 up_write(&root->fs_info->subvol_sem); 3851 mnt_drop_write_file(file); 3852 return ret; 3853 } 3854 3855 long btrfs_ioctl(struct file *file, unsigned int 3856 cmd, unsigned long arg) 3857 { 3858 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root; 3859 void __user *argp = (void __user *)arg; 3860 3861 switch (cmd) { 3862 case FS_IOC_GETFLAGS: 3863 return btrfs_ioctl_getflags(file, argp); 3864 case FS_IOC_SETFLAGS: 3865 return btrfs_ioctl_setflags(file, argp); 3866 case FS_IOC_GETVERSION: 3867 return btrfs_ioctl_getversion(file, argp); 3868 case FITRIM: 3869 return btrfs_ioctl_fitrim(file, argp); 3870 case BTRFS_IOC_SNAP_CREATE: 3871 return btrfs_ioctl_snap_create(file, argp, 0); 3872 case BTRFS_IOC_SNAP_CREATE_V2: 3873 return btrfs_ioctl_snap_create_v2(file, argp, 0); 3874 case BTRFS_IOC_SUBVOL_CREATE: 3875 return btrfs_ioctl_snap_create(file, argp, 1); 3876 case BTRFS_IOC_SUBVOL_CREATE_V2: 3877 return btrfs_ioctl_snap_create_v2(file, argp, 1); 3878 case BTRFS_IOC_SNAP_DESTROY: 3879 return btrfs_ioctl_snap_destroy(file, argp); 3880 case BTRFS_IOC_SUBVOL_GETFLAGS: 3881 return btrfs_ioctl_subvol_getflags(file, argp); 3882 case BTRFS_IOC_SUBVOL_SETFLAGS: 3883 return btrfs_ioctl_subvol_setflags(file, argp); 3884 case BTRFS_IOC_DEFAULT_SUBVOL: 3885 return btrfs_ioctl_default_subvol(file, argp); 3886 case BTRFS_IOC_DEFRAG: 3887 return btrfs_ioctl_defrag(file, NULL); 3888 case BTRFS_IOC_DEFRAG_RANGE: 3889 return btrfs_ioctl_defrag(file, argp); 3890 case BTRFS_IOC_RESIZE: 3891 return btrfs_ioctl_resize(file, argp); 3892 case BTRFS_IOC_ADD_DEV: 3893 return btrfs_ioctl_add_dev(root, argp); 3894 case BTRFS_IOC_RM_DEV: 3895 return btrfs_ioctl_rm_dev(file, argp); 3896 case BTRFS_IOC_FS_INFO: 3897 return btrfs_ioctl_fs_info(root, argp); 3898 case BTRFS_IOC_DEV_INFO: 3899 return btrfs_ioctl_dev_info(root, argp); 3900 case BTRFS_IOC_BALANCE: 3901 return btrfs_ioctl_balance(file, NULL); 3902 case BTRFS_IOC_CLONE: 3903 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 3904 case BTRFS_IOC_CLONE_RANGE: 3905 return btrfs_ioctl_clone_range(file, argp); 3906 case BTRFS_IOC_TRANS_START: 3907 return btrfs_ioctl_trans_start(file); 3908 case BTRFS_IOC_TRANS_END: 3909 return btrfs_ioctl_trans_end(file); 3910 case BTRFS_IOC_TREE_SEARCH: 3911 return btrfs_ioctl_tree_search(file, argp); 3912 case BTRFS_IOC_INO_LOOKUP: 3913 return btrfs_ioctl_ino_lookup(file, argp); 3914 case BTRFS_IOC_INO_PATHS: 3915 return btrfs_ioctl_ino_to_path(root, argp); 3916 case BTRFS_IOC_LOGICAL_INO: 3917 return btrfs_ioctl_logical_to_ino(root, argp); 3918 case BTRFS_IOC_SPACE_INFO: 3919 return btrfs_ioctl_space_info(root, argp); 3920 case BTRFS_IOC_SYNC: 3921 btrfs_sync_fs(file->f_dentry->d_sb, 1); 3922 return 0; 3923 case BTRFS_IOC_START_SYNC: 3924 return btrfs_ioctl_start_sync(root, argp); 3925 case BTRFS_IOC_WAIT_SYNC: 3926 return btrfs_ioctl_wait_sync(root, argp); 3927 case BTRFS_IOC_SCRUB: 3928 return btrfs_ioctl_scrub(file, argp); 3929 case BTRFS_IOC_SCRUB_CANCEL: 3930 return btrfs_ioctl_scrub_cancel(root, argp); 3931 case BTRFS_IOC_SCRUB_PROGRESS: 3932 return btrfs_ioctl_scrub_progress(root, argp); 3933 case BTRFS_IOC_BALANCE_V2: 3934 return btrfs_ioctl_balance(file, argp); 3935 case BTRFS_IOC_BALANCE_CTL: 3936 return btrfs_ioctl_balance_ctl(root, arg); 3937 case BTRFS_IOC_BALANCE_PROGRESS: 3938 return btrfs_ioctl_balance_progress(root, argp); 3939 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 3940 return btrfs_ioctl_set_received_subvol(file, argp); 3941 case BTRFS_IOC_SEND: 3942 return btrfs_ioctl_send(file, argp); 3943 case BTRFS_IOC_GET_DEV_STATS: 3944 return btrfs_ioctl_get_dev_stats(root, argp); 3945 case BTRFS_IOC_QUOTA_CTL: 3946 return btrfs_ioctl_quota_ctl(file, argp); 3947 case BTRFS_IOC_QGROUP_ASSIGN: 3948 return btrfs_ioctl_qgroup_assign(file, argp); 3949 case BTRFS_IOC_QGROUP_CREATE: 3950 return btrfs_ioctl_qgroup_create(file, argp); 3951 case BTRFS_IOC_QGROUP_LIMIT: 3952 return btrfs_ioctl_qgroup_limit(file, argp); 3953 case BTRFS_IOC_DEV_REPLACE: 3954 return btrfs_ioctl_dev_replace(root, argp); 3955 } 3956 3957 return -ENOTTY; 3958 } 3959