xref: /linux/fs/btrfs/ioctl.c (revision 0d08df6c493898e679d9c517e77ea95c063d40ec)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 #include "tree-log.h"
63 #include "compression.h"
64 
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67  * structures are incorrect, as the timespec structure from userspace
68  * is 4 bytes too small. We define these alternatives here to teach
69  * the kernel about the 32-bit struct packing.
70  */
71 struct btrfs_ioctl_timespec_32 {
72 	__u64 sec;
73 	__u32 nsec;
74 } __attribute__ ((__packed__));
75 
76 struct btrfs_ioctl_received_subvol_args_32 {
77 	char	uuid[BTRFS_UUID_SIZE];	/* in */
78 	__u64	stransid;		/* in */
79 	__u64	rtransid;		/* out */
80 	struct btrfs_ioctl_timespec_32 stime; /* in */
81 	struct btrfs_ioctl_timespec_32 rtime; /* out */
82 	__u64	flags;			/* in */
83 	__u64	reserved[16];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 				struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89 
90 
91 static int btrfs_clone(struct inode *src, struct inode *inode,
92 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
93 		       int no_time_update);
94 
95 /* Mask out flags that are inappropriate for the given type of inode. */
96 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
97 {
98 	if (S_ISDIR(mode))
99 		return flags;
100 	else if (S_ISREG(mode))
101 		return flags & ~FS_DIRSYNC_FL;
102 	else
103 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
104 }
105 
106 /*
107  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108  */
109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
110 {
111 	unsigned int iflags = 0;
112 
113 	if (flags & BTRFS_INODE_SYNC)
114 		iflags |= FS_SYNC_FL;
115 	if (flags & BTRFS_INODE_IMMUTABLE)
116 		iflags |= FS_IMMUTABLE_FL;
117 	if (flags & BTRFS_INODE_APPEND)
118 		iflags |= FS_APPEND_FL;
119 	if (flags & BTRFS_INODE_NODUMP)
120 		iflags |= FS_NODUMP_FL;
121 	if (flags & BTRFS_INODE_NOATIME)
122 		iflags |= FS_NOATIME_FL;
123 	if (flags & BTRFS_INODE_DIRSYNC)
124 		iflags |= FS_DIRSYNC_FL;
125 	if (flags & BTRFS_INODE_NODATACOW)
126 		iflags |= FS_NOCOW_FL;
127 
128 	if (flags & BTRFS_INODE_NOCOMPRESS)
129 		iflags |= FS_NOCOMP_FL;
130 	else if (flags & BTRFS_INODE_COMPRESS)
131 		iflags |= FS_COMPR_FL;
132 
133 	return iflags;
134 }
135 
136 /*
137  * Update inode->i_flags based on the btrfs internal flags.
138  */
139 void btrfs_update_iflags(struct inode *inode)
140 {
141 	struct btrfs_inode *ip = BTRFS_I(inode);
142 	unsigned int new_fl = 0;
143 
144 	if (ip->flags & BTRFS_INODE_SYNC)
145 		new_fl |= S_SYNC;
146 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
147 		new_fl |= S_IMMUTABLE;
148 	if (ip->flags & BTRFS_INODE_APPEND)
149 		new_fl |= S_APPEND;
150 	if (ip->flags & BTRFS_INODE_NOATIME)
151 		new_fl |= S_NOATIME;
152 	if (ip->flags & BTRFS_INODE_DIRSYNC)
153 		new_fl |= S_DIRSYNC;
154 
155 	set_mask_bits(&inode->i_flags,
156 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 		      new_fl);
158 }
159 
160 /*
161  * Inherit flags from the parent inode.
162  *
163  * Currently only the compression flags and the cow flags are inherited.
164  */
165 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
166 {
167 	unsigned int flags;
168 
169 	if (!dir)
170 		return;
171 
172 	flags = BTRFS_I(dir)->flags;
173 
174 	if (flags & BTRFS_INODE_NOCOMPRESS) {
175 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
176 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
177 	} else if (flags & BTRFS_INODE_COMPRESS) {
178 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
179 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
180 	}
181 
182 	if (flags & BTRFS_INODE_NODATACOW) {
183 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
184 		if (S_ISREG(inode->i_mode))
185 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
186 	}
187 
188 	btrfs_update_iflags(inode);
189 }
190 
191 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
192 {
193 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
194 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
195 
196 	if (copy_to_user(arg, &flags, sizeof(flags)))
197 		return -EFAULT;
198 	return 0;
199 }
200 
201 static int check_flags(unsigned int flags)
202 {
203 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
204 		      FS_NOATIME_FL | FS_NODUMP_FL | \
205 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
206 		      FS_NOCOMP_FL | FS_COMPR_FL |
207 		      FS_NOCOW_FL))
208 		return -EOPNOTSUPP;
209 
210 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 		return -EINVAL;
212 
213 	return 0;
214 }
215 
216 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
217 {
218 	struct inode *inode = file_inode(file);
219 	struct btrfs_inode *ip = BTRFS_I(inode);
220 	struct btrfs_root *root = ip->root;
221 	struct btrfs_trans_handle *trans;
222 	unsigned int flags, oldflags;
223 	int ret;
224 	u64 ip_oldflags;
225 	unsigned int i_oldflags;
226 	umode_t mode;
227 
228 	if (!inode_owner_or_capable(inode))
229 		return -EPERM;
230 
231 	if (btrfs_root_readonly(root))
232 		return -EROFS;
233 
234 	if (copy_from_user(&flags, arg, sizeof(flags)))
235 		return -EFAULT;
236 
237 	ret = check_flags(flags);
238 	if (ret)
239 		return ret;
240 
241 	ret = mnt_want_write_file(file);
242 	if (ret)
243 		return ret;
244 
245 	inode_lock(inode);
246 
247 	ip_oldflags = ip->flags;
248 	i_oldflags = inode->i_flags;
249 	mode = inode->i_mode;
250 
251 	flags = btrfs_mask_flags(inode->i_mode, flags);
252 	oldflags = btrfs_flags_to_ioctl(ip->flags);
253 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 		if (!capable(CAP_LINUX_IMMUTABLE)) {
255 			ret = -EPERM;
256 			goto out_unlock;
257 		}
258 	}
259 
260 	if (flags & FS_SYNC_FL)
261 		ip->flags |= BTRFS_INODE_SYNC;
262 	else
263 		ip->flags &= ~BTRFS_INODE_SYNC;
264 	if (flags & FS_IMMUTABLE_FL)
265 		ip->flags |= BTRFS_INODE_IMMUTABLE;
266 	else
267 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 	if (flags & FS_APPEND_FL)
269 		ip->flags |= BTRFS_INODE_APPEND;
270 	else
271 		ip->flags &= ~BTRFS_INODE_APPEND;
272 	if (flags & FS_NODUMP_FL)
273 		ip->flags |= BTRFS_INODE_NODUMP;
274 	else
275 		ip->flags &= ~BTRFS_INODE_NODUMP;
276 	if (flags & FS_NOATIME_FL)
277 		ip->flags |= BTRFS_INODE_NOATIME;
278 	else
279 		ip->flags &= ~BTRFS_INODE_NOATIME;
280 	if (flags & FS_DIRSYNC_FL)
281 		ip->flags |= BTRFS_INODE_DIRSYNC;
282 	else
283 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 	if (flags & FS_NOCOW_FL) {
285 		if (S_ISREG(mode)) {
286 			/*
287 			 * It's safe to turn csums off here, no extents exist.
288 			 * Otherwise we want the flag to reflect the real COW
289 			 * status of the file and will not set it.
290 			 */
291 			if (inode->i_size == 0)
292 				ip->flags |= BTRFS_INODE_NODATACOW
293 					   | BTRFS_INODE_NODATASUM;
294 		} else {
295 			ip->flags |= BTRFS_INODE_NODATACOW;
296 		}
297 	} else {
298 		/*
299 		 * Revert back under same assuptions as above
300 		 */
301 		if (S_ISREG(mode)) {
302 			if (inode->i_size == 0)
303 				ip->flags &= ~(BTRFS_INODE_NODATACOW
304 				             | BTRFS_INODE_NODATASUM);
305 		} else {
306 			ip->flags &= ~BTRFS_INODE_NODATACOW;
307 		}
308 	}
309 
310 	/*
311 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 	 * flag may be changed automatically if compression code won't make
313 	 * things smaller.
314 	 */
315 	if (flags & FS_NOCOMP_FL) {
316 		ip->flags &= ~BTRFS_INODE_COMPRESS;
317 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
318 
319 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 		if (ret && ret != -ENODATA)
321 			goto out_drop;
322 	} else if (flags & FS_COMPR_FL) {
323 		const char *comp;
324 
325 		ip->flags |= BTRFS_INODE_COMPRESS;
326 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
327 
328 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
329 			comp = "lzo";
330 		else
331 			comp = "zlib";
332 		ret = btrfs_set_prop(inode, "btrfs.compression",
333 				     comp, strlen(comp), 0);
334 		if (ret)
335 			goto out_drop;
336 
337 	} else {
338 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 		if (ret && ret != -ENODATA)
340 			goto out_drop;
341 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
342 	}
343 
344 	trans = btrfs_start_transaction(root, 1);
345 	if (IS_ERR(trans)) {
346 		ret = PTR_ERR(trans);
347 		goto out_drop;
348 	}
349 
350 	btrfs_update_iflags(inode);
351 	inode_inc_iversion(inode);
352 	inode->i_ctime = current_fs_time(inode->i_sb);
353 	ret = btrfs_update_inode(trans, root, inode);
354 
355 	btrfs_end_transaction(trans, root);
356  out_drop:
357 	if (ret) {
358 		ip->flags = ip_oldflags;
359 		inode->i_flags = i_oldflags;
360 	}
361 
362  out_unlock:
363 	inode_unlock(inode);
364 	mnt_drop_write_file(file);
365 	return ret;
366 }
367 
368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
369 {
370 	struct inode *inode = file_inode(file);
371 
372 	return put_user(inode->i_generation, arg);
373 }
374 
375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
376 {
377 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
378 	struct btrfs_device *device;
379 	struct request_queue *q;
380 	struct fstrim_range range;
381 	u64 minlen = ULLONG_MAX;
382 	u64 num_devices = 0;
383 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
384 	int ret;
385 
386 	if (!capable(CAP_SYS_ADMIN))
387 		return -EPERM;
388 
389 	rcu_read_lock();
390 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
391 				dev_list) {
392 		if (!device->bdev)
393 			continue;
394 		q = bdev_get_queue(device->bdev);
395 		if (blk_queue_discard(q)) {
396 			num_devices++;
397 			minlen = min((u64)q->limits.discard_granularity,
398 				     minlen);
399 		}
400 	}
401 	rcu_read_unlock();
402 
403 	if (!num_devices)
404 		return -EOPNOTSUPP;
405 	if (copy_from_user(&range, arg, sizeof(range)))
406 		return -EFAULT;
407 	if (range.start > total_bytes ||
408 	    range.len < fs_info->sb->s_blocksize)
409 		return -EINVAL;
410 
411 	range.len = min(range.len, total_bytes - range.start);
412 	range.minlen = max(range.minlen, minlen);
413 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
414 	if (ret < 0)
415 		return ret;
416 
417 	if (copy_to_user(arg, &range, sizeof(range)))
418 		return -EFAULT;
419 
420 	return 0;
421 }
422 
423 int btrfs_is_empty_uuid(u8 *uuid)
424 {
425 	int i;
426 
427 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
428 		if (uuid[i])
429 			return 0;
430 	}
431 	return 1;
432 }
433 
434 static noinline int create_subvol(struct inode *dir,
435 				  struct dentry *dentry,
436 				  char *name, int namelen,
437 				  u64 *async_transid,
438 				  struct btrfs_qgroup_inherit *inherit)
439 {
440 	struct btrfs_trans_handle *trans;
441 	struct btrfs_key key;
442 	struct btrfs_root_item *root_item;
443 	struct btrfs_inode_item *inode_item;
444 	struct extent_buffer *leaf;
445 	struct btrfs_root *root = BTRFS_I(dir)->root;
446 	struct btrfs_root *new_root;
447 	struct btrfs_block_rsv block_rsv;
448 	struct timespec cur_time = current_fs_time(dir->i_sb);
449 	struct inode *inode;
450 	int ret;
451 	int err;
452 	u64 objectid;
453 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
454 	u64 index = 0;
455 	u64 qgroup_reserved;
456 	uuid_le new_uuid;
457 
458 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
459 	if (!root_item)
460 		return -ENOMEM;
461 
462 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
463 	if (ret)
464 		goto fail_free;
465 
466 	/*
467 	 * Don't create subvolume whose level is not zero. Or qgroup will be
468 	 * screwed up since it assume subvolme qgroup's level to be 0.
469 	 */
470 	if (btrfs_qgroup_level(objectid)) {
471 		ret = -ENOSPC;
472 		goto fail_free;
473 	}
474 
475 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
476 	/*
477 	 * The same as the snapshot creation, please see the comment
478 	 * of create_snapshot().
479 	 */
480 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
481 					       8, &qgroup_reserved, false);
482 	if (ret)
483 		goto fail_free;
484 
485 	trans = btrfs_start_transaction(root, 0);
486 	if (IS_ERR(trans)) {
487 		ret = PTR_ERR(trans);
488 		btrfs_subvolume_release_metadata(root, &block_rsv,
489 						 qgroup_reserved);
490 		goto fail_free;
491 	}
492 	trans->block_rsv = &block_rsv;
493 	trans->bytes_reserved = block_rsv.size;
494 
495 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
496 	if (ret)
497 		goto fail;
498 
499 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
500 	if (IS_ERR(leaf)) {
501 		ret = PTR_ERR(leaf);
502 		goto fail;
503 	}
504 
505 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
506 	btrfs_set_header_bytenr(leaf, leaf->start);
507 	btrfs_set_header_generation(leaf, trans->transid);
508 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
509 	btrfs_set_header_owner(leaf, objectid);
510 
511 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
512 			    BTRFS_FSID_SIZE);
513 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
514 			    btrfs_header_chunk_tree_uuid(leaf),
515 			    BTRFS_UUID_SIZE);
516 	btrfs_mark_buffer_dirty(leaf);
517 
518 	inode_item = &root_item->inode;
519 	btrfs_set_stack_inode_generation(inode_item, 1);
520 	btrfs_set_stack_inode_size(inode_item, 3);
521 	btrfs_set_stack_inode_nlink(inode_item, 1);
522 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
523 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
524 
525 	btrfs_set_root_flags(root_item, 0);
526 	btrfs_set_root_limit(root_item, 0);
527 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
528 
529 	btrfs_set_root_bytenr(root_item, leaf->start);
530 	btrfs_set_root_generation(root_item, trans->transid);
531 	btrfs_set_root_level(root_item, 0);
532 	btrfs_set_root_refs(root_item, 1);
533 	btrfs_set_root_used(root_item, leaf->len);
534 	btrfs_set_root_last_snapshot(root_item, 0);
535 
536 	btrfs_set_root_generation_v2(root_item,
537 			btrfs_root_generation(root_item));
538 	uuid_le_gen(&new_uuid);
539 	memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
540 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
541 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
542 	root_item->ctime = root_item->otime;
543 	btrfs_set_root_ctransid(root_item, trans->transid);
544 	btrfs_set_root_otransid(root_item, trans->transid);
545 
546 	btrfs_tree_unlock(leaf);
547 	free_extent_buffer(leaf);
548 	leaf = NULL;
549 
550 	btrfs_set_root_dirid(root_item, new_dirid);
551 
552 	key.objectid = objectid;
553 	key.offset = 0;
554 	key.type = BTRFS_ROOT_ITEM_KEY;
555 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
556 				root_item);
557 	if (ret)
558 		goto fail;
559 
560 	key.offset = (u64)-1;
561 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
562 	if (IS_ERR(new_root)) {
563 		ret = PTR_ERR(new_root);
564 		btrfs_abort_transaction(trans, root, ret);
565 		goto fail;
566 	}
567 
568 	btrfs_record_root_in_trans(trans, new_root);
569 
570 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
571 	if (ret) {
572 		/* We potentially lose an unused inode item here */
573 		btrfs_abort_transaction(trans, root, ret);
574 		goto fail;
575 	}
576 
577 	mutex_lock(&new_root->objectid_mutex);
578 	new_root->highest_objectid = new_dirid;
579 	mutex_unlock(&new_root->objectid_mutex);
580 
581 	/*
582 	 * insert the directory item
583 	 */
584 	ret = btrfs_set_inode_index(dir, &index);
585 	if (ret) {
586 		btrfs_abort_transaction(trans, root, ret);
587 		goto fail;
588 	}
589 
590 	ret = btrfs_insert_dir_item(trans, root,
591 				    name, namelen, dir, &key,
592 				    BTRFS_FT_DIR, index);
593 	if (ret) {
594 		btrfs_abort_transaction(trans, root, ret);
595 		goto fail;
596 	}
597 
598 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
599 	ret = btrfs_update_inode(trans, root, dir);
600 	BUG_ON(ret);
601 
602 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
603 				 objectid, root->root_key.objectid,
604 				 btrfs_ino(dir), index, name, namelen);
605 	BUG_ON(ret);
606 
607 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
608 				  root_item->uuid, BTRFS_UUID_KEY_SUBVOL,
609 				  objectid);
610 	if (ret)
611 		btrfs_abort_transaction(trans, root, ret);
612 
613 fail:
614 	kfree(root_item);
615 	trans->block_rsv = NULL;
616 	trans->bytes_reserved = 0;
617 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
618 
619 	if (async_transid) {
620 		*async_transid = trans->transid;
621 		err = btrfs_commit_transaction_async(trans, root, 1);
622 		if (err)
623 			err = btrfs_commit_transaction(trans, root);
624 	} else {
625 		err = btrfs_commit_transaction(trans, root);
626 	}
627 	if (err && !ret)
628 		ret = err;
629 
630 	if (!ret) {
631 		inode = btrfs_lookup_dentry(dir, dentry);
632 		if (IS_ERR(inode))
633 			return PTR_ERR(inode);
634 		d_instantiate(dentry, inode);
635 	}
636 	return ret;
637 
638 fail_free:
639 	kfree(root_item);
640 	return ret;
641 }
642 
643 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
644 {
645 	s64 writers;
646 	DEFINE_WAIT(wait);
647 
648 	do {
649 		prepare_to_wait(&root->subv_writers->wait, &wait,
650 				TASK_UNINTERRUPTIBLE);
651 
652 		writers = percpu_counter_sum(&root->subv_writers->counter);
653 		if (writers)
654 			schedule();
655 
656 		finish_wait(&root->subv_writers->wait, &wait);
657 	} while (writers);
658 }
659 
660 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
661 			   struct dentry *dentry, char *name, int namelen,
662 			   u64 *async_transid, bool readonly,
663 			   struct btrfs_qgroup_inherit *inherit)
664 {
665 	struct inode *inode;
666 	struct btrfs_pending_snapshot *pending_snapshot;
667 	struct btrfs_trans_handle *trans;
668 	int ret;
669 
670 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
671 		return -EINVAL;
672 
673 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
674 	if (!pending_snapshot)
675 		return -ENOMEM;
676 
677 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
678 			GFP_NOFS);
679 	pending_snapshot->path = btrfs_alloc_path();
680 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
681 		ret = -ENOMEM;
682 		goto free_pending;
683 	}
684 
685 	atomic_inc(&root->will_be_snapshoted);
686 	smp_mb__after_atomic();
687 	btrfs_wait_for_no_snapshoting_writes(root);
688 
689 	ret = btrfs_start_delalloc_inodes(root, 0);
690 	if (ret)
691 		goto dec_and_free;
692 
693 	btrfs_wait_ordered_extents(root, -1, 0, (u64)-1);
694 
695 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
696 			     BTRFS_BLOCK_RSV_TEMP);
697 	/*
698 	 * 1 - parent dir inode
699 	 * 2 - dir entries
700 	 * 1 - root item
701 	 * 2 - root ref/backref
702 	 * 1 - root of snapshot
703 	 * 1 - UUID item
704 	 */
705 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
706 					&pending_snapshot->block_rsv, 8,
707 					&pending_snapshot->qgroup_reserved,
708 					false);
709 	if (ret)
710 		goto dec_and_free;
711 
712 	pending_snapshot->dentry = dentry;
713 	pending_snapshot->root = root;
714 	pending_snapshot->readonly = readonly;
715 	pending_snapshot->dir = dir;
716 	pending_snapshot->inherit = inherit;
717 
718 	trans = btrfs_start_transaction(root, 0);
719 	if (IS_ERR(trans)) {
720 		ret = PTR_ERR(trans);
721 		goto fail;
722 	}
723 
724 	spin_lock(&root->fs_info->trans_lock);
725 	list_add(&pending_snapshot->list,
726 		 &trans->transaction->pending_snapshots);
727 	spin_unlock(&root->fs_info->trans_lock);
728 	if (async_transid) {
729 		*async_transid = trans->transid;
730 		ret = btrfs_commit_transaction_async(trans,
731 				     root->fs_info->extent_root, 1);
732 		if (ret)
733 			ret = btrfs_commit_transaction(trans, root);
734 	} else {
735 		ret = btrfs_commit_transaction(trans,
736 					       root->fs_info->extent_root);
737 	}
738 	if (ret)
739 		goto fail;
740 
741 	ret = pending_snapshot->error;
742 	if (ret)
743 		goto fail;
744 
745 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
746 	if (ret)
747 		goto fail;
748 
749 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
750 	if (IS_ERR(inode)) {
751 		ret = PTR_ERR(inode);
752 		goto fail;
753 	}
754 
755 	d_instantiate(dentry, inode);
756 	ret = 0;
757 fail:
758 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
759 					 &pending_snapshot->block_rsv,
760 					 pending_snapshot->qgroup_reserved);
761 dec_and_free:
762 	if (atomic_dec_and_test(&root->will_be_snapshoted))
763 		wake_up_atomic_t(&root->will_be_snapshoted);
764 free_pending:
765 	kfree(pending_snapshot->root_item);
766 	btrfs_free_path(pending_snapshot->path);
767 	kfree(pending_snapshot);
768 
769 	return ret;
770 }
771 
772 /*  copy of may_delete in fs/namei.c()
773  *	Check whether we can remove a link victim from directory dir, check
774  *  whether the type of victim is right.
775  *  1. We can't do it if dir is read-only (done in permission())
776  *  2. We should have write and exec permissions on dir
777  *  3. We can't remove anything from append-only dir
778  *  4. We can't do anything with immutable dir (done in permission())
779  *  5. If the sticky bit on dir is set we should either
780  *	a. be owner of dir, or
781  *	b. be owner of victim, or
782  *	c. have CAP_FOWNER capability
783  *  6. If the victim is append-only or immutable we can't do antyhing with
784  *     links pointing to it.
785  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
786  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
787  *  9. We can't remove a root or mountpoint.
788  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
789  *     nfs_async_unlink().
790  */
791 
792 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
793 {
794 	int error;
795 
796 	if (d_really_is_negative(victim))
797 		return -ENOENT;
798 
799 	BUG_ON(d_inode(victim->d_parent) != dir);
800 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
801 
802 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
803 	if (error)
804 		return error;
805 	if (IS_APPEND(dir))
806 		return -EPERM;
807 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
808 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
809 		return -EPERM;
810 	if (isdir) {
811 		if (!d_is_dir(victim))
812 			return -ENOTDIR;
813 		if (IS_ROOT(victim))
814 			return -EBUSY;
815 	} else if (d_is_dir(victim))
816 		return -EISDIR;
817 	if (IS_DEADDIR(dir))
818 		return -ENOENT;
819 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
820 		return -EBUSY;
821 	return 0;
822 }
823 
824 /* copy of may_create in fs/namei.c() */
825 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
826 {
827 	if (d_really_is_positive(child))
828 		return -EEXIST;
829 	if (IS_DEADDIR(dir))
830 		return -ENOENT;
831 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
832 }
833 
834 /*
835  * Create a new subvolume below @parent.  This is largely modeled after
836  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
837  * inside this filesystem so it's quite a bit simpler.
838  */
839 static noinline int btrfs_mksubvol(struct path *parent,
840 				   char *name, int namelen,
841 				   struct btrfs_root *snap_src,
842 				   u64 *async_transid, bool readonly,
843 				   struct btrfs_qgroup_inherit *inherit)
844 {
845 	struct inode *dir  = d_inode(parent->dentry);
846 	struct dentry *dentry;
847 	int error;
848 
849 	inode_lock_nested(dir, I_MUTEX_PARENT);
850 	// XXX: should've been
851 	// mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
852 	// if (error == -EINTR)
853 	//	return error;
854 
855 	dentry = lookup_one_len(name, parent->dentry, namelen);
856 	error = PTR_ERR(dentry);
857 	if (IS_ERR(dentry))
858 		goto out_unlock;
859 
860 	error = btrfs_may_create(dir, dentry);
861 	if (error)
862 		goto out_dput;
863 
864 	/*
865 	 * even if this name doesn't exist, we may get hash collisions.
866 	 * check for them now when we can safely fail
867 	 */
868 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
869 					       dir->i_ino, name,
870 					       namelen);
871 	if (error)
872 		goto out_dput;
873 
874 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
875 
876 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
877 		goto out_up_read;
878 
879 	if (snap_src) {
880 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
881 					async_transid, readonly, inherit);
882 	} else {
883 		error = create_subvol(dir, dentry, name, namelen,
884 				      async_transid, inherit);
885 	}
886 	if (!error)
887 		fsnotify_mkdir(dir, dentry);
888 out_up_read:
889 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
890 out_dput:
891 	dput(dentry);
892 out_unlock:
893 	inode_unlock(dir);
894 	return error;
895 }
896 
897 /*
898  * When we're defragging a range, we don't want to kick it off again
899  * if it is really just waiting for delalloc to send it down.
900  * If we find a nice big extent or delalloc range for the bytes in the
901  * file you want to defrag, we return 0 to let you know to skip this
902  * part of the file
903  */
904 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
905 {
906 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
907 	struct extent_map *em = NULL;
908 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
909 	u64 end;
910 
911 	read_lock(&em_tree->lock);
912 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
913 	read_unlock(&em_tree->lock);
914 
915 	if (em) {
916 		end = extent_map_end(em);
917 		free_extent_map(em);
918 		if (end - offset > thresh)
919 			return 0;
920 	}
921 	/* if we already have a nice delalloc here, just stop */
922 	thresh /= 2;
923 	end = count_range_bits(io_tree, &offset, offset + thresh,
924 			       thresh, EXTENT_DELALLOC, 1);
925 	if (end >= thresh)
926 		return 0;
927 	return 1;
928 }
929 
930 /*
931  * helper function to walk through a file and find extents
932  * newer than a specific transid, and smaller than thresh.
933  *
934  * This is used by the defragging code to find new and small
935  * extents
936  */
937 static int find_new_extents(struct btrfs_root *root,
938 			    struct inode *inode, u64 newer_than,
939 			    u64 *off, u32 thresh)
940 {
941 	struct btrfs_path *path;
942 	struct btrfs_key min_key;
943 	struct extent_buffer *leaf;
944 	struct btrfs_file_extent_item *extent;
945 	int type;
946 	int ret;
947 	u64 ino = btrfs_ino(inode);
948 
949 	path = btrfs_alloc_path();
950 	if (!path)
951 		return -ENOMEM;
952 
953 	min_key.objectid = ino;
954 	min_key.type = BTRFS_EXTENT_DATA_KEY;
955 	min_key.offset = *off;
956 
957 	while (1) {
958 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
959 		if (ret != 0)
960 			goto none;
961 process_slot:
962 		if (min_key.objectid != ino)
963 			goto none;
964 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
965 			goto none;
966 
967 		leaf = path->nodes[0];
968 		extent = btrfs_item_ptr(leaf, path->slots[0],
969 					struct btrfs_file_extent_item);
970 
971 		type = btrfs_file_extent_type(leaf, extent);
972 		if (type == BTRFS_FILE_EXTENT_REG &&
973 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
974 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
975 			*off = min_key.offset;
976 			btrfs_free_path(path);
977 			return 0;
978 		}
979 
980 		path->slots[0]++;
981 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
982 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
983 			goto process_slot;
984 		}
985 
986 		if (min_key.offset == (u64)-1)
987 			goto none;
988 
989 		min_key.offset++;
990 		btrfs_release_path(path);
991 	}
992 none:
993 	btrfs_free_path(path);
994 	return -ENOENT;
995 }
996 
997 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
998 {
999 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1000 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1001 	struct extent_map *em;
1002 	u64 len = PAGE_SIZE;
1003 
1004 	/*
1005 	 * hopefully we have this extent in the tree already, try without
1006 	 * the full extent lock
1007 	 */
1008 	read_lock(&em_tree->lock);
1009 	em = lookup_extent_mapping(em_tree, start, len);
1010 	read_unlock(&em_tree->lock);
1011 
1012 	if (!em) {
1013 		struct extent_state *cached = NULL;
1014 		u64 end = start + len - 1;
1015 
1016 		/* get the big lock and read metadata off disk */
1017 		lock_extent_bits(io_tree, start, end, &cached);
1018 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1019 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1020 
1021 		if (IS_ERR(em))
1022 			return NULL;
1023 	}
1024 
1025 	return em;
1026 }
1027 
1028 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1029 {
1030 	struct extent_map *next;
1031 	bool ret = true;
1032 
1033 	/* this is the last extent */
1034 	if (em->start + em->len >= i_size_read(inode))
1035 		return false;
1036 
1037 	next = defrag_lookup_extent(inode, em->start + em->len);
1038 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1039 		ret = false;
1040 	else if ((em->block_start + em->block_len == next->block_start) &&
1041 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1042 		ret = false;
1043 
1044 	free_extent_map(next);
1045 	return ret;
1046 }
1047 
1048 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1049 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1050 			       int compress)
1051 {
1052 	struct extent_map *em;
1053 	int ret = 1;
1054 	bool next_mergeable = true;
1055 	bool prev_mergeable = true;
1056 
1057 	/*
1058 	 * make sure that once we start defragging an extent, we keep on
1059 	 * defragging it
1060 	 */
1061 	if (start < *defrag_end)
1062 		return 1;
1063 
1064 	*skip = 0;
1065 
1066 	em = defrag_lookup_extent(inode, start);
1067 	if (!em)
1068 		return 0;
1069 
1070 	/* this will cover holes, and inline extents */
1071 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1072 		ret = 0;
1073 		goto out;
1074 	}
1075 
1076 	if (!*defrag_end)
1077 		prev_mergeable = false;
1078 
1079 	next_mergeable = defrag_check_next_extent(inode, em);
1080 	/*
1081 	 * we hit a real extent, if it is big or the next extent is not a
1082 	 * real extent, don't bother defragging it
1083 	 */
1084 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1085 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1086 		ret = 0;
1087 out:
1088 	/*
1089 	 * last_len ends up being a counter of how many bytes we've defragged.
1090 	 * every time we choose not to defrag an extent, we reset *last_len
1091 	 * so that the next tiny extent will force a defrag.
1092 	 *
1093 	 * The end result of this is that tiny extents before a single big
1094 	 * extent will force at least part of that big extent to be defragged.
1095 	 */
1096 	if (ret) {
1097 		*defrag_end = extent_map_end(em);
1098 	} else {
1099 		*last_len = 0;
1100 		*skip = extent_map_end(em);
1101 		*defrag_end = 0;
1102 	}
1103 
1104 	free_extent_map(em);
1105 	return ret;
1106 }
1107 
1108 /*
1109  * it doesn't do much good to defrag one or two pages
1110  * at a time.  This pulls in a nice chunk of pages
1111  * to COW and defrag.
1112  *
1113  * It also makes sure the delalloc code has enough
1114  * dirty data to avoid making new small extents as part
1115  * of the defrag
1116  *
1117  * It's a good idea to start RA on this range
1118  * before calling this.
1119  */
1120 static int cluster_pages_for_defrag(struct inode *inode,
1121 				    struct page **pages,
1122 				    unsigned long start_index,
1123 				    unsigned long num_pages)
1124 {
1125 	unsigned long file_end;
1126 	u64 isize = i_size_read(inode);
1127 	u64 page_start;
1128 	u64 page_end;
1129 	u64 page_cnt;
1130 	int ret;
1131 	int i;
1132 	int i_done;
1133 	struct btrfs_ordered_extent *ordered;
1134 	struct extent_state *cached_state = NULL;
1135 	struct extent_io_tree *tree;
1136 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1137 
1138 	file_end = (isize - 1) >> PAGE_SHIFT;
1139 	if (!isize || start_index > file_end)
1140 		return 0;
1141 
1142 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1143 
1144 	ret = btrfs_delalloc_reserve_space(inode,
1145 			start_index << PAGE_SHIFT,
1146 			page_cnt << PAGE_SHIFT);
1147 	if (ret)
1148 		return ret;
1149 	i_done = 0;
1150 	tree = &BTRFS_I(inode)->io_tree;
1151 
1152 	/* step one, lock all the pages */
1153 	for (i = 0; i < page_cnt; i++) {
1154 		struct page *page;
1155 again:
1156 		page = find_or_create_page(inode->i_mapping,
1157 					   start_index + i, mask);
1158 		if (!page)
1159 			break;
1160 
1161 		page_start = page_offset(page);
1162 		page_end = page_start + PAGE_SIZE - 1;
1163 		while (1) {
1164 			lock_extent_bits(tree, page_start, page_end,
1165 					 &cached_state);
1166 			ordered = btrfs_lookup_ordered_extent(inode,
1167 							      page_start);
1168 			unlock_extent_cached(tree, page_start, page_end,
1169 					     &cached_state, GFP_NOFS);
1170 			if (!ordered)
1171 				break;
1172 
1173 			unlock_page(page);
1174 			btrfs_start_ordered_extent(inode, ordered, 1);
1175 			btrfs_put_ordered_extent(ordered);
1176 			lock_page(page);
1177 			/*
1178 			 * we unlocked the page above, so we need check if
1179 			 * it was released or not.
1180 			 */
1181 			if (page->mapping != inode->i_mapping) {
1182 				unlock_page(page);
1183 				put_page(page);
1184 				goto again;
1185 			}
1186 		}
1187 
1188 		if (!PageUptodate(page)) {
1189 			btrfs_readpage(NULL, page);
1190 			lock_page(page);
1191 			if (!PageUptodate(page)) {
1192 				unlock_page(page);
1193 				put_page(page);
1194 				ret = -EIO;
1195 				break;
1196 			}
1197 		}
1198 
1199 		if (page->mapping != inode->i_mapping) {
1200 			unlock_page(page);
1201 			put_page(page);
1202 			goto again;
1203 		}
1204 
1205 		pages[i] = page;
1206 		i_done++;
1207 	}
1208 	if (!i_done || ret)
1209 		goto out;
1210 
1211 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1212 		goto out;
1213 
1214 	/*
1215 	 * so now we have a nice long stream of locked
1216 	 * and up to date pages, lets wait on them
1217 	 */
1218 	for (i = 0; i < i_done; i++)
1219 		wait_on_page_writeback(pages[i]);
1220 
1221 	page_start = page_offset(pages[0]);
1222 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1223 
1224 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1225 			 page_start, page_end - 1, &cached_state);
1226 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1227 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1228 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1229 			  &cached_state, GFP_NOFS);
1230 
1231 	if (i_done != page_cnt) {
1232 		spin_lock(&BTRFS_I(inode)->lock);
1233 		BTRFS_I(inode)->outstanding_extents++;
1234 		spin_unlock(&BTRFS_I(inode)->lock);
1235 		btrfs_delalloc_release_space(inode,
1236 				start_index << PAGE_SHIFT,
1237 				(page_cnt - i_done) << PAGE_SHIFT);
1238 	}
1239 
1240 
1241 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1242 			  &cached_state, GFP_NOFS);
1243 
1244 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1245 			     page_start, page_end - 1, &cached_state,
1246 			     GFP_NOFS);
1247 
1248 	for (i = 0; i < i_done; i++) {
1249 		clear_page_dirty_for_io(pages[i]);
1250 		ClearPageChecked(pages[i]);
1251 		set_page_extent_mapped(pages[i]);
1252 		set_page_dirty(pages[i]);
1253 		unlock_page(pages[i]);
1254 		put_page(pages[i]);
1255 	}
1256 	return i_done;
1257 out:
1258 	for (i = 0; i < i_done; i++) {
1259 		unlock_page(pages[i]);
1260 		put_page(pages[i]);
1261 	}
1262 	btrfs_delalloc_release_space(inode,
1263 			start_index << PAGE_SHIFT,
1264 			page_cnt << PAGE_SHIFT);
1265 	return ret;
1266 
1267 }
1268 
1269 int btrfs_defrag_file(struct inode *inode, struct file *file,
1270 		      struct btrfs_ioctl_defrag_range_args *range,
1271 		      u64 newer_than, unsigned long max_to_defrag)
1272 {
1273 	struct btrfs_root *root = BTRFS_I(inode)->root;
1274 	struct file_ra_state *ra = NULL;
1275 	unsigned long last_index;
1276 	u64 isize = i_size_read(inode);
1277 	u64 last_len = 0;
1278 	u64 skip = 0;
1279 	u64 defrag_end = 0;
1280 	u64 newer_off = range->start;
1281 	unsigned long i;
1282 	unsigned long ra_index = 0;
1283 	int ret;
1284 	int defrag_count = 0;
1285 	int compress_type = BTRFS_COMPRESS_ZLIB;
1286 	u32 extent_thresh = range->extent_thresh;
1287 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1288 	unsigned long cluster = max_cluster;
1289 	u64 new_align = ~((u64)SZ_128K - 1);
1290 	struct page **pages = NULL;
1291 
1292 	if (isize == 0)
1293 		return 0;
1294 
1295 	if (range->start >= isize)
1296 		return -EINVAL;
1297 
1298 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1299 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1300 			return -EINVAL;
1301 		if (range->compress_type)
1302 			compress_type = range->compress_type;
1303 	}
1304 
1305 	if (extent_thresh == 0)
1306 		extent_thresh = SZ_256K;
1307 
1308 	/*
1309 	 * if we were not given a file, allocate a readahead
1310 	 * context
1311 	 */
1312 	if (!file) {
1313 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1314 		if (!ra)
1315 			return -ENOMEM;
1316 		file_ra_state_init(ra, inode->i_mapping);
1317 	} else {
1318 		ra = &file->f_ra;
1319 	}
1320 
1321 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1322 			GFP_NOFS);
1323 	if (!pages) {
1324 		ret = -ENOMEM;
1325 		goto out_ra;
1326 	}
1327 
1328 	/* find the last page to defrag */
1329 	if (range->start + range->len > range->start) {
1330 		last_index = min_t(u64, isize - 1,
1331 			 range->start + range->len - 1) >> PAGE_SHIFT;
1332 	} else {
1333 		last_index = (isize - 1) >> PAGE_SHIFT;
1334 	}
1335 
1336 	if (newer_than) {
1337 		ret = find_new_extents(root, inode, newer_than,
1338 				       &newer_off, SZ_64K);
1339 		if (!ret) {
1340 			range->start = newer_off;
1341 			/*
1342 			 * we always align our defrag to help keep
1343 			 * the extents in the file evenly spaced
1344 			 */
1345 			i = (newer_off & new_align) >> PAGE_SHIFT;
1346 		} else
1347 			goto out_ra;
1348 	} else {
1349 		i = range->start >> PAGE_SHIFT;
1350 	}
1351 	if (!max_to_defrag)
1352 		max_to_defrag = last_index - i + 1;
1353 
1354 	/*
1355 	 * make writeback starts from i, so the defrag range can be
1356 	 * written sequentially.
1357 	 */
1358 	if (i < inode->i_mapping->writeback_index)
1359 		inode->i_mapping->writeback_index = i;
1360 
1361 	while (i <= last_index && defrag_count < max_to_defrag &&
1362 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1363 		/*
1364 		 * make sure we stop running if someone unmounts
1365 		 * the FS
1366 		 */
1367 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1368 			break;
1369 
1370 		if (btrfs_defrag_cancelled(root->fs_info)) {
1371 			btrfs_debug(root->fs_info, "defrag_file cancelled");
1372 			ret = -EAGAIN;
1373 			break;
1374 		}
1375 
1376 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1377 					 extent_thresh, &last_len, &skip,
1378 					 &defrag_end, range->flags &
1379 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1380 			unsigned long next;
1381 			/*
1382 			 * the should_defrag function tells us how much to skip
1383 			 * bump our counter by the suggested amount
1384 			 */
1385 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1386 			i = max(i + 1, next);
1387 			continue;
1388 		}
1389 
1390 		if (!newer_than) {
1391 			cluster = (PAGE_ALIGN(defrag_end) >>
1392 				   PAGE_SHIFT) - i;
1393 			cluster = min(cluster, max_cluster);
1394 		} else {
1395 			cluster = max_cluster;
1396 		}
1397 
1398 		if (i + cluster > ra_index) {
1399 			ra_index = max(i, ra_index);
1400 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1401 				       cluster);
1402 			ra_index += cluster;
1403 		}
1404 
1405 		inode_lock(inode);
1406 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1407 			BTRFS_I(inode)->force_compress = compress_type;
1408 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1409 		if (ret < 0) {
1410 			inode_unlock(inode);
1411 			goto out_ra;
1412 		}
1413 
1414 		defrag_count += ret;
1415 		balance_dirty_pages_ratelimited(inode->i_mapping);
1416 		inode_unlock(inode);
1417 
1418 		if (newer_than) {
1419 			if (newer_off == (u64)-1)
1420 				break;
1421 
1422 			if (ret > 0)
1423 				i += ret;
1424 
1425 			newer_off = max(newer_off + 1,
1426 					(u64)i << PAGE_SHIFT);
1427 
1428 			ret = find_new_extents(root, inode, newer_than,
1429 					       &newer_off, SZ_64K);
1430 			if (!ret) {
1431 				range->start = newer_off;
1432 				i = (newer_off & new_align) >> PAGE_SHIFT;
1433 			} else {
1434 				break;
1435 			}
1436 		} else {
1437 			if (ret > 0) {
1438 				i += ret;
1439 				last_len += ret << PAGE_SHIFT;
1440 			} else {
1441 				i++;
1442 				last_len = 0;
1443 			}
1444 		}
1445 	}
1446 
1447 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1448 		filemap_flush(inode->i_mapping);
1449 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1450 			     &BTRFS_I(inode)->runtime_flags))
1451 			filemap_flush(inode->i_mapping);
1452 	}
1453 
1454 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1455 		/* the filemap_flush will queue IO into the worker threads, but
1456 		 * we have to make sure the IO is actually started and that
1457 		 * ordered extents get created before we return
1458 		 */
1459 		atomic_inc(&root->fs_info->async_submit_draining);
1460 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1461 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1462 			wait_event(root->fs_info->async_submit_wait,
1463 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1464 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1465 		}
1466 		atomic_dec(&root->fs_info->async_submit_draining);
1467 	}
1468 
1469 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1470 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1471 	}
1472 
1473 	ret = defrag_count;
1474 
1475 out_ra:
1476 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1477 		inode_lock(inode);
1478 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1479 		inode_unlock(inode);
1480 	}
1481 	if (!file)
1482 		kfree(ra);
1483 	kfree(pages);
1484 	return ret;
1485 }
1486 
1487 static noinline int btrfs_ioctl_resize(struct file *file,
1488 					void __user *arg)
1489 {
1490 	u64 new_size;
1491 	u64 old_size;
1492 	u64 devid = 1;
1493 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1494 	struct btrfs_ioctl_vol_args *vol_args;
1495 	struct btrfs_trans_handle *trans;
1496 	struct btrfs_device *device = NULL;
1497 	char *sizestr;
1498 	char *retptr;
1499 	char *devstr = NULL;
1500 	int ret = 0;
1501 	int mod = 0;
1502 
1503 	if (!capable(CAP_SYS_ADMIN))
1504 		return -EPERM;
1505 
1506 	ret = mnt_want_write_file(file);
1507 	if (ret)
1508 		return ret;
1509 
1510 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1511 			1)) {
1512 		mnt_drop_write_file(file);
1513 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1514 	}
1515 
1516 	mutex_lock(&root->fs_info->volume_mutex);
1517 	vol_args = memdup_user(arg, sizeof(*vol_args));
1518 	if (IS_ERR(vol_args)) {
1519 		ret = PTR_ERR(vol_args);
1520 		goto out;
1521 	}
1522 
1523 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1524 
1525 	sizestr = vol_args->name;
1526 	devstr = strchr(sizestr, ':');
1527 	if (devstr) {
1528 		sizestr = devstr + 1;
1529 		*devstr = '\0';
1530 		devstr = vol_args->name;
1531 		ret = kstrtoull(devstr, 10, &devid);
1532 		if (ret)
1533 			goto out_free;
1534 		if (!devid) {
1535 			ret = -EINVAL;
1536 			goto out_free;
1537 		}
1538 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1539 	}
1540 
1541 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1542 	if (!device) {
1543 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1544 		       devid);
1545 		ret = -ENODEV;
1546 		goto out_free;
1547 	}
1548 
1549 	if (!device->writeable) {
1550 		btrfs_info(root->fs_info,
1551 			   "resizer unable to apply on readonly device %llu",
1552 		       devid);
1553 		ret = -EPERM;
1554 		goto out_free;
1555 	}
1556 
1557 	if (!strcmp(sizestr, "max"))
1558 		new_size = device->bdev->bd_inode->i_size;
1559 	else {
1560 		if (sizestr[0] == '-') {
1561 			mod = -1;
1562 			sizestr++;
1563 		} else if (sizestr[0] == '+') {
1564 			mod = 1;
1565 			sizestr++;
1566 		}
1567 		new_size = memparse(sizestr, &retptr);
1568 		if (*retptr != '\0' || new_size == 0) {
1569 			ret = -EINVAL;
1570 			goto out_free;
1571 		}
1572 	}
1573 
1574 	if (device->is_tgtdev_for_dev_replace) {
1575 		ret = -EPERM;
1576 		goto out_free;
1577 	}
1578 
1579 	old_size = btrfs_device_get_total_bytes(device);
1580 
1581 	if (mod < 0) {
1582 		if (new_size > old_size) {
1583 			ret = -EINVAL;
1584 			goto out_free;
1585 		}
1586 		new_size = old_size - new_size;
1587 	} else if (mod > 0) {
1588 		if (new_size > ULLONG_MAX - old_size) {
1589 			ret = -ERANGE;
1590 			goto out_free;
1591 		}
1592 		new_size = old_size + new_size;
1593 	}
1594 
1595 	if (new_size < SZ_256M) {
1596 		ret = -EINVAL;
1597 		goto out_free;
1598 	}
1599 	if (new_size > device->bdev->bd_inode->i_size) {
1600 		ret = -EFBIG;
1601 		goto out_free;
1602 	}
1603 
1604 	new_size = div_u64(new_size, root->sectorsize);
1605 	new_size *= root->sectorsize;
1606 
1607 	btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1608 		      rcu_str_deref(device->name), new_size);
1609 
1610 	if (new_size > old_size) {
1611 		trans = btrfs_start_transaction(root, 0);
1612 		if (IS_ERR(trans)) {
1613 			ret = PTR_ERR(trans);
1614 			goto out_free;
1615 		}
1616 		ret = btrfs_grow_device(trans, device, new_size);
1617 		btrfs_commit_transaction(trans, root);
1618 	} else if (new_size < old_size) {
1619 		ret = btrfs_shrink_device(device, new_size);
1620 	} /* equal, nothing need to do */
1621 
1622 out_free:
1623 	kfree(vol_args);
1624 out:
1625 	mutex_unlock(&root->fs_info->volume_mutex);
1626 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1627 	mnt_drop_write_file(file);
1628 	return ret;
1629 }
1630 
1631 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1632 				char *name, unsigned long fd, int subvol,
1633 				u64 *transid, bool readonly,
1634 				struct btrfs_qgroup_inherit *inherit)
1635 {
1636 	int namelen;
1637 	int ret = 0;
1638 
1639 	ret = mnt_want_write_file(file);
1640 	if (ret)
1641 		goto out;
1642 
1643 	namelen = strlen(name);
1644 	if (strchr(name, '/')) {
1645 		ret = -EINVAL;
1646 		goto out_drop_write;
1647 	}
1648 
1649 	if (name[0] == '.' &&
1650 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1651 		ret = -EEXIST;
1652 		goto out_drop_write;
1653 	}
1654 
1655 	if (subvol) {
1656 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1657 				     NULL, transid, readonly, inherit);
1658 	} else {
1659 		struct fd src = fdget(fd);
1660 		struct inode *src_inode;
1661 		if (!src.file) {
1662 			ret = -EINVAL;
1663 			goto out_drop_write;
1664 		}
1665 
1666 		src_inode = file_inode(src.file);
1667 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1668 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1669 				   "Snapshot src from another FS");
1670 			ret = -EXDEV;
1671 		} else if (!inode_owner_or_capable(src_inode)) {
1672 			/*
1673 			 * Subvolume creation is not restricted, but snapshots
1674 			 * are limited to own subvolumes only
1675 			 */
1676 			ret = -EPERM;
1677 		} else {
1678 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1679 					     BTRFS_I(src_inode)->root,
1680 					     transid, readonly, inherit);
1681 		}
1682 		fdput(src);
1683 	}
1684 out_drop_write:
1685 	mnt_drop_write_file(file);
1686 out:
1687 	return ret;
1688 }
1689 
1690 static noinline int btrfs_ioctl_snap_create(struct file *file,
1691 					    void __user *arg, int subvol)
1692 {
1693 	struct btrfs_ioctl_vol_args *vol_args;
1694 	int ret;
1695 
1696 	vol_args = memdup_user(arg, sizeof(*vol_args));
1697 	if (IS_ERR(vol_args))
1698 		return PTR_ERR(vol_args);
1699 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1700 
1701 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1702 					      vol_args->fd, subvol,
1703 					      NULL, false, NULL);
1704 
1705 	kfree(vol_args);
1706 	return ret;
1707 }
1708 
1709 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1710 					       void __user *arg, int subvol)
1711 {
1712 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1713 	int ret;
1714 	u64 transid = 0;
1715 	u64 *ptr = NULL;
1716 	bool readonly = false;
1717 	struct btrfs_qgroup_inherit *inherit = NULL;
1718 
1719 	vol_args = memdup_user(arg, sizeof(*vol_args));
1720 	if (IS_ERR(vol_args))
1721 		return PTR_ERR(vol_args);
1722 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1723 
1724 	if (vol_args->flags &
1725 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1726 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1727 		ret = -EOPNOTSUPP;
1728 		goto free_args;
1729 	}
1730 
1731 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1732 		ptr = &transid;
1733 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1734 		readonly = true;
1735 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1736 		if (vol_args->size > PAGE_SIZE) {
1737 			ret = -EINVAL;
1738 			goto free_args;
1739 		}
1740 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1741 		if (IS_ERR(inherit)) {
1742 			ret = PTR_ERR(inherit);
1743 			goto free_args;
1744 		}
1745 	}
1746 
1747 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1748 					      vol_args->fd, subvol, ptr,
1749 					      readonly, inherit);
1750 	if (ret)
1751 		goto free_inherit;
1752 
1753 	if (ptr && copy_to_user(arg +
1754 				offsetof(struct btrfs_ioctl_vol_args_v2,
1755 					transid),
1756 				ptr, sizeof(*ptr)))
1757 		ret = -EFAULT;
1758 
1759 free_inherit:
1760 	kfree(inherit);
1761 free_args:
1762 	kfree(vol_args);
1763 	return ret;
1764 }
1765 
1766 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1767 						void __user *arg)
1768 {
1769 	struct inode *inode = file_inode(file);
1770 	struct btrfs_root *root = BTRFS_I(inode)->root;
1771 	int ret = 0;
1772 	u64 flags = 0;
1773 
1774 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1775 		return -EINVAL;
1776 
1777 	down_read(&root->fs_info->subvol_sem);
1778 	if (btrfs_root_readonly(root))
1779 		flags |= BTRFS_SUBVOL_RDONLY;
1780 	up_read(&root->fs_info->subvol_sem);
1781 
1782 	if (copy_to_user(arg, &flags, sizeof(flags)))
1783 		ret = -EFAULT;
1784 
1785 	return ret;
1786 }
1787 
1788 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1789 					      void __user *arg)
1790 {
1791 	struct inode *inode = file_inode(file);
1792 	struct btrfs_root *root = BTRFS_I(inode)->root;
1793 	struct btrfs_trans_handle *trans;
1794 	u64 root_flags;
1795 	u64 flags;
1796 	int ret = 0;
1797 
1798 	if (!inode_owner_or_capable(inode))
1799 		return -EPERM;
1800 
1801 	ret = mnt_want_write_file(file);
1802 	if (ret)
1803 		goto out;
1804 
1805 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1806 		ret = -EINVAL;
1807 		goto out_drop_write;
1808 	}
1809 
1810 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1811 		ret = -EFAULT;
1812 		goto out_drop_write;
1813 	}
1814 
1815 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1816 		ret = -EINVAL;
1817 		goto out_drop_write;
1818 	}
1819 
1820 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1821 		ret = -EOPNOTSUPP;
1822 		goto out_drop_write;
1823 	}
1824 
1825 	down_write(&root->fs_info->subvol_sem);
1826 
1827 	/* nothing to do */
1828 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1829 		goto out_drop_sem;
1830 
1831 	root_flags = btrfs_root_flags(&root->root_item);
1832 	if (flags & BTRFS_SUBVOL_RDONLY) {
1833 		btrfs_set_root_flags(&root->root_item,
1834 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1835 	} else {
1836 		/*
1837 		 * Block RO -> RW transition if this subvolume is involved in
1838 		 * send
1839 		 */
1840 		spin_lock(&root->root_item_lock);
1841 		if (root->send_in_progress == 0) {
1842 			btrfs_set_root_flags(&root->root_item,
1843 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1844 			spin_unlock(&root->root_item_lock);
1845 		} else {
1846 			spin_unlock(&root->root_item_lock);
1847 			btrfs_warn(root->fs_info,
1848 			"Attempt to set subvolume %llu read-write during send",
1849 					root->root_key.objectid);
1850 			ret = -EPERM;
1851 			goto out_drop_sem;
1852 		}
1853 	}
1854 
1855 	trans = btrfs_start_transaction(root, 1);
1856 	if (IS_ERR(trans)) {
1857 		ret = PTR_ERR(trans);
1858 		goto out_reset;
1859 	}
1860 
1861 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1862 				&root->root_key, &root->root_item);
1863 
1864 	btrfs_commit_transaction(trans, root);
1865 out_reset:
1866 	if (ret)
1867 		btrfs_set_root_flags(&root->root_item, root_flags);
1868 out_drop_sem:
1869 	up_write(&root->fs_info->subvol_sem);
1870 out_drop_write:
1871 	mnt_drop_write_file(file);
1872 out:
1873 	return ret;
1874 }
1875 
1876 /*
1877  * helper to check if the subvolume references other subvolumes
1878  */
1879 static noinline int may_destroy_subvol(struct btrfs_root *root)
1880 {
1881 	struct btrfs_path *path;
1882 	struct btrfs_dir_item *di;
1883 	struct btrfs_key key;
1884 	u64 dir_id;
1885 	int ret;
1886 
1887 	path = btrfs_alloc_path();
1888 	if (!path)
1889 		return -ENOMEM;
1890 
1891 	/* Make sure this root isn't set as the default subvol */
1892 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1893 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1894 				   dir_id, "default", 7, 0);
1895 	if (di && !IS_ERR(di)) {
1896 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1897 		if (key.objectid == root->root_key.objectid) {
1898 			ret = -EPERM;
1899 			btrfs_err(root->fs_info, "deleting default subvolume "
1900 				  "%llu is not allowed", key.objectid);
1901 			goto out;
1902 		}
1903 		btrfs_release_path(path);
1904 	}
1905 
1906 	key.objectid = root->root_key.objectid;
1907 	key.type = BTRFS_ROOT_REF_KEY;
1908 	key.offset = (u64)-1;
1909 
1910 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1911 				&key, path, 0, 0);
1912 	if (ret < 0)
1913 		goto out;
1914 	BUG_ON(ret == 0);
1915 
1916 	ret = 0;
1917 	if (path->slots[0] > 0) {
1918 		path->slots[0]--;
1919 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1920 		if (key.objectid == root->root_key.objectid &&
1921 		    key.type == BTRFS_ROOT_REF_KEY)
1922 			ret = -ENOTEMPTY;
1923 	}
1924 out:
1925 	btrfs_free_path(path);
1926 	return ret;
1927 }
1928 
1929 static noinline int key_in_sk(struct btrfs_key *key,
1930 			      struct btrfs_ioctl_search_key *sk)
1931 {
1932 	struct btrfs_key test;
1933 	int ret;
1934 
1935 	test.objectid = sk->min_objectid;
1936 	test.type = sk->min_type;
1937 	test.offset = sk->min_offset;
1938 
1939 	ret = btrfs_comp_cpu_keys(key, &test);
1940 	if (ret < 0)
1941 		return 0;
1942 
1943 	test.objectid = sk->max_objectid;
1944 	test.type = sk->max_type;
1945 	test.offset = sk->max_offset;
1946 
1947 	ret = btrfs_comp_cpu_keys(key, &test);
1948 	if (ret > 0)
1949 		return 0;
1950 	return 1;
1951 }
1952 
1953 static noinline int copy_to_sk(struct btrfs_root *root,
1954 			       struct btrfs_path *path,
1955 			       struct btrfs_key *key,
1956 			       struct btrfs_ioctl_search_key *sk,
1957 			       size_t *buf_size,
1958 			       char __user *ubuf,
1959 			       unsigned long *sk_offset,
1960 			       int *num_found)
1961 {
1962 	u64 found_transid;
1963 	struct extent_buffer *leaf;
1964 	struct btrfs_ioctl_search_header sh;
1965 	struct btrfs_key test;
1966 	unsigned long item_off;
1967 	unsigned long item_len;
1968 	int nritems;
1969 	int i;
1970 	int slot;
1971 	int ret = 0;
1972 
1973 	leaf = path->nodes[0];
1974 	slot = path->slots[0];
1975 	nritems = btrfs_header_nritems(leaf);
1976 
1977 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1978 		i = nritems;
1979 		goto advance_key;
1980 	}
1981 	found_transid = btrfs_header_generation(leaf);
1982 
1983 	for (i = slot; i < nritems; i++) {
1984 		item_off = btrfs_item_ptr_offset(leaf, i);
1985 		item_len = btrfs_item_size_nr(leaf, i);
1986 
1987 		btrfs_item_key_to_cpu(leaf, key, i);
1988 		if (!key_in_sk(key, sk))
1989 			continue;
1990 
1991 		if (sizeof(sh) + item_len > *buf_size) {
1992 			if (*num_found) {
1993 				ret = 1;
1994 				goto out;
1995 			}
1996 
1997 			/*
1998 			 * return one empty item back for v1, which does not
1999 			 * handle -EOVERFLOW
2000 			 */
2001 
2002 			*buf_size = sizeof(sh) + item_len;
2003 			item_len = 0;
2004 			ret = -EOVERFLOW;
2005 		}
2006 
2007 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2008 			ret = 1;
2009 			goto out;
2010 		}
2011 
2012 		sh.objectid = key->objectid;
2013 		sh.offset = key->offset;
2014 		sh.type = key->type;
2015 		sh.len = item_len;
2016 		sh.transid = found_transid;
2017 
2018 		/* copy search result header */
2019 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2020 			ret = -EFAULT;
2021 			goto out;
2022 		}
2023 
2024 		*sk_offset += sizeof(sh);
2025 
2026 		if (item_len) {
2027 			char __user *up = ubuf + *sk_offset;
2028 			/* copy the item */
2029 			if (read_extent_buffer_to_user(leaf, up,
2030 						       item_off, item_len)) {
2031 				ret = -EFAULT;
2032 				goto out;
2033 			}
2034 
2035 			*sk_offset += item_len;
2036 		}
2037 		(*num_found)++;
2038 
2039 		if (ret) /* -EOVERFLOW from above */
2040 			goto out;
2041 
2042 		if (*num_found >= sk->nr_items) {
2043 			ret = 1;
2044 			goto out;
2045 		}
2046 	}
2047 advance_key:
2048 	ret = 0;
2049 	test.objectid = sk->max_objectid;
2050 	test.type = sk->max_type;
2051 	test.offset = sk->max_offset;
2052 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2053 		ret = 1;
2054 	else if (key->offset < (u64)-1)
2055 		key->offset++;
2056 	else if (key->type < (u8)-1) {
2057 		key->offset = 0;
2058 		key->type++;
2059 	} else if (key->objectid < (u64)-1) {
2060 		key->offset = 0;
2061 		key->type = 0;
2062 		key->objectid++;
2063 	} else
2064 		ret = 1;
2065 out:
2066 	/*
2067 	 *  0: all items from this leaf copied, continue with next
2068 	 *  1: * more items can be copied, but unused buffer is too small
2069 	 *     * all items were found
2070 	 *     Either way, it will stops the loop which iterates to the next
2071 	 *     leaf
2072 	 *  -EOVERFLOW: item was to large for buffer
2073 	 *  -EFAULT: could not copy extent buffer back to userspace
2074 	 */
2075 	return ret;
2076 }
2077 
2078 static noinline int search_ioctl(struct inode *inode,
2079 				 struct btrfs_ioctl_search_key *sk,
2080 				 size_t *buf_size,
2081 				 char __user *ubuf)
2082 {
2083 	struct btrfs_root *root;
2084 	struct btrfs_key key;
2085 	struct btrfs_path *path;
2086 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2087 	int ret;
2088 	int num_found = 0;
2089 	unsigned long sk_offset = 0;
2090 
2091 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2092 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2093 		return -EOVERFLOW;
2094 	}
2095 
2096 	path = btrfs_alloc_path();
2097 	if (!path)
2098 		return -ENOMEM;
2099 
2100 	if (sk->tree_id == 0) {
2101 		/* search the root of the inode that was passed */
2102 		root = BTRFS_I(inode)->root;
2103 	} else {
2104 		key.objectid = sk->tree_id;
2105 		key.type = BTRFS_ROOT_ITEM_KEY;
2106 		key.offset = (u64)-1;
2107 		root = btrfs_read_fs_root_no_name(info, &key);
2108 		if (IS_ERR(root)) {
2109 			btrfs_free_path(path);
2110 			return -ENOENT;
2111 		}
2112 	}
2113 
2114 	key.objectid = sk->min_objectid;
2115 	key.type = sk->min_type;
2116 	key.offset = sk->min_offset;
2117 
2118 	while (1) {
2119 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2120 		if (ret != 0) {
2121 			if (ret > 0)
2122 				ret = 0;
2123 			goto err;
2124 		}
2125 		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2126 				 &sk_offset, &num_found);
2127 		btrfs_release_path(path);
2128 		if (ret)
2129 			break;
2130 
2131 	}
2132 	if (ret > 0)
2133 		ret = 0;
2134 err:
2135 	sk->nr_items = num_found;
2136 	btrfs_free_path(path);
2137 	return ret;
2138 }
2139 
2140 static noinline int btrfs_ioctl_tree_search(struct file *file,
2141 					   void __user *argp)
2142 {
2143 	struct btrfs_ioctl_search_args __user *uargs;
2144 	struct btrfs_ioctl_search_key sk;
2145 	struct inode *inode;
2146 	int ret;
2147 	size_t buf_size;
2148 
2149 	if (!capable(CAP_SYS_ADMIN))
2150 		return -EPERM;
2151 
2152 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2153 
2154 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2155 		return -EFAULT;
2156 
2157 	buf_size = sizeof(uargs->buf);
2158 
2159 	inode = file_inode(file);
2160 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2161 
2162 	/*
2163 	 * In the origin implementation an overflow is handled by returning a
2164 	 * search header with a len of zero, so reset ret.
2165 	 */
2166 	if (ret == -EOVERFLOW)
2167 		ret = 0;
2168 
2169 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2170 		ret = -EFAULT;
2171 	return ret;
2172 }
2173 
2174 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2175 					       void __user *argp)
2176 {
2177 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2178 	struct btrfs_ioctl_search_args_v2 args;
2179 	struct inode *inode;
2180 	int ret;
2181 	size_t buf_size;
2182 	const size_t buf_limit = SZ_16M;
2183 
2184 	if (!capable(CAP_SYS_ADMIN))
2185 		return -EPERM;
2186 
2187 	/* copy search header and buffer size */
2188 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2189 	if (copy_from_user(&args, uarg, sizeof(args)))
2190 		return -EFAULT;
2191 
2192 	buf_size = args.buf_size;
2193 
2194 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2195 		return -EOVERFLOW;
2196 
2197 	/* limit result size to 16MB */
2198 	if (buf_size > buf_limit)
2199 		buf_size = buf_limit;
2200 
2201 	inode = file_inode(file);
2202 	ret = search_ioctl(inode, &args.key, &buf_size,
2203 			   (char *)(&uarg->buf[0]));
2204 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2205 		ret = -EFAULT;
2206 	else if (ret == -EOVERFLOW &&
2207 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2208 		ret = -EFAULT;
2209 
2210 	return ret;
2211 }
2212 
2213 /*
2214  * Search INODE_REFs to identify path name of 'dirid' directory
2215  * in a 'tree_id' tree. and sets path name to 'name'.
2216  */
2217 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2218 				u64 tree_id, u64 dirid, char *name)
2219 {
2220 	struct btrfs_root *root;
2221 	struct btrfs_key key;
2222 	char *ptr;
2223 	int ret = -1;
2224 	int slot;
2225 	int len;
2226 	int total_len = 0;
2227 	struct btrfs_inode_ref *iref;
2228 	struct extent_buffer *l;
2229 	struct btrfs_path *path;
2230 
2231 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2232 		name[0]='\0';
2233 		return 0;
2234 	}
2235 
2236 	path = btrfs_alloc_path();
2237 	if (!path)
2238 		return -ENOMEM;
2239 
2240 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2241 
2242 	key.objectid = tree_id;
2243 	key.type = BTRFS_ROOT_ITEM_KEY;
2244 	key.offset = (u64)-1;
2245 	root = btrfs_read_fs_root_no_name(info, &key);
2246 	if (IS_ERR(root)) {
2247 		btrfs_err(info, "could not find root %llu", tree_id);
2248 		ret = -ENOENT;
2249 		goto out;
2250 	}
2251 
2252 	key.objectid = dirid;
2253 	key.type = BTRFS_INODE_REF_KEY;
2254 	key.offset = (u64)-1;
2255 
2256 	while (1) {
2257 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2258 		if (ret < 0)
2259 			goto out;
2260 		else if (ret > 0) {
2261 			ret = btrfs_previous_item(root, path, dirid,
2262 						  BTRFS_INODE_REF_KEY);
2263 			if (ret < 0)
2264 				goto out;
2265 			else if (ret > 0) {
2266 				ret = -ENOENT;
2267 				goto out;
2268 			}
2269 		}
2270 
2271 		l = path->nodes[0];
2272 		slot = path->slots[0];
2273 		btrfs_item_key_to_cpu(l, &key, slot);
2274 
2275 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2276 		len = btrfs_inode_ref_name_len(l, iref);
2277 		ptr -= len + 1;
2278 		total_len += len + 1;
2279 		if (ptr < name) {
2280 			ret = -ENAMETOOLONG;
2281 			goto out;
2282 		}
2283 
2284 		*(ptr + len) = '/';
2285 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2286 
2287 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2288 			break;
2289 
2290 		btrfs_release_path(path);
2291 		key.objectid = key.offset;
2292 		key.offset = (u64)-1;
2293 		dirid = key.objectid;
2294 	}
2295 	memmove(name, ptr, total_len);
2296 	name[total_len] = '\0';
2297 	ret = 0;
2298 out:
2299 	btrfs_free_path(path);
2300 	return ret;
2301 }
2302 
2303 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2304 					   void __user *argp)
2305 {
2306 	 struct btrfs_ioctl_ino_lookup_args *args;
2307 	 struct inode *inode;
2308 	int ret = 0;
2309 
2310 	args = memdup_user(argp, sizeof(*args));
2311 	if (IS_ERR(args))
2312 		return PTR_ERR(args);
2313 
2314 	inode = file_inode(file);
2315 
2316 	/*
2317 	 * Unprivileged query to obtain the containing subvolume root id. The
2318 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2319 	 */
2320 	if (args->treeid == 0)
2321 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2322 
2323 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2324 		args->name[0] = 0;
2325 		goto out;
2326 	}
2327 
2328 	if (!capable(CAP_SYS_ADMIN)) {
2329 		ret = -EPERM;
2330 		goto out;
2331 	}
2332 
2333 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2334 					args->treeid, args->objectid,
2335 					args->name);
2336 
2337 out:
2338 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2339 		ret = -EFAULT;
2340 
2341 	kfree(args);
2342 	return ret;
2343 }
2344 
2345 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2346 					     void __user *arg)
2347 {
2348 	struct dentry *parent = file->f_path.dentry;
2349 	struct dentry *dentry;
2350 	struct inode *dir = d_inode(parent);
2351 	struct inode *inode;
2352 	struct btrfs_root *root = BTRFS_I(dir)->root;
2353 	struct btrfs_root *dest = NULL;
2354 	struct btrfs_ioctl_vol_args *vol_args;
2355 	struct btrfs_trans_handle *trans;
2356 	struct btrfs_block_rsv block_rsv;
2357 	u64 root_flags;
2358 	u64 qgroup_reserved;
2359 	int namelen;
2360 	int ret;
2361 	int err = 0;
2362 
2363 	vol_args = memdup_user(arg, sizeof(*vol_args));
2364 	if (IS_ERR(vol_args))
2365 		return PTR_ERR(vol_args);
2366 
2367 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2368 	namelen = strlen(vol_args->name);
2369 	if (strchr(vol_args->name, '/') ||
2370 	    strncmp(vol_args->name, "..", namelen) == 0) {
2371 		err = -EINVAL;
2372 		goto out;
2373 	}
2374 
2375 	err = mnt_want_write_file(file);
2376 	if (err)
2377 		goto out;
2378 
2379 
2380 	inode_lock_nested(dir, I_MUTEX_PARENT);
2381 	// XXX: should've been
2382 	// err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2383 	// if (err == -EINTR)
2384 	//	goto out_drop_write;
2385 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2386 	if (IS_ERR(dentry)) {
2387 		err = PTR_ERR(dentry);
2388 		goto out_unlock_dir;
2389 	}
2390 
2391 	if (d_really_is_negative(dentry)) {
2392 		err = -ENOENT;
2393 		goto out_dput;
2394 	}
2395 
2396 	inode = d_inode(dentry);
2397 	dest = BTRFS_I(inode)->root;
2398 	if (!capable(CAP_SYS_ADMIN)) {
2399 		/*
2400 		 * Regular user.  Only allow this with a special mount
2401 		 * option, when the user has write+exec access to the
2402 		 * subvol root, and when rmdir(2) would have been
2403 		 * allowed.
2404 		 *
2405 		 * Note that this is _not_ check that the subvol is
2406 		 * empty or doesn't contain data that we wouldn't
2407 		 * otherwise be able to delete.
2408 		 *
2409 		 * Users who want to delete empty subvols should try
2410 		 * rmdir(2).
2411 		 */
2412 		err = -EPERM;
2413 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2414 			goto out_dput;
2415 
2416 		/*
2417 		 * Do not allow deletion if the parent dir is the same
2418 		 * as the dir to be deleted.  That means the ioctl
2419 		 * must be called on the dentry referencing the root
2420 		 * of the subvol, not a random directory contained
2421 		 * within it.
2422 		 */
2423 		err = -EINVAL;
2424 		if (root == dest)
2425 			goto out_dput;
2426 
2427 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2428 		if (err)
2429 			goto out_dput;
2430 	}
2431 
2432 	/* check if subvolume may be deleted by a user */
2433 	err = btrfs_may_delete(dir, dentry, 1);
2434 	if (err)
2435 		goto out_dput;
2436 
2437 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2438 		err = -EINVAL;
2439 		goto out_dput;
2440 	}
2441 
2442 	inode_lock(inode);
2443 
2444 	/*
2445 	 * Don't allow to delete a subvolume with send in progress. This is
2446 	 * inside the i_mutex so the error handling that has to drop the bit
2447 	 * again is not run concurrently.
2448 	 */
2449 	spin_lock(&dest->root_item_lock);
2450 	root_flags = btrfs_root_flags(&dest->root_item);
2451 	if (dest->send_in_progress == 0) {
2452 		btrfs_set_root_flags(&dest->root_item,
2453 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2454 		spin_unlock(&dest->root_item_lock);
2455 	} else {
2456 		spin_unlock(&dest->root_item_lock);
2457 		btrfs_warn(root->fs_info,
2458 			"Attempt to delete subvolume %llu during send",
2459 			dest->root_key.objectid);
2460 		err = -EPERM;
2461 		goto out_unlock_inode;
2462 	}
2463 
2464 	down_write(&root->fs_info->subvol_sem);
2465 
2466 	err = may_destroy_subvol(dest);
2467 	if (err)
2468 		goto out_up_write;
2469 
2470 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2471 	/*
2472 	 * One for dir inode, two for dir entries, two for root
2473 	 * ref/backref.
2474 	 */
2475 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2476 					       5, &qgroup_reserved, true);
2477 	if (err)
2478 		goto out_up_write;
2479 
2480 	trans = btrfs_start_transaction(root, 0);
2481 	if (IS_ERR(trans)) {
2482 		err = PTR_ERR(trans);
2483 		goto out_release;
2484 	}
2485 	trans->block_rsv = &block_rsv;
2486 	trans->bytes_reserved = block_rsv.size;
2487 
2488 	btrfs_record_snapshot_destroy(trans, dir);
2489 
2490 	ret = btrfs_unlink_subvol(trans, root, dir,
2491 				dest->root_key.objectid,
2492 				dentry->d_name.name,
2493 				dentry->d_name.len);
2494 	if (ret) {
2495 		err = ret;
2496 		btrfs_abort_transaction(trans, root, ret);
2497 		goto out_end_trans;
2498 	}
2499 
2500 	btrfs_record_root_in_trans(trans, dest);
2501 
2502 	memset(&dest->root_item.drop_progress, 0,
2503 		sizeof(dest->root_item.drop_progress));
2504 	dest->root_item.drop_level = 0;
2505 	btrfs_set_root_refs(&dest->root_item, 0);
2506 
2507 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2508 		ret = btrfs_insert_orphan_item(trans,
2509 					root->fs_info->tree_root,
2510 					dest->root_key.objectid);
2511 		if (ret) {
2512 			btrfs_abort_transaction(trans, root, ret);
2513 			err = ret;
2514 			goto out_end_trans;
2515 		}
2516 	}
2517 
2518 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2519 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2520 				  dest->root_key.objectid);
2521 	if (ret && ret != -ENOENT) {
2522 		btrfs_abort_transaction(trans, root, ret);
2523 		err = ret;
2524 		goto out_end_trans;
2525 	}
2526 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2527 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2528 					  dest->root_item.received_uuid,
2529 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2530 					  dest->root_key.objectid);
2531 		if (ret && ret != -ENOENT) {
2532 			btrfs_abort_transaction(trans, root, ret);
2533 			err = ret;
2534 			goto out_end_trans;
2535 		}
2536 	}
2537 
2538 out_end_trans:
2539 	trans->block_rsv = NULL;
2540 	trans->bytes_reserved = 0;
2541 	ret = btrfs_end_transaction(trans, root);
2542 	if (ret && !err)
2543 		err = ret;
2544 	inode->i_flags |= S_DEAD;
2545 out_release:
2546 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2547 out_up_write:
2548 	up_write(&root->fs_info->subvol_sem);
2549 	if (err) {
2550 		spin_lock(&dest->root_item_lock);
2551 		root_flags = btrfs_root_flags(&dest->root_item);
2552 		btrfs_set_root_flags(&dest->root_item,
2553 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2554 		spin_unlock(&dest->root_item_lock);
2555 	}
2556 out_unlock_inode:
2557 	inode_unlock(inode);
2558 	if (!err) {
2559 		d_invalidate(dentry);
2560 		btrfs_invalidate_inodes(dest);
2561 		d_delete(dentry);
2562 		ASSERT(dest->send_in_progress == 0);
2563 
2564 		/* the last ref */
2565 		if (dest->ino_cache_inode) {
2566 			iput(dest->ino_cache_inode);
2567 			dest->ino_cache_inode = NULL;
2568 		}
2569 	}
2570 out_dput:
2571 	dput(dentry);
2572 out_unlock_dir:
2573 	inode_unlock(dir);
2574 //out_drop_write:
2575 	mnt_drop_write_file(file);
2576 out:
2577 	kfree(vol_args);
2578 	return err;
2579 }
2580 
2581 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2582 {
2583 	struct inode *inode = file_inode(file);
2584 	struct btrfs_root *root = BTRFS_I(inode)->root;
2585 	struct btrfs_ioctl_defrag_range_args *range;
2586 	int ret;
2587 
2588 	ret = mnt_want_write_file(file);
2589 	if (ret)
2590 		return ret;
2591 
2592 	if (btrfs_root_readonly(root)) {
2593 		ret = -EROFS;
2594 		goto out;
2595 	}
2596 
2597 	switch (inode->i_mode & S_IFMT) {
2598 	case S_IFDIR:
2599 		if (!capable(CAP_SYS_ADMIN)) {
2600 			ret = -EPERM;
2601 			goto out;
2602 		}
2603 		ret = btrfs_defrag_root(root);
2604 		if (ret)
2605 			goto out;
2606 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2607 		break;
2608 	case S_IFREG:
2609 		if (!(file->f_mode & FMODE_WRITE)) {
2610 			ret = -EINVAL;
2611 			goto out;
2612 		}
2613 
2614 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2615 		if (!range) {
2616 			ret = -ENOMEM;
2617 			goto out;
2618 		}
2619 
2620 		if (argp) {
2621 			if (copy_from_user(range, argp,
2622 					   sizeof(*range))) {
2623 				ret = -EFAULT;
2624 				kfree(range);
2625 				goto out;
2626 			}
2627 			/* compression requires us to start the IO */
2628 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2629 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2630 				range->extent_thresh = (u32)-1;
2631 			}
2632 		} else {
2633 			/* the rest are all set to zero by kzalloc */
2634 			range->len = (u64)-1;
2635 		}
2636 		ret = btrfs_defrag_file(file_inode(file), file,
2637 					range, 0, 0);
2638 		if (ret > 0)
2639 			ret = 0;
2640 		kfree(range);
2641 		break;
2642 	default:
2643 		ret = -EINVAL;
2644 	}
2645 out:
2646 	mnt_drop_write_file(file);
2647 	return ret;
2648 }
2649 
2650 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2651 {
2652 	struct btrfs_ioctl_vol_args *vol_args;
2653 	int ret;
2654 
2655 	if (!capable(CAP_SYS_ADMIN))
2656 		return -EPERM;
2657 
2658 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2659 			1)) {
2660 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2661 	}
2662 
2663 	mutex_lock(&root->fs_info->volume_mutex);
2664 	vol_args = memdup_user(arg, sizeof(*vol_args));
2665 	if (IS_ERR(vol_args)) {
2666 		ret = PTR_ERR(vol_args);
2667 		goto out;
2668 	}
2669 
2670 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2671 	ret = btrfs_init_new_device(root, vol_args->name);
2672 
2673 	if (!ret)
2674 		btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2675 
2676 	kfree(vol_args);
2677 out:
2678 	mutex_unlock(&root->fs_info->volume_mutex);
2679 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2680 	return ret;
2681 }
2682 
2683 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2684 {
2685 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2686 	struct btrfs_ioctl_vol_args_v2 *vol_args;
2687 	int ret;
2688 
2689 	if (!capable(CAP_SYS_ADMIN))
2690 		return -EPERM;
2691 
2692 	ret = mnt_want_write_file(file);
2693 	if (ret)
2694 		return ret;
2695 
2696 	vol_args = memdup_user(arg, sizeof(*vol_args));
2697 	if (IS_ERR(vol_args)) {
2698 		ret = PTR_ERR(vol_args);
2699 		goto err_drop;
2700 	}
2701 
2702 	/* Check for compatibility reject unknown flags */
2703 	if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2704 		return -EOPNOTSUPP;
2705 
2706 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2707 			1)) {
2708 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2709 		goto out;
2710 	}
2711 
2712 	mutex_lock(&root->fs_info->volume_mutex);
2713 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2714 		ret = btrfs_rm_device(root, NULL, vol_args->devid);
2715 	} else {
2716 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2717 		ret = btrfs_rm_device(root, vol_args->name, 0);
2718 	}
2719 	mutex_unlock(&root->fs_info->volume_mutex);
2720 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2721 
2722 	if (!ret) {
2723 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2724 			btrfs_info(root->fs_info, "device deleted: id %llu",
2725 					vol_args->devid);
2726 		else
2727 			btrfs_info(root->fs_info, "device deleted: %s",
2728 					vol_args->name);
2729 	}
2730 out:
2731 	kfree(vol_args);
2732 err_drop:
2733 	mnt_drop_write_file(file);
2734 	return ret;
2735 }
2736 
2737 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2738 {
2739 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2740 	struct btrfs_ioctl_vol_args *vol_args;
2741 	int ret;
2742 
2743 	if (!capable(CAP_SYS_ADMIN))
2744 		return -EPERM;
2745 
2746 	ret = mnt_want_write_file(file);
2747 	if (ret)
2748 		return ret;
2749 
2750 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2751 			1)) {
2752 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2753 		goto out_drop_write;
2754 	}
2755 
2756 	vol_args = memdup_user(arg, sizeof(*vol_args));
2757 	if (IS_ERR(vol_args)) {
2758 		ret = PTR_ERR(vol_args);
2759 		goto out;
2760 	}
2761 
2762 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2763 	mutex_lock(&root->fs_info->volume_mutex);
2764 	ret = btrfs_rm_device(root, vol_args->name, 0);
2765 	mutex_unlock(&root->fs_info->volume_mutex);
2766 
2767 	if (!ret)
2768 		btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2769 	kfree(vol_args);
2770 out:
2771 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2772 out_drop_write:
2773 	mnt_drop_write_file(file);
2774 
2775 	return ret;
2776 }
2777 
2778 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2779 {
2780 	struct btrfs_ioctl_fs_info_args *fi_args;
2781 	struct btrfs_device *device;
2782 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2783 	int ret = 0;
2784 
2785 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2786 	if (!fi_args)
2787 		return -ENOMEM;
2788 
2789 	mutex_lock(&fs_devices->device_list_mutex);
2790 	fi_args->num_devices = fs_devices->num_devices;
2791 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2792 
2793 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2794 		if (device->devid > fi_args->max_id)
2795 			fi_args->max_id = device->devid;
2796 	}
2797 	mutex_unlock(&fs_devices->device_list_mutex);
2798 
2799 	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2800 	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2801 	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2802 
2803 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2804 		ret = -EFAULT;
2805 
2806 	kfree(fi_args);
2807 	return ret;
2808 }
2809 
2810 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2811 {
2812 	struct btrfs_ioctl_dev_info_args *di_args;
2813 	struct btrfs_device *dev;
2814 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2815 	int ret = 0;
2816 	char *s_uuid = NULL;
2817 
2818 	di_args = memdup_user(arg, sizeof(*di_args));
2819 	if (IS_ERR(di_args))
2820 		return PTR_ERR(di_args);
2821 
2822 	if (!btrfs_is_empty_uuid(di_args->uuid))
2823 		s_uuid = di_args->uuid;
2824 
2825 	mutex_lock(&fs_devices->device_list_mutex);
2826 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2827 
2828 	if (!dev) {
2829 		ret = -ENODEV;
2830 		goto out;
2831 	}
2832 
2833 	di_args->devid = dev->devid;
2834 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2835 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2836 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2837 	if (dev->name) {
2838 		struct rcu_string *name;
2839 
2840 		rcu_read_lock();
2841 		name = rcu_dereference(dev->name);
2842 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2843 		rcu_read_unlock();
2844 		di_args->path[sizeof(di_args->path) - 1] = 0;
2845 	} else {
2846 		di_args->path[0] = '\0';
2847 	}
2848 
2849 out:
2850 	mutex_unlock(&fs_devices->device_list_mutex);
2851 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2852 		ret = -EFAULT;
2853 
2854 	kfree(di_args);
2855 	return ret;
2856 }
2857 
2858 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2859 {
2860 	struct page *page;
2861 
2862 	page = grab_cache_page(inode->i_mapping, index);
2863 	if (!page)
2864 		return ERR_PTR(-ENOMEM);
2865 
2866 	if (!PageUptodate(page)) {
2867 		int ret;
2868 
2869 		ret = btrfs_readpage(NULL, page);
2870 		if (ret)
2871 			return ERR_PTR(ret);
2872 		lock_page(page);
2873 		if (!PageUptodate(page)) {
2874 			unlock_page(page);
2875 			put_page(page);
2876 			return ERR_PTR(-EIO);
2877 		}
2878 		if (page->mapping != inode->i_mapping) {
2879 			unlock_page(page);
2880 			put_page(page);
2881 			return ERR_PTR(-EAGAIN);
2882 		}
2883 	}
2884 
2885 	return page;
2886 }
2887 
2888 static int gather_extent_pages(struct inode *inode, struct page **pages,
2889 			       int num_pages, u64 off)
2890 {
2891 	int i;
2892 	pgoff_t index = off >> PAGE_SHIFT;
2893 
2894 	for (i = 0; i < num_pages; i++) {
2895 again:
2896 		pages[i] = extent_same_get_page(inode, index + i);
2897 		if (IS_ERR(pages[i])) {
2898 			int err = PTR_ERR(pages[i]);
2899 
2900 			if (err == -EAGAIN)
2901 				goto again;
2902 			pages[i] = NULL;
2903 			return err;
2904 		}
2905 	}
2906 	return 0;
2907 }
2908 
2909 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2910 			     bool retry_range_locking)
2911 {
2912 	/*
2913 	 * Do any pending delalloc/csum calculations on inode, one way or
2914 	 * another, and lock file content.
2915 	 * The locking order is:
2916 	 *
2917 	 *   1) pages
2918 	 *   2) range in the inode's io tree
2919 	 */
2920 	while (1) {
2921 		struct btrfs_ordered_extent *ordered;
2922 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2923 		ordered = btrfs_lookup_first_ordered_extent(inode,
2924 							    off + len - 1);
2925 		if ((!ordered ||
2926 		     ordered->file_offset + ordered->len <= off ||
2927 		     ordered->file_offset >= off + len) &&
2928 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2929 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2930 			if (ordered)
2931 				btrfs_put_ordered_extent(ordered);
2932 			break;
2933 		}
2934 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2935 		if (ordered)
2936 			btrfs_put_ordered_extent(ordered);
2937 		if (!retry_range_locking)
2938 			return -EAGAIN;
2939 		btrfs_wait_ordered_range(inode, off, len);
2940 	}
2941 	return 0;
2942 }
2943 
2944 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2945 {
2946 	inode_unlock(inode1);
2947 	inode_unlock(inode2);
2948 }
2949 
2950 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2951 {
2952 	if (inode1 < inode2)
2953 		swap(inode1, inode2);
2954 
2955 	inode_lock_nested(inode1, I_MUTEX_PARENT);
2956 	inode_lock_nested(inode2, I_MUTEX_CHILD);
2957 }
2958 
2959 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2960 				      struct inode *inode2, u64 loff2, u64 len)
2961 {
2962 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2963 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2964 }
2965 
2966 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2967 				    struct inode *inode2, u64 loff2, u64 len,
2968 				    bool retry_range_locking)
2969 {
2970 	int ret;
2971 
2972 	if (inode1 < inode2) {
2973 		swap(inode1, inode2);
2974 		swap(loff1, loff2);
2975 	}
2976 	ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2977 	if (ret)
2978 		return ret;
2979 	ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2980 	if (ret)
2981 		unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2982 			      loff1 + len - 1);
2983 	return ret;
2984 }
2985 
2986 struct cmp_pages {
2987 	int		num_pages;
2988 	struct page	**src_pages;
2989 	struct page	**dst_pages;
2990 };
2991 
2992 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2993 {
2994 	int i;
2995 	struct page *pg;
2996 
2997 	for (i = 0; i < cmp->num_pages; i++) {
2998 		pg = cmp->src_pages[i];
2999 		if (pg) {
3000 			unlock_page(pg);
3001 			put_page(pg);
3002 		}
3003 		pg = cmp->dst_pages[i];
3004 		if (pg) {
3005 			unlock_page(pg);
3006 			put_page(pg);
3007 		}
3008 	}
3009 	kfree(cmp->src_pages);
3010 	kfree(cmp->dst_pages);
3011 }
3012 
3013 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3014 				  struct inode *dst, u64 dst_loff,
3015 				  u64 len, struct cmp_pages *cmp)
3016 {
3017 	int ret;
3018 	int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3019 	struct page **src_pgarr, **dst_pgarr;
3020 
3021 	/*
3022 	 * We must gather up all the pages before we initiate our
3023 	 * extent locking. We use an array for the page pointers. Size
3024 	 * of the array is bounded by len, which is in turn bounded by
3025 	 * BTRFS_MAX_DEDUPE_LEN.
3026 	 */
3027 	src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3028 	dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
3029 	if (!src_pgarr || !dst_pgarr) {
3030 		kfree(src_pgarr);
3031 		kfree(dst_pgarr);
3032 		return -ENOMEM;
3033 	}
3034 	cmp->num_pages = num_pages;
3035 	cmp->src_pages = src_pgarr;
3036 	cmp->dst_pages = dst_pgarr;
3037 
3038 	ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
3039 	if (ret)
3040 		goto out;
3041 
3042 	ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
3043 
3044 out:
3045 	if (ret)
3046 		btrfs_cmp_data_free(cmp);
3047 	return 0;
3048 }
3049 
3050 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
3051 			  u64 dst_loff, u64 len, struct cmp_pages *cmp)
3052 {
3053 	int ret = 0;
3054 	int i;
3055 	struct page *src_page, *dst_page;
3056 	unsigned int cmp_len = PAGE_SIZE;
3057 	void *addr, *dst_addr;
3058 
3059 	i = 0;
3060 	while (len) {
3061 		if (len < PAGE_SIZE)
3062 			cmp_len = len;
3063 
3064 		BUG_ON(i >= cmp->num_pages);
3065 
3066 		src_page = cmp->src_pages[i];
3067 		dst_page = cmp->dst_pages[i];
3068 		ASSERT(PageLocked(src_page));
3069 		ASSERT(PageLocked(dst_page));
3070 
3071 		addr = kmap_atomic(src_page);
3072 		dst_addr = kmap_atomic(dst_page);
3073 
3074 		flush_dcache_page(src_page);
3075 		flush_dcache_page(dst_page);
3076 
3077 		if (memcmp(addr, dst_addr, cmp_len))
3078 			ret = -EBADE;
3079 
3080 		kunmap_atomic(addr);
3081 		kunmap_atomic(dst_addr);
3082 
3083 		if (ret)
3084 			break;
3085 
3086 		len -= cmp_len;
3087 		i++;
3088 	}
3089 
3090 	return ret;
3091 }
3092 
3093 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3094 				     u64 olen)
3095 {
3096 	u64 len = *plen;
3097 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3098 
3099 	if (off + olen > inode->i_size || off + olen < off)
3100 		return -EINVAL;
3101 
3102 	/* if we extend to eof, continue to block boundary */
3103 	if (off + len == inode->i_size)
3104 		*plen = len = ALIGN(inode->i_size, bs) - off;
3105 
3106 	/* Check that we are block aligned - btrfs_clone() requires this */
3107 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3108 		return -EINVAL;
3109 
3110 	return 0;
3111 }
3112 
3113 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3114 			     struct inode *dst, u64 dst_loff)
3115 {
3116 	int ret;
3117 	u64 len = olen;
3118 	struct cmp_pages cmp;
3119 	int same_inode = 0;
3120 	u64 same_lock_start = 0;
3121 	u64 same_lock_len = 0;
3122 
3123 	if (src == dst)
3124 		same_inode = 1;
3125 
3126 	if (len == 0)
3127 		return 0;
3128 
3129 	if (same_inode) {
3130 		inode_lock(src);
3131 
3132 		ret = extent_same_check_offsets(src, loff, &len, olen);
3133 		if (ret)
3134 			goto out_unlock;
3135 		ret = extent_same_check_offsets(src, dst_loff, &len, olen);
3136 		if (ret)
3137 			goto out_unlock;
3138 
3139 		/*
3140 		 * Single inode case wants the same checks, except we
3141 		 * don't want our length pushed out past i_size as
3142 		 * comparing that data range makes no sense.
3143 		 *
3144 		 * extent_same_check_offsets() will do this for an
3145 		 * unaligned length at i_size, so catch it here and
3146 		 * reject the request.
3147 		 *
3148 		 * This effectively means we require aligned extents
3149 		 * for the single-inode case, whereas the other cases
3150 		 * allow an unaligned length so long as it ends at
3151 		 * i_size.
3152 		 */
3153 		if (len != olen) {
3154 			ret = -EINVAL;
3155 			goto out_unlock;
3156 		}
3157 
3158 		/* Check for overlapping ranges */
3159 		if (dst_loff + len > loff && dst_loff < loff + len) {
3160 			ret = -EINVAL;
3161 			goto out_unlock;
3162 		}
3163 
3164 		same_lock_start = min_t(u64, loff, dst_loff);
3165 		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3166 	} else {
3167 		btrfs_double_inode_lock(src, dst);
3168 
3169 		ret = extent_same_check_offsets(src, loff, &len, olen);
3170 		if (ret)
3171 			goto out_unlock;
3172 
3173 		ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3174 		if (ret)
3175 			goto out_unlock;
3176 	}
3177 
3178 	/* don't make the dst file partly checksummed */
3179 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3180 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3181 		ret = -EINVAL;
3182 		goto out_unlock;
3183 	}
3184 
3185 again:
3186 	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3187 	if (ret)
3188 		goto out_unlock;
3189 
3190 	if (same_inode)
3191 		ret = lock_extent_range(src, same_lock_start, same_lock_len,
3192 					false);
3193 	else
3194 		ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3195 					       false);
3196 	/*
3197 	 * If one of the inodes has dirty pages in the respective range or
3198 	 * ordered extents, we need to flush dellaloc and wait for all ordered
3199 	 * extents in the range. We must unlock the pages and the ranges in the
3200 	 * io trees to avoid deadlocks when flushing delalloc (requires locking
3201 	 * pages) and when waiting for ordered extents to complete (they require
3202 	 * range locking).
3203 	 */
3204 	if (ret == -EAGAIN) {
3205 		/*
3206 		 * Ranges in the io trees already unlocked. Now unlock all
3207 		 * pages before waiting for all IO to complete.
3208 		 */
3209 		btrfs_cmp_data_free(&cmp);
3210 		if (same_inode) {
3211 			btrfs_wait_ordered_range(src, same_lock_start,
3212 						 same_lock_len);
3213 		} else {
3214 			btrfs_wait_ordered_range(src, loff, len);
3215 			btrfs_wait_ordered_range(dst, dst_loff, len);
3216 		}
3217 		goto again;
3218 	}
3219 	ASSERT(ret == 0);
3220 	if (WARN_ON(ret)) {
3221 		/* ranges in the io trees already unlocked */
3222 		btrfs_cmp_data_free(&cmp);
3223 		return ret;
3224 	}
3225 
3226 	/* pass original length for comparison so we stay within i_size */
3227 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3228 	if (ret == 0)
3229 		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3230 
3231 	if (same_inode)
3232 		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3233 			      same_lock_start + same_lock_len - 1);
3234 	else
3235 		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3236 
3237 	btrfs_cmp_data_free(&cmp);
3238 out_unlock:
3239 	if (same_inode)
3240 		inode_unlock(src);
3241 	else
3242 		btrfs_double_inode_unlock(src, dst);
3243 
3244 	return ret;
3245 }
3246 
3247 #define BTRFS_MAX_DEDUPE_LEN	SZ_16M
3248 
3249 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3250 				struct file *dst_file, u64 dst_loff)
3251 {
3252 	struct inode *src = file_inode(src_file);
3253 	struct inode *dst = file_inode(dst_file);
3254 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3255 	ssize_t res;
3256 
3257 	if (olen > BTRFS_MAX_DEDUPE_LEN)
3258 		olen = BTRFS_MAX_DEDUPE_LEN;
3259 
3260 	if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3261 		/*
3262 		 * Btrfs does not support blocksize < page_size. As a
3263 		 * result, btrfs_cmp_data() won't correctly handle
3264 		 * this situation without an update.
3265 		 */
3266 		return -EINVAL;
3267 	}
3268 
3269 	res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3270 	if (res)
3271 		return res;
3272 	return olen;
3273 }
3274 
3275 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3276 				     struct inode *inode,
3277 				     u64 endoff,
3278 				     const u64 destoff,
3279 				     const u64 olen,
3280 				     int no_time_update)
3281 {
3282 	struct btrfs_root *root = BTRFS_I(inode)->root;
3283 	int ret;
3284 
3285 	inode_inc_iversion(inode);
3286 	if (!no_time_update)
3287 		inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
3288 	/*
3289 	 * We round up to the block size at eof when determining which
3290 	 * extents to clone above, but shouldn't round up the file size.
3291 	 */
3292 	if (endoff > destoff + olen)
3293 		endoff = destoff + olen;
3294 	if (endoff > inode->i_size)
3295 		btrfs_i_size_write(inode, endoff);
3296 
3297 	ret = btrfs_update_inode(trans, root, inode);
3298 	if (ret) {
3299 		btrfs_abort_transaction(trans, root, ret);
3300 		btrfs_end_transaction(trans, root);
3301 		goto out;
3302 	}
3303 	ret = btrfs_end_transaction(trans, root);
3304 out:
3305 	return ret;
3306 }
3307 
3308 static void clone_update_extent_map(struct inode *inode,
3309 				    const struct btrfs_trans_handle *trans,
3310 				    const struct btrfs_path *path,
3311 				    const u64 hole_offset,
3312 				    const u64 hole_len)
3313 {
3314 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3315 	struct extent_map *em;
3316 	int ret;
3317 
3318 	em = alloc_extent_map();
3319 	if (!em) {
3320 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3321 			&BTRFS_I(inode)->runtime_flags);
3322 		return;
3323 	}
3324 
3325 	if (path) {
3326 		struct btrfs_file_extent_item *fi;
3327 
3328 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3329 				    struct btrfs_file_extent_item);
3330 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3331 		em->generation = -1;
3332 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3333 		    BTRFS_FILE_EXTENT_INLINE)
3334 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3335 				&BTRFS_I(inode)->runtime_flags);
3336 	} else {
3337 		em->start = hole_offset;
3338 		em->len = hole_len;
3339 		em->ram_bytes = em->len;
3340 		em->orig_start = hole_offset;
3341 		em->block_start = EXTENT_MAP_HOLE;
3342 		em->block_len = 0;
3343 		em->orig_block_len = 0;
3344 		em->compress_type = BTRFS_COMPRESS_NONE;
3345 		em->generation = trans->transid;
3346 	}
3347 
3348 	while (1) {
3349 		write_lock(&em_tree->lock);
3350 		ret = add_extent_mapping(em_tree, em, 1);
3351 		write_unlock(&em_tree->lock);
3352 		if (ret != -EEXIST) {
3353 			free_extent_map(em);
3354 			break;
3355 		}
3356 		btrfs_drop_extent_cache(inode, em->start,
3357 					em->start + em->len - 1, 0);
3358 	}
3359 
3360 	if (ret)
3361 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3362 			&BTRFS_I(inode)->runtime_flags);
3363 }
3364 
3365 /*
3366  * Make sure we do not end up inserting an inline extent into a file that has
3367  * already other (non-inline) extents. If a file has an inline extent it can
3368  * not have any other extents and the (single) inline extent must start at the
3369  * file offset 0. Failing to respect these rules will lead to file corruption,
3370  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3371  *
3372  * We can have extents that have been already written to disk or we can have
3373  * dirty ranges still in delalloc, in which case the extent maps and items are
3374  * created only when we run delalloc, and the delalloc ranges might fall outside
3375  * the range we are currently locking in the inode's io tree. So we check the
3376  * inode's i_size because of that (i_size updates are done while holding the
3377  * i_mutex, which we are holding here).
3378  * We also check to see if the inode has a size not greater than "datal" but has
3379  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3380  * protected against such concurrent fallocate calls by the i_mutex).
3381  *
3382  * If the file has no extents but a size greater than datal, do not allow the
3383  * copy because we would need turn the inline extent into a non-inline one (even
3384  * with NO_HOLES enabled). If we find our destination inode only has one inline
3385  * extent, just overwrite it with the source inline extent if its size is less
3386  * than the source extent's size, or we could copy the source inline extent's
3387  * data into the destination inode's inline extent if the later is greater then
3388  * the former.
3389  */
3390 static int clone_copy_inline_extent(struct inode *src,
3391 				    struct inode *dst,
3392 				    struct btrfs_trans_handle *trans,
3393 				    struct btrfs_path *path,
3394 				    struct btrfs_key *new_key,
3395 				    const u64 drop_start,
3396 				    const u64 datal,
3397 				    const u64 skip,
3398 				    const u64 size,
3399 				    char *inline_data)
3400 {
3401 	struct btrfs_root *root = BTRFS_I(dst)->root;
3402 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3403 				      root->sectorsize);
3404 	int ret;
3405 	struct btrfs_key key;
3406 
3407 	if (new_key->offset > 0)
3408 		return -EOPNOTSUPP;
3409 
3410 	key.objectid = btrfs_ino(dst);
3411 	key.type = BTRFS_EXTENT_DATA_KEY;
3412 	key.offset = 0;
3413 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3414 	if (ret < 0) {
3415 		return ret;
3416 	} else if (ret > 0) {
3417 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3418 			ret = btrfs_next_leaf(root, path);
3419 			if (ret < 0)
3420 				return ret;
3421 			else if (ret > 0)
3422 				goto copy_inline_extent;
3423 		}
3424 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3425 		if (key.objectid == btrfs_ino(dst) &&
3426 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3427 			ASSERT(key.offset > 0);
3428 			return -EOPNOTSUPP;
3429 		}
3430 	} else if (i_size_read(dst) <= datal) {
3431 		struct btrfs_file_extent_item *ei;
3432 		u64 ext_len;
3433 
3434 		/*
3435 		 * If the file size is <= datal, make sure there are no other
3436 		 * extents following (can happen do to an fallocate call with
3437 		 * the flag FALLOC_FL_KEEP_SIZE).
3438 		 */
3439 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3440 				    struct btrfs_file_extent_item);
3441 		/*
3442 		 * If it's an inline extent, it can not have other extents
3443 		 * following it.
3444 		 */
3445 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3446 		    BTRFS_FILE_EXTENT_INLINE)
3447 			goto copy_inline_extent;
3448 
3449 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3450 		if (ext_len > aligned_end)
3451 			return -EOPNOTSUPP;
3452 
3453 		ret = btrfs_next_item(root, path);
3454 		if (ret < 0) {
3455 			return ret;
3456 		} else if (ret == 0) {
3457 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3458 					      path->slots[0]);
3459 			if (key.objectid == btrfs_ino(dst) &&
3460 			    key.type == BTRFS_EXTENT_DATA_KEY)
3461 				return -EOPNOTSUPP;
3462 		}
3463 	}
3464 
3465 copy_inline_extent:
3466 	/*
3467 	 * We have no extent items, or we have an extent at offset 0 which may
3468 	 * or may not be inlined. All these cases are dealt the same way.
3469 	 */
3470 	if (i_size_read(dst) > datal) {
3471 		/*
3472 		 * If the destination inode has an inline extent...
3473 		 * This would require copying the data from the source inline
3474 		 * extent into the beginning of the destination's inline extent.
3475 		 * But this is really complex, both extents can be compressed
3476 		 * or just one of them, which would require decompressing and
3477 		 * re-compressing data (which could increase the new compressed
3478 		 * size, not allowing the compressed data to fit anymore in an
3479 		 * inline extent).
3480 		 * So just don't support this case for now (it should be rare,
3481 		 * we are not really saving space when cloning inline extents).
3482 		 */
3483 		return -EOPNOTSUPP;
3484 	}
3485 
3486 	btrfs_release_path(path);
3487 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3488 	if (ret)
3489 		return ret;
3490 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3491 	if (ret)
3492 		return ret;
3493 
3494 	if (skip) {
3495 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3496 
3497 		memmove(inline_data + start, inline_data + start + skip, datal);
3498 	}
3499 
3500 	write_extent_buffer(path->nodes[0], inline_data,
3501 			    btrfs_item_ptr_offset(path->nodes[0],
3502 						  path->slots[0]),
3503 			    size);
3504 	inode_add_bytes(dst, datal);
3505 
3506 	return 0;
3507 }
3508 
3509 /**
3510  * btrfs_clone() - clone a range from inode file to another
3511  *
3512  * @src: Inode to clone from
3513  * @inode: Inode to clone to
3514  * @off: Offset within source to start clone from
3515  * @olen: Original length, passed by user, of range to clone
3516  * @olen_aligned: Block-aligned value of olen
3517  * @destoff: Offset within @inode to start clone
3518  * @no_time_update: Whether to update mtime/ctime on the target inode
3519  */
3520 static int btrfs_clone(struct inode *src, struct inode *inode,
3521 		       const u64 off, const u64 olen, const u64 olen_aligned,
3522 		       const u64 destoff, int no_time_update)
3523 {
3524 	struct btrfs_root *root = BTRFS_I(inode)->root;
3525 	struct btrfs_path *path = NULL;
3526 	struct extent_buffer *leaf;
3527 	struct btrfs_trans_handle *trans;
3528 	char *buf = NULL;
3529 	struct btrfs_key key;
3530 	u32 nritems;
3531 	int slot;
3532 	int ret;
3533 	const u64 len = olen_aligned;
3534 	u64 last_dest_end = destoff;
3535 
3536 	ret = -ENOMEM;
3537 	buf = kmalloc(root->nodesize, GFP_KERNEL | __GFP_NOWARN);
3538 	if (!buf) {
3539 		buf = vmalloc(root->nodesize);
3540 		if (!buf)
3541 			return ret;
3542 	}
3543 
3544 	path = btrfs_alloc_path();
3545 	if (!path) {
3546 		kvfree(buf);
3547 		return ret;
3548 	}
3549 
3550 	path->reada = READA_FORWARD;
3551 	/* clone data */
3552 	key.objectid = btrfs_ino(src);
3553 	key.type = BTRFS_EXTENT_DATA_KEY;
3554 	key.offset = off;
3555 
3556 	while (1) {
3557 		u64 next_key_min_offset = key.offset + 1;
3558 
3559 		/*
3560 		 * note the key will change type as we walk through the
3561 		 * tree.
3562 		 */
3563 		path->leave_spinning = 1;
3564 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3565 				0, 0);
3566 		if (ret < 0)
3567 			goto out;
3568 		/*
3569 		 * First search, if no extent item that starts at offset off was
3570 		 * found but the previous item is an extent item, it's possible
3571 		 * it might overlap our target range, therefore process it.
3572 		 */
3573 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3574 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3575 					      path->slots[0] - 1);
3576 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3577 				path->slots[0]--;
3578 		}
3579 
3580 		nritems = btrfs_header_nritems(path->nodes[0]);
3581 process_slot:
3582 		if (path->slots[0] >= nritems) {
3583 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3584 			if (ret < 0)
3585 				goto out;
3586 			if (ret > 0)
3587 				break;
3588 			nritems = btrfs_header_nritems(path->nodes[0]);
3589 		}
3590 		leaf = path->nodes[0];
3591 		slot = path->slots[0];
3592 
3593 		btrfs_item_key_to_cpu(leaf, &key, slot);
3594 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3595 		    key.objectid != btrfs_ino(src))
3596 			break;
3597 
3598 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3599 			struct btrfs_file_extent_item *extent;
3600 			int type;
3601 			u32 size;
3602 			struct btrfs_key new_key;
3603 			u64 disko = 0, diskl = 0;
3604 			u64 datao = 0, datal = 0;
3605 			u8 comp;
3606 			u64 drop_start;
3607 
3608 			extent = btrfs_item_ptr(leaf, slot,
3609 						struct btrfs_file_extent_item);
3610 			comp = btrfs_file_extent_compression(leaf, extent);
3611 			type = btrfs_file_extent_type(leaf, extent);
3612 			if (type == BTRFS_FILE_EXTENT_REG ||
3613 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3614 				disko = btrfs_file_extent_disk_bytenr(leaf,
3615 								      extent);
3616 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3617 								 extent);
3618 				datao = btrfs_file_extent_offset(leaf, extent);
3619 				datal = btrfs_file_extent_num_bytes(leaf,
3620 								    extent);
3621 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3622 				/* take upper bound, may be compressed */
3623 				datal = btrfs_file_extent_ram_bytes(leaf,
3624 								    extent);
3625 			}
3626 
3627 			/*
3628 			 * The first search might have left us at an extent
3629 			 * item that ends before our target range's start, can
3630 			 * happen if we have holes and NO_HOLES feature enabled.
3631 			 */
3632 			if (key.offset + datal <= off) {
3633 				path->slots[0]++;
3634 				goto process_slot;
3635 			} else if (key.offset >= off + len) {
3636 				break;
3637 			}
3638 			next_key_min_offset = key.offset + datal;
3639 			size = btrfs_item_size_nr(leaf, slot);
3640 			read_extent_buffer(leaf, buf,
3641 					   btrfs_item_ptr_offset(leaf, slot),
3642 					   size);
3643 
3644 			btrfs_release_path(path);
3645 			path->leave_spinning = 0;
3646 
3647 			memcpy(&new_key, &key, sizeof(new_key));
3648 			new_key.objectid = btrfs_ino(inode);
3649 			if (off <= key.offset)
3650 				new_key.offset = key.offset + destoff - off;
3651 			else
3652 				new_key.offset = destoff;
3653 
3654 			/*
3655 			 * Deal with a hole that doesn't have an extent item
3656 			 * that represents it (NO_HOLES feature enabled).
3657 			 * This hole is either in the middle of the cloning
3658 			 * range or at the beginning (fully overlaps it or
3659 			 * partially overlaps it).
3660 			 */
3661 			if (new_key.offset != last_dest_end)
3662 				drop_start = last_dest_end;
3663 			else
3664 				drop_start = new_key.offset;
3665 
3666 			/*
3667 			 * 1 - adjusting old extent (we may have to split it)
3668 			 * 1 - add new extent
3669 			 * 1 - inode update
3670 			 */
3671 			trans = btrfs_start_transaction(root, 3);
3672 			if (IS_ERR(trans)) {
3673 				ret = PTR_ERR(trans);
3674 				goto out;
3675 			}
3676 
3677 			if (type == BTRFS_FILE_EXTENT_REG ||
3678 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3679 				/*
3680 				 *    a  | --- range to clone ---|  b
3681 				 * | ------------- extent ------------- |
3682 				 */
3683 
3684 				/* subtract range b */
3685 				if (key.offset + datal > off + len)
3686 					datal = off + len - key.offset;
3687 
3688 				/* subtract range a */
3689 				if (off > key.offset) {
3690 					datao += off - key.offset;
3691 					datal -= off - key.offset;
3692 				}
3693 
3694 				ret = btrfs_drop_extents(trans, root, inode,
3695 							 drop_start,
3696 							 new_key.offset + datal,
3697 							 1);
3698 				if (ret) {
3699 					if (ret != -EOPNOTSUPP)
3700 						btrfs_abort_transaction(trans,
3701 								root, ret);
3702 					btrfs_end_transaction(trans, root);
3703 					goto out;
3704 				}
3705 
3706 				ret = btrfs_insert_empty_item(trans, root, path,
3707 							      &new_key, size);
3708 				if (ret) {
3709 					btrfs_abort_transaction(trans, root,
3710 								ret);
3711 					btrfs_end_transaction(trans, root);
3712 					goto out;
3713 				}
3714 
3715 				leaf = path->nodes[0];
3716 				slot = path->slots[0];
3717 				write_extent_buffer(leaf, buf,
3718 					    btrfs_item_ptr_offset(leaf, slot),
3719 					    size);
3720 
3721 				extent = btrfs_item_ptr(leaf, slot,
3722 						struct btrfs_file_extent_item);
3723 
3724 				/* disko == 0 means it's a hole */
3725 				if (!disko)
3726 					datao = 0;
3727 
3728 				btrfs_set_file_extent_offset(leaf, extent,
3729 							     datao);
3730 				btrfs_set_file_extent_num_bytes(leaf, extent,
3731 								datal);
3732 
3733 				if (disko) {
3734 					inode_add_bytes(inode, datal);
3735 					ret = btrfs_inc_extent_ref(trans, root,
3736 							disko, diskl, 0,
3737 							root->root_key.objectid,
3738 							btrfs_ino(inode),
3739 							new_key.offset - datao);
3740 					if (ret) {
3741 						btrfs_abort_transaction(trans,
3742 									root,
3743 									ret);
3744 						btrfs_end_transaction(trans,
3745 								      root);
3746 						goto out;
3747 
3748 					}
3749 				}
3750 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3751 				u64 skip = 0;
3752 				u64 trim = 0;
3753 
3754 				if (off > key.offset) {
3755 					skip = off - key.offset;
3756 					new_key.offset += skip;
3757 				}
3758 
3759 				if (key.offset + datal > off + len)
3760 					trim = key.offset + datal - (off + len);
3761 
3762 				if (comp && (skip || trim)) {
3763 					ret = -EINVAL;
3764 					btrfs_end_transaction(trans, root);
3765 					goto out;
3766 				}
3767 				size -= skip + trim;
3768 				datal -= skip + trim;
3769 
3770 				ret = clone_copy_inline_extent(src, inode,
3771 							       trans, path,
3772 							       &new_key,
3773 							       drop_start,
3774 							       datal,
3775 							       skip, size, buf);
3776 				if (ret) {
3777 					if (ret != -EOPNOTSUPP)
3778 						btrfs_abort_transaction(trans,
3779 									root,
3780 									ret);
3781 					btrfs_end_transaction(trans, root);
3782 					goto out;
3783 				}
3784 				leaf = path->nodes[0];
3785 				slot = path->slots[0];
3786 			}
3787 
3788 			/* If we have an implicit hole (NO_HOLES feature). */
3789 			if (drop_start < new_key.offset)
3790 				clone_update_extent_map(inode, trans,
3791 						NULL, drop_start,
3792 						new_key.offset - drop_start);
3793 
3794 			clone_update_extent_map(inode, trans, path, 0, 0);
3795 
3796 			btrfs_mark_buffer_dirty(leaf);
3797 			btrfs_release_path(path);
3798 
3799 			last_dest_end = ALIGN(new_key.offset + datal,
3800 					      root->sectorsize);
3801 			ret = clone_finish_inode_update(trans, inode,
3802 							last_dest_end,
3803 							destoff, olen,
3804 							no_time_update);
3805 			if (ret)
3806 				goto out;
3807 			if (new_key.offset + datal >= destoff + len)
3808 				break;
3809 		}
3810 		btrfs_release_path(path);
3811 		key.offset = next_key_min_offset;
3812 	}
3813 	ret = 0;
3814 
3815 	if (last_dest_end < destoff + len) {
3816 		/*
3817 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3818 		 * fully or partially overlaps our cloning range at its end.
3819 		 */
3820 		btrfs_release_path(path);
3821 
3822 		/*
3823 		 * 1 - remove extent(s)
3824 		 * 1 - inode update
3825 		 */
3826 		trans = btrfs_start_transaction(root, 2);
3827 		if (IS_ERR(trans)) {
3828 			ret = PTR_ERR(trans);
3829 			goto out;
3830 		}
3831 		ret = btrfs_drop_extents(trans, root, inode,
3832 					 last_dest_end, destoff + len, 1);
3833 		if (ret) {
3834 			if (ret != -EOPNOTSUPP)
3835 				btrfs_abort_transaction(trans, root, ret);
3836 			btrfs_end_transaction(trans, root);
3837 			goto out;
3838 		}
3839 		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3840 					destoff + len - last_dest_end);
3841 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3842 						destoff, olen, no_time_update);
3843 	}
3844 
3845 out:
3846 	btrfs_free_path(path);
3847 	kvfree(buf);
3848 	return ret;
3849 }
3850 
3851 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3852 					u64 off, u64 olen, u64 destoff)
3853 {
3854 	struct inode *inode = file_inode(file);
3855 	struct inode *src = file_inode(file_src);
3856 	struct btrfs_root *root = BTRFS_I(inode)->root;
3857 	int ret;
3858 	u64 len = olen;
3859 	u64 bs = root->fs_info->sb->s_blocksize;
3860 	int same_inode = src == inode;
3861 
3862 	/*
3863 	 * TODO:
3864 	 * - split compressed inline extents.  annoying: we need to
3865 	 *   decompress into destination's address_space (the file offset
3866 	 *   may change, so source mapping won't do), then recompress (or
3867 	 *   otherwise reinsert) a subrange.
3868 	 *
3869 	 * - split destination inode's inline extents.  The inline extents can
3870 	 *   be either compressed or non-compressed.
3871 	 */
3872 
3873 	if (btrfs_root_readonly(root))
3874 		return -EROFS;
3875 
3876 	if (file_src->f_path.mnt != file->f_path.mnt ||
3877 	    src->i_sb != inode->i_sb)
3878 		return -EXDEV;
3879 
3880 	/* don't make the dst file partly checksummed */
3881 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3882 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3883 		return -EINVAL;
3884 
3885 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3886 		return -EISDIR;
3887 
3888 	if (!same_inode) {
3889 		btrfs_double_inode_lock(src, inode);
3890 	} else {
3891 		inode_lock(src);
3892 	}
3893 
3894 	/* determine range to clone */
3895 	ret = -EINVAL;
3896 	if (off + len > src->i_size || off + len < off)
3897 		goto out_unlock;
3898 	if (len == 0)
3899 		olen = len = src->i_size - off;
3900 	/* if we extend to eof, continue to block boundary */
3901 	if (off + len == src->i_size)
3902 		len = ALIGN(src->i_size, bs) - off;
3903 
3904 	if (len == 0) {
3905 		ret = 0;
3906 		goto out_unlock;
3907 	}
3908 
3909 	/* verify the end result is block aligned */
3910 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3911 	    !IS_ALIGNED(destoff, bs))
3912 		goto out_unlock;
3913 
3914 	/* verify if ranges are overlapped within the same file */
3915 	if (same_inode) {
3916 		if (destoff + len > off && destoff < off + len)
3917 			goto out_unlock;
3918 	}
3919 
3920 	if (destoff > inode->i_size) {
3921 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3922 		if (ret)
3923 			goto out_unlock;
3924 	}
3925 
3926 	/*
3927 	 * Lock the target range too. Right after we replace the file extent
3928 	 * items in the fs tree (which now point to the cloned data), we might
3929 	 * have a worker replace them with extent items relative to a write
3930 	 * operation that was issued before this clone operation (i.e. confront
3931 	 * with inode.c:btrfs_finish_ordered_io).
3932 	 */
3933 	if (same_inode) {
3934 		u64 lock_start = min_t(u64, off, destoff);
3935 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3936 
3937 		ret = lock_extent_range(src, lock_start, lock_len, true);
3938 	} else {
3939 		ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3940 					       true);
3941 	}
3942 	ASSERT(ret == 0);
3943 	if (WARN_ON(ret)) {
3944 		/* ranges in the io trees already unlocked */
3945 		goto out_unlock;
3946 	}
3947 
3948 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3949 
3950 	if (same_inode) {
3951 		u64 lock_start = min_t(u64, off, destoff);
3952 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3953 
3954 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3955 	} else {
3956 		btrfs_double_extent_unlock(src, off, inode, destoff, len);
3957 	}
3958 	/*
3959 	 * Truncate page cache pages so that future reads will see the cloned
3960 	 * data immediately and not the previous data.
3961 	 */
3962 	truncate_inode_pages_range(&inode->i_data,
3963 				round_down(destoff, PAGE_SIZE),
3964 				round_up(destoff + len, PAGE_SIZE) - 1);
3965 out_unlock:
3966 	if (!same_inode)
3967 		btrfs_double_inode_unlock(src, inode);
3968 	else
3969 		inode_unlock(src);
3970 	return ret;
3971 }
3972 
3973 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
3974 			      struct file *file_out, loff_t pos_out,
3975 			      size_t len, unsigned int flags)
3976 {
3977 	ssize_t ret;
3978 
3979 	ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out);
3980 	if (ret == 0)
3981 		ret = len;
3982 	return ret;
3983 }
3984 
3985 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3986 		struct file *dst_file, loff_t destoff, u64 len)
3987 {
3988 	return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3989 }
3990 
3991 /*
3992  * there are many ways the trans_start and trans_end ioctls can lead
3993  * to deadlocks.  They should only be used by applications that
3994  * basically own the machine, and have a very in depth understanding
3995  * of all the possible deadlocks and enospc problems.
3996  */
3997 static long btrfs_ioctl_trans_start(struct file *file)
3998 {
3999 	struct inode *inode = file_inode(file);
4000 	struct btrfs_root *root = BTRFS_I(inode)->root;
4001 	struct btrfs_trans_handle *trans;
4002 	int ret;
4003 
4004 	ret = -EPERM;
4005 	if (!capable(CAP_SYS_ADMIN))
4006 		goto out;
4007 
4008 	ret = -EINPROGRESS;
4009 	if (file->private_data)
4010 		goto out;
4011 
4012 	ret = -EROFS;
4013 	if (btrfs_root_readonly(root))
4014 		goto out;
4015 
4016 	ret = mnt_want_write_file(file);
4017 	if (ret)
4018 		goto out;
4019 
4020 	atomic_inc(&root->fs_info->open_ioctl_trans);
4021 
4022 	ret = -ENOMEM;
4023 	trans = btrfs_start_ioctl_transaction(root);
4024 	if (IS_ERR(trans))
4025 		goto out_drop;
4026 
4027 	file->private_data = trans;
4028 	return 0;
4029 
4030 out_drop:
4031 	atomic_dec(&root->fs_info->open_ioctl_trans);
4032 	mnt_drop_write_file(file);
4033 out:
4034 	return ret;
4035 }
4036 
4037 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4038 {
4039 	struct inode *inode = file_inode(file);
4040 	struct btrfs_root *root = BTRFS_I(inode)->root;
4041 	struct btrfs_root *new_root;
4042 	struct btrfs_dir_item *di;
4043 	struct btrfs_trans_handle *trans;
4044 	struct btrfs_path *path;
4045 	struct btrfs_key location;
4046 	struct btrfs_disk_key disk_key;
4047 	u64 objectid = 0;
4048 	u64 dir_id;
4049 	int ret;
4050 
4051 	if (!capable(CAP_SYS_ADMIN))
4052 		return -EPERM;
4053 
4054 	ret = mnt_want_write_file(file);
4055 	if (ret)
4056 		return ret;
4057 
4058 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4059 		ret = -EFAULT;
4060 		goto out;
4061 	}
4062 
4063 	if (!objectid)
4064 		objectid = BTRFS_FS_TREE_OBJECTID;
4065 
4066 	location.objectid = objectid;
4067 	location.type = BTRFS_ROOT_ITEM_KEY;
4068 	location.offset = (u64)-1;
4069 
4070 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
4071 	if (IS_ERR(new_root)) {
4072 		ret = PTR_ERR(new_root);
4073 		goto out;
4074 	}
4075 
4076 	path = btrfs_alloc_path();
4077 	if (!path) {
4078 		ret = -ENOMEM;
4079 		goto out;
4080 	}
4081 	path->leave_spinning = 1;
4082 
4083 	trans = btrfs_start_transaction(root, 1);
4084 	if (IS_ERR(trans)) {
4085 		btrfs_free_path(path);
4086 		ret = PTR_ERR(trans);
4087 		goto out;
4088 	}
4089 
4090 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4091 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4092 				   dir_id, "default", 7, 1);
4093 	if (IS_ERR_OR_NULL(di)) {
4094 		btrfs_free_path(path);
4095 		btrfs_end_transaction(trans, root);
4096 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4097 			   "item, this isn't going to work");
4098 		ret = -ENOENT;
4099 		goto out;
4100 	}
4101 
4102 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4103 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4104 	btrfs_mark_buffer_dirty(path->nodes[0]);
4105 	btrfs_free_path(path);
4106 
4107 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4108 	btrfs_end_transaction(trans, root);
4109 out:
4110 	mnt_drop_write_file(file);
4111 	return ret;
4112 }
4113 
4114 void btrfs_get_block_group_info(struct list_head *groups_list,
4115 				struct btrfs_ioctl_space_info *space)
4116 {
4117 	struct btrfs_block_group_cache *block_group;
4118 
4119 	space->total_bytes = 0;
4120 	space->used_bytes = 0;
4121 	space->flags = 0;
4122 	list_for_each_entry(block_group, groups_list, list) {
4123 		space->flags = block_group->flags;
4124 		space->total_bytes += block_group->key.offset;
4125 		space->used_bytes +=
4126 			btrfs_block_group_used(&block_group->item);
4127 	}
4128 }
4129 
4130 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
4131 {
4132 	struct btrfs_ioctl_space_args space_args;
4133 	struct btrfs_ioctl_space_info space;
4134 	struct btrfs_ioctl_space_info *dest;
4135 	struct btrfs_ioctl_space_info *dest_orig;
4136 	struct btrfs_ioctl_space_info __user *user_dest;
4137 	struct btrfs_space_info *info;
4138 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4139 		       BTRFS_BLOCK_GROUP_SYSTEM,
4140 		       BTRFS_BLOCK_GROUP_METADATA,
4141 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4142 	int num_types = 4;
4143 	int alloc_size;
4144 	int ret = 0;
4145 	u64 slot_count = 0;
4146 	int i, c;
4147 
4148 	if (copy_from_user(&space_args,
4149 			   (struct btrfs_ioctl_space_args __user *)arg,
4150 			   sizeof(space_args)))
4151 		return -EFAULT;
4152 
4153 	for (i = 0; i < num_types; i++) {
4154 		struct btrfs_space_info *tmp;
4155 
4156 		info = NULL;
4157 		rcu_read_lock();
4158 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4159 					list) {
4160 			if (tmp->flags == types[i]) {
4161 				info = tmp;
4162 				break;
4163 			}
4164 		}
4165 		rcu_read_unlock();
4166 
4167 		if (!info)
4168 			continue;
4169 
4170 		down_read(&info->groups_sem);
4171 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4172 			if (!list_empty(&info->block_groups[c]))
4173 				slot_count++;
4174 		}
4175 		up_read(&info->groups_sem);
4176 	}
4177 
4178 	/*
4179 	 * Global block reserve, exported as a space_info
4180 	 */
4181 	slot_count++;
4182 
4183 	/* space_slots == 0 means they are asking for a count */
4184 	if (space_args.space_slots == 0) {
4185 		space_args.total_spaces = slot_count;
4186 		goto out;
4187 	}
4188 
4189 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4190 
4191 	alloc_size = sizeof(*dest) * slot_count;
4192 
4193 	/* we generally have at most 6 or so space infos, one for each raid
4194 	 * level.  So, a whole page should be more than enough for everyone
4195 	 */
4196 	if (alloc_size > PAGE_SIZE)
4197 		return -ENOMEM;
4198 
4199 	space_args.total_spaces = 0;
4200 	dest = kmalloc(alloc_size, GFP_KERNEL);
4201 	if (!dest)
4202 		return -ENOMEM;
4203 	dest_orig = dest;
4204 
4205 	/* now we have a buffer to copy into */
4206 	for (i = 0; i < num_types; i++) {
4207 		struct btrfs_space_info *tmp;
4208 
4209 		if (!slot_count)
4210 			break;
4211 
4212 		info = NULL;
4213 		rcu_read_lock();
4214 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4215 					list) {
4216 			if (tmp->flags == types[i]) {
4217 				info = tmp;
4218 				break;
4219 			}
4220 		}
4221 		rcu_read_unlock();
4222 
4223 		if (!info)
4224 			continue;
4225 		down_read(&info->groups_sem);
4226 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4227 			if (!list_empty(&info->block_groups[c])) {
4228 				btrfs_get_block_group_info(
4229 					&info->block_groups[c], &space);
4230 				memcpy(dest, &space, sizeof(space));
4231 				dest++;
4232 				space_args.total_spaces++;
4233 				slot_count--;
4234 			}
4235 			if (!slot_count)
4236 				break;
4237 		}
4238 		up_read(&info->groups_sem);
4239 	}
4240 
4241 	/*
4242 	 * Add global block reserve
4243 	 */
4244 	if (slot_count) {
4245 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4246 
4247 		spin_lock(&block_rsv->lock);
4248 		space.total_bytes = block_rsv->size;
4249 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4250 		spin_unlock(&block_rsv->lock);
4251 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4252 		memcpy(dest, &space, sizeof(space));
4253 		space_args.total_spaces++;
4254 	}
4255 
4256 	user_dest = (struct btrfs_ioctl_space_info __user *)
4257 		(arg + sizeof(struct btrfs_ioctl_space_args));
4258 
4259 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4260 		ret = -EFAULT;
4261 
4262 	kfree(dest_orig);
4263 out:
4264 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4265 		ret = -EFAULT;
4266 
4267 	return ret;
4268 }
4269 
4270 /*
4271  * there are many ways the trans_start and trans_end ioctls can lead
4272  * to deadlocks.  They should only be used by applications that
4273  * basically own the machine, and have a very in depth understanding
4274  * of all the possible deadlocks and enospc problems.
4275  */
4276 long btrfs_ioctl_trans_end(struct file *file)
4277 {
4278 	struct inode *inode = file_inode(file);
4279 	struct btrfs_root *root = BTRFS_I(inode)->root;
4280 	struct btrfs_trans_handle *trans;
4281 
4282 	trans = file->private_data;
4283 	if (!trans)
4284 		return -EINVAL;
4285 	file->private_data = NULL;
4286 
4287 	btrfs_end_transaction(trans, root);
4288 
4289 	atomic_dec(&root->fs_info->open_ioctl_trans);
4290 
4291 	mnt_drop_write_file(file);
4292 	return 0;
4293 }
4294 
4295 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4296 					    void __user *argp)
4297 {
4298 	struct btrfs_trans_handle *trans;
4299 	u64 transid;
4300 	int ret;
4301 
4302 	trans = btrfs_attach_transaction_barrier(root);
4303 	if (IS_ERR(trans)) {
4304 		if (PTR_ERR(trans) != -ENOENT)
4305 			return PTR_ERR(trans);
4306 
4307 		/* No running transaction, don't bother */
4308 		transid = root->fs_info->last_trans_committed;
4309 		goto out;
4310 	}
4311 	transid = trans->transid;
4312 	ret = btrfs_commit_transaction_async(trans, root, 0);
4313 	if (ret) {
4314 		btrfs_end_transaction(trans, root);
4315 		return ret;
4316 	}
4317 out:
4318 	if (argp)
4319 		if (copy_to_user(argp, &transid, sizeof(transid)))
4320 			return -EFAULT;
4321 	return 0;
4322 }
4323 
4324 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4325 					   void __user *argp)
4326 {
4327 	u64 transid;
4328 
4329 	if (argp) {
4330 		if (copy_from_user(&transid, argp, sizeof(transid)))
4331 			return -EFAULT;
4332 	} else {
4333 		transid = 0;  /* current trans */
4334 	}
4335 	return btrfs_wait_for_commit(root, transid);
4336 }
4337 
4338 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4339 {
4340 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4341 	struct btrfs_ioctl_scrub_args *sa;
4342 	int ret;
4343 
4344 	if (!capable(CAP_SYS_ADMIN))
4345 		return -EPERM;
4346 
4347 	sa = memdup_user(arg, sizeof(*sa));
4348 	if (IS_ERR(sa))
4349 		return PTR_ERR(sa);
4350 
4351 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4352 		ret = mnt_want_write_file(file);
4353 		if (ret)
4354 			goto out;
4355 	}
4356 
4357 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4358 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4359 			      0);
4360 
4361 	if (copy_to_user(arg, sa, sizeof(*sa)))
4362 		ret = -EFAULT;
4363 
4364 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4365 		mnt_drop_write_file(file);
4366 out:
4367 	kfree(sa);
4368 	return ret;
4369 }
4370 
4371 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4372 {
4373 	if (!capable(CAP_SYS_ADMIN))
4374 		return -EPERM;
4375 
4376 	return btrfs_scrub_cancel(root->fs_info);
4377 }
4378 
4379 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4380 				       void __user *arg)
4381 {
4382 	struct btrfs_ioctl_scrub_args *sa;
4383 	int ret;
4384 
4385 	if (!capable(CAP_SYS_ADMIN))
4386 		return -EPERM;
4387 
4388 	sa = memdup_user(arg, sizeof(*sa));
4389 	if (IS_ERR(sa))
4390 		return PTR_ERR(sa);
4391 
4392 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4393 
4394 	if (copy_to_user(arg, sa, sizeof(*sa)))
4395 		ret = -EFAULT;
4396 
4397 	kfree(sa);
4398 	return ret;
4399 }
4400 
4401 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4402 				      void __user *arg)
4403 {
4404 	struct btrfs_ioctl_get_dev_stats *sa;
4405 	int ret;
4406 
4407 	sa = memdup_user(arg, sizeof(*sa));
4408 	if (IS_ERR(sa))
4409 		return PTR_ERR(sa);
4410 
4411 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4412 		kfree(sa);
4413 		return -EPERM;
4414 	}
4415 
4416 	ret = btrfs_get_dev_stats(root, sa);
4417 
4418 	if (copy_to_user(arg, sa, sizeof(*sa)))
4419 		ret = -EFAULT;
4420 
4421 	kfree(sa);
4422 	return ret;
4423 }
4424 
4425 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4426 {
4427 	struct btrfs_ioctl_dev_replace_args *p;
4428 	int ret;
4429 
4430 	if (!capable(CAP_SYS_ADMIN))
4431 		return -EPERM;
4432 
4433 	p = memdup_user(arg, sizeof(*p));
4434 	if (IS_ERR(p))
4435 		return PTR_ERR(p);
4436 
4437 	switch (p->cmd) {
4438 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4439 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4440 			ret = -EROFS;
4441 			goto out;
4442 		}
4443 		if (atomic_xchg(
4444 			&root->fs_info->mutually_exclusive_operation_running,
4445 			1)) {
4446 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4447 		} else {
4448 			ret = btrfs_dev_replace_by_ioctl(root, p);
4449 			atomic_set(
4450 			 &root->fs_info->mutually_exclusive_operation_running,
4451 			 0);
4452 		}
4453 		break;
4454 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4455 		btrfs_dev_replace_status(root->fs_info, p);
4456 		ret = 0;
4457 		break;
4458 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4459 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
4460 		break;
4461 	default:
4462 		ret = -EINVAL;
4463 		break;
4464 	}
4465 
4466 	if (copy_to_user(arg, p, sizeof(*p)))
4467 		ret = -EFAULT;
4468 out:
4469 	kfree(p);
4470 	return ret;
4471 }
4472 
4473 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4474 {
4475 	int ret = 0;
4476 	int i;
4477 	u64 rel_ptr;
4478 	int size;
4479 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4480 	struct inode_fs_paths *ipath = NULL;
4481 	struct btrfs_path *path;
4482 
4483 	if (!capable(CAP_DAC_READ_SEARCH))
4484 		return -EPERM;
4485 
4486 	path = btrfs_alloc_path();
4487 	if (!path) {
4488 		ret = -ENOMEM;
4489 		goto out;
4490 	}
4491 
4492 	ipa = memdup_user(arg, sizeof(*ipa));
4493 	if (IS_ERR(ipa)) {
4494 		ret = PTR_ERR(ipa);
4495 		ipa = NULL;
4496 		goto out;
4497 	}
4498 
4499 	size = min_t(u32, ipa->size, 4096);
4500 	ipath = init_ipath(size, root, path);
4501 	if (IS_ERR(ipath)) {
4502 		ret = PTR_ERR(ipath);
4503 		ipath = NULL;
4504 		goto out;
4505 	}
4506 
4507 	ret = paths_from_inode(ipa->inum, ipath);
4508 	if (ret < 0)
4509 		goto out;
4510 
4511 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4512 		rel_ptr = ipath->fspath->val[i] -
4513 			  (u64)(unsigned long)ipath->fspath->val;
4514 		ipath->fspath->val[i] = rel_ptr;
4515 	}
4516 
4517 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4518 			   (void *)(unsigned long)ipath->fspath, size);
4519 	if (ret) {
4520 		ret = -EFAULT;
4521 		goto out;
4522 	}
4523 
4524 out:
4525 	btrfs_free_path(path);
4526 	free_ipath(ipath);
4527 	kfree(ipa);
4528 
4529 	return ret;
4530 }
4531 
4532 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4533 {
4534 	struct btrfs_data_container *inodes = ctx;
4535 	const size_t c = 3 * sizeof(u64);
4536 
4537 	if (inodes->bytes_left >= c) {
4538 		inodes->bytes_left -= c;
4539 		inodes->val[inodes->elem_cnt] = inum;
4540 		inodes->val[inodes->elem_cnt + 1] = offset;
4541 		inodes->val[inodes->elem_cnt + 2] = root;
4542 		inodes->elem_cnt += 3;
4543 	} else {
4544 		inodes->bytes_missing += c - inodes->bytes_left;
4545 		inodes->bytes_left = 0;
4546 		inodes->elem_missed += 3;
4547 	}
4548 
4549 	return 0;
4550 }
4551 
4552 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4553 					void __user *arg)
4554 {
4555 	int ret = 0;
4556 	int size;
4557 	struct btrfs_ioctl_logical_ino_args *loi;
4558 	struct btrfs_data_container *inodes = NULL;
4559 	struct btrfs_path *path = NULL;
4560 
4561 	if (!capable(CAP_SYS_ADMIN))
4562 		return -EPERM;
4563 
4564 	loi = memdup_user(arg, sizeof(*loi));
4565 	if (IS_ERR(loi)) {
4566 		ret = PTR_ERR(loi);
4567 		loi = NULL;
4568 		goto out;
4569 	}
4570 
4571 	path = btrfs_alloc_path();
4572 	if (!path) {
4573 		ret = -ENOMEM;
4574 		goto out;
4575 	}
4576 
4577 	size = min_t(u32, loi->size, SZ_64K);
4578 	inodes = init_data_container(size);
4579 	if (IS_ERR(inodes)) {
4580 		ret = PTR_ERR(inodes);
4581 		inodes = NULL;
4582 		goto out;
4583 	}
4584 
4585 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4586 					  build_ino_list, inodes);
4587 	if (ret == -EINVAL)
4588 		ret = -ENOENT;
4589 	if (ret < 0)
4590 		goto out;
4591 
4592 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4593 			   (void *)(unsigned long)inodes, size);
4594 	if (ret)
4595 		ret = -EFAULT;
4596 
4597 out:
4598 	btrfs_free_path(path);
4599 	vfree(inodes);
4600 	kfree(loi);
4601 
4602 	return ret;
4603 }
4604 
4605 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4606 			       struct btrfs_ioctl_balance_args *bargs)
4607 {
4608 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4609 
4610 	bargs->flags = bctl->flags;
4611 
4612 	if (atomic_read(&fs_info->balance_running))
4613 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4614 	if (atomic_read(&fs_info->balance_pause_req))
4615 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4616 	if (atomic_read(&fs_info->balance_cancel_req))
4617 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4618 
4619 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4620 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4621 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4622 
4623 	if (lock) {
4624 		spin_lock(&fs_info->balance_lock);
4625 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4626 		spin_unlock(&fs_info->balance_lock);
4627 	} else {
4628 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4629 	}
4630 }
4631 
4632 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4633 {
4634 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4635 	struct btrfs_fs_info *fs_info = root->fs_info;
4636 	struct btrfs_ioctl_balance_args *bargs;
4637 	struct btrfs_balance_control *bctl;
4638 	bool need_unlock; /* for mut. excl. ops lock */
4639 	int ret;
4640 
4641 	if (!capable(CAP_SYS_ADMIN))
4642 		return -EPERM;
4643 
4644 	ret = mnt_want_write_file(file);
4645 	if (ret)
4646 		return ret;
4647 
4648 again:
4649 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4650 		mutex_lock(&fs_info->volume_mutex);
4651 		mutex_lock(&fs_info->balance_mutex);
4652 		need_unlock = true;
4653 		goto locked;
4654 	}
4655 
4656 	/*
4657 	 * mut. excl. ops lock is locked.  Three possibilites:
4658 	 *   (1) some other op is running
4659 	 *   (2) balance is running
4660 	 *   (3) balance is paused -- special case (think resume)
4661 	 */
4662 	mutex_lock(&fs_info->balance_mutex);
4663 	if (fs_info->balance_ctl) {
4664 		/* this is either (2) or (3) */
4665 		if (!atomic_read(&fs_info->balance_running)) {
4666 			mutex_unlock(&fs_info->balance_mutex);
4667 			if (!mutex_trylock(&fs_info->volume_mutex))
4668 				goto again;
4669 			mutex_lock(&fs_info->balance_mutex);
4670 
4671 			if (fs_info->balance_ctl &&
4672 			    !atomic_read(&fs_info->balance_running)) {
4673 				/* this is (3) */
4674 				need_unlock = false;
4675 				goto locked;
4676 			}
4677 
4678 			mutex_unlock(&fs_info->balance_mutex);
4679 			mutex_unlock(&fs_info->volume_mutex);
4680 			goto again;
4681 		} else {
4682 			/* this is (2) */
4683 			mutex_unlock(&fs_info->balance_mutex);
4684 			ret = -EINPROGRESS;
4685 			goto out;
4686 		}
4687 	} else {
4688 		/* this is (1) */
4689 		mutex_unlock(&fs_info->balance_mutex);
4690 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4691 		goto out;
4692 	}
4693 
4694 locked:
4695 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4696 
4697 	if (arg) {
4698 		bargs = memdup_user(arg, sizeof(*bargs));
4699 		if (IS_ERR(bargs)) {
4700 			ret = PTR_ERR(bargs);
4701 			goto out_unlock;
4702 		}
4703 
4704 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4705 			if (!fs_info->balance_ctl) {
4706 				ret = -ENOTCONN;
4707 				goto out_bargs;
4708 			}
4709 
4710 			bctl = fs_info->balance_ctl;
4711 			spin_lock(&fs_info->balance_lock);
4712 			bctl->flags |= BTRFS_BALANCE_RESUME;
4713 			spin_unlock(&fs_info->balance_lock);
4714 
4715 			goto do_balance;
4716 		}
4717 	} else {
4718 		bargs = NULL;
4719 	}
4720 
4721 	if (fs_info->balance_ctl) {
4722 		ret = -EINPROGRESS;
4723 		goto out_bargs;
4724 	}
4725 
4726 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4727 	if (!bctl) {
4728 		ret = -ENOMEM;
4729 		goto out_bargs;
4730 	}
4731 
4732 	bctl->fs_info = fs_info;
4733 	if (arg) {
4734 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4735 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4736 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4737 
4738 		bctl->flags = bargs->flags;
4739 	} else {
4740 		/* balance everything - no filters */
4741 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4742 	}
4743 
4744 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4745 		ret = -EINVAL;
4746 		goto out_bctl;
4747 	}
4748 
4749 do_balance:
4750 	/*
4751 	 * Ownership of bctl and mutually_exclusive_operation_running
4752 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4753 	 * or, if restriper was paused all the way until unmount, in
4754 	 * free_fs_info.  mutually_exclusive_operation_running is
4755 	 * cleared in __cancel_balance.
4756 	 */
4757 	need_unlock = false;
4758 
4759 	ret = btrfs_balance(bctl, bargs);
4760 	bctl = NULL;
4761 
4762 	if (arg) {
4763 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4764 			ret = -EFAULT;
4765 	}
4766 
4767 out_bctl:
4768 	kfree(bctl);
4769 out_bargs:
4770 	kfree(bargs);
4771 out_unlock:
4772 	mutex_unlock(&fs_info->balance_mutex);
4773 	mutex_unlock(&fs_info->volume_mutex);
4774 	if (need_unlock)
4775 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4776 out:
4777 	mnt_drop_write_file(file);
4778 	return ret;
4779 }
4780 
4781 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4782 {
4783 	if (!capable(CAP_SYS_ADMIN))
4784 		return -EPERM;
4785 
4786 	switch (cmd) {
4787 	case BTRFS_BALANCE_CTL_PAUSE:
4788 		return btrfs_pause_balance(root->fs_info);
4789 	case BTRFS_BALANCE_CTL_CANCEL:
4790 		return btrfs_cancel_balance(root->fs_info);
4791 	}
4792 
4793 	return -EINVAL;
4794 }
4795 
4796 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4797 					 void __user *arg)
4798 {
4799 	struct btrfs_fs_info *fs_info = root->fs_info;
4800 	struct btrfs_ioctl_balance_args *bargs;
4801 	int ret = 0;
4802 
4803 	if (!capable(CAP_SYS_ADMIN))
4804 		return -EPERM;
4805 
4806 	mutex_lock(&fs_info->balance_mutex);
4807 	if (!fs_info->balance_ctl) {
4808 		ret = -ENOTCONN;
4809 		goto out;
4810 	}
4811 
4812 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4813 	if (!bargs) {
4814 		ret = -ENOMEM;
4815 		goto out;
4816 	}
4817 
4818 	update_ioctl_balance_args(fs_info, 1, bargs);
4819 
4820 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4821 		ret = -EFAULT;
4822 
4823 	kfree(bargs);
4824 out:
4825 	mutex_unlock(&fs_info->balance_mutex);
4826 	return ret;
4827 }
4828 
4829 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4830 {
4831 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4832 	struct btrfs_ioctl_quota_ctl_args *sa;
4833 	struct btrfs_trans_handle *trans = NULL;
4834 	int ret;
4835 	int err;
4836 
4837 	if (!capable(CAP_SYS_ADMIN))
4838 		return -EPERM;
4839 
4840 	ret = mnt_want_write_file(file);
4841 	if (ret)
4842 		return ret;
4843 
4844 	sa = memdup_user(arg, sizeof(*sa));
4845 	if (IS_ERR(sa)) {
4846 		ret = PTR_ERR(sa);
4847 		goto drop_write;
4848 	}
4849 
4850 	down_write(&root->fs_info->subvol_sem);
4851 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4852 	if (IS_ERR(trans)) {
4853 		ret = PTR_ERR(trans);
4854 		goto out;
4855 	}
4856 
4857 	switch (sa->cmd) {
4858 	case BTRFS_QUOTA_CTL_ENABLE:
4859 		ret = btrfs_quota_enable(trans, root->fs_info);
4860 		break;
4861 	case BTRFS_QUOTA_CTL_DISABLE:
4862 		ret = btrfs_quota_disable(trans, root->fs_info);
4863 		break;
4864 	default:
4865 		ret = -EINVAL;
4866 		break;
4867 	}
4868 
4869 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4870 	if (err && !ret)
4871 		ret = err;
4872 out:
4873 	kfree(sa);
4874 	up_write(&root->fs_info->subvol_sem);
4875 drop_write:
4876 	mnt_drop_write_file(file);
4877 	return ret;
4878 }
4879 
4880 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4881 {
4882 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4883 	struct btrfs_ioctl_qgroup_assign_args *sa;
4884 	struct btrfs_trans_handle *trans;
4885 	int ret;
4886 	int err;
4887 
4888 	if (!capable(CAP_SYS_ADMIN))
4889 		return -EPERM;
4890 
4891 	ret = mnt_want_write_file(file);
4892 	if (ret)
4893 		return ret;
4894 
4895 	sa = memdup_user(arg, sizeof(*sa));
4896 	if (IS_ERR(sa)) {
4897 		ret = PTR_ERR(sa);
4898 		goto drop_write;
4899 	}
4900 
4901 	trans = btrfs_join_transaction(root);
4902 	if (IS_ERR(trans)) {
4903 		ret = PTR_ERR(trans);
4904 		goto out;
4905 	}
4906 
4907 	/* FIXME: check if the IDs really exist */
4908 	if (sa->assign) {
4909 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4910 						sa->src, sa->dst);
4911 	} else {
4912 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4913 						sa->src, sa->dst);
4914 	}
4915 
4916 	/* update qgroup status and info */
4917 	err = btrfs_run_qgroups(trans, root->fs_info);
4918 	if (err < 0)
4919 		btrfs_handle_fs_error(root->fs_info, err,
4920 			    "failed to update qgroup status and info");
4921 	err = btrfs_end_transaction(trans, root);
4922 	if (err && !ret)
4923 		ret = err;
4924 
4925 out:
4926 	kfree(sa);
4927 drop_write:
4928 	mnt_drop_write_file(file);
4929 	return ret;
4930 }
4931 
4932 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4933 {
4934 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4935 	struct btrfs_ioctl_qgroup_create_args *sa;
4936 	struct btrfs_trans_handle *trans;
4937 	int ret;
4938 	int err;
4939 
4940 	if (!capable(CAP_SYS_ADMIN))
4941 		return -EPERM;
4942 
4943 	ret = mnt_want_write_file(file);
4944 	if (ret)
4945 		return ret;
4946 
4947 	sa = memdup_user(arg, sizeof(*sa));
4948 	if (IS_ERR(sa)) {
4949 		ret = PTR_ERR(sa);
4950 		goto drop_write;
4951 	}
4952 
4953 	if (!sa->qgroupid) {
4954 		ret = -EINVAL;
4955 		goto out;
4956 	}
4957 
4958 	trans = btrfs_join_transaction(root);
4959 	if (IS_ERR(trans)) {
4960 		ret = PTR_ERR(trans);
4961 		goto out;
4962 	}
4963 
4964 	/* FIXME: check if the IDs really exist */
4965 	if (sa->create) {
4966 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4967 	} else {
4968 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4969 	}
4970 
4971 	err = btrfs_end_transaction(trans, root);
4972 	if (err && !ret)
4973 		ret = err;
4974 
4975 out:
4976 	kfree(sa);
4977 drop_write:
4978 	mnt_drop_write_file(file);
4979 	return ret;
4980 }
4981 
4982 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4983 {
4984 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4985 	struct btrfs_ioctl_qgroup_limit_args *sa;
4986 	struct btrfs_trans_handle *trans;
4987 	int ret;
4988 	int err;
4989 	u64 qgroupid;
4990 
4991 	if (!capable(CAP_SYS_ADMIN))
4992 		return -EPERM;
4993 
4994 	ret = mnt_want_write_file(file);
4995 	if (ret)
4996 		return ret;
4997 
4998 	sa = memdup_user(arg, sizeof(*sa));
4999 	if (IS_ERR(sa)) {
5000 		ret = PTR_ERR(sa);
5001 		goto drop_write;
5002 	}
5003 
5004 	trans = btrfs_join_transaction(root);
5005 	if (IS_ERR(trans)) {
5006 		ret = PTR_ERR(trans);
5007 		goto out;
5008 	}
5009 
5010 	qgroupid = sa->qgroupid;
5011 	if (!qgroupid) {
5012 		/* take the current subvol as qgroup */
5013 		qgroupid = root->root_key.objectid;
5014 	}
5015 
5016 	/* FIXME: check if the IDs really exist */
5017 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
5018 
5019 	err = btrfs_end_transaction(trans, root);
5020 	if (err && !ret)
5021 		ret = err;
5022 
5023 out:
5024 	kfree(sa);
5025 drop_write:
5026 	mnt_drop_write_file(file);
5027 	return ret;
5028 }
5029 
5030 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5031 {
5032 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5033 	struct btrfs_ioctl_quota_rescan_args *qsa;
5034 	int ret;
5035 
5036 	if (!capable(CAP_SYS_ADMIN))
5037 		return -EPERM;
5038 
5039 	ret = mnt_want_write_file(file);
5040 	if (ret)
5041 		return ret;
5042 
5043 	qsa = memdup_user(arg, sizeof(*qsa));
5044 	if (IS_ERR(qsa)) {
5045 		ret = PTR_ERR(qsa);
5046 		goto drop_write;
5047 	}
5048 
5049 	if (qsa->flags) {
5050 		ret = -EINVAL;
5051 		goto out;
5052 	}
5053 
5054 	ret = btrfs_qgroup_rescan(root->fs_info);
5055 
5056 out:
5057 	kfree(qsa);
5058 drop_write:
5059 	mnt_drop_write_file(file);
5060 	return ret;
5061 }
5062 
5063 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5064 {
5065 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5066 	struct btrfs_ioctl_quota_rescan_args *qsa;
5067 	int ret = 0;
5068 
5069 	if (!capable(CAP_SYS_ADMIN))
5070 		return -EPERM;
5071 
5072 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5073 	if (!qsa)
5074 		return -ENOMEM;
5075 
5076 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5077 		qsa->flags = 1;
5078 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5079 	}
5080 
5081 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5082 		ret = -EFAULT;
5083 
5084 	kfree(qsa);
5085 	return ret;
5086 }
5087 
5088 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5089 {
5090 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5091 
5092 	if (!capable(CAP_SYS_ADMIN))
5093 		return -EPERM;
5094 
5095 	return btrfs_qgroup_wait_for_completion(root->fs_info);
5096 }
5097 
5098 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5099 					    struct btrfs_ioctl_received_subvol_args *sa)
5100 {
5101 	struct inode *inode = file_inode(file);
5102 	struct btrfs_root *root = BTRFS_I(inode)->root;
5103 	struct btrfs_root_item *root_item = &root->root_item;
5104 	struct btrfs_trans_handle *trans;
5105 	struct timespec ct = current_fs_time(inode->i_sb);
5106 	int ret = 0;
5107 	int received_uuid_changed;
5108 
5109 	if (!inode_owner_or_capable(inode))
5110 		return -EPERM;
5111 
5112 	ret = mnt_want_write_file(file);
5113 	if (ret < 0)
5114 		return ret;
5115 
5116 	down_write(&root->fs_info->subvol_sem);
5117 
5118 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5119 		ret = -EINVAL;
5120 		goto out;
5121 	}
5122 
5123 	if (btrfs_root_readonly(root)) {
5124 		ret = -EROFS;
5125 		goto out;
5126 	}
5127 
5128 	/*
5129 	 * 1 - root item
5130 	 * 2 - uuid items (received uuid + subvol uuid)
5131 	 */
5132 	trans = btrfs_start_transaction(root, 3);
5133 	if (IS_ERR(trans)) {
5134 		ret = PTR_ERR(trans);
5135 		trans = NULL;
5136 		goto out;
5137 	}
5138 
5139 	sa->rtransid = trans->transid;
5140 	sa->rtime.sec = ct.tv_sec;
5141 	sa->rtime.nsec = ct.tv_nsec;
5142 
5143 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5144 				       BTRFS_UUID_SIZE);
5145 	if (received_uuid_changed &&
5146 	    !btrfs_is_empty_uuid(root_item->received_uuid))
5147 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5148 				    root_item->received_uuid,
5149 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5150 				    root->root_key.objectid);
5151 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5152 	btrfs_set_root_stransid(root_item, sa->stransid);
5153 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5154 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5155 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5156 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5157 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5158 
5159 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
5160 				&root->root_key, &root->root_item);
5161 	if (ret < 0) {
5162 		btrfs_end_transaction(trans, root);
5163 		goto out;
5164 	}
5165 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5166 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5167 					  sa->uuid,
5168 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5169 					  root->root_key.objectid);
5170 		if (ret < 0 && ret != -EEXIST) {
5171 			btrfs_abort_transaction(trans, root, ret);
5172 			goto out;
5173 		}
5174 	}
5175 	ret = btrfs_commit_transaction(trans, root);
5176 	if (ret < 0) {
5177 		btrfs_abort_transaction(trans, root, ret);
5178 		goto out;
5179 	}
5180 
5181 out:
5182 	up_write(&root->fs_info->subvol_sem);
5183 	mnt_drop_write_file(file);
5184 	return ret;
5185 }
5186 
5187 #ifdef CONFIG_64BIT
5188 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5189 						void __user *arg)
5190 {
5191 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5192 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5193 	int ret = 0;
5194 
5195 	args32 = memdup_user(arg, sizeof(*args32));
5196 	if (IS_ERR(args32)) {
5197 		ret = PTR_ERR(args32);
5198 		args32 = NULL;
5199 		goto out;
5200 	}
5201 
5202 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5203 	if (!args64) {
5204 		ret = -ENOMEM;
5205 		goto out;
5206 	}
5207 
5208 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5209 	args64->stransid = args32->stransid;
5210 	args64->rtransid = args32->rtransid;
5211 	args64->stime.sec = args32->stime.sec;
5212 	args64->stime.nsec = args32->stime.nsec;
5213 	args64->rtime.sec = args32->rtime.sec;
5214 	args64->rtime.nsec = args32->rtime.nsec;
5215 	args64->flags = args32->flags;
5216 
5217 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5218 	if (ret)
5219 		goto out;
5220 
5221 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5222 	args32->stransid = args64->stransid;
5223 	args32->rtransid = args64->rtransid;
5224 	args32->stime.sec = args64->stime.sec;
5225 	args32->stime.nsec = args64->stime.nsec;
5226 	args32->rtime.sec = args64->rtime.sec;
5227 	args32->rtime.nsec = args64->rtime.nsec;
5228 	args32->flags = args64->flags;
5229 
5230 	ret = copy_to_user(arg, args32, sizeof(*args32));
5231 	if (ret)
5232 		ret = -EFAULT;
5233 
5234 out:
5235 	kfree(args32);
5236 	kfree(args64);
5237 	return ret;
5238 }
5239 #endif
5240 
5241 static long btrfs_ioctl_set_received_subvol(struct file *file,
5242 					    void __user *arg)
5243 {
5244 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5245 	int ret = 0;
5246 
5247 	sa = memdup_user(arg, sizeof(*sa));
5248 	if (IS_ERR(sa)) {
5249 		ret = PTR_ERR(sa);
5250 		sa = NULL;
5251 		goto out;
5252 	}
5253 
5254 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5255 
5256 	if (ret)
5257 		goto out;
5258 
5259 	ret = copy_to_user(arg, sa, sizeof(*sa));
5260 	if (ret)
5261 		ret = -EFAULT;
5262 
5263 out:
5264 	kfree(sa);
5265 	return ret;
5266 }
5267 
5268 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5269 {
5270 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5271 	size_t len;
5272 	int ret;
5273 	char label[BTRFS_LABEL_SIZE];
5274 
5275 	spin_lock(&root->fs_info->super_lock);
5276 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5277 	spin_unlock(&root->fs_info->super_lock);
5278 
5279 	len = strnlen(label, BTRFS_LABEL_SIZE);
5280 
5281 	if (len == BTRFS_LABEL_SIZE) {
5282 		btrfs_warn(root->fs_info,
5283 			"label is too long, return the first %zu bytes", --len);
5284 	}
5285 
5286 	ret = copy_to_user(arg, label, len);
5287 
5288 	return ret ? -EFAULT : 0;
5289 }
5290 
5291 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5292 {
5293 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5294 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5295 	struct btrfs_trans_handle *trans;
5296 	char label[BTRFS_LABEL_SIZE];
5297 	int ret;
5298 
5299 	if (!capable(CAP_SYS_ADMIN))
5300 		return -EPERM;
5301 
5302 	if (copy_from_user(label, arg, sizeof(label)))
5303 		return -EFAULT;
5304 
5305 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5306 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5307 		       BTRFS_LABEL_SIZE - 1);
5308 		return -EINVAL;
5309 	}
5310 
5311 	ret = mnt_want_write_file(file);
5312 	if (ret)
5313 		return ret;
5314 
5315 	trans = btrfs_start_transaction(root, 0);
5316 	if (IS_ERR(trans)) {
5317 		ret = PTR_ERR(trans);
5318 		goto out_unlock;
5319 	}
5320 
5321 	spin_lock(&root->fs_info->super_lock);
5322 	strcpy(super_block->label, label);
5323 	spin_unlock(&root->fs_info->super_lock);
5324 	ret = btrfs_commit_transaction(trans, root);
5325 
5326 out_unlock:
5327 	mnt_drop_write_file(file);
5328 	return ret;
5329 }
5330 
5331 #define INIT_FEATURE_FLAGS(suffix) \
5332 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5333 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5334 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5335 
5336 int btrfs_ioctl_get_supported_features(void __user *arg)
5337 {
5338 	static const struct btrfs_ioctl_feature_flags features[3] = {
5339 		INIT_FEATURE_FLAGS(SUPP),
5340 		INIT_FEATURE_FLAGS(SAFE_SET),
5341 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5342 	};
5343 
5344 	if (copy_to_user(arg, &features, sizeof(features)))
5345 		return -EFAULT;
5346 
5347 	return 0;
5348 }
5349 
5350 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5351 {
5352 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5353 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5354 	struct btrfs_ioctl_feature_flags features;
5355 
5356 	features.compat_flags = btrfs_super_compat_flags(super_block);
5357 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5358 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5359 
5360 	if (copy_to_user(arg, &features, sizeof(features)))
5361 		return -EFAULT;
5362 
5363 	return 0;
5364 }
5365 
5366 static int check_feature_bits(struct btrfs_root *root,
5367 			      enum btrfs_feature_set set,
5368 			      u64 change_mask, u64 flags, u64 supported_flags,
5369 			      u64 safe_set, u64 safe_clear)
5370 {
5371 	const char *type = btrfs_feature_set_names[set];
5372 	char *names;
5373 	u64 disallowed, unsupported;
5374 	u64 set_mask = flags & change_mask;
5375 	u64 clear_mask = ~flags & change_mask;
5376 
5377 	unsupported = set_mask & ~supported_flags;
5378 	if (unsupported) {
5379 		names = btrfs_printable_features(set, unsupported);
5380 		if (names) {
5381 			btrfs_warn(root->fs_info,
5382 			   "this kernel does not support the %s feature bit%s",
5383 			   names, strchr(names, ',') ? "s" : "");
5384 			kfree(names);
5385 		} else
5386 			btrfs_warn(root->fs_info,
5387 			   "this kernel does not support %s bits 0x%llx",
5388 			   type, unsupported);
5389 		return -EOPNOTSUPP;
5390 	}
5391 
5392 	disallowed = set_mask & ~safe_set;
5393 	if (disallowed) {
5394 		names = btrfs_printable_features(set, disallowed);
5395 		if (names) {
5396 			btrfs_warn(root->fs_info,
5397 			   "can't set the %s feature bit%s while mounted",
5398 			   names, strchr(names, ',') ? "s" : "");
5399 			kfree(names);
5400 		} else
5401 			btrfs_warn(root->fs_info,
5402 			   "can't set %s bits 0x%llx while mounted",
5403 			   type, disallowed);
5404 		return -EPERM;
5405 	}
5406 
5407 	disallowed = clear_mask & ~safe_clear;
5408 	if (disallowed) {
5409 		names = btrfs_printable_features(set, disallowed);
5410 		if (names) {
5411 			btrfs_warn(root->fs_info,
5412 			   "can't clear the %s feature bit%s while mounted",
5413 			   names, strchr(names, ',') ? "s" : "");
5414 			kfree(names);
5415 		} else
5416 			btrfs_warn(root->fs_info,
5417 			   "can't clear %s bits 0x%llx while mounted",
5418 			   type, disallowed);
5419 		return -EPERM;
5420 	}
5421 
5422 	return 0;
5423 }
5424 
5425 #define check_feature(root, change_mask, flags, mask_base)	\
5426 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5427 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5428 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5429 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5430 
5431 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5432 {
5433 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5434 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5435 	struct btrfs_ioctl_feature_flags flags[2];
5436 	struct btrfs_trans_handle *trans;
5437 	u64 newflags;
5438 	int ret;
5439 
5440 	if (!capable(CAP_SYS_ADMIN))
5441 		return -EPERM;
5442 
5443 	if (copy_from_user(flags, arg, sizeof(flags)))
5444 		return -EFAULT;
5445 
5446 	/* Nothing to do */
5447 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5448 	    !flags[0].incompat_flags)
5449 		return 0;
5450 
5451 	ret = check_feature(root, flags[0].compat_flags,
5452 			    flags[1].compat_flags, COMPAT);
5453 	if (ret)
5454 		return ret;
5455 
5456 	ret = check_feature(root, flags[0].compat_ro_flags,
5457 			    flags[1].compat_ro_flags, COMPAT_RO);
5458 	if (ret)
5459 		return ret;
5460 
5461 	ret = check_feature(root, flags[0].incompat_flags,
5462 			    flags[1].incompat_flags, INCOMPAT);
5463 	if (ret)
5464 		return ret;
5465 
5466 	ret = mnt_want_write_file(file);
5467 	if (ret)
5468 		return ret;
5469 
5470 	trans = btrfs_start_transaction(root, 0);
5471 	if (IS_ERR(trans)) {
5472 		ret = PTR_ERR(trans);
5473 		goto out_drop_write;
5474 	}
5475 
5476 	spin_lock(&root->fs_info->super_lock);
5477 	newflags = btrfs_super_compat_flags(super_block);
5478 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5479 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5480 	btrfs_set_super_compat_flags(super_block, newflags);
5481 
5482 	newflags = btrfs_super_compat_ro_flags(super_block);
5483 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5484 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5485 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5486 
5487 	newflags = btrfs_super_incompat_flags(super_block);
5488 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5489 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5490 	btrfs_set_super_incompat_flags(super_block, newflags);
5491 	spin_unlock(&root->fs_info->super_lock);
5492 
5493 	ret = btrfs_commit_transaction(trans, root);
5494 out_drop_write:
5495 	mnt_drop_write_file(file);
5496 
5497 	return ret;
5498 }
5499 
5500 long btrfs_ioctl(struct file *file, unsigned int
5501 		cmd, unsigned long arg)
5502 {
5503 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5504 	void __user *argp = (void __user *)arg;
5505 
5506 	switch (cmd) {
5507 	case FS_IOC_GETFLAGS:
5508 		return btrfs_ioctl_getflags(file, argp);
5509 	case FS_IOC_SETFLAGS:
5510 		return btrfs_ioctl_setflags(file, argp);
5511 	case FS_IOC_GETVERSION:
5512 		return btrfs_ioctl_getversion(file, argp);
5513 	case FITRIM:
5514 		return btrfs_ioctl_fitrim(file, argp);
5515 	case BTRFS_IOC_SNAP_CREATE:
5516 		return btrfs_ioctl_snap_create(file, argp, 0);
5517 	case BTRFS_IOC_SNAP_CREATE_V2:
5518 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5519 	case BTRFS_IOC_SUBVOL_CREATE:
5520 		return btrfs_ioctl_snap_create(file, argp, 1);
5521 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5522 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5523 	case BTRFS_IOC_SNAP_DESTROY:
5524 		return btrfs_ioctl_snap_destroy(file, argp);
5525 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5526 		return btrfs_ioctl_subvol_getflags(file, argp);
5527 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5528 		return btrfs_ioctl_subvol_setflags(file, argp);
5529 	case BTRFS_IOC_DEFAULT_SUBVOL:
5530 		return btrfs_ioctl_default_subvol(file, argp);
5531 	case BTRFS_IOC_DEFRAG:
5532 		return btrfs_ioctl_defrag(file, NULL);
5533 	case BTRFS_IOC_DEFRAG_RANGE:
5534 		return btrfs_ioctl_defrag(file, argp);
5535 	case BTRFS_IOC_RESIZE:
5536 		return btrfs_ioctl_resize(file, argp);
5537 	case BTRFS_IOC_ADD_DEV:
5538 		return btrfs_ioctl_add_dev(root, argp);
5539 	case BTRFS_IOC_RM_DEV:
5540 		return btrfs_ioctl_rm_dev(file, argp);
5541 	case BTRFS_IOC_RM_DEV_V2:
5542 		return btrfs_ioctl_rm_dev_v2(file, argp);
5543 	case BTRFS_IOC_FS_INFO:
5544 		return btrfs_ioctl_fs_info(root, argp);
5545 	case BTRFS_IOC_DEV_INFO:
5546 		return btrfs_ioctl_dev_info(root, argp);
5547 	case BTRFS_IOC_BALANCE:
5548 		return btrfs_ioctl_balance(file, NULL);
5549 	case BTRFS_IOC_TRANS_START:
5550 		return btrfs_ioctl_trans_start(file);
5551 	case BTRFS_IOC_TRANS_END:
5552 		return btrfs_ioctl_trans_end(file);
5553 	case BTRFS_IOC_TREE_SEARCH:
5554 		return btrfs_ioctl_tree_search(file, argp);
5555 	case BTRFS_IOC_TREE_SEARCH_V2:
5556 		return btrfs_ioctl_tree_search_v2(file, argp);
5557 	case BTRFS_IOC_INO_LOOKUP:
5558 		return btrfs_ioctl_ino_lookup(file, argp);
5559 	case BTRFS_IOC_INO_PATHS:
5560 		return btrfs_ioctl_ino_to_path(root, argp);
5561 	case BTRFS_IOC_LOGICAL_INO:
5562 		return btrfs_ioctl_logical_to_ino(root, argp);
5563 	case BTRFS_IOC_SPACE_INFO:
5564 		return btrfs_ioctl_space_info(root, argp);
5565 	case BTRFS_IOC_SYNC: {
5566 		int ret;
5567 
5568 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5569 		if (ret)
5570 			return ret;
5571 		ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5572 		/*
5573 		 * The transaction thread may want to do more work,
5574 		 * namely it pokes the cleaner ktread that will start
5575 		 * processing uncleaned subvols.
5576 		 */
5577 		wake_up_process(root->fs_info->transaction_kthread);
5578 		return ret;
5579 	}
5580 	case BTRFS_IOC_START_SYNC:
5581 		return btrfs_ioctl_start_sync(root, argp);
5582 	case BTRFS_IOC_WAIT_SYNC:
5583 		return btrfs_ioctl_wait_sync(root, argp);
5584 	case BTRFS_IOC_SCRUB:
5585 		return btrfs_ioctl_scrub(file, argp);
5586 	case BTRFS_IOC_SCRUB_CANCEL:
5587 		return btrfs_ioctl_scrub_cancel(root, argp);
5588 	case BTRFS_IOC_SCRUB_PROGRESS:
5589 		return btrfs_ioctl_scrub_progress(root, argp);
5590 	case BTRFS_IOC_BALANCE_V2:
5591 		return btrfs_ioctl_balance(file, argp);
5592 	case BTRFS_IOC_BALANCE_CTL:
5593 		return btrfs_ioctl_balance_ctl(root, arg);
5594 	case BTRFS_IOC_BALANCE_PROGRESS:
5595 		return btrfs_ioctl_balance_progress(root, argp);
5596 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5597 		return btrfs_ioctl_set_received_subvol(file, argp);
5598 #ifdef CONFIG_64BIT
5599 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5600 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5601 #endif
5602 	case BTRFS_IOC_SEND:
5603 		return btrfs_ioctl_send(file, argp);
5604 	case BTRFS_IOC_GET_DEV_STATS:
5605 		return btrfs_ioctl_get_dev_stats(root, argp);
5606 	case BTRFS_IOC_QUOTA_CTL:
5607 		return btrfs_ioctl_quota_ctl(file, argp);
5608 	case BTRFS_IOC_QGROUP_ASSIGN:
5609 		return btrfs_ioctl_qgroup_assign(file, argp);
5610 	case BTRFS_IOC_QGROUP_CREATE:
5611 		return btrfs_ioctl_qgroup_create(file, argp);
5612 	case BTRFS_IOC_QGROUP_LIMIT:
5613 		return btrfs_ioctl_qgroup_limit(file, argp);
5614 	case BTRFS_IOC_QUOTA_RESCAN:
5615 		return btrfs_ioctl_quota_rescan(file, argp);
5616 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5617 		return btrfs_ioctl_quota_rescan_status(file, argp);
5618 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5619 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5620 	case BTRFS_IOC_DEV_REPLACE:
5621 		return btrfs_ioctl_dev_replace(root, argp);
5622 	case BTRFS_IOC_GET_FSLABEL:
5623 		return btrfs_ioctl_get_fslabel(file, argp);
5624 	case BTRFS_IOC_SET_FSLABEL:
5625 		return btrfs_ioctl_set_fslabel(file, argp);
5626 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5627 		return btrfs_ioctl_get_supported_features(argp);
5628 	case BTRFS_IOC_GET_FEATURES:
5629 		return btrfs_ioctl_get_features(file, argp);
5630 	case BTRFS_IOC_SET_FEATURES:
5631 		return btrfs_ioctl_set_features(file, argp);
5632 	}
5633 
5634 	return -ENOTTY;
5635 }
5636 
5637 #ifdef CONFIG_COMPAT
5638 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5639 {
5640 	switch (cmd) {
5641 	case FS_IOC32_GETFLAGS:
5642 		cmd = FS_IOC_GETFLAGS;
5643 		break;
5644 	case FS_IOC32_SETFLAGS:
5645 		cmd = FS_IOC_SETFLAGS;
5646 		break;
5647 	case FS_IOC32_GETVERSION:
5648 		cmd = FS_IOC_GETVERSION;
5649 		break;
5650 	default:
5651 		return -ENOIOCTLCMD;
5652 	}
5653 
5654 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5655 }
5656 #endif
5657