1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include <linux/btrfs.h> 46 #include <linux/uaccess.h> 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 #include "dev-replace.h" 59 #include "props.h" 60 #include "sysfs.h" 61 #include "qgroup.h" 62 #include "tree-log.h" 63 #include "compression.h" 64 65 #ifdef CONFIG_64BIT 66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 67 * structures are incorrect, as the timespec structure from userspace 68 * is 4 bytes too small. We define these alternatives here to teach 69 * the kernel about the 32-bit struct packing. 70 */ 71 struct btrfs_ioctl_timespec_32 { 72 __u64 sec; 73 __u32 nsec; 74 } __attribute__ ((__packed__)); 75 76 struct btrfs_ioctl_received_subvol_args_32 { 77 char uuid[BTRFS_UUID_SIZE]; /* in */ 78 __u64 stransid; /* in */ 79 __u64 rtransid; /* out */ 80 struct btrfs_ioctl_timespec_32 stime; /* in */ 81 struct btrfs_ioctl_timespec_32 rtime; /* out */ 82 __u64 flags; /* in */ 83 __u64 reserved[16]; /* in */ 84 } __attribute__ ((__packed__)); 85 86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 87 struct btrfs_ioctl_received_subvol_args_32) 88 #endif 89 90 91 static int btrfs_clone(struct inode *src, struct inode *inode, 92 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 93 int no_time_update); 94 95 /* Mask out flags that are inappropriate for the given type of inode. */ 96 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 97 { 98 if (S_ISDIR(mode)) 99 return flags; 100 else if (S_ISREG(mode)) 101 return flags & ~FS_DIRSYNC_FL; 102 else 103 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 104 } 105 106 /* 107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 108 */ 109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 110 { 111 unsigned int iflags = 0; 112 113 if (flags & BTRFS_INODE_SYNC) 114 iflags |= FS_SYNC_FL; 115 if (flags & BTRFS_INODE_IMMUTABLE) 116 iflags |= FS_IMMUTABLE_FL; 117 if (flags & BTRFS_INODE_APPEND) 118 iflags |= FS_APPEND_FL; 119 if (flags & BTRFS_INODE_NODUMP) 120 iflags |= FS_NODUMP_FL; 121 if (flags & BTRFS_INODE_NOATIME) 122 iflags |= FS_NOATIME_FL; 123 if (flags & BTRFS_INODE_DIRSYNC) 124 iflags |= FS_DIRSYNC_FL; 125 if (flags & BTRFS_INODE_NODATACOW) 126 iflags |= FS_NOCOW_FL; 127 128 if (flags & BTRFS_INODE_NOCOMPRESS) 129 iflags |= FS_NOCOMP_FL; 130 else if (flags & BTRFS_INODE_COMPRESS) 131 iflags |= FS_COMPR_FL; 132 133 return iflags; 134 } 135 136 /* 137 * Update inode->i_flags based on the btrfs internal flags. 138 */ 139 void btrfs_update_iflags(struct inode *inode) 140 { 141 struct btrfs_inode *ip = BTRFS_I(inode); 142 unsigned int new_fl = 0; 143 144 if (ip->flags & BTRFS_INODE_SYNC) 145 new_fl |= S_SYNC; 146 if (ip->flags & BTRFS_INODE_IMMUTABLE) 147 new_fl |= S_IMMUTABLE; 148 if (ip->flags & BTRFS_INODE_APPEND) 149 new_fl |= S_APPEND; 150 if (ip->flags & BTRFS_INODE_NOATIME) 151 new_fl |= S_NOATIME; 152 if (ip->flags & BTRFS_INODE_DIRSYNC) 153 new_fl |= S_DIRSYNC; 154 155 set_mask_bits(&inode->i_flags, 156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 157 new_fl); 158 } 159 160 /* 161 * Inherit flags from the parent inode. 162 * 163 * Currently only the compression flags and the cow flags are inherited. 164 */ 165 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 166 { 167 unsigned int flags; 168 169 if (!dir) 170 return; 171 172 flags = BTRFS_I(dir)->flags; 173 174 if (flags & BTRFS_INODE_NOCOMPRESS) { 175 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 176 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 177 } else if (flags & BTRFS_INODE_COMPRESS) { 178 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 179 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 180 } 181 182 if (flags & BTRFS_INODE_NODATACOW) { 183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 184 if (S_ISREG(inode->i_mode)) 185 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 186 } 187 188 btrfs_update_iflags(inode); 189 } 190 191 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 192 { 193 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 194 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 195 196 if (copy_to_user(arg, &flags, sizeof(flags))) 197 return -EFAULT; 198 return 0; 199 } 200 201 static int check_flags(unsigned int flags) 202 { 203 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 204 FS_NOATIME_FL | FS_NODUMP_FL | \ 205 FS_SYNC_FL | FS_DIRSYNC_FL | \ 206 FS_NOCOMP_FL | FS_COMPR_FL | 207 FS_NOCOW_FL)) 208 return -EOPNOTSUPP; 209 210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 211 return -EINVAL; 212 213 return 0; 214 } 215 216 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 217 { 218 struct inode *inode = file_inode(file); 219 struct btrfs_inode *ip = BTRFS_I(inode); 220 struct btrfs_root *root = ip->root; 221 struct btrfs_trans_handle *trans; 222 unsigned int flags, oldflags; 223 int ret; 224 u64 ip_oldflags; 225 unsigned int i_oldflags; 226 umode_t mode; 227 228 if (!inode_owner_or_capable(inode)) 229 return -EPERM; 230 231 if (btrfs_root_readonly(root)) 232 return -EROFS; 233 234 if (copy_from_user(&flags, arg, sizeof(flags))) 235 return -EFAULT; 236 237 ret = check_flags(flags); 238 if (ret) 239 return ret; 240 241 ret = mnt_want_write_file(file); 242 if (ret) 243 return ret; 244 245 inode_lock(inode); 246 247 ip_oldflags = ip->flags; 248 i_oldflags = inode->i_flags; 249 mode = inode->i_mode; 250 251 flags = btrfs_mask_flags(inode->i_mode, flags); 252 oldflags = btrfs_flags_to_ioctl(ip->flags); 253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 254 if (!capable(CAP_LINUX_IMMUTABLE)) { 255 ret = -EPERM; 256 goto out_unlock; 257 } 258 } 259 260 if (flags & FS_SYNC_FL) 261 ip->flags |= BTRFS_INODE_SYNC; 262 else 263 ip->flags &= ~BTRFS_INODE_SYNC; 264 if (flags & FS_IMMUTABLE_FL) 265 ip->flags |= BTRFS_INODE_IMMUTABLE; 266 else 267 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 268 if (flags & FS_APPEND_FL) 269 ip->flags |= BTRFS_INODE_APPEND; 270 else 271 ip->flags &= ~BTRFS_INODE_APPEND; 272 if (flags & FS_NODUMP_FL) 273 ip->flags |= BTRFS_INODE_NODUMP; 274 else 275 ip->flags &= ~BTRFS_INODE_NODUMP; 276 if (flags & FS_NOATIME_FL) 277 ip->flags |= BTRFS_INODE_NOATIME; 278 else 279 ip->flags &= ~BTRFS_INODE_NOATIME; 280 if (flags & FS_DIRSYNC_FL) 281 ip->flags |= BTRFS_INODE_DIRSYNC; 282 else 283 ip->flags &= ~BTRFS_INODE_DIRSYNC; 284 if (flags & FS_NOCOW_FL) { 285 if (S_ISREG(mode)) { 286 /* 287 * It's safe to turn csums off here, no extents exist. 288 * Otherwise we want the flag to reflect the real COW 289 * status of the file and will not set it. 290 */ 291 if (inode->i_size == 0) 292 ip->flags |= BTRFS_INODE_NODATACOW 293 | BTRFS_INODE_NODATASUM; 294 } else { 295 ip->flags |= BTRFS_INODE_NODATACOW; 296 } 297 } else { 298 /* 299 * Revert back under same assuptions as above 300 */ 301 if (S_ISREG(mode)) { 302 if (inode->i_size == 0) 303 ip->flags &= ~(BTRFS_INODE_NODATACOW 304 | BTRFS_INODE_NODATASUM); 305 } else { 306 ip->flags &= ~BTRFS_INODE_NODATACOW; 307 } 308 } 309 310 /* 311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 312 * flag may be changed automatically if compression code won't make 313 * things smaller. 314 */ 315 if (flags & FS_NOCOMP_FL) { 316 ip->flags &= ~BTRFS_INODE_COMPRESS; 317 ip->flags |= BTRFS_INODE_NOCOMPRESS; 318 319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 320 if (ret && ret != -ENODATA) 321 goto out_drop; 322 } else if (flags & FS_COMPR_FL) { 323 const char *comp; 324 325 ip->flags |= BTRFS_INODE_COMPRESS; 326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 327 328 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 329 comp = "lzo"; 330 else 331 comp = "zlib"; 332 ret = btrfs_set_prop(inode, "btrfs.compression", 333 comp, strlen(comp), 0); 334 if (ret) 335 goto out_drop; 336 337 } else { 338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 339 if (ret && ret != -ENODATA) 340 goto out_drop; 341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 342 } 343 344 trans = btrfs_start_transaction(root, 1); 345 if (IS_ERR(trans)) { 346 ret = PTR_ERR(trans); 347 goto out_drop; 348 } 349 350 btrfs_update_iflags(inode); 351 inode_inc_iversion(inode); 352 inode->i_ctime = current_fs_time(inode->i_sb); 353 ret = btrfs_update_inode(trans, root, inode); 354 355 btrfs_end_transaction(trans, root); 356 out_drop: 357 if (ret) { 358 ip->flags = ip_oldflags; 359 inode->i_flags = i_oldflags; 360 } 361 362 out_unlock: 363 inode_unlock(inode); 364 mnt_drop_write_file(file); 365 return ret; 366 } 367 368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 369 { 370 struct inode *inode = file_inode(file); 371 372 return put_user(inode->i_generation, arg); 373 } 374 375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 376 { 377 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 378 struct btrfs_device *device; 379 struct request_queue *q; 380 struct fstrim_range range; 381 u64 minlen = ULLONG_MAX; 382 u64 num_devices = 0; 383 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 384 int ret; 385 386 if (!capable(CAP_SYS_ADMIN)) 387 return -EPERM; 388 389 rcu_read_lock(); 390 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 391 dev_list) { 392 if (!device->bdev) 393 continue; 394 q = bdev_get_queue(device->bdev); 395 if (blk_queue_discard(q)) { 396 num_devices++; 397 minlen = min((u64)q->limits.discard_granularity, 398 minlen); 399 } 400 } 401 rcu_read_unlock(); 402 403 if (!num_devices) 404 return -EOPNOTSUPP; 405 if (copy_from_user(&range, arg, sizeof(range))) 406 return -EFAULT; 407 if (range.start > total_bytes || 408 range.len < fs_info->sb->s_blocksize) 409 return -EINVAL; 410 411 range.len = min(range.len, total_bytes - range.start); 412 range.minlen = max(range.minlen, minlen); 413 ret = btrfs_trim_fs(fs_info->tree_root, &range); 414 if (ret < 0) 415 return ret; 416 417 if (copy_to_user(arg, &range, sizeof(range))) 418 return -EFAULT; 419 420 return 0; 421 } 422 423 int btrfs_is_empty_uuid(u8 *uuid) 424 { 425 int i; 426 427 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 428 if (uuid[i]) 429 return 0; 430 } 431 return 1; 432 } 433 434 static noinline int create_subvol(struct inode *dir, 435 struct dentry *dentry, 436 char *name, int namelen, 437 u64 *async_transid, 438 struct btrfs_qgroup_inherit *inherit) 439 { 440 struct btrfs_trans_handle *trans; 441 struct btrfs_key key; 442 struct btrfs_root_item *root_item; 443 struct btrfs_inode_item *inode_item; 444 struct extent_buffer *leaf; 445 struct btrfs_root *root = BTRFS_I(dir)->root; 446 struct btrfs_root *new_root; 447 struct btrfs_block_rsv block_rsv; 448 struct timespec cur_time = current_fs_time(dir->i_sb); 449 struct inode *inode; 450 int ret; 451 int err; 452 u64 objectid; 453 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 454 u64 index = 0; 455 u64 qgroup_reserved; 456 uuid_le new_uuid; 457 458 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 459 if (!root_item) 460 return -ENOMEM; 461 462 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 463 if (ret) 464 goto fail_free; 465 466 /* 467 * Don't create subvolume whose level is not zero. Or qgroup will be 468 * screwed up since it assume subvolme qgroup's level to be 0. 469 */ 470 if (btrfs_qgroup_level(objectid)) { 471 ret = -ENOSPC; 472 goto fail_free; 473 } 474 475 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 476 /* 477 * The same as the snapshot creation, please see the comment 478 * of create_snapshot(). 479 */ 480 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 481 8, &qgroup_reserved, false); 482 if (ret) 483 goto fail_free; 484 485 trans = btrfs_start_transaction(root, 0); 486 if (IS_ERR(trans)) { 487 ret = PTR_ERR(trans); 488 btrfs_subvolume_release_metadata(root, &block_rsv, 489 qgroup_reserved); 490 goto fail_free; 491 } 492 trans->block_rsv = &block_rsv; 493 trans->bytes_reserved = block_rsv.size; 494 495 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit); 496 if (ret) 497 goto fail; 498 499 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 500 if (IS_ERR(leaf)) { 501 ret = PTR_ERR(leaf); 502 goto fail; 503 } 504 505 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 506 btrfs_set_header_bytenr(leaf, leaf->start); 507 btrfs_set_header_generation(leaf, trans->transid); 508 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 509 btrfs_set_header_owner(leaf, objectid); 510 511 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(), 512 BTRFS_FSID_SIZE); 513 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 514 btrfs_header_chunk_tree_uuid(leaf), 515 BTRFS_UUID_SIZE); 516 btrfs_mark_buffer_dirty(leaf); 517 518 inode_item = &root_item->inode; 519 btrfs_set_stack_inode_generation(inode_item, 1); 520 btrfs_set_stack_inode_size(inode_item, 3); 521 btrfs_set_stack_inode_nlink(inode_item, 1); 522 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize); 523 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 524 525 btrfs_set_root_flags(root_item, 0); 526 btrfs_set_root_limit(root_item, 0); 527 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 528 529 btrfs_set_root_bytenr(root_item, leaf->start); 530 btrfs_set_root_generation(root_item, trans->transid); 531 btrfs_set_root_level(root_item, 0); 532 btrfs_set_root_refs(root_item, 1); 533 btrfs_set_root_used(root_item, leaf->len); 534 btrfs_set_root_last_snapshot(root_item, 0); 535 536 btrfs_set_root_generation_v2(root_item, 537 btrfs_root_generation(root_item)); 538 uuid_le_gen(&new_uuid); 539 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 540 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 541 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 542 root_item->ctime = root_item->otime; 543 btrfs_set_root_ctransid(root_item, trans->transid); 544 btrfs_set_root_otransid(root_item, trans->transid); 545 546 btrfs_tree_unlock(leaf); 547 free_extent_buffer(leaf); 548 leaf = NULL; 549 550 btrfs_set_root_dirid(root_item, new_dirid); 551 552 key.objectid = objectid; 553 key.offset = 0; 554 key.type = BTRFS_ROOT_ITEM_KEY; 555 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 556 root_item); 557 if (ret) 558 goto fail; 559 560 key.offset = (u64)-1; 561 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 562 if (IS_ERR(new_root)) { 563 ret = PTR_ERR(new_root); 564 btrfs_abort_transaction(trans, root, ret); 565 goto fail; 566 } 567 568 btrfs_record_root_in_trans(trans, new_root); 569 570 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 571 if (ret) { 572 /* We potentially lose an unused inode item here */ 573 btrfs_abort_transaction(trans, root, ret); 574 goto fail; 575 } 576 577 mutex_lock(&new_root->objectid_mutex); 578 new_root->highest_objectid = new_dirid; 579 mutex_unlock(&new_root->objectid_mutex); 580 581 /* 582 * insert the directory item 583 */ 584 ret = btrfs_set_inode_index(dir, &index); 585 if (ret) { 586 btrfs_abort_transaction(trans, root, ret); 587 goto fail; 588 } 589 590 ret = btrfs_insert_dir_item(trans, root, 591 name, namelen, dir, &key, 592 BTRFS_FT_DIR, index); 593 if (ret) { 594 btrfs_abort_transaction(trans, root, ret); 595 goto fail; 596 } 597 598 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 599 ret = btrfs_update_inode(trans, root, dir); 600 BUG_ON(ret); 601 602 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 603 objectid, root->root_key.objectid, 604 btrfs_ino(dir), index, name, namelen); 605 BUG_ON(ret); 606 607 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 608 root_item->uuid, BTRFS_UUID_KEY_SUBVOL, 609 objectid); 610 if (ret) 611 btrfs_abort_transaction(trans, root, ret); 612 613 fail: 614 kfree(root_item); 615 trans->block_rsv = NULL; 616 trans->bytes_reserved = 0; 617 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 618 619 if (async_transid) { 620 *async_transid = trans->transid; 621 err = btrfs_commit_transaction_async(trans, root, 1); 622 if (err) 623 err = btrfs_commit_transaction(trans, root); 624 } else { 625 err = btrfs_commit_transaction(trans, root); 626 } 627 if (err && !ret) 628 ret = err; 629 630 if (!ret) { 631 inode = btrfs_lookup_dentry(dir, dentry); 632 if (IS_ERR(inode)) 633 return PTR_ERR(inode); 634 d_instantiate(dentry, inode); 635 } 636 return ret; 637 638 fail_free: 639 kfree(root_item); 640 return ret; 641 } 642 643 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root) 644 { 645 s64 writers; 646 DEFINE_WAIT(wait); 647 648 do { 649 prepare_to_wait(&root->subv_writers->wait, &wait, 650 TASK_UNINTERRUPTIBLE); 651 652 writers = percpu_counter_sum(&root->subv_writers->counter); 653 if (writers) 654 schedule(); 655 656 finish_wait(&root->subv_writers->wait, &wait); 657 } while (writers); 658 } 659 660 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 661 struct dentry *dentry, char *name, int namelen, 662 u64 *async_transid, bool readonly, 663 struct btrfs_qgroup_inherit *inherit) 664 { 665 struct inode *inode; 666 struct btrfs_pending_snapshot *pending_snapshot; 667 struct btrfs_trans_handle *trans; 668 int ret; 669 670 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 671 return -EINVAL; 672 673 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 674 if (!pending_snapshot) 675 return -ENOMEM; 676 677 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 678 GFP_NOFS); 679 pending_snapshot->path = btrfs_alloc_path(); 680 if (!pending_snapshot->root_item || !pending_snapshot->path) { 681 ret = -ENOMEM; 682 goto free_pending; 683 } 684 685 atomic_inc(&root->will_be_snapshoted); 686 smp_mb__after_atomic(); 687 btrfs_wait_for_no_snapshoting_writes(root); 688 689 ret = btrfs_start_delalloc_inodes(root, 0); 690 if (ret) 691 goto dec_and_free; 692 693 btrfs_wait_ordered_extents(root, -1, 0, (u64)-1); 694 695 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 696 BTRFS_BLOCK_RSV_TEMP); 697 /* 698 * 1 - parent dir inode 699 * 2 - dir entries 700 * 1 - root item 701 * 2 - root ref/backref 702 * 1 - root of snapshot 703 * 1 - UUID item 704 */ 705 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 706 &pending_snapshot->block_rsv, 8, 707 &pending_snapshot->qgroup_reserved, 708 false); 709 if (ret) 710 goto dec_and_free; 711 712 pending_snapshot->dentry = dentry; 713 pending_snapshot->root = root; 714 pending_snapshot->readonly = readonly; 715 pending_snapshot->dir = dir; 716 pending_snapshot->inherit = inherit; 717 718 trans = btrfs_start_transaction(root, 0); 719 if (IS_ERR(trans)) { 720 ret = PTR_ERR(trans); 721 goto fail; 722 } 723 724 spin_lock(&root->fs_info->trans_lock); 725 list_add(&pending_snapshot->list, 726 &trans->transaction->pending_snapshots); 727 spin_unlock(&root->fs_info->trans_lock); 728 if (async_transid) { 729 *async_transid = trans->transid; 730 ret = btrfs_commit_transaction_async(trans, 731 root->fs_info->extent_root, 1); 732 if (ret) 733 ret = btrfs_commit_transaction(trans, root); 734 } else { 735 ret = btrfs_commit_transaction(trans, 736 root->fs_info->extent_root); 737 } 738 if (ret) 739 goto fail; 740 741 ret = pending_snapshot->error; 742 if (ret) 743 goto fail; 744 745 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 746 if (ret) 747 goto fail; 748 749 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 750 if (IS_ERR(inode)) { 751 ret = PTR_ERR(inode); 752 goto fail; 753 } 754 755 d_instantiate(dentry, inode); 756 ret = 0; 757 fail: 758 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root, 759 &pending_snapshot->block_rsv, 760 pending_snapshot->qgroup_reserved); 761 dec_and_free: 762 if (atomic_dec_and_test(&root->will_be_snapshoted)) 763 wake_up_atomic_t(&root->will_be_snapshoted); 764 free_pending: 765 kfree(pending_snapshot->root_item); 766 btrfs_free_path(pending_snapshot->path); 767 kfree(pending_snapshot); 768 769 return ret; 770 } 771 772 /* copy of may_delete in fs/namei.c() 773 * Check whether we can remove a link victim from directory dir, check 774 * whether the type of victim is right. 775 * 1. We can't do it if dir is read-only (done in permission()) 776 * 2. We should have write and exec permissions on dir 777 * 3. We can't remove anything from append-only dir 778 * 4. We can't do anything with immutable dir (done in permission()) 779 * 5. If the sticky bit on dir is set we should either 780 * a. be owner of dir, or 781 * b. be owner of victim, or 782 * c. have CAP_FOWNER capability 783 * 6. If the victim is append-only or immutable we can't do antyhing with 784 * links pointing to it. 785 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 786 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 787 * 9. We can't remove a root or mountpoint. 788 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 789 * nfs_async_unlink(). 790 */ 791 792 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 793 { 794 int error; 795 796 if (d_really_is_negative(victim)) 797 return -ENOENT; 798 799 BUG_ON(d_inode(victim->d_parent) != dir); 800 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 801 802 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 803 if (error) 804 return error; 805 if (IS_APPEND(dir)) 806 return -EPERM; 807 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 808 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 809 return -EPERM; 810 if (isdir) { 811 if (!d_is_dir(victim)) 812 return -ENOTDIR; 813 if (IS_ROOT(victim)) 814 return -EBUSY; 815 } else if (d_is_dir(victim)) 816 return -EISDIR; 817 if (IS_DEADDIR(dir)) 818 return -ENOENT; 819 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 820 return -EBUSY; 821 return 0; 822 } 823 824 /* copy of may_create in fs/namei.c() */ 825 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 826 { 827 if (d_really_is_positive(child)) 828 return -EEXIST; 829 if (IS_DEADDIR(dir)) 830 return -ENOENT; 831 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 832 } 833 834 /* 835 * Create a new subvolume below @parent. This is largely modeled after 836 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 837 * inside this filesystem so it's quite a bit simpler. 838 */ 839 static noinline int btrfs_mksubvol(struct path *parent, 840 char *name, int namelen, 841 struct btrfs_root *snap_src, 842 u64 *async_transid, bool readonly, 843 struct btrfs_qgroup_inherit *inherit) 844 { 845 struct inode *dir = d_inode(parent->dentry); 846 struct dentry *dentry; 847 int error; 848 849 inode_lock_nested(dir, I_MUTEX_PARENT); 850 // XXX: should've been 851 // mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 852 // if (error == -EINTR) 853 // return error; 854 855 dentry = lookup_one_len(name, parent->dentry, namelen); 856 error = PTR_ERR(dentry); 857 if (IS_ERR(dentry)) 858 goto out_unlock; 859 860 error = btrfs_may_create(dir, dentry); 861 if (error) 862 goto out_dput; 863 864 /* 865 * even if this name doesn't exist, we may get hash collisions. 866 * check for them now when we can safely fail 867 */ 868 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 869 dir->i_ino, name, 870 namelen); 871 if (error) 872 goto out_dput; 873 874 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 875 876 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 877 goto out_up_read; 878 879 if (snap_src) { 880 error = create_snapshot(snap_src, dir, dentry, name, namelen, 881 async_transid, readonly, inherit); 882 } else { 883 error = create_subvol(dir, dentry, name, namelen, 884 async_transid, inherit); 885 } 886 if (!error) 887 fsnotify_mkdir(dir, dentry); 888 out_up_read: 889 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 890 out_dput: 891 dput(dentry); 892 out_unlock: 893 inode_unlock(dir); 894 return error; 895 } 896 897 /* 898 * When we're defragging a range, we don't want to kick it off again 899 * if it is really just waiting for delalloc to send it down. 900 * If we find a nice big extent or delalloc range for the bytes in the 901 * file you want to defrag, we return 0 to let you know to skip this 902 * part of the file 903 */ 904 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 905 { 906 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 907 struct extent_map *em = NULL; 908 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 909 u64 end; 910 911 read_lock(&em_tree->lock); 912 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 913 read_unlock(&em_tree->lock); 914 915 if (em) { 916 end = extent_map_end(em); 917 free_extent_map(em); 918 if (end - offset > thresh) 919 return 0; 920 } 921 /* if we already have a nice delalloc here, just stop */ 922 thresh /= 2; 923 end = count_range_bits(io_tree, &offset, offset + thresh, 924 thresh, EXTENT_DELALLOC, 1); 925 if (end >= thresh) 926 return 0; 927 return 1; 928 } 929 930 /* 931 * helper function to walk through a file and find extents 932 * newer than a specific transid, and smaller than thresh. 933 * 934 * This is used by the defragging code to find new and small 935 * extents 936 */ 937 static int find_new_extents(struct btrfs_root *root, 938 struct inode *inode, u64 newer_than, 939 u64 *off, u32 thresh) 940 { 941 struct btrfs_path *path; 942 struct btrfs_key min_key; 943 struct extent_buffer *leaf; 944 struct btrfs_file_extent_item *extent; 945 int type; 946 int ret; 947 u64 ino = btrfs_ino(inode); 948 949 path = btrfs_alloc_path(); 950 if (!path) 951 return -ENOMEM; 952 953 min_key.objectid = ino; 954 min_key.type = BTRFS_EXTENT_DATA_KEY; 955 min_key.offset = *off; 956 957 while (1) { 958 ret = btrfs_search_forward(root, &min_key, path, newer_than); 959 if (ret != 0) 960 goto none; 961 process_slot: 962 if (min_key.objectid != ino) 963 goto none; 964 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 965 goto none; 966 967 leaf = path->nodes[0]; 968 extent = btrfs_item_ptr(leaf, path->slots[0], 969 struct btrfs_file_extent_item); 970 971 type = btrfs_file_extent_type(leaf, extent); 972 if (type == BTRFS_FILE_EXTENT_REG && 973 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 974 check_defrag_in_cache(inode, min_key.offset, thresh)) { 975 *off = min_key.offset; 976 btrfs_free_path(path); 977 return 0; 978 } 979 980 path->slots[0]++; 981 if (path->slots[0] < btrfs_header_nritems(leaf)) { 982 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 983 goto process_slot; 984 } 985 986 if (min_key.offset == (u64)-1) 987 goto none; 988 989 min_key.offset++; 990 btrfs_release_path(path); 991 } 992 none: 993 btrfs_free_path(path); 994 return -ENOENT; 995 } 996 997 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 998 { 999 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1000 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1001 struct extent_map *em; 1002 u64 len = PAGE_SIZE; 1003 1004 /* 1005 * hopefully we have this extent in the tree already, try without 1006 * the full extent lock 1007 */ 1008 read_lock(&em_tree->lock); 1009 em = lookup_extent_mapping(em_tree, start, len); 1010 read_unlock(&em_tree->lock); 1011 1012 if (!em) { 1013 struct extent_state *cached = NULL; 1014 u64 end = start + len - 1; 1015 1016 /* get the big lock and read metadata off disk */ 1017 lock_extent_bits(io_tree, start, end, &cached); 1018 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 1019 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 1020 1021 if (IS_ERR(em)) 1022 return NULL; 1023 } 1024 1025 return em; 1026 } 1027 1028 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1029 { 1030 struct extent_map *next; 1031 bool ret = true; 1032 1033 /* this is the last extent */ 1034 if (em->start + em->len >= i_size_read(inode)) 1035 return false; 1036 1037 next = defrag_lookup_extent(inode, em->start + em->len); 1038 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1039 ret = false; 1040 else if ((em->block_start + em->block_len == next->block_start) && 1041 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1042 ret = false; 1043 1044 free_extent_map(next); 1045 return ret; 1046 } 1047 1048 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1049 u64 *last_len, u64 *skip, u64 *defrag_end, 1050 int compress) 1051 { 1052 struct extent_map *em; 1053 int ret = 1; 1054 bool next_mergeable = true; 1055 bool prev_mergeable = true; 1056 1057 /* 1058 * make sure that once we start defragging an extent, we keep on 1059 * defragging it 1060 */ 1061 if (start < *defrag_end) 1062 return 1; 1063 1064 *skip = 0; 1065 1066 em = defrag_lookup_extent(inode, start); 1067 if (!em) 1068 return 0; 1069 1070 /* this will cover holes, and inline extents */ 1071 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1072 ret = 0; 1073 goto out; 1074 } 1075 1076 if (!*defrag_end) 1077 prev_mergeable = false; 1078 1079 next_mergeable = defrag_check_next_extent(inode, em); 1080 /* 1081 * we hit a real extent, if it is big or the next extent is not a 1082 * real extent, don't bother defragging it 1083 */ 1084 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1085 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1086 ret = 0; 1087 out: 1088 /* 1089 * last_len ends up being a counter of how many bytes we've defragged. 1090 * every time we choose not to defrag an extent, we reset *last_len 1091 * so that the next tiny extent will force a defrag. 1092 * 1093 * The end result of this is that tiny extents before a single big 1094 * extent will force at least part of that big extent to be defragged. 1095 */ 1096 if (ret) { 1097 *defrag_end = extent_map_end(em); 1098 } else { 1099 *last_len = 0; 1100 *skip = extent_map_end(em); 1101 *defrag_end = 0; 1102 } 1103 1104 free_extent_map(em); 1105 return ret; 1106 } 1107 1108 /* 1109 * it doesn't do much good to defrag one or two pages 1110 * at a time. This pulls in a nice chunk of pages 1111 * to COW and defrag. 1112 * 1113 * It also makes sure the delalloc code has enough 1114 * dirty data to avoid making new small extents as part 1115 * of the defrag 1116 * 1117 * It's a good idea to start RA on this range 1118 * before calling this. 1119 */ 1120 static int cluster_pages_for_defrag(struct inode *inode, 1121 struct page **pages, 1122 unsigned long start_index, 1123 unsigned long num_pages) 1124 { 1125 unsigned long file_end; 1126 u64 isize = i_size_read(inode); 1127 u64 page_start; 1128 u64 page_end; 1129 u64 page_cnt; 1130 int ret; 1131 int i; 1132 int i_done; 1133 struct btrfs_ordered_extent *ordered; 1134 struct extent_state *cached_state = NULL; 1135 struct extent_io_tree *tree; 1136 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1137 1138 file_end = (isize - 1) >> PAGE_SHIFT; 1139 if (!isize || start_index > file_end) 1140 return 0; 1141 1142 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1143 1144 ret = btrfs_delalloc_reserve_space(inode, 1145 start_index << PAGE_SHIFT, 1146 page_cnt << PAGE_SHIFT); 1147 if (ret) 1148 return ret; 1149 i_done = 0; 1150 tree = &BTRFS_I(inode)->io_tree; 1151 1152 /* step one, lock all the pages */ 1153 for (i = 0; i < page_cnt; i++) { 1154 struct page *page; 1155 again: 1156 page = find_or_create_page(inode->i_mapping, 1157 start_index + i, mask); 1158 if (!page) 1159 break; 1160 1161 page_start = page_offset(page); 1162 page_end = page_start + PAGE_SIZE - 1; 1163 while (1) { 1164 lock_extent_bits(tree, page_start, page_end, 1165 &cached_state); 1166 ordered = btrfs_lookup_ordered_extent(inode, 1167 page_start); 1168 unlock_extent_cached(tree, page_start, page_end, 1169 &cached_state, GFP_NOFS); 1170 if (!ordered) 1171 break; 1172 1173 unlock_page(page); 1174 btrfs_start_ordered_extent(inode, ordered, 1); 1175 btrfs_put_ordered_extent(ordered); 1176 lock_page(page); 1177 /* 1178 * we unlocked the page above, so we need check if 1179 * it was released or not. 1180 */ 1181 if (page->mapping != inode->i_mapping) { 1182 unlock_page(page); 1183 put_page(page); 1184 goto again; 1185 } 1186 } 1187 1188 if (!PageUptodate(page)) { 1189 btrfs_readpage(NULL, page); 1190 lock_page(page); 1191 if (!PageUptodate(page)) { 1192 unlock_page(page); 1193 put_page(page); 1194 ret = -EIO; 1195 break; 1196 } 1197 } 1198 1199 if (page->mapping != inode->i_mapping) { 1200 unlock_page(page); 1201 put_page(page); 1202 goto again; 1203 } 1204 1205 pages[i] = page; 1206 i_done++; 1207 } 1208 if (!i_done || ret) 1209 goto out; 1210 1211 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1212 goto out; 1213 1214 /* 1215 * so now we have a nice long stream of locked 1216 * and up to date pages, lets wait on them 1217 */ 1218 for (i = 0; i < i_done; i++) 1219 wait_on_page_writeback(pages[i]); 1220 1221 page_start = page_offset(pages[0]); 1222 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1223 1224 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1225 page_start, page_end - 1, &cached_state); 1226 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1227 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1228 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1229 &cached_state, GFP_NOFS); 1230 1231 if (i_done != page_cnt) { 1232 spin_lock(&BTRFS_I(inode)->lock); 1233 BTRFS_I(inode)->outstanding_extents++; 1234 spin_unlock(&BTRFS_I(inode)->lock); 1235 btrfs_delalloc_release_space(inode, 1236 start_index << PAGE_SHIFT, 1237 (page_cnt - i_done) << PAGE_SHIFT); 1238 } 1239 1240 1241 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1242 &cached_state, GFP_NOFS); 1243 1244 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1245 page_start, page_end - 1, &cached_state, 1246 GFP_NOFS); 1247 1248 for (i = 0; i < i_done; i++) { 1249 clear_page_dirty_for_io(pages[i]); 1250 ClearPageChecked(pages[i]); 1251 set_page_extent_mapped(pages[i]); 1252 set_page_dirty(pages[i]); 1253 unlock_page(pages[i]); 1254 put_page(pages[i]); 1255 } 1256 return i_done; 1257 out: 1258 for (i = 0; i < i_done; i++) { 1259 unlock_page(pages[i]); 1260 put_page(pages[i]); 1261 } 1262 btrfs_delalloc_release_space(inode, 1263 start_index << PAGE_SHIFT, 1264 page_cnt << PAGE_SHIFT); 1265 return ret; 1266 1267 } 1268 1269 int btrfs_defrag_file(struct inode *inode, struct file *file, 1270 struct btrfs_ioctl_defrag_range_args *range, 1271 u64 newer_than, unsigned long max_to_defrag) 1272 { 1273 struct btrfs_root *root = BTRFS_I(inode)->root; 1274 struct file_ra_state *ra = NULL; 1275 unsigned long last_index; 1276 u64 isize = i_size_read(inode); 1277 u64 last_len = 0; 1278 u64 skip = 0; 1279 u64 defrag_end = 0; 1280 u64 newer_off = range->start; 1281 unsigned long i; 1282 unsigned long ra_index = 0; 1283 int ret; 1284 int defrag_count = 0; 1285 int compress_type = BTRFS_COMPRESS_ZLIB; 1286 u32 extent_thresh = range->extent_thresh; 1287 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1288 unsigned long cluster = max_cluster; 1289 u64 new_align = ~((u64)SZ_128K - 1); 1290 struct page **pages = NULL; 1291 1292 if (isize == 0) 1293 return 0; 1294 1295 if (range->start >= isize) 1296 return -EINVAL; 1297 1298 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1299 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1300 return -EINVAL; 1301 if (range->compress_type) 1302 compress_type = range->compress_type; 1303 } 1304 1305 if (extent_thresh == 0) 1306 extent_thresh = SZ_256K; 1307 1308 /* 1309 * if we were not given a file, allocate a readahead 1310 * context 1311 */ 1312 if (!file) { 1313 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1314 if (!ra) 1315 return -ENOMEM; 1316 file_ra_state_init(ra, inode->i_mapping); 1317 } else { 1318 ra = &file->f_ra; 1319 } 1320 1321 pages = kmalloc_array(max_cluster, sizeof(struct page *), 1322 GFP_NOFS); 1323 if (!pages) { 1324 ret = -ENOMEM; 1325 goto out_ra; 1326 } 1327 1328 /* find the last page to defrag */ 1329 if (range->start + range->len > range->start) { 1330 last_index = min_t(u64, isize - 1, 1331 range->start + range->len - 1) >> PAGE_SHIFT; 1332 } else { 1333 last_index = (isize - 1) >> PAGE_SHIFT; 1334 } 1335 1336 if (newer_than) { 1337 ret = find_new_extents(root, inode, newer_than, 1338 &newer_off, SZ_64K); 1339 if (!ret) { 1340 range->start = newer_off; 1341 /* 1342 * we always align our defrag to help keep 1343 * the extents in the file evenly spaced 1344 */ 1345 i = (newer_off & new_align) >> PAGE_SHIFT; 1346 } else 1347 goto out_ra; 1348 } else { 1349 i = range->start >> PAGE_SHIFT; 1350 } 1351 if (!max_to_defrag) 1352 max_to_defrag = last_index - i + 1; 1353 1354 /* 1355 * make writeback starts from i, so the defrag range can be 1356 * written sequentially. 1357 */ 1358 if (i < inode->i_mapping->writeback_index) 1359 inode->i_mapping->writeback_index = i; 1360 1361 while (i <= last_index && defrag_count < max_to_defrag && 1362 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1363 /* 1364 * make sure we stop running if someone unmounts 1365 * the FS 1366 */ 1367 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1368 break; 1369 1370 if (btrfs_defrag_cancelled(root->fs_info)) { 1371 btrfs_debug(root->fs_info, "defrag_file cancelled"); 1372 ret = -EAGAIN; 1373 break; 1374 } 1375 1376 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1377 extent_thresh, &last_len, &skip, 1378 &defrag_end, range->flags & 1379 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1380 unsigned long next; 1381 /* 1382 * the should_defrag function tells us how much to skip 1383 * bump our counter by the suggested amount 1384 */ 1385 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1386 i = max(i + 1, next); 1387 continue; 1388 } 1389 1390 if (!newer_than) { 1391 cluster = (PAGE_ALIGN(defrag_end) >> 1392 PAGE_SHIFT) - i; 1393 cluster = min(cluster, max_cluster); 1394 } else { 1395 cluster = max_cluster; 1396 } 1397 1398 if (i + cluster > ra_index) { 1399 ra_index = max(i, ra_index); 1400 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1401 cluster); 1402 ra_index += cluster; 1403 } 1404 1405 inode_lock(inode); 1406 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1407 BTRFS_I(inode)->force_compress = compress_type; 1408 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1409 if (ret < 0) { 1410 inode_unlock(inode); 1411 goto out_ra; 1412 } 1413 1414 defrag_count += ret; 1415 balance_dirty_pages_ratelimited(inode->i_mapping); 1416 inode_unlock(inode); 1417 1418 if (newer_than) { 1419 if (newer_off == (u64)-1) 1420 break; 1421 1422 if (ret > 0) 1423 i += ret; 1424 1425 newer_off = max(newer_off + 1, 1426 (u64)i << PAGE_SHIFT); 1427 1428 ret = find_new_extents(root, inode, newer_than, 1429 &newer_off, SZ_64K); 1430 if (!ret) { 1431 range->start = newer_off; 1432 i = (newer_off & new_align) >> PAGE_SHIFT; 1433 } else { 1434 break; 1435 } 1436 } else { 1437 if (ret > 0) { 1438 i += ret; 1439 last_len += ret << PAGE_SHIFT; 1440 } else { 1441 i++; 1442 last_len = 0; 1443 } 1444 } 1445 } 1446 1447 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1448 filemap_flush(inode->i_mapping); 1449 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1450 &BTRFS_I(inode)->runtime_flags)) 1451 filemap_flush(inode->i_mapping); 1452 } 1453 1454 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1455 /* the filemap_flush will queue IO into the worker threads, but 1456 * we have to make sure the IO is actually started and that 1457 * ordered extents get created before we return 1458 */ 1459 atomic_inc(&root->fs_info->async_submit_draining); 1460 while (atomic_read(&root->fs_info->nr_async_submits) || 1461 atomic_read(&root->fs_info->async_delalloc_pages)) { 1462 wait_event(root->fs_info->async_submit_wait, 1463 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1464 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1465 } 1466 atomic_dec(&root->fs_info->async_submit_draining); 1467 } 1468 1469 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1470 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1471 } 1472 1473 ret = defrag_count; 1474 1475 out_ra: 1476 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1477 inode_lock(inode); 1478 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1479 inode_unlock(inode); 1480 } 1481 if (!file) 1482 kfree(ra); 1483 kfree(pages); 1484 return ret; 1485 } 1486 1487 static noinline int btrfs_ioctl_resize(struct file *file, 1488 void __user *arg) 1489 { 1490 u64 new_size; 1491 u64 old_size; 1492 u64 devid = 1; 1493 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1494 struct btrfs_ioctl_vol_args *vol_args; 1495 struct btrfs_trans_handle *trans; 1496 struct btrfs_device *device = NULL; 1497 char *sizestr; 1498 char *retptr; 1499 char *devstr = NULL; 1500 int ret = 0; 1501 int mod = 0; 1502 1503 if (!capable(CAP_SYS_ADMIN)) 1504 return -EPERM; 1505 1506 ret = mnt_want_write_file(file); 1507 if (ret) 1508 return ret; 1509 1510 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1511 1)) { 1512 mnt_drop_write_file(file); 1513 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1514 } 1515 1516 mutex_lock(&root->fs_info->volume_mutex); 1517 vol_args = memdup_user(arg, sizeof(*vol_args)); 1518 if (IS_ERR(vol_args)) { 1519 ret = PTR_ERR(vol_args); 1520 goto out; 1521 } 1522 1523 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1524 1525 sizestr = vol_args->name; 1526 devstr = strchr(sizestr, ':'); 1527 if (devstr) { 1528 sizestr = devstr + 1; 1529 *devstr = '\0'; 1530 devstr = vol_args->name; 1531 ret = kstrtoull(devstr, 10, &devid); 1532 if (ret) 1533 goto out_free; 1534 if (!devid) { 1535 ret = -EINVAL; 1536 goto out_free; 1537 } 1538 btrfs_info(root->fs_info, "resizing devid %llu", devid); 1539 } 1540 1541 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1542 if (!device) { 1543 btrfs_info(root->fs_info, "resizer unable to find device %llu", 1544 devid); 1545 ret = -ENODEV; 1546 goto out_free; 1547 } 1548 1549 if (!device->writeable) { 1550 btrfs_info(root->fs_info, 1551 "resizer unable to apply on readonly device %llu", 1552 devid); 1553 ret = -EPERM; 1554 goto out_free; 1555 } 1556 1557 if (!strcmp(sizestr, "max")) 1558 new_size = device->bdev->bd_inode->i_size; 1559 else { 1560 if (sizestr[0] == '-') { 1561 mod = -1; 1562 sizestr++; 1563 } else if (sizestr[0] == '+') { 1564 mod = 1; 1565 sizestr++; 1566 } 1567 new_size = memparse(sizestr, &retptr); 1568 if (*retptr != '\0' || new_size == 0) { 1569 ret = -EINVAL; 1570 goto out_free; 1571 } 1572 } 1573 1574 if (device->is_tgtdev_for_dev_replace) { 1575 ret = -EPERM; 1576 goto out_free; 1577 } 1578 1579 old_size = btrfs_device_get_total_bytes(device); 1580 1581 if (mod < 0) { 1582 if (new_size > old_size) { 1583 ret = -EINVAL; 1584 goto out_free; 1585 } 1586 new_size = old_size - new_size; 1587 } else if (mod > 0) { 1588 if (new_size > ULLONG_MAX - old_size) { 1589 ret = -ERANGE; 1590 goto out_free; 1591 } 1592 new_size = old_size + new_size; 1593 } 1594 1595 if (new_size < SZ_256M) { 1596 ret = -EINVAL; 1597 goto out_free; 1598 } 1599 if (new_size > device->bdev->bd_inode->i_size) { 1600 ret = -EFBIG; 1601 goto out_free; 1602 } 1603 1604 new_size = div_u64(new_size, root->sectorsize); 1605 new_size *= root->sectorsize; 1606 1607 btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu", 1608 rcu_str_deref(device->name), new_size); 1609 1610 if (new_size > old_size) { 1611 trans = btrfs_start_transaction(root, 0); 1612 if (IS_ERR(trans)) { 1613 ret = PTR_ERR(trans); 1614 goto out_free; 1615 } 1616 ret = btrfs_grow_device(trans, device, new_size); 1617 btrfs_commit_transaction(trans, root); 1618 } else if (new_size < old_size) { 1619 ret = btrfs_shrink_device(device, new_size); 1620 } /* equal, nothing need to do */ 1621 1622 out_free: 1623 kfree(vol_args); 1624 out: 1625 mutex_unlock(&root->fs_info->volume_mutex); 1626 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1627 mnt_drop_write_file(file); 1628 return ret; 1629 } 1630 1631 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1632 char *name, unsigned long fd, int subvol, 1633 u64 *transid, bool readonly, 1634 struct btrfs_qgroup_inherit *inherit) 1635 { 1636 int namelen; 1637 int ret = 0; 1638 1639 ret = mnt_want_write_file(file); 1640 if (ret) 1641 goto out; 1642 1643 namelen = strlen(name); 1644 if (strchr(name, '/')) { 1645 ret = -EINVAL; 1646 goto out_drop_write; 1647 } 1648 1649 if (name[0] == '.' && 1650 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1651 ret = -EEXIST; 1652 goto out_drop_write; 1653 } 1654 1655 if (subvol) { 1656 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1657 NULL, transid, readonly, inherit); 1658 } else { 1659 struct fd src = fdget(fd); 1660 struct inode *src_inode; 1661 if (!src.file) { 1662 ret = -EINVAL; 1663 goto out_drop_write; 1664 } 1665 1666 src_inode = file_inode(src.file); 1667 if (src_inode->i_sb != file_inode(file)->i_sb) { 1668 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1669 "Snapshot src from another FS"); 1670 ret = -EXDEV; 1671 } else if (!inode_owner_or_capable(src_inode)) { 1672 /* 1673 * Subvolume creation is not restricted, but snapshots 1674 * are limited to own subvolumes only 1675 */ 1676 ret = -EPERM; 1677 } else { 1678 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1679 BTRFS_I(src_inode)->root, 1680 transid, readonly, inherit); 1681 } 1682 fdput(src); 1683 } 1684 out_drop_write: 1685 mnt_drop_write_file(file); 1686 out: 1687 return ret; 1688 } 1689 1690 static noinline int btrfs_ioctl_snap_create(struct file *file, 1691 void __user *arg, int subvol) 1692 { 1693 struct btrfs_ioctl_vol_args *vol_args; 1694 int ret; 1695 1696 vol_args = memdup_user(arg, sizeof(*vol_args)); 1697 if (IS_ERR(vol_args)) 1698 return PTR_ERR(vol_args); 1699 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1700 1701 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1702 vol_args->fd, subvol, 1703 NULL, false, NULL); 1704 1705 kfree(vol_args); 1706 return ret; 1707 } 1708 1709 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1710 void __user *arg, int subvol) 1711 { 1712 struct btrfs_ioctl_vol_args_v2 *vol_args; 1713 int ret; 1714 u64 transid = 0; 1715 u64 *ptr = NULL; 1716 bool readonly = false; 1717 struct btrfs_qgroup_inherit *inherit = NULL; 1718 1719 vol_args = memdup_user(arg, sizeof(*vol_args)); 1720 if (IS_ERR(vol_args)) 1721 return PTR_ERR(vol_args); 1722 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1723 1724 if (vol_args->flags & 1725 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1726 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1727 ret = -EOPNOTSUPP; 1728 goto free_args; 1729 } 1730 1731 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1732 ptr = &transid; 1733 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1734 readonly = true; 1735 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1736 if (vol_args->size > PAGE_SIZE) { 1737 ret = -EINVAL; 1738 goto free_args; 1739 } 1740 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1741 if (IS_ERR(inherit)) { 1742 ret = PTR_ERR(inherit); 1743 goto free_args; 1744 } 1745 } 1746 1747 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1748 vol_args->fd, subvol, ptr, 1749 readonly, inherit); 1750 if (ret) 1751 goto free_inherit; 1752 1753 if (ptr && copy_to_user(arg + 1754 offsetof(struct btrfs_ioctl_vol_args_v2, 1755 transid), 1756 ptr, sizeof(*ptr))) 1757 ret = -EFAULT; 1758 1759 free_inherit: 1760 kfree(inherit); 1761 free_args: 1762 kfree(vol_args); 1763 return ret; 1764 } 1765 1766 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1767 void __user *arg) 1768 { 1769 struct inode *inode = file_inode(file); 1770 struct btrfs_root *root = BTRFS_I(inode)->root; 1771 int ret = 0; 1772 u64 flags = 0; 1773 1774 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1775 return -EINVAL; 1776 1777 down_read(&root->fs_info->subvol_sem); 1778 if (btrfs_root_readonly(root)) 1779 flags |= BTRFS_SUBVOL_RDONLY; 1780 up_read(&root->fs_info->subvol_sem); 1781 1782 if (copy_to_user(arg, &flags, sizeof(flags))) 1783 ret = -EFAULT; 1784 1785 return ret; 1786 } 1787 1788 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1789 void __user *arg) 1790 { 1791 struct inode *inode = file_inode(file); 1792 struct btrfs_root *root = BTRFS_I(inode)->root; 1793 struct btrfs_trans_handle *trans; 1794 u64 root_flags; 1795 u64 flags; 1796 int ret = 0; 1797 1798 if (!inode_owner_or_capable(inode)) 1799 return -EPERM; 1800 1801 ret = mnt_want_write_file(file); 1802 if (ret) 1803 goto out; 1804 1805 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1806 ret = -EINVAL; 1807 goto out_drop_write; 1808 } 1809 1810 if (copy_from_user(&flags, arg, sizeof(flags))) { 1811 ret = -EFAULT; 1812 goto out_drop_write; 1813 } 1814 1815 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1816 ret = -EINVAL; 1817 goto out_drop_write; 1818 } 1819 1820 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1821 ret = -EOPNOTSUPP; 1822 goto out_drop_write; 1823 } 1824 1825 down_write(&root->fs_info->subvol_sem); 1826 1827 /* nothing to do */ 1828 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1829 goto out_drop_sem; 1830 1831 root_flags = btrfs_root_flags(&root->root_item); 1832 if (flags & BTRFS_SUBVOL_RDONLY) { 1833 btrfs_set_root_flags(&root->root_item, 1834 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1835 } else { 1836 /* 1837 * Block RO -> RW transition if this subvolume is involved in 1838 * send 1839 */ 1840 spin_lock(&root->root_item_lock); 1841 if (root->send_in_progress == 0) { 1842 btrfs_set_root_flags(&root->root_item, 1843 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1844 spin_unlock(&root->root_item_lock); 1845 } else { 1846 spin_unlock(&root->root_item_lock); 1847 btrfs_warn(root->fs_info, 1848 "Attempt to set subvolume %llu read-write during send", 1849 root->root_key.objectid); 1850 ret = -EPERM; 1851 goto out_drop_sem; 1852 } 1853 } 1854 1855 trans = btrfs_start_transaction(root, 1); 1856 if (IS_ERR(trans)) { 1857 ret = PTR_ERR(trans); 1858 goto out_reset; 1859 } 1860 1861 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1862 &root->root_key, &root->root_item); 1863 1864 btrfs_commit_transaction(trans, root); 1865 out_reset: 1866 if (ret) 1867 btrfs_set_root_flags(&root->root_item, root_flags); 1868 out_drop_sem: 1869 up_write(&root->fs_info->subvol_sem); 1870 out_drop_write: 1871 mnt_drop_write_file(file); 1872 out: 1873 return ret; 1874 } 1875 1876 /* 1877 * helper to check if the subvolume references other subvolumes 1878 */ 1879 static noinline int may_destroy_subvol(struct btrfs_root *root) 1880 { 1881 struct btrfs_path *path; 1882 struct btrfs_dir_item *di; 1883 struct btrfs_key key; 1884 u64 dir_id; 1885 int ret; 1886 1887 path = btrfs_alloc_path(); 1888 if (!path) 1889 return -ENOMEM; 1890 1891 /* Make sure this root isn't set as the default subvol */ 1892 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 1893 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, 1894 dir_id, "default", 7, 0); 1895 if (di && !IS_ERR(di)) { 1896 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1897 if (key.objectid == root->root_key.objectid) { 1898 ret = -EPERM; 1899 btrfs_err(root->fs_info, "deleting default subvolume " 1900 "%llu is not allowed", key.objectid); 1901 goto out; 1902 } 1903 btrfs_release_path(path); 1904 } 1905 1906 key.objectid = root->root_key.objectid; 1907 key.type = BTRFS_ROOT_REF_KEY; 1908 key.offset = (u64)-1; 1909 1910 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1911 &key, path, 0, 0); 1912 if (ret < 0) 1913 goto out; 1914 BUG_ON(ret == 0); 1915 1916 ret = 0; 1917 if (path->slots[0] > 0) { 1918 path->slots[0]--; 1919 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1920 if (key.objectid == root->root_key.objectid && 1921 key.type == BTRFS_ROOT_REF_KEY) 1922 ret = -ENOTEMPTY; 1923 } 1924 out: 1925 btrfs_free_path(path); 1926 return ret; 1927 } 1928 1929 static noinline int key_in_sk(struct btrfs_key *key, 1930 struct btrfs_ioctl_search_key *sk) 1931 { 1932 struct btrfs_key test; 1933 int ret; 1934 1935 test.objectid = sk->min_objectid; 1936 test.type = sk->min_type; 1937 test.offset = sk->min_offset; 1938 1939 ret = btrfs_comp_cpu_keys(key, &test); 1940 if (ret < 0) 1941 return 0; 1942 1943 test.objectid = sk->max_objectid; 1944 test.type = sk->max_type; 1945 test.offset = sk->max_offset; 1946 1947 ret = btrfs_comp_cpu_keys(key, &test); 1948 if (ret > 0) 1949 return 0; 1950 return 1; 1951 } 1952 1953 static noinline int copy_to_sk(struct btrfs_root *root, 1954 struct btrfs_path *path, 1955 struct btrfs_key *key, 1956 struct btrfs_ioctl_search_key *sk, 1957 size_t *buf_size, 1958 char __user *ubuf, 1959 unsigned long *sk_offset, 1960 int *num_found) 1961 { 1962 u64 found_transid; 1963 struct extent_buffer *leaf; 1964 struct btrfs_ioctl_search_header sh; 1965 struct btrfs_key test; 1966 unsigned long item_off; 1967 unsigned long item_len; 1968 int nritems; 1969 int i; 1970 int slot; 1971 int ret = 0; 1972 1973 leaf = path->nodes[0]; 1974 slot = path->slots[0]; 1975 nritems = btrfs_header_nritems(leaf); 1976 1977 if (btrfs_header_generation(leaf) > sk->max_transid) { 1978 i = nritems; 1979 goto advance_key; 1980 } 1981 found_transid = btrfs_header_generation(leaf); 1982 1983 for (i = slot; i < nritems; i++) { 1984 item_off = btrfs_item_ptr_offset(leaf, i); 1985 item_len = btrfs_item_size_nr(leaf, i); 1986 1987 btrfs_item_key_to_cpu(leaf, key, i); 1988 if (!key_in_sk(key, sk)) 1989 continue; 1990 1991 if (sizeof(sh) + item_len > *buf_size) { 1992 if (*num_found) { 1993 ret = 1; 1994 goto out; 1995 } 1996 1997 /* 1998 * return one empty item back for v1, which does not 1999 * handle -EOVERFLOW 2000 */ 2001 2002 *buf_size = sizeof(sh) + item_len; 2003 item_len = 0; 2004 ret = -EOVERFLOW; 2005 } 2006 2007 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2008 ret = 1; 2009 goto out; 2010 } 2011 2012 sh.objectid = key->objectid; 2013 sh.offset = key->offset; 2014 sh.type = key->type; 2015 sh.len = item_len; 2016 sh.transid = found_transid; 2017 2018 /* copy search result header */ 2019 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2020 ret = -EFAULT; 2021 goto out; 2022 } 2023 2024 *sk_offset += sizeof(sh); 2025 2026 if (item_len) { 2027 char __user *up = ubuf + *sk_offset; 2028 /* copy the item */ 2029 if (read_extent_buffer_to_user(leaf, up, 2030 item_off, item_len)) { 2031 ret = -EFAULT; 2032 goto out; 2033 } 2034 2035 *sk_offset += item_len; 2036 } 2037 (*num_found)++; 2038 2039 if (ret) /* -EOVERFLOW from above */ 2040 goto out; 2041 2042 if (*num_found >= sk->nr_items) { 2043 ret = 1; 2044 goto out; 2045 } 2046 } 2047 advance_key: 2048 ret = 0; 2049 test.objectid = sk->max_objectid; 2050 test.type = sk->max_type; 2051 test.offset = sk->max_offset; 2052 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2053 ret = 1; 2054 else if (key->offset < (u64)-1) 2055 key->offset++; 2056 else if (key->type < (u8)-1) { 2057 key->offset = 0; 2058 key->type++; 2059 } else if (key->objectid < (u64)-1) { 2060 key->offset = 0; 2061 key->type = 0; 2062 key->objectid++; 2063 } else 2064 ret = 1; 2065 out: 2066 /* 2067 * 0: all items from this leaf copied, continue with next 2068 * 1: * more items can be copied, but unused buffer is too small 2069 * * all items were found 2070 * Either way, it will stops the loop which iterates to the next 2071 * leaf 2072 * -EOVERFLOW: item was to large for buffer 2073 * -EFAULT: could not copy extent buffer back to userspace 2074 */ 2075 return ret; 2076 } 2077 2078 static noinline int search_ioctl(struct inode *inode, 2079 struct btrfs_ioctl_search_key *sk, 2080 size_t *buf_size, 2081 char __user *ubuf) 2082 { 2083 struct btrfs_root *root; 2084 struct btrfs_key key; 2085 struct btrfs_path *path; 2086 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 2087 int ret; 2088 int num_found = 0; 2089 unsigned long sk_offset = 0; 2090 2091 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2092 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2093 return -EOVERFLOW; 2094 } 2095 2096 path = btrfs_alloc_path(); 2097 if (!path) 2098 return -ENOMEM; 2099 2100 if (sk->tree_id == 0) { 2101 /* search the root of the inode that was passed */ 2102 root = BTRFS_I(inode)->root; 2103 } else { 2104 key.objectid = sk->tree_id; 2105 key.type = BTRFS_ROOT_ITEM_KEY; 2106 key.offset = (u64)-1; 2107 root = btrfs_read_fs_root_no_name(info, &key); 2108 if (IS_ERR(root)) { 2109 btrfs_free_path(path); 2110 return -ENOENT; 2111 } 2112 } 2113 2114 key.objectid = sk->min_objectid; 2115 key.type = sk->min_type; 2116 key.offset = sk->min_offset; 2117 2118 while (1) { 2119 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2120 if (ret != 0) { 2121 if (ret > 0) 2122 ret = 0; 2123 goto err; 2124 } 2125 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf, 2126 &sk_offset, &num_found); 2127 btrfs_release_path(path); 2128 if (ret) 2129 break; 2130 2131 } 2132 if (ret > 0) 2133 ret = 0; 2134 err: 2135 sk->nr_items = num_found; 2136 btrfs_free_path(path); 2137 return ret; 2138 } 2139 2140 static noinline int btrfs_ioctl_tree_search(struct file *file, 2141 void __user *argp) 2142 { 2143 struct btrfs_ioctl_search_args __user *uargs; 2144 struct btrfs_ioctl_search_key sk; 2145 struct inode *inode; 2146 int ret; 2147 size_t buf_size; 2148 2149 if (!capable(CAP_SYS_ADMIN)) 2150 return -EPERM; 2151 2152 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2153 2154 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2155 return -EFAULT; 2156 2157 buf_size = sizeof(uargs->buf); 2158 2159 inode = file_inode(file); 2160 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2161 2162 /* 2163 * In the origin implementation an overflow is handled by returning a 2164 * search header with a len of zero, so reset ret. 2165 */ 2166 if (ret == -EOVERFLOW) 2167 ret = 0; 2168 2169 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2170 ret = -EFAULT; 2171 return ret; 2172 } 2173 2174 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2175 void __user *argp) 2176 { 2177 struct btrfs_ioctl_search_args_v2 __user *uarg; 2178 struct btrfs_ioctl_search_args_v2 args; 2179 struct inode *inode; 2180 int ret; 2181 size_t buf_size; 2182 const size_t buf_limit = SZ_16M; 2183 2184 if (!capable(CAP_SYS_ADMIN)) 2185 return -EPERM; 2186 2187 /* copy search header and buffer size */ 2188 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2189 if (copy_from_user(&args, uarg, sizeof(args))) 2190 return -EFAULT; 2191 2192 buf_size = args.buf_size; 2193 2194 if (buf_size < sizeof(struct btrfs_ioctl_search_header)) 2195 return -EOVERFLOW; 2196 2197 /* limit result size to 16MB */ 2198 if (buf_size > buf_limit) 2199 buf_size = buf_limit; 2200 2201 inode = file_inode(file); 2202 ret = search_ioctl(inode, &args.key, &buf_size, 2203 (char *)(&uarg->buf[0])); 2204 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2205 ret = -EFAULT; 2206 else if (ret == -EOVERFLOW && 2207 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2208 ret = -EFAULT; 2209 2210 return ret; 2211 } 2212 2213 /* 2214 * Search INODE_REFs to identify path name of 'dirid' directory 2215 * in a 'tree_id' tree. and sets path name to 'name'. 2216 */ 2217 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2218 u64 tree_id, u64 dirid, char *name) 2219 { 2220 struct btrfs_root *root; 2221 struct btrfs_key key; 2222 char *ptr; 2223 int ret = -1; 2224 int slot; 2225 int len; 2226 int total_len = 0; 2227 struct btrfs_inode_ref *iref; 2228 struct extent_buffer *l; 2229 struct btrfs_path *path; 2230 2231 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2232 name[0]='\0'; 2233 return 0; 2234 } 2235 2236 path = btrfs_alloc_path(); 2237 if (!path) 2238 return -ENOMEM; 2239 2240 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2241 2242 key.objectid = tree_id; 2243 key.type = BTRFS_ROOT_ITEM_KEY; 2244 key.offset = (u64)-1; 2245 root = btrfs_read_fs_root_no_name(info, &key); 2246 if (IS_ERR(root)) { 2247 btrfs_err(info, "could not find root %llu", tree_id); 2248 ret = -ENOENT; 2249 goto out; 2250 } 2251 2252 key.objectid = dirid; 2253 key.type = BTRFS_INODE_REF_KEY; 2254 key.offset = (u64)-1; 2255 2256 while (1) { 2257 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2258 if (ret < 0) 2259 goto out; 2260 else if (ret > 0) { 2261 ret = btrfs_previous_item(root, path, dirid, 2262 BTRFS_INODE_REF_KEY); 2263 if (ret < 0) 2264 goto out; 2265 else if (ret > 0) { 2266 ret = -ENOENT; 2267 goto out; 2268 } 2269 } 2270 2271 l = path->nodes[0]; 2272 slot = path->slots[0]; 2273 btrfs_item_key_to_cpu(l, &key, slot); 2274 2275 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2276 len = btrfs_inode_ref_name_len(l, iref); 2277 ptr -= len + 1; 2278 total_len += len + 1; 2279 if (ptr < name) { 2280 ret = -ENAMETOOLONG; 2281 goto out; 2282 } 2283 2284 *(ptr + len) = '/'; 2285 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2286 2287 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2288 break; 2289 2290 btrfs_release_path(path); 2291 key.objectid = key.offset; 2292 key.offset = (u64)-1; 2293 dirid = key.objectid; 2294 } 2295 memmove(name, ptr, total_len); 2296 name[total_len] = '\0'; 2297 ret = 0; 2298 out: 2299 btrfs_free_path(path); 2300 return ret; 2301 } 2302 2303 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2304 void __user *argp) 2305 { 2306 struct btrfs_ioctl_ino_lookup_args *args; 2307 struct inode *inode; 2308 int ret = 0; 2309 2310 args = memdup_user(argp, sizeof(*args)); 2311 if (IS_ERR(args)) 2312 return PTR_ERR(args); 2313 2314 inode = file_inode(file); 2315 2316 /* 2317 * Unprivileged query to obtain the containing subvolume root id. The 2318 * path is reset so it's consistent with btrfs_search_path_in_tree. 2319 */ 2320 if (args->treeid == 0) 2321 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2322 2323 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2324 args->name[0] = 0; 2325 goto out; 2326 } 2327 2328 if (!capable(CAP_SYS_ADMIN)) { 2329 ret = -EPERM; 2330 goto out; 2331 } 2332 2333 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2334 args->treeid, args->objectid, 2335 args->name); 2336 2337 out: 2338 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2339 ret = -EFAULT; 2340 2341 kfree(args); 2342 return ret; 2343 } 2344 2345 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2346 void __user *arg) 2347 { 2348 struct dentry *parent = file->f_path.dentry; 2349 struct dentry *dentry; 2350 struct inode *dir = d_inode(parent); 2351 struct inode *inode; 2352 struct btrfs_root *root = BTRFS_I(dir)->root; 2353 struct btrfs_root *dest = NULL; 2354 struct btrfs_ioctl_vol_args *vol_args; 2355 struct btrfs_trans_handle *trans; 2356 struct btrfs_block_rsv block_rsv; 2357 u64 root_flags; 2358 u64 qgroup_reserved; 2359 int namelen; 2360 int ret; 2361 int err = 0; 2362 2363 vol_args = memdup_user(arg, sizeof(*vol_args)); 2364 if (IS_ERR(vol_args)) 2365 return PTR_ERR(vol_args); 2366 2367 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2368 namelen = strlen(vol_args->name); 2369 if (strchr(vol_args->name, '/') || 2370 strncmp(vol_args->name, "..", namelen) == 0) { 2371 err = -EINVAL; 2372 goto out; 2373 } 2374 2375 err = mnt_want_write_file(file); 2376 if (err) 2377 goto out; 2378 2379 2380 inode_lock_nested(dir, I_MUTEX_PARENT); 2381 // XXX: should've been 2382 // err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 2383 // if (err == -EINTR) 2384 // goto out_drop_write; 2385 dentry = lookup_one_len(vol_args->name, parent, namelen); 2386 if (IS_ERR(dentry)) { 2387 err = PTR_ERR(dentry); 2388 goto out_unlock_dir; 2389 } 2390 2391 if (d_really_is_negative(dentry)) { 2392 err = -ENOENT; 2393 goto out_dput; 2394 } 2395 2396 inode = d_inode(dentry); 2397 dest = BTRFS_I(inode)->root; 2398 if (!capable(CAP_SYS_ADMIN)) { 2399 /* 2400 * Regular user. Only allow this with a special mount 2401 * option, when the user has write+exec access to the 2402 * subvol root, and when rmdir(2) would have been 2403 * allowed. 2404 * 2405 * Note that this is _not_ check that the subvol is 2406 * empty or doesn't contain data that we wouldn't 2407 * otherwise be able to delete. 2408 * 2409 * Users who want to delete empty subvols should try 2410 * rmdir(2). 2411 */ 2412 err = -EPERM; 2413 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2414 goto out_dput; 2415 2416 /* 2417 * Do not allow deletion if the parent dir is the same 2418 * as the dir to be deleted. That means the ioctl 2419 * must be called on the dentry referencing the root 2420 * of the subvol, not a random directory contained 2421 * within it. 2422 */ 2423 err = -EINVAL; 2424 if (root == dest) 2425 goto out_dput; 2426 2427 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2428 if (err) 2429 goto out_dput; 2430 } 2431 2432 /* check if subvolume may be deleted by a user */ 2433 err = btrfs_may_delete(dir, dentry, 1); 2434 if (err) 2435 goto out_dput; 2436 2437 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2438 err = -EINVAL; 2439 goto out_dput; 2440 } 2441 2442 inode_lock(inode); 2443 2444 /* 2445 * Don't allow to delete a subvolume with send in progress. This is 2446 * inside the i_mutex so the error handling that has to drop the bit 2447 * again is not run concurrently. 2448 */ 2449 spin_lock(&dest->root_item_lock); 2450 root_flags = btrfs_root_flags(&dest->root_item); 2451 if (dest->send_in_progress == 0) { 2452 btrfs_set_root_flags(&dest->root_item, 2453 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2454 spin_unlock(&dest->root_item_lock); 2455 } else { 2456 spin_unlock(&dest->root_item_lock); 2457 btrfs_warn(root->fs_info, 2458 "Attempt to delete subvolume %llu during send", 2459 dest->root_key.objectid); 2460 err = -EPERM; 2461 goto out_unlock_inode; 2462 } 2463 2464 down_write(&root->fs_info->subvol_sem); 2465 2466 err = may_destroy_subvol(dest); 2467 if (err) 2468 goto out_up_write; 2469 2470 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2471 /* 2472 * One for dir inode, two for dir entries, two for root 2473 * ref/backref. 2474 */ 2475 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2476 5, &qgroup_reserved, true); 2477 if (err) 2478 goto out_up_write; 2479 2480 trans = btrfs_start_transaction(root, 0); 2481 if (IS_ERR(trans)) { 2482 err = PTR_ERR(trans); 2483 goto out_release; 2484 } 2485 trans->block_rsv = &block_rsv; 2486 trans->bytes_reserved = block_rsv.size; 2487 2488 btrfs_record_snapshot_destroy(trans, dir); 2489 2490 ret = btrfs_unlink_subvol(trans, root, dir, 2491 dest->root_key.objectid, 2492 dentry->d_name.name, 2493 dentry->d_name.len); 2494 if (ret) { 2495 err = ret; 2496 btrfs_abort_transaction(trans, root, ret); 2497 goto out_end_trans; 2498 } 2499 2500 btrfs_record_root_in_trans(trans, dest); 2501 2502 memset(&dest->root_item.drop_progress, 0, 2503 sizeof(dest->root_item.drop_progress)); 2504 dest->root_item.drop_level = 0; 2505 btrfs_set_root_refs(&dest->root_item, 0); 2506 2507 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2508 ret = btrfs_insert_orphan_item(trans, 2509 root->fs_info->tree_root, 2510 dest->root_key.objectid); 2511 if (ret) { 2512 btrfs_abort_transaction(trans, root, ret); 2513 err = ret; 2514 goto out_end_trans; 2515 } 2516 } 2517 2518 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2519 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 2520 dest->root_key.objectid); 2521 if (ret && ret != -ENOENT) { 2522 btrfs_abort_transaction(trans, root, ret); 2523 err = ret; 2524 goto out_end_trans; 2525 } 2526 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2527 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2528 dest->root_item.received_uuid, 2529 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2530 dest->root_key.objectid); 2531 if (ret && ret != -ENOENT) { 2532 btrfs_abort_transaction(trans, root, ret); 2533 err = ret; 2534 goto out_end_trans; 2535 } 2536 } 2537 2538 out_end_trans: 2539 trans->block_rsv = NULL; 2540 trans->bytes_reserved = 0; 2541 ret = btrfs_end_transaction(trans, root); 2542 if (ret && !err) 2543 err = ret; 2544 inode->i_flags |= S_DEAD; 2545 out_release: 2546 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 2547 out_up_write: 2548 up_write(&root->fs_info->subvol_sem); 2549 if (err) { 2550 spin_lock(&dest->root_item_lock); 2551 root_flags = btrfs_root_flags(&dest->root_item); 2552 btrfs_set_root_flags(&dest->root_item, 2553 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2554 spin_unlock(&dest->root_item_lock); 2555 } 2556 out_unlock_inode: 2557 inode_unlock(inode); 2558 if (!err) { 2559 d_invalidate(dentry); 2560 btrfs_invalidate_inodes(dest); 2561 d_delete(dentry); 2562 ASSERT(dest->send_in_progress == 0); 2563 2564 /* the last ref */ 2565 if (dest->ino_cache_inode) { 2566 iput(dest->ino_cache_inode); 2567 dest->ino_cache_inode = NULL; 2568 } 2569 } 2570 out_dput: 2571 dput(dentry); 2572 out_unlock_dir: 2573 inode_unlock(dir); 2574 //out_drop_write: 2575 mnt_drop_write_file(file); 2576 out: 2577 kfree(vol_args); 2578 return err; 2579 } 2580 2581 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2582 { 2583 struct inode *inode = file_inode(file); 2584 struct btrfs_root *root = BTRFS_I(inode)->root; 2585 struct btrfs_ioctl_defrag_range_args *range; 2586 int ret; 2587 2588 ret = mnt_want_write_file(file); 2589 if (ret) 2590 return ret; 2591 2592 if (btrfs_root_readonly(root)) { 2593 ret = -EROFS; 2594 goto out; 2595 } 2596 2597 switch (inode->i_mode & S_IFMT) { 2598 case S_IFDIR: 2599 if (!capable(CAP_SYS_ADMIN)) { 2600 ret = -EPERM; 2601 goto out; 2602 } 2603 ret = btrfs_defrag_root(root); 2604 if (ret) 2605 goto out; 2606 ret = btrfs_defrag_root(root->fs_info->extent_root); 2607 break; 2608 case S_IFREG: 2609 if (!(file->f_mode & FMODE_WRITE)) { 2610 ret = -EINVAL; 2611 goto out; 2612 } 2613 2614 range = kzalloc(sizeof(*range), GFP_KERNEL); 2615 if (!range) { 2616 ret = -ENOMEM; 2617 goto out; 2618 } 2619 2620 if (argp) { 2621 if (copy_from_user(range, argp, 2622 sizeof(*range))) { 2623 ret = -EFAULT; 2624 kfree(range); 2625 goto out; 2626 } 2627 /* compression requires us to start the IO */ 2628 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2629 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2630 range->extent_thresh = (u32)-1; 2631 } 2632 } else { 2633 /* the rest are all set to zero by kzalloc */ 2634 range->len = (u64)-1; 2635 } 2636 ret = btrfs_defrag_file(file_inode(file), file, 2637 range, 0, 0); 2638 if (ret > 0) 2639 ret = 0; 2640 kfree(range); 2641 break; 2642 default: 2643 ret = -EINVAL; 2644 } 2645 out: 2646 mnt_drop_write_file(file); 2647 return ret; 2648 } 2649 2650 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2651 { 2652 struct btrfs_ioctl_vol_args *vol_args; 2653 int ret; 2654 2655 if (!capable(CAP_SYS_ADMIN)) 2656 return -EPERM; 2657 2658 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2659 1)) { 2660 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2661 } 2662 2663 mutex_lock(&root->fs_info->volume_mutex); 2664 vol_args = memdup_user(arg, sizeof(*vol_args)); 2665 if (IS_ERR(vol_args)) { 2666 ret = PTR_ERR(vol_args); 2667 goto out; 2668 } 2669 2670 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2671 ret = btrfs_init_new_device(root, vol_args->name); 2672 2673 if (!ret) 2674 btrfs_info(root->fs_info, "disk added %s",vol_args->name); 2675 2676 kfree(vol_args); 2677 out: 2678 mutex_unlock(&root->fs_info->volume_mutex); 2679 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2680 return ret; 2681 } 2682 2683 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2684 { 2685 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2686 struct btrfs_ioctl_vol_args_v2 *vol_args; 2687 int ret; 2688 2689 if (!capable(CAP_SYS_ADMIN)) 2690 return -EPERM; 2691 2692 ret = mnt_want_write_file(file); 2693 if (ret) 2694 return ret; 2695 2696 vol_args = memdup_user(arg, sizeof(*vol_args)); 2697 if (IS_ERR(vol_args)) { 2698 ret = PTR_ERR(vol_args); 2699 goto err_drop; 2700 } 2701 2702 /* Check for compatibility reject unknown flags */ 2703 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) 2704 return -EOPNOTSUPP; 2705 2706 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2707 1)) { 2708 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2709 goto out; 2710 } 2711 2712 mutex_lock(&root->fs_info->volume_mutex); 2713 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2714 ret = btrfs_rm_device(root, NULL, vol_args->devid); 2715 } else { 2716 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2717 ret = btrfs_rm_device(root, vol_args->name, 0); 2718 } 2719 mutex_unlock(&root->fs_info->volume_mutex); 2720 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2721 2722 if (!ret) { 2723 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2724 btrfs_info(root->fs_info, "device deleted: id %llu", 2725 vol_args->devid); 2726 else 2727 btrfs_info(root->fs_info, "device deleted: %s", 2728 vol_args->name); 2729 } 2730 out: 2731 kfree(vol_args); 2732 err_drop: 2733 mnt_drop_write_file(file); 2734 return ret; 2735 } 2736 2737 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2738 { 2739 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2740 struct btrfs_ioctl_vol_args *vol_args; 2741 int ret; 2742 2743 if (!capable(CAP_SYS_ADMIN)) 2744 return -EPERM; 2745 2746 ret = mnt_want_write_file(file); 2747 if (ret) 2748 return ret; 2749 2750 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2751 1)) { 2752 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2753 goto out_drop_write; 2754 } 2755 2756 vol_args = memdup_user(arg, sizeof(*vol_args)); 2757 if (IS_ERR(vol_args)) { 2758 ret = PTR_ERR(vol_args); 2759 goto out; 2760 } 2761 2762 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2763 mutex_lock(&root->fs_info->volume_mutex); 2764 ret = btrfs_rm_device(root, vol_args->name, 0); 2765 mutex_unlock(&root->fs_info->volume_mutex); 2766 2767 if (!ret) 2768 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name); 2769 kfree(vol_args); 2770 out: 2771 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2772 out_drop_write: 2773 mnt_drop_write_file(file); 2774 2775 return ret; 2776 } 2777 2778 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2779 { 2780 struct btrfs_ioctl_fs_info_args *fi_args; 2781 struct btrfs_device *device; 2782 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2783 int ret = 0; 2784 2785 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2786 if (!fi_args) 2787 return -ENOMEM; 2788 2789 mutex_lock(&fs_devices->device_list_mutex); 2790 fi_args->num_devices = fs_devices->num_devices; 2791 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2792 2793 list_for_each_entry(device, &fs_devices->devices, dev_list) { 2794 if (device->devid > fi_args->max_id) 2795 fi_args->max_id = device->devid; 2796 } 2797 mutex_unlock(&fs_devices->device_list_mutex); 2798 2799 fi_args->nodesize = root->fs_info->super_copy->nodesize; 2800 fi_args->sectorsize = root->fs_info->super_copy->sectorsize; 2801 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize; 2802 2803 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2804 ret = -EFAULT; 2805 2806 kfree(fi_args); 2807 return ret; 2808 } 2809 2810 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2811 { 2812 struct btrfs_ioctl_dev_info_args *di_args; 2813 struct btrfs_device *dev; 2814 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2815 int ret = 0; 2816 char *s_uuid = NULL; 2817 2818 di_args = memdup_user(arg, sizeof(*di_args)); 2819 if (IS_ERR(di_args)) 2820 return PTR_ERR(di_args); 2821 2822 if (!btrfs_is_empty_uuid(di_args->uuid)) 2823 s_uuid = di_args->uuid; 2824 2825 mutex_lock(&fs_devices->device_list_mutex); 2826 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2827 2828 if (!dev) { 2829 ret = -ENODEV; 2830 goto out; 2831 } 2832 2833 di_args->devid = dev->devid; 2834 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2835 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2836 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2837 if (dev->name) { 2838 struct rcu_string *name; 2839 2840 rcu_read_lock(); 2841 name = rcu_dereference(dev->name); 2842 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2843 rcu_read_unlock(); 2844 di_args->path[sizeof(di_args->path) - 1] = 0; 2845 } else { 2846 di_args->path[0] = '\0'; 2847 } 2848 2849 out: 2850 mutex_unlock(&fs_devices->device_list_mutex); 2851 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2852 ret = -EFAULT; 2853 2854 kfree(di_args); 2855 return ret; 2856 } 2857 2858 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 2859 { 2860 struct page *page; 2861 2862 page = grab_cache_page(inode->i_mapping, index); 2863 if (!page) 2864 return ERR_PTR(-ENOMEM); 2865 2866 if (!PageUptodate(page)) { 2867 int ret; 2868 2869 ret = btrfs_readpage(NULL, page); 2870 if (ret) 2871 return ERR_PTR(ret); 2872 lock_page(page); 2873 if (!PageUptodate(page)) { 2874 unlock_page(page); 2875 put_page(page); 2876 return ERR_PTR(-EIO); 2877 } 2878 if (page->mapping != inode->i_mapping) { 2879 unlock_page(page); 2880 put_page(page); 2881 return ERR_PTR(-EAGAIN); 2882 } 2883 } 2884 2885 return page; 2886 } 2887 2888 static int gather_extent_pages(struct inode *inode, struct page **pages, 2889 int num_pages, u64 off) 2890 { 2891 int i; 2892 pgoff_t index = off >> PAGE_SHIFT; 2893 2894 for (i = 0; i < num_pages; i++) { 2895 again: 2896 pages[i] = extent_same_get_page(inode, index + i); 2897 if (IS_ERR(pages[i])) { 2898 int err = PTR_ERR(pages[i]); 2899 2900 if (err == -EAGAIN) 2901 goto again; 2902 pages[i] = NULL; 2903 return err; 2904 } 2905 } 2906 return 0; 2907 } 2908 2909 static int lock_extent_range(struct inode *inode, u64 off, u64 len, 2910 bool retry_range_locking) 2911 { 2912 /* 2913 * Do any pending delalloc/csum calculations on inode, one way or 2914 * another, and lock file content. 2915 * The locking order is: 2916 * 2917 * 1) pages 2918 * 2) range in the inode's io tree 2919 */ 2920 while (1) { 2921 struct btrfs_ordered_extent *ordered; 2922 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2923 ordered = btrfs_lookup_first_ordered_extent(inode, 2924 off + len - 1); 2925 if ((!ordered || 2926 ordered->file_offset + ordered->len <= off || 2927 ordered->file_offset >= off + len) && 2928 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2929 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2930 if (ordered) 2931 btrfs_put_ordered_extent(ordered); 2932 break; 2933 } 2934 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2935 if (ordered) 2936 btrfs_put_ordered_extent(ordered); 2937 if (!retry_range_locking) 2938 return -EAGAIN; 2939 btrfs_wait_ordered_range(inode, off, len); 2940 } 2941 return 0; 2942 } 2943 2944 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 2945 { 2946 inode_unlock(inode1); 2947 inode_unlock(inode2); 2948 } 2949 2950 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 2951 { 2952 if (inode1 < inode2) 2953 swap(inode1, inode2); 2954 2955 inode_lock_nested(inode1, I_MUTEX_PARENT); 2956 inode_lock_nested(inode2, I_MUTEX_CHILD); 2957 } 2958 2959 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 2960 struct inode *inode2, u64 loff2, u64 len) 2961 { 2962 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2963 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2964 } 2965 2966 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 2967 struct inode *inode2, u64 loff2, u64 len, 2968 bool retry_range_locking) 2969 { 2970 int ret; 2971 2972 if (inode1 < inode2) { 2973 swap(inode1, inode2); 2974 swap(loff1, loff2); 2975 } 2976 ret = lock_extent_range(inode1, loff1, len, retry_range_locking); 2977 if (ret) 2978 return ret; 2979 ret = lock_extent_range(inode2, loff2, len, retry_range_locking); 2980 if (ret) 2981 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, 2982 loff1 + len - 1); 2983 return ret; 2984 } 2985 2986 struct cmp_pages { 2987 int num_pages; 2988 struct page **src_pages; 2989 struct page **dst_pages; 2990 }; 2991 2992 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 2993 { 2994 int i; 2995 struct page *pg; 2996 2997 for (i = 0; i < cmp->num_pages; i++) { 2998 pg = cmp->src_pages[i]; 2999 if (pg) { 3000 unlock_page(pg); 3001 put_page(pg); 3002 } 3003 pg = cmp->dst_pages[i]; 3004 if (pg) { 3005 unlock_page(pg); 3006 put_page(pg); 3007 } 3008 } 3009 kfree(cmp->src_pages); 3010 kfree(cmp->dst_pages); 3011 } 3012 3013 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 3014 struct inode *dst, u64 dst_loff, 3015 u64 len, struct cmp_pages *cmp) 3016 { 3017 int ret; 3018 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT; 3019 struct page **src_pgarr, **dst_pgarr; 3020 3021 /* 3022 * We must gather up all the pages before we initiate our 3023 * extent locking. We use an array for the page pointers. Size 3024 * of the array is bounded by len, which is in turn bounded by 3025 * BTRFS_MAX_DEDUPE_LEN. 3026 */ 3027 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3028 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL); 3029 if (!src_pgarr || !dst_pgarr) { 3030 kfree(src_pgarr); 3031 kfree(dst_pgarr); 3032 return -ENOMEM; 3033 } 3034 cmp->num_pages = num_pages; 3035 cmp->src_pages = src_pgarr; 3036 cmp->dst_pages = dst_pgarr; 3037 3038 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff); 3039 if (ret) 3040 goto out; 3041 3042 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff); 3043 3044 out: 3045 if (ret) 3046 btrfs_cmp_data_free(cmp); 3047 return 0; 3048 } 3049 3050 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst, 3051 u64 dst_loff, u64 len, struct cmp_pages *cmp) 3052 { 3053 int ret = 0; 3054 int i; 3055 struct page *src_page, *dst_page; 3056 unsigned int cmp_len = PAGE_SIZE; 3057 void *addr, *dst_addr; 3058 3059 i = 0; 3060 while (len) { 3061 if (len < PAGE_SIZE) 3062 cmp_len = len; 3063 3064 BUG_ON(i >= cmp->num_pages); 3065 3066 src_page = cmp->src_pages[i]; 3067 dst_page = cmp->dst_pages[i]; 3068 ASSERT(PageLocked(src_page)); 3069 ASSERT(PageLocked(dst_page)); 3070 3071 addr = kmap_atomic(src_page); 3072 dst_addr = kmap_atomic(dst_page); 3073 3074 flush_dcache_page(src_page); 3075 flush_dcache_page(dst_page); 3076 3077 if (memcmp(addr, dst_addr, cmp_len)) 3078 ret = -EBADE; 3079 3080 kunmap_atomic(addr); 3081 kunmap_atomic(dst_addr); 3082 3083 if (ret) 3084 break; 3085 3086 len -= cmp_len; 3087 i++; 3088 } 3089 3090 return ret; 3091 } 3092 3093 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 3094 u64 olen) 3095 { 3096 u64 len = *plen; 3097 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 3098 3099 if (off + olen > inode->i_size || off + olen < off) 3100 return -EINVAL; 3101 3102 /* if we extend to eof, continue to block boundary */ 3103 if (off + len == inode->i_size) 3104 *plen = len = ALIGN(inode->i_size, bs) - off; 3105 3106 /* Check that we are block aligned - btrfs_clone() requires this */ 3107 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 3108 return -EINVAL; 3109 3110 return 0; 3111 } 3112 3113 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3114 struct inode *dst, u64 dst_loff) 3115 { 3116 int ret; 3117 u64 len = olen; 3118 struct cmp_pages cmp; 3119 int same_inode = 0; 3120 u64 same_lock_start = 0; 3121 u64 same_lock_len = 0; 3122 3123 if (src == dst) 3124 same_inode = 1; 3125 3126 if (len == 0) 3127 return 0; 3128 3129 if (same_inode) { 3130 inode_lock(src); 3131 3132 ret = extent_same_check_offsets(src, loff, &len, olen); 3133 if (ret) 3134 goto out_unlock; 3135 ret = extent_same_check_offsets(src, dst_loff, &len, olen); 3136 if (ret) 3137 goto out_unlock; 3138 3139 /* 3140 * Single inode case wants the same checks, except we 3141 * don't want our length pushed out past i_size as 3142 * comparing that data range makes no sense. 3143 * 3144 * extent_same_check_offsets() will do this for an 3145 * unaligned length at i_size, so catch it here and 3146 * reject the request. 3147 * 3148 * This effectively means we require aligned extents 3149 * for the single-inode case, whereas the other cases 3150 * allow an unaligned length so long as it ends at 3151 * i_size. 3152 */ 3153 if (len != olen) { 3154 ret = -EINVAL; 3155 goto out_unlock; 3156 } 3157 3158 /* Check for overlapping ranges */ 3159 if (dst_loff + len > loff && dst_loff < loff + len) { 3160 ret = -EINVAL; 3161 goto out_unlock; 3162 } 3163 3164 same_lock_start = min_t(u64, loff, dst_loff); 3165 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3166 } else { 3167 btrfs_double_inode_lock(src, dst); 3168 3169 ret = extent_same_check_offsets(src, loff, &len, olen); 3170 if (ret) 3171 goto out_unlock; 3172 3173 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3174 if (ret) 3175 goto out_unlock; 3176 } 3177 3178 /* don't make the dst file partly checksummed */ 3179 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3180 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3181 ret = -EINVAL; 3182 goto out_unlock; 3183 } 3184 3185 again: 3186 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp); 3187 if (ret) 3188 goto out_unlock; 3189 3190 if (same_inode) 3191 ret = lock_extent_range(src, same_lock_start, same_lock_len, 3192 false); 3193 else 3194 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, 3195 false); 3196 /* 3197 * If one of the inodes has dirty pages in the respective range or 3198 * ordered extents, we need to flush dellaloc and wait for all ordered 3199 * extents in the range. We must unlock the pages and the ranges in the 3200 * io trees to avoid deadlocks when flushing delalloc (requires locking 3201 * pages) and when waiting for ordered extents to complete (they require 3202 * range locking). 3203 */ 3204 if (ret == -EAGAIN) { 3205 /* 3206 * Ranges in the io trees already unlocked. Now unlock all 3207 * pages before waiting for all IO to complete. 3208 */ 3209 btrfs_cmp_data_free(&cmp); 3210 if (same_inode) { 3211 btrfs_wait_ordered_range(src, same_lock_start, 3212 same_lock_len); 3213 } else { 3214 btrfs_wait_ordered_range(src, loff, len); 3215 btrfs_wait_ordered_range(dst, dst_loff, len); 3216 } 3217 goto again; 3218 } 3219 ASSERT(ret == 0); 3220 if (WARN_ON(ret)) { 3221 /* ranges in the io trees already unlocked */ 3222 btrfs_cmp_data_free(&cmp); 3223 return ret; 3224 } 3225 3226 /* pass original length for comparison so we stay within i_size */ 3227 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp); 3228 if (ret == 0) 3229 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3230 3231 if (same_inode) 3232 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3233 same_lock_start + same_lock_len - 1); 3234 else 3235 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3236 3237 btrfs_cmp_data_free(&cmp); 3238 out_unlock: 3239 if (same_inode) 3240 inode_unlock(src); 3241 else 3242 btrfs_double_inode_unlock(src, dst); 3243 3244 return ret; 3245 } 3246 3247 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3248 3249 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen, 3250 struct file *dst_file, u64 dst_loff) 3251 { 3252 struct inode *src = file_inode(src_file); 3253 struct inode *dst = file_inode(dst_file); 3254 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 3255 ssize_t res; 3256 3257 if (olen > BTRFS_MAX_DEDUPE_LEN) 3258 olen = BTRFS_MAX_DEDUPE_LEN; 3259 3260 if (WARN_ON_ONCE(bs < PAGE_SIZE)) { 3261 /* 3262 * Btrfs does not support blocksize < page_size. As a 3263 * result, btrfs_cmp_data() won't correctly handle 3264 * this situation without an update. 3265 */ 3266 return -EINVAL; 3267 } 3268 3269 res = btrfs_extent_same(src, loff, olen, dst, dst_loff); 3270 if (res) 3271 return res; 3272 return olen; 3273 } 3274 3275 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3276 struct inode *inode, 3277 u64 endoff, 3278 const u64 destoff, 3279 const u64 olen, 3280 int no_time_update) 3281 { 3282 struct btrfs_root *root = BTRFS_I(inode)->root; 3283 int ret; 3284 3285 inode_inc_iversion(inode); 3286 if (!no_time_update) 3287 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb); 3288 /* 3289 * We round up to the block size at eof when determining which 3290 * extents to clone above, but shouldn't round up the file size. 3291 */ 3292 if (endoff > destoff + olen) 3293 endoff = destoff + olen; 3294 if (endoff > inode->i_size) 3295 btrfs_i_size_write(inode, endoff); 3296 3297 ret = btrfs_update_inode(trans, root, inode); 3298 if (ret) { 3299 btrfs_abort_transaction(trans, root, ret); 3300 btrfs_end_transaction(trans, root); 3301 goto out; 3302 } 3303 ret = btrfs_end_transaction(trans, root); 3304 out: 3305 return ret; 3306 } 3307 3308 static void clone_update_extent_map(struct inode *inode, 3309 const struct btrfs_trans_handle *trans, 3310 const struct btrfs_path *path, 3311 const u64 hole_offset, 3312 const u64 hole_len) 3313 { 3314 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3315 struct extent_map *em; 3316 int ret; 3317 3318 em = alloc_extent_map(); 3319 if (!em) { 3320 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3321 &BTRFS_I(inode)->runtime_flags); 3322 return; 3323 } 3324 3325 if (path) { 3326 struct btrfs_file_extent_item *fi; 3327 3328 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3329 struct btrfs_file_extent_item); 3330 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3331 em->generation = -1; 3332 if (btrfs_file_extent_type(path->nodes[0], fi) == 3333 BTRFS_FILE_EXTENT_INLINE) 3334 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3335 &BTRFS_I(inode)->runtime_flags); 3336 } else { 3337 em->start = hole_offset; 3338 em->len = hole_len; 3339 em->ram_bytes = em->len; 3340 em->orig_start = hole_offset; 3341 em->block_start = EXTENT_MAP_HOLE; 3342 em->block_len = 0; 3343 em->orig_block_len = 0; 3344 em->compress_type = BTRFS_COMPRESS_NONE; 3345 em->generation = trans->transid; 3346 } 3347 3348 while (1) { 3349 write_lock(&em_tree->lock); 3350 ret = add_extent_mapping(em_tree, em, 1); 3351 write_unlock(&em_tree->lock); 3352 if (ret != -EEXIST) { 3353 free_extent_map(em); 3354 break; 3355 } 3356 btrfs_drop_extent_cache(inode, em->start, 3357 em->start + em->len - 1, 0); 3358 } 3359 3360 if (ret) 3361 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3362 &BTRFS_I(inode)->runtime_flags); 3363 } 3364 3365 /* 3366 * Make sure we do not end up inserting an inline extent into a file that has 3367 * already other (non-inline) extents. If a file has an inline extent it can 3368 * not have any other extents and the (single) inline extent must start at the 3369 * file offset 0. Failing to respect these rules will lead to file corruption, 3370 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3371 * 3372 * We can have extents that have been already written to disk or we can have 3373 * dirty ranges still in delalloc, in which case the extent maps and items are 3374 * created only when we run delalloc, and the delalloc ranges might fall outside 3375 * the range we are currently locking in the inode's io tree. So we check the 3376 * inode's i_size because of that (i_size updates are done while holding the 3377 * i_mutex, which we are holding here). 3378 * We also check to see if the inode has a size not greater than "datal" but has 3379 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3380 * protected against such concurrent fallocate calls by the i_mutex). 3381 * 3382 * If the file has no extents but a size greater than datal, do not allow the 3383 * copy because we would need turn the inline extent into a non-inline one (even 3384 * with NO_HOLES enabled). If we find our destination inode only has one inline 3385 * extent, just overwrite it with the source inline extent if its size is less 3386 * than the source extent's size, or we could copy the source inline extent's 3387 * data into the destination inode's inline extent if the later is greater then 3388 * the former. 3389 */ 3390 static int clone_copy_inline_extent(struct inode *src, 3391 struct inode *dst, 3392 struct btrfs_trans_handle *trans, 3393 struct btrfs_path *path, 3394 struct btrfs_key *new_key, 3395 const u64 drop_start, 3396 const u64 datal, 3397 const u64 skip, 3398 const u64 size, 3399 char *inline_data) 3400 { 3401 struct btrfs_root *root = BTRFS_I(dst)->root; 3402 const u64 aligned_end = ALIGN(new_key->offset + datal, 3403 root->sectorsize); 3404 int ret; 3405 struct btrfs_key key; 3406 3407 if (new_key->offset > 0) 3408 return -EOPNOTSUPP; 3409 3410 key.objectid = btrfs_ino(dst); 3411 key.type = BTRFS_EXTENT_DATA_KEY; 3412 key.offset = 0; 3413 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3414 if (ret < 0) { 3415 return ret; 3416 } else if (ret > 0) { 3417 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3418 ret = btrfs_next_leaf(root, path); 3419 if (ret < 0) 3420 return ret; 3421 else if (ret > 0) 3422 goto copy_inline_extent; 3423 } 3424 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3425 if (key.objectid == btrfs_ino(dst) && 3426 key.type == BTRFS_EXTENT_DATA_KEY) { 3427 ASSERT(key.offset > 0); 3428 return -EOPNOTSUPP; 3429 } 3430 } else if (i_size_read(dst) <= datal) { 3431 struct btrfs_file_extent_item *ei; 3432 u64 ext_len; 3433 3434 /* 3435 * If the file size is <= datal, make sure there are no other 3436 * extents following (can happen do to an fallocate call with 3437 * the flag FALLOC_FL_KEEP_SIZE). 3438 */ 3439 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3440 struct btrfs_file_extent_item); 3441 /* 3442 * If it's an inline extent, it can not have other extents 3443 * following it. 3444 */ 3445 if (btrfs_file_extent_type(path->nodes[0], ei) == 3446 BTRFS_FILE_EXTENT_INLINE) 3447 goto copy_inline_extent; 3448 3449 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3450 if (ext_len > aligned_end) 3451 return -EOPNOTSUPP; 3452 3453 ret = btrfs_next_item(root, path); 3454 if (ret < 0) { 3455 return ret; 3456 } else if (ret == 0) { 3457 btrfs_item_key_to_cpu(path->nodes[0], &key, 3458 path->slots[0]); 3459 if (key.objectid == btrfs_ino(dst) && 3460 key.type == BTRFS_EXTENT_DATA_KEY) 3461 return -EOPNOTSUPP; 3462 } 3463 } 3464 3465 copy_inline_extent: 3466 /* 3467 * We have no extent items, or we have an extent at offset 0 which may 3468 * or may not be inlined. All these cases are dealt the same way. 3469 */ 3470 if (i_size_read(dst) > datal) { 3471 /* 3472 * If the destination inode has an inline extent... 3473 * This would require copying the data from the source inline 3474 * extent into the beginning of the destination's inline extent. 3475 * But this is really complex, both extents can be compressed 3476 * or just one of them, which would require decompressing and 3477 * re-compressing data (which could increase the new compressed 3478 * size, not allowing the compressed data to fit anymore in an 3479 * inline extent). 3480 * So just don't support this case for now (it should be rare, 3481 * we are not really saving space when cloning inline extents). 3482 */ 3483 return -EOPNOTSUPP; 3484 } 3485 3486 btrfs_release_path(path); 3487 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3488 if (ret) 3489 return ret; 3490 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3491 if (ret) 3492 return ret; 3493 3494 if (skip) { 3495 const u32 start = btrfs_file_extent_calc_inline_size(0); 3496 3497 memmove(inline_data + start, inline_data + start + skip, datal); 3498 } 3499 3500 write_extent_buffer(path->nodes[0], inline_data, 3501 btrfs_item_ptr_offset(path->nodes[0], 3502 path->slots[0]), 3503 size); 3504 inode_add_bytes(dst, datal); 3505 3506 return 0; 3507 } 3508 3509 /** 3510 * btrfs_clone() - clone a range from inode file to another 3511 * 3512 * @src: Inode to clone from 3513 * @inode: Inode to clone to 3514 * @off: Offset within source to start clone from 3515 * @olen: Original length, passed by user, of range to clone 3516 * @olen_aligned: Block-aligned value of olen 3517 * @destoff: Offset within @inode to start clone 3518 * @no_time_update: Whether to update mtime/ctime on the target inode 3519 */ 3520 static int btrfs_clone(struct inode *src, struct inode *inode, 3521 const u64 off, const u64 olen, const u64 olen_aligned, 3522 const u64 destoff, int no_time_update) 3523 { 3524 struct btrfs_root *root = BTRFS_I(inode)->root; 3525 struct btrfs_path *path = NULL; 3526 struct extent_buffer *leaf; 3527 struct btrfs_trans_handle *trans; 3528 char *buf = NULL; 3529 struct btrfs_key key; 3530 u32 nritems; 3531 int slot; 3532 int ret; 3533 const u64 len = olen_aligned; 3534 u64 last_dest_end = destoff; 3535 3536 ret = -ENOMEM; 3537 buf = kmalloc(root->nodesize, GFP_KERNEL | __GFP_NOWARN); 3538 if (!buf) { 3539 buf = vmalloc(root->nodesize); 3540 if (!buf) 3541 return ret; 3542 } 3543 3544 path = btrfs_alloc_path(); 3545 if (!path) { 3546 kvfree(buf); 3547 return ret; 3548 } 3549 3550 path->reada = READA_FORWARD; 3551 /* clone data */ 3552 key.objectid = btrfs_ino(src); 3553 key.type = BTRFS_EXTENT_DATA_KEY; 3554 key.offset = off; 3555 3556 while (1) { 3557 u64 next_key_min_offset = key.offset + 1; 3558 3559 /* 3560 * note the key will change type as we walk through the 3561 * tree. 3562 */ 3563 path->leave_spinning = 1; 3564 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3565 0, 0); 3566 if (ret < 0) 3567 goto out; 3568 /* 3569 * First search, if no extent item that starts at offset off was 3570 * found but the previous item is an extent item, it's possible 3571 * it might overlap our target range, therefore process it. 3572 */ 3573 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3574 btrfs_item_key_to_cpu(path->nodes[0], &key, 3575 path->slots[0] - 1); 3576 if (key.type == BTRFS_EXTENT_DATA_KEY) 3577 path->slots[0]--; 3578 } 3579 3580 nritems = btrfs_header_nritems(path->nodes[0]); 3581 process_slot: 3582 if (path->slots[0] >= nritems) { 3583 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3584 if (ret < 0) 3585 goto out; 3586 if (ret > 0) 3587 break; 3588 nritems = btrfs_header_nritems(path->nodes[0]); 3589 } 3590 leaf = path->nodes[0]; 3591 slot = path->slots[0]; 3592 3593 btrfs_item_key_to_cpu(leaf, &key, slot); 3594 if (key.type > BTRFS_EXTENT_DATA_KEY || 3595 key.objectid != btrfs_ino(src)) 3596 break; 3597 3598 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3599 struct btrfs_file_extent_item *extent; 3600 int type; 3601 u32 size; 3602 struct btrfs_key new_key; 3603 u64 disko = 0, diskl = 0; 3604 u64 datao = 0, datal = 0; 3605 u8 comp; 3606 u64 drop_start; 3607 3608 extent = btrfs_item_ptr(leaf, slot, 3609 struct btrfs_file_extent_item); 3610 comp = btrfs_file_extent_compression(leaf, extent); 3611 type = btrfs_file_extent_type(leaf, extent); 3612 if (type == BTRFS_FILE_EXTENT_REG || 3613 type == BTRFS_FILE_EXTENT_PREALLOC) { 3614 disko = btrfs_file_extent_disk_bytenr(leaf, 3615 extent); 3616 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3617 extent); 3618 datao = btrfs_file_extent_offset(leaf, extent); 3619 datal = btrfs_file_extent_num_bytes(leaf, 3620 extent); 3621 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3622 /* take upper bound, may be compressed */ 3623 datal = btrfs_file_extent_ram_bytes(leaf, 3624 extent); 3625 } 3626 3627 /* 3628 * The first search might have left us at an extent 3629 * item that ends before our target range's start, can 3630 * happen if we have holes and NO_HOLES feature enabled. 3631 */ 3632 if (key.offset + datal <= off) { 3633 path->slots[0]++; 3634 goto process_slot; 3635 } else if (key.offset >= off + len) { 3636 break; 3637 } 3638 next_key_min_offset = key.offset + datal; 3639 size = btrfs_item_size_nr(leaf, slot); 3640 read_extent_buffer(leaf, buf, 3641 btrfs_item_ptr_offset(leaf, slot), 3642 size); 3643 3644 btrfs_release_path(path); 3645 path->leave_spinning = 0; 3646 3647 memcpy(&new_key, &key, sizeof(new_key)); 3648 new_key.objectid = btrfs_ino(inode); 3649 if (off <= key.offset) 3650 new_key.offset = key.offset + destoff - off; 3651 else 3652 new_key.offset = destoff; 3653 3654 /* 3655 * Deal with a hole that doesn't have an extent item 3656 * that represents it (NO_HOLES feature enabled). 3657 * This hole is either in the middle of the cloning 3658 * range or at the beginning (fully overlaps it or 3659 * partially overlaps it). 3660 */ 3661 if (new_key.offset != last_dest_end) 3662 drop_start = last_dest_end; 3663 else 3664 drop_start = new_key.offset; 3665 3666 /* 3667 * 1 - adjusting old extent (we may have to split it) 3668 * 1 - add new extent 3669 * 1 - inode update 3670 */ 3671 trans = btrfs_start_transaction(root, 3); 3672 if (IS_ERR(trans)) { 3673 ret = PTR_ERR(trans); 3674 goto out; 3675 } 3676 3677 if (type == BTRFS_FILE_EXTENT_REG || 3678 type == BTRFS_FILE_EXTENT_PREALLOC) { 3679 /* 3680 * a | --- range to clone ---| b 3681 * | ------------- extent ------------- | 3682 */ 3683 3684 /* subtract range b */ 3685 if (key.offset + datal > off + len) 3686 datal = off + len - key.offset; 3687 3688 /* subtract range a */ 3689 if (off > key.offset) { 3690 datao += off - key.offset; 3691 datal -= off - key.offset; 3692 } 3693 3694 ret = btrfs_drop_extents(trans, root, inode, 3695 drop_start, 3696 new_key.offset + datal, 3697 1); 3698 if (ret) { 3699 if (ret != -EOPNOTSUPP) 3700 btrfs_abort_transaction(trans, 3701 root, ret); 3702 btrfs_end_transaction(trans, root); 3703 goto out; 3704 } 3705 3706 ret = btrfs_insert_empty_item(trans, root, path, 3707 &new_key, size); 3708 if (ret) { 3709 btrfs_abort_transaction(trans, root, 3710 ret); 3711 btrfs_end_transaction(trans, root); 3712 goto out; 3713 } 3714 3715 leaf = path->nodes[0]; 3716 slot = path->slots[0]; 3717 write_extent_buffer(leaf, buf, 3718 btrfs_item_ptr_offset(leaf, slot), 3719 size); 3720 3721 extent = btrfs_item_ptr(leaf, slot, 3722 struct btrfs_file_extent_item); 3723 3724 /* disko == 0 means it's a hole */ 3725 if (!disko) 3726 datao = 0; 3727 3728 btrfs_set_file_extent_offset(leaf, extent, 3729 datao); 3730 btrfs_set_file_extent_num_bytes(leaf, extent, 3731 datal); 3732 3733 if (disko) { 3734 inode_add_bytes(inode, datal); 3735 ret = btrfs_inc_extent_ref(trans, root, 3736 disko, diskl, 0, 3737 root->root_key.objectid, 3738 btrfs_ino(inode), 3739 new_key.offset - datao); 3740 if (ret) { 3741 btrfs_abort_transaction(trans, 3742 root, 3743 ret); 3744 btrfs_end_transaction(trans, 3745 root); 3746 goto out; 3747 3748 } 3749 } 3750 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3751 u64 skip = 0; 3752 u64 trim = 0; 3753 3754 if (off > key.offset) { 3755 skip = off - key.offset; 3756 new_key.offset += skip; 3757 } 3758 3759 if (key.offset + datal > off + len) 3760 trim = key.offset + datal - (off + len); 3761 3762 if (comp && (skip || trim)) { 3763 ret = -EINVAL; 3764 btrfs_end_transaction(trans, root); 3765 goto out; 3766 } 3767 size -= skip + trim; 3768 datal -= skip + trim; 3769 3770 ret = clone_copy_inline_extent(src, inode, 3771 trans, path, 3772 &new_key, 3773 drop_start, 3774 datal, 3775 skip, size, buf); 3776 if (ret) { 3777 if (ret != -EOPNOTSUPP) 3778 btrfs_abort_transaction(trans, 3779 root, 3780 ret); 3781 btrfs_end_transaction(trans, root); 3782 goto out; 3783 } 3784 leaf = path->nodes[0]; 3785 slot = path->slots[0]; 3786 } 3787 3788 /* If we have an implicit hole (NO_HOLES feature). */ 3789 if (drop_start < new_key.offset) 3790 clone_update_extent_map(inode, trans, 3791 NULL, drop_start, 3792 new_key.offset - drop_start); 3793 3794 clone_update_extent_map(inode, trans, path, 0, 0); 3795 3796 btrfs_mark_buffer_dirty(leaf); 3797 btrfs_release_path(path); 3798 3799 last_dest_end = ALIGN(new_key.offset + datal, 3800 root->sectorsize); 3801 ret = clone_finish_inode_update(trans, inode, 3802 last_dest_end, 3803 destoff, olen, 3804 no_time_update); 3805 if (ret) 3806 goto out; 3807 if (new_key.offset + datal >= destoff + len) 3808 break; 3809 } 3810 btrfs_release_path(path); 3811 key.offset = next_key_min_offset; 3812 } 3813 ret = 0; 3814 3815 if (last_dest_end < destoff + len) { 3816 /* 3817 * We have an implicit hole (NO_HOLES feature is enabled) that 3818 * fully or partially overlaps our cloning range at its end. 3819 */ 3820 btrfs_release_path(path); 3821 3822 /* 3823 * 1 - remove extent(s) 3824 * 1 - inode update 3825 */ 3826 trans = btrfs_start_transaction(root, 2); 3827 if (IS_ERR(trans)) { 3828 ret = PTR_ERR(trans); 3829 goto out; 3830 } 3831 ret = btrfs_drop_extents(trans, root, inode, 3832 last_dest_end, destoff + len, 1); 3833 if (ret) { 3834 if (ret != -EOPNOTSUPP) 3835 btrfs_abort_transaction(trans, root, ret); 3836 btrfs_end_transaction(trans, root); 3837 goto out; 3838 } 3839 clone_update_extent_map(inode, trans, NULL, last_dest_end, 3840 destoff + len - last_dest_end); 3841 ret = clone_finish_inode_update(trans, inode, destoff + len, 3842 destoff, olen, no_time_update); 3843 } 3844 3845 out: 3846 btrfs_free_path(path); 3847 kvfree(buf); 3848 return ret; 3849 } 3850 3851 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 3852 u64 off, u64 olen, u64 destoff) 3853 { 3854 struct inode *inode = file_inode(file); 3855 struct inode *src = file_inode(file_src); 3856 struct btrfs_root *root = BTRFS_I(inode)->root; 3857 int ret; 3858 u64 len = olen; 3859 u64 bs = root->fs_info->sb->s_blocksize; 3860 int same_inode = src == inode; 3861 3862 /* 3863 * TODO: 3864 * - split compressed inline extents. annoying: we need to 3865 * decompress into destination's address_space (the file offset 3866 * may change, so source mapping won't do), then recompress (or 3867 * otherwise reinsert) a subrange. 3868 * 3869 * - split destination inode's inline extents. The inline extents can 3870 * be either compressed or non-compressed. 3871 */ 3872 3873 if (btrfs_root_readonly(root)) 3874 return -EROFS; 3875 3876 if (file_src->f_path.mnt != file->f_path.mnt || 3877 src->i_sb != inode->i_sb) 3878 return -EXDEV; 3879 3880 /* don't make the dst file partly checksummed */ 3881 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3882 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3883 return -EINVAL; 3884 3885 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3886 return -EISDIR; 3887 3888 if (!same_inode) { 3889 btrfs_double_inode_lock(src, inode); 3890 } else { 3891 inode_lock(src); 3892 } 3893 3894 /* determine range to clone */ 3895 ret = -EINVAL; 3896 if (off + len > src->i_size || off + len < off) 3897 goto out_unlock; 3898 if (len == 0) 3899 olen = len = src->i_size - off; 3900 /* if we extend to eof, continue to block boundary */ 3901 if (off + len == src->i_size) 3902 len = ALIGN(src->i_size, bs) - off; 3903 3904 if (len == 0) { 3905 ret = 0; 3906 goto out_unlock; 3907 } 3908 3909 /* verify the end result is block aligned */ 3910 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3911 !IS_ALIGNED(destoff, bs)) 3912 goto out_unlock; 3913 3914 /* verify if ranges are overlapped within the same file */ 3915 if (same_inode) { 3916 if (destoff + len > off && destoff < off + len) 3917 goto out_unlock; 3918 } 3919 3920 if (destoff > inode->i_size) { 3921 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3922 if (ret) 3923 goto out_unlock; 3924 } 3925 3926 /* 3927 * Lock the target range too. Right after we replace the file extent 3928 * items in the fs tree (which now point to the cloned data), we might 3929 * have a worker replace them with extent items relative to a write 3930 * operation that was issued before this clone operation (i.e. confront 3931 * with inode.c:btrfs_finish_ordered_io). 3932 */ 3933 if (same_inode) { 3934 u64 lock_start = min_t(u64, off, destoff); 3935 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3936 3937 ret = lock_extent_range(src, lock_start, lock_len, true); 3938 } else { 3939 ret = btrfs_double_extent_lock(src, off, inode, destoff, len, 3940 true); 3941 } 3942 ASSERT(ret == 0); 3943 if (WARN_ON(ret)) { 3944 /* ranges in the io trees already unlocked */ 3945 goto out_unlock; 3946 } 3947 3948 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 3949 3950 if (same_inode) { 3951 u64 lock_start = min_t(u64, off, destoff); 3952 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3953 3954 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3955 } else { 3956 btrfs_double_extent_unlock(src, off, inode, destoff, len); 3957 } 3958 /* 3959 * Truncate page cache pages so that future reads will see the cloned 3960 * data immediately and not the previous data. 3961 */ 3962 truncate_inode_pages_range(&inode->i_data, 3963 round_down(destoff, PAGE_SIZE), 3964 round_up(destoff + len, PAGE_SIZE) - 1); 3965 out_unlock: 3966 if (!same_inode) 3967 btrfs_double_inode_unlock(src, inode); 3968 else 3969 inode_unlock(src); 3970 return ret; 3971 } 3972 3973 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in, 3974 struct file *file_out, loff_t pos_out, 3975 size_t len, unsigned int flags) 3976 { 3977 ssize_t ret; 3978 3979 ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out); 3980 if (ret == 0) 3981 ret = len; 3982 return ret; 3983 } 3984 3985 int btrfs_clone_file_range(struct file *src_file, loff_t off, 3986 struct file *dst_file, loff_t destoff, u64 len) 3987 { 3988 return btrfs_clone_files(dst_file, src_file, off, len, destoff); 3989 } 3990 3991 /* 3992 * there are many ways the trans_start and trans_end ioctls can lead 3993 * to deadlocks. They should only be used by applications that 3994 * basically own the machine, and have a very in depth understanding 3995 * of all the possible deadlocks and enospc problems. 3996 */ 3997 static long btrfs_ioctl_trans_start(struct file *file) 3998 { 3999 struct inode *inode = file_inode(file); 4000 struct btrfs_root *root = BTRFS_I(inode)->root; 4001 struct btrfs_trans_handle *trans; 4002 int ret; 4003 4004 ret = -EPERM; 4005 if (!capable(CAP_SYS_ADMIN)) 4006 goto out; 4007 4008 ret = -EINPROGRESS; 4009 if (file->private_data) 4010 goto out; 4011 4012 ret = -EROFS; 4013 if (btrfs_root_readonly(root)) 4014 goto out; 4015 4016 ret = mnt_want_write_file(file); 4017 if (ret) 4018 goto out; 4019 4020 atomic_inc(&root->fs_info->open_ioctl_trans); 4021 4022 ret = -ENOMEM; 4023 trans = btrfs_start_ioctl_transaction(root); 4024 if (IS_ERR(trans)) 4025 goto out_drop; 4026 4027 file->private_data = trans; 4028 return 0; 4029 4030 out_drop: 4031 atomic_dec(&root->fs_info->open_ioctl_trans); 4032 mnt_drop_write_file(file); 4033 out: 4034 return ret; 4035 } 4036 4037 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4038 { 4039 struct inode *inode = file_inode(file); 4040 struct btrfs_root *root = BTRFS_I(inode)->root; 4041 struct btrfs_root *new_root; 4042 struct btrfs_dir_item *di; 4043 struct btrfs_trans_handle *trans; 4044 struct btrfs_path *path; 4045 struct btrfs_key location; 4046 struct btrfs_disk_key disk_key; 4047 u64 objectid = 0; 4048 u64 dir_id; 4049 int ret; 4050 4051 if (!capable(CAP_SYS_ADMIN)) 4052 return -EPERM; 4053 4054 ret = mnt_want_write_file(file); 4055 if (ret) 4056 return ret; 4057 4058 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4059 ret = -EFAULT; 4060 goto out; 4061 } 4062 4063 if (!objectid) 4064 objectid = BTRFS_FS_TREE_OBJECTID; 4065 4066 location.objectid = objectid; 4067 location.type = BTRFS_ROOT_ITEM_KEY; 4068 location.offset = (u64)-1; 4069 4070 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 4071 if (IS_ERR(new_root)) { 4072 ret = PTR_ERR(new_root); 4073 goto out; 4074 } 4075 4076 path = btrfs_alloc_path(); 4077 if (!path) { 4078 ret = -ENOMEM; 4079 goto out; 4080 } 4081 path->leave_spinning = 1; 4082 4083 trans = btrfs_start_transaction(root, 1); 4084 if (IS_ERR(trans)) { 4085 btrfs_free_path(path); 4086 ret = PTR_ERR(trans); 4087 goto out; 4088 } 4089 4090 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 4091 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 4092 dir_id, "default", 7, 1); 4093 if (IS_ERR_OR_NULL(di)) { 4094 btrfs_free_path(path); 4095 btrfs_end_transaction(trans, root); 4096 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir" 4097 "item, this isn't going to work"); 4098 ret = -ENOENT; 4099 goto out; 4100 } 4101 4102 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4103 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4104 btrfs_mark_buffer_dirty(path->nodes[0]); 4105 btrfs_free_path(path); 4106 4107 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 4108 btrfs_end_transaction(trans, root); 4109 out: 4110 mnt_drop_write_file(file); 4111 return ret; 4112 } 4113 4114 void btrfs_get_block_group_info(struct list_head *groups_list, 4115 struct btrfs_ioctl_space_info *space) 4116 { 4117 struct btrfs_block_group_cache *block_group; 4118 4119 space->total_bytes = 0; 4120 space->used_bytes = 0; 4121 space->flags = 0; 4122 list_for_each_entry(block_group, groups_list, list) { 4123 space->flags = block_group->flags; 4124 space->total_bytes += block_group->key.offset; 4125 space->used_bytes += 4126 btrfs_block_group_used(&block_group->item); 4127 } 4128 } 4129 4130 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 4131 { 4132 struct btrfs_ioctl_space_args space_args; 4133 struct btrfs_ioctl_space_info space; 4134 struct btrfs_ioctl_space_info *dest; 4135 struct btrfs_ioctl_space_info *dest_orig; 4136 struct btrfs_ioctl_space_info __user *user_dest; 4137 struct btrfs_space_info *info; 4138 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 4139 BTRFS_BLOCK_GROUP_SYSTEM, 4140 BTRFS_BLOCK_GROUP_METADATA, 4141 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 4142 int num_types = 4; 4143 int alloc_size; 4144 int ret = 0; 4145 u64 slot_count = 0; 4146 int i, c; 4147 4148 if (copy_from_user(&space_args, 4149 (struct btrfs_ioctl_space_args __user *)arg, 4150 sizeof(space_args))) 4151 return -EFAULT; 4152 4153 for (i = 0; i < num_types; i++) { 4154 struct btrfs_space_info *tmp; 4155 4156 info = NULL; 4157 rcu_read_lock(); 4158 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4159 list) { 4160 if (tmp->flags == types[i]) { 4161 info = tmp; 4162 break; 4163 } 4164 } 4165 rcu_read_unlock(); 4166 4167 if (!info) 4168 continue; 4169 4170 down_read(&info->groups_sem); 4171 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4172 if (!list_empty(&info->block_groups[c])) 4173 slot_count++; 4174 } 4175 up_read(&info->groups_sem); 4176 } 4177 4178 /* 4179 * Global block reserve, exported as a space_info 4180 */ 4181 slot_count++; 4182 4183 /* space_slots == 0 means they are asking for a count */ 4184 if (space_args.space_slots == 0) { 4185 space_args.total_spaces = slot_count; 4186 goto out; 4187 } 4188 4189 slot_count = min_t(u64, space_args.space_slots, slot_count); 4190 4191 alloc_size = sizeof(*dest) * slot_count; 4192 4193 /* we generally have at most 6 or so space infos, one for each raid 4194 * level. So, a whole page should be more than enough for everyone 4195 */ 4196 if (alloc_size > PAGE_SIZE) 4197 return -ENOMEM; 4198 4199 space_args.total_spaces = 0; 4200 dest = kmalloc(alloc_size, GFP_KERNEL); 4201 if (!dest) 4202 return -ENOMEM; 4203 dest_orig = dest; 4204 4205 /* now we have a buffer to copy into */ 4206 for (i = 0; i < num_types; i++) { 4207 struct btrfs_space_info *tmp; 4208 4209 if (!slot_count) 4210 break; 4211 4212 info = NULL; 4213 rcu_read_lock(); 4214 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 4215 list) { 4216 if (tmp->flags == types[i]) { 4217 info = tmp; 4218 break; 4219 } 4220 } 4221 rcu_read_unlock(); 4222 4223 if (!info) 4224 continue; 4225 down_read(&info->groups_sem); 4226 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4227 if (!list_empty(&info->block_groups[c])) { 4228 btrfs_get_block_group_info( 4229 &info->block_groups[c], &space); 4230 memcpy(dest, &space, sizeof(space)); 4231 dest++; 4232 space_args.total_spaces++; 4233 slot_count--; 4234 } 4235 if (!slot_count) 4236 break; 4237 } 4238 up_read(&info->groups_sem); 4239 } 4240 4241 /* 4242 * Add global block reserve 4243 */ 4244 if (slot_count) { 4245 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv; 4246 4247 spin_lock(&block_rsv->lock); 4248 space.total_bytes = block_rsv->size; 4249 space.used_bytes = block_rsv->size - block_rsv->reserved; 4250 spin_unlock(&block_rsv->lock); 4251 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4252 memcpy(dest, &space, sizeof(space)); 4253 space_args.total_spaces++; 4254 } 4255 4256 user_dest = (struct btrfs_ioctl_space_info __user *) 4257 (arg + sizeof(struct btrfs_ioctl_space_args)); 4258 4259 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4260 ret = -EFAULT; 4261 4262 kfree(dest_orig); 4263 out: 4264 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4265 ret = -EFAULT; 4266 4267 return ret; 4268 } 4269 4270 /* 4271 * there are many ways the trans_start and trans_end ioctls can lead 4272 * to deadlocks. They should only be used by applications that 4273 * basically own the machine, and have a very in depth understanding 4274 * of all the possible deadlocks and enospc problems. 4275 */ 4276 long btrfs_ioctl_trans_end(struct file *file) 4277 { 4278 struct inode *inode = file_inode(file); 4279 struct btrfs_root *root = BTRFS_I(inode)->root; 4280 struct btrfs_trans_handle *trans; 4281 4282 trans = file->private_data; 4283 if (!trans) 4284 return -EINVAL; 4285 file->private_data = NULL; 4286 4287 btrfs_end_transaction(trans, root); 4288 4289 atomic_dec(&root->fs_info->open_ioctl_trans); 4290 4291 mnt_drop_write_file(file); 4292 return 0; 4293 } 4294 4295 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4296 void __user *argp) 4297 { 4298 struct btrfs_trans_handle *trans; 4299 u64 transid; 4300 int ret; 4301 4302 trans = btrfs_attach_transaction_barrier(root); 4303 if (IS_ERR(trans)) { 4304 if (PTR_ERR(trans) != -ENOENT) 4305 return PTR_ERR(trans); 4306 4307 /* No running transaction, don't bother */ 4308 transid = root->fs_info->last_trans_committed; 4309 goto out; 4310 } 4311 transid = trans->transid; 4312 ret = btrfs_commit_transaction_async(trans, root, 0); 4313 if (ret) { 4314 btrfs_end_transaction(trans, root); 4315 return ret; 4316 } 4317 out: 4318 if (argp) 4319 if (copy_to_user(argp, &transid, sizeof(transid))) 4320 return -EFAULT; 4321 return 0; 4322 } 4323 4324 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 4325 void __user *argp) 4326 { 4327 u64 transid; 4328 4329 if (argp) { 4330 if (copy_from_user(&transid, argp, sizeof(transid))) 4331 return -EFAULT; 4332 } else { 4333 transid = 0; /* current trans */ 4334 } 4335 return btrfs_wait_for_commit(root, transid); 4336 } 4337 4338 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4339 { 4340 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4341 struct btrfs_ioctl_scrub_args *sa; 4342 int ret; 4343 4344 if (!capable(CAP_SYS_ADMIN)) 4345 return -EPERM; 4346 4347 sa = memdup_user(arg, sizeof(*sa)); 4348 if (IS_ERR(sa)) 4349 return PTR_ERR(sa); 4350 4351 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4352 ret = mnt_want_write_file(file); 4353 if (ret) 4354 goto out; 4355 } 4356 4357 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 4358 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4359 0); 4360 4361 if (copy_to_user(arg, sa, sizeof(*sa))) 4362 ret = -EFAULT; 4363 4364 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4365 mnt_drop_write_file(file); 4366 out: 4367 kfree(sa); 4368 return ret; 4369 } 4370 4371 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 4372 { 4373 if (!capable(CAP_SYS_ADMIN)) 4374 return -EPERM; 4375 4376 return btrfs_scrub_cancel(root->fs_info); 4377 } 4378 4379 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 4380 void __user *arg) 4381 { 4382 struct btrfs_ioctl_scrub_args *sa; 4383 int ret; 4384 4385 if (!capable(CAP_SYS_ADMIN)) 4386 return -EPERM; 4387 4388 sa = memdup_user(arg, sizeof(*sa)); 4389 if (IS_ERR(sa)) 4390 return PTR_ERR(sa); 4391 4392 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 4393 4394 if (copy_to_user(arg, sa, sizeof(*sa))) 4395 ret = -EFAULT; 4396 4397 kfree(sa); 4398 return ret; 4399 } 4400 4401 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 4402 void __user *arg) 4403 { 4404 struct btrfs_ioctl_get_dev_stats *sa; 4405 int ret; 4406 4407 sa = memdup_user(arg, sizeof(*sa)); 4408 if (IS_ERR(sa)) 4409 return PTR_ERR(sa); 4410 4411 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4412 kfree(sa); 4413 return -EPERM; 4414 } 4415 4416 ret = btrfs_get_dev_stats(root, sa); 4417 4418 if (copy_to_user(arg, sa, sizeof(*sa))) 4419 ret = -EFAULT; 4420 4421 kfree(sa); 4422 return ret; 4423 } 4424 4425 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 4426 { 4427 struct btrfs_ioctl_dev_replace_args *p; 4428 int ret; 4429 4430 if (!capable(CAP_SYS_ADMIN)) 4431 return -EPERM; 4432 4433 p = memdup_user(arg, sizeof(*p)); 4434 if (IS_ERR(p)) 4435 return PTR_ERR(p); 4436 4437 switch (p->cmd) { 4438 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4439 if (root->fs_info->sb->s_flags & MS_RDONLY) { 4440 ret = -EROFS; 4441 goto out; 4442 } 4443 if (atomic_xchg( 4444 &root->fs_info->mutually_exclusive_operation_running, 4445 1)) { 4446 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4447 } else { 4448 ret = btrfs_dev_replace_by_ioctl(root, p); 4449 atomic_set( 4450 &root->fs_info->mutually_exclusive_operation_running, 4451 0); 4452 } 4453 break; 4454 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4455 btrfs_dev_replace_status(root->fs_info, p); 4456 ret = 0; 4457 break; 4458 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4459 ret = btrfs_dev_replace_cancel(root->fs_info, p); 4460 break; 4461 default: 4462 ret = -EINVAL; 4463 break; 4464 } 4465 4466 if (copy_to_user(arg, p, sizeof(*p))) 4467 ret = -EFAULT; 4468 out: 4469 kfree(p); 4470 return ret; 4471 } 4472 4473 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4474 { 4475 int ret = 0; 4476 int i; 4477 u64 rel_ptr; 4478 int size; 4479 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4480 struct inode_fs_paths *ipath = NULL; 4481 struct btrfs_path *path; 4482 4483 if (!capable(CAP_DAC_READ_SEARCH)) 4484 return -EPERM; 4485 4486 path = btrfs_alloc_path(); 4487 if (!path) { 4488 ret = -ENOMEM; 4489 goto out; 4490 } 4491 4492 ipa = memdup_user(arg, sizeof(*ipa)); 4493 if (IS_ERR(ipa)) { 4494 ret = PTR_ERR(ipa); 4495 ipa = NULL; 4496 goto out; 4497 } 4498 4499 size = min_t(u32, ipa->size, 4096); 4500 ipath = init_ipath(size, root, path); 4501 if (IS_ERR(ipath)) { 4502 ret = PTR_ERR(ipath); 4503 ipath = NULL; 4504 goto out; 4505 } 4506 4507 ret = paths_from_inode(ipa->inum, ipath); 4508 if (ret < 0) 4509 goto out; 4510 4511 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4512 rel_ptr = ipath->fspath->val[i] - 4513 (u64)(unsigned long)ipath->fspath->val; 4514 ipath->fspath->val[i] = rel_ptr; 4515 } 4516 4517 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4518 (void *)(unsigned long)ipath->fspath, size); 4519 if (ret) { 4520 ret = -EFAULT; 4521 goto out; 4522 } 4523 4524 out: 4525 btrfs_free_path(path); 4526 free_ipath(ipath); 4527 kfree(ipa); 4528 4529 return ret; 4530 } 4531 4532 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4533 { 4534 struct btrfs_data_container *inodes = ctx; 4535 const size_t c = 3 * sizeof(u64); 4536 4537 if (inodes->bytes_left >= c) { 4538 inodes->bytes_left -= c; 4539 inodes->val[inodes->elem_cnt] = inum; 4540 inodes->val[inodes->elem_cnt + 1] = offset; 4541 inodes->val[inodes->elem_cnt + 2] = root; 4542 inodes->elem_cnt += 3; 4543 } else { 4544 inodes->bytes_missing += c - inodes->bytes_left; 4545 inodes->bytes_left = 0; 4546 inodes->elem_missed += 3; 4547 } 4548 4549 return 0; 4550 } 4551 4552 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 4553 void __user *arg) 4554 { 4555 int ret = 0; 4556 int size; 4557 struct btrfs_ioctl_logical_ino_args *loi; 4558 struct btrfs_data_container *inodes = NULL; 4559 struct btrfs_path *path = NULL; 4560 4561 if (!capable(CAP_SYS_ADMIN)) 4562 return -EPERM; 4563 4564 loi = memdup_user(arg, sizeof(*loi)); 4565 if (IS_ERR(loi)) { 4566 ret = PTR_ERR(loi); 4567 loi = NULL; 4568 goto out; 4569 } 4570 4571 path = btrfs_alloc_path(); 4572 if (!path) { 4573 ret = -ENOMEM; 4574 goto out; 4575 } 4576 4577 size = min_t(u32, loi->size, SZ_64K); 4578 inodes = init_data_container(size); 4579 if (IS_ERR(inodes)) { 4580 ret = PTR_ERR(inodes); 4581 inodes = NULL; 4582 goto out; 4583 } 4584 4585 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 4586 build_ino_list, inodes); 4587 if (ret == -EINVAL) 4588 ret = -ENOENT; 4589 if (ret < 0) 4590 goto out; 4591 4592 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4593 (void *)(unsigned long)inodes, size); 4594 if (ret) 4595 ret = -EFAULT; 4596 4597 out: 4598 btrfs_free_path(path); 4599 vfree(inodes); 4600 kfree(loi); 4601 4602 return ret; 4603 } 4604 4605 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4606 struct btrfs_ioctl_balance_args *bargs) 4607 { 4608 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4609 4610 bargs->flags = bctl->flags; 4611 4612 if (atomic_read(&fs_info->balance_running)) 4613 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4614 if (atomic_read(&fs_info->balance_pause_req)) 4615 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4616 if (atomic_read(&fs_info->balance_cancel_req)) 4617 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4618 4619 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4620 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4621 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4622 4623 if (lock) { 4624 spin_lock(&fs_info->balance_lock); 4625 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4626 spin_unlock(&fs_info->balance_lock); 4627 } else { 4628 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4629 } 4630 } 4631 4632 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4633 { 4634 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4635 struct btrfs_fs_info *fs_info = root->fs_info; 4636 struct btrfs_ioctl_balance_args *bargs; 4637 struct btrfs_balance_control *bctl; 4638 bool need_unlock; /* for mut. excl. ops lock */ 4639 int ret; 4640 4641 if (!capable(CAP_SYS_ADMIN)) 4642 return -EPERM; 4643 4644 ret = mnt_want_write_file(file); 4645 if (ret) 4646 return ret; 4647 4648 again: 4649 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 4650 mutex_lock(&fs_info->volume_mutex); 4651 mutex_lock(&fs_info->balance_mutex); 4652 need_unlock = true; 4653 goto locked; 4654 } 4655 4656 /* 4657 * mut. excl. ops lock is locked. Three possibilites: 4658 * (1) some other op is running 4659 * (2) balance is running 4660 * (3) balance is paused -- special case (think resume) 4661 */ 4662 mutex_lock(&fs_info->balance_mutex); 4663 if (fs_info->balance_ctl) { 4664 /* this is either (2) or (3) */ 4665 if (!atomic_read(&fs_info->balance_running)) { 4666 mutex_unlock(&fs_info->balance_mutex); 4667 if (!mutex_trylock(&fs_info->volume_mutex)) 4668 goto again; 4669 mutex_lock(&fs_info->balance_mutex); 4670 4671 if (fs_info->balance_ctl && 4672 !atomic_read(&fs_info->balance_running)) { 4673 /* this is (3) */ 4674 need_unlock = false; 4675 goto locked; 4676 } 4677 4678 mutex_unlock(&fs_info->balance_mutex); 4679 mutex_unlock(&fs_info->volume_mutex); 4680 goto again; 4681 } else { 4682 /* this is (2) */ 4683 mutex_unlock(&fs_info->balance_mutex); 4684 ret = -EINPROGRESS; 4685 goto out; 4686 } 4687 } else { 4688 /* this is (1) */ 4689 mutex_unlock(&fs_info->balance_mutex); 4690 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4691 goto out; 4692 } 4693 4694 locked: 4695 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 4696 4697 if (arg) { 4698 bargs = memdup_user(arg, sizeof(*bargs)); 4699 if (IS_ERR(bargs)) { 4700 ret = PTR_ERR(bargs); 4701 goto out_unlock; 4702 } 4703 4704 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4705 if (!fs_info->balance_ctl) { 4706 ret = -ENOTCONN; 4707 goto out_bargs; 4708 } 4709 4710 bctl = fs_info->balance_ctl; 4711 spin_lock(&fs_info->balance_lock); 4712 bctl->flags |= BTRFS_BALANCE_RESUME; 4713 spin_unlock(&fs_info->balance_lock); 4714 4715 goto do_balance; 4716 } 4717 } else { 4718 bargs = NULL; 4719 } 4720 4721 if (fs_info->balance_ctl) { 4722 ret = -EINPROGRESS; 4723 goto out_bargs; 4724 } 4725 4726 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4727 if (!bctl) { 4728 ret = -ENOMEM; 4729 goto out_bargs; 4730 } 4731 4732 bctl->fs_info = fs_info; 4733 if (arg) { 4734 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4735 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4736 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4737 4738 bctl->flags = bargs->flags; 4739 } else { 4740 /* balance everything - no filters */ 4741 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4742 } 4743 4744 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4745 ret = -EINVAL; 4746 goto out_bctl; 4747 } 4748 4749 do_balance: 4750 /* 4751 * Ownership of bctl and mutually_exclusive_operation_running 4752 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4753 * or, if restriper was paused all the way until unmount, in 4754 * free_fs_info. mutually_exclusive_operation_running is 4755 * cleared in __cancel_balance. 4756 */ 4757 need_unlock = false; 4758 4759 ret = btrfs_balance(bctl, bargs); 4760 bctl = NULL; 4761 4762 if (arg) { 4763 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4764 ret = -EFAULT; 4765 } 4766 4767 out_bctl: 4768 kfree(bctl); 4769 out_bargs: 4770 kfree(bargs); 4771 out_unlock: 4772 mutex_unlock(&fs_info->balance_mutex); 4773 mutex_unlock(&fs_info->volume_mutex); 4774 if (need_unlock) 4775 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 4776 out: 4777 mnt_drop_write_file(file); 4778 return ret; 4779 } 4780 4781 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 4782 { 4783 if (!capable(CAP_SYS_ADMIN)) 4784 return -EPERM; 4785 4786 switch (cmd) { 4787 case BTRFS_BALANCE_CTL_PAUSE: 4788 return btrfs_pause_balance(root->fs_info); 4789 case BTRFS_BALANCE_CTL_CANCEL: 4790 return btrfs_cancel_balance(root->fs_info); 4791 } 4792 4793 return -EINVAL; 4794 } 4795 4796 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 4797 void __user *arg) 4798 { 4799 struct btrfs_fs_info *fs_info = root->fs_info; 4800 struct btrfs_ioctl_balance_args *bargs; 4801 int ret = 0; 4802 4803 if (!capable(CAP_SYS_ADMIN)) 4804 return -EPERM; 4805 4806 mutex_lock(&fs_info->balance_mutex); 4807 if (!fs_info->balance_ctl) { 4808 ret = -ENOTCONN; 4809 goto out; 4810 } 4811 4812 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4813 if (!bargs) { 4814 ret = -ENOMEM; 4815 goto out; 4816 } 4817 4818 update_ioctl_balance_args(fs_info, 1, bargs); 4819 4820 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4821 ret = -EFAULT; 4822 4823 kfree(bargs); 4824 out: 4825 mutex_unlock(&fs_info->balance_mutex); 4826 return ret; 4827 } 4828 4829 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4830 { 4831 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4832 struct btrfs_ioctl_quota_ctl_args *sa; 4833 struct btrfs_trans_handle *trans = NULL; 4834 int ret; 4835 int err; 4836 4837 if (!capable(CAP_SYS_ADMIN)) 4838 return -EPERM; 4839 4840 ret = mnt_want_write_file(file); 4841 if (ret) 4842 return ret; 4843 4844 sa = memdup_user(arg, sizeof(*sa)); 4845 if (IS_ERR(sa)) { 4846 ret = PTR_ERR(sa); 4847 goto drop_write; 4848 } 4849 4850 down_write(&root->fs_info->subvol_sem); 4851 trans = btrfs_start_transaction(root->fs_info->tree_root, 2); 4852 if (IS_ERR(trans)) { 4853 ret = PTR_ERR(trans); 4854 goto out; 4855 } 4856 4857 switch (sa->cmd) { 4858 case BTRFS_QUOTA_CTL_ENABLE: 4859 ret = btrfs_quota_enable(trans, root->fs_info); 4860 break; 4861 case BTRFS_QUOTA_CTL_DISABLE: 4862 ret = btrfs_quota_disable(trans, root->fs_info); 4863 break; 4864 default: 4865 ret = -EINVAL; 4866 break; 4867 } 4868 4869 err = btrfs_commit_transaction(trans, root->fs_info->tree_root); 4870 if (err && !ret) 4871 ret = err; 4872 out: 4873 kfree(sa); 4874 up_write(&root->fs_info->subvol_sem); 4875 drop_write: 4876 mnt_drop_write_file(file); 4877 return ret; 4878 } 4879 4880 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4881 { 4882 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4883 struct btrfs_ioctl_qgroup_assign_args *sa; 4884 struct btrfs_trans_handle *trans; 4885 int ret; 4886 int err; 4887 4888 if (!capable(CAP_SYS_ADMIN)) 4889 return -EPERM; 4890 4891 ret = mnt_want_write_file(file); 4892 if (ret) 4893 return ret; 4894 4895 sa = memdup_user(arg, sizeof(*sa)); 4896 if (IS_ERR(sa)) { 4897 ret = PTR_ERR(sa); 4898 goto drop_write; 4899 } 4900 4901 trans = btrfs_join_transaction(root); 4902 if (IS_ERR(trans)) { 4903 ret = PTR_ERR(trans); 4904 goto out; 4905 } 4906 4907 /* FIXME: check if the IDs really exist */ 4908 if (sa->assign) { 4909 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 4910 sa->src, sa->dst); 4911 } else { 4912 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 4913 sa->src, sa->dst); 4914 } 4915 4916 /* update qgroup status and info */ 4917 err = btrfs_run_qgroups(trans, root->fs_info); 4918 if (err < 0) 4919 btrfs_handle_fs_error(root->fs_info, err, 4920 "failed to update qgroup status and info"); 4921 err = btrfs_end_transaction(trans, root); 4922 if (err && !ret) 4923 ret = err; 4924 4925 out: 4926 kfree(sa); 4927 drop_write: 4928 mnt_drop_write_file(file); 4929 return ret; 4930 } 4931 4932 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4933 { 4934 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4935 struct btrfs_ioctl_qgroup_create_args *sa; 4936 struct btrfs_trans_handle *trans; 4937 int ret; 4938 int err; 4939 4940 if (!capable(CAP_SYS_ADMIN)) 4941 return -EPERM; 4942 4943 ret = mnt_want_write_file(file); 4944 if (ret) 4945 return ret; 4946 4947 sa = memdup_user(arg, sizeof(*sa)); 4948 if (IS_ERR(sa)) { 4949 ret = PTR_ERR(sa); 4950 goto drop_write; 4951 } 4952 4953 if (!sa->qgroupid) { 4954 ret = -EINVAL; 4955 goto out; 4956 } 4957 4958 trans = btrfs_join_transaction(root); 4959 if (IS_ERR(trans)) { 4960 ret = PTR_ERR(trans); 4961 goto out; 4962 } 4963 4964 /* FIXME: check if the IDs really exist */ 4965 if (sa->create) { 4966 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid); 4967 } else { 4968 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 4969 } 4970 4971 err = btrfs_end_transaction(trans, root); 4972 if (err && !ret) 4973 ret = err; 4974 4975 out: 4976 kfree(sa); 4977 drop_write: 4978 mnt_drop_write_file(file); 4979 return ret; 4980 } 4981 4982 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4983 { 4984 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4985 struct btrfs_ioctl_qgroup_limit_args *sa; 4986 struct btrfs_trans_handle *trans; 4987 int ret; 4988 int err; 4989 u64 qgroupid; 4990 4991 if (!capable(CAP_SYS_ADMIN)) 4992 return -EPERM; 4993 4994 ret = mnt_want_write_file(file); 4995 if (ret) 4996 return ret; 4997 4998 sa = memdup_user(arg, sizeof(*sa)); 4999 if (IS_ERR(sa)) { 5000 ret = PTR_ERR(sa); 5001 goto drop_write; 5002 } 5003 5004 trans = btrfs_join_transaction(root); 5005 if (IS_ERR(trans)) { 5006 ret = PTR_ERR(trans); 5007 goto out; 5008 } 5009 5010 qgroupid = sa->qgroupid; 5011 if (!qgroupid) { 5012 /* take the current subvol as qgroup */ 5013 qgroupid = root->root_key.objectid; 5014 } 5015 5016 /* FIXME: check if the IDs really exist */ 5017 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 5018 5019 err = btrfs_end_transaction(trans, root); 5020 if (err && !ret) 5021 ret = err; 5022 5023 out: 5024 kfree(sa); 5025 drop_write: 5026 mnt_drop_write_file(file); 5027 return ret; 5028 } 5029 5030 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5031 { 5032 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5033 struct btrfs_ioctl_quota_rescan_args *qsa; 5034 int ret; 5035 5036 if (!capable(CAP_SYS_ADMIN)) 5037 return -EPERM; 5038 5039 ret = mnt_want_write_file(file); 5040 if (ret) 5041 return ret; 5042 5043 qsa = memdup_user(arg, sizeof(*qsa)); 5044 if (IS_ERR(qsa)) { 5045 ret = PTR_ERR(qsa); 5046 goto drop_write; 5047 } 5048 5049 if (qsa->flags) { 5050 ret = -EINVAL; 5051 goto out; 5052 } 5053 5054 ret = btrfs_qgroup_rescan(root->fs_info); 5055 5056 out: 5057 kfree(qsa); 5058 drop_write: 5059 mnt_drop_write_file(file); 5060 return ret; 5061 } 5062 5063 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5064 { 5065 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5066 struct btrfs_ioctl_quota_rescan_args *qsa; 5067 int ret = 0; 5068 5069 if (!capable(CAP_SYS_ADMIN)) 5070 return -EPERM; 5071 5072 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5073 if (!qsa) 5074 return -ENOMEM; 5075 5076 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5077 qsa->flags = 1; 5078 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid; 5079 } 5080 5081 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5082 ret = -EFAULT; 5083 5084 kfree(qsa); 5085 return ret; 5086 } 5087 5088 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5089 { 5090 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5091 5092 if (!capable(CAP_SYS_ADMIN)) 5093 return -EPERM; 5094 5095 return btrfs_qgroup_wait_for_completion(root->fs_info); 5096 } 5097 5098 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5099 struct btrfs_ioctl_received_subvol_args *sa) 5100 { 5101 struct inode *inode = file_inode(file); 5102 struct btrfs_root *root = BTRFS_I(inode)->root; 5103 struct btrfs_root_item *root_item = &root->root_item; 5104 struct btrfs_trans_handle *trans; 5105 struct timespec ct = current_fs_time(inode->i_sb); 5106 int ret = 0; 5107 int received_uuid_changed; 5108 5109 if (!inode_owner_or_capable(inode)) 5110 return -EPERM; 5111 5112 ret = mnt_want_write_file(file); 5113 if (ret < 0) 5114 return ret; 5115 5116 down_write(&root->fs_info->subvol_sem); 5117 5118 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 5119 ret = -EINVAL; 5120 goto out; 5121 } 5122 5123 if (btrfs_root_readonly(root)) { 5124 ret = -EROFS; 5125 goto out; 5126 } 5127 5128 /* 5129 * 1 - root item 5130 * 2 - uuid items (received uuid + subvol uuid) 5131 */ 5132 trans = btrfs_start_transaction(root, 3); 5133 if (IS_ERR(trans)) { 5134 ret = PTR_ERR(trans); 5135 trans = NULL; 5136 goto out; 5137 } 5138 5139 sa->rtransid = trans->transid; 5140 sa->rtime.sec = ct.tv_sec; 5141 sa->rtime.nsec = ct.tv_nsec; 5142 5143 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5144 BTRFS_UUID_SIZE); 5145 if (received_uuid_changed && 5146 !btrfs_is_empty_uuid(root_item->received_uuid)) 5147 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 5148 root_item->received_uuid, 5149 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5150 root->root_key.objectid); 5151 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5152 btrfs_set_root_stransid(root_item, sa->stransid); 5153 btrfs_set_root_rtransid(root_item, sa->rtransid); 5154 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5155 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5156 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5157 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5158 5159 ret = btrfs_update_root(trans, root->fs_info->tree_root, 5160 &root->root_key, &root->root_item); 5161 if (ret < 0) { 5162 btrfs_end_transaction(trans, root); 5163 goto out; 5164 } 5165 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5166 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 5167 sa->uuid, 5168 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5169 root->root_key.objectid); 5170 if (ret < 0 && ret != -EEXIST) { 5171 btrfs_abort_transaction(trans, root, ret); 5172 goto out; 5173 } 5174 } 5175 ret = btrfs_commit_transaction(trans, root); 5176 if (ret < 0) { 5177 btrfs_abort_transaction(trans, root, ret); 5178 goto out; 5179 } 5180 5181 out: 5182 up_write(&root->fs_info->subvol_sem); 5183 mnt_drop_write_file(file); 5184 return ret; 5185 } 5186 5187 #ifdef CONFIG_64BIT 5188 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5189 void __user *arg) 5190 { 5191 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5192 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5193 int ret = 0; 5194 5195 args32 = memdup_user(arg, sizeof(*args32)); 5196 if (IS_ERR(args32)) { 5197 ret = PTR_ERR(args32); 5198 args32 = NULL; 5199 goto out; 5200 } 5201 5202 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5203 if (!args64) { 5204 ret = -ENOMEM; 5205 goto out; 5206 } 5207 5208 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5209 args64->stransid = args32->stransid; 5210 args64->rtransid = args32->rtransid; 5211 args64->stime.sec = args32->stime.sec; 5212 args64->stime.nsec = args32->stime.nsec; 5213 args64->rtime.sec = args32->rtime.sec; 5214 args64->rtime.nsec = args32->rtime.nsec; 5215 args64->flags = args32->flags; 5216 5217 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5218 if (ret) 5219 goto out; 5220 5221 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5222 args32->stransid = args64->stransid; 5223 args32->rtransid = args64->rtransid; 5224 args32->stime.sec = args64->stime.sec; 5225 args32->stime.nsec = args64->stime.nsec; 5226 args32->rtime.sec = args64->rtime.sec; 5227 args32->rtime.nsec = args64->rtime.nsec; 5228 args32->flags = args64->flags; 5229 5230 ret = copy_to_user(arg, args32, sizeof(*args32)); 5231 if (ret) 5232 ret = -EFAULT; 5233 5234 out: 5235 kfree(args32); 5236 kfree(args64); 5237 return ret; 5238 } 5239 #endif 5240 5241 static long btrfs_ioctl_set_received_subvol(struct file *file, 5242 void __user *arg) 5243 { 5244 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5245 int ret = 0; 5246 5247 sa = memdup_user(arg, sizeof(*sa)); 5248 if (IS_ERR(sa)) { 5249 ret = PTR_ERR(sa); 5250 sa = NULL; 5251 goto out; 5252 } 5253 5254 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5255 5256 if (ret) 5257 goto out; 5258 5259 ret = copy_to_user(arg, sa, sizeof(*sa)); 5260 if (ret) 5261 ret = -EFAULT; 5262 5263 out: 5264 kfree(sa); 5265 return ret; 5266 } 5267 5268 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5269 { 5270 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5271 size_t len; 5272 int ret; 5273 char label[BTRFS_LABEL_SIZE]; 5274 5275 spin_lock(&root->fs_info->super_lock); 5276 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5277 spin_unlock(&root->fs_info->super_lock); 5278 5279 len = strnlen(label, BTRFS_LABEL_SIZE); 5280 5281 if (len == BTRFS_LABEL_SIZE) { 5282 btrfs_warn(root->fs_info, 5283 "label is too long, return the first %zu bytes", --len); 5284 } 5285 5286 ret = copy_to_user(arg, label, len); 5287 5288 return ret ? -EFAULT : 0; 5289 } 5290 5291 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5292 { 5293 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5294 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5295 struct btrfs_trans_handle *trans; 5296 char label[BTRFS_LABEL_SIZE]; 5297 int ret; 5298 5299 if (!capable(CAP_SYS_ADMIN)) 5300 return -EPERM; 5301 5302 if (copy_from_user(label, arg, sizeof(label))) 5303 return -EFAULT; 5304 5305 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5306 btrfs_err(root->fs_info, "unable to set label with more than %d bytes", 5307 BTRFS_LABEL_SIZE - 1); 5308 return -EINVAL; 5309 } 5310 5311 ret = mnt_want_write_file(file); 5312 if (ret) 5313 return ret; 5314 5315 trans = btrfs_start_transaction(root, 0); 5316 if (IS_ERR(trans)) { 5317 ret = PTR_ERR(trans); 5318 goto out_unlock; 5319 } 5320 5321 spin_lock(&root->fs_info->super_lock); 5322 strcpy(super_block->label, label); 5323 spin_unlock(&root->fs_info->super_lock); 5324 ret = btrfs_commit_transaction(trans, root); 5325 5326 out_unlock: 5327 mnt_drop_write_file(file); 5328 return ret; 5329 } 5330 5331 #define INIT_FEATURE_FLAGS(suffix) \ 5332 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5333 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5334 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5335 5336 int btrfs_ioctl_get_supported_features(void __user *arg) 5337 { 5338 static const struct btrfs_ioctl_feature_flags features[3] = { 5339 INIT_FEATURE_FLAGS(SUPP), 5340 INIT_FEATURE_FLAGS(SAFE_SET), 5341 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5342 }; 5343 5344 if (copy_to_user(arg, &features, sizeof(features))) 5345 return -EFAULT; 5346 5347 return 0; 5348 } 5349 5350 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5351 { 5352 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5353 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5354 struct btrfs_ioctl_feature_flags features; 5355 5356 features.compat_flags = btrfs_super_compat_flags(super_block); 5357 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5358 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5359 5360 if (copy_to_user(arg, &features, sizeof(features))) 5361 return -EFAULT; 5362 5363 return 0; 5364 } 5365 5366 static int check_feature_bits(struct btrfs_root *root, 5367 enum btrfs_feature_set set, 5368 u64 change_mask, u64 flags, u64 supported_flags, 5369 u64 safe_set, u64 safe_clear) 5370 { 5371 const char *type = btrfs_feature_set_names[set]; 5372 char *names; 5373 u64 disallowed, unsupported; 5374 u64 set_mask = flags & change_mask; 5375 u64 clear_mask = ~flags & change_mask; 5376 5377 unsupported = set_mask & ~supported_flags; 5378 if (unsupported) { 5379 names = btrfs_printable_features(set, unsupported); 5380 if (names) { 5381 btrfs_warn(root->fs_info, 5382 "this kernel does not support the %s feature bit%s", 5383 names, strchr(names, ',') ? "s" : ""); 5384 kfree(names); 5385 } else 5386 btrfs_warn(root->fs_info, 5387 "this kernel does not support %s bits 0x%llx", 5388 type, unsupported); 5389 return -EOPNOTSUPP; 5390 } 5391 5392 disallowed = set_mask & ~safe_set; 5393 if (disallowed) { 5394 names = btrfs_printable_features(set, disallowed); 5395 if (names) { 5396 btrfs_warn(root->fs_info, 5397 "can't set the %s feature bit%s while mounted", 5398 names, strchr(names, ',') ? "s" : ""); 5399 kfree(names); 5400 } else 5401 btrfs_warn(root->fs_info, 5402 "can't set %s bits 0x%llx while mounted", 5403 type, disallowed); 5404 return -EPERM; 5405 } 5406 5407 disallowed = clear_mask & ~safe_clear; 5408 if (disallowed) { 5409 names = btrfs_printable_features(set, disallowed); 5410 if (names) { 5411 btrfs_warn(root->fs_info, 5412 "can't clear the %s feature bit%s while mounted", 5413 names, strchr(names, ',') ? "s" : ""); 5414 kfree(names); 5415 } else 5416 btrfs_warn(root->fs_info, 5417 "can't clear %s bits 0x%llx while mounted", 5418 type, disallowed); 5419 return -EPERM; 5420 } 5421 5422 return 0; 5423 } 5424 5425 #define check_feature(root, change_mask, flags, mask_base) \ 5426 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \ 5427 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5428 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5429 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5430 5431 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5432 { 5433 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5434 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5435 struct btrfs_ioctl_feature_flags flags[2]; 5436 struct btrfs_trans_handle *trans; 5437 u64 newflags; 5438 int ret; 5439 5440 if (!capable(CAP_SYS_ADMIN)) 5441 return -EPERM; 5442 5443 if (copy_from_user(flags, arg, sizeof(flags))) 5444 return -EFAULT; 5445 5446 /* Nothing to do */ 5447 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5448 !flags[0].incompat_flags) 5449 return 0; 5450 5451 ret = check_feature(root, flags[0].compat_flags, 5452 flags[1].compat_flags, COMPAT); 5453 if (ret) 5454 return ret; 5455 5456 ret = check_feature(root, flags[0].compat_ro_flags, 5457 flags[1].compat_ro_flags, COMPAT_RO); 5458 if (ret) 5459 return ret; 5460 5461 ret = check_feature(root, flags[0].incompat_flags, 5462 flags[1].incompat_flags, INCOMPAT); 5463 if (ret) 5464 return ret; 5465 5466 ret = mnt_want_write_file(file); 5467 if (ret) 5468 return ret; 5469 5470 trans = btrfs_start_transaction(root, 0); 5471 if (IS_ERR(trans)) { 5472 ret = PTR_ERR(trans); 5473 goto out_drop_write; 5474 } 5475 5476 spin_lock(&root->fs_info->super_lock); 5477 newflags = btrfs_super_compat_flags(super_block); 5478 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5479 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5480 btrfs_set_super_compat_flags(super_block, newflags); 5481 5482 newflags = btrfs_super_compat_ro_flags(super_block); 5483 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5484 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5485 btrfs_set_super_compat_ro_flags(super_block, newflags); 5486 5487 newflags = btrfs_super_incompat_flags(super_block); 5488 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5489 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5490 btrfs_set_super_incompat_flags(super_block, newflags); 5491 spin_unlock(&root->fs_info->super_lock); 5492 5493 ret = btrfs_commit_transaction(trans, root); 5494 out_drop_write: 5495 mnt_drop_write_file(file); 5496 5497 return ret; 5498 } 5499 5500 long btrfs_ioctl(struct file *file, unsigned int 5501 cmd, unsigned long arg) 5502 { 5503 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5504 void __user *argp = (void __user *)arg; 5505 5506 switch (cmd) { 5507 case FS_IOC_GETFLAGS: 5508 return btrfs_ioctl_getflags(file, argp); 5509 case FS_IOC_SETFLAGS: 5510 return btrfs_ioctl_setflags(file, argp); 5511 case FS_IOC_GETVERSION: 5512 return btrfs_ioctl_getversion(file, argp); 5513 case FITRIM: 5514 return btrfs_ioctl_fitrim(file, argp); 5515 case BTRFS_IOC_SNAP_CREATE: 5516 return btrfs_ioctl_snap_create(file, argp, 0); 5517 case BTRFS_IOC_SNAP_CREATE_V2: 5518 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5519 case BTRFS_IOC_SUBVOL_CREATE: 5520 return btrfs_ioctl_snap_create(file, argp, 1); 5521 case BTRFS_IOC_SUBVOL_CREATE_V2: 5522 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5523 case BTRFS_IOC_SNAP_DESTROY: 5524 return btrfs_ioctl_snap_destroy(file, argp); 5525 case BTRFS_IOC_SUBVOL_GETFLAGS: 5526 return btrfs_ioctl_subvol_getflags(file, argp); 5527 case BTRFS_IOC_SUBVOL_SETFLAGS: 5528 return btrfs_ioctl_subvol_setflags(file, argp); 5529 case BTRFS_IOC_DEFAULT_SUBVOL: 5530 return btrfs_ioctl_default_subvol(file, argp); 5531 case BTRFS_IOC_DEFRAG: 5532 return btrfs_ioctl_defrag(file, NULL); 5533 case BTRFS_IOC_DEFRAG_RANGE: 5534 return btrfs_ioctl_defrag(file, argp); 5535 case BTRFS_IOC_RESIZE: 5536 return btrfs_ioctl_resize(file, argp); 5537 case BTRFS_IOC_ADD_DEV: 5538 return btrfs_ioctl_add_dev(root, argp); 5539 case BTRFS_IOC_RM_DEV: 5540 return btrfs_ioctl_rm_dev(file, argp); 5541 case BTRFS_IOC_RM_DEV_V2: 5542 return btrfs_ioctl_rm_dev_v2(file, argp); 5543 case BTRFS_IOC_FS_INFO: 5544 return btrfs_ioctl_fs_info(root, argp); 5545 case BTRFS_IOC_DEV_INFO: 5546 return btrfs_ioctl_dev_info(root, argp); 5547 case BTRFS_IOC_BALANCE: 5548 return btrfs_ioctl_balance(file, NULL); 5549 case BTRFS_IOC_TRANS_START: 5550 return btrfs_ioctl_trans_start(file); 5551 case BTRFS_IOC_TRANS_END: 5552 return btrfs_ioctl_trans_end(file); 5553 case BTRFS_IOC_TREE_SEARCH: 5554 return btrfs_ioctl_tree_search(file, argp); 5555 case BTRFS_IOC_TREE_SEARCH_V2: 5556 return btrfs_ioctl_tree_search_v2(file, argp); 5557 case BTRFS_IOC_INO_LOOKUP: 5558 return btrfs_ioctl_ino_lookup(file, argp); 5559 case BTRFS_IOC_INO_PATHS: 5560 return btrfs_ioctl_ino_to_path(root, argp); 5561 case BTRFS_IOC_LOGICAL_INO: 5562 return btrfs_ioctl_logical_to_ino(root, argp); 5563 case BTRFS_IOC_SPACE_INFO: 5564 return btrfs_ioctl_space_info(root, argp); 5565 case BTRFS_IOC_SYNC: { 5566 int ret; 5567 5568 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1); 5569 if (ret) 5570 return ret; 5571 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1); 5572 /* 5573 * The transaction thread may want to do more work, 5574 * namely it pokes the cleaner ktread that will start 5575 * processing uncleaned subvols. 5576 */ 5577 wake_up_process(root->fs_info->transaction_kthread); 5578 return ret; 5579 } 5580 case BTRFS_IOC_START_SYNC: 5581 return btrfs_ioctl_start_sync(root, argp); 5582 case BTRFS_IOC_WAIT_SYNC: 5583 return btrfs_ioctl_wait_sync(root, argp); 5584 case BTRFS_IOC_SCRUB: 5585 return btrfs_ioctl_scrub(file, argp); 5586 case BTRFS_IOC_SCRUB_CANCEL: 5587 return btrfs_ioctl_scrub_cancel(root, argp); 5588 case BTRFS_IOC_SCRUB_PROGRESS: 5589 return btrfs_ioctl_scrub_progress(root, argp); 5590 case BTRFS_IOC_BALANCE_V2: 5591 return btrfs_ioctl_balance(file, argp); 5592 case BTRFS_IOC_BALANCE_CTL: 5593 return btrfs_ioctl_balance_ctl(root, arg); 5594 case BTRFS_IOC_BALANCE_PROGRESS: 5595 return btrfs_ioctl_balance_progress(root, argp); 5596 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5597 return btrfs_ioctl_set_received_subvol(file, argp); 5598 #ifdef CONFIG_64BIT 5599 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5600 return btrfs_ioctl_set_received_subvol_32(file, argp); 5601 #endif 5602 case BTRFS_IOC_SEND: 5603 return btrfs_ioctl_send(file, argp); 5604 case BTRFS_IOC_GET_DEV_STATS: 5605 return btrfs_ioctl_get_dev_stats(root, argp); 5606 case BTRFS_IOC_QUOTA_CTL: 5607 return btrfs_ioctl_quota_ctl(file, argp); 5608 case BTRFS_IOC_QGROUP_ASSIGN: 5609 return btrfs_ioctl_qgroup_assign(file, argp); 5610 case BTRFS_IOC_QGROUP_CREATE: 5611 return btrfs_ioctl_qgroup_create(file, argp); 5612 case BTRFS_IOC_QGROUP_LIMIT: 5613 return btrfs_ioctl_qgroup_limit(file, argp); 5614 case BTRFS_IOC_QUOTA_RESCAN: 5615 return btrfs_ioctl_quota_rescan(file, argp); 5616 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5617 return btrfs_ioctl_quota_rescan_status(file, argp); 5618 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5619 return btrfs_ioctl_quota_rescan_wait(file, argp); 5620 case BTRFS_IOC_DEV_REPLACE: 5621 return btrfs_ioctl_dev_replace(root, argp); 5622 case BTRFS_IOC_GET_FSLABEL: 5623 return btrfs_ioctl_get_fslabel(file, argp); 5624 case BTRFS_IOC_SET_FSLABEL: 5625 return btrfs_ioctl_set_fslabel(file, argp); 5626 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5627 return btrfs_ioctl_get_supported_features(argp); 5628 case BTRFS_IOC_GET_FEATURES: 5629 return btrfs_ioctl_get_features(file, argp); 5630 case BTRFS_IOC_SET_FEATURES: 5631 return btrfs_ioctl_set_features(file, argp); 5632 } 5633 5634 return -ENOTTY; 5635 } 5636 5637 #ifdef CONFIG_COMPAT 5638 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5639 { 5640 switch (cmd) { 5641 case FS_IOC32_GETFLAGS: 5642 cmd = FS_IOC_GETFLAGS; 5643 break; 5644 case FS_IOC32_SETFLAGS: 5645 cmd = FS_IOC_SETFLAGS; 5646 break; 5647 case FS_IOC32_GETVERSION: 5648 cmd = FS_IOC_GETVERSION; 5649 break; 5650 default: 5651 return -ENOIOCTLCMD; 5652 } 5653 5654 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5655 } 5656 #endif 5657