1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "transaction.h" 32 #include "btrfs_inode.h" 33 #include "print-tree.h" 34 #include "volumes.h" 35 #include "locking.h" 36 #include "inode-map.h" 37 #include "backref.h" 38 #include "rcu-string.h" 39 #include "send.h" 40 #include "dev-replace.h" 41 #include "props.h" 42 #include "sysfs.h" 43 #include "qgroup.h" 44 #include "tree-log.h" 45 #include "compression.h" 46 47 #ifdef CONFIG_64BIT 48 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 49 * structures are incorrect, as the timespec structure from userspace 50 * is 4 bytes too small. We define these alternatives here to teach 51 * the kernel about the 32-bit struct packing. 52 */ 53 struct btrfs_ioctl_timespec_32 { 54 __u64 sec; 55 __u32 nsec; 56 } __attribute__ ((__packed__)); 57 58 struct btrfs_ioctl_received_subvol_args_32 { 59 char uuid[BTRFS_UUID_SIZE]; /* in */ 60 __u64 stransid; /* in */ 61 __u64 rtransid; /* out */ 62 struct btrfs_ioctl_timespec_32 stime; /* in */ 63 struct btrfs_ioctl_timespec_32 rtime; /* out */ 64 __u64 flags; /* in */ 65 __u64 reserved[16]; /* in */ 66 } __attribute__ ((__packed__)); 67 68 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 69 struct btrfs_ioctl_received_subvol_args_32) 70 #endif 71 72 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 73 struct btrfs_ioctl_send_args_32 { 74 __s64 send_fd; /* in */ 75 __u64 clone_sources_count; /* in */ 76 compat_uptr_t clone_sources; /* in */ 77 __u64 parent_root; /* in */ 78 __u64 flags; /* in */ 79 __u64 reserved[4]; /* in */ 80 } __attribute__ ((__packed__)); 81 82 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 83 struct btrfs_ioctl_send_args_32) 84 #endif 85 86 static int btrfs_clone(struct inode *src, struct inode *inode, 87 u64 off, u64 olen, u64 olen_aligned, u64 destoff, 88 int no_time_update); 89 90 /* Mask out flags that are inappropriate for the given type of inode. */ 91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 92 unsigned int flags) 93 { 94 if (S_ISDIR(inode->i_mode)) 95 return flags; 96 else if (S_ISREG(inode->i_mode)) 97 return flags & ~FS_DIRSYNC_FL; 98 else 99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 100 } 101 102 /* 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 104 * ioctl. 105 */ 106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 107 { 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if (flags & BTRFS_INODE_NOCOMPRESS) 126 iflags |= FS_NOCOMP_FL; 127 else if (flags & BTRFS_INODE_COMPRESS) 128 iflags |= FS_COMPR_FL; 129 130 return iflags; 131 } 132 133 /* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 137 { 138 struct btrfs_inode *binode = BTRFS_I(inode); 139 unsigned int new_fl = 0; 140 141 if (binode->flags & BTRFS_INODE_SYNC) 142 new_fl |= S_SYNC; 143 if (binode->flags & BTRFS_INODE_IMMUTABLE) 144 new_fl |= S_IMMUTABLE; 145 if (binode->flags & BTRFS_INODE_APPEND) 146 new_fl |= S_APPEND; 147 if (binode->flags & BTRFS_INODE_NOATIME) 148 new_fl |= S_NOATIME; 149 if (binode->flags & BTRFS_INODE_DIRSYNC) 150 new_fl |= S_DIRSYNC; 151 152 set_mask_bits(&inode->i_flags, 153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 154 new_fl); 155 } 156 157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 158 { 159 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 161 162 if (copy_to_user(arg, &flags, sizeof(flags))) 163 return -EFAULT; 164 return 0; 165 } 166 167 /* Check if @flags are a supported and valid set of FS_*_FL flags */ 168 static int check_fsflags(unsigned int flags) 169 { 170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 171 FS_NOATIME_FL | FS_NODUMP_FL | \ 172 FS_SYNC_FL | FS_DIRSYNC_FL | \ 173 FS_NOCOMP_FL | FS_COMPR_FL | 174 FS_NOCOW_FL)) 175 return -EOPNOTSUPP; 176 177 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 178 return -EINVAL; 179 180 return 0; 181 } 182 183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 184 { 185 struct inode *inode = file_inode(file); 186 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 187 struct btrfs_inode *binode = BTRFS_I(inode); 188 struct btrfs_root *root = binode->root; 189 struct btrfs_trans_handle *trans; 190 unsigned int fsflags, old_fsflags; 191 int ret; 192 u64 old_flags; 193 unsigned int old_i_flags; 194 umode_t mode; 195 196 if (!inode_owner_or_capable(inode)) 197 return -EPERM; 198 199 if (btrfs_root_readonly(root)) 200 return -EROFS; 201 202 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 203 return -EFAULT; 204 205 ret = check_fsflags(fsflags); 206 if (ret) 207 return ret; 208 209 ret = mnt_want_write_file(file); 210 if (ret) 211 return ret; 212 213 inode_lock(inode); 214 215 old_flags = binode->flags; 216 old_i_flags = inode->i_flags; 217 mode = inode->i_mode; 218 219 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 220 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 221 if ((fsflags ^ old_fsflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 222 if (!capable(CAP_LINUX_IMMUTABLE)) { 223 ret = -EPERM; 224 goto out_unlock; 225 } 226 } 227 228 if (fsflags & FS_SYNC_FL) 229 binode->flags |= BTRFS_INODE_SYNC; 230 else 231 binode->flags &= ~BTRFS_INODE_SYNC; 232 if (fsflags & FS_IMMUTABLE_FL) 233 binode->flags |= BTRFS_INODE_IMMUTABLE; 234 else 235 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 236 if (fsflags & FS_APPEND_FL) 237 binode->flags |= BTRFS_INODE_APPEND; 238 else 239 binode->flags &= ~BTRFS_INODE_APPEND; 240 if (fsflags & FS_NODUMP_FL) 241 binode->flags |= BTRFS_INODE_NODUMP; 242 else 243 binode->flags &= ~BTRFS_INODE_NODUMP; 244 if (fsflags & FS_NOATIME_FL) 245 binode->flags |= BTRFS_INODE_NOATIME; 246 else 247 binode->flags &= ~BTRFS_INODE_NOATIME; 248 if (fsflags & FS_DIRSYNC_FL) 249 binode->flags |= BTRFS_INODE_DIRSYNC; 250 else 251 binode->flags &= ~BTRFS_INODE_DIRSYNC; 252 if (fsflags & FS_NOCOW_FL) { 253 if (S_ISREG(mode)) { 254 /* 255 * It's safe to turn csums off here, no extents exist. 256 * Otherwise we want the flag to reflect the real COW 257 * status of the file and will not set it. 258 */ 259 if (inode->i_size == 0) 260 binode->flags |= BTRFS_INODE_NODATACOW 261 | BTRFS_INODE_NODATASUM; 262 } else { 263 binode->flags |= BTRFS_INODE_NODATACOW; 264 } 265 } else { 266 /* 267 * Revert back under same assumptions as above 268 */ 269 if (S_ISREG(mode)) { 270 if (inode->i_size == 0) 271 binode->flags &= ~(BTRFS_INODE_NODATACOW 272 | BTRFS_INODE_NODATASUM); 273 } else { 274 binode->flags &= ~BTRFS_INODE_NODATACOW; 275 } 276 } 277 278 /* 279 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 280 * flag may be changed automatically if compression code won't make 281 * things smaller. 282 */ 283 if (fsflags & FS_NOCOMP_FL) { 284 binode->flags &= ~BTRFS_INODE_COMPRESS; 285 binode->flags |= BTRFS_INODE_NOCOMPRESS; 286 287 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 288 if (ret && ret != -ENODATA) 289 goto out_drop; 290 } else if (fsflags & FS_COMPR_FL) { 291 const char *comp; 292 293 binode->flags |= BTRFS_INODE_COMPRESS; 294 binode->flags &= ~BTRFS_INODE_NOCOMPRESS; 295 296 comp = btrfs_compress_type2str(fs_info->compress_type); 297 if (!comp || comp[0] == 0) 298 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 299 300 ret = btrfs_set_prop(inode, "btrfs.compression", 301 comp, strlen(comp), 0); 302 if (ret) 303 goto out_drop; 304 305 } else { 306 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 307 if (ret && ret != -ENODATA) 308 goto out_drop; 309 binode->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 310 } 311 312 trans = btrfs_start_transaction(root, 1); 313 if (IS_ERR(trans)) { 314 ret = PTR_ERR(trans); 315 goto out_drop; 316 } 317 318 btrfs_sync_inode_flags_to_i_flags(inode); 319 inode_inc_iversion(inode); 320 inode->i_ctime = current_time(inode); 321 ret = btrfs_update_inode(trans, root, inode); 322 323 btrfs_end_transaction(trans); 324 out_drop: 325 if (ret) { 326 binode->flags = old_flags; 327 inode->i_flags = old_i_flags; 328 } 329 330 out_unlock: 331 inode_unlock(inode); 332 mnt_drop_write_file(file); 333 return ret; 334 } 335 336 /* 337 * Translate btrfs internal inode flags to xflags as expected by the 338 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 339 * silently dropped. 340 */ 341 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 342 { 343 unsigned int xflags = 0; 344 345 if (flags & BTRFS_INODE_APPEND) 346 xflags |= FS_XFLAG_APPEND; 347 if (flags & BTRFS_INODE_IMMUTABLE) 348 xflags |= FS_XFLAG_IMMUTABLE; 349 if (flags & BTRFS_INODE_NOATIME) 350 xflags |= FS_XFLAG_NOATIME; 351 if (flags & BTRFS_INODE_NODUMP) 352 xflags |= FS_XFLAG_NODUMP; 353 if (flags & BTRFS_INODE_SYNC) 354 xflags |= FS_XFLAG_SYNC; 355 356 return xflags; 357 } 358 359 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 360 static int check_xflags(unsigned int flags) 361 { 362 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 363 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 364 return -EOPNOTSUPP; 365 return 0; 366 } 367 368 /* 369 * Set the xflags from the internal inode flags. The remaining items of fsxattr 370 * are zeroed. 371 */ 372 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 373 { 374 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 375 struct fsxattr fa; 376 377 memset(&fa, 0, sizeof(fa)); 378 fa.fsx_xflags = btrfs_inode_flags_to_xflags(binode->flags); 379 380 if (copy_to_user(arg, &fa, sizeof(fa))) 381 return -EFAULT; 382 383 return 0; 384 } 385 386 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 387 { 388 struct inode *inode = file_inode(file); 389 struct btrfs_inode *binode = BTRFS_I(inode); 390 struct btrfs_root *root = binode->root; 391 struct btrfs_trans_handle *trans; 392 struct fsxattr fa; 393 unsigned old_flags; 394 unsigned old_i_flags; 395 int ret = 0; 396 397 if (!inode_owner_or_capable(inode)) 398 return -EPERM; 399 400 if (btrfs_root_readonly(root)) 401 return -EROFS; 402 403 memset(&fa, 0, sizeof(fa)); 404 if (copy_from_user(&fa, arg, sizeof(fa))) 405 return -EFAULT; 406 407 ret = check_xflags(fa.fsx_xflags); 408 if (ret) 409 return ret; 410 411 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 412 return -EOPNOTSUPP; 413 414 ret = mnt_want_write_file(file); 415 if (ret) 416 return ret; 417 418 inode_lock(inode); 419 420 old_flags = binode->flags; 421 old_i_flags = inode->i_flags; 422 423 /* We need the capabilities to change append-only or immutable inode */ 424 if (((old_flags & (BTRFS_INODE_APPEND | BTRFS_INODE_IMMUTABLE)) || 425 (fa.fsx_xflags & (FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE))) && 426 !capable(CAP_LINUX_IMMUTABLE)) { 427 ret = -EPERM; 428 goto out_unlock; 429 } 430 431 if (fa.fsx_xflags & FS_XFLAG_SYNC) 432 binode->flags |= BTRFS_INODE_SYNC; 433 else 434 binode->flags &= ~BTRFS_INODE_SYNC; 435 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 436 binode->flags |= BTRFS_INODE_IMMUTABLE; 437 else 438 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 439 if (fa.fsx_xflags & FS_XFLAG_APPEND) 440 binode->flags |= BTRFS_INODE_APPEND; 441 else 442 binode->flags &= ~BTRFS_INODE_APPEND; 443 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 444 binode->flags |= BTRFS_INODE_NODUMP; 445 else 446 binode->flags &= ~BTRFS_INODE_NODUMP; 447 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 448 binode->flags |= BTRFS_INODE_NOATIME; 449 else 450 binode->flags &= ~BTRFS_INODE_NOATIME; 451 452 /* 1 item for the inode */ 453 trans = btrfs_start_transaction(root, 1); 454 if (IS_ERR(trans)) { 455 ret = PTR_ERR(trans); 456 goto out_unlock; 457 } 458 459 btrfs_sync_inode_flags_to_i_flags(inode); 460 inode_inc_iversion(inode); 461 inode->i_ctime = current_time(inode); 462 ret = btrfs_update_inode(trans, root, inode); 463 464 btrfs_end_transaction(trans); 465 466 out_unlock: 467 if (ret) { 468 binode->flags = old_flags; 469 inode->i_flags = old_i_flags; 470 } 471 472 inode_unlock(inode); 473 mnt_drop_write_file(file); 474 475 return ret; 476 } 477 478 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 479 { 480 struct inode *inode = file_inode(file); 481 482 return put_user(inode->i_generation, arg); 483 } 484 485 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 486 { 487 struct inode *inode = file_inode(file); 488 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 489 struct btrfs_device *device; 490 struct request_queue *q; 491 struct fstrim_range range; 492 u64 minlen = ULLONG_MAX; 493 u64 num_devices = 0; 494 int ret; 495 496 if (!capable(CAP_SYS_ADMIN)) 497 return -EPERM; 498 499 rcu_read_lock(); 500 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 501 dev_list) { 502 if (!device->bdev) 503 continue; 504 q = bdev_get_queue(device->bdev); 505 if (blk_queue_discard(q)) { 506 num_devices++; 507 minlen = min_t(u64, q->limits.discard_granularity, 508 minlen); 509 } 510 } 511 rcu_read_unlock(); 512 513 if (!num_devices) 514 return -EOPNOTSUPP; 515 if (copy_from_user(&range, arg, sizeof(range))) 516 return -EFAULT; 517 518 /* 519 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 520 * block group is in the logical address space, which can be any 521 * sectorsize aligned bytenr in the range [0, U64_MAX]. 522 */ 523 if (range.len < fs_info->sb->s_blocksize) 524 return -EINVAL; 525 526 range.minlen = max(range.minlen, minlen); 527 ret = btrfs_trim_fs(fs_info, &range); 528 if (ret < 0) 529 return ret; 530 531 if (copy_to_user(arg, &range, sizeof(range))) 532 return -EFAULT; 533 534 return 0; 535 } 536 537 int btrfs_is_empty_uuid(u8 *uuid) 538 { 539 int i; 540 541 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 542 if (uuid[i]) 543 return 0; 544 } 545 return 1; 546 } 547 548 static noinline int create_subvol(struct inode *dir, 549 struct dentry *dentry, 550 const char *name, int namelen, 551 u64 *async_transid, 552 struct btrfs_qgroup_inherit *inherit) 553 { 554 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 555 struct btrfs_trans_handle *trans; 556 struct btrfs_key key; 557 struct btrfs_root_item *root_item; 558 struct btrfs_inode_item *inode_item; 559 struct extent_buffer *leaf; 560 struct btrfs_root *root = BTRFS_I(dir)->root; 561 struct btrfs_root *new_root; 562 struct btrfs_block_rsv block_rsv; 563 struct timespec64 cur_time = current_time(dir); 564 struct inode *inode; 565 int ret; 566 int err; 567 u64 objectid; 568 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 569 u64 index = 0; 570 uuid_le new_uuid; 571 572 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 573 if (!root_item) 574 return -ENOMEM; 575 576 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid); 577 if (ret) 578 goto fail_free; 579 580 /* 581 * Don't create subvolume whose level is not zero. Or qgroup will be 582 * screwed up since it assumes subvolume qgroup's level to be 0. 583 */ 584 if (btrfs_qgroup_level(objectid)) { 585 ret = -ENOSPC; 586 goto fail_free; 587 } 588 589 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 590 /* 591 * The same as the snapshot creation, please see the comment 592 * of create_snapshot(). 593 */ 594 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 595 if (ret) 596 goto fail_free; 597 598 trans = btrfs_start_transaction(root, 0); 599 if (IS_ERR(trans)) { 600 ret = PTR_ERR(trans); 601 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 602 goto fail_free; 603 } 604 trans->block_rsv = &block_rsv; 605 trans->bytes_reserved = block_rsv.size; 606 607 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 608 if (ret) 609 goto fail; 610 611 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); 612 if (IS_ERR(leaf)) { 613 ret = PTR_ERR(leaf); 614 goto fail; 615 } 616 617 btrfs_mark_buffer_dirty(leaf); 618 619 inode_item = &root_item->inode; 620 btrfs_set_stack_inode_generation(inode_item, 1); 621 btrfs_set_stack_inode_size(inode_item, 3); 622 btrfs_set_stack_inode_nlink(inode_item, 1); 623 btrfs_set_stack_inode_nbytes(inode_item, 624 fs_info->nodesize); 625 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 626 627 btrfs_set_root_flags(root_item, 0); 628 btrfs_set_root_limit(root_item, 0); 629 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 630 631 btrfs_set_root_bytenr(root_item, leaf->start); 632 btrfs_set_root_generation(root_item, trans->transid); 633 btrfs_set_root_level(root_item, 0); 634 btrfs_set_root_refs(root_item, 1); 635 btrfs_set_root_used(root_item, leaf->len); 636 btrfs_set_root_last_snapshot(root_item, 0); 637 638 btrfs_set_root_generation_v2(root_item, 639 btrfs_root_generation(root_item)); 640 uuid_le_gen(&new_uuid); 641 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 642 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 643 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 644 root_item->ctime = root_item->otime; 645 btrfs_set_root_ctransid(root_item, trans->transid); 646 btrfs_set_root_otransid(root_item, trans->transid); 647 648 btrfs_tree_unlock(leaf); 649 free_extent_buffer(leaf); 650 leaf = NULL; 651 652 btrfs_set_root_dirid(root_item, new_dirid); 653 654 key.objectid = objectid; 655 key.offset = 0; 656 key.type = BTRFS_ROOT_ITEM_KEY; 657 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 658 root_item); 659 if (ret) 660 goto fail; 661 662 key.offset = (u64)-1; 663 new_root = btrfs_read_fs_root_no_name(fs_info, &key); 664 if (IS_ERR(new_root)) { 665 ret = PTR_ERR(new_root); 666 btrfs_abort_transaction(trans, ret); 667 goto fail; 668 } 669 670 btrfs_record_root_in_trans(trans, new_root); 671 672 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 673 if (ret) { 674 /* We potentially lose an unused inode item here */ 675 btrfs_abort_transaction(trans, ret); 676 goto fail; 677 } 678 679 mutex_lock(&new_root->objectid_mutex); 680 new_root->highest_objectid = new_dirid; 681 mutex_unlock(&new_root->objectid_mutex); 682 683 /* 684 * insert the directory item 685 */ 686 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 687 if (ret) { 688 btrfs_abort_transaction(trans, ret); 689 goto fail; 690 } 691 692 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 693 BTRFS_FT_DIR, index); 694 if (ret) { 695 btrfs_abort_transaction(trans, ret); 696 goto fail; 697 } 698 699 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 700 ret = btrfs_update_inode(trans, root, dir); 701 BUG_ON(ret); 702 703 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 704 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 705 BUG_ON(ret); 706 707 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 708 BTRFS_UUID_KEY_SUBVOL, objectid); 709 if (ret) 710 btrfs_abort_transaction(trans, ret); 711 712 fail: 713 kfree(root_item); 714 trans->block_rsv = NULL; 715 trans->bytes_reserved = 0; 716 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 717 718 if (async_transid) { 719 *async_transid = trans->transid; 720 err = btrfs_commit_transaction_async(trans, 1); 721 if (err) 722 err = btrfs_commit_transaction(trans); 723 } else { 724 err = btrfs_commit_transaction(trans); 725 } 726 if (err && !ret) 727 ret = err; 728 729 if (!ret) { 730 inode = btrfs_lookup_dentry(dir, dentry); 731 if (IS_ERR(inode)) 732 return PTR_ERR(inode); 733 d_instantiate(dentry, inode); 734 } 735 return ret; 736 737 fail_free: 738 kfree(root_item); 739 return ret; 740 } 741 742 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 743 struct dentry *dentry, 744 u64 *async_transid, bool readonly, 745 struct btrfs_qgroup_inherit *inherit) 746 { 747 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 748 struct inode *inode; 749 struct btrfs_pending_snapshot *pending_snapshot; 750 struct btrfs_trans_handle *trans; 751 int ret; 752 bool snapshot_force_cow = false; 753 754 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 755 return -EINVAL; 756 757 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 758 if (!pending_snapshot) 759 return -ENOMEM; 760 761 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 762 GFP_KERNEL); 763 pending_snapshot->path = btrfs_alloc_path(); 764 if (!pending_snapshot->root_item || !pending_snapshot->path) { 765 ret = -ENOMEM; 766 goto free_pending; 767 } 768 769 /* 770 * Force new buffered writes to reserve space even when NOCOW is 771 * possible. This is to avoid later writeback (running dealloc) to 772 * fallback to COW mode and unexpectedly fail with ENOSPC. 773 */ 774 atomic_inc(&root->will_be_snapshotted); 775 smp_mb__after_atomic(); 776 /* wait for no snapshot writes */ 777 wait_event(root->subv_writers->wait, 778 percpu_counter_sum(&root->subv_writers->counter) == 0); 779 780 ret = btrfs_start_delalloc_inodes(root); 781 if (ret) 782 goto dec_and_free; 783 784 /* 785 * All previous writes have started writeback in NOCOW mode, so now 786 * we force future writes to fallback to COW mode during snapshot 787 * creation. 788 */ 789 atomic_inc(&root->snapshot_force_cow); 790 snapshot_force_cow = true; 791 792 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 793 794 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 795 BTRFS_BLOCK_RSV_TEMP); 796 /* 797 * 1 - parent dir inode 798 * 2 - dir entries 799 * 1 - root item 800 * 2 - root ref/backref 801 * 1 - root of snapshot 802 * 1 - UUID item 803 */ 804 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 805 &pending_snapshot->block_rsv, 8, 806 false); 807 if (ret) 808 goto dec_and_free; 809 810 pending_snapshot->dentry = dentry; 811 pending_snapshot->root = root; 812 pending_snapshot->readonly = readonly; 813 pending_snapshot->dir = dir; 814 pending_snapshot->inherit = inherit; 815 816 trans = btrfs_start_transaction(root, 0); 817 if (IS_ERR(trans)) { 818 ret = PTR_ERR(trans); 819 goto fail; 820 } 821 822 spin_lock(&fs_info->trans_lock); 823 list_add(&pending_snapshot->list, 824 &trans->transaction->pending_snapshots); 825 spin_unlock(&fs_info->trans_lock); 826 if (async_transid) { 827 *async_transid = trans->transid; 828 ret = btrfs_commit_transaction_async(trans, 1); 829 if (ret) 830 ret = btrfs_commit_transaction(trans); 831 } else { 832 ret = btrfs_commit_transaction(trans); 833 } 834 if (ret) 835 goto fail; 836 837 ret = pending_snapshot->error; 838 if (ret) 839 goto fail; 840 841 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 842 if (ret) 843 goto fail; 844 845 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 846 if (IS_ERR(inode)) { 847 ret = PTR_ERR(inode); 848 goto fail; 849 } 850 851 d_instantiate(dentry, inode); 852 ret = 0; 853 fail: 854 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv); 855 dec_and_free: 856 if (snapshot_force_cow) 857 atomic_dec(&root->snapshot_force_cow); 858 if (atomic_dec_and_test(&root->will_be_snapshotted)) 859 wake_up_var(&root->will_be_snapshotted); 860 free_pending: 861 kfree(pending_snapshot->root_item); 862 btrfs_free_path(pending_snapshot->path); 863 kfree(pending_snapshot); 864 865 return ret; 866 } 867 868 /* copy of may_delete in fs/namei.c() 869 * Check whether we can remove a link victim from directory dir, check 870 * whether the type of victim is right. 871 * 1. We can't do it if dir is read-only (done in permission()) 872 * 2. We should have write and exec permissions on dir 873 * 3. We can't remove anything from append-only dir 874 * 4. We can't do anything with immutable dir (done in permission()) 875 * 5. If the sticky bit on dir is set we should either 876 * a. be owner of dir, or 877 * b. be owner of victim, or 878 * c. have CAP_FOWNER capability 879 * 6. If the victim is append-only or immutable we can't do anything with 880 * links pointing to it. 881 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 882 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 883 * 9. We can't remove a root or mountpoint. 884 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 885 * nfs_async_unlink(). 886 */ 887 888 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 889 { 890 int error; 891 892 if (d_really_is_negative(victim)) 893 return -ENOENT; 894 895 BUG_ON(d_inode(victim->d_parent) != dir); 896 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 897 898 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 899 if (error) 900 return error; 901 if (IS_APPEND(dir)) 902 return -EPERM; 903 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 904 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 905 return -EPERM; 906 if (isdir) { 907 if (!d_is_dir(victim)) 908 return -ENOTDIR; 909 if (IS_ROOT(victim)) 910 return -EBUSY; 911 } else if (d_is_dir(victim)) 912 return -EISDIR; 913 if (IS_DEADDIR(dir)) 914 return -ENOENT; 915 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 916 return -EBUSY; 917 return 0; 918 } 919 920 /* copy of may_create in fs/namei.c() */ 921 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 922 { 923 if (d_really_is_positive(child)) 924 return -EEXIST; 925 if (IS_DEADDIR(dir)) 926 return -ENOENT; 927 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 928 } 929 930 /* 931 * Create a new subvolume below @parent. This is largely modeled after 932 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 933 * inside this filesystem so it's quite a bit simpler. 934 */ 935 static noinline int btrfs_mksubvol(const struct path *parent, 936 const char *name, int namelen, 937 struct btrfs_root *snap_src, 938 u64 *async_transid, bool readonly, 939 struct btrfs_qgroup_inherit *inherit) 940 { 941 struct inode *dir = d_inode(parent->dentry); 942 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 943 struct dentry *dentry; 944 int error; 945 946 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 947 if (error == -EINTR) 948 return error; 949 950 dentry = lookup_one_len(name, parent->dentry, namelen); 951 error = PTR_ERR(dentry); 952 if (IS_ERR(dentry)) 953 goto out_unlock; 954 955 error = btrfs_may_create(dir, dentry); 956 if (error) 957 goto out_dput; 958 959 /* 960 * even if this name doesn't exist, we may get hash collisions. 961 * check for them now when we can safely fail 962 */ 963 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 964 dir->i_ino, name, 965 namelen); 966 if (error) 967 goto out_dput; 968 969 down_read(&fs_info->subvol_sem); 970 971 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 972 goto out_up_read; 973 974 if (snap_src) { 975 error = create_snapshot(snap_src, dir, dentry, 976 async_transid, readonly, inherit); 977 } else { 978 error = create_subvol(dir, dentry, name, namelen, 979 async_transid, inherit); 980 } 981 if (!error) 982 fsnotify_mkdir(dir, dentry); 983 out_up_read: 984 up_read(&fs_info->subvol_sem); 985 out_dput: 986 dput(dentry); 987 out_unlock: 988 inode_unlock(dir); 989 return error; 990 } 991 992 /* 993 * When we're defragging a range, we don't want to kick it off again 994 * if it is really just waiting for delalloc to send it down. 995 * If we find a nice big extent or delalloc range for the bytes in the 996 * file you want to defrag, we return 0 to let you know to skip this 997 * part of the file 998 */ 999 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1000 { 1001 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1002 struct extent_map *em = NULL; 1003 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1004 u64 end; 1005 1006 read_lock(&em_tree->lock); 1007 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1008 read_unlock(&em_tree->lock); 1009 1010 if (em) { 1011 end = extent_map_end(em); 1012 free_extent_map(em); 1013 if (end - offset > thresh) 1014 return 0; 1015 } 1016 /* if we already have a nice delalloc here, just stop */ 1017 thresh /= 2; 1018 end = count_range_bits(io_tree, &offset, offset + thresh, 1019 thresh, EXTENT_DELALLOC, 1); 1020 if (end >= thresh) 1021 return 0; 1022 return 1; 1023 } 1024 1025 /* 1026 * helper function to walk through a file and find extents 1027 * newer than a specific transid, and smaller than thresh. 1028 * 1029 * This is used by the defragging code to find new and small 1030 * extents 1031 */ 1032 static int find_new_extents(struct btrfs_root *root, 1033 struct inode *inode, u64 newer_than, 1034 u64 *off, u32 thresh) 1035 { 1036 struct btrfs_path *path; 1037 struct btrfs_key min_key; 1038 struct extent_buffer *leaf; 1039 struct btrfs_file_extent_item *extent; 1040 int type; 1041 int ret; 1042 u64 ino = btrfs_ino(BTRFS_I(inode)); 1043 1044 path = btrfs_alloc_path(); 1045 if (!path) 1046 return -ENOMEM; 1047 1048 min_key.objectid = ino; 1049 min_key.type = BTRFS_EXTENT_DATA_KEY; 1050 min_key.offset = *off; 1051 1052 while (1) { 1053 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1054 if (ret != 0) 1055 goto none; 1056 process_slot: 1057 if (min_key.objectid != ino) 1058 goto none; 1059 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1060 goto none; 1061 1062 leaf = path->nodes[0]; 1063 extent = btrfs_item_ptr(leaf, path->slots[0], 1064 struct btrfs_file_extent_item); 1065 1066 type = btrfs_file_extent_type(leaf, extent); 1067 if (type == BTRFS_FILE_EXTENT_REG && 1068 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1069 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1070 *off = min_key.offset; 1071 btrfs_free_path(path); 1072 return 0; 1073 } 1074 1075 path->slots[0]++; 1076 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1077 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1078 goto process_slot; 1079 } 1080 1081 if (min_key.offset == (u64)-1) 1082 goto none; 1083 1084 min_key.offset++; 1085 btrfs_release_path(path); 1086 } 1087 none: 1088 btrfs_free_path(path); 1089 return -ENOENT; 1090 } 1091 1092 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1093 { 1094 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1095 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1096 struct extent_map *em; 1097 u64 len = PAGE_SIZE; 1098 1099 /* 1100 * hopefully we have this extent in the tree already, try without 1101 * the full extent lock 1102 */ 1103 read_lock(&em_tree->lock); 1104 em = lookup_extent_mapping(em_tree, start, len); 1105 read_unlock(&em_tree->lock); 1106 1107 if (!em) { 1108 struct extent_state *cached = NULL; 1109 u64 end = start + len - 1; 1110 1111 /* get the big lock and read metadata off disk */ 1112 lock_extent_bits(io_tree, start, end, &cached); 1113 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 1114 unlock_extent_cached(io_tree, start, end, &cached); 1115 1116 if (IS_ERR(em)) 1117 return NULL; 1118 } 1119 1120 return em; 1121 } 1122 1123 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1124 { 1125 struct extent_map *next; 1126 bool ret = true; 1127 1128 /* this is the last extent */ 1129 if (em->start + em->len >= i_size_read(inode)) 1130 return false; 1131 1132 next = defrag_lookup_extent(inode, em->start + em->len); 1133 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1134 ret = false; 1135 else if ((em->block_start + em->block_len == next->block_start) && 1136 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1137 ret = false; 1138 1139 free_extent_map(next); 1140 return ret; 1141 } 1142 1143 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1144 u64 *last_len, u64 *skip, u64 *defrag_end, 1145 int compress) 1146 { 1147 struct extent_map *em; 1148 int ret = 1; 1149 bool next_mergeable = true; 1150 bool prev_mergeable = true; 1151 1152 /* 1153 * make sure that once we start defragging an extent, we keep on 1154 * defragging it 1155 */ 1156 if (start < *defrag_end) 1157 return 1; 1158 1159 *skip = 0; 1160 1161 em = defrag_lookup_extent(inode, start); 1162 if (!em) 1163 return 0; 1164 1165 /* this will cover holes, and inline extents */ 1166 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1167 ret = 0; 1168 goto out; 1169 } 1170 1171 if (!*defrag_end) 1172 prev_mergeable = false; 1173 1174 next_mergeable = defrag_check_next_extent(inode, em); 1175 /* 1176 * we hit a real extent, if it is big or the next extent is not a 1177 * real extent, don't bother defragging it 1178 */ 1179 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1180 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1181 ret = 0; 1182 out: 1183 /* 1184 * last_len ends up being a counter of how many bytes we've defragged. 1185 * every time we choose not to defrag an extent, we reset *last_len 1186 * so that the next tiny extent will force a defrag. 1187 * 1188 * The end result of this is that tiny extents before a single big 1189 * extent will force at least part of that big extent to be defragged. 1190 */ 1191 if (ret) { 1192 *defrag_end = extent_map_end(em); 1193 } else { 1194 *last_len = 0; 1195 *skip = extent_map_end(em); 1196 *defrag_end = 0; 1197 } 1198 1199 free_extent_map(em); 1200 return ret; 1201 } 1202 1203 /* 1204 * it doesn't do much good to defrag one or two pages 1205 * at a time. This pulls in a nice chunk of pages 1206 * to COW and defrag. 1207 * 1208 * It also makes sure the delalloc code has enough 1209 * dirty data to avoid making new small extents as part 1210 * of the defrag 1211 * 1212 * It's a good idea to start RA on this range 1213 * before calling this. 1214 */ 1215 static int cluster_pages_for_defrag(struct inode *inode, 1216 struct page **pages, 1217 unsigned long start_index, 1218 unsigned long num_pages) 1219 { 1220 unsigned long file_end; 1221 u64 isize = i_size_read(inode); 1222 u64 page_start; 1223 u64 page_end; 1224 u64 page_cnt; 1225 int ret; 1226 int i; 1227 int i_done; 1228 struct btrfs_ordered_extent *ordered; 1229 struct extent_state *cached_state = NULL; 1230 struct extent_io_tree *tree; 1231 struct extent_changeset *data_reserved = NULL; 1232 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1233 1234 file_end = (isize - 1) >> PAGE_SHIFT; 1235 if (!isize || start_index > file_end) 1236 return 0; 1237 1238 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1239 1240 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 1241 start_index << PAGE_SHIFT, 1242 page_cnt << PAGE_SHIFT); 1243 if (ret) 1244 return ret; 1245 i_done = 0; 1246 tree = &BTRFS_I(inode)->io_tree; 1247 1248 /* step one, lock all the pages */ 1249 for (i = 0; i < page_cnt; i++) { 1250 struct page *page; 1251 again: 1252 page = find_or_create_page(inode->i_mapping, 1253 start_index + i, mask); 1254 if (!page) 1255 break; 1256 1257 page_start = page_offset(page); 1258 page_end = page_start + PAGE_SIZE - 1; 1259 while (1) { 1260 lock_extent_bits(tree, page_start, page_end, 1261 &cached_state); 1262 ordered = btrfs_lookup_ordered_extent(inode, 1263 page_start); 1264 unlock_extent_cached(tree, page_start, page_end, 1265 &cached_state); 1266 if (!ordered) 1267 break; 1268 1269 unlock_page(page); 1270 btrfs_start_ordered_extent(inode, ordered, 1); 1271 btrfs_put_ordered_extent(ordered); 1272 lock_page(page); 1273 /* 1274 * we unlocked the page above, so we need check if 1275 * it was released or not. 1276 */ 1277 if (page->mapping != inode->i_mapping) { 1278 unlock_page(page); 1279 put_page(page); 1280 goto again; 1281 } 1282 } 1283 1284 if (!PageUptodate(page)) { 1285 btrfs_readpage(NULL, page); 1286 lock_page(page); 1287 if (!PageUptodate(page)) { 1288 unlock_page(page); 1289 put_page(page); 1290 ret = -EIO; 1291 break; 1292 } 1293 } 1294 1295 if (page->mapping != inode->i_mapping) { 1296 unlock_page(page); 1297 put_page(page); 1298 goto again; 1299 } 1300 1301 pages[i] = page; 1302 i_done++; 1303 } 1304 if (!i_done || ret) 1305 goto out; 1306 1307 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1308 goto out; 1309 1310 /* 1311 * so now we have a nice long stream of locked 1312 * and up to date pages, lets wait on them 1313 */ 1314 for (i = 0; i < i_done; i++) 1315 wait_on_page_writeback(pages[i]); 1316 1317 page_start = page_offset(pages[0]); 1318 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1319 1320 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1321 page_start, page_end - 1, &cached_state); 1322 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1323 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1324 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1325 &cached_state); 1326 1327 if (i_done != page_cnt) { 1328 spin_lock(&BTRFS_I(inode)->lock); 1329 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1330 spin_unlock(&BTRFS_I(inode)->lock); 1331 btrfs_delalloc_release_space(inode, data_reserved, 1332 start_index << PAGE_SHIFT, 1333 (page_cnt - i_done) << PAGE_SHIFT, true); 1334 } 1335 1336 1337 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1338 &cached_state); 1339 1340 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1341 page_start, page_end - 1, &cached_state); 1342 1343 for (i = 0; i < i_done; i++) { 1344 clear_page_dirty_for_io(pages[i]); 1345 ClearPageChecked(pages[i]); 1346 set_page_extent_mapped(pages[i]); 1347 set_page_dirty(pages[i]); 1348 unlock_page(pages[i]); 1349 put_page(pages[i]); 1350 } 1351 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1352 false); 1353 extent_changeset_free(data_reserved); 1354 return i_done; 1355 out: 1356 for (i = 0; i < i_done; i++) { 1357 unlock_page(pages[i]); 1358 put_page(pages[i]); 1359 } 1360 btrfs_delalloc_release_space(inode, data_reserved, 1361 start_index << PAGE_SHIFT, 1362 page_cnt << PAGE_SHIFT, true); 1363 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT, 1364 true); 1365 extent_changeset_free(data_reserved); 1366 return ret; 1367 1368 } 1369 1370 int btrfs_defrag_file(struct inode *inode, struct file *file, 1371 struct btrfs_ioctl_defrag_range_args *range, 1372 u64 newer_than, unsigned long max_to_defrag) 1373 { 1374 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1375 struct btrfs_root *root = BTRFS_I(inode)->root; 1376 struct file_ra_state *ra = NULL; 1377 unsigned long last_index; 1378 u64 isize = i_size_read(inode); 1379 u64 last_len = 0; 1380 u64 skip = 0; 1381 u64 defrag_end = 0; 1382 u64 newer_off = range->start; 1383 unsigned long i; 1384 unsigned long ra_index = 0; 1385 int ret; 1386 int defrag_count = 0; 1387 int compress_type = BTRFS_COMPRESS_ZLIB; 1388 u32 extent_thresh = range->extent_thresh; 1389 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1390 unsigned long cluster = max_cluster; 1391 u64 new_align = ~((u64)SZ_128K - 1); 1392 struct page **pages = NULL; 1393 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1394 1395 if (isize == 0) 1396 return 0; 1397 1398 if (range->start >= isize) 1399 return -EINVAL; 1400 1401 if (do_compress) { 1402 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1403 return -EINVAL; 1404 if (range->compress_type) 1405 compress_type = range->compress_type; 1406 } 1407 1408 if (extent_thresh == 0) 1409 extent_thresh = SZ_256K; 1410 1411 /* 1412 * If we were not given a file, allocate a readahead context. As 1413 * readahead is just an optimization, defrag will work without it so 1414 * we don't error out. 1415 */ 1416 if (!file) { 1417 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1418 if (ra) 1419 file_ra_state_init(ra, inode->i_mapping); 1420 } else { 1421 ra = &file->f_ra; 1422 } 1423 1424 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1425 if (!pages) { 1426 ret = -ENOMEM; 1427 goto out_ra; 1428 } 1429 1430 /* find the last page to defrag */ 1431 if (range->start + range->len > range->start) { 1432 last_index = min_t(u64, isize - 1, 1433 range->start + range->len - 1) >> PAGE_SHIFT; 1434 } else { 1435 last_index = (isize - 1) >> PAGE_SHIFT; 1436 } 1437 1438 if (newer_than) { 1439 ret = find_new_extents(root, inode, newer_than, 1440 &newer_off, SZ_64K); 1441 if (!ret) { 1442 range->start = newer_off; 1443 /* 1444 * we always align our defrag to help keep 1445 * the extents in the file evenly spaced 1446 */ 1447 i = (newer_off & new_align) >> PAGE_SHIFT; 1448 } else 1449 goto out_ra; 1450 } else { 1451 i = range->start >> PAGE_SHIFT; 1452 } 1453 if (!max_to_defrag) 1454 max_to_defrag = last_index - i + 1; 1455 1456 /* 1457 * make writeback starts from i, so the defrag range can be 1458 * written sequentially. 1459 */ 1460 if (i < inode->i_mapping->writeback_index) 1461 inode->i_mapping->writeback_index = i; 1462 1463 while (i <= last_index && defrag_count < max_to_defrag && 1464 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1465 /* 1466 * make sure we stop running if someone unmounts 1467 * the FS 1468 */ 1469 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1470 break; 1471 1472 if (btrfs_defrag_cancelled(fs_info)) { 1473 btrfs_debug(fs_info, "defrag_file cancelled"); 1474 ret = -EAGAIN; 1475 break; 1476 } 1477 1478 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1479 extent_thresh, &last_len, &skip, 1480 &defrag_end, do_compress)){ 1481 unsigned long next; 1482 /* 1483 * the should_defrag function tells us how much to skip 1484 * bump our counter by the suggested amount 1485 */ 1486 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1487 i = max(i + 1, next); 1488 continue; 1489 } 1490 1491 if (!newer_than) { 1492 cluster = (PAGE_ALIGN(defrag_end) >> 1493 PAGE_SHIFT) - i; 1494 cluster = min(cluster, max_cluster); 1495 } else { 1496 cluster = max_cluster; 1497 } 1498 1499 if (i + cluster > ra_index) { 1500 ra_index = max(i, ra_index); 1501 if (ra) 1502 page_cache_sync_readahead(inode->i_mapping, ra, 1503 file, ra_index, cluster); 1504 ra_index += cluster; 1505 } 1506 1507 inode_lock(inode); 1508 if (do_compress) 1509 BTRFS_I(inode)->defrag_compress = compress_type; 1510 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1511 if (ret < 0) { 1512 inode_unlock(inode); 1513 goto out_ra; 1514 } 1515 1516 defrag_count += ret; 1517 balance_dirty_pages_ratelimited(inode->i_mapping); 1518 inode_unlock(inode); 1519 1520 if (newer_than) { 1521 if (newer_off == (u64)-1) 1522 break; 1523 1524 if (ret > 0) 1525 i += ret; 1526 1527 newer_off = max(newer_off + 1, 1528 (u64)i << PAGE_SHIFT); 1529 1530 ret = find_new_extents(root, inode, newer_than, 1531 &newer_off, SZ_64K); 1532 if (!ret) { 1533 range->start = newer_off; 1534 i = (newer_off & new_align) >> PAGE_SHIFT; 1535 } else { 1536 break; 1537 } 1538 } else { 1539 if (ret > 0) { 1540 i += ret; 1541 last_len += ret << PAGE_SHIFT; 1542 } else { 1543 i++; 1544 last_len = 0; 1545 } 1546 } 1547 } 1548 1549 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1550 filemap_flush(inode->i_mapping); 1551 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1552 &BTRFS_I(inode)->runtime_flags)) 1553 filemap_flush(inode->i_mapping); 1554 } 1555 1556 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1557 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1558 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1559 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1560 } 1561 1562 ret = defrag_count; 1563 1564 out_ra: 1565 if (do_compress) { 1566 inode_lock(inode); 1567 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1568 inode_unlock(inode); 1569 } 1570 if (!file) 1571 kfree(ra); 1572 kfree(pages); 1573 return ret; 1574 } 1575 1576 static noinline int btrfs_ioctl_resize(struct file *file, 1577 void __user *arg) 1578 { 1579 struct inode *inode = file_inode(file); 1580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1581 u64 new_size; 1582 u64 old_size; 1583 u64 devid = 1; 1584 struct btrfs_root *root = BTRFS_I(inode)->root; 1585 struct btrfs_ioctl_vol_args *vol_args; 1586 struct btrfs_trans_handle *trans; 1587 struct btrfs_device *device = NULL; 1588 char *sizestr; 1589 char *retptr; 1590 char *devstr = NULL; 1591 int ret = 0; 1592 int mod = 0; 1593 1594 if (!capable(CAP_SYS_ADMIN)) 1595 return -EPERM; 1596 1597 ret = mnt_want_write_file(file); 1598 if (ret) 1599 return ret; 1600 1601 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 1602 mnt_drop_write_file(file); 1603 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1604 } 1605 1606 vol_args = memdup_user(arg, sizeof(*vol_args)); 1607 if (IS_ERR(vol_args)) { 1608 ret = PTR_ERR(vol_args); 1609 goto out; 1610 } 1611 1612 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1613 1614 sizestr = vol_args->name; 1615 devstr = strchr(sizestr, ':'); 1616 if (devstr) { 1617 sizestr = devstr + 1; 1618 *devstr = '\0'; 1619 devstr = vol_args->name; 1620 ret = kstrtoull(devstr, 10, &devid); 1621 if (ret) 1622 goto out_free; 1623 if (!devid) { 1624 ret = -EINVAL; 1625 goto out_free; 1626 } 1627 btrfs_info(fs_info, "resizing devid %llu", devid); 1628 } 1629 1630 device = btrfs_find_device(fs_info, devid, NULL, NULL); 1631 if (!device) { 1632 btrfs_info(fs_info, "resizer unable to find device %llu", 1633 devid); 1634 ret = -ENODEV; 1635 goto out_free; 1636 } 1637 1638 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1639 btrfs_info(fs_info, 1640 "resizer unable to apply on readonly device %llu", 1641 devid); 1642 ret = -EPERM; 1643 goto out_free; 1644 } 1645 1646 if (!strcmp(sizestr, "max")) 1647 new_size = device->bdev->bd_inode->i_size; 1648 else { 1649 if (sizestr[0] == '-') { 1650 mod = -1; 1651 sizestr++; 1652 } else if (sizestr[0] == '+') { 1653 mod = 1; 1654 sizestr++; 1655 } 1656 new_size = memparse(sizestr, &retptr); 1657 if (*retptr != '\0' || new_size == 0) { 1658 ret = -EINVAL; 1659 goto out_free; 1660 } 1661 } 1662 1663 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1664 ret = -EPERM; 1665 goto out_free; 1666 } 1667 1668 old_size = btrfs_device_get_total_bytes(device); 1669 1670 if (mod < 0) { 1671 if (new_size > old_size) { 1672 ret = -EINVAL; 1673 goto out_free; 1674 } 1675 new_size = old_size - new_size; 1676 } else if (mod > 0) { 1677 if (new_size > ULLONG_MAX - old_size) { 1678 ret = -ERANGE; 1679 goto out_free; 1680 } 1681 new_size = old_size + new_size; 1682 } 1683 1684 if (new_size < SZ_256M) { 1685 ret = -EINVAL; 1686 goto out_free; 1687 } 1688 if (new_size > device->bdev->bd_inode->i_size) { 1689 ret = -EFBIG; 1690 goto out_free; 1691 } 1692 1693 new_size = round_down(new_size, fs_info->sectorsize); 1694 1695 btrfs_info_in_rcu(fs_info, "new size for %s is %llu", 1696 rcu_str_deref(device->name), new_size); 1697 1698 if (new_size > old_size) { 1699 trans = btrfs_start_transaction(root, 0); 1700 if (IS_ERR(trans)) { 1701 ret = PTR_ERR(trans); 1702 goto out_free; 1703 } 1704 ret = btrfs_grow_device(trans, device, new_size); 1705 btrfs_commit_transaction(trans); 1706 } else if (new_size < old_size) { 1707 ret = btrfs_shrink_device(device, new_size); 1708 } /* equal, nothing need to do */ 1709 1710 out_free: 1711 kfree(vol_args); 1712 out: 1713 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 1714 mnt_drop_write_file(file); 1715 return ret; 1716 } 1717 1718 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1719 const char *name, unsigned long fd, int subvol, 1720 u64 *transid, bool readonly, 1721 struct btrfs_qgroup_inherit *inherit) 1722 { 1723 int namelen; 1724 int ret = 0; 1725 1726 if (!S_ISDIR(file_inode(file)->i_mode)) 1727 return -ENOTDIR; 1728 1729 ret = mnt_want_write_file(file); 1730 if (ret) 1731 goto out; 1732 1733 namelen = strlen(name); 1734 if (strchr(name, '/')) { 1735 ret = -EINVAL; 1736 goto out_drop_write; 1737 } 1738 1739 if (name[0] == '.' && 1740 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1741 ret = -EEXIST; 1742 goto out_drop_write; 1743 } 1744 1745 if (subvol) { 1746 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1747 NULL, transid, readonly, inherit); 1748 } else { 1749 struct fd src = fdget(fd); 1750 struct inode *src_inode; 1751 if (!src.file) { 1752 ret = -EINVAL; 1753 goto out_drop_write; 1754 } 1755 1756 src_inode = file_inode(src.file); 1757 if (src_inode->i_sb != file_inode(file)->i_sb) { 1758 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1759 "Snapshot src from another FS"); 1760 ret = -EXDEV; 1761 } else if (!inode_owner_or_capable(src_inode)) { 1762 /* 1763 * Subvolume creation is not restricted, but snapshots 1764 * are limited to own subvolumes only 1765 */ 1766 ret = -EPERM; 1767 } else { 1768 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1769 BTRFS_I(src_inode)->root, 1770 transid, readonly, inherit); 1771 } 1772 fdput(src); 1773 } 1774 out_drop_write: 1775 mnt_drop_write_file(file); 1776 out: 1777 return ret; 1778 } 1779 1780 static noinline int btrfs_ioctl_snap_create(struct file *file, 1781 void __user *arg, int subvol) 1782 { 1783 struct btrfs_ioctl_vol_args *vol_args; 1784 int ret; 1785 1786 if (!S_ISDIR(file_inode(file)->i_mode)) 1787 return -ENOTDIR; 1788 1789 vol_args = memdup_user(arg, sizeof(*vol_args)); 1790 if (IS_ERR(vol_args)) 1791 return PTR_ERR(vol_args); 1792 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1793 1794 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1795 vol_args->fd, subvol, 1796 NULL, false, NULL); 1797 1798 kfree(vol_args); 1799 return ret; 1800 } 1801 1802 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1803 void __user *arg, int subvol) 1804 { 1805 struct btrfs_ioctl_vol_args_v2 *vol_args; 1806 int ret; 1807 u64 transid = 0; 1808 u64 *ptr = NULL; 1809 bool readonly = false; 1810 struct btrfs_qgroup_inherit *inherit = NULL; 1811 1812 if (!S_ISDIR(file_inode(file)->i_mode)) 1813 return -ENOTDIR; 1814 1815 vol_args = memdup_user(arg, sizeof(*vol_args)); 1816 if (IS_ERR(vol_args)) 1817 return PTR_ERR(vol_args); 1818 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1819 1820 if (vol_args->flags & 1821 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1822 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1823 ret = -EOPNOTSUPP; 1824 goto free_args; 1825 } 1826 1827 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1828 ptr = &transid; 1829 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1830 readonly = true; 1831 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1832 if (vol_args->size > PAGE_SIZE) { 1833 ret = -EINVAL; 1834 goto free_args; 1835 } 1836 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1837 if (IS_ERR(inherit)) { 1838 ret = PTR_ERR(inherit); 1839 goto free_args; 1840 } 1841 } 1842 1843 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1844 vol_args->fd, subvol, ptr, 1845 readonly, inherit); 1846 if (ret) 1847 goto free_inherit; 1848 1849 if (ptr && copy_to_user(arg + 1850 offsetof(struct btrfs_ioctl_vol_args_v2, 1851 transid), 1852 ptr, sizeof(*ptr))) 1853 ret = -EFAULT; 1854 1855 free_inherit: 1856 kfree(inherit); 1857 free_args: 1858 kfree(vol_args); 1859 return ret; 1860 } 1861 1862 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1863 void __user *arg) 1864 { 1865 struct inode *inode = file_inode(file); 1866 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1867 struct btrfs_root *root = BTRFS_I(inode)->root; 1868 int ret = 0; 1869 u64 flags = 0; 1870 1871 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1872 return -EINVAL; 1873 1874 down_read(&fs_info->subvol_sem); 1875 if (btrfs_root_readonly(root)) 1876 flags |= BTRFS_SUBVOL_RDONLY; 1877 up_read(&fs_info->subvol_sem); 1878 1879 if (copy_to_user(arg, &flags, sizeof(flags))) 1880 ret = -EFAULT; 1881 1882 return ret; 1883 } 1884 1885 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1886 void __user *arg) 1887 { 1888 struct inode *inode = file_inode(file); 1889 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1890 struct btrfs_root *root = BTRFS_I(inode)->root; 1891 struct btrfs_trans_handle *trans; 1892 u64 root_flags; 1893 u64 flags; 1894 int ret = 0; 1895 1896 if (!inode_owner_or_capable(inode)) 1897 return -EPERM; 1898 1899 ret = mnt_want_write_file(file); 1900 if (ret) 1901 goto out; 1902 1903 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1904 ret = -EINVAL; 1905 goto out_drop_write; 1906 } 1907 1908 if (copy_from_user(&flags, arg, sizeof(flags))) { 1909 ret = -EFAULT; 1910 goto out_drop_write; 1911 } 1912 1913 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1914 ret = -EINVAL; 1915 goto out_drop_write; 1916 } 1917 1918 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1919 ret = -EOPNOTSUPP; 1920 goto out_drop_write; 1921 } 1922 1923 down_write(&fs_info->subvol_sem); 1924 1925 /* nothing to do */ 1926 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1927 goto out_drop_sem; 1928 1929 root_flags = btrfs_root_flags(&root->root_item); 1930 if (flags & BTRFS_SUBVOL_RDONLY) { 1931 btrfs_set_root_flags(&root->root_item, 1932 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1933 } else { 1934 /* 1935 * Block RO -> RW transition if this subvolume is involved in 1936 * send 1937 */ 1938 spin_lock(&root->root_item_lock); 1939 if (root->send_in_progress == 0) { 1940 btrfs_set_root_flags(&root->root_item, 1941 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1942 spin_unlock(&root->root_item_lock); 1943 } else { 1944 spin_unlock(&root->root_item_lock); 1945 btrfs_warn(fs_info, 1946 "Attempt to set subvolume %llu read-write during send", 1947 root->root_key.objectid); 1948 ret = -EPERM; 1949 goto out_drop_sem; 1950 } 1951 } 1952 1953 trans = btrfs_start_transaction(root, 1); 1954 if (IS_ERR(trans)) { 1955 ret = PTR_ERR(trans); 1956 goto out_reset; 1957 } 1958 1959 ret = btrfs_update_root(trans, fs_info->tree_root, 1960 &root->root_key, &root->root_item); 1961 if (ret < 0) { 1962 btrfs_end_transaction(trans); 1963 goto out_reset; 1964 } 1965 1966 ret = btrfs_commit_transaction(trans); 1967 1968 out_reset: 1969 if (ret) 1970 btrfs_set_root_flags(&root->root_item, root_flags); 1971 out_drop_sem: 1972 up_write(&fs_info->subvol_sem); 1973 out_drop_write: 1974 mnt_drop_write_file(file); 1975 out: 1976 return ret; 1977 } 1978 1979 static noinline int key_in_sk(struct btrfs_key *key, 1980 struct btrfs_ioctl_search_key *sk) 1981 { 1982 struct btrfs_key test; 1983 int ret; 1984 1985 test.objectid = sk->min_objectid; 1986 test.type = sk->min_type; 1987 test.offset = sk->min_offset; 1988 1989 ret = btrfs_comp_cpu_keys(key, &test); 1990 if (ret < 0) 1991 return 0; 1992 1993 test.objectid = sk->max_objectid; 1994 test.type = sk->max_type; 1995 test.offset = sk->max_offset; 1996 1997 ret = btrfs_comp_cpu_keys(key, &test); 1998 if (ret > 0) 1999 return 0; 2000 return 1; 2001 } 2002 2003 static noinline int copy_to_sk(struct btrfs_path *path, 2004 struct btrfs_key *key, 2005 struct btrfs_ioctl_search_key *sk, 2006 size_t *buf_size, 2007 char __user *ubuf, 2008 unsigned long *sk_offset, 2009 int *num_found) 2010 { 2011 u64 found_transid; 2012 struct extent_buffer *leaf; 2013 struct btrfs_ioctl_search_header sh; 2014 struct btrfs_key test; 2015 unsigned long item_off; 2016 unsigned long item_len; 2017 int nritems; 2018 int i; 2019 int slot; 2020 int ret = 0; 2021 2022 leaf = path->nodes[0]; 2023 slot = path->slots[0]; 2024 nritems = btrfs_header_nritems(leaf); 2025 2026 if (btrfs_header_generation(leaf) > sk->max_transid) { 2027 i = nritems; 2028 goto advance_key; 2029 } 2030 found_transid = btrfs_header_generation(leaf); 2031 2032 for (i = slot; i < nritems; i++) { 2033 item_off = btrfs_item_ptr_offset(leaf, i); 2034 item_len = btrfs_item_size_nr(leaf, i); 2035 2036 btrfs_item_key_to_cpu(leaf, key, i); 2037 if (!key_in_sk(key, sk)) 2038 continue; 2039 2040 if (sizeof(sh) + item_len > *buf_size) { 2041 if (*num_found) { 2042 ret = 1; 2043 goto out; 2044 } 2045 2046 /* 2047 * return one empty item back for v1, which does not 2048 * handle -EOVERFLOW 2049 */ 2050 2051 *buf_size = sizeof(sh) + item_len; 2052 item_len = 0; 2053 ret = -EOVERFLOW; 2054 } 2055 2056 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2057 ret = 1; 2058 goto out; 2059 } 2060 2061 sh.objectid = key->objectid; 2062 sh.offset = key->offset; 2063 sh.type = key->type; 2064 sh.len = item_len; 2065 sh.transid = found_transid; 2066 2067 /* copy search result header */ 2068 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 2069 ret = -EFAULT; 2070 goto out; 2071 } 2072 2073 *sk_offset += sizeof(sh); 2074 2075 if (item_len) { 2076 char __user *up = ubuf + *sk_offset; 2077 /* copy the item */ 2078 if (read_extent_buffer_to_user(leaf, up, 2079 item_off, item_len)) { 2080 ret = -EFAULT; 2081 goto out; 2082 } 2083 2084 *sk_offset += item_len; 2085 } 2086 (*num_found)++; 2087 2088 if (ret) /* -EOVERFLOW from above */ 2089 goto out; 2090 2091 if (*num_found >= sk->nr_items) { 2092 ret = 1; 2093 goto out; 2094 } 2095 } 2096 advance_key: 2097 ret = 0; 2098 test.objectid = sk->max_objectid; 2099 test.type = sk->max_type; 2100 test.offset = sk->max_offset; 2101 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2102 ret = 1; 2103 else if (key->offset < (u64)-1) 2104 key->offset++; 2105 else if (key->type < (u8)-1) { 2106 key->offset = 0; 2107 key->type++; 2108 } else if (key->objectid < (u64)-1) { 2109 key->offset = 0; 2110 key->type = 0; 2111 key->objectid++; 2112 } else 2113 ret = 1; 2114 out: 2115 /* 2116 * 0: all items from this leaf copied, continue with next 2117 * 1: * more items can be copied, but unused buffer is too small 2118 * * all items were found 2119 * Either way, it will stops the loop which iterates to the next 2120 * leaf 2121 * -EOVERFLOW: item was to large for buffer 2122 * -EFAULT: could not copy extent buffer back to userspace 2123 */ 2124 return ret; 2125 } 2126 2127 static noinline int search_ioctl(struct inode *inode, 2128 struct btrfs_ioctl_search_key *sk, 2129 size_t *buf_size, 2130 char __user *ubuf) 2131 { 2132 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2133 struct btrfs_root *root; 2134 struct btrfs_key key; 2135 struct btrfs_path *path; 2136 int ret; 2137 int num_found = 0; 2138 unsigned long sk_offset = 0; 2139 2140 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2141 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2142 return -EOVERFLOW; 2143 } 2144 2145 path = btrfs_alloc_path(); 2146 if (!path) 2147 return -ENOMEM; 2148 2149 if (sk->tree_id == 0) { 2150 /* search the root of the inode that was passed */ 2151 root = BTRFS_I(inode)->root; 2152 } else { 2153 key.objectid = sk->tree_id; 2154 key.type = BTRFS_ROOT_ITEM_KEY; 2155 key.offset = (u64)-1; 2156 root = btrfs_read_fs_root_no_name(info, &key); 2157 if (IS_ERR(root)) { 2158 btrfs_free_path(path); 2159 return PTR_ERR(root); 2160 } 2161 } 2162 2163 key.objectid = sk->min_objectid; 2164 key.type = sk->min_type; 2165 key.offset = sk->min_offset; 2166 2167 while (1) { 2168 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2169 if (ret != 0) { 2170 if (ret > 0) 2171 ret = 0; 2172 goto err; 2173 } 2174 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2175 &sk_offset, &num_found); 2176 btrfs_release_path(path); 2177 if (ret) 2178 break; 2179 2180 } 2181 if (ret > 0) 2182 ret = 0; 2183 err: 2184 sk->nr_items = num_found; 2185 btrfs_free_path(path); 2186 return ret; 2187 } 2188 2189 static noinline int btrfs_ioctl_tree_search(struct file *file, 2190 void __user *argp) 2191 { 2192 struct btrfs_ioctl_search_args __user *uargs; 2193 struct btrfs_ioctl_search_key sk; 2194 struct inode *inode; 2195 int ret; 2196 size_t buf_size; 2197 2198 if (!capable(CAP_SYS_ADMIN)) 2199 return -EPERM; 2200 2201 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2202 2203 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2204 return -EFAULT; 2205 2206 buf_size = sizeof(uargs->buf); 2207 2208 inode = file_inode(file); 2209 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2210 2211 /* 2212 * In the origin implementation an overflow is handled by returning a 2213 * search header with a len of zero, so reset ret. 2214 */ 2215 if (ret == -EOVERFLOW) 2216 ret = 0; 2217 2218 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2219 ret = -EFAULT; 2220 return ret; 2221 } 2222 2223 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2224 void __user *argp) 2225 { 2226 struct btrfs_ioctl_search_args_v2 __user *uarg; 2227 struct btrfs_ioctl_search_args_v2 args; 2228 struct inode *inode; 2229 int ret; 2230 size_t buf_size; 2231 const size_t buf_limit = SZ_16M; 2232 2233 if (!capable(CAP_SYS_ADMIN)) 2234 return -EPERM; 2235 2236 /* copy search header and buffer size */ 2237 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2238 if (copy_from_user(&args, uarg, sizeof(args))) 2239 return -EFAULT; 2240 2241 buf_size = args.buf_size; 2242 2243 /* limit result size to 16MB */ 2244 if (buf_size > buf_limit) 2245 buf_size = buf_limit; 2246 2247 inode = file_inode(file); 2248 ret = search_ioctl(inode, &args.key, &buf_size, 2249 (char __user *)(&uarg->buf[0])); 2250 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2251 ret = -EFAULT; 2252 else if (ret == -EOVERFLOW && 2253 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2254 ret = -EFAULT; 2255 2256 return ret; 2257 } 2258 2259 /* 2260 * Search INODE_REFs to identify path name of 'dirid' directory 2261 * in a 'tree_id' tree. and sets path name to 'name'. 2262 */ 2263 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2264 u64 tree_id, u64 dirid, char *name) 2265 { 2266 struct btrfs_root *root; 2267 struct btrfs_key key; 2268 char *ptr; 2269 int ret = -1; 2270 int slot; 2271 int len; 2272 int total_len = 0; 2273 struct btrfs_inode_ref *iref; 2274 struct extent_buffer *l; 2275 struct btrfs_path *path; 2276 2277 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2278 name[0]='\0'; 2279 return 0; 2280 } 2281 2282 path = btrfs_alloc_path(); 2283 if (!path) 2284 return -ENOMEM; 2285 2286 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2287 2288 key.objectid = tree_id; 2289 key.type = BTRFS_ROOT_ITEM_KEY; 2290 key.offset = (u64)-1; 2291 root = btrfs_read_fs_root_no_name(info, &key); 2292 if (IS_ERR(root)) { 2293 ret = PTR_ERR(root); 2294 goto out; 2295 } 2296 2297 key.objectid = dirid; 2298 key.type = BTRFS_INODE_REF_KEY; 2299 key.offset = (u64)-1; 2300 2301 while (1) { 2302 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2303 if (ret < 0) 2304 goto out; 2305 else if (ret > 0) { 2306 ret = btrfs_previous_item(root, path, dirid, 2307 BTRFS_INODE_REF_KEY); 2308 if (ret < 0) 2309 goto out; 2310 else if (ret > 0) { 2311 ret = -ENOENT; 2312 goto out; 2313 } 2314 } 2315 2316 l = path->nodes[0]; 2317 slot = path->slots[0]; 2318 btrfs_item_key_to_cpu(l, &key, slot); 2319 2320 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2321 len = btrfs_inode_ref_name_len(l, iref); 2322 ptr -= len + 1; 2323 total_len += len + 1; 2324 if (ptr < name) { 2325 ret = -ENAMETOOLONG; 2326 goto out; 2327 } 2328 2329 *(ptr + len) = '/'; 2330 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2331 2332 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2333 break; 2334 2335 btrfs_release_path(path); 2336 key.objectid = key.offset; 2337 key.offset = (u64)-1; 2338 dirid = key.objectid; 2339 } 2340 memmove(name, ptr, total_len); 2341 name[total_len] = '\0'; 2342 ret = 0; 2343 out: 2344 btrfs_free_path(path); 2345 return ret; 2346 } 2347 2348 static int btrfs_search_path_in_tree_user(struct inode *inode, 2349 struct btrfs_ioctl_ino_lookup_user_args *args) 2350 { 2351 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2352 struct super_block *sb = inode->i_sb; 2353 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2354 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2355 u64 dirid = args->dirid; 2356 unsigned long item_off; 2357 unsigned long item_len; 2358 struct btrfs_inode_ref *iref; 2359 struct btrfs_root_ref *rref; 2360 struct btrfs_root *root; 2361 struct btrfs_path *path; 2362 struct btrfs_key key, key2; 2363 struct extent_buffer *leaf; 2364 struct inode *temp_inode; 2365 char *ptr; 2366 int slot; 2367 int len; 2368 int total_len = 0; 2369 int ret; 2370 2371 path = btrfs_alloc_path(); 2372 if (!path) 2373 return -ENOMEM; 2374 2375 /* 2376 * If the bottom subvolume does not exist directly under upper_limit, 2377 * construct the path in from the bottom up. 2378 */ 2379 if (dirid != upper_limit.objectid) { 2380 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2381 2382 key.objectid = treeid; 2383 key.type = BTRFS_ROOT_ITEM_KEY; 2384 key.offset = (u64)-1; 2385 root = btrfs_read_fs_root_no_name(fs_info, &key); 2386 if (IS_ERR(root)) { 2387 ret = PTR_ERR(root); 2388 goto out; 2389 } 2390 2391 key.objectid = dirid; 2392 key.type = BTRFS_INODE_REF_KEY; 2393 key.offset = (u64)-1; 2394 while (1) { 2395 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2396 if (ret < 0) { 2397 goto out; 2398 } else if (ret > 0) { 2399 ret = btrfs_previous_item(root, path, dirid, 2400 BTRFS_INODE_REF_KEY); 2401 if (ret < 0) { 2402 goto out; 2403 } else if (ret > 0) { 2404 ret = -ENOENT; 2405 goto out; 2406 } 2407 } 2408 2409 leaf = path->nodes[0]; 2410 slot = path->slots[0]; 2411 btrfs_item_key_to_cpu(leaf, &key, slot); 2412 2413 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2414 len = btrfs_inode_ref_name_len(leaf, iref); 2415 ptr -= len + 1; 2416 total_len += len + 1; 2417 if (ptr < args->path) { 2418 ret = -ENAMETOOLONG; 2419 goto out; 2420 } 2421 2422 *(ptr + len) = '/'; 2423 read_extent_buffer(leaf, ptr, 2424 (unsigned long)(iref + 1), len); 2425 2426 /* Check the read+exec permission of this directory */ 2427 ret = btrfs_previous_item(root, path, dirid, 2428 BTRFS_INODE_ITEM_KEY); 2429 if (ret < 0) { 2430 goto out; 2431 } else if (ret > 0) { 2432 ret = -ENOENT; 2433 goto out; 2434 } 2435 2436 leaf = path->nodes[0]; 2437 slot = path->slots[0]; 2438 btrfs_item_key_to_cpu(leaf, &key2, slot); 2439 if (key2.objectid != dirid) { 2440 ret = -ENOENT; 2441 goto out; 2442 } 2443 2444 temp_inode = btrfs_iget(sb, &key2, root, NULL); 2445 if (IS_ERR(temp_inode)) { 2446 ret = PTR_ERR(temp_inode); 2447 goto out; 2448 } 2449 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2450 iput(temp_inode); 2451 if (ret) { 2452 ret = -EACCES; 2453 goto out; 2454 } 2455 2456 if (key.offset == upper_limit.objectid) 2457 break; 2458 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2459 ret = -EACCES; 2460 goto out; 2461 } 2462 2463 btrfs_release_path(path); 2464 key.objectid = key.offset; 2465 key.offset = (u64)-1; 2466 dirid = key.objectid; 2467 } 2468 2469 memmove(args->path, ptr, total_len); 2470 args->path[total_len] = '\0'; 2471 btrfs_release_path(path); 2472 } 2473 2474 /* Get the bottom subvolume's name from ROOT_REF */ 2475 root = fs_info->tree_root; 2476 key.objectid = treeid; 2477 key.type = BTRFS_ROOT_REF_KEY; 2478 key.offset = args->treeid; 2479 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2480 if (ret < 0) { 2481 goto out; 2482 } else if (ret > 0) { 2483 ret = -ENOENT; 2484 goto out; 2485 } 2486 2487 leaf = path->nodes[0]; 2488 slot = path->slots[0]; 2489 btrfs_item_key_to_cpu(leaf, &key, slot); 2490 2491 item_off = btrfs_item_ptr_offset(leaf, slot); 2492 item_len = btrfs_item_size_nr(leaf, slot); 2493 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2494 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2495 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2496 ret = -EINVAL; 2497 goto out; 2498 } 2499 2500 /* Copy subvolume's name */ 2501 item_off += sizeof(struct btrfs_root_ref); 2502 item_len -= sizeof(struct btrfs_root_ref); 2503 read_extent_buffer(leaf, args->name, item_off, item_len); 2504 args->name[item_len] = 0; 2505 2506 out: 2507 btrfs_free_path(path); 2508 return ret; 2509 } 2510 2511 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2512 void __user *argp) 2513 { 2514 struct btrfs_ioctl_ino_lookup_args *args; 2515 struct inode *inode; 2516 int ret = 0; 2517 2518 args = memdup_user(argp, sizeof(*args)); 2519 if (IS_ERR(args)) 2520 return PTR_ERR(args); 2521 2522 inode = file_inode(file); 2523 2524 /* 2525 * Unprivileged query to obtain the containing subvolume root id. The 2526 * path is reset so it's consistent with btrfs_search_path_in_tree. 2527 */ 2528 if (args->treeid == 0) 2529 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2530 2531 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2532 args->name[0] = 0; 2533 goto out; 2534 } 2535 2536 if (!capable(CAP_SYS_ADMIN)) { 2537 ret = -EPERM; 2538 goto out; 2539 } 2540 2541 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2542 args->treeid, args->objectid, 2543 args->name); 2544 2545 out: 2546 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2547 ret = -EFAULT; 2548 2549 kfree(args); 2550 return ret; 2551 } 2552 2553 /* 2554 * Version of ino_lookup ioctl (unprivileged) 2555 * 2556 * The main differences from ino_lookup ioctl are: 2557 * 2558 * 1. Read + Exec permission will be checked using inode_permission() during 2559 * path construction. -EACCES will be returned in case of failure. 2560 * 2. Path construction will be stopped at the inode number which corresponds 2561 * to the fd with which this ioctl is called. If constructed path does not 2562 * exist under fd's inode, -EACCES will be returned. 2563 * 3. The name of bottom subvolume is also searched and filled. 2564 */ 2565 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2566 { 2567 struct btrfs_ioctl_ino_lookup_user_args *args; 2568 struct inode *inode; 2569 int ret; 2570 2571 args = memdup_user(argp, sizeof(*args)); 2572 if (IS_ERR(args)) 2573 return PTR_ERR(args); 2574 2575 inode = file_inode(file); 2576 2577 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2578 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2579 /* 2580 * The subvolume does not exist under fd with which this is 2581 * called 2582 */ 2583 kfree(args); 2584 return -EACCES; 2585 } 2586 2587 ret = btrfs_search_path_in_tree_user(inode, args); 2588 2589 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2590 ret = -EFAULT; 2591 2592 kfree(args); 2593 return ret; 2594 } 2595 2596 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2597 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2598 { 2599 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2600 struct btrfs_fs_info *fs_info; 2601 struct btrfs_root *root; 2602 struct btrfs_path *path; 2603 struct btrfs_key key; 2604 struct btrfs_root_item *root_item; 2605 struct btrfs_root_ref *rref; 2606 struct extent_buffer *leaf; 2607 unsigned long item_off; 2608 unsigned long item_len; 2609 struct inode *inode; 2610 int slot; 2611 int ret = 0; 2612 2613 path = btrfs_alloc_path(); 2614 if (!path) 2615 return -ENOMEM; 2616 2617 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2618 if (!subvol_info) { 2619 btrfs_free_path(path); 2620 return -ENOMEM; 2621 } 2622 2623 inode = file_inode(file); 2624 fs_info = BTRFS_I(inode)->root->fs_info; 2625 2626 /* Get root_item of inode's subvolume */ 2627 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2628 key.type = BTRFS_ROOT_ITEM_KEY; 2629 key.offset = (u64)-1; 2630 root = btrfs_read_fs_root_no_name(fs_info, &key); 2631 if (IS_ERR(root)) { 2632 ret = PTR_ERR(root); 2633 goto out; 2634 } 2635 root_item = &root->root_item; 2636 2637 subvol_info->treeid = key.objectid; 2638 2639 subvol_info->generation = btrfs_root_generation(root_item); 2640 subvol_info->flags = btrfs_root_flags(root_item); 2641 2642 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2643 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2644 BTRFS_UUID_SIZE); 2645 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2646 BTRFS_UUID_SIZE); 2647 2648 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2649 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2650 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2651 2652 subvol_info->otransid = btrfs_root_otransid(root_item); 2653 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2654 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2655 2656 subvol_info->stransid = btrfs_root_stransid(root_item); 2657 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2658 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2659 2660 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2661 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2662 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2663 2664 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2665 /* Search root tree for ROOT_BACKREF of this subvolume */ 2666 root = fs_info->tree_root; 2667 2668 key.type = BTRFS_ROOT_BACKREF_KEY; 2669 key.offset = 0; 2670 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2671 if (ret < 0) { 2672 goto out; 2673 } else if (path->slots[0] >= 2674 btrfs_header_nritems(path->nodes[0])) { 2675 ret = btrfs_next_leaf(root, path); 2676 if (ret < 0) { 2677 goto out; 2678 } else if (ret > 0) { 2679 ret = -EUCLEAN; 2680 goto out; 2681 } 2682 } 2683 2684 leaf = path->nodes[0]; 2685 slot = path->slots[0]; 2686 btrfs_item_key_to_cpu(leaf, &key, slot); 2687 if (key.objectid == subvol_info->treeid && 2688 key.type == BTRFS_ROOT_BACKREF_KEY) { 2689 subvol_info->parent_id = key.offset; 2690 2691 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2692 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2693 2694 item_off = btrfs_item_ptr_offset(leaf, slot) 2695 + sizeof(struct btrfs_root_ref); 2696 item_len = btrfs_item_size_nr(leaf, slot) 2697 - sizeof(struct btrfs_root_ref); 2698 read_extent_buffer(leaf, subvol_info->name, 2699 item_off, item_len); 2700 } else { 2701 ret = -ENOENT; 2702 goto out; 2703 } 2704 } 2705 2706 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2707 ret = -EFAULT; 2708 2709 out: 2710 btrfs_free_path(path); 2711 kzfree(subvol_info); 2712 return ret; 2713 } 2714 2715 /* 2716 * Return ROOT_REF information of the subvolume containing this inode 2717 * except the subvolume name. 2718 */ 2719 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2720 { 2721 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2722 struct btrfs_root_ref *rref; 2723 struct btrfs_root *root; 2724 struct btrfs_path *path; 2725 struct btrfs_key key; 2726 struct extent_buffer *leaf; 2727 struct inode *inode; 2728 u64 objectid; 2729 int slot; 2730 int ret; 2731 u8 found; 2732 2733 path = btrfs_alloc_path(); 2734 if (!path) 2735 return -ENOMEM; 2736 2737 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2738 if (IS_ERR(rootrefs)) { 2739 btrfs_free_path(path); 2740 return PTR_ERR(rootrefs); 2741 } 2742 2743 inode = file_inode(file); 2744 root = BTRFS_I(inode)->root->fs_info->tree_root; 2745 objectid = BTRFS_I(inode)->root->root_key.objectid; 2746 2747 key.objectid = objectid; 2748 key.type = BTRFS_ROOT_REF_KEY; 2749 key.offset = rootrefs->min_treeid; 2750 found = 0; 2751 2752 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2753 if (ret < 0) { 2754 goto out; 2755 } else if (path->slots[0] >= 2756 btrfs_header_nritems(path->nodes[0])) { 2757 ret = btrfs_next_leaf(root, path); 2758 if (ret < 0) { 2759 goto out; 2760 } else if (ret > 0) { 2761 ret = -EUCLEAN; 2762 goto out; 2763 } 2764 } 2765 while (1) { 2766 leaf = path->nodes[0]; 2767 slot = path->slots[0]; 2768 2769 btrfs_item_key_to_cpu(leaf, &key, slot); 2770 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2771 ret = 0; 2772 goto out; 2773 } 2774 2775 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2776 ret = -EOVERFLOW; 2777 goto out; 2778 } 2779 2780 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2781 rootrefs->rootref[found].treeid = key.offset; 2782 rootrefs->rootref[found].dirid = 2783 btrfs_root_ref_dirid(leaf, rref); 2784 found++; 2785 2786 ret = btrfs_next_item(root, path); 2787 if (ret < 0) { 2788 goto out; 2789 } else if (ret > 0) { 2790 ret = -EUCLEAN; 2791 goto out; 2792 } 2793 } 2794 2795 out: 2796 if (!ret || ret == -EOVERFLOW) { 2797 rootrefs->num_items = found; 2798 /* update min_treeid for next search */ 2799 if (found) 2800 rootrefs->min_treeid = 2801 rootrefs->rootref[found - 1].treeid + 1; 2802 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2803 ret = -EFAULT; 2804 } 2805 2806 kfree(rootrefs); 2807 btrfs_free_path(path); 2808 2809 return ret; 2810 } 2811 2812 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2813 void __user *arg) 2814 { 2815 struct dentry *parent = file->f_path.dentry; 2816 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2817 struct dentry *dentry; 2818 struct inode *dir = d_inode(parent); 2819 struct inode *inode; 2820 struct btrfs_root *root = BTRFS_I(dir)->root; 2821 struct btrfs_root *dest = NULL; 2822 struct btrfs_ioctl_vol_args *vol_args; 2823 int namelen; 2824 int err = 0; 2825 2826 if (!S_ISDIR(dir->i_mode)) 2827 return -ENOTDIR; 2828 2829 vol_args = memdup_user(arg, sizeof(*vol_args)); 2830 if (IS_ERR(vol_args)) 2831 return PTR_ERR(vol_args); 2832 2833 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2834 namelen = strlen(vol_args->name); 2835 if (strchr(vol_args->name, '/') || 2836 strncmp(vol_args->name, "..", namelen) == 0) { 2837 err = -EINVAL; 2838 goto out; 2839 } 2840 2841 err = mnt_want_write_file(file); 2842 if (err) 2843 goto out; 2844 2845 2846 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2847 if (err == -EINTR) 2848 goto out_drop_write; 2849 dentry = lookup_one_len(vol_args->name, parent, namelen); 2850 if (IS_ERR(dentry)) { 2851 err = PTR_ERR(dentry); 2852 goto out_unlock_dir; 2853 } 2854 2855 if (d_really_is_negative(dentry)) { 2856 err = -ENOENT; 2857 goto out_dput; 2858 } 2859 2860 inode = d_inode(dentry); 2861 dest = BTRFS_I(inode)->root; 2862 if (!capable(CAP_SYS_ADMIN)) { 2863 /* 2864 * Regular user. Only allow this with a special mount 2865 * option, when the user has write+exec access to the 2866 * subvol root, and when rmdir(2) would have been 2867 * allowed. 2868 * 2869 * Note that this is _not_ check that the subvol is 2870 * empty or doesn't contain data that we wouldn't 2871 * otherwise be able to delete. 2872 * 2873 * Users who want to delete empty subvols should try 2874 * rmdir(2). 2875 */ 2876 err = -EPERM; 2877 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2878 goto out_dput; 2879 2880 /* 2881 * Do not allow deletion if the parent dir is the same 2882 * as the dir to be deleted. That means the ioctl 2883 * must be called on the dentry referencing the root 2884 * of the subvol, not a random directory contained 2885 * within it. 2886 */ 2887 err = -EINVAL; 2888 if (root == dest) 2889 goto out_dput; 2890 2891 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2892 if (err) 2893 goto out_dput; 2894 } 2895 2896 /* check if subvolume may be deleted by a user */ 2897 err = btrfs_may_delete(dir, dentry, 1); 2898 if (err) 2899 goto out_dput; 2900 2901 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2902 err = -EINVAL; 2903 goto out_dput; 2904 } 2905 2906 inode_lock(inode); 2907 err = btrfs_delete_subvolume(dir, dentry); 2908 inode_unlock(inode); 2909 if (!err) 2910 d_delete(dentry); 2911 2912 out_dput: 2913 dput(dentry); 2914 out_unlock_dir: 2915 inode_unlock(dir); 2916 out_drop_write: 2917 mnt_drop_write_file(file); 2918 out: 2919 kfree(vol_args); 2920 return err; 2921 } 2922 2923 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2924 { 2925 struct inode *inode = file_inode(file); 2926 struct btrfs_root *root = BTRFS_I(inode)->root; 2927 struct btrfs_ioctl_defrag_range_args *range; 2928 int ret; 2929 2930 ret = mnt_want_write_file(file); 2931 if (ret) 2932 return ret; 2933 2934 if (btrfs_root_readonly(root)) { 2935 ret = -EROFS; 2936 goto out; 2937 } 2938 2939 switch (inode->i_mode & S_IFMT) { 2940 case S_IFDIR: 2941 if (!capable(CAP_SYS_ADMIN)) { 2942 ret = -EPERM; 2943 goto out; 2944 } 2945 ret = btrfs_defrag_root(root); 2946 break; 2947 case S_IFREG: 2948 /* 2949 * Note that this does not check the file descriptor for write 2950 * access. This prevents defragmenting executables that are 2951 * running and allows defrag on files open in read-only mode. 2952 */ 2953 if (!capable(CAP_SYS_ADMIN) && 2954 inode_permission(inode, MAY_WRITE)) { 2955 ret = -EPERM; 2956 goto out; 2957 } 2958 2959 range = kzalloc(sizeof(*range), GFP_KERNEL); 2960 if (!range) { 2961 ret = -ENOMEM; 2962 goto out; 2963 } 2964 2965 if (argp) { 2966 if (copy_from_user(range, argp, 2967 sizeof(*range))) { 2968 ret = -EFAULT; 2969 kfree(range); 2970 goto out; 2971 } 2972 /* compression requires us to start the IO */ 2973 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2974 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2975 range->extent_thresh = (u32)-1; 2976 } 2977 } else { 2978 /* the rest are all set to zero by kzalloc */ 2979 range->len = (u64)-1; 2980 } 2981 ret = btrfs_defrag_file(file_inode(file), file, 2982 range, BTRFS_OLDEST_GENERATION, 0); 2983 if (ret > 0) 2984 ret = 0; 2985 kfree(range); 2986 break; 2987 default: 2988 ret = -EINVAL; 2989 } 2990 out: 2991 mnt_drop_write_file(file); 2992 return ret; 2993 } 2994 2995 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2996 { 2997 struct btrfs_ioctl_vol_args *vol_args; 2998 int ret; 2999 3000 if (!capable(CAP_SYS_ADMIN)) 3001 return -EPERM; 3002 3003 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) 3004 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3005 3006 vol_args = memdup_user(arg, sizeof(*vol_args)); 3007 if (IS_ERR(vol_args)) { 3008 ret = PTR_ERR(vol_args); 3009 goto out; 3010 } 3011 3012 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3013 ret = btrfs_init_new_device(fs_info, vol_args->name); 3014 3015 if (!ret) 3016 btrfs_info(fs_info, "disk added %s", vol_args->name); 3017 3018 kfree(vol_args); 3019 out: 3020 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3021 return ret; 3022 } 3023 3024 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3025 { 3026 struct inode *inode = file_inode(file); 3027 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3028 struct btrfs_ioctl_vol_args_v2 *vol_args; 3029 int ret; 3030 3031 if (!capable(CAP_SYS_ADMIN)) 3032 return -EPERM; 3033 3034 ret = mnt_want_write_file(file); 3035 if (ret) 3036 return ret; 3037 3038 vol_args = memdup_user(arg, sizeof(*vol_args)); 3039 if (IS_ERR(vol_args)) { 3040 ret = PTR_ERR(vol_args); 3041 goto err_drop; 3042 } 3043 3044 /* Check for compatibility reject unknown flags */ 3045 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) { 3046 ret = -EOPNOTSUPP; 3047 goto out; 3048 } 3049 3050 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3051 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3052 goto out; 3053 } 3054 3055 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3056 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3057 } else { 3058 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3059 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3060 } 3061 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3062 3063 if (!ret) { 3064 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3065 btrfs_info(fs_info, "device deleted: id %llu", 3066 vol_args->devid); 3067 else 3068 btrfs_info(fs_info, "device deleted: %s", 3069 vol_args->name); 3070 } 3071 out: 3072 kfree(vol_args); 3073 err_drop: 3074 mnt_drop_write_file(file); 3075 return ret; 3076 } 3077 3078 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3079 { 3080 struct inode *inode = file_inode(file); 3081 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3082 struct btrfs_ioctl_vol_args *vol_args; 3083 int ret; 3084 3085 if (!capable(CAP_SYS_ADMIN)) 3086 return -EPERM; 3087 3088 ret = mnt_want_write_file(file); 3089 if (ret) 3090 return ret; 3091 3092 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 3093 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3094 goto out_drop_write; 3095 } 3096 3097 vol_args = memdup_user(arg, sizeof(*vol_args)); 3098 if (IS_ERR(vol_args)) { 3099 ret = PTR_ERR(vol_args); 3100 goto out; 3101 } 3102 3103 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3104 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3105 3106 if (!ret) 3107 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3108 kfree(vol_args); 3109 out: 3110 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 3111 out_drop_write: 3112 mnt_drop_write_file(file); 3113 3114 return ret; 3115 } 3116 3117 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3118 void __user *arg) 3119 { 3120 struct btrfs_ioctl_fs_info_args *fi_args; 3121 struct btrfs_device *device; 3122 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3123 int ret = 0; 3124 3125 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 3126 if (!fi_args) 3127 return -ENOMEM; 3128 3129 rcu_read_lock(); 3130 fi_args->num_devices = fs_devices->num_devices; 3131 3132 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3133 if (device->devid > fi_args->max_id) 3134 fi_args->max_id = device->devid; 3135 } 3136 rcu_read_unlock(); 3137 3138 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid)); 3139 fi_args->nodesize = fs_info->nodesize; 3140 fi_args->sectorsize = fs_info->sectorsize; 3141 fi_args->clone_alignment = fs_info->sectorsize; 3142 3143 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3144 ret = -EFAULT; 3145 3146 kfree(fi_args); 3147 return ret; 3148 } 3149 3150 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3151 void __user *arg) 3152 { 3153 struct btrfs_ioctl_dev_info_args *di_args; 3154 struct btrfs_device *dev; 3155 int ret = 0; 3156 char *s_uuid = NULL; 3157 3158 di_args = memdup_user(arg, sizeof(*di_args)); 3159 if (IS_ERR(di_args)) 3160 return PTR_ERR(di_args); 3161 3162 if (!btrfs_is_empty_uuid(di_args->uuid)) 3163 s_uuid = di_args->uuid; 3164 3165 rcu_read_lock(); 3166 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL); 3167 3168 if (!dev) { 3169 ret = -ENODEV; 3170 goto out; 3171 } 3172 3173 di_args->devid = dev->devid; 3174 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3175 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3176 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3177 if (dev->name) { 3178 strncpy(di_args->path, rcu_str_deref(dev->name), 3179 sizeof(di_args->path) - 1); 3180 di_args->path[sizeof(di_args->path) - 1] = 0; 3181 } else { 3182 di_args->path[0] = '\0'; 3183 } 3184 3185 out: 3186 rcu_read_unlock(); 3187 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3188 ret = -EFAULT; 3189 3190 kfree(di_args); 3191 return ret; 3192 } 3193 3194 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index) 3195 { 3196 struct page *page; 3197 3198 page = grab_cache_page(inode->i_mapping, index); 3199 if (!page) 3200 return ERR_PTR(-ENOMEM); 3201 3202 if (!PageUptodate(page)) { 3203 int ret; 3204 3205 ret = btrfs_readpage(NULL, page); 3206 if (ret) 3207 return ERR_PTR(ret); 3208 lock_page(page); 3209 if (!PageUptodate(page)) { 3210 unlock_page(page); 3211 put_page(page); 3212 return ERR_PTR(-EIO); 3213 } 3214 if (page->mapping != inode->i_mapping) { 3215 unlock_page(page); 3216 put_page(page); 3217 return ERR_PTR(-EAGAIN); 3218 } 3219 } 3220 3221 return page; 3222 } 3223 3224 static int gather_extent_pages(struct inode *inode, struct page **pages, 3225 int num_pages, u64 off) 3226 { 3227 int i; 3228 pgoff_t index = off >> PAGE_SHIFT; 3229 3230 for (i = 0; i < num_pages; i++) { 3231 again: 3232 pages[i] = extent_same_get_page(inode, index + i); 3233 if (IS_ERR(pages[i])) { 3234 int err = PTR_ERR(pages[i]); 3235 3236 if (err == -EAGAIN) 3237 goto again; 3238 pages[i] = NULL; 3239 return err; 3240 } 3241 } 3242 return 0; 3243 } 3244 3245 static int lock_extent_range(struct inode *inode, u64 off, u64 len, 3246 bool retry_range_locking) 3247 { 3248 /* 3249 * Do any pending delalloc/csum calculations on inode, one way or 3250 * another, and lock file content. 3251 * The locking order is: 3252 * 3253 * 1) pages 3254 * 2) range in the inode's io tree 3255 */ 3256 while (1) { 3257 struct btrfs_ordered_extent *ordered; 3258 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 3259 ordered = btrfs_lookup_first_ordered_extent(inode, 3260 off + len - 1); 3261 if ((!ordered || 3262 ordered->file_offset + ordered->len <= off || 3263 ordered->file_offset >= off + len) && 3264 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 3265 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 3266 if (ordered) 3267 btrfs_put_ordered_extent(ordered); 3268 break; 3269 } 3270 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 3271 if (ordered) 3272 btrfs_put_ordered_extent(ordered); 3273 if (!retry_range_locking) 3274 return -EAGAIN; 3275 btrfs_wait_ordered_range(inode, off, len); 3276 } 3277 return 0; 3278 } 3279 3280 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2) 3281 { 3282 inode_unlock(inode1); 3283 inode_unlock(inode2); 3284 } 3285 3286 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2) 3287 { 3288 if (inode1 < inode2) 3289 swap(inode1, inode2); 3290 3291 inode_lock_nested(inode1, I_MUTEX_PARENT); 3292 inode_lock_nested(inode2, I_MUTEX_CHILD); 3293 } 3294 3295 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1, 3296 struct inode *inode2, u64 loff2, u64 len) 3297 { 3298 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 3299 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 3300 } 3301 3302 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1, 3303 struct inode *inode2, u64 loff2, u64 len, 3304 bool retry_range_locking) 3305 { 3306 int ret; 3307 3308 if (inode1 < inode2) { 3309 swap(inode1, inode2); 3310 swap(loff1, loff2); 3311 } 3312 ret = lock_extent_range(inode1, loff1, len, retry_range_locking); 3313 if (ret) 3314 return ret; 3315 ret = lock_extent_range(inode2, loff2, len, retry_range_locking); 3316 if (ret) 3317 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, 3318 loff1 + len - 1); 3319 return ret; 3320 } 3321 3322 struct cmp_pages { 3323 int num_pages; 3324 struct page **src_pages; 3325 struct page **dst_pages; 3326 }; 3327 3328 static void btrfs_cmp_data_free(struct cmp_pages *cmp) 3329 { 3330 int i; 3331 struct page *pg; 3332 3333 for (i = 0; i < cmp->num_pages; i++) { 3334 pg = cmp->src_pages[i]; 3335 if (pg) { 3336 unlock_page(pg); 3337 put_page(pg); 3338 cmp->src_pages[i] = NULL; 3339 } 3340 pg = cmp->dst_pages[i]; 3341 if (pg) { 3342 unlock_page(pg); 3343 put_page(pg); 3344 cmp->dst_pages[i] = NULL; 3345 } 3346 } 3347 } 3348 3349 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff, 3350 struct inode *dst, u64 dst_loff, 3351 u64 len, struct cmp_pages *cmp) 3352 { 3353 int ret; 3354 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT; 3355 3356 cmp->num_pages = num_pages; 3357 3358 ret = gather_extent_pages(src, cmp->src_pages, num_pages, loff); 3359 if (ret) 3360 goto out; 3361 3362 ret = gather_extent_pages(dst, cmp->dst_pages, num_pages, dst_loff); 3363 3364 out: 3365 if (ret) 3366 btrfs_cmp_data_free(cmp); 3367 return ret; 3368 } 3369 3370 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp) 3371 { 3372 int ret = 0; 3373 int i; 3374 struct page *src_page, *dst_page; 3375 unsigned int cmp_len = PAGE_SIZE; 3376 void *addr, *dst_addr; 3377 3378 i = 0; 3379 while (len) { 3380 if (len < PAGE_SIZE) 3381 cmp_len = len; 3382 3383 BUG_ON(i >= cmp->num_pages); 3384 3385 src_page = cmp->src_pages[i]; 3386 dst_page = cmp->dst_pages[i]; 3387 ASSERT(PageLocked(src_page)); 3388 ASSERT(PageLocked(dst_page)); 3389 3390 addr = kmap_atomic(src_page); 3391 dst_addr = kmap_atomic(dst_page); 3392 3393 flush_dcache_page(src_page); 3394 flush_dcache_page(dst_page); 3395 3396 if (memcmp(addr, dst_addr, cmp_len)) 3397 ret = -EBADE; 3398 3399 kunmap_atomic(addr); 3400 kunmap_atomic(dst_addr); 3401 3402 if (ret) 3403 break; 3404 3405 len -= cmp_len; 3406 i++; 3407 } 3408 3409 return ret; 3410 } 3411 3412 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen, 3413 u64 olen) 3414 { 3415 u64 len = *plen; 3416 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 3417 3418 if (off + olen > inode->i_size || off + olen < off) 3419 return -EINVAL; 3420 3421 /* if we extend to eof, continue to block boundary */ 3422 if (off + len == inode->i_size) 3423 *plen = len = ALIGN(inode->i_size, bs) - off; 3424 3425 /* Check that we are block aligned - btrfs_clone() requires this */ 3426 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 3427 return -EINVAL; 3428 3429 return 0; 3430 } 3431 3432 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 olen, 3433 struct inode *dst, u64 dst_loff, 3434 struct cmp_pages *cmp) 3435 { 3436 int ret; 3437 u64 len = olen; 3438 bool same_inode = (src == dst); 3439 u64 same_lock_start = 0; 3440 u64 same_lock_len = 0; 3441 3442 ret = extent_same_check_offsets(src, loff, &len, olen); 3443 if (ret) 3444 return ret; 3445 3446 ret = extent_same_check_offsets(dst, dst_loff, &len, olen); 3447 if (ret) 3448 return ret; 3449 3450 if (same_inode) { 3451 /* 3452 * Single inode case wants the same checks, except we 3453 * don't want our length pushed out past i_size as 3454 * comparing that data range makes no sense. 3455 * 3456 * extent_same_check_offsets() will do this for an 3457 * unaligned length at i_size, so catch it here and 3458 * reject the request. 3459 * 3460 * This effectively means we require aligned extents 3461 * for the single-inode case, whereas the other cases 3462 * allow an unaligned length so long as it ends at 3463 * i_size. 3464 */ 3465 if (len != olen) 3466 return -EINVAL; 3467 3468 /* Check for overlapping ranges */ 3469 if (dst_loff + len > loff && dst_loff < loff + len) 3470 return -EINVAL; 3471 3472 same_lock_start = min_t(u64, loff, dst_loff); 3473 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start; 3474 } else { 3475 /* 3476 * If the source and destination inodes are different, the 3477 * source's range end offset matches the source's i_size, that 3478 * i_size is not a multiple of the sector size, and the 3479 * destination range does not go past the destination's i_size, 3480 * we must round down the length to the nearest sector size 3481 * multiple. If we don't do this adjustment we end replacing 3482 * with zeroes the bytes in the range that starts at the 3483 * deduplication range's end offset and ends at the next sector 3484 * size multiple. 3485 */ 3486 if (loff + olen == i_size_read(src) && 3487 dst_loff + len < i_size_read(dst)) { 3488 const u64 sz = BTRFS_I(src)->root->fs_info->sectorsize; 3489 3490 len = round_down(i_size_read(src), sz) - loff; 3491 olen = len; 3492 } 3493 } 3494 3495 again: 3496 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, cmp); 3497 if (ret) 3498 return ret; 3499 3500 if (same_inode) 3501 ret = lock_extent_range(src, same_lock_start, same_lock_len, 3502 false); 3503 else 3504 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len, 3505 false); 3506 /* 3507 * If one of the inodes has dirty pages in the respective range or 3508 * ordered extents, we need to flush dellaloc and wait for all ordered 3509 * extents in the range. We must unlock the pages and the ranges in the 3510 * io trees to avoid deadlocks when flushing delalloc (requires locking 3511 * pages) and when waiting for ordered extents to complete (they require 3512 * range locking). 3513 */ 3514 if (ret == -EAGAIN) { 3515 /* 3516 * Ranges in the io trees already unlocked. Now unlock all 3517 * pages before waiting for all IO to complete. 3518 */ 3519 btrfs_cmp_data_free(cmp); 3520 if (same_inode) { 3521 btrfs_wait_ordered_range(src, same_lock_start, 3522 same_lock_len); 3523 } else { 3524 btrfs_wait_ordered_range(src, loff, len); 3525 btrfs_wait_ordered_range(dst, dst_loff, len); 3526 } 3527 goto again; 3528 } 3529 ASSERT(ret == 0); 3530 if (WARN_ON(ret)) { 3531 /* ranges in the io trees already unlocked */ 3532 btrfs_cmp_data_free(cmp); 3533 return ret; 3534 } 3535 3536 /* pass original length for comparison so we stay within i_size */ 3537 ret = btrfs_cmp_data(olen, cmp); 3538 if (ret == 0) 3539 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1); 3540 3541 if (same_inode) 3542 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start, 3543 same_lock_start + same_lock_len - 1); 3544 else 3545 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len); 3546 3547 btrfs_cmp_data_free(cmp); 3548 3549 return ret; 3550 } 3551 3552 #define BTRFS_MAX_DEDUPE_LEN SZ_16M 3553 3554 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen, 3555 struct inode *dst, u64 dst_loff) 3556 { 3557 int ret; 3558 struct cmp_pages cmp; 3559 int num_pages = PAGE_ALIGN(BTRFS_MAX_DEDUPE_LEN) >> PAGE_SHIFT; 3560 bool same_inode = (src == dst); 3561 u64 i, tail_len, chunk_count; 3562 3563 if (olen == 0) 3564 return 0; 3565 3566 if (same_inode) 3567 inode_lock(src); 3568 else 3569 btrfs_double_inode_lock(src, dst); 3570 3571 /* don't make the dst file partly checksummed */ 3572 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3573 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 3574 ret = -EINVAL; 3575 goto out_unlock; 3576 } 3577 3578 tail_len = olen % BTRFS_MAX_DEDUPE_LEN; 3579 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN); 3580 if (chunk_count == 0) 3581 num_pages = PAGE_ALIGN(tail_len) >> PAGE_SHIFT; 3582 3583 /* 3584 * If deduping ranges in the same inode, locking rules make it 3585 * mandatory to always lock pages in ascending order to avoid deadlocks 3586 * with concurrent tasks (such as starting writeback/delalloc). 3587 */ 3588 if (same_inode && dst_loff < loff) 3589 swap(loff, dst_loff); 3590 3591 /* 3592 * We must gather up all the pages before we initiate our extent 3593 * locking. We use an array for the page pointers. Size of the array is 3594 * bounded by len, which is in turn bounded by BTRFS_MAX_DEDUPE_LEN. 3595 */ 3596 cmp.src_pages = kvmalloc_array(num_pages, sizeof(struct page *), 3597 GFP_KERNEL | __GFP_ZERO); 3598 cmp.dst_pages = kvmalloc_array(num_pages, sizeof(struct page *), 3599 GFP_KERNEL | __GFP_ZERO); 3600 if (!cmp.src_pages || !cmp.dst_pages) { 3601 ret = -ENOMEM; 3602 goto out_free; 3603 } 3604 3605 for (i = 0; i < chunk_count; i++) { 3606 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN, 3607 dst, dst_loff, &cmp); 3608 if (ret) 3609 goto out_free; 3610 3611 loff += BTRFS_MAX_DEDUPE_LEN; 3612 dst_loff += BTRFS_MAX_DEDUPE_LEN; 3613 } 3614 3615 if (tail_len > 0) 3616 ret = btrfs_extent_same_range(src, loff, tail_len, dst, 3617 dst_loff, &cmp); 3618 3619 out_free: 3620 kvfree(cmp.src_pages); 3621 kvfree(cmp.dst_pages); 3622 3623 out_unlock: 3624 if (same_inode) 3625 inode_unlock(src); 3626 else 3627 btrfs_double_inode_unlock(src, dst); 3628 3629 return ret; 3630 } 3631 3632 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3633 struct inode *inode, 3634 u64 endoff, 3635 const u64 destoff, 3636 const u64 olen, 3637 int no_time_update) 3638 { 3639 struct btrfs_root *root = BTRFS_I(inode)->root; 3640 int ret; 3641 3642 inode_inc_iversion(inode); 3643 if (!no_time_update) 3644 inode->i_mtime = inode->i_ctime = current_time(inode); 3645 /* 3646 * We round up to the block size at eof when determining which 3647 * extents to clone above, but shouldn't round up the file size. 3648 */ 3649 if (endoff > destoff + olen) 3650 endoff = destoff + olen; 3651 if (endoff > inode->i_size) 3652 btrfs_i_size_write(BTRFS_I(inode), endoff); 3653 3654 ret = btrfs_update_inode(trans, root, inode); 3655 if (ret) { 3656 btrfs_abort_transaction(trans, ret); 3657 btrfs_end_transaction(trans); 3658 goto out; 3659 } 3660 ret = btrfs_end_transaction(trans); 3661 out: 3662 return ret; 3663 } 3664 3665 static void clone_update_extent_map(struct btrfs_inode *inode, 3666 const struct btrfs_trans_handle *trans, 3667 const struct btrfs_path *path, 3668 const u64 hole_offset, 3669 const u64 hole_len) 3670 { 3671 struct extent_map_tree *em_tree = &inode->extent_tree; 3672 struct extent_map *em; 3673 int ret; 3674 3675 em = alloc_extent_map(); 3676 if (!em) { 3677 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3678 return; 3679 } 3680 3681 if (path) { 3682 struct btrfs_file_extent_item *fi; 3683 3684 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3685 struct btrfs_file_extent_item); 3686 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3687 em->generation = -1; 3688 if (btrfs_file_extent_type(path->nodes[0], fi) == 3689 BTRFS_FILE_EXTENT_INLINE) 3690 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3691 &inode->runtime_flags); 3692 } else { 3693 em->start = hole_offset; 3694 em->len = hole_len; 3695 em->ram_bytes = em->len; 3696 em->orig_start = hole_offset; 3697 em->block_start = EXTENT_MAP_HOLE; 3698 em->block_len = 0; 3699 em->orig_block_len = 0; 3700 em->compress_type = BTRFS_COMPRESS_NONE; 3701 em->generation = trans->transid; 3702 } 3703 3704 while (1) { 3705 write_lock(&em_tree->lock); 3706 ret = add_extent_mapping(em_tree, em, 1); 3707 write_unlock(&em_tree->lock); 3708 if (ret != -EEXIST) { 3709 free_extent_map(em); 3710 break; 3711 } 3712 btrfs_drop_extent_cache(inode, em->start, 3713 em->start + em->len - 1, 0); 3714 } 3715 3716 if (ret) 3717 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3718 } 3719 3720 /* 3721 * Make sure we do not end up inserting an inline extent into a file that has 3722 * already other (non-inline) extents. If a file has an inline extent it can 3723 * not have any other extents and the (single) inline extent must start at the 3724 * file offset 0. Failing to respect these rules will lead to file corruption, 3725 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc 3726 * 3727 * We can have extents that have been already written to disk or we can have 3728 * dirty ranges still in delalloc, in which case the extent maps and items are 3729 * created only when we run delalloc, and the delalloc ranges might fall outside 3730 * the range we are currently locking in the inode's io tree. So we check the 3731 * inode's i_size because of that (i_size updates are done while holding the 3732 * i_mutex, which we are holding here). 3733 * We also check to see if the inode has a size not greater than "datal" but has 3734 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are 3735 * protected against such concurrent fallocate calls by the i_mutex). 3736 * 3737 * If the file has no extents but a size greater than datal, do not allow the 3738 * copy because we would need turn the inline extent into a non-inline one (even 3739 * with NO_HOLES enabled). If we find our destination inode only has one inline 3740 * extent, just overwrite it with the source inline extent if its size is less 3741 * than the source extent's size, or we could copy the source inline extent's 3742 * data into the destination inode's inline extent if the later is greater then 3743 * the former. 3744 */ 3745 static int clone_copy_inline_extent(struct inode *dst, 3746 struct btrfs_trans_handle *trans, 3747 struct btrfs_path *path, 3748 struct btrfs_key *new_key, 3749 const u64 drop_start, 3750 const u64 datal, 3751 const u64 skip, 3752 const u64 size, 3753 char *inline_data) 3754 { 3755 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb); 3756 struct btrfs_root *root = BTRFS_I(dst)->root; 3757 const u64 aligned_end = ALIGN(new_key->offset + datal, 3758 fs_info->sectorsize); 3759 int ret; 3760 struct btrfs_key key; 3761 3762 if (new_key->offset > 0) 3763 return -EOPNOTSUPP; 3764 3765 key.objectid = btrfs_ino(BTRFS_I(dst)); 3766 key.type = BTRFS_EXTENT_DATA_KEY; 3767 key.offset = 0; 3768 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3769 if (ret < 0) { 3770 return ret; 3771 } else if (ret > 0) { 3772 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3773 ret = btrfs_next_leaf(root, path); 3774 if (ret < 0) 3775 return ret; 3776 else if (ret > 0) 3777 goto copy_inline_extent; 3778 } 3779 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3780 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3781 key.type == BTRFS_EXTENT_DATA_KEY) { 3782 ASSERT(key.offset > 0); 3783 return -EOPNOTSUPP; 3784 } 3785 } else if (i_size_read(dst) <= datal) { 3786 struct btrfs_file_extent_item *ei; 3787 u64 ext_len; 3788 3789 /* 3790 * If the file size is <= datal, make sure there are no other 3791 * extents following (can happen do to an fallocate call with 3792 * the flag FALLOC_FL_KEEP_SIZE). 3793 */ 3794 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3795 struct btrfs_file_extent_item); 3796 /* 3797 * If it's an inline extent, it can not have other extents 3798 * following it. 3799 */ 3800 if (btrfs_file_extent_type(path->nodes[0], ei) == 3801 BTRFS_FILE_EXTENT_INLINE) 3802 goto copy_inline_extent; 3803 3804 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei); 3805 if (ext_len > aligned_end) 3806 return -EOPNOTSUPP; 3807 3808 ret = btrfs_next_item(root, path); 3809 if (ret < 0) { 3810 return ret; 3811 } else if (ret == 0) { 3812 btrfs_item_key_to_cpu(path->nodes[0], &key, 3813 path->slots[0]); 3814 if (key.objectid == btrfs_ino(BTRFS_I(dst)) && 3815 key.type == BTRFS_EXTENT_DATA_KEY) 3816 return -EOPNOTSUPP; 3817 } 3818 } 3819 3820 copy_inline_extent: 3821 /* 3822 * We have no extent items, or we have an extent at offset 0 which may 3823 * or may not be inlined. All these cases are dealt the same way. 3824 */ 3825 if (i_size_read(dst) > datal) { 3826 /* 3827 * If the destination inode has an inline extent... 3828 * This would require copying the data from the source inline 3829 * extent into the beginning of the destination's inline extent. 3830 * But this is really complex, both extents can be compressed 3831 * or just one of them, which would require decompressing and 3832 * re-compressing data (which could increase the new compressed 3833 * size, not allowing the compressed data to fit anymore in an 3834 * inline extent). 3835 * So just don't support this case for now (it should be rare, 3836 * we are not really saving space when cloning inline extents). 3837 */ 3838 return -EOPNOTSUPP; 3839 } 3840 3841 btrfs_release_path(path); 3842 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1); 3843 if (ret) 3844 return ret; 3845 ret = btrfs_insert_empty_item(trans, root, path, new_key, size); 3846 if (ret) 3847 return ret; 3848 3849 if (skip) { 3850 const u32 start = btrfs_file_extent_calc_inline_size(0); 3851 3852 memmove(inline_data + start, inline_data + start + skip, datal); 3853 } 3854 3855 write_extent_buffer(path->nodes[0], inline_data, 3856 btrfs_item_ptr_offset(path->nodes[0], 3857 path->slots[0]), 3858 size); 3859 inode_add_bytes(dst, datal); 3860 3861 return 0; 3862 } 3863 3864 /** 3865 * btrfs_clone() - clone a range from inode file to another 3866 * 3867 * @src: Inode to clone from 3868 * @inode: Inode to clone to 3869 * @off: Offset within source to start clone from 3870 * @olen: Original length, passed by user, of range to clone 3871 * @olen_aligned: Block-aligned value of olen 3872 * @destoff: Offset within @inode to start clone 3873 * @no_time_update: Whether to update mtime/ctime on the target inode 3874 */ 3875 static int btrfs_clone(struct inode *src, struct inode *inode, 3876 const u64 off, const u64 olen, const u64 olen_aligned, 3877 const u64 destoff, int no_time_update) 3878 { 3879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3880 struct btrfs_root *root = BTRFS_I(inode)->root; 3881 struct btrfs_path *path = NULL; 3882 struct extent_buffer *leaf; 3883 struct btrfs_trans_handle *trans; 3884 char *buf = NULL; 3885 struct btrfs_key key; 3886 u32 nritems; 3887 int slot; 3888 int ret; 3889 const u64 len = olen_aligned; 3890 u64 last_dest_end = destoff; 3891 3892 ret = -ENOMEM; 3893 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 3894 if (!buf) 3895 return ret; 3896 3897 path = btrfs_alloc_path(); 3898 if (!path) { 3899 kvfree(buf); 3900 return ret; 3901 } 3902 3903 path->reada = READA_FORWARD; 3904 /* clone data */ 3905 key.objectid = btrfs_ino(BTRFS_I(src)); 3906 key.type = BTRFS_EXTENT_DATA_KEY; 3907 key.offset = off; 3908 3909 while (1) { 3910 u64 next_key_min_offset = key.offset + 1; 3911 3912 /* 3913 * note the key will change type as we walk through the 3914 * tree. 3915 */ 3916 path->leave_spinning = 1; 3917 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3918 0, 0); 3919 if (ret < 0) 3920 goto out; 3921 /* 3922 * First search, if no extent item that starts at offset off was 3923 * found but the previous item is an extent item, it's possible 3924 * it might overlap our target range, therefore process it. 3925 */ 3926 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3927 btrfs_item_key_to_cpu(path->nodes[0], &key, 3928 path->slots[0] - 1); 3929 if (key.type == BTRFS_EXTENT_DATA_KEY) 3930 path->slots[0]--; 3931 } 3932 3933 nritems = btrfs_header_nritems(path->nodes[0]); 3934 process_slot: 3935 if (path->slots[0] >= nritems) { 3936 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3937 if (ret < 0) 3938 goto out; 3939 if (ret > 0) 3940 break; 3941 nritems = btrfs_header_nritems(path->nodes[0]); 3942 } 3943 leaf = path->nodes[0]; 3944 slot = path->slots[0]; 3945 3946 btrfs_item_key_to_cpu(leaf, &key, slot); 3947 if (key.type > BTRFS_EXTENT_DATA_KEY || 3948 key.objectid != btrfs_ino(BTRFS_I(src))) 3949 break; 3950 3951 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3952 struct btrfs_file_extent_item *extent; 3953 int type; 3954 u32 size; 3955 struct btrfs_key new_key; 3956 u64 disko = 0, diskl = 0; 3957 u64 datao = 0, datal = 0; 3958 u8 comp; 3959 u64 drop_start; 3960 3961 extent = btrfs_item_ptr(leaf, slot, 3962 struct btrfs_file_extent_item); 3963 comp = btrfs_file_extent_compression(leaf, extent); 3964 type = btrfs_file_extent_type(leaf, extent); 3965 if (type == BTRFS_FILE_EXTENT_REG || 3966 type == BTRFS_FILE_EXTENT_PREALLOC) { 3967 disko = btrfs_file_extent_disk_bytenr(leaf, 3968 extent); 3969 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3970 extent); 3971 datao = btrfs_file_extent_offset(leaf, extent); 3972 datal = btrfs_file_extent_num_bytes(leaf, 3973 extent); 3974 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3975 /* take upper bound, may be compressed */ 3976 datal = btrfs_file_extent_ram_bytes(leaf, 3977 extent); 3978 } 3979 3980 /* 3981 * The first search might have left us at an extent 3982 * item that ends before our target range's start, can 3983 * happen if we have holes and NO_HOLES feature enabled. 3984 */ 3985 if (key.offset + datal <= off) { 3986 path->slots[0]++; 3987 goto process_slot; 3988 } else if (key.offset >= off + len) { 3989 break; 3990 } 3991 next_key_min_offset = key.offset + datal; 3992 size = btrfs_item_size_nr(leaf, slot); 3993 read_extent_buffer(leaf, buf, 3994 btrfs_item_ptr_offset(leaf, slot), 3995 size); 3996 3997 btrfs_release_path(path); 3998 path->leave_spinning = 0; 3999 4000 memcpy(&new_key, &key, sizeof(new_key)); 4001 new_key.objectid = btrfs_ino(BTRFS_I(inode)); 4002 if (off <= key.offset) 4003 new_key.offset = key.offset + destoff - off; 4004 else 4005 new_key.offset = destoff; 4006 4007 /* 4008 * Deal with a hole that doesn't have an extent item 4009 * that represents it (NO_HOLES feature enabled). 4010 * This hole is either in the middle of the cloning 4011 * range or at the beginning (fully overlaps it or 4012 * partially overlaps it). 4013 */ 4014 if (new_key.offset != last_dest_end) 4015 drop_start = last_dest_end; 4016 else 4017 drop_start = new_key.offset; 4018 4019 /* 4020 * 1 - adjusting old extent (we may have to split it) 4021 * 1 - add new extent 4022 * 1 - inode update 4023 */ 4024 trans = btrfs_start_transaction(root, 3); 4025 if (IS_ERR(trans)) { 4026 ret = PTR_ERR(trans); 4027 goto out; 4028 } 4029 4030 if (type == BTRFS_FILE_EXTENT_REG || 4031 type == BTRFS_FILE_EXTENT_PREALLOC) { 4032 /* 4033 * a | --- range to clone ---| b 4034 * | ------------- extent ------------- | 4035 */ 4036 4037 /* subtract range b */ 4038 if (key.offset + datal > off + len) 4039 datal = off + len - key.offset; 4040 4041 /* subtract range a */ 4042 if (off > key.offset) { 4043 datao += off - key.offset; 4044 datal -= off - key.offset; 4045 } 4046 4047 ret = btrfs_drop_extents(trans, root, inode, 4048 drop_start, 4049 new_key.offset + datal, 4050 1); 4051 if (ret) { 4052 if (ret != -EOPNOTSUPP) 4053 btrfs_abort_transaction(trans, 4054 ret); 4055 btrfs_end_transaction(trans); 4056 goto out; 4057 } 4058 4059 ret = btrfs_insert_empty_item(trans, root, path, 4060 &new_key, size); 4061 if (ret) { 4062 btrfs_abort_transaction(trans, ret); 4063 btrfs_end_transaction(trans); 4064 goto out; 4065 } 4066 4067 leaf = path->nodes[0]; 4068 slot = path->slots[0]; 4069 write_extent_buffer(leaf, buf, 4070 btrfs_item_ptr_offset(leaf, slot), 4071 size); 4072 4073 extent = btrfs_item_ptr(leaf, slot, 4074 struct btrfs_file_extent_item); 4075 4076 /* disko == 0 means it's a hole */ 4077 if (!disko) 4078 datao = 0; 4079 4080 btrfs_set_file_extent_offset(leaf, extent, 4081 datao); 4082 btrfs_set_file_extent_num_bytes(leaf, extent, 4083 datal); 4084 4085 if (disko) { 4086 inode_add_bytes(inode, datal); 4087 ret = btrfs_inc_extent_ref(trans, 4088 root, 4089 disko, diskl, 0, 4090 root->root_key.objectid, 4091 btrfs_ino(BTRFS_I(inode)), 4092 new_key.offset - datao); 4093 if (ret) { 4094 btrfs_abort_transaction(trans, 4095 ret); 4096 btrfs_end_transaction(trans); 4097 goto out; 4098 4099 } 4100 } 4101 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 4102 u64 skip = 0; 4103 u64 trim = 0; 4104 4105 if (off > key.offset) { 4106 skip = off - key.offset; 4107 new_key.offset += skip; 4108 } 4109 4110 if (key.offset + datal > off + len) 4111 trim = key.offset + datal - (off + len); 4112 4113 if (comp && (skip || trim)) { 4114 ret = -EINVAL; 4115 btrfs_end_transaction(trans); 4116 goto out; 4117 } 4118 size -= skip + trim; 4119 datal -= skip + trim; 4120 4121 ret = clone_copy_inline_extent(inode, 4122 trans, path, 4123 &new_key, 4124 drop_start, 4125 datal, 4126 skip, size, buf); 4127 if (ret) { 4128 if (ret != -EOPNOTSUPP) 4129 btrfs_abort_transaction(trans, 4130 ret); 4131 btrfs_end_transaction(trans); 4132 goto out; 4133 } 4134 leaf = path->nodes[0]; 4135 slot = path->slots[0]; 4136 } 4137 4138 /* If we have an implicit hole (NO_HOLES feature). */ 4139 if (drop_start < new_key.offset) 4140 clone_update_extent_map(BTRFS_I(inode), trans, 4141 NULL, drop_start, 4142 new_key.offset - drop_start); 4143 4144 clone_update_extent_map(BTRFS_I(inode), trans, 4145 path, 0, 0); 4146 4147 btrfs_mark_buffer_dirty(leaf); 4148 btrfs_release_path(path); 4149 4150 last_dest_end = ALIGN(new_key.offset + datal, 4151 fs_info->sectorsize); 4152 ret = clone_finish_inode_update(trans, inode, 4153 last_dest_end, 4154 destoff, olen, 4155 no_time_update); 4156 if (ret) 4157 goto out; 4158 if (new_key.offset + datal >= destoff + len) 4159 break; 4160 } 4161 btrfs_release_path(path); 4162 key.offset = next_key_min_offset; 4163 4164 if (fatal_signal_pending(current)) { 4165 ret = -EINTR; 4166 goto out; 4167 } 4168 } 4169 ret = 0; 4170 4171 if (last_dest_end < destoff + len) { 4172 /* 4173 * We have an implicit hole (NO_HOLES feature is enabled) that 4174 * fully or partially overlaps our cloning range at its end. 4175 */ 4176 btrfs_release_path(path); 4177 4178 /* 4179 * 1 - remove extent(s) 4180 * 1 - inode update 4181 */ 4182 trans = btrfs_start_transaction(root, 2); 4183 if (IS_ERR(trans)) { 4184 ret = PTR_ERR(trans); 4185 goto out; 4186 } 4187 ret = btrfs_drop_extents(trans, root, inode, 4188 last_dest_end, destoff + len, 1); 4189 if (ret) { 4190 if (ret != -EOPNOTSUPP) 4191 btrfs_abort_transaction(trans, ret); 4192 btrfs_end_transaction(trans); 4193 goto out; 4194 } 4195 clone_update_extent_map(BTRFS_I(inode), trans, NULL, 4196 last_dest_end, 4197 destoff + len - last_dest_end); 4198 ret = clone_finish_inode_update(trans, inode, destoff + len, 4199 destoff, olen, no_time_update); 4200 } 4201 4202 out: 4203 btrfs_free_path(path); 4204 kvfree(buf); 4205 return ret; 4206 } 4207 4208 static noinline int btrfs_clone_files(struct file *file, struct file *file_src, 4209 u64 off, u64 olen, u64 destoff) 4210 { 4211 struct inode *inode = file_inode(file); 4212 struct inode *src = file_inode(file_src); 4213 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4214 struct btrfs_root *root = BTRFS_I(inode)->root; 4215 int ret; 4216 u64 len = olen; 4217 u64 bs = fs_info->sb->s_blocksize; 4218 int same_inode = src == inode; 4219 4220 /* 4221 * TODO: 4222 * - split compressed inline extents. annoying: we need to 4223 * decompress into destination's address_space (the file offset 4224 * may change, so source mapping won't do), then recompress (or 4225 * otherwise reinsert) a subrange. 4226 * 4227 * - split destination inode's inline extents. The inline extents can 4228 * be either compressed or non-compressed. 4229 */ 4230 4231 if (btrfs_root_readonly(root)) 4232 return -EROFS; 4233 4234 if (file_src->f_path.mnt != file->f_path.mnt || 4235 src->i_sb != inode->i_sb) 4236 return -EXDEV; 4237 4238 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 4239 return -EISDIR; 4240 4241 if (!same_inode) { 4242 btrfs_double_inode_lock(src, inode); 4243 } else { 4244 inode_lock(src); 4245 } 4246 4247 /* don't make the dst file partly checksummed */ 4248 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 4249 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 4250 ret = -EINVAL; 4251 goto out_unlock; 4252 } 4253 4254 /* determine range to clone */ 4255 ret = -EINVAL; 4256 if (off + len > src->i_size || off + len < off) 4257 goto out_unlock; 4258 if (len == 0) 4259 olen = len = src->i_size - off; 4260 /* if we extend to eof, continue to block boundary */ 4261 if (off + len == src->i_size) 4262 len = ALIGN(src->i_size, bs) - off; 4263 4264 if (len == 0) { 4265 ret = 0; 4266 goto out_unlock; 4267 } 4268 4269 /* verify the end result is block aligned */ 4270 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 4271 !IS_ALIGNED(destoff, bs)) 4272 goto out_unlock; 4273 4274 /* verify if ranges are overlapped within the same file */ 4275 if (same_inode) { 4276 if (destoff + len > off && destoff < off + len) 4277 goto out_unlock; 4278 } 4279 4280 if (destoff > inode->i_size) { 4281 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 4282 if (ret) 4283 goto out_unlock; 4284 } 4285 4286 /* 4287 * Lock the target range too. Right after we replace the file extent 4288 * items in the fs tree (which now point to the cloned data), we might 4289 * have a worker replace them with extent items relative to a write 4290 * operation that was issued before this clone operation (i.e. confront 4291 * with inode.c:btrfs_finish_ordered_io). 4292 */ 4293 if (same_inode) { 4294 u64 lock_start = min_t(u64, off, destoff); 4295 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 4296 4297 ret = lock_extent_range(src, lock_start, lock_len, true); 4298 } else { 4299 ret = btrfs_double_extent_lock(src, off, inode, destoff, len, 4300 true); 4301 } 4302 ASSERT(ret == 0); 4303 if (WARN_ON(ret)) { 4304 /* ranges in the io trees already unlocked */ 4305 goto out_unlock; 4306 } 4307 4308 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0); 4309 4310 if (same_inode) { 4311 u64 lock_start = min_t(u64, off, destoff); 4312 u64 lock_end = max_t(u64, off, destoff) + len - 1; 4313 4314 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 4315 } else { 4316 btrfs_double_extent_unlock(src, off, inode, destoff, len); 4317 } 4318 /* 4319 * Truncate page cache pages so that future reads will see the cloned 4320 * data immediately and not the previous data. 4321 */ 4322 truncate_inode_pages_range(&inode->i_data, 4323 round_down(destoff, PAGE_SIZE), 4324 round_up(destoff + len, PAGE_SIZE) - 1); 4325 out_unlock: 4326 if (!same_inode) 4327 btrfs_double_inode_unlock(src, inode); 4328 else 4329 inode_unlock(src); 4330 return ret; 4331 } 4332 4333 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off, 4334 struct file *dst_file, loff_t destoff, loff_t len, 4335 unsigned int remap_flags) 4336 { 4337 int ret; 4338 4339 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 4340 return -EINVAL; 4341 4342 if (remap_flags & REMAP_FILE_DEDUP) { 4343 struct inode *src = file_inode(src_file); 4344 struct inode *dst = file_inode(dst_file); 4345 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 4346 4347 if (WARN_ON_ONCE(bs < PAGE_SIZE)) { 4348 /* 4349 * Btrfs does not support blocksize < page_size. As a 4350 * result, btrfs_cmp_data() won't correctly handle 4351 * this situation without an update. 4352 */ 4353 return -EINVAL; 4354 } 4355 4356 ret = btrfs_extent_same(src, off, len, dst, destoff); 4357 } else { 4358 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff); 4359 } 4360 return ret < 0 ? ret : len; 4361 } 4362 4363 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 4364 { 4365 struct inode *inode = file_inode(file); 4366 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4367 struct btrfs_root *root = BTRFS_I(inode)->root; 4368 struct btrfs_root *new_root; 4369 struct btrfs_dir_item *di; 4370 struct btrfs_trans_handle *trans; 4371 struct btrfs_path *path; 4372 struct btrfs_key location; 4373 struct btrfs_disk_key disk_key; 4374 u64 objectid = 0; 4375 u64 dir_id; 4376 int ret; 4377 4378 if (!capable(CAP_SYS_ADMIN)) 4379 return -EPERM; 4380 4381 ret = mnt_want_write_file(file); 4382 if (ret) 4383 return ret; 4384 4385 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 4386 ret = -EFAULT; 4387 goto out; 4388 } 4389 4390 if (!objectid) 4391 objectid = BTRFS_FS_TREE_OBJECTID; 4392 4393 location.objectid = objectid; 4394 location.type = BTRFS_ROOT_ITEM_KEY; 4395 location.offset = (u64)-1; 4396 4397 new_root = btrfs_read_fs_root_no_name(fs_info, &location); 4398 if (IS_ERR(new_root)) { 4399 ret = PTR_ERR(new_root); 4400 goto out; 4401 } 4402 if (!is_fstree(new_root->root_key.objectid)) { 4403 ret = -ENOENT; 4404 goto out; 4405 } 4406 4407 path = btrfs_alloc_path(); 4408 if (!path) { 4409 ret = -ENOMEM; 4410 goto out; 4411 } 4412 path->leave_spinning = 1; 4413 4414 trans = btrfs_start_transaction(root, 1); 4415 if (IS_ERR(trans)) { 4416 btrfs_free_path(path); 4417 ret = PTR_ERR(trans); 4418 goto out; 4419 } 4420 4421 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4422 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 4423 dir_id, "default", 7, 1); 4424 if (IS_ERR_OR_NULL(di)) { 4425 btrfs_free_path(path); 4426 btrfs_end_transaction(trans); 4427 btrfs_err(fs_info, 4428 "Umm, you don't have the default diritem, this isn't going to work"); 4429 ret = -ENOENT; 4430 goto out; 4431 } 4432 4433 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 4434 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 4435 btrfs_mark_buffer_dirty(path->nodes[0]); 4436 btrfs_free_path(path); 4437 4438 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 4439 btrfs_end_transaction(trans); 4440 out: 4441 mnt_drop_write_file(file); 4442 return ret; 4443 } 4444 4445 static void get_block_group_info(struct list_head *groups_list, 4446 struct btrfs_ioctl_space_info *space) 4447 { 4448 struct btrfs_block_group_cache *block_group; 4449 4450 space->total_bytes = 0; 4451 space->used_bytes = 0; 4452 space->flags = 0; 4453 list_for_each_entry(block_group, groups_list, list) { 4454 space->flags = block_group->flags; 4455 space->total_bytes += block_group->key.offset; 4456 space->used_bytes += 4457 btrfs_block_group_used(&block_group->item); 4458 } 4459 } 4460 4461 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 4462 void __user *arg) 4463 { 4464 struct btrfs_ioctl_space_args space_args; 4465 struct btrfs_ioctl_space_info space; 4466 struct btrfs_ioctl_space_info *dest; 4467 struct btrfs_ioctl_space_info *dest_orig; 4468 struct btrfs_ioctl_space_info __user *user_dest; 4469 struct btrfs_space_info *info; 4470 static const u64 types[] = { 4471 BTRFS_BLOCK_GROUP_DATA, 4472 BTRFS_BLOCK_GROUP_SYSTEM, 4473 BTRFS_BLOCK_GROUP_METADATA, 4474 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 4475 }; 4476 int num_types = 4; 4477 int alloc_size; 4478 int ret = 0; 4479 u64 slot_count = 0; 4480 int i, c; 4481 4482 if (copy_from_user(&space_args, 4483 (struct btrfs_ioctl_space_args __user *)arg, 4484 sizeof(space_args))) 4485 return -EFAULT; 4486 4487 for (i = 0; i < num_types; i++) { 4488 struct btrfs_space_info *tmp; 4489 4490 info = NULL; 4491 rcu_read_lock(); 4492 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4493 list) { 4494 if (tmp->flags == types[i]) { 4495 info = tmp; 4496 break; 4497 } 4498 } 4499 rcu_read_unlock(); 4500 4501 if (!info) 4502 continue; 4503 4504 down_read(&info->groups_sem); 4505 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4506 if (!list_empty(&info->block_groups[c])) 4507 slot_count++; 4508 } 4509 up_read(&info->groups_sem); 4510 } 4511 4512 /* 4513 * Global block reserve, exported as a space_info 4514 */ 4515 slot_count++; 4516 4517 /* space_slots == 0 means they are asking for a count */ 4518 if (space_args.space_slots == 0) { 4519 space_args.total_spaces = slot_count; 4520 goto out; 4521 } 4522 4523 slot_count = min_t(u64, space_args.space_slots, slot_count); 4524 4525 alloc_size = sizeof(*dest) * slot_count; 4526 4527 /* we generally have at most 6 or so space infos, one for each raid 4528 * level. So, a whole page should be more than enough for everyone 4529 */ 4530 if (alloc_size > PAGE_SIZE) 4531 return -ENOMEM; 4532 4533 space_args.total_spaces = 0; 4534 dest = kmalloc(alloc_size, GFP_KERNEL); 4535 if (!dest) 4536 return -ENOMEM; 4537 dest_orig = dest; 4538 4539 /* now we have a buffer to copy into */ 4540 for (i = 0; i < num_types; i++) { 4541 struct btrfs_space_info *tmp; 4542 4543 if (!slot_count) 4544 break; 4545 4546 info = NULL; 4547 rcu_read_lock(); 4548 list_for_each_entry_rcu(tmp, &fs_info->space_info, 4549 list) { 4550 if (tmp->flags == types[i]) { 4551 info = tmp; 4552 break; 4553 } 4554 } 4555 rcu_read_unlock(); 4556 4557 if (!info) 4558 continue; 4559 down_read(&info->groups_sem); 4560 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 4561 if (!list_empty(&info->block_groups[c])) { 4562 get_block_group_info(&info->block_groups[c], 4563 &space); 4564 memcpy(dest, &space, sizeof(space)); 4565 dest++; 4566 space_args.total_spaces++; 4567 slot_count--; 4568 } 4569 if (!slot_count) 4570 break; 4571 } 4572 up_read(&info->groups_sem); 4573 } 4574 4575 /* 4576 * Add global block reserve 4577 */ 4578 if (slot_count) { 4579 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 4580 4581 spin_lock(&block_rsv->lock); 4582 space.total_bytes = block_rsv->size; 4583 space.used_bytes = block_rsv->size - block_rsv->reserved; 4584 spin_unlock(&block_rsv->lock); 4585 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 4586 memcpy(dest, &space, sizeof(space)); 4587 space_args.total_spaces++; 4588 } 4589 4590 user_dest = (struct btrfs_ioctl_space_info __user *) 4591 (arg + sizeof(struct btrfs_ioctl_space_args)); 4592 4593 if (copy_to_user(user_dest, dest_orig, alloc_size)) 4594 ret = -EFAULT; 4595 4596 kfree(dest_orig); 4597 out: 4598 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 4599 ret = -EFAULT; 4600 4601 return ret; 4602 } 4603 4604 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4605 void __user *argp) 4606 { 4607 struct btrfs_trans_handle *trans; 4608 u64 transid; 4609 int ret; 4610 4611 trans = btrfs_attach_transaction_barrier(root); 4612 if (IS_ERR(trans)) { 4613 if (PTR_ERR(trans) != -ENOENT) 4614 return PTR_ERR(trans); 4615 4616 /* No running transaction, don't bother */ 4617 transid = root->fs_info->last_trans_committed; 4618 goto out; 4619 } 4620 transid = trans->transid; 4621 ret = btrfs_commit_transaction_async(trans, 0); 4622 if (ret) { 4623 btrfs_end_transaction(trans); 4624 return ret; 4625 } 4626 out: 4627 if (argp) 4628 if (copy_to_user(argp, &transid, sizeof(transid))) 4629 return -EFAULT; 4630 return 0; 4631 } 4632 4633 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 4634 void __user *argp) 4635 { 4636 u64 transid; 4637 4638 if (argp) { 4639 if (copy_from_user(&transid, argp, sizeof(transid))) 4640 return -EFAULT; 4641 } else { 4642 transid = 0; /* current trans */ 4643 } 4644 return btrfs_wait_for_commit(fs_info, transid); 4645 } 4646 4647 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4648 { 4649 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 4650 struct btrfs_ioctl_scrub_args *sa; 4651 int ret; 4652 4653 if (!capable(CAP_SYS_ADMIN)) 4654 return -EPERM; 4655 4656 sa = memdup_user(arg, sizeof(*sa)); 4657 if (IS_ERR(sa)) 4658 return PTR_ERR(sa); 4659 4660 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4661 ret = mnt_want_write_file(file); 4662 if (ret) 4663 goto out; 4664 } 4665 4666 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 4667 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4668 0); 4669 4670 if (copy_to_user(arg, sa, sizeof(*sa))) 4671 ret = -EFAULT; 4672 4673 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4674 mnt_drop_write_file(file); 4675 out: 4676 kfree(sa); 4677 return ret; 4678 } 4679 4680 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 4681 { 4682 if (!capable(CAP_SYS_ADMIN)) 4683 return -EPERM; 4684 4685 return btrfs_scrub_cancel(fs_info); 4686 } 4687 4688 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 4689 void __user *arg) 4690 { 4691 struct btrfs_ioctl_scrub_args *sa; 4692 int ret; 4693 4694 if (!capable(CAP_SYS_ADMIN)) 4695 return -EPERM; 4696 4697 sa = memdup_user(arg, sizeof(*sa)); 4698 if (IS_ERR(sa)) 4699 return PTR_ERR(sa); 4700 4701 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 4702 4703 if (copy_to_user(arg, sa, sizeof(*sa))) 4704 ret = -EFAULT; 4705 4706 kfree(sa); 4707 return ret; 4708 } 4709 4710 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 4711 void __user *arg) 4712 { 4713 struct btrfs_ioctl_get_dev_stats *sa; 4714 int ret; 4715 4716 sa = memdup_user(arg, sizeof(*sa)); 4717 if (IS_ERR(sa)) 4718 return PTR_ERR(sa); 4719 4720 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4721 kfree(sa); 4722 return -EPERM; 4723 } 4724 4725 ret = btrfs_get_dev_stats(fs_info, sa); 4726 4727 if (copy_to_user(arg, sa, sizeof(*sa))) 4728 ret = -EFAULT; 4729 4730 kfree(sa); 4731 return ret; 4732 } 4733 4734 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 4735 void __user *arg) 4736 { 4737 struct btrfs_ioctl_dev_replace_args *p; 4738 int ret; 4739 4740 if (!capable(CAP_SYS_ADMIN)) 4741 return -EPERM; 4742 4743 p = memdup_user(arg, sizeof(*p)); 4744 if (IS_ERR(p)) 4745 return PTR_ERR(p); 4746 4747 switch (p->cmd) { 4748 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4749 if (sb_rdonly(fs_info->sb)) { 4750 ret = -EROFS; 4751 goto out; 4752 } 4753 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4754 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4755 } else { 4756 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 4757 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 4758 } 4759 break; 4760 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4761 btrfs_dev_replace_status(fs_info, p); 4762 ret = 0; 4763 break; 4764 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4765 p->result = btrfs_dev_replace_cancel(fs_info); 4766 ret = 0; 4767 break; 4768 default: 4769 ret = -EINVAL; 4770 break; 4771 } 4772 4773 if (copy_to_user(arg, p, sizeof(*p))) 4774 ret = -EFAULT; 4775 out: 4776 kfree(p); 4777 return ret; 4778 } 4779 4780 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4781 { 4782 int ret = 0; 4783 int i; 4784 u64 rel_ptr; 4785 int size; 4786 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4787 struct inode_fs_paths *ipath = NULL; 4788 struct btrfs_path *path; 4789 4790 if (!capable(CAP_DAC_READ_SEARCH)) 4791 return -EPERM; 4792 4793 path = btrfs_alloc_path(); 4794 if (!path) { 4795 ret = -ENOMEM; 4796 goto out; 4797 } 4798 4799 ipa = memdup_user(arg, sizeof(*ipa)); 4800 if (IS_ERR(ipa)) { 4801 ret = PTR_ERR(ipa); 4802 ipa = NULL; 4803 goto out; 4804 } 4805 4806 size = min_t(u32, ipa->size, 4096); 4807 ipath = init_ipath(size, root, path); 4808 if (IS_ERR(ipath)) { 4809 ret = PTR_ERR(ipath); 4810 ipath = NULL; 4811 goto out; 4812 } 4813 4814 ret = paths_from_inode(ipa->inum, ipath); 4815 if (ret < 0) 4816 goto out; 4817 4818 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4819 rel_ptr = ipath->fspath->val[i] - 4820 (u64)(unsigned long)ipath->fspath->val; 4821 ipath->fspath->val[i] = rel_ptr; 4822 } 4823 4824 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 4825 ipath->fspath, size); 4826 if (ret) { 4827 ret = -EFAULT; 4828 goto out; 4829 } 4830 4831 out: 4832 btrfs_free_path(path); 4833 free_ipath(ipath); 4834 kfree(ipa); 4835 4836 return ret; 4837 } 4838 4839 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4840 { 4841 struct btrfs_data_container *inodes = ctx; 4842 const size_t c = 3 * sizeof(u64); 4843 4844 if (inodes->bytes_left >= c) { 4845 inodes->bytes_left -= c; 4846 inodes->val[inodes->elem_cnt] = inum; 4847 inodes->val[inodes->elem_cnt + 1] = offset; 4848 inodes->val[inodes->elem_cnt + 2] = root; 4849 inodes->elem_cnt += 3; 4850 } else { 4851 inodes->bytes_missing += c - inodes->bytes_left; 4852 inodes->bytes_left = 0; 4853 inodes->elem_missed += 3; 4854 } 4855 4856 return 0; 4857 } 4858 4859 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 4860 void __user *arg, int version) 4861 { 4862 int ret = 0; 4863 int size; 4864 struct btrfs_ioctl_logical_ino_args *loi; 4865 struct btrfs_data_container *inodes = NULL; 4866 struct btrfs_path *path = NULL; 4867 bool ignore_offset; 4868 4869 if (!capable(CAP_SYS_ADMIN)) 4870 return -EPERM; 4871 4872 loi = memdup_user(arg, sizeof(*loi)); 4873 if (IS_ERR(loi)) 4874 return PTR_ERR(loi); 4875 4876 if (version == 1) { 4877 ignore_offset = false; 4878 size = min_t(u32, loi->size, SZ_64K); 4879 } else { 4880 /* All reserved bits must be 0 for now */ 4881 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 4882 ret = -EINVAL; 4883 goto out_loi; 4884 } 4885 /* Only accept flags we have defined so far */ 4886 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 4887 ret = -EINVAL; 4888 goto out_loi; 4889 } 4890 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 4891 size = min_t(u32, loi->size, SZ_16M); 4892 } 4893 4894 path = btrfs_alloc_path(); 4895 if (!path) { 4896 ret = -ENOMEM; 4897 goto out; 4898 } 4899 4900 inodes = init_data_container(size); 4901 if (IS_ERR(inodes)) { 4902 ret = PTR_ERR(inodes); 4903 inodes = NULL; 4904 goto out; 4905 } 4906 4907 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 4908 build_ino_list, inodes, ignore_offset); 4909 if (ret == -EINVAL) 4910 ret = -ENOENT; 4911 if (ret < 0) 4912 goto out; 4913 4914 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 4915 size); 4916 if (ret) 4917 ret = -EFAULT; 4918 4919 out: 4920 btrfs_free_path(path); 4921 kvfree(inodes); 4922 out_loi: 4923 kfree(loi); 4924 4925 return ret; 4926 } 4927 4928 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 4929 struct btrfs_ioctl_balance_args *bargs) 4930 { 4931 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4932 4933 bargs->flags = bctl->flags; 4934 4935 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 4936 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4937 if (atomic_read(&fs_info->balance_pause_req)) 4938 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4939 if (atomic_read(&fs_info->balance_cancel_req)) 4940 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4941 4942 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4943 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4944 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4945 4946 spin_lock(&fs_info->balance_lock); 4947 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4948 spin_unlock(&fs_info->balance_lock); 4949 } 4950 4951 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4952 { 4953 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4954 struct btrfs_fs_info *fs_info = root->fs_info; 4955 struct btrfs_ioctl_balance_args *bargs; 4956 struct btrfs_balance_control *bctl; 4957 bool need_unlock; /* for mut. excl. ops lock */ 4958 int ret; 4959 4960 if (!capable(CAP_SYS_ADMIN)) 4961 return -EPERM; 4962 4963 ret = mnt_want_write_file(file); 4964 if (ret) 4965 return ret; 4966 4967 again: 4968 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) { 4969 mutex_lock(&fs_info->balance_mutex); 4970 need_unlock = true; 4971 goto locked; 4972 } 4973 4974 /* 4975 * mut. excl. ops lock is locked. Three possibilities: 4976 * (1) some other op is running 4977 * (2) balance is running 4978 * (3) balance is paused -- special case (think resume) 4979 */ 4980 mutex_lock(&fs_info->balance_mutex); 4981 if (fs_info->balance_ctl) { 4982 /* this is either (2) or (3) */ 4983 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4984 mutex_unlock(&fs_info->balance_mutex); 4985 /* 4986 * Lock released to allow other waiters to continue, 4987 * we'll reexamine the status again. 4988 */ 4989 mutex_lock(&fs_info->balance_mutex); 4990 4991 if (fs_info->balance_ctl && 4992 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4993 /* this is (3) */ 4994 need_unlock = false; 4995 goto locked; 4996 } 4997 4998 mutex_unlock(&fs_info->balance_mutex); 4999 goto again; 5000 } else { 5001 /* this is (2) */ 5002 mutex_unlock(&fs_info->balance_mutex); 5003 ret = -EINPROGRESS; 5004 goto out; 5005 } 5006 } else { 5007 /* this is (1) */ 5008 mutex_unlock(&fs_info->balance_mutex); 5009 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 5010 goto out; 5011 } 5012 5013 locked: 5014 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)); 5015 5016 if (arg) { 5017 bargs = memdup_user(arg, sizeof(*bargs)); 5018 if (IS_ERR(bargs)) { 5019 ret = PTR_ERR(bargs); 5020 goto out_unlock; 5021 } 5022 5023 if (bargs->flags & BTRFS_BALANCE_RESUME) { 5024 if (!fs_info->balance_ctl) { 5025 ret = -ENOTCONN; 5026 goto out_bargs; 5027 } 5028 5029 bctl = fs_info->balance_ctl; 5030 spin_lock(&fs_info->balance_lock); 5031 bctl->flags |= BTRFS_BALANCE_RESUME; 5032 spin_unlock(&fs_info->balance_lock); 5033 5034 goto do_balance; 5035 } 5036 } else { 5037 bargs = NULL; 5038 } 5039 5040 if (fs_info->balance_ctl) { 5041 ret = -EINPROGRESS; 5042 goto out_bargs; 5043 } 5044 5045 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 5046 if (!bctl) { 5047 ret = -ENOMEM; 5048 goto out_bargs; 5049 } 5050 5051 if (arg) { 5052 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 5053 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 5054 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 5055 5056 bctl->flags = bargs->flags; 5057 } else { 5058 /* balance everything - no filters */ 5059 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 5060 } 5061 5062 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 5063 ret = -EINVAL; 5064 goto out_bctl; 5065 } 5066 5067 do_balance: 5068 /* 5069 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to 5070 * btrfs_balance. bctl is freed in reset_balance_state, or, if 5071 * restriper was paused all the way until unmount, in free_fs_info. 5072 * The flag should be cleared after reset_balance_state. 5073 */ 5074 need_unlock = false; 5075 5076 ret = btrfs_balance(fs_info, bctl, bargs); 5077 bctl = NULL; 5078 5079 if (arg) { 5080 if (copy_to_user(arg, bargs, sizeof(*bargs))) 5081 ret = -EFAULT; 5082 } 5083 5084 out_bctl: 5085 kfree(bctl); 5086 out_bargs: 5087 kfree(bargs); 5088 out_unlock: 5089 mutex_unlock(&fs_info->balance_mutex); 5090 if (need_unlock) 5091 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags); 5092 out: 5093 mnt_drop_write_file(file); 5094 return ret; 5095 } 5096 5097 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 5098 { 5099 if (!capable(CAP_SYS_ADMIN)) 5100 return -EPERM; 5101 5102 switch (cmd) { 5103 case BTRFS_BALANCE_CTL_PAUSE: 5104 return btrfs_pause_balance(fs_info); 5105 case BTRFS_BALANCE_CTL_CANCEL: 5106 return btrfs_cancel_balance(fs_info); 5107 } 5108 5109 return -EINVAL; 5110 } 5111 5112 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 5113 void __user *arg) 5114 { 5115 struct btrfs_ioctl_balance_args *bargs; 5116 int ret = 0; 5117 5118 if (!capable(CAP_SYS_ADMIN)) 5119 return -EPERM; 5120 5121 mutex_lock(&fs_info->balance_mutex); 5122 if (!fs_info->balance_ctl) { 5123 ret = -ENOTCONN; 5124 goto out; 5125 } 5126 5127 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 5128 if (!bargs) { 5129 ret = -ENOMEM; 5130 goto out; 5131 } 5132 5133 btrfs_update_ioctl_balance_args(fs_info, bargs); 5134 5135 if (copy_to_user(arg, bargs, sizeof(*bargs))) 5136 ret = -EFAULT; 5137 5138 kfree(bargs); 5139 out: 5140 mutex_unlock(&fs_info->balance_mutex); 5141 return ret; 5142 } 5143 5144 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 5145 { 5146 struct inode *inode = file_inode(file); 5147 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5148 struct btrfs_ioctl_quota_ctl_args *sa; 5149 int ret; 5150 5151 if (!capable(CAP_SYS_ADMIN)) 5152 return -EPERM; 5153 5154 ret = mnt_want_write_file(file); 5155 if (ret) 5156 return ret; 5157 5158 sa = memdup_user(arg, sizeof(*sa)); 5159 if (IS_ERR(sa)) { 5160 ret = PTR_ERR(sa); 5161 goto drop_write; 5162 } 5163 5164 down_write(&fs_info->subvol_sem); 5165 5166 switch (sa->cmd) { 5167 case BTRFS_QUOTA_CTL_ENABLE: 5168 ret = btrfs_quota_enable(fs_info); 5169 break; 5170 case BTRFS_QUOTA_CTL_DISABLE: 5171 ret = btrfs_quota_disable(fs_info); 5172 break; 5173 default: 5174 ret = -EINVAL; 5175 break; 5176 } 5177 5178 kfree(sa); 5179 up_write(&fs_info->subvol_sem); 5180 drop_write: 5181 mnt_drop_write_file(file); 5182 return ret; 5183 } 5184 5185 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 5186 { 5187 struct inode *inode = file_inode(file); 5188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5189 struct btrfs_root *root = BTRFS_I(inode)->root; 5190 struct btrfs_ioctl_qgroup_assign_args *sa; 5191 struct btrfs_trans_handle *trans; 5192 int ret; 5193 int err; 5194 5195 if (!capable(CAP_SYS_ADMIN)) 5196 return -EPERM; 5197 5198 ret = mnt_want_write_file(file); 5199 if (ret) 5200 return ret; 5201 5202 sa = memdup_user(arg, sizeof(*sa)); 5203 if (IS_ERR(sa)) { 5204 ret = PTR_ERR(sa); 5205 goto drop_write; 5206 } 5207 5208 trans = btrfs_join_transaction(root); 5209 if (IS_ERR(trans)) { 5210 ret = PTR_ERR(trans); 5211 goto out; 5212 } 5213 5214 if (sa->assign) { 5215 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 5216 } else { 5217 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 5218 } 5219 5220 /* update qgroup status and info */ 5221 err = btrfs_run_qgroups(trans); 5222 if (err < 0) 5223 btrfs_handle_fs_error(fs_info, err, 5224 "failed to update qgroup status and info"); 5225 err = btrfs_end_transaction(trans); 5226 if (err && !ret) 5227 ret = err; 5228 5229 out: 5230 kfree(sa); 5231 drop_write: 5232 mnt_drop_write_file(file); 5233 return ret; 5234 } 5235 5236 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 5237 { 5238 struct inode *inode = file_inode(file); 5239 struct btrfs_root *root = BTRFS_I(inode)->root; 5240 struct btrfs_ioctl_qgroup_create_args *sa; 5241 struct btrfs_trans_handle *trans; 5242 int ret; 5243 int err; 5244 5245 if (!capable(CAP_SYS_ADMIN)) 5246 return -EPERM; 5247 5248 ret = mnt_want_write_file(file); 5249 if (ret) 5250 return ret; 5251 5252 sa = memdup_user(arg, sizeof(*sa)); 5253 if (IS_ERR(sa)) { 5254 ret = PTR_ERR(sa); 5255 goto drop_write; 5256 } 5257 5258 if (!sa->qgroupid) { 5259 ret = -EINVAL; 5260 goto out; 5261 } 5262 5263 trans = btrfs_join_transaction(root); 5264 if (IS_ERR(trans)) { 5265 ret = PTR_ERR(trans); 5266 goto out; 5267 } 5268 5269 if (sa->create) { 5270 ret = btrfs_create_qgroup(trans, sa->qgroupid); 5271 } else { 5272 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 5273 } 5274 5275 err = btrfs_end_transaction(trans); 5276 if (err && !ret) 5277 ret = err; 5278 5279 out: 5280 kfree(sa); 5281 drop_write: 5282 mnt_drop_write_file(file); 5283 return ret; 5284 } 5285 5286 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 5287 { 5288 struct inode *inode = file_inode(file); 5289 struct btrfs_root *root = BTRFS_I(inode)->root; 5290 struct btrfs_ioctl_qgroup_limit_args *sa; 5291 struct btrfs_trans_handle *trans; 5292 int ret; 5293 int err; 5294 u64 qgroupid; 5295 5296 if (!capable(CAP_SYS_ADMIN)) 5297 return -EPERM; 5298 5299 ret = mnt_want_write_file(file); 5300 if (ret) 5301 return ret; 5302 5303 sa = memdup_user(arg, sizeof(*sa)); 5304 if (IS_ERR(sa)) { 5305 ret = PTR_ERR(sa); 5306 goto drop_write; 5307 } 5308 5309 trans = btrfs_join_transaction(root); 5310 if (IS_ERR(trans)) { 5311 ret = PTR_ERR(trans); 5312 goto out; 5313 } 5314 5315 qgroupid = sa->qgroupid; 5316 if (!qgroupid) { 5317 /* take the current subvol as qgroup */ 5318 qgroupid = root->root_key.objectid; 5319 } 5320 5321 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 5322 5323 err = btrfs_end_transaction(trans); 5324 if (err && !ret) 5325 ret = err; 5326 5327 out: 5328 kfree(sa); 5329 drop_write: 5330 mnt_drop_write_file(file); 5331 return ret; 5332 } 5333 5334 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 5335 { 5336 struct inode *inode = file_inode(file); 5337 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5338 struct btrfs_ioctl_quota_rescan_args *qsa; 5339 int ret; 5340 5341 if (!capable(CAP_SYS_ADMIN)) 5342 return -EPERM; 5343 5344 ret = mnt_want_write_file(file); 5345 if (ret) 5346 return ret; 5347 5348 qsa = memdup_user(arg, sizeof(*qsa)); 5349 if (IS_ERR(qsa)) { 5350 ret = PTR_ERR(qsa); 5351 goto drop_write; 5352 } 5353 5354 if (qsa->flags) { 5355 ret = -EINVAL; 5356 goto out; 5357 } 5358 5359 ret = btrfs_qgroup_rescan(fs_info); 5360 5361 out: 5362 kfree(qsa); 5363 drop_write: 5364 mnt_drop_write_file(file); 5365 return ret; 5366 } 5367 5368 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 5369 { 5370 struct inode *inode = file_inode(file); 5371 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5372 struct btrfs_ioctl_quota_rescan_args *qsa; 5373 int ret = 0; 5374 5375 if (!capable(CAP_SYS_ADMIN)) 5376 return -EPERM; 5377 5378 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 5379 if (!qsa) 5380 return -ENOMEM; 5381 5382 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 5383 qsa->flags = 1; 5384 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 5385 } 5386 5387 if (copy_to_user(arg, qsa, sizeof(*qsa))) 5388 ret = -EFAULT; 5389 5390 kfree(qsa); 5391 return ret; 5392 } 5393 5394 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 5395 { 5396 struct inode *inode = file_inode(file); 5397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5398 5399 if (!capable(CAP_SYS_ADMIN)) 5400 return -EPERM; 5401 5402 return btrfs_qgroup_wait_for_completion(fs_info, true); 5403 } 5404 5405 static long _btrfs_ioctl_set_received_subvol(struct file *file, 5406 struct btrfs_ioctl_received_subvol_args *sa) 5407 { 5408 struct inode *inode = file_inode(file); 5409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5410 struct btrfs_root *root = BTRFS_I(inode)->root; 5411 struct btrfs_root_item *root_item = &root->root_item; 5412 struct btrfs_trans_handle *trans; 5413 struct timespec64 ct = current_time(inode); 5414 int ret = 0; 5415 int received_uuid_changed; 5416 5417 if (!inode_owner_or_capable(inode)) 5418 return -EPERM; 5419 5420 ret = mnt_want_write_file(file); 5421 if (ret < 0) 5422 return ret; 5423 5424 down_write(&fs_info->subvol_sem); 5425 5426 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 5427 ret = -EINVAL; 5428 goto out; 5429 } 5430 5431 if (btrfs_root_readonly(root)) { 5432 ret = -EROFS; 5433 goto out; 5434 } 5435 5436 /* 5437 * 1 - root item 5438 * 2 - uuid items (received uuid + subvol uuid) 5439 */ 5440 trans = btrfs_start_transaction(root, 3); 5441 if (IS_ERR(trans)) { 5442 ret = PTR_ERR(trans); 5443 trans = NULL; 5444 goto out; 5445 } 5446 5447 sa->rtransid = trans->transid; 5448 sa->rtime.sec = ct.tv_sec; 5449 sa->rtime.nsec = ct.tv_nsec; 5450 5451 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 5452 BTRFS_UUID_SIZE); 5453 if (received_uuid_changed && 5454 !btrfs_is_empty_uuid(root_item->received_uuid)) { 5455 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 5456 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5457 root->root_key.objectid); 5458 if (ret && ret != -ENOENT) { 5459 btrfs_abort_transaction(trans, ret); 5460 btrfs_end_transaction(trans); 5461 goto out; 5462 } 5463 } 5464 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 5465 btrfs_set_root_stransid(root_item, sa->stransid); 5466 btrfs_set_root_rtransid(root_item, sa->rtransid); 5467 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 5468 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 5469 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 5470 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 5471 5472 ret = btrfs_update_root(trans, fs_info->tree_root, 5473 &root->root_key, &root->root_item); 5474 if (ret < 0) { 5475 btrfs_end_transaction(trans); 5476 goto out; 5477 } 5478 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 5479 ret = btrfs_uuid_tree_add(trans, sa->uuid, 5480 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 5481 root->root_key.objectid); 5482 if (ret < 0 && ret != -EEXIST) { 5483 btrfs_abort_transaction(trans, ret); 5484 btrfs_end_transaction(trans); 5485 goto out; 5486 } 5487 } 5488 ret = btrfs_commit_transaction(trans); 5489 out: 5490 up_write(&fs_info->subvol_sem); 5491 mnt_drop_write_file(file); 5492 return ret; 5493 } 5494 5495 #ifdef CONFIG_64BIT 5496 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 5497 void __user *arg) 5498 { 5499 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 5500 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 5501 int ret = 0; 5502 5503 args32 = memdup_user(arg, sizeof(*args32)); 5504 if (IS_ERR(args32)) 5505 return PTR_ERR(args32); 5506 5507 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 5508 if (!args64) { 5509 ret = -ENOMEM; 5510 goto out; 5511 } 5512 5513 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 5514 args64->stransid = args32->stransid; 5515 args64->rtransid = args32->rtransid; 5516 args64->stime.sec = args32->stime.sec; 5517 args64->stime.nsec = args32->stime.nsec; 5518 args64->rtime.sec = args32->rtime.sec; 5519 args64->rtime.nsec = args32->rtime.nsec; 5520 args64->flags = args32->flags; 5521 5522 ret = _btrfs_ioctl_set_received_subvol(file, args64); 5523 if (ret) 5524 goto out; 5525 5526 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 5527 args32->stransid = args64->stransid; 5528 args32->rtransid = args64->rtransid; 5529 args32->stime.sec = args64->stime.sec; 5530 args32->stime.nsec = args64->stime.nsec; 5531 args32->rtime.sec = args64->rtime.sec; 5532 args32->rtime.nsec = args64->rtime.nsec; 5533 args32->flags = args64->flags; 5534 5535 ret = copy_to_user(arg, args32, sizeof(*args32)); 5536 if (ret) 5537 ret = -EFAULT; 5538 5539 out: 5540 kfree(args32); 5541 kfree(args64); 5542 return ret; 5543 } 5544 #endif 5545 5546 static long btrfs_ioctl_set_received_subvol(struct file *file, 5547 void __user *arg) 5548 { 5549 struct btrfs_ioctl_received_subvol_args *sa = NULL; 5550 int ret = 0; 5551 5552 sa = memdup_user(arg, sizeof(*sa)); 5553 if (IS_ERR(sa)) 5554 return PTR_ERR(sa); 5555 5556 ret = _btrfs_ioctl_set_received_subvol(file, sa); 5557 5558 if (ret) 5559 goto out; 5560 5561 ret = copy_to_user(arg, sa, sizeof(*sa)); 5562 if (ret) 5563 ret = -EFAULT; 5564 5565 out: 5566 kfree(sa); 5567 return ret; 5568 } 5569 5570 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 5571 { 5572 struct inode *inode = file_inode(file); 5573 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5574 size_t len; 5575 int ret; 5576 char label[BTRFS_LABEL_SIZE]; 5577 5578 spin_lock(&fs_info->super_lock); 5579 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 5580 spin_unlock(&fs_info->super_lock); 5581 5582 len = strnlen(label, BTRFS_LABEL_SIZE); 5583 5584 if (len == BTRFS_LABEL_SIZE) { 5585 btrfs_warn(fs_info, 5586 "label is too long, return the first %zu bytes", 5587 --len); 5588 } 5589 5590 ret = copy_to_user(arg, label, len); 5591 5592 return ret ? -EFAULT : 0; 5593 } 5594 5595 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5596 { 5597 struct inode *inode = file_inode(file); 5598 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5599 struct btrfs_root *root = BTRFS_I(inode)->root; 5600 struct btrfs_super_block *super_block = fs_info->super_copy; 5601 struct btrfs_trans_handle *trans; 5602 char label[BTRFS_LABEL_SIZE]; 5603 int ret; 5604 5605 if (!capable(CAP_SYS_ADMIN)) 5606 return -EPERM; 5607 5608 if (copy_from_user(label, arg, sizeof(label))) 5609 return -EFAULT; 5610 5611 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5612 btrfs_err(fs_info, 5613 "unable to set label with more than %d bytes", 5614 BTRFS_LABEL_SIZE - 1); 5615 return -EINVAL; 5616 } 5617 5618 ret = mnt_want_write_file(file); 5619 if (ret) 5620 return ret; 5621 5622 trans = btrfs_start_transaction(root, 0); 5623 if (IS_ERR(trans)) { 5624 ret = PTR_ERR(trans); 5625 goto out_unlock; 5626 } 5627 5628 spin_lock(&fs_info->super_lock); 5629 strcpy(super_block->label, label); 5630 spin_unlock(&fs_info->super_lock); 5631 ret = btrfs_commit_transaction(trans); 5632 5633 out_unlock: 5634 mnt_drop_write_file(file); 5635 return ret; 5636 } 5637 5638 #define INIT_FEATURE_FLAGS(suffix) \ 5639 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5640 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5641 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5642 5643 int btrfs_ioctl_get_supported_features(void __user *arg) 5644 { 5645 static const struct btrfs_ioctl_feature_flags features[3] = { 5646 INIT_FEATURE_FLAGS(SUPP), 5647 INIT_FEATURE_FLAGS(SAFE_SET), 5648 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5649 }; 5650 5651 if (copy_to_user(arg, &features, sizeof(features))) 5652 return -EFAULT; 5653 5654 return 0; 5655 } 5656 5657 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5658 { 5659 struct inode *inode = file_inode(file); 5660 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5661 struct btrfs_super_block *super_block = fs_info->super_copy; 5662 struct btrfs_ioctl_feature_flags features; 5663 5664 features.compat_flags = btrfs_super_compat_flags(super_block); 5665 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5666 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5667 5668 if (copy_to_user(arg, &features, sizeof(features))) 5669 return -EFAULT; 5670 5671 return 0; 5672 } 5673 5674 static int check_feature_bits(struct btrfs_fs_info *fs_info, 5675 enum btrfs_feature_set set, 5676 u64 change_mask, u64 flags, u64 supported_flags, 5677 u64 safe_set, u64 safe_clear) 5678 { 5679 const char *type = btrfs_feature_set_names[set]; 5680 char *names; 5681 u64 disallowed, unsupported; 5682 u64 set_mask = flags & change_mask; 5683 u64 clear_mask = ~flags & change_mask; 5684 5685 unsupported = set_mask & ~supported_flags; 5686 if (unsupported) { 5687 names = btrfs_printable_features(set, unsupported); 5688 if (names) { 5689 btrfs_warn(fs_info, 5690 "this kernel does not support the %s feature bit%s", 5691 names, strchr(names, ',') ? "s" : ""); 5692 kfree(names); 5693 } else 5694 btrfs_warn(fs_info, 5695 "this kernel does not support %s bits 0x%llx", 5696 type, unsupported); 5697 return -EOPNOTSUPP; 5698 } 5699 5700 disallowed = set_mask & ~safe_set; 5701 if (disallowed) { 5702 names = btrfs_printable_features(set, disallowed); 5703 if (names) { 5704 btrfs_warn(fs_info, 5705 "can't set the %s feature bit%s while mounted", 5706 names, strchr(names, ',') ? "s" : ""); 5707 kfree(names); 5708 } else 5709 btrfs_warn(fs_info, 5710 "can't set %s bits 0x%llx while mounted", 5711 type, disallowed); 5712 return -EPERM; 5713 } 5714 5715 disallowed = clear_mask & ~safe_clear; 5716 if (disallowed) { 5717 names = btrfs_printable_features(set, disallowed); 5718 if (names) { 5719 btrfs_warn(fs_info, 5720 "can't clear the %s feature bit%s while mounted", 5721 names, strchr(names, ',') ? "s" : ""); 5722 kfree(names); 5723 } else 5724 btrfs_warn(fs_info, 5725 "can't clear %s bits 0x%llx while mounted", 5726 type, disallowed); 5727 return -EPERM; 5728 } 5729 5730 return 0; 5731 } 5732 5733 #define check_feature(fs_info, change_mask, flags, mask_base) \ 5734 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 5735 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5736 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5737 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5738 5739 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5740 { 5741 struct inode *inode = file_inode(file); 5742 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5743 struct btrfs_root *root = BTRFS_I(inode)->root; 5744 struct btrfs_super_block *super_block = fs_info->super_copy; 5745 struct btrfs_ioctl_feature_flags flags[2]; 5746 struct btrfs_trans_handle *trans; 5747 u64 newflags; 5748 int ret; 5749 5750 if (!capable(CAP_SYS_ADMIN)) 5751 return -EPERM; 5752 5753 if (copy_from_user(flags, arg, sizeof(flags))) 5754 return -EFAULT; 5755 5756 /* Nothing to do */ 5757 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5758 !flags[0].incompat_flags) 5759 return 0; 5760 5761 ret = check_feature(fs_info, flags[0].compat_flags, 5762 flags[1].compat_flags, COMPAT); 5763 if (ret) 5764 return ret; 5765 5766 ret = check_feature(fs_info, flags[0].compat_ro_flags, 5767 flags[1].compat_ro_flags, COMPAT_RO); 5768 if (ret) 5769 return ret; 5770 5771 ret = check_feature(fs_info, flags[0].incompat_flags, 5772 flags[1].incompat_flags, INCOMPAT); 5773 if (ret) 5774 return ret; 5775 5776 ret = mnt_want_write_file(file); 5777 if (ret) 5778 return ret; 5779 5780 trans = btrfs_start_transaction(root, 0); 5781 if (IS_ERR(trans)) { 5782 ret = PTR_ERR(trans); 5783 goto out_drop_write; 5784 } 5785 5786 spin_lock(&fs_info->super_lock); 5787 newflags = btrfs_super_compat_flags(super_block); 5788 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5789 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5790 btrfs_set_super_compat_flags(super_block, newflags); 5791 5792 newflags = btrfs_super_compat_ro_flags(super_block); 5793 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5794 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5795 btrfs_set_super_compat_ro_flags(super_block, newflags); 5796 5797 newflags = btrfs_super_incompat_flags(super_block); 5798 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5799 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5800 btrfs_set_super_incompat_flags(super_block, newflags); 5801 spin_unlock(&fs_info->super_lock); 5802 5803 ret = btrfs_commit_transaction(trans); 5804 out_drop_write: 5805 mnt_drop_write_file(file); 5806 5807 return ret; 5808 } 5809 5810 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 5811 { 5812 struct btrfs_ioctl_send_args *arg; 5813 int ret; 5814 5815 if (compat) { 5816 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5817 struct btrfs_ioctl_send_args_32 args32; 5818 5819 ret = copy_from_user(&args32, argp, sizeof(args32)); 5820 if (ret) 5821 return -EFAULT; 5822 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 5823 if (!arg) 5824 return -ENOMEM; 5825 arg->send_fd = args32.send_fd; 5826 arg->clone_sources_count = args32.clone_sources_count; 5827 arg->clone_sources = compat_ptr(args32.clone_sources); 5828 arg->parent_root = args32.parent_root; 5829 arg->flags = args32.flags; 5830 memcpy(arg->reserved, args32.reserved, 5831 sizeof(args32.reserved)); 5832 #else 5833 return -ENOTTY; 5834 #endif 5835 } else { 5836 arg = memdup_user(argp, sizeof(*arg)); 5837 if (IS_ERR(arg)) 5838 return PTR_ERR(arg); 5839 } 5840 ret = btrfs_ioctl_send(file, arg); 5841 kfree(arg); 5842 return ret; 5843 } 5844 5845 long btrfs_ioctl(struct file *file, unsigned int 5846 cmd, unsigned long arg) 5847 { 5848 struct inode *inode = file_inode(file); 5849 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5850 struct btrfs_root *root = BTRFS_I(inode)->root; 5851 void __user *argp = (void __user *)arg; 5852 5853 switch (cmd) { 5854 case FS_IOC_GETFLAGS: 5855 return btrfs_ioctl_getflags(file, argp); 5856 case FS_IOC_SETFLAGS: 5857 return btrfs_ioctl_setflags(file, argp); 5858 case FS_IOC_GETVERSION: 5859 return btrfs_ioctl_getversion(file, argp); 5860 case FITRIM: 5861 return btrfs_ioctl_fitrim(file, argp); 5862 case BTRFS_IOC_SNAP_CREATE: 5863 return btrfs_ioctl_snap_create(file, argp, 0); 5864 case BTRFS_IOC_SNAP_CREATE_V2: 5865 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5866 case BTRFS_IOC_SUBVOL_CREATE: 5867 return btrfs_ioctl_snap_create(file, argp, 1); 5868 case BTRFS_IOC_SUBVOL_CREATE_V2: 5869 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5870 case BTRFS_IOC_SNAP_DESTROY: 5871 return btrfs_ioctl_snap_destroy(file, argp); 5872 case BTRFS_IOC_SUBVOL_GETFLAGS: 5873 return btrfs_ioctl_subvol_getflags(file, argp); 5874 case BTRFS_IOC_SUBVOL_SETFLAGS: 5875 return btrfs_ioctl_subvol_setflags(file, argp); 5876 case BTRFS_IOC_DEFAULT_SUBVOL: 5877 return btrfs_ioctl_default_subvol(file, argp); 5878 case BTRFS_IOC_DEFRAG: 5879 return btrfs_ioctl_defrag(file, NULL); 5880 case BTRFS_IOC_DEFRAG_RANGE: 5881 return btrfs_ioctl_defrag(file, argp); 5882 case BTRFS_IOC_RESIZE: 5883 return btrfs_ioctl_resize(file, argp); 5884 case BTRFS_IOC_ADD_DEV: 5885 return btrfs_ioctl_add_dev(fs_info, argp); 5886 case BTRFS_IOC_RM_DEV: 5887 return btrfs_ioctl_rm_dev(file, argp); 5888 case BTRFS_IOC_RM_DEV_V2: 5889 return btrfs_ioctl_rm_dev_v2(file, argp); 5890 case BTRFS_IOC_FS_INFO: 5891 return btrfs_ioctl_fs_info(fs_info, argp); 5892 case BTRFS_IOC_DEV_INFO: 5893 return btrfs_ioctl_dev_info(fs_info, argp); 5894 case BTRFS_IOC_BALANCE: 5895 return btrfs_ioctl_balance(file, NULL); 5896 case BTRFS_IOC_TREE_SEARCH: 5897 return btrfs_ioctl_tree_search(file, argp); 5898 case BTRFS_IOC_TREE_SEARCH_V2: 5899 return btrfs_ioctl_tree_search_v2(file, argp); 5900 case BTRFS_IOC_INO_LOOKUP: 5901 return btrfs_ioctl_ino_lookup(file, argp); 5902 case BTRFS_IOC_INO_PATHS: 5903 return btrfs_ioctl_ino_to_path(root, argp); 5904 case BTRFS_IOC_LOGICAL_INO: 5905 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 5906 case BTRFS_IOC_LOGICAL_INO_V2: 5907 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 5908 case BTRFS_IOC_SPACE_INFO: 5909 return btrfs_ioctl_space_info(fs_info, argp); 5910 case BTRFS_IOC_SYNC: { 5911 int ret; 5912 5913 ret = btrfs_start_delalloc_roots(fs_info, -1); 5914 if (ret) 5915 return ret; 5916 ret = btrfs_sync_fs(inode->i_sb, 1); 5917 /* 5918 * The transaction thread may want to do more work, 5919 * namely it pokes the cleaner kthread that will start 5920 * processing uncleaned subvols. 5921 */ 5922 wake_up_process(fs_info->transaction_kthread); 5923 return ret; 5924 } 5925 case BTRFS_IOC_START_SYNC: 5926 return btrfs_ioctl_start_sync(root, argp); 5927 case BTRFS_IOC_WAIT_SYNC: 5928 return btrfs_ioctl_wait_sync(fs_info, argp); 5929 case BTRFS_IOC_SCRUB: 5930 return btrfs_ioctl_scrub(file, argp); 5931 case BTRFS_IOC_SCRUB_CANCEL: 5932 return btrfs_ioctl_scrub_cancel(fs_info); 5933 case BTRFS_IOC_SCRUB_PROGRESS: 5934 return btrfs_ioctl_scrub_progress(fs_info, argp); 5935 case BTRFS_IOC_BALANCE_V2: 5936 return btrfs_ioctl_balance(file, argp); 5937 case BTRFS_IOC_BALANCE_CTL: 5938 return btrfs_ioctl_balance_ctl(fs_info, arg); 5939 case BTRFS_IOC_BALANCE_PROGRESS: 5940 return btrfs_ioctl_balance_progress(fs_info, argp); 5941 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5942 return btrfs_ioctl_set_received_subvol(file, argp); 5943 #ifdef CONFIG_64BIT 5944 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5945 return btrfs_ioctl_set_received_subvol_32(file, argp); 5946 #endif 5947 case BTRFS_IOC_SEND: 5948 return _btrfs_ioctl_send(file, argp, false); 5949 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5950 case BTRFS_IOC_SEND_32: 5951 return _btrfs_ioctl_send(file, argp, true); 5952 #endif 5953 case BTRFS_IOC_GET_DEV_STATS: 5954 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5955 case BTRFS_IOC_QUOTA_CTL: 5956 return btrfs_ioctl_quota_ctl(file, argp); 5957 case BTRFS_IOC_QGROUP_ASSIGN: 5958 return btrfs_ioctl_qgroup_assign(file, argp); 5959 case BTRFS_IOC_QGROUP_CREATE: 5960 return btrfs_ioctl_qgroup_create(file, argp); 5961 case BTRFS_IOC_QGROUP_LIMIT: 5962 return btrfs_ioctl_qgroup_limit(file, argp); 5963 case BTRFS_IOC_QUOTA_RESCAN: 5964 return btrfs_ioctl_quota_rescan(file, argp); 5965 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5966 return btrfs_ioctl_quota_rescan_status(file, argp); 5967 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5968 return btrfs_ioctl_quota_rescan_wait(file, argp); 5969 case BTRFS_IOC_DEV_REPLACE: 5970 return btrfs_ioctl_dev_replace(fs_info, argp); 5971 case BTRFS_IOC_GET_FSLABEL: 5972 return btrfs_ioctl_get_fslabel(file, argp); 5973 case BTRFS_IOC_SET_FSLABEL: 5974 return btrfs_ioctl_set_fslabel(file, argp); 5975 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5976 return btrfs_ioctl_get_supported_features(argp); 5977 case BTRFS_IOC_GET_FEATURES: 5978 return btrfs_ioctl_get_features(file, argp); 5979 case BTRFS_IOC_SET_FEATURES: 5980 return btrfs_ioctl_set_features(file, argp); 5981 case FS_IOC_FSGETXATTR: 5982 return btrfs_ioctl_fsgetxattr(file, argp); 5983 case FS_IOC_FSSETXATTR: 5984 return btrfs_ioctl_fssetxattr(file, argp); 5985 case BTRFS_IOC_GET_SUBVOL_INFO: 5986 return btrfs_ioctl_get_subvol_info(file, argp); 5987 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5988 return btrfs_ioctl_get_subvol_rootref(file, argp); 5989 case BTRFS_IOC_INO_LOOKUP_USER: 5990 return btrfs_ioctl_ino_lookup_user(file, argp); 5991 } 5992 5993 return -ENOTTY; 5994 } 5995 5996 #ifdef CONFIG_COMPAT 5997 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5998 { 5999 /* 6000 * These all access 32-bit values anyway so no further 6001 * handling is necessary. 6002 */ 6003 switch (cmd) { 6004 case FS_IOC32_GETFLAGS: 6005 cmd = FS_IOC_GETFLAGS; 6006 break; 6007 case FS_IOC32_SETFLAGS: 6008 cmd = FS_IOC_SETFLAGS; 6009 break; 6010 case FS_IOC32_GETVERSION: 6011 cmd = FS_IOC_GETVERSION; 6012 break; 6013 } 6014 6015 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 6016 } 6017 #endif 6018