xref: /linux/fs/btrfs/ioctl.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 
63 #ifdef CONFIG_64BIT
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65  * structures are incorrect, as the timespec structure from userspace
66  * is 4 bytes too small. We define these alternatives here to teach
67  * the kernel about the 32-bit struct packing.
68  */
69 struct btrfs_ioctl_timespec_32 {
70 	__u64 sec;
71 	__u32 nsec;
72 } __attribute__ ((__packed__));
73 
74 struct btrfs_ioctl_received_subvol_args_32 {
75 	char	uuid[BTRFS_UUID_SIZE];	/* in */
76 	__u64	stransid;		/* in */
77 	__u64	rtransid;		/* out */
78 	struct btrfs_ioctl_timespec_32 stime; /* in */
79 	struct btrfs_ioctl_timespec_32 rtime; /* out */
80 	__u64	flags;			/* in */
81 	__u64	reserved[16];		/* in */
82 } __attribute__ ((__packed__));
83 
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 				struct btrfs_ioctl_received_subvol_args_32)
86 #endif
87 
88 
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff);
91 
92 /* Mask out flags that are inappropriate for the given type of inode. */
93 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
94 {
95 	if (S_ISDIR(mode))
96 		return flags;
97 	else if (S_ISREG(mode))
98 		return flags & ~FS_DIRSYNC_FL;
99 	else
100 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
101 }
102 
103 /*
104  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
105  */
106 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
126 		iflags |= FS_COMPR_FL;
127 	else if (flags & BTRFS_INODE_NOCOMPRESS)
128 		iflags |= FS_NOCOMP_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
136 void btrfs_update_iflags(struct inode *inode)
137 {
138 	struct btrfs_inode *ip = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (ip->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (ip->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (ip->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (ip->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
157 /*
158  * Inherit flags from the parent inode.
159  *
160  * Currently only the compression flags and the cow flags are inherited.
161  */
162 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
163 {
164 	unsigned int flags;
165 
166 	if (!dir)
167 		return;
168 
169 	flags = BTRFS_I(dir)->flags;
170 
171 	if (flags & BTRFS_INODE_NOCOMPRESS) {
172 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
173 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
174 	} else if (flags & BTRFS_INODE_COMPRESS) {
175 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
176 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
177 	}
178 
179 	if (flags & BTRFS_INODE_NODATACOW) {
180 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
181 		if (S_ISREG(inode->i_mode))
182 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
183 	}
184 
185 	btrfs_update_iflags(inode);
186 }
187 
188 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
189 {
190 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
191 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
192 
193 	if (copy_to_user(arg, &flags, sizeof(flags)))
194 		return -EFAULT;
195 	return 0;
196 }
197 
198 static int check_flags(unsigned int flags)
199 {
200 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
201 		      FS_NOATIME_FL | FS_NODUMP_FL | \
202 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
203 		      FS_NOCOMP_FL | FS_COMPR_FL |
204 		      FS_NOCOW_FL))
205 		return -EOPNOTSUPP;
206 
207 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
208 		return -EINVAL;
209 
210 	return 0;
211 }
212 
213 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
214 {
215 	struct inode *inode = file_inode(file);
216 	struct btrfs_inode *ip = BTRFS_I(inode);
217 	struct btrfs_root *root = ip->root;
218 	struct btrfs_trans_handle *trans;
219 	unsigned int flags, oldflags;
220 	int ret;
221 	u64 ip_oldflags;
222 	unsigned int i_oldflags;
223 	umode_t mode;
224 
225 	if (!inode_owner_or_capable(inode))
226 		return -EPERM;
227 
228 	if (btrfs_root_readonly(root))
229 		return -EROFS;
230 
231 	if (copy_from_user(&flags, arg, sizeof(flags)))
232 		return -EFAULT;
233 
234 	ret = check_flags(flags);
235 	if (ret)
236 		return ret;
237 
238 	ret = mnt_want_write_file(file);
239 	if (ret)
240 		return ret;
241 
242 	mutex_lock(&inode->i_mutex);
243 
244 	ip_oldflags = ip->flags;
245 	i_oldflags = inode->i_flags;
246 	mode = inode->i_mode;
247 
248 	flags = btrfs_mask_flags(inode->i_mode, flags);
249 	oldflags = btrfs_flags_to_ioctl(ip->flags);
250 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
251 		if (!capable(CAP_LINUX_IMMUTABLE)) {
252 			ret = -EPERM;
253 			goto out_unlock;
254 		}
255 	}
256 
257 	if (flags & FS_SYNC_FL)
258 		ip->flags |= BTRFS_INODE_SYNC;
259 	else
260 		ip->flags &= ~BTRFS_INODE_SYNC;
261 	if (flags & FS_IMMUTABLE_FL)
262 		ip->flags |= BTRFS_INODE_IMMUTABLE;
263 	else
264 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
265 	if (flags & FS_APPEND_FL)
266 		ip->flags |= BTRFS_INODE_APPEND;
267 	else
268 		ip->flags &= ~BTRFS_INODE_APPEND;
269 	if (flags & FS_NODUMP_FL)
270 		ip->flags |= BTRFS_INODE_NODUMP;
271 	else
272 		ip->flags &= ~BTRFS_INODE_NODUMP;
273 	if (flags & FS_NOATIME_FL)
274 		ip->flags |= BTRFS_INODE_NOATIME;
275 	else
276 		ip->flags &= ~BTRFS_INODE_NOATIME;
277 	if (flags & FS_DIRSYNC_FL)
278 		ip->flags |= BTRFS_INODE_DIRSYNC;
279 	else
280 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
281 	if (flags & FS_NOCOW_FL) {
282 		if (S_ISREG(mode)) {
283 			/*
284 			 * It's safe to turn csums off here, no extents exist.
285 			 * Otherwise we want the flag to reflect the real COW
286 			 * status of the file and will not set it.
287 			 */
288 			if (inode->i_size == 0)
289 				ip->flags |= BTRFS_INODE_NODATACOW
290 					   | BTRFS_INODE_NODATASUM;
291 		} else {
292 			ip->flags |= BTRFS_INODE_NODATACOW;
293 		}
294 	} else {
295 		/*
296 		 * Revert back under same assuptions as above
297 		 */
298 		if (S_ISREG(mode)) {
299 			if (inode->i_size == 0)
300 				ip->flags &= ~(BTRFS_INODE_NODATACOW
301 				             | BTRFS_INODE_NODATASUM);
302 		} else {
303 			ip->flags &= ~BTRFS_INODE_NODATACOW;
304 		}
305 	}
306 
307 	/*
308 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
309 	 * flag may be changed automatically if compression code won't make
310 	 * things smaller.
311 	 */
312 	if (flags & FS_NOCOMP_FL) {
313 		ip->flags &= ~BTRFS_INODE_COMPRESS;
314 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
315 
316 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
317 		if (ret && ret != -ENODATA)
318 			goto out_drop;
319 	} else if (flags & FS_COMPR_FL) {
320 		const char *comp;
321 
322 		ip->flags |= BTRFS_INODE_COMPRESS;
323 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
324 
325 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
326 			comp = "lzo";
327 		else
328 			comp = "zlib";
329 		ret = btrfs_set_prop(inode, "btrfs.compression",
330 				     comp, strlen(comp), 0);
331 		if (ret)
332 			goto out_drop;
333 
334 	} else {
335 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
336 		if (ret && ret != -ENODATA)
337 			goto out_drop;
338 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
339 	}
340 
341 	trans = btrfs_start_transaction(root, 1);
342 	if (IS_ERR(trans)) {
343 		ret = PTR_ERR(trans);
344 		goto out_drop;
345 	}
346 
347 	btrfs_update_iflags(inode);
348 	inode_inc_iversion(inode);
349 	inode->i_ctime = CURRENT_TIME;
350 	ret = btrfs_update_inode(trans, root, inode);
351 
352 	btrfs_end_transaction(trans, root);
353  out_drop:
354 	if (ret) {
355 		ip->flags = ip_oldflags;
356 		inode->i_flags = i_oldflags;
357 	}
358 
359  out_unlock:
360 	mutex_unlock(&inode->i_mutex);
361 	mnt_drop_write_file(file);
362 	return ret;
363 }
364 
365 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
366 {
367 	struct inode *inode = file_inode(file);
368 
369 	return put_user(inode->i_generation, arg);
370 }
371 
372 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
373 {
374 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
375 	struct btrfs_device *device;
376 	struct request_queue *q;
377 	struct fstrim_range range;
378 	u64 minlen = ULLONG_MAX;
379 	u64 num_devices = 0;
380 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
381 	int ret;
382 
383 	if (!capable(CAP_SYS_ADMIN))
384 		return -EPERM;
385 
386 	rcu_read_lock();
387 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
388 				dev_list) {
389 		if (!device->bdev)
390 			continue;
391 		q = bdev_get_queue(device->bdev);
392 		if (blk_queue_discard(q)) {
393 			num_devices++;
394 			minlen = min((u64)q->limits.discard_granularity,
395 				     minlen);
396 		}
397 	}
398 	rcu_read_unlock();
399 
400 	if (!num_devices)
401 		return -EOPNOTSUPP;
402 	if (copy_from_user(&range, arg, sizeof(range)))
403 		return -EFAULT;
404 	if (range.start > total_bytes ||
405 	    range.len < fs_info->sb->s_blocksize)
406 		return -EINVAL;
407 
408 	range.len = min(range.len, total_bytes - range.start);
409 	range.minlen = max(range.minlen, minlen);
410 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
411 	if (ret < 0)
412 		return ret;
413 
414 	if (copy_to_user(arg, &range, sizeof(range)))
415 		return -EFAULT;
416 
417 	return 0;
418 }
419 
420 int btrfs_is_empty_uuid(u8 *uuid)
421 {
422 	int i;
423 
424 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
425 		if (uuid[i])
426 			return 0;
427 	}
428 	return 1;
429 }
430 
431 static noinline int create_subvol(struct inode *dir,
432 				  struct dentry *dentry,
433 				  char *name, int namelen,
434 				  u64 *async_transid,
435 				  struct btrfs_qgroup_inherit *inherit)
436 {
437 	struct btrfs_trans_handle *trans;
438 	struct btrfs_key key;
439 	struct btrfs_root_item root_item;
440 	struct btrfs_inode_item *inode_item;
441 	struct extent_buffer *leaf;
442 	struct btrfs_root *root = BTRFS_I(dir)->root;
443 	struct btrfs_root *new_root;
444 	struct btrfs_block_rsv block_rsv;
445 	struct timespec cur_time = CURRENT_TIME;
446 	struct inode *inode;
447 	int ret;
448 	int err;
449 	u64 objectid;
450 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
451 	u64 index = 0;
452 	u64 qgroup_reserved;
453 	uuid_le new_uuid;
454 
455 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
456 	if (ret)
457 		return ret;
458 
459 	/*
460 	 * Don't create subvolume whose level is not zero. Or qgroup will be
461 	 * screwed up since it assume subvolme qgroup's level to be 0.
462 	 */
463 	if (btrfs_qgroup_level(objectid))
464 		return -ENOSPC;
465 
466 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
467 	/*
468 	 * The same as the snapshot creation, please see the comment
469 	 * of create_snapshot().
470 	 */
471 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
472 					       8, &qgroup_reserved, false);
473 	if (ret)
474 		return ret;
475 
476 	trans = btrfs_start_transaction(root, 0);
477 	if (IS_ERR(trans)) {
478 		ret = PTR_ERR(trans);
479 		btrfs_subvolume_release_metadata(root, &block_rsv,
480 						 qgroup_reserved);
481 		return ret;
482 	}
483 	trans->block_rsv = &block_rsv;
484 	trans->bytes_reserved = block_rsv.size;
485 
486 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
487 	if (ret)
488 		goto fail;
489 
490 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
491 	if (IS_ERR(leaf)) {
492 		ret = PTR_ERR(leaf);
493 		goto fail;
494 	}
495 
496 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
497 	btrfs_set_header_bytenr(leaf, leaf->start);
498 	btrfs_set_header_generation(leaf, trans->transid);
499 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
500 	btrfs_set_header_owner(leaf, objectid);
501 
502 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
503 			    BTRFS_FSID_SIZE);
504 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
505 			    btrfs_header_chunk_tree_uuid(leaf),
506 			    BTRFS_UUID_SIZE);
507 	btrfs_mark_buffer_dirty(leaf);
508 
509 	memset(&root_item, 0, sizeof(root_item));
510 
511 	inode_item = &root_item.inode;
512 	btrfs_set_stack_inode_generation(inode_item, 1);
513 	btrfs_set_stack_inode_size(inode_item, 3);
514 	btrfs_set_stack_inode_nlink(inode_item, 1);
515 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
516 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
517 
518 	btrfs_set_root_flags(&root_item, 0);
519 	btrfs_set_root_limit(&root_item, 0);
520 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
521 
522 	btrfs_set_root_bytenr(&root_item, leaf->start);
523 	btrfs_set_root_generation(&root_item, trans->transid);
524 	btrfs_set_root_level(&root_item, 0);
525 	btrfs_set_root_refs(&root_item, 1);
526 	btrfs_set_root_used(&root_item, leaf->len);
527 	btrfs_set_root_last_snapshot(&root_item, 0);
528 
529 	btrfs_set_root_generation_v2(&root_item,
530 			btrfs_root_generation(&root_item));
531 	uuid_le_gen(&new_uuid);
532 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
533 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
534 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
535 	root_item.ctime = root_item.otime;
536 	btrfs_set_root_ctransid(&root_item, trans->transid);
537 	btrfs_set_root_otransid(&root_item, trans->transid);
538 
539 	btrfs_tree_unlock(leaf);
540 	free_extent_buffer(leaf);
541 	leaf = NULL;
542 
543 	btrfs_set_root_dirid(&root_item, new_dirid);
544 
545 	key.objectid = objectid;
546 	key.offset = 0;
547 	key.type = BTRFS_ROOT_ITEM_KEY;
548 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
549 				&root_item);
550 	if (ret)
551 		goto fail;
552 
553 	key.offset = (u64)-1;
554 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
555 	if (IS_ERR(new_root)) {
556 		ret = PTR_ERR(new_root);
557 		btrfs_abort_transaction(trans, root, ret);
558 		goto fail;
559 	}
560 
561 	btrfs_record_root_in_trans(trans, new_root);
562 
563 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
564 	if (ret) {
565 		/* We potentially lose an unused inode item here */
566 		btrfs_abort_transaction(trans, root, ret);
567 		goto fail;
568 	}
569 
570 	/*
571 	 * insert the directory item
572 	 */
573 	ret = btrfs_set_inode_index(dir, &index);
574 	if (ret) {
575 		btrfs_abort_transaction(trans, root, ret);
576 		goto fail;
577 	}
578 
579 	ret = btrfs_insert_dir_item(trans, root,
580 				    name, namelen, dir, &key,
581 				    BTRFS_FT_DIR, index);
582 	if (ret) {
583 		btrfs_abort_transaction(trans, root, ret);
584 		goto fail;
585 	}
586 
587 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
588 	ret = btrfs_update_inode(trans, root, dir);
589 	BUG_ON(ret);
590 
591 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
592 				 objectid, root->root_key.objectid,
593 				 btrfs_ino(dir), index, name, namelen);
594 	BUG_ON(ret);
595 
596 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
597 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
598 				  objectid);
599 	if (ret)
600 		btrfs_abort_transaction(trans, root, ret);
601 
602 fail:
603 	trans->block_rsv = NULL;
604 	trans->bytes_reserved = 0;
605 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
606 
607 	if (async_transid) {
608 		*async_transid = trans->transid;
609 		err = btrfs_commit_transaction_async(trans, root, 1);
610 		if (err)
611 			err = btrfs_commit_transaction(trans, root);
612 	} else {
613 		err = btrfs_commit_transaction(trans, root);
614 	}
615 	if (err && !ret)
616 		ret = err;
617 
618 	if (!ret) {
619 		inode = btrfs_lookup_dentry(dir, dentry);
620 		if (IS_ERR(inode))
621 			return PTR_ERR(inode);
622 		d_instantiate(dentry, inode);
623 	}
624 	return ret;
625 }
626 
627 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
628 {
629 	s64 writers;
630 	DEFINE_WAIT(wait);
631 
632 	do {
633 		prepare_to_wait(&root->subv_writers->wait, &wait,
634 				TASK_UNINTERRUPTIBLE);
635 
636 		writers = percpu_counter_sum(&root->subv_writers->counter);
637 		if (writers)
638 			schedule();
639 
640 		finish_wait(&root->subv_writers->wait, &wait);
641 	} while (writers);
642 }
643 
644 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
645 			   struct dentry *dentry, char *name, int namelen,
646 			   u64 *async_transid, bool readonly,
647 			   struct btrfs_qgroup_inherit *inherit)
648 {
649 	struct inode *inode;
650 	struct btrfs_pending_snapshot *pending_snapshot;
651 	struct btrfs_trans_handle *trans;
652 	int ret;
653 
654 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
655 		return -EINVAL;
656 
657 	atomic_inc(&root->will_be_snapshoted);
658 	smp_mb__after_atomic();
659 	btrfs_wait_for_no_snapshoting_writes(root);
660 
661 	ret = btrfs_start_delalloc_inodes(root, 0);
662 	if (ret)
663 		goto out;
664 
665 	btrfs_wait_ordered_extents(root, -1);
666 
667 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
668 	if (!pending_snapshot) {
669 		ret = -ENOMEM;
670 		goto out;
671 	}
672 
673 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
674 			     BTRFS_BLOCK_RSV_TEMP);
675 	/*
676 	 * 1 - parent dir inode
677 	 * 2 - dir entries
678 	 * 1 - root item
679 	 * 2 - root ref/backref
680 	 * 1 - root of snapshot
681 	 * 1 - UUID item
682 	 */
683 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
684 					&pending_snapshot->block_rsv, 8,
685 					&pending_snapshot->qgroup_reserved,
686 					false);
687 	if (ret)
688 		goto free;
689 
690 	pending_snapshot->dentry = dentry;
691 	pending_snapshot->root = root;
692 	pending_snapshot->readonly = readonly;
693 	pending_snapshot->dir = dir;
694 	pending_snapshot->inherit = inherit;
695 
696 	trans = btrfs_start_transaction(root, 0);
697 	if (IS_ERR(trans)) {
698 		ret = PTR_ERR(trans);
699 		goto fail;
700 	}
701 
702 	spin_lock(&root->fs_info->trans_lock);
703 	list_add(&pending_snapshot->list,
704 		 &trans->transaction->pending_snapshots);
705 	spin_unlock(&root->fs_info->trans_lock);
706 	if (async_transid) {
707 		*async_transid = trans->transid;
708 		ret = btrfs_commit_transaction_async(trans,
709 				     root->fs_info->extent_root, 1);
710 		if (ret)
711 			ret = btrfs_commit_transaction(trans, root);
712 	} else {
713 		ret = btrfs_commit_transaction(trans,
714 					       root->fs_info->extent_root);
715 	}
716 	if (ret)
717 		goto fail;
718 
719 	ret = pending_snapshot->error;
720 	if (ret)
721 		goto fail;
722 
723 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
724 	if (ret)
725 		goto fail;
726 
727 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
728 	if (IS_ERR(inode)) {
729 		ret = PTR_ERR(inode);
730 		goto fail;
731 	}
732 
733 	d_instantiate(dentry, inode);
734 	ret = 0;
735 fail:
736 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
737 					 &pending_snapshot->block_rsv,
738 					 pending_snapshot->qgroup_reserved);
739 free:
740 	kfree(pending_snapshot);
741 out:
742 	if (atomic_dec_and_test(&root->will_be_snapshoted))
743 		wake_up_atomic_t(&root->will_be_snapshoted);
744 	return ret;
745 }
746 
747 /*  copy of may_delete in fs/namei.c()
748  *	Check whether we can remove a link victim from directory dir, check
749  *  whether the type of victim is right.
750  *  1. We can't do it if dir is read-only (done in permission())
751  *  2. We should have write and exec permissions on dir
752  *  3. We can't remove anything from append-only dir
753  *  4. We can't do anything with immutable dir (done in permission())
754  *  5. If the sticky bit on dir is set we should either
755  *	a. be owner of dir, or
756  *	b. be owner of victim, or
757  *	c. have CAP_FOWNER capability
758  *  6. If the victim is append-only or immutable we can't do antyhing with
759  *     links pointing to it.
760  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
761  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
762  *  9. We can't remove a root or mountpoint.
763  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
764  *     nfs_async_unlink().
765  */
766 
767 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
768 {
769 	int error;
770 
771 	if (d_really_is_negative(victim))
772 		return -ENOENT;
773 
774 	BUG_ON(d_inode(victim->d_parent) != dir);
775 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
776 
777 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
778 	if (error)
779 		return error;
780 	if (IS_APPEND(dir))
781 		return -EPERM;
782 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
783 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
784 		return -EPERM;
785 	if (isdir) {
786 		if (!d_is_dir(victim))
787 			return -ENOTDIR;
788 		if (IS_ROOT(victim))
789 			return -EBUSY;
790 	} else if (d_is_dir(victim))
791 		return -EISDIR;
792 	if (IS_DEADDIR(dir))
793 		return -ENOENT;
794 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
795 		return -EBUSY;
796 	return 0;
797 }
798 
799 /* copy of may_create in fs/namei.c() */
800 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
801 {
802 	if (d_really_is_positive(child))
803 		return -EEXIST;
804 	if (IS_DEADDIR(dir))
805 		return -ENOENT;
806 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
807 }
808 
809 /*
810  * Create a new subvolume below @parent.  This is largely modeled after
811  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
812  * inside this filesystem so it's quite a bit simpler.
813  */
814 static noinline int btrfs_mksubvol(struct path *parent,
815 				   char *name, int namelen,
816 				   struct btrfs_root *snap_src,
817 				   u64 *async_transid, bool readonly,
818 				   struct btrfs_qgroup_inherit *inherit)
819 {
820 	struct inode *dir  = d_inode(parent->dentry);
821 	struct dentry *dentry;
822 	int error;
823 
824 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
825 	if (error == -EINTR)
826 		return error;
827 
828 	dentry = lookup_one_len(name, parent->dentry, namelen);
829 	error = PTR_ERR(dentry);
830 	if (IS_ERR(dentry))
831 		goto out_unlock;
832 
833 	error = -EEXIST;
834 	if (d_really_is_positive(dentry))
835 		goto out_dput;
836 
837 	error = btrfs_may_create(dir, dentry);
838 	if (error)
839 		goto out_dput;
840 
841 	/*
842 	 * even if this name doesn't exist, we may get hash collisions.
843 	 * check for them now when we can safely fail
844 	 */
845 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
846 					       dir->i_ino, name,
847 					       namelen);
848 	if (error)
849 		goto out_dput;
850 
851 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
852 
853 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
854 		goto out_up_read;
855 
856 	if (snap_src) {
857 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
858 					async_transid, readonly, inherit);
859 	} else {
860 		error = create_subvol(dir, dentry, name, namelen,
861 				      async_transid, inherit);
862 	}
863 	if (!error)
864 		fsnotify_mkdir(dir, dentry);
865 out_up_read:
866 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
867 out_dput:
868 	dput(dentry);
869 out_unlock:
870 	mutex_unlock(&dir->i_mutex);
871 	return error;
872 }
873 
874 /*
875  * When we're defragging a range, we don't want to kick it off again
876  * if it is really just waiting for delalloc to send it down.
877  * If we find a nice big extent or delalloc range for the bytes in the
878  * file you want to defrag, we return 0 to let you know to skip this
879  * part of the file
880  */
881 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
882 {
883 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
884 	struct extent_map *em = NULL;
885 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
886 	u64 end;
887 
888 	read_lock(&em_tree->lock);
889 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
890 	read_unlock(&em_tree->lock);
891 
892 	if (em) {
893 		end = extent_map_end(em);
894 		free_extent_map(em);
895 		if (end - offset > thresh)
896 			return 0;
897 	}
898 	/* if we already have a nice delalloc here, just stop */
899 	thresh /= 2;
900 	end = count_range_bits(io_tree, &offset, offset + thresh,
901 			       thresh, EXTENT_DELALLOC, 1);
902 	if (end >= thresh)
903 		return 0;
904 	return 1;
905 }
906 
907 /*
908  * helper function to walk through a file and find extents
909  * newer than a specific transid, and smaller than thresh.
910  *
911  * This is used by the defragging code to find new and small
912  * extents
913  */
914 static int find_new_extents(struct btrfs_root *root,
915 			    struct inode *inode, u64 newer_than,
916 			    u64 *off, u32 thresh)
917 {
918 	struct btrfs_path *path;
919 	struct btrfs_key min_key;
920 	struct extent_buffer *leaf;
921 	struct btrfs_file_extent_item *extent;
922 	int type;
923 	int ret;
924 	u64 ino = btrfs_ino(inode);
925 
926 	path = btrfs_alloc_path();
927 	if (!path)
928 		return -ENOMEM;
929 
930 	min_key.objectid = ino;
931 	min_key.type = BTRFS_EXTENT_DATA_KEY;
932 	min_key.offset = *off;
933 
934 	while (1) {
935 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
936 		if (ret != 0)
937 			goto none;
938 process_slot:
939 		if (min_key.objectid != ino)
940 			goto none;
941 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
942 			goto none;
943 
944 		leaf = path->nodes[0];
945 		extent = btrfs_item_ptr(leaf, path->slots[0],
946 					struct btrfs_file_extent_item);
947 
948 		type = btrfs_file_extent_type(leaf, extent);
949 		if (type == BTRFS_FILE_EXTENT_REG &&
950 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
951 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
952 			*off = min_key.offset;
953 			btrfs_free_path(path);
954 			return 0;
955 		}
956 
957 		path->slots[0]++;
958 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
959 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
960 			goto process_slot;
961 		}
962 
963 		if (min_key.offset == (u64)-1)
964 			goto none;
965 
966 		min_key.offset++;
967 		btrfs_release_path(path);
968 	}
969 none:
970 	btrfs_free_path(path);
971 	return -ENOENT;
972 }
973 
974 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
975 {
976 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
977 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
978 	struct extent_map *em;
979 	u64 len = PAGE_CACHE_SIZE;
980 
981 	/*
982 	 * hopefully we have this extent in the tree already, try without
983 	 * the full extent lock
984 	 */
985 	read_lock(&em_tree->lock);
986 	em = lookup_extent_mapping(em_tree, start, len);
987 	read_unlock(&em_tree->lock);
988 
989 	if (!em) {
990 		struct extent_state *cached = NULL;
991 		u64 end = start + len - 1;
992 
993 		/* get the big lock and read metadata off disk */
994 		lock_extent_bits(io_tree, start, end, 0, &cached);
995 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
996 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
997 
998 		if (IS_ERR(em))
999 			return NULL;
1000 	}
1001 
1002 	return em;
1003 }
1004 
1005 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1006 {
1007 	struct extent_map *next;
1008 	bool ret = true;
1009 
1010 	/* this is the last extent */
1011 	if (em->start + em->len >= i_size_read(inode))
1012 		return false;
1013 
1014 	next = defrag_lookup_extent(inode, em->start + em->len);
1015 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1016 		ret = false;
1017 	else if ((em->block_start + em->block_len == next->block_start) &&
1018 		 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024))
1019 		ret = false;
1020 
1021 	free_extent_map(next);
1022 	return ret;
1023 }
1024 
1025 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1026 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1027 			       int compress)
1028 {
1029 	struct extent_map *em;
1030 	int ret = 1;
1031 	bool next_mergeable = true;
1032 
1033 	/*
1034 	 * make sure that once we start defragging an extent, we keep on
1035 	 * defragging it
1036 	 */
1037 	if (start < *defrag_end)
1038 		return 1;
1039 
1040 	*skip = 0;
1041 
1042 	em = defrag_lookup_extent(inode, start);
1043 	if (!em)
1044 		return 0;
1045 
1046 	/* this will cover holes, and inline extents */
1047 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1048 		ret = 0;
1049 		goto out;
1050 	}
1051 
1052 	next_mergeable = defrag_check_next_extent(inode, em);
1053 	/*
1054 	 * we hit a real extent, if it is big or the next extent is not a
1055 	 * real extent, don't bother defragging it
1056 	 */
1057 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1058 	    (em->len >= thresh || !next_mergeable))
1059 		ret = 0;
1060 out:
1061 	/*
1062 	 * last_len ends up being a counter of how many bytes we've defragged.
1063 	 * every time we choose not to defrag an extent, we reset *last_len
1064 	 * so that the next tiny extent will force a defrag.
1065 	 *
1066 	 * The end result of this is that tiny extents before a single big
1067 	 * extent will force at least part of that big extent to be defragged.
1068 	 */
1069 	if (ret) {
1070 		*defrag_end = extent_map_end(em);
1071 	} else {
1072 		*last_len = 0;
1073 		*skip = extent_map_end(em);
1074 		*defrag_end = 0;
1075 	}
1076 
1077 	free_extent_map(em);
1078 	return ret;
1079 }
1080 
1081 /*
1082  * it doesn't do much good to defrag one or two pages
1083  * at a time.  This pulls in a nice chunk of pages
1084  * to COW and defrag.
1085  *
1086  * It also makes sure the delalloc code has enough
1087  * dirty data to avoid making new small extents as part
1088  * of the defrag
1089  *
1090  * It's a good idea to start RA on this range
1091  * before calling this.
1092  */
1093 static int cluster_pages_for_defrag(struct inode *inode,
1094 				    struct page **pages,
1095 				    unsigned long start_index,
1096 				    unsigned long num_pages)
1097 {
1098 	unsigned long file_end;
1099 	u64 isize = i_size_read(inode);
1100 	u64 page_start;
1101 	u64 page_end;
1102 	u64 page_cnt;
1103 	int ret;
1104 	int i;
1105 	int i_done;
1106 	struct btrfs_ordered_extent *ordered;
1107 	struct extent_state *cached_state = NULL;
1108 	struct extent_io_tree *tree;
1109 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1110 
1111 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1112 	if (!isize || start_index > file_end)
1113 		return 0;
1114 
1115 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1116 
1117 	ret = btrfs_delalloc_reserve_space(inode,
1118 					   page_cnt << PAGE_CACHE_SHIFT);
1119 	if (ret)
1120 		return ret;
1121 	i_done = 0;
1122 	tree = &BTRFS_I(inode)->io_tree;
1123 
1124 	/* step one, lock all the pages */
1125 	for (i = 0; i < page_cnt; i++) {
1126 		struct page *page;
1127 again:
1128 		page = find_or_create_page(inode->i_mapping,
1129 					   start_index + i, mask);
1130 		if (!page)
1131 			break;
1132 
1133 		page_start = page_offset(page);
1134 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1135 		while (1) {
1136 			lock_extent_bits(tree, page_start, page_end,
1137 					 0, &cached_state);
1138 			ordered = btrfs_lookup_ordered_extent(inode,
1139 							      page_start);
1140 			unlock_extent_cached(tree, page_start, page_end,
1141 					     &cached_state, GFP_NOFS);
1142 			if (!ordered)
1143 				break;
1144 
1145 			unlock_page(page);
1146 			btrfs_start_ordered_extent(inode, ordered, 1);
1147 			btrfs_put_ordered_extent(ordered);
1148 			lock_page(page);
1149 			/*
1150 			 * we unlocked the page above, so we need check if
1151 			 * it was released or not.
1152 			 */
1153 			if (page->mapping != inode->i_mapping) {
1154 				unlock_page(page);
1155 				page_cache_release(page);
1156 				goto again;
1157 			}
1158 		}
1159 
1160 		if (!PageUptodate(page)) {
1161 			btrfs_readpage(NULL, page);
1162 			lock_page(page);
1163 			if (!PageUptodate(page)) {
1164 				unlock_page(page);
1165 				page_cache_release(page);
1166 				ret = -EIO;
1167 				break;
1168 			}
1169 		}
1170 
1171 		if (page->mapping != inode->i_mapping) {
1172 			unlock_page(page);
1173 			page_cache_release(page);
1174 			goto again;
1175 		}
1176 
1177 		pages[i] = page;
1178 		i_done++;
1179 	}
1180 	if (!i_done || ret)
1181 		goto out;
1182 
1183 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1184 		goto out;
1185 
1186 	/*
1187 	 * so now we have a nice long stream of locked
1188 	 * and up to date pages, lets wait on them
1189 	 */
1190 	for (i = 0; i < i_done; i++)
1191 		wait_on_page_writeback(pages[i]);
1192 
1193 	page_start = page_offset(pages[0]);
1194 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1195 
1196 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1197 			 page_start, page_end - 1, 0, &cached_state);
1198 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1199 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1200 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1201 			  &cached_state, GFP_NOFS);
1202 
1203 	if (i_done != page_cnt) {
1204 		spin_lock(&BTRFS_I(inode)->lock);
1205 		BTRFS_I(inode)->outstanding_extents++;
1206 		spin_unlock(&BTRFS_I(inode)->lock);
1207 		btrfs_delalloc_release_space(inode,
1208 				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1209 	}
1210 
1211 
1212 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1213 			  &cached_state, GFP_NOFS);
1214 
1215 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1216 			     page_start, page_end - 1, &cached_state,
1217 			     GFP_NOFS);
1218 
1219 	for (i = 0; i < i_done; i++) {
1220 		clear_page_dirty_for_io(pages[i]);
1221 		ClearPageChecked(pages[i]);
1222 		set_page_extent_mapped(pages[i]);
1223 		set_page_dirty(pages[i]);
1224 		unlock_page(pages[i]);
1225 		page_cache_release(pages[i]);
1226 	}
1227 	return i_done;
1228 out:
1229 	for (i = 0; i < i_done; i++) {
1230 		unlock_page(pages[i]);
1231 		page_cache_release(pages[i]);
1232 	}
1233 	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1234 	return ret;
1235 
1236 }
1237 
1238 int btrfs_defrag_file(struct inode *inode, struct file *file,
1239 		      struct btrfs_ioctl_defrag_range_args *range,
1240 		      u64 newer_than, unsigned long max_to_defrag)
1241 {
1242 	struct btrfs_root *root = BTRFS_I(inode)->root;
1243 	struct file_ra_state *ra = NULL;
1244 	unsigned long last_index;
1245 	u64 isize = i_size_read(inode);
1246 	u64 last_len = 0;
1247 	u64 skip = 0;
1248 	u64 defrag_end = 0;
1249 	u64 newer_off = range->start;
1250 	unsigned long i;
1251 	unsigned long ra_index = 0;
1252 	int ret;
1253 	int defrag_count = 0;
1254 	int compress_type = BTRFS_COMPRESS_ZLIB;
1255 	u32 extent_thresh = range->extent_thresh;
1256 	unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1257 	unsigned long cluster = max_cluster;
1258 	u64 new_align = ~((u64)128 * 1024 - 1);
1259 	struct page **pages = NULL;
1260 
1261 	if (isize == 0)
1262 		return 0;
1263 
1264 	if (range->start >= isize)
1265 		return -EINVAL;
1266 
1267 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1268 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1269 			return -EINVAL;
1270 		if (range->compress_type)
1271 			compress_type = range->compress_type;
1272 	}
1273 
1274 	if (extent_thresh == 0)
1275 		extent_thresh = 256 * 1024;
1276 
1277 	/*
1278 	 * if we were not given a file, allocate a readahead
1279 	 * context
1280 	 */
1281 	if (!file) {
1282 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1283 		if (!ra)
1284 			return -ENOMEM;
1285 		file_ra_state_init(ra, inode->i_mapping);
1286 	} else {
1287 		ra = &file->f_ra;
1288 	}
1289 
1290 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1291 			GFP_NOFS);
1292 	if (!pages) {
1293 		ret = -ENOMEM;
1294 		goto out_ra;
1295 	}
1296 
1297 	/* find the last page to defrag */
1298 	if (range->start + range->len > range->start) {
1299 		last_index = min_t(u64, isize - 1,
1300 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1301 	} else {
1302 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1303 	}
1304 
1305 	if (newer_than) {
1306 		ret = find_new_extents(root, inode, newer_than,
1307 				       &newer_off, 64 * 1024);
1308 		if (!ret) {
1309 			range->start = newer_off;
1310 			/*
1311 			 * we always align our defrag to help keep
1312 			 * the extents in the file evenly spaced
1313 			 */
1314 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1315 		} else
1316 			goto out_ra;
1317 	} else {
1318 		i = range->start >> PAGE_CACHE_SHIFT;
1319 	}
1320 	if (!max_to_defrag)
1321 		max_to_defrag = last_index - i + 1;
1322 
1323 	/*
1324 	 * make writeback starts from i, so the defrag range can be
1325 	 * written sequentially.
1326 	 */
1327 	if (i < inode->i_mapping->writeback_index)
1328 		inode->i_mapping->writeback_index = i;
1329 
1330 	while (i <= last_index && defrag_count < max_to_defrag &&
1331 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) {
1332 		/*
1333 		 * make sure we stop running if someone unmounts
1334 		 * the FS
1335 		 */
1336 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1337 			break;
1338 
1339 		if (btrfs_defrag_cancelled(root->fs_info)) {
1340 			printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1341 			ret = -EAGAIN;
1342 			break;
1343 		}
1344 
1345 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1346 					 extent_thresh, &last_len, &skip,
1347 					 &defrag_end, range->flags &
1348 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1349 			unsigned long next;
1350 			/*
1351 			 * the should_defrag function tells us how much to skip
1352 			 * bump our counter by the suggested amount
1353 			 */
1354 			next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE);
1355 			i = max(i + 1, next);
1356 			continue;
1357 		}
1358 
1359 		if (!newer_than) {
1360 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1361 				   PAGE_CACHE_SHIFT) - i;
1362 			cluster = min(cluster, max_cluster);
1363 		} else {
1364 			cluster = max_cluster;
1365 		}
1366 
1367 		if (i + cluster > ra_index) {
1368 			ra_index = max(i, ra_index);
1369 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1370 				       cluster);
1371 			ra_index += cluster;
1372 		}
1373 
1374 		mutex_lock(&inode->i_mutex);
1375 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1376 			BTRFS_I(inode)->force_compress = compress_type;
1377 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1378 		if (ret < 0) {
1379 			mutex_unlock(&inode->i_mutex);
1380 			goto out_ra;
1381 		}
1382 
1383 		defrag_count += ret;
1384 		balance_dirty_pages_ratelimited(inode->i_mapping);
1385 		mutex_unlock(&inode->i_mutex);
1386 
1387 		if (newer_than) {
1388 			if (newer_off == (u64)-1)
1389 				break;
1390 
1391 			if (ret > 0)
1392 				i += ret;
1393 
1394 			newer_off = max(newer_off + 1,
1395 					(u64)i << PAGE_CACHE_SHIFT);
1396 
1397 			ret = find_new_extents(root, inode,
1398 					       newer_than, &newer_off,
1399 					       64 * 1024);
1400 			if (!ret) {
1401 				range->start = newer_off;
1402 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1403 			} else {
1404 				break;
1405 			}
1406 		} else {
1407 			if (ret > 0) {
1408 				i += ret;
1409 				last_len += ret << PAGE_CACHE_SHIFT;
1410 			} else {
1411 				i++;
1412 				last_len = 0;
1413 			}
1414 		}
1415 	}
1416 
1417 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1418 		filemap_flush(inode->i_mapping);
1419 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1420 			     &BTRFS_I(inode)->runtime_flags))
1421 			filemap_flush(inode->i_mapping);
1422 	}
1423 
1424 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1425 		/* the filemap_flush will queue IO into the worker threads, but
1426 		 * we have to make sure the IO is actually started and that
1427 		 * ordered extents get created before we return
1428 		 */
1429 		atomic_inc(&root->fs_info->async_submit_draining);
1430 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1431 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1432 			wait_event(root->fs_info->async_submit_wait,
1433 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1434 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1435 		}
1436 		atomic_dec(&root->fs_info->async_submit_draining);
1437 	}
1438 
1439 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1440 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1441 	}
1442 
1443 	ret = defrag_count;
1444 
1445 out_ra:
1446 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1447 		mutex_lock(&inode->i_mutex);
1448 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1449 		mutex_unlock(&inode->i_mutex);
1450 	}
1451 	if (!file)
1452 		kfree(ra);
1453 	kfree(pages);
1454 	return ret;
1455 }
1456 
1457 static noinline int btrfs_ioctl_resize(struct file *file,
1458 					void __user *arg)
1459 {
1460 	u64 new_size;
1461 	u64 old_size;
1462 	u64 devid = 1;
1463 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1464 	struct btrfs_ioctl_vol_args *vol_args;
1465 	struct btrfs_trans_handle *trans;
1466 	struct btrfs_device *device = NULL;
1467 	char *sizestr;
1468 	char *retptr;
1469 	char *devstr = NULL;
1470 	int ret = 0;
1471 	int mod = 0;
1472 
1473 	if (!capable(CAP_SYS_ADMIN))
1474 		return -EPERM;
1475 
1476 	ret = mnt_want_write_file(file);
1477 	if (ret)
1478 		return ret;
1479 
1480 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1481 			1)) {
1482 		mnt_drop_write_file(file);
1483 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1484 	}
1485 
1486 	mutex_lock(&root->fs_info->volume_mutex);
1487 	vol_args = memdup_user(arg, sizeof(*vol_args));
1488 	if (IS_ERR(vol_args)) {
1489 		ret = PTR_ERR(vol_args);
1490 		goto out;
1491 	}
1492 
1493 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1494 
1495 	sizestr = vol_args->name;
1496 	devstr = strchr(sizestr, ':');
1497 	if (devstr) {
1498 		sizestr = devstr + 1;
1499 		*devstr = '\0';
1500 		devstr = vol_args->name;
1501 		ret = kstrtoull(devstr, 10, &devid);
1502 		if (ret)
1503 			goto out_free;
1504 		if (!devid) {
1505 			ret = -EINVAL;
1506 			goto out_free;
1507 		}
1508 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1509 	}
1510 
1511 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1512 	if (!device) {
1513 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1514 		       devid);
1515 		ret = -ENODEV;
1516 		goto out_free;
1517 	}
1518 
1519 	if (!device->writeable) {
1520 		btrfs_info(root->fs_info,
1521 			   "resizer unable to apply on readonly device %llu",
1522 		       devid);
1523 		ret = -EPERM;
1524 		goto out_free;
1525 	}
1526 
1527 	if (!strcmp(sizestr, "max"))
1528 		new_size = device->bdev->bd_inode->i_size;
1529 	else {
1530 		if (sizestr[0] == '-') {
1531 			mod = -1;
1532 			sizestr++;
1533 		} else if (sizestr[0] == '+') {
1534 			mod = 1;
1535 			sizestr++;
1536 		}
1537 		new_size = memparse(sizestr, &retptr);
1538 		if (*retptr != '\0' || new_size == 0) {
1539 			ret = -EINVAL;
1540 			goto out_free;
1541 		}
1542 	}
1543 
1544 	if (device->is_tgtdev_for_dev_replace) {
1545 		ret = -EPERM;
1546 		goto out_free;
1547 	}
1548 
1549 	old_size = btrfs_device_get_total_bytes(device);
1550 
1551 	if (mod < 0) {
1552 		if (new_size > old_size) {
1553 			ret = -EINVAL;
1554 			goto out_free;
1555 		}
1556 		new_size = old_size - new_size;
1557 	} else if (mod > 0) {
1558 		if (new_size > ULLONG_MAX - old_size) {
1559 			ret = -ERANGE;
1560 			goto out_free;
1561 		}
1562 		new_size = old_size + new_size;
1563 	}
1564 
1565 	if (new_size < 256 * 1024 * 1024) {
1566 		ret = -EINVAL;
1567 		goto out_free;
1568 	}
1569 	if (new_size > device->bdev->bd_inode->i_size) {
1570 		ret = -EFBIG;
1571 		goto out_free;
1572 	}
1573 
1574 	new_size = div_u64(new_size, root->sectorsize);
1575 	new_size *= root->sectorsize;
1576 
1577 	printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1578 		      rcu_str_deref(device->name), new_size);
1579 
1580 	if (new_size > old_size) {
1581 		trans = btrfs_start_transaction(root, 0);
1582 		if (IS_ERR(trans)) {
1583 			ret = PTR_ERR(trans);
1584 			goto out_free;
1585 		}
1586 		ret = btrfs_grow_device(trans, device, new_size);
1587 		btrfs_commit_transaction(trans, root);
1588 	} else if (new_size < old_size) {
1589 		ret = btrfs_shrink_device(device, new_size);
1590 	} /* equal, nothing need to do */
1591 
1592 out_free:
1593 	kfree(vol_args);
1594 out:
1595 	mutex_unlock(&root->fs_info->volume_mutex);
1596 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1597 	mnt_drop_write_file(file);
1598 	return ret;
1599 }
1600 
1601 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1602 				char *name, unsigned long fd, int subvol,
1603 				u64 *transid, bool readonly,
1604 				struct btrfs_qgroup_inherit *inherit)
1605 {
1606 	int namelen;
1607 	int ret = 0;
1608 
1609 	ret = mnt_want_write_file(file);
1610 	if (ret)
1611 		goto out;
1612 
1613 	namelen = strlen(name);
1614 	if (strchr(name, '/')) {
1615 		ret = -EINVAL;
1616 		goto out_drop_write;
1617 	}
1618 
1619 	if (name[0] == '.' &&
1620 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1621 		ret = -EEXIST;
1622 		goto out_drop_write;
1623 	}
1624 
1625 	if (subvol) {
1626 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1627 				     NULL, transid, readonly, inherit);
1628 	} else {
1629 		struct fd src = fdget(fd);
1630 		struct inode *src_inode;
1631 		if (!src.file) {
1632 			ret = -EINVAL;
1633 			goto out_drop_write;
1634 		}
1635 
1636 		src_inode = file_inode(src.file);
1637 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1638 			btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1639 				   "Snapshot src from another FS");
1640 			ret = -EXDEV;
1641 		} else if (!inode_owner_or_capable(src_inode)) {
1642 			/*
1643 			 * Subvolume creation is not restricted, but snapshots
1644 			 * are limited to own subvolumes only
1645 			 */
1646 			ret = -EPERM;
1647 		} else {
1648 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1649 					     BTRFS_I(src_inode)->root,
1650 					     transid, readonly, inherit);
1651 		}
1652 		fdput(src);
1653 	}
1654 out_drop_write:
1655 	mnt_drop_write_file(file);
1656 out:
1657 	return ret;
1658 }
1659 
1660 static noinline int btrfs_ioctl_snap_create(struct file *file,
1661 					    void __user *arg, int subvol)
1662 {
1663 	struct btrfs_ioctl_vol_args *vol_args;
1664 	int ret;
1665 
1666 	vol_args = memdup_user(arg, sizeof(*vol_args));
1667 	if (IS_ERR(vol_args))
1668 		return PTR_ERR(vol_args);
1669 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1670 
1671 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1672 					      vol_args->fd, subvol,
1673 					      NULL, false, NULL);
1674 
1675 	kfree(vol_args);
1676 	return ret;
1677 }
1678 
1679 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1680 					       void __user *arg, int subvol)
1681 {
1682 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1683 	int ret;
1684 	u64 transid = 0;
1685 	u64 *ptr = NULL;
1686 	bool readonly = false;
1687 	struct btrfs_qgroup_inherit *inherit = NULL;
1688 
1689 	vol_args = memdup_user(arg, sizeof(*vol_args));
1690 	if (IS_ERR(vol_args))
1691 		return PTR_ERR(vol_args);
1692 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1693 
1694 	if (vol_args->flags &
1695 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1696 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1697 		ret = -EOPNOTSUPP;
1698 		goto free_args;
1699 	}
1700 
1701 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1702 		ptr = &transid;
1703 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1704 		readonly = true;
1705 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1706 		if (vol_args->size > PAGE_CACHE_SIZE) {
1707 			ret = -EINVAL;
1708 			goto free_args;
1709 		}
1710 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1711 		if (IS_ERR(inherit)) {
1712 			ret = PTR_ERR(inherit);
1713 			goto free_args;
1714 		}
1715 	}
1716 
1717 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1718 					      vol_args->fd, subvol, ptr,
1719 					      readonly, inherit);
1720 	if (ret)
1721 		goto free_inherit;
1722 
1723 	if (ptr && copy_to_user(arg +
1724 				offsetof(struct btrfs_ioctl_vol_args_v2,
1725 					transid),
1726 				ptr, sizeof(*ptr)))
1727 		ret = -EFAULT;
1728 
1729 free_inherit:
1730 	kfree(inherit);
1731 free_args:
1732 	kfree(vol_args);
1733 	return ret;
1734 }
1735 
1736 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1737 						void __user *arg)
1738 {
1739 	struct inode *inode = file_inode(file);
1740 	struct btrfs_root *root = BTRFS_I(inode)->root;
1741 	int ret = 0;
1742 	u64 flags = 0;
1743 
1744 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1745 		return -EINVAL;
1746 
1747 	down_read(&root->fs_info->subvol_sem);
1748 	if (btrfs_root_readonly(root))
1749 		flags |= BTRFS_SUBVOL_RDONLY;
1750 	up_read(&root->fs_info->subvol_sem);
1751 
1752 	if (copy_to_user(arg, &flags, sizeof(flags)))
1753 		ret = -EFAULT;
1754 
1755 	return ret;
1756 }
1757 
1758 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1759 					      void __user *arg)
1760 {
1761 	struct inode *inode = file_inode(file);
1762 	struct btrfs_root *root = BTRFS_I(inode)->root;
1763 	struct btrfs_trans_handle *trans;
1764 	u64 root_flags;
1765 	u64 flags;
1766 	int ret = 0;
1767 
1768 	if (!inode_owner_or_capable(inode))
1769 		return -EPERM;
1770 
1771 	ret = mnt_want_write_file(file);
1772 	if (ret)
1773 		goto out;
1774 
1775 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1776 		ret = -EINVAL;
1777 		goto out_drop_write;
1778 	}
1779 
1780 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1781 		ret = -EFAULT;
1782 		goto out_drop_write;
1783 	}
1784 
1785 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1786 		ret = -EINVAL;
1787 		goto out_drop_write;
1788 	}
1789 
1790 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1791 		ret = -EOPNOTSUPP;
1792 		goto out_drop_write;
1793 	}
1794 
1795 	down_write(&root->fs_info->subvol_sem);
1796 
1797 	/* nothing to do */
1798 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1799 		goto out_drop_sem;
1800 
1801 	root_flags = btrfs_root_flags(&root->root_item);
1802 	if (flags & BTRFS_SUBVOL_RDONLY) {
1803 		btrfs_set_root_flags(&root->root_item,
1804 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1805 	} else {
1806 		/*
1807 		 * Block RO -> RW transition if this subvolume is involved in
1808 		 * send
1809 		 */
1810 		spin_lock(&root->root_item_lock);
1811 		if (root->send_in_progress == 0) {
1812 			btrfs_set_root_flags(&root->root_item,
1813 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1814 			spin_unlock(&root->root_item_lock);
1815 		} else {
1816 			spin_unlock(&root->root_item_lock);
1817 			btrfs_warn(root->fs_info,
1818 			"Attempt to set subvolume %llu read-write during send",
1819 					root->root_key.objectid);
1820 			ret = -EPERM;
1821 			goto out_drop_sem;
1822 		}
1823 	}
1824 
1825 	trans = btrfs_start_transaction(root, 1);
1826 	if (IS_ERR(trans)) {
1827 		ret = PTR_ERR(trans);
1828 		goto out_reset;
1829 	}
1830 
1831 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1832 				&root->root_key, &root->root_item);
1833 
1834 	btrfs_commit_transaction(trans, root);
1835 out_reset:
1836 	if (ret)
1837 		btrfs_set_root_flags(&root->root_item, root_flags);
1838 out_drop_sem:
1839 	up_write(&root->fs_info->subvol_sem);
1840 out_drop_write:
1841 	mnt_drop_write_file(file);
1842 out:
1843 	return ret;
1844 }
1845 
1846 /*
1847  * helper to check if the subvolume references other subvolumes
1848  */
1849 static noinline int may_destroy_subvol(struct btrfs_root *root)
1850 {
1851 	struct btrfs_path *path;
1852 	struct btrfs_dir_item *di;
1853 	struct btrfs_key key;
1854 	u64 dir_id;
1855 	int ret;
1856 
1857 	path = btrfs_alloc_path();
1858 	if (!path)
1859 		return -ENOMEM;
1860 
1861 	/* Make sure this root isn't set as the default subvol */
1862 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1863 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1864 				   dir_id, "default", 7, 0);
1865 	if (di && !IS_ERR(di)) {
1866 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1867 		if (key.objectid == root->root_key.objectid) {
1868 			ret = -EPERM;
1869 			btrfs_err(root->fs_info, "deleting default subvolume "
1870 				  "%llu is not allowed", key.objectid);
1871 			goto out;
1872 		}
1873 		btrfs_release_path(path);
1874 	}
1875 
1876 	key.objectid = root->root_key.objectid;
1877 	key.type = BTRFS_ROOT_REF_KEY;
1878 	key.offset = (u64)-1;
1879 
1880 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1881 				&key, path, 0, 0);
1882 	if (ret < 0)
1883 		goto out;
1884 	BUG_ON(ret == 0);
1885 
1886 	ret = 0;
1887 	if (path->slots[0] > 0) {
1888 		path->slots[0]--;
1889 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1890 		if (key.objectid == root->root_key.objectid &&
1891 		    key.type == BTRFS_ROOT_REF_KEY)
1892 			ret = -ENOTEMPTY;
1893 	}
1894 out:
1895 	btrfs_free_path(path);
1896 	return ret;
1897 }
1898 
1899 static noinline int key_in_sk(struct btrfs_key *key,
1900 			      struct btrfs_ioctl_search_key *sk)
1901 {
1902 	struct btrfs_key test;
1903 	int ret;
1904 
1905 	test.objectid = sk->min_objectid;
1906 	test.type = sk->min_type;
1907 	test.offset = sk->min_offset;
1908 
1909 	ret = btrfs_comp_cpu_keys(key, &test);
1910 	if (ret < 0)
1911 		return 0;
1912 
1913 	test.objectid = sk->max_objectid;
1914 	test.type = sk->max_type;
1915 	test.offset = sk->max_offset;
1916 
1917 	ret = btrfs_comp_cpu_keys(key, &test);
1918 	if (ret > 0)
1919 		return 0;
1920 	return 1;
1921 }
1922 
1923 static noinline int copy_to_sk(struct btrfs_root *root,
1924 			       struct btrfs_path *path,
1925 			       struct btrfs_key *key,
1926 			       struct btrfs_ioctl_search_key *sk,
1927 			       size_t *buf_size,
1928 			       char __user *ubuf,
1929 			       unsigned long *sk_offset,
1930 			       int *num_found)
1931 {
1932 	u64 found_transid;
1933 	struct extent_buffer *leaf;
1934 	struct btrfs_ioctl_search_header sh;
1935 	unsigned long item_off;
1936 	unsigned long item_len;
1937 	int nritems;
1938 	int i;
1939 	int slot;
1940 	int ret = 0;
1941 
1942 	leaf = path->nodes[0];
1943 	slot = path->slots[0];
1944 	nritems = btrfs_header_nritems(leaf);
1945 
1946 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1947 		i = nritems;
1948 		goto advance_key;
1949 	}
1950 	found_transid = btrfs_header_generation(leaf);
1951 
1952 	for (i = slot; i < nritems; i++) {
1953 		item_off = btrfs_item_ptr_offset(leaf, i);
1954 		item_len = btrfs_item_size_nr(leaf, i);
1955 
1956 		btrfs_item_key_to_cpu(leaf, key, i);
1957 		if (!key_in_sk(key, sk))
1958 			continue;
1959 
1960 		if (sizeof(sh) + item_len > *buf_size) {
1961 			if (*num_found) {
1962 				ret = 1;
1963 				goto out;
1964 			}
1965 
1966 			/*
1967 			 * return one empty item back for v1, which does not
1968 			 * handle -EOVERFLOW
1969 			 */
1970 
1971 			*buf_size = sizeof(sh) + item_len;
1972 			item_len = 0;
1973 			ret = -EOVERFLOW;
1974 		}
1975 
1976 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1977 			ret = 1;
1978 			goto out;
1979 		}
1980 
1981 		sh.objectid = key->objectid;
1982 		sh.offset = key->offset;
1983 		sh.type = key->type;
1984 		sh.len = item_len;
1985 		sh.transid = found_transid;
1986 
1987 		/* copy search result header */
1988 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1989 			ret = -EFAULT;
1990 			goto out;
1991 		}
1992 
1993 		*sk_offset += sizeof(sh);
1994 
1995 		if (item_len) {
1996 			char __user *up = ubuf + *sk_offset;
1997 			/* copy the item */
1998 			if (read_extent_buffer_to_user(leaf, up,
1999 						       item_off, item_len)) {
2000 				ret = -EFAULT;
2001 				goto out;
2002 			}
2003 
2004 			*sk_offset += item_len;
2005 		}
2006 		(*num_found)++;
2007 
2008 		if (ret) /* -EOVERFLOW from above */
2009 			goto out;
2010 
2011 		if (*num_found >= sk->nr_items) {
2012 			ret = 1;
2013 			goto out;
2014 		}
2015 	}
2016 advance_key:
2017 	ret = 0;
2018 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
2019 		key->offset++;
2020 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
2021 		key->offset = 0;
2022 		key->type++;
2023 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
2024 		key->offset = 0;
2025 		key->type = 0;
2026 		key->objectid++;
2027 	} else
2028 		ret = 1;
2029 out:
2030 	/*
2031 	 *  0: all items from this leaf copied, continue with next
2032 	 *  1: * more items can be copied, but unused buffer is too small
2033 	 *     * all items were found
2034 	 *     Either way, it will stops the loop which iterates to the next
2035 	 *     leaf
2036 	 *  -EOVERFLOW: item was to large for buffer
2037 	 *  -EFAULT: could not copy extent buffer back to userspace
2038 	 */
2039 	return ret;
2040 }
2041 
2042 static noinline int search_ioctl(struct inode *inode,
2043 				 struct btrfs_ioctl_search_key *sk,
2044 				 size_t *buf_size,
2045 				 char __user *ubuf)
2046 {
2047 	struct btrfs_root *root;
2048 	struct btrfs_key key;
2049 	struct btrfs_path *path;
2050 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2051 	int ret;
2052 	int num_found = 0;
2053 	unsigned long sk_offset = 0;
2054 
2055 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2056 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2057 		return -EOVERFLOW;
2058 	}
2059 
2060 	path = btrfs_alloc_path();
2061 	if (!path)
2062 		return -ENOMEM;
2063 
2064 	if (sk->tree_id == 0) {
2065 		/* search the root of the inode that was passed */
2066 		root = BTRFS_I(inode)->root;
2067 	} else {
2068 		key.objectid = sk->tree_id;
2069 		key.type = BTRFS_ROOT_ITEM_KEY;
2070 		key.offset = (u64)-1;
2071 		root = btrfs_read_fs_root_no_name(info, &key);
2072 		if (IS_ERR(root)) {
2073 			printk(KERN_ERR "BTRFS: could not find root %llu\n",
2074 			       sk->tree_id);
2075 			btrfs_free_path(path);
2076 			return -ENOENT;
2077 		}
2078 	}
2079 
2080 	key.objectid = sk->min_objectid;
2081 	key.type = sk->min_type;
2082 	key.offset = sk->min_offset;
2083 
2084 	while (1) {
2085 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2086 		if (ret != 0) {
2087 			if (ret > 0)
2088 				ret = 0;
2089 			goto err;
2090 		}
2091 		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2092 				 &sk_offset, &num_found);
2093 		btrfs_release_path(path);
2094 		if (ret)
2095 			break;
2096 
2097 	}
2098 	if (ret > 0)
2099 		ret = 0;
2100 err:
2101 	sk->nr_items = num_found;
2102 	btrfs_free_path(path);
2103 	return ret;
2104 }
2105 
2106 static noinline int btrfs_ioctl_tree_search(struct file *file,
2107 					   void __user *argp)
2108 {
2109 	struct btrfs_ioctl_search_args __user *uargs;
2110 	struct btrfs_ioctl_search_key sk;
2111 	struct inode *inode;
2112 	int ret;
2113 	size_t buf_size;
2114 
2115 	if (!capable(CAP_SYS_ADMIN))
2116 		return -EPERM;
2117 
2118 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2119 
2120 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2121 		return -EFAULT;
2122 
2123 	buf_size = sizeof(uargs->buf);
2124 
2125 	inode = file_inode(file);
2126 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2127 
2128 	/*
2129 	 * In the origin implementation an overflow is handled by returning a
2130 	 * search header with a len of zero, so reset ret.
2131 	 */
2132 	if (ret == -EOVERFLOW)
2133 		ret = 0;
2134 
2135 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2136 		ret = -EFAULT;
2137 	return ret;
2138 }
2139 
2140 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2141 					       void __user *argp)
2142 {
2143 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2144 	struct btrfs_ioctl_search_args_v2 args;
2145 	struct inode *inode;
2146 	int ret;
2147 	size_t buf_size;
2148 	const size_t buf_limit = 16 * 1024 * 1024;
2149 
2150 	if (!capable(CAP_SYS_ADMIN))
2151 		return -EPERM;
2152 
2153 	/* copy search header and buffer size */
2154 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2155 	if (copy_from_user(&args, uarg, sizeof(args)))
2156 		return -EFAULT;
2157 
2158 	buf_size = args.buf_size;
2159 
2160 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2161 		return -EOVERFLOW;
2162 
2163 	/* limit result size to 16MB */
2164 	if (buf_size > buf_limit)
2165 		buf_size = buf_limit;
2166 
2167 	inode = file_inode(file);
2168 	ret = search_ioctl(inode, &args.key, &buf_size,
2169 			   (char *)(&uarg->buf[0]));
2170 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2171 		ret = -EFAULT;
2172 	else if (ret == -EOVERFLOW &&
2173 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2174 		ret = -EFAULT;
2175 
2176 	return ret;
2177 }
2178 
2179 /*
2180  * Search INODE_REFs to identify path name of 'dirid' directory
2181  * in a 'tree_id' tree. and sets path name to 'name'.
2182  */
2183 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2184 				u64 tree_id, u64 dirid, char *name)
2185 {
2186 	struct btrfs_root *root;
2187 	struct btrfs_key key;
2188 	char *ptr;
2189 	int ret = -1;
2190 	int slot;
2191 	int len;
2192 	int total_len = 0;
2193 	struct btrfs_inode_ref *iref;
2194 	struct extent_buffer *l;
2195 	struct btrfs_path *path;
2196 
2197 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2198 		name[0]='\0';
2199 		return 0;
2200 	}
2201 
2202 	path = btrfs_alloc_path();
2203 	if (!path)
2204 		return -ENOMEM;
2205 
2206 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2207 
2208 	key.objectid = tree_id;
2209 	key.type = BTRFS_ROOT_ITEM_KEY;
2210 	key.offset = (u64)-1;
2211 	root = btrfs_read_fs_root_no_name(info, &key);
2212 	if (IS_ERR(root)) {
2213 		printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2214 		ret = -ENOENT;
2215 		goto out;
2216 	}
2217 
2218 	key.objectid = dirid;
2219 	key.type = BTRFS_INODE_REF_KEY;
2220 	key.offset = (u64)-1;
2221 
2222 	while (1) {
2223 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2224 		if (ret < 0)
2225 			goto out;
2226 		else if (ret > 0) {
2227 			ret = btrfs_previous_item(root, path, dirid,
2228 						  BTRFS_INODE_REF_KEY);
2229 			if (ret < 0)
2230 				goto out;
2231 			else if (ret > 0) {
2232 				ret = -ENOENT;
2233 				goto out;
2234 			}
2235 		}
2236 
2237 		l = path->nodes[0];
2238 		slot = path->slots[0];
2239 		btrfs_item_key_to_cpu(l, &key, slot);
2240 
2241 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2242 		len = btrfs_inode_ref_name_len(l, iref);
2243 		ptr -= len + 1;
2244 		total_len += len + 1;
2245 		if (ptr < name) {
2246 			ret = -ENAMETOOLONG;
2247 			goto out;
2248 		}
2249 
2250 		*(ptr + len) = '/';
2251 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2252 
2253 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2254 			break;
2255 
2256 		btrfs_release_path(path);
2257 		key.objectid = key.offset;
2258 		key.offset = (u64)-1;
2259 		dirid = key.objectid;
2260 	}
2261 	memmove(name, ptr, total_len);
2262 	name[total_len] = '\0';
2263 	ret = 0;
2264 out:
2265 	btrfs_free_path(path);
2266 	return ret;
2267 }
2268 
2269 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2270 					   void __user *argp)
2271 {
2272 	 struct btrfs_ioctl_ino_lookup_args *args;
2273 	 struct inode *inode;
2274 	int ret = 0;
2275 
2276 	args = memdup_user(argp, sizeof(*args));
2277 	if (IS_ERR(args))
2278 		return PTR_ERR(args);
2279 
2280 	inode = file_inode(file);
2281 
2282 	/*
2283 	 * Unprivileged query to obtain the containing subvolume root id. The
2284 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2285 	 */
2286 	if (args->treeid == 0)
2287 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2288 
2289 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2290 		args->name[0] = 0;
2291 		goto out;
2292 	}
2293 
2294 	if (!capable(CAP_SYS_ADMIN)) {
2295 		ret = -EPERM;
2296 		goto out;
2297 	}
2298 
2299 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2300 					args->treeid, args->objectid,
2301 					args->name);
2302 
2303 out:
2304 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2305 		ret = -EFAULT;
2306 
2307 	kfree(args);
2308 	return ret;
2309 }
2310 
2311 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2312 					     void __user *arg)
2313 {
2314 	struct dentry *parent = file->f_path.dentry;
2315 	struct dentry *dentry;
2316 	struct inode *dir = d_inode(parent);
2317 	struct inode *inode;
2318 	struct btrfs_root *root = BTRFS_I(dir)->root;
2319 	struct btrfs_root *dest = NULL;
2320 	struct btrfs_ioctl_vol_args *vol_args;
2321 	struct btrfs_trans_handle *trans;
2322 	struct btrfs_block_rsv block_rsv;
2323 	u64 root_flags;
2324 	u64 qgroup_reserved;
2325 	int namelen;
2326 	int ret;
2327 	int err = 0;
2328 
2329 	vol_args = memdup_user(arg, sizeof(*vol_args));
2330 	if (IS_ERR(vol_args))
2331 		return PTR_ERR(vol_args);
2332 
2333 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2334 	namelen = strlen(vol_args->name);
2335 	if (strchr(vol_args->name, '/') ||
2336 	    strncmp(vol_args->name, "..", namelen) == 0) {
2337 		err = -EINVAL;
2338 		goto out;
2339 	}
2340 
2341 	err = mnt_want_write_file(file);
2342 	if (err)
2343 		goto out;
2344 
2345 
2346 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2347 	if (err == -EINTR)
2348 		goto out_drop_write;
2349 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2350 	if (IS_ERR(dentry)) {
2351 		err = PTR_ERR(dentry);
2352 		goto out_unlock_dir;
2353 	}
2354 
2355 	if (d_really_is_negative(dentry)) {
2356 		err = -ENOENT;
2357 		goto out_dput;
2358 	}
2359 
2360 	inode = d_inode(dentry);
2361 	dest = BTRFS_I(inode)->root;
2362 	if (!capable(CAP_SYS_ADMIN)) {
2363 		/*
2364 		 * Regular user.  Only allow this with a special mount
2365 		 * option, when the user has write+exec access to the
2366 		 * subvol root, and when rmdir(2) would have been
2367 		 * allowed.
2368 		 *
2369 		 * Note that this is _not_ check that the subvol is
2370 		 * empty or doesn't contain data that we wouldn't
2371 		 * otherwise be able to delete.
2372 		 *
2373 		 * Users who want to delete empty subvols should try
2374 		 * rmdir(2).
2375 		 */
2376 		err = -EPERM;
2377 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2378 			goto out_dput;
2379 
2380 		/*
2381 		 * Do not allow deletion if the parent dir is the same
2382 		 * as the dir to be deleted.  That means the ioctl
2383 		 * must be called on the dentry referencing the root
2384 		 * of the subvol, not a random directory contained
2385 		 * within it.
2386 		 */
2387 		err = -EINVAL;
2388 		if (root == dest)
2389 			goto out_dput;
2390 
2391 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2392 		if (err)
2393 			goto out_dput;
2394 	}
2395 
2396 	/* check if subvolume may be deleted by a user */
2397 	err = btrfs_may_delete(dir, dentry, 1);
2398 	if (err)
2399 		goto out_dput;
2400 
2401 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2402 		err = -EINVAL;
2403 		goto out_dput;
2404 	}
2405 
2406 	mutex_lock(&inode->i_mutex);
2407 
2408 	/*
2409 	 * Don't allow to delete a subvolume with send in progress. This is
2410 	 * inside the i_mutex so the error handling that has to drop the bit
2411 	 * again is not run concurrently.
2412 	 */
2413 	spin_lock(&dest->root_item_lock);
2414 	root_flags = btrfs_root_flags(&dest->root_item);
2415 	if (dest->send_in_progress == 0) {
2416 		btrfs_set_root_flags(&dest->root_item,
2417 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2418 		spin_unlock(&dest->root_item_lock);
2419 	} else {
2420 		spin_unlock(&dest->root_item_lock);
2421 		btrfs_warn(root->fs_info,
2422 			"Attempt to delete subvolume %llu during send",
2423 			dest->root_key.objectid);
2424 		err = -EPERM;
2425 		goto out_unlock_inode;
2426 	}
2427 
2428 	down_write(&root->fs_info->subvol_sem);
2429 
2430 	err = may_destroy_subvol(dest);
2431 	if (err)
2432 		goto out_up_write;
2433 
2434 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2435 	/*
2436 	 * One for dir inode, two for dir entries, two for root
2437 	 * ref/backref.
2438 	 */
2439 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2440 					       5, &qgroup_reserved, true);
2441 	if (err)
2442 		goto out_up_write;
2443 
2444 	trans = btrfs_start_transaction(root, 0);
2445 	if (IS_ERR(trans)) {
2446 		err = PTR_ERR(trans);
2447 		goto out_release;
2448 	}
2449 	trans->block_rsv = &block_rsv;
2450 	trans->bytes_reserved = block_rsv.size;
2451 
2452 	ret = btrfs_unlink_subvol(trans, root, dir,
2453 				dest->root_key.objectid,
2454 				dentry->d_name.name,
2455 				dentry->d_name.len);
2456 	if (ret) {
2457 		err = ret;
2458 		btrfs_abort_transaction(trans, root, ret);
2459 		goto out_end_trans;
2460 	}
2461 
2462 	btrfs_record_root_in_trans(trans, dest);
2463 
2464 	memset(&dest->root_item.drop_progress, 0,
2465 		sizeof(dest->root_item.drop_progress));
2466 	dest->root_item.drop_level = 0;
2467 	btrfs_set_root_refs(&dest->root_item, 0);
2468 
2469 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2470 		ret = btrfs_insert_orphan_item(trans,
2471 					root->fs_info->tree_root,
2472 					dest->root_key.objectid);
2473 		if (ret) {
2474 			btrfs_abort_transaction(trans, root, ret);
2475 			err = ret;
2476 			goto out_end_trans;
2477 		}
2478 	}
2479 
2480 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2481 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2482 				  dest->root_key.objectid);
2483 	if (ret && ret != -ENOENT) {
2484 		btrfs_abort_transaction(trans, root, ret);
2485 		err = ret;
2486 		goto out_end_trans;
2487 	}
2488 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2489 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2490 					  dest->root_item.received_uuid,
2491 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2492 					  dest->root_key.objectid);
2493 		if (ret && ret != -ENOENT) {
2494 			btrfs_abort_transaction(trans, root, ret);
2495 			err = ret;
2496 			goto out_end_trans;
2497 		}
2498 	}
2499 
2500 out_end_trans:
2501 	trans->block_rsv = NULL;
2502 	trans->bytes_reserved = 0;
2503 	ret = btrfs_end_transaction(trans, root);
2504 	if (ret && !err)
2505 		err = ret;
2506 	inode->i_flags |= S_DEAD;
2507 out_release:
2508 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2509 out_up_write:
2510 	up_write(&root->fs_info->subvol_sem);
2511 	if (err) {
2512 		spin_lock(&dest->root_item_lock);
2513 		root_flags = btrfs_root_flags(&dest->root_item);
2514 		btrfs_set_root_flags(&dest->root_item,
2515 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2516 		spin_unlock(&dest->root_item_lock);
2517 	}
2518 out_unlock_inode:
2519 	mutex_unlock(&inode->i_mutex);
2520 	if (!err) {
2521 		d_invalidate(dentry);
2522 		btrfs_invalidate_inodes(dest);
2523 		d_delete(dentry);
2524 		ASSERT(dest->send_in_progress == 0);
2525 
2526 		/* the last ref */
2527 		if (dest->ino_cache_inode) {
2528 			iput(dest->ino_cache_inode);
2529 			dest->ino_cache_inode = NULL;
2530 		}
2531 	}
2532 out_dput:
2533 	dput(dentry);
2534 out_unlock_dir:
2535 	mutex_unlock(&dir->i_mutex);
2536 out_drop_write:
2537 	mnt_drop_write_file(file);
2538 out:
2539 	kfree(vol_args);
2540 	return err;
2541 }
2542 
2543 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2544 {
2545 	struct inode *inode = file_inode(file);
2546 	struct btrfs_root *root = BTRFS_I(inode)->root;
2547 	struct btrfs_ioctl_defrag_range_args *range;
2548 	int ret;
2549 
2550 	ret = mnt_want_write_file(file);
2551 	if (ret)
2552 		return ret;
2553 
2554 	if (btrfs_root_readonly(root)) {
2555 		ret = -EROFS;
2556 		goto out;
2557 	}
2558 
2559 	switch (inode->i_mode & S_IFMT) {
2560 	case S_IFDIR:
2561 		if (!capable(CAP_SYS_ADMIN)) {
2562 			ret = -EPERM;
2563 			goto out;
2564 		}
2565 		ret = btrfs_defrag_root(root);
2566 		if (ret)
2567 			goto out;
2568 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2569 		break;
2570 	case S_IFREG:
2571 		if (!(file->f_mode & FMODE_WRITE)) {
2572 			ret = -EINVAL;
2573 			goto out;
2574 		}
2575 
2576 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2577 		if (!range) {
2578 			ret = -ENOMEM;
2579 			goto out;
2580 		}
2581 
2582 		if (argp) {
2583 			if (copy_from_user(range, argp,
2584 					   sizeof(*range))) {
2585 				ret = -EFAULT;
2586 				kfree(range);
2587 				goto out;
2588 			}
2589 			/* compression requires us to start the IO */
2590 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2591 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2592 				range->extent_thresh = (u32)-1;
2593 			}
2594 		} else {
2595 			/* the rest are all set to zero by kzalloc */
2596 			range->len = (u64)-1;
2597 		}
2598 		ret = btrfs_defrag_file(file_inode(file), file,
2599 					range, 0, 0);
2600 		if (ret > 0)
2601 			ret = 0;
2602 		kfree(range);
2603 		break;
2604 	default:
2605 		ret = -EINVAL;
2606 	}
2607 out:
2608 	mnt_drop_write_file(file);
2609 	return ret;
2610 }
2611 
2612 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2613 {
2614 	struct btrfs_ioctl_vol_args *vol_args;
2615 	int ret;
2616 
2617 	if (!capable(CAP_SYS_ADMIN))
2618 		return -EPERM;
2619 
2620 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2621 			1)) {
2622 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2623 	}
2624 
2625 	mutex_lock(&root->fs_info->volume_mutex);
2626 	vol_args = memdup_user(arg, sizeof(*vol_args));
2627 	if (IS_ERR(vol_args)) {
2628 		ret = PTR_ERR(vol_args);
2629 		goto out;
2630 	}
2631 
2632 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2633 	ret = btrfs_init_new_device(root, vol_args->name);
2634 
2635 	if (!ret)
2636 		btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2637 
2638 	kfree(vol_args);
2639 out:
2640 	mutex_unlock(&root->fs_info->volume_mutex);
2641 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2642 	return ret;
2643 }
2644 
2645 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2646 {
2647 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2648 	struct btrfs_ioctl_vol_args *vol_args;
2649 	int ret;
2650 
2651 	if (!capable(CAP_SYS_ADMIN))
2652 		return -EPERM;
2653 
2654 	ret = mnt_want_write_file(file);
2655 	if (ret)
2656 		return ret;
2657 
2658 	vol_args = memdup_user(arg, sizeof(*vol_args));
2659 	if (IS_ERR(vol_args)) {
2660 		ret = PTR_ERR(vol_args);
2661 		goto err_drop;
2662 	}
2663 
2664 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2665 
2666 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2667 			1)) {
2668 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2669 		goto out;
2670 	}
2671 
2672 	mutex_lock(&root->fs_info->volume_mutex);
2673 	ret = btrfs_rm_device(root, vol_args->name);
2674 	mutex_unlock(&root->fs_info->volume_mutex);
2675 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2676 
2677 	if (!ret)
2678 		btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2679 
2680 out:
2681 	kfree(vol_args);
2682 err_drop:
2683 	mnt_drop_write_file(file);
2684 	return ret;
2685 }
2686 
2687 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2688 {
2689 	struct btrfs_ioctl_fs_info_args *fi_args;
2690 	struct btrfs_device *device;
2691 	struct btrfs_device *next;
2692 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2693 	int ret = 0;
2694 
2695 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2696 	if (!fi_args)
2697 		return -ENOMEM;
2698 
2699 	mutex_lock(&fs_devices->device_list_mutex);
2700 	fi_args->num_devices = fs_devices->num_devices;
2701 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2702 
2703 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2704 		if (device->devid > fi_args->max_id)
2705 			fi_args->max_id = device->devid;
2706 	}
2707 	mutex_unlock(&fs_devices->device_list_mutex);
2708 
2709 	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2710 	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2711 	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2712 
2713 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2714 		ret = -EFAULT;
2715 
2716 	kfree(fi_args);
2717 	return ret;
2718 }
2719 
2720 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2721 {
2722 	struct btrfs_ioctl_dev_info_args *di_args;
2723 	struct btrfs_device *dev;
2724 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2725 	int ret = 0;
2726 	char *s_uuid = NULL;
2727 
2728 	di_args = memdup_user(arg, sizeof(*di_args));
2729 	if (IS_ERR(di_args))
2730 		return PTR_ERR(di_args);
2731 
2732 	if (!btrfs_is_empty_uuid(di_args->uuid))
2733 		s_uuid = di_args->uuid;
2734 
2735 	mutex_lock(&fs_devices->device_list_mutex);
2736 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2737 
2738 	if (!dev) {
2739 		ret = -ENODEV;
2740 		goto out;
2741 	}
2742 
2743 	di_args->devid = dev->devid;
2744 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2745 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2746 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2747 	if (dev->name) {
2748 		struct rcu_string *name;
2749 
2750 		rcu_read_lock();
2751 		name = rcu_dereference(dev->name);
2752 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2753 		rcu_read_unlock();
2754 		di_args->path[sizeof(di_args->path) - 1] = 0;
2755 	} else {
2756 		di_args->path[0] = '\0';
2757 	}
2758 
2759 out:
2760 	mutex_unlock(&fs_devices->device_list_mutex);
2761 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2762 		ret = -EFAULT;
2763 
2764 	kfree(di_args);
2765 	return ret;
2766 }
2767 
2768 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2769 {
2770 	struct page *page;
2771 	pgoff_t index;
2772 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2773 
2774 	index = off >> PAGE_CACHE_SHIFT;
2775 
2776 	page = grab_cache_page(inode->i_mapping, index);
2777 	if (!page)
2778 		return NULL;
2779 
2780 	if (!PageUptodate(page)) {
2781 		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2782 						 0))
2783 			return NULL;
2784 		lock_page(page);
2785 		if (!PageUptodate(page)) {
2786 			unlock_page(page);
2787 			page_cache_release(page);
2788 			return NULL;
2789 		}
2790 	}
2791 	unlock_page(page);
2792 
2793 	return page;
2794 }
2795 
2796 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2797 {
2798 	/* do any pending delalloc/csum calc on src, one way or
2799 	   another, and lock file content */
2800 	while (1) {
2801 		struct btrfs_ordered_extent *ordered;
2802 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2803 		ordered = btrfs_lookup_first_ordered_extent(inode,
2804 							    off + len - 1);
2805 		if ((!ordered ||
2806 		     ordered->file_offset + ordered->len <= off ||
2807 		     ordered->file_offset >= off + len) &&
2808 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2809 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2810 			if (ordered)
2811 				btrfs_put_ordered_extent(ordered);
2812 			break;
2813 		}
2814 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2815 		if (ordered)
2816 			btrfs_put_ordered_extent(ordered);
2817 		btrfs_wait_ordered_range(inode, off, len);
2818 	}
2819 }
2820 
2821 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2822 				struct inode *inode2, u64 loff2, u64 len)
2823 {
2824 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2825 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2826 
2827 	mutex_unlock(&inode1->i_mutex);
2828 	mutex_unlock(&inode2->i_mutex);
2829 }
2830 
2831 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2832 			      struct inode *inode2, u64 loff2, u64 len)
2833 {
2834 	if (inode1 < inode2) {
2835 		swap(inode1, inode2);
2836 		swap(loff1, loff2);
2837 	}
2838 
2839 	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2840 	lock_extent_range(inode1, loff1, len);
2841 	if (inode1 != inode2) {
2842 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2843 		lock_extent_range(inode2, loff2, len);
2844 	}
2845 }
2846 
2847 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2848 			  u64 dst_loff, u64 len)
2849 {
2850 	int ret = 0;
2851 	struct page *src_page, *dst_page;
2852 	unsigned int cmp_len = PAGE_CACHE_SIZE;
2853 	void *addr, *dst_addr;
2854 
2855 	while (len) {
2856 		if (len < PAGE_CACHE_SIZE)
2857 			cmp_len = len;
2858 
2859 		src_page = extent_same_get_page(src, loff);
2860 		if (!src_page)
2861 			return -EINVAL;
2862 		dst_page = extent_same_get_page(dst, dst_loff);
2863 		if (!dst_page) {
2864 			page_cache_release(src_page);
2865 			return -EINVAL;
2866 		}
2867 		addr = kmap_atomic(src_page);
2868 		dst_addr = kmap_atomic(dst_page);
2869 
2870 		flush_dcache_page(src_page);
2871 		flush_dcache_page(dst_page);
2872 
2873 		if (memcmp(addr, dst_addr, cmp_len))
2874 			ret = BTRFS_SAME_DATA_DIFFERS;
2875 
2876 		kunmap_atomic(addr);
2877 		kunmap_atomic(dst_addr);
2878 		page_cache_release(src_page);
2879 		page_cache_release(dst_page);
2880 
2881 		if (ret)
2882 			break;
2883 
2884 		loff += cmp_len;
2885 		dst_loff += cmp_len;
2886 		len -= cmp_len;
2887 	}
2888 
2889 	return ret;
2890 }
2891 
2892 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
2893 				     u64 olen)
2894 {
2895 	u64 len = *plen;
2896 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2897 
2898 	if (off + olen > inode->i_size || off + olen < off)
2899 		return -EINVAL;
2900 
2901 	/* if we extend to eof, continue to block boundary */
2902 	if (off + len == inode->i_size)
2903 		*plen = len = ALIGN(inode->i_size, bs) - off;
2904 
2905 	/* Check that we are block aligned - btrfs_clone() requires this */
2906 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2907 		return -EINVAL;
2908 
2909 	return 0;
2910 }
2911 
2912 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
2913 			     struct inode *dst, u64 dst_loff)
2914 {
2915 	int ret;
2916 	u64 len = olen;
2917 
2918 	/*
2919 	 * btrfs_clone() can't handle extents in the same file
2920 	 * yet. Once that works, we can drop this check and replace it
2921 	 * with a check for the same inode, but overlapping extents.
2922 	 */
2923 	if (src == dst)
2924 		return -EINVAL;
2925 
2926 	if (len == 0)
2927 		return 0;
2928 
2929 	btrfs_double_lock(src, loff, dst, dst_loff, len);
2930 
2931 	ret = extent_same_check_offsets(src, loff, &len, olen);
2932 	if (ret)
2933 		goto out_unlock;
2934 
2935 	ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
2936 	if (ret)
2937 		goto out_unlock;
2938 
2939 	/* don't make the dst file partly checksummed */
2940 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2941 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2942 		ret = -EINVAL;
2943 		goto out_unlock;
2944 	}
2945 
2946 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2947 	if (ret == 0)
2948 		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff);
2949 
2950 out_unlock:
2951 	btrfs_double_unlock(src, loff, dst, dst_loff, len);
2952 
2953 	return ret;
2954 }
2955 
2956 #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
2957 
2958 static long btrfs_ioctl_file_extent_same(struct file *file,
2959 			struct btrfs_ioctl_same_args __user *argp)
2960 {
2961 	struct btrfs_ioctl_same_args *same;
2962 	struct btrfs_ioctl_same_extent_info *info;
2963 	struct inode *src = file_inode(file);
2964 	u64 off;
2965 	u64 len;
2966 	int i;
2967 	int ret;
2968 	unsigned long size;
2969 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2970 	bool is_admin = capable(CAP_SYS_ADMIN);
2971 	u16 count;
2972 
2973 	if (!(file->f_mode & FMODE_READ))
2974 		return -EINVAL;
2975 
2976 	ret = mnt_want_write_file(file);
2977 	if (ret)
2978 		return ret;
2979 
2980 	if (get_user(count, &argp->dest_count)) {
2981 		ret = -EFAULT;
2982 		goto out;
2983 	}
2984 
2985 	size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2986 
2987 	same = memdup_user(argp, size);
2988 
2989 	if (IS_ERR(same)) {
2990 		ret = PTR_ERR(same);
2991 		goto out;
2992 	}
2993 
2994 	off = same->logical_offset;
2995 	len = same->length;
2996 
2997 	/*
2998 	 * Limit the total length we will dedupe for each operation.
2999 	 * This is intended to bound the total time spent in this
3000 	 * ioctl to something sane.
3001 	 */
3002 	if (len > BTRFS_MAX_DEDUPE_LEN)
3003 		len = BTRFS_MAX_DEDUPE_LEN;
3004 
3005 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
3006 		/*
3007 		 * Btrfs does not support blocksize < page_size. As a
3008 		 * result, btrfs_cmp_data() won't correctly handle
3009 		 * this situation without an update.
3010 		 */
3011 		ret = -EINVAL;
3012 		goto out;
3013 	}
3014 
3015 	ret = -EISDIR;
3016 	if (S_ISDIR(src->i_mode))
3017 		goto out;
3018 
3019 	ret = -EACCES;
3020 	if (!S_ISREG(src->i_mode))
3021 		goto out;
3022 
3023 	/* pre-format output fields to sane values */
3024 	for (i = 0; i < count; i++) {
3025 		same->info[i].bytes_deduped = 0ULL;
3026 		same->info[i].status = 0;
3027 	}
3028 
3029 	for (i = 0, info = same->info; i < count; i++, info++) {
3030 		struct inode *dst;
3031 		struct fd dst_file = fdget(info->fd);
3032 		if (!dst_file.file) {
3033 			info->status = -EBADF;
3034 			continue;
3035 		}
3036 		dst = file_inode(dst_file.file);
3037 
3038 		if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
3039 			info->status = -EINVAL;
3040 		} else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
3041 			info->status = -EXDEV;
3042 		} else if (S_ISDIR(dst->i_mode)) {
3043 			info->status = -EISDIR;
3044 		} else if (!S_ISREG(dst->i_mode)) {
3045 			info->status = -EACCES;
3046 		} else {
3047 			info->status = btrfs_extent_same(src, off, len, dst,
3048 							info->logical_offset);
3049 			if (info->status == 0)
3050 				info->bytes_deduped += len;
3051 		}
3052 		fdput(dst_file);
3053 	}
3054 
3055 	ret = copy_to_user(argp, same, size);
3056 	if (ret)
3057 		ret = -EFAULT;
3058 
3059 out:
3060 	mnt_drop_write_file(file);
3061 	return ret;
3062 }
3063 
3064 /* Helper to check and see if this root currently has a ref on the given disk
3065  * bytenr.  If it does then we need to update the quota for this root.  This
3066  * doesn't do anything if quotas aren't enabled.
3067  */
3068 static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3069 		     u64 disko)
3070 {
3071 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
3072 	struct ulist *roots;
3073 	struct ulist_iterator uiter;
3074 	struct ulist_node *root_node = NULL;
3075 	int ret;
3076 
3077 	if (!root->fs_info->quota_enabled)
3078 		return 1;
3079 
3080 	btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3081 	ret = btrfs_find_all_roots(trans, root->fs_info, disko,
3082 				   tree_mod_seq_elem.seq, &roots);
3083 	if (ret < 0)
3084 		goto out;
3085 	ret = 0;
3086 	ULIST_ITER_INIT(&uiter);
3087 	while ((root_node = ulist_next(roots, &uiter))) {
3088 		if (root_node->val == root->objectid) {
3089 			ret = 1;
3090 			break;
3091 		}
3092 	}
3093 	ulist_free(roots);
3094 out:
3095 	btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3096 	return ret;
3097 }
3098 
3099 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3100 				     struct inode *inode,
3101 				     u64 endoff,
3102 				     const u64 destoff,
3103 				     const u64 olen)
3104 {
3105 	struct btrfs_root *root = BTRFS_I(inode)->root;
3106 	int ret;
3107 
3108 	inode_inc_iversion(inode);
3109 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3110 	/*
3111 	 * We round up to the block size at eof when determining which
3112 	 * extents to clone above, but shouldn't round up the file size.
3113 	 */
3114 	if (endoff > destoff + olen)
3115 		endoff = destoff + olen;
3116 	if (endoff > inode->i_size)
3117 		btrfs_i_size_write(inode, endoff);
3118 
3119 	ret = btrfs_update_inode(trans, root, inode);
3120 	if (ret) {
3121 		btrfs_abort_transaction(trans, root, ret);
3122 		btrfs_end_transaction(trans, root);
3123 		goto out;
3124 	}
3125 	ret = btrfs_end_transaction(trans, root);
3126 out:
3127 	return ret;
3128 }
3129 
3130 static void clone_update_extent_map(struct inode *inode,
3131 				    const struct btrfs_trans_handle *trans,
3132 				    const struct btrfs_path *path,
3133 				    const u64 hole_offset,
3134 				    const u64 hole_len)
3135 {
3136 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3137 	struct extent_map *em;
3138 	int ret;
3139 
3140 	em = alloc_extent_map();
3141 	if (!em) {
3142 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3143 			&BTRFS_I(inode)->runtime_flags);
3144 		return;
3145 	}
3146 
3147 	if (path) {
3148 		struct btrfs_file_extent_item *fi;
3149 
3150 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3151 				    struct btrfs_file_extent_item);
3152 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3153 		em->generation = -1;
3154 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3155 		    BTRFS_FILE_EXTENT_INLINE)
3156 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3157 				&BTRFS_I(inode)->runtime_flags);
3158 	} else {
3159 		em->start = hole_offset;
3160 		em->len = hole_len;
3161 		em->ram_bytes = em->len;
3162 		em->orig_start = hole_offset;
3163 		em->block_start = EXTENT_MAP_HOLE;
3164 		em->block_len = 0;
3165 		em->orig_block_len = 0;
3166 		em->compress_type = BTRFS_COMPRESS_NONE;
3167 		em->generation = trans->transid;
3168 	}
3169 
3170 	while (1) {
3171 		write_lock(&em_tree->lock);
3172 		ret = add_extent_mapping(em_tree, em, 1);
3173 		write_unlock(&em_tree->lock);
3174 		if (ret != -EEXIST) {
3175 			free_extent_map(em);
3176 			break;
3177 		}
3178 		btrfs_drop_extent_cache(inode, em->start,
3179 					em->start + em->len - 1, 0);
3180 	}
3181 
3182 	if (ret)
3183 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3184 			&BTRFS_I(inode)->runtime_flags);
3185 }
3186 
3187 /**
3188  * btrfs_clone() - clone a range from inode file to another
3189  *
3190  * @src: Inode to clone from
3191  * @inode: Inode to clone to
3192  * @off: Offset within source to start clone from
3193  * @olen: Original length, passed by user, of range to clone
3194  * @olen_aligned: Block-aligned value of olen, extent_same uses
3195  *               identical values here
3196  * @destoff: Offset within @inode to start clone
3197  */
3198 static int btrfs_clone(struct inode *src, struct inode *inode,
3199 		       const u64 off, const u64 olen, const u64 olen_aligned,
3200 		       const u64 destoff)
3201 {
3202 	struct btrfs_root *root = BTRFS_I(inode)->root;
3203 	struct btrfs_path *path = NULL;
3204 	struct extent_buffer *leaf;
3205 	struct btrfs_trans_handle *trans;
3206 	char *buf = NULL;
3207 	struct btrfs_key key;
3208 	u32 nritems;
3209 	int slot;
3210 	int ret;
3211 	int no_quota;
3212 	const u64 len = olen_aligned;
3213 	u64 last_disko = 0;
3214 	u64 last_dest_end = destoff;
3215 
3216 	ret = -ENOMEM;
3217 	buf = vmalloc(root->nodesize);
3218 	if (!buf)
3219 		return ret;
3220 
3221 	path = btrfs_alloc_path();
3222 	if (!path) {
3223 		vfree(buf);
3224 		return ret;
3225 	}
3226 
3227 	path->reada = 2;
3228 	/* clone data */
3229 	key.objectid = btrfs_ino(src);
3230 	key.type = BTRFS_EXTENT_DATA_KEY;
3231 	key.offset = off;
3232 
3233 	while (1) {
3234 		u64 next_key_min_offset = key.offset + 1;
3235 
3236 		/*
3237 		 * note the key will change type as we walk through the
3238 		 * tree.
3239 		 */
3240 		path->leave_spinning = 1;
3241 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3242 				0, 0);
3243 		if (ret < 0)
3244 			goto out;
3245 		/*
3246 		 * First search, if no extent item that starts at offset off was
3247 		 * found but the previous item is an extent item, it's possible
3248 		 * it might overlap our target range, therefore process it.
3249 		 */
3250 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3251 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3252 					      path->slots[0] - 1);
3253 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3254 				path->slots[0]--;
3255 		}
3256 
3257 		nritems = btrfs_header_nritems(path->nodes[0]);
3258 process_slot:
3259 		no_quota = 1;
3260 		if (path->slots[0] >= nritems) {
3261 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3262 			if (ret < 0)
3263 				goto out;
3264 			if (ret > 0)
3265 				break;
3266 			nritems = btrfs_header_nritems(path->nodes[0]);
3267 		}
3268 		leaf = path->nodes[0];
3269 		slot = path->slots[0];
3270 
3271 		btrfs_item_key_to_cpu(leaf, &key, slot);
3272 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3273 		    key.objectid != btrfs_ino(src))
3274 			break;
3275 
3276 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3277 			struct btrfs_file_extent_item *extent;
3278 			int type;
3279 			u32 size;
3280 			struct btrfs_key new_key;
3281 			u64 disko = 0, diskl = 0;
3282 			u64 datao = 0, datal = 0;
3283 			u8 comp;
3284 			u64 drop_start;
3285 
3286 			extent = btrfs_item_ptr(leaf, slot,
3287 						struct btrfs_file_extent_item);
3288 			comp = btrfs_file_extent_compression(leaf, extent);
3289 			type = btrfs_file_extent_type(leaf, extent);
3290 			if (type == BTRFS_FILE_EXTENT_REG ||
3291 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3292 				disko = btrfs_file_extent_disk_bytenr(leaf,
3293 								      extent);
3294 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3295 								 extent);
3296 				datao = btrfs_file_extent_offset(leaf, extent);
3297 				datal = btrfs_file_extent_num_bytes(leaf,
3298 								    extent);
3299 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3300 				/* take upper bound, may be compressed */
3301 				datal = btrfs_file_extent_ram_bytes(leaf,
3302 								    extent);
3303 			}
3304 
3305 			/*
3306 			 * The first search might have left us at an extent
3307 			 * item that ends before our target range's start, can
3308 			 * happen if we have holes and NO_HOLES feature enabled.
3309 			 */
3310 			if (key.offset + datal <= off) {
3311 				path->slots[0]++;
3312 				goto process_slot;
3313 			} else if (key.offset >= off + len) {
3314 				break;
3315 			}
3316 			next_key_min_offset = key.offset + datal;
3317 			size = btrfs_item_size_nr(leaf, slot);
3318 			read_extent_buffer(leaf, buf,
3319 					   btrfs_item_ptr_offset(leaf, slot),
3320 					   size);
3321 
3322 			btrfs_release_path(path);
3323 			path->leave_spinning = 0;
3324 
3325 			memcpy(&new_key, &key, sizeof(new_key));
3326 			new_key.objectid = btrfs_ino(inode);
3327 			if (off <= key.offset)
3328 				new_key.offset = key.offset + destoff - off;
3329 			else
3330 				new_key.offset = destoff;
3331 
3332 			/*
3333 			 * Deal with a hole that doesn't have an extent item
3334 			 * that represents it (NO_HOLES feature enabled).
3335 			 * This hole is either in the middle of the cloning
3336 			 * range or at the beginning (fully overlaps it or
3337 			 * partially overlaps it).
3338 			 */
3339 			if (new_key.offset != last_dest_end)
3340 				drop_start = last_dest_end;
3341 			else
3342 				drop_start = new_key.offset;
3343 
3344 			/*
3345 			 * 1 - adjusting old extent (we may have to split it)
3346 			 * 1 - add new extent
3347 			 * 1 - inode update
3348 			 */
3349 			trans = btrfs_start_transaction(root, 3);
3350 			if (IS_ERR(trans)) {
3351 				ret = PTR_ERR(trans);
3352 				goto out;
3353 			}
3354 
3355 			if (type == BTRFS_FILE_EXTENT_REG ||
3356 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3357 				/*
3358 				 *    a  | --- range to clone ---|  b
3359 				 * | ------------- extent ------------- |
3360 				 */
3361 
3362 				/* subtract range b */
3363 				if (key.offset + datal > off + len)
3364 					datal = off + len - key.offset;
3365 
3366 				/* subtract range a */
3367 				if (off > key.offset) {
3368 					datao += off - key.offset;
3369 					datal -= off - key.offset;
3370 				}
3371 
3372 				ret = btrfs_drop_extents(trans, root, inode,
3373 							 drop_start,
3374 							 new_key.offset + datal,
3375 							 1);
3376 				if (ret) {
3377 					if (ret != -EOPNOTSUPP)
3378 						btrfs_abort_transaction(trans,
3379 								root, ret);
3380 					btrfs_end_transaction(trans, root);
3381 					goto out;
3382 				}
3383 
3384 				ret = btrfs_insert_empty_item(trans, root, path,
3385 							      &new_key, size);
3386 				if (ret) {
3387 					btrfs_abort_transaction(trans, root,
3388 								ret);
3389 					btrfs_end_transaction(trans, root);
3390 					goto out;
3391 				}
3392 
3393 				leaf = path->nodes[0];
3394 				slot = path->slots[0];
3395 				write_extent_buffer(leaf, buf,
3396 					    btrfs_item_ptr_offset(leaf, slot),
3397 					    size);
3398 
3399 				extent = btrfs_item_ptr(leaf, slot,
3400 						struct btrfs_file_extent_item);
3401 
3402 				/* disko == 0 means it's a hole */
3403 				if (!disko)
3404 					datao = 0;
3405 
3406 				btrfs_set_file_extent_offset(leaf, extent,
3407 							     datao);
3408 				btrfs_set_file_extent_num_bytes(leaf, extent,
3409 								datal);
3410 
3411 				/*
3412 				 * We need to look up the roots that point at
3413 				 * this bytenr and see if the new root does.  If
3414 				 * it does not we need to make sure we update
3415 				 * quotas appropriately.
3416 				 */
3417 				if (disko && root != BTRFS_I(src)->root &&
3418 				    disko != last_disko) {
3419 					no_quota = check_ref(trans, root,
3420 							     disko);
3421 					if (no_quota < 0) {
3422 						btrfs_abort_transaction(trans,
3423 									root,
3424 									ret);
3425 						btrfs_end_transaction(trans,
3426 								      root);
3427 						ret = no_quota;
3428 						goto out;
3429 					}
3430 				}
3431 
3432 				if (disko) {
3433 					inode_add_bytes(inode, datal);
3434 					ret = btrfs_inc_extent_ref(trans, root,
3435 							disko, diskl, 0,
3436 							root->root_key.objectid,
3437 							btrfs_ino(inode),
3438 							new_key.offset - datao,
3439 							no_quota);
3440 					if (ret) {
3441 						btrfs_abort_transaction(trans,
3442 									root,
3443 									ret);
3444 						btrfs_end_transaction(trans,
3445 								      root);
3446 						goto out;
3447 
3448 					}
3449 				}
3450 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3451 				u64 skip = 0;
3452 				u64 trim = 0;
3453 				u64 aligned_end = 0;
3454 
3455 				if (off > key.offset) {
3456 					skip = off - key.offset;
3457 					new_key.offset += skip;
3458 				}
3459 
3460 				if (key.offset + datal > off + len)
3461 					trim = key.offset + datal - (off + len);
3462 
3463 				if (comp && (skip || trim)) {
3464 					ret = -EINVAL;
3465 					btrfs_end_transaction(trans, root);
3466 					goto out;
3467 				}
3468 				size -= skip + trim;
3469 				datal -= skip + trim;
3470 
3471 				aligned_end = ALIGN(new_key.offset + datal,
3472 						    root->sectorsize);
3473 				ret = btrfs_drop_extents(trans, root, inode,
3474 							 drop_start,
3475 							 aligned_end,
3476 							 1);
3477 				if (ret) {
3478 					if (ret != -EOPNOTSUPP)
3479 						btrfs_abort_transaction(trans,
3480 							root, ret);
3481 					btrfs_end_transaction(trans, root);
3482 					goto out;
3483 				}
3484 
3485 				ret = btrfs_insert_empty_item(trans, root, path,
3486 							      &new_key, size);
3487 				if (ret) {
3488 					btrfs_abort_transaction(trans, root,
3489 								ret);
3490 					btrfs_end_transaction(trans, root);
3491 					goto out;
3492 				}
3493 
3494 				if (skip) {
3495 					u32 start =
3496 					  btrfs_file_extent_calc_inline_size(0);
3497 					memmove(buf+start, buf+start+skip,
3498 						datal);
3499 				}
3500 
3501 				leaf = path->nodes[0];
3502 				slot = path->slots[0];
3503 				write_extent_buffer(leaf, buf,
3504 					    btrfs_item_ptr_offset(leaf, slot),
3505 					    size);
3506 				inode_add_bytes(inode, datal);
3507 			}
3508 
3509 			/* If we have an implicit hole (NO_HOLES feature). */
3510 			if (drop_start < new_key.offset)
3511 				clone_update_extent_map(inode, trans,
3512 						NULL, drop_start,
3513 						new_key.offset - drop_start);
3514 
3515 			clone_update_extent_map(inode, trans, path, 0, 0);
3516 
3517 			btrfs_mark_buffer_dirty(leaf);
3518 			btrfs_release_path(path);
3519 
3520 			last_dest_end = ALIGN(new_key.offset + datal,
3521 					      root->sectorsize);
3522 			ret = clone_finish_inode_update(trans, inode,
3523 							last_dest_end,
3524 							destoff, olen);
3525 			if (ret)
3526 				goto out;
3527 			if (new_key.offset + datal >= destoff + len)
3528 				break;
3529 		}
3530 		btrfs_release_path(path);
3531 		key.offset = next_key_min_offset;
3532 	}
3533 	ret = 0;
3534 
3535 	if (last_dest_end < destoff + len) {
3536 		/*
3537 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3538 		 * fully or partially overlaps our cloning range at its end.
3539 		 */
3540 		btrfs_release_path(path);
3541 
3542 		/*
3543 		 * 1 - remove extent(s)
3544 		 * 1 - inode update
3545 		 */
3546 		trans = btrfs_start_transaction(root, 2);
3547 		if (IS_ERR(trans)) {
3548 			ret = PTR_ERR(trans);
3549 			goto out;
3550 		}
3551 		ret = btrfs_drop_extents(trans, root, inode,
3552 					 last_dest_end, destoff + len, 1);
3553 		if (ret) {
3554 			if (ret != -EOPNOTSUPP)
3555 				btrfs_abort_transaction(trans, root, ret);
3556 			btrfs_end_transaction(trans, root);
3557 			goto out;
3558 		}
3559 		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3560 					destoff + len - last_dest_end);
3561 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3562 						destoff, olen);
3563 	}
3564 
3565 out:
3566 	btrfs_free_path(path);
3567 	vfree(buf);
3568 	return ret;
3569 }
3570 
3571 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3572 				       u64 off, u64 olen, u64 destoff)
3573 {
3574 	struct inode *inode = file_inode(file);
3575 	struct btrfs_root *root = BTRFS_I(inode)->root;
3576 	struct fd src_file;
3577 	struct inode *src;
3578 	int ret;
3579 	u64 len = olen;
3580 	u64 bs = root->fs_info->sb->s_blocksize;
3581 	int same_inode = 0;
3582 
3583 	/*
3584 	 * TODO:
3585 	 * - split compressed inline extents.  annoying: we need to
3586 	 *   decompress into destination's address_space (the file offset
3587 	 *   may change, so source mapping won't do), then recompress (or
3588 	 *   otherwise reinsert) a subrange.
3589 	 *
3590 	 * - split destination inode's inline extents.  The inline extents can
3591 	 *   be either compressed or non-compressed.
3592 	 */
3593 
3594 	/* the destination must be opened for writing */
3595 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3596 		return -EINVAL;
3597 
3598 	if (btrfs_root_readonly(root))
3599 		return -EROFS;
3600 
3601 	ret = mnt_want_write_file(file);
3602 	if (ret)
3603 		return ret;
3604 
3605 	src_file = fdget(srcfd);
3606 	if (!src_file.file) {
3607 		ret = -EBADF;
3608 		goto out_drop_write;
3609 	}
3610 
3611 	ret = -EXDEV;
3612 	if (src_file.file->f_path.mnt != file->f_path.mnt)
3613 		goto out_fput;
3614 
3615 	src = file_inode(src_file.file);
3616 
3617 	ret = -EINVAL;
3618 	if (src == inode)
3619 		same_inode = 1;
3620 
3621 	/* the src must be open for reading */
3622 	if (!(src_file.file->f_mode & FMODE_READ))
3623 		goto out_fput;
3624 
3625 	/* don't make the dst file partly checksummed */
3626 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3627 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3628 		goto out_fput;
3629 
3630 	ret = -EISDIR;
3631 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3632 		goto out_fput;
3633 
3634 	ret = -EXDEV;
3635 	if (src->i_sb != inode->i_sb)
3636 		goto out_fput;
3637 
3638 	if (!same_inode) {
3639 		if (inode < src) {
3640 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3641 			mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3642 		} else {
3643 			mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3644 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3645 		}
3646 	} else {
3647 		mutex_lock(&src->i_mutex);
3648 	}
3649 
3650 	/* determine range to clone */
3651 	ret = -EINVAL;
3652 	if (off + len > src->i_size || off + len < off)
3653 		goto out_unlock;
3654 	if (len == 0)
3655 		olen = len = src->i_size - off;
3656 	/* if we extend to eof, continue to block boundary */
3657 	if (off + len == src->i_size)
3658 		len = ALIGN(src->i_size, bs) - off;
3659 
3660 	if (len == 0) {
3661 		ret = 0;
3662 		goto out_unlock;
3663 	}
3664 
3665 	/* verify the end result is block aligned */
3666 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3667 	    !IS_ALIGNED(destoff, bs))
3668 		goto out_unlock;
3669 
3670 	/* verify if ranges are overlapped within the same file */
3671 	if (same_inode) {
3672 		if (destoff + len > off && destoff < off + len)
3673 			goto out_unlock;
3674 	}
3675 
3676 	if (destoff > inode->i_size) {
3677 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3678 		if (ret)
3679 			goto out_unlock;
3680 	}
3681 
3682 	/*
3683 	 * Lock the target range too. Right after we replace the file extent
3684 	 * items in the fs tree (which now point to the cloned data), we might
3685 	 * have a worker replace them with extent items relative to a write
3686 	 * operation that was issued before this clone operation (i.e. confront
3687 	 * with inode.c:btrfs_finish_ordered_io).
3688 	 */
3689 	if (same_inode) {
3690 		u64 lock_start = min_t(u64, off, destoff);
3691 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3692 
3693 		lock_extent_range(src, lock_start, lock_len);
3694 	} else {
3695 		lock_extent_range(src, off, len);
3696 		lock_extent_range(inode, destoff, len);
3697 	}
3698 
3699 	ret = btrfs_clone(src, inode, off, olen, len, destoff);
3700 
3701 	if (same_inode) {
3702 		u64 lock_start = min_t(u64, off, destoff);
3703 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3704 
3705 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3706 	} else {
3707 		unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3708 		unlock_extent(&BTRFS_I(inode)->io_tree, destoff,
3709 			      destoff + len - 1);
3710 	}
3711 	/*
3712 	 * Truncate page cache pages so that future reads will see the cloned
3713 	 * data immediately and not the previous data.
3714 	 */
3715 	truncate_inode_pages_range(&inode->i_data, destoff,
3716 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3717 out_unlock:
3718 	if (!same_inode) {
3719 		if (inode < src) {
3720 			mutex_unlock(&src->i_mutex);
3721 			mutex_unlock(&inode->i_mutex);
3722 		} else {
3723 			mutex_unlock(&inode->i_mutex);
3724 			mutex_unlock(&src->i_mutex);
3725 		}
3726 	} else {
3727 		mutex_unlock(&src->i_mutex);
3728 	}
3729 out_fput:
3730 	fdput(src_file);
3731 out_drop_write:
3732 	mnt_drop_write_file(file);
3733 	return ret;
3734 }
3735 
3736 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3737 {
3738 	struct btrfs_ioctl_clone_range_args args;
3739 
3740 	if (copy_from_user(&args, argp, sizeof(args)))
3741 		return -EFAULT;
3742 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3743 				 args.src_length, args.dest_offset);
3744 }
3745 
3746 /*
3747  * there are many ways the trans_start and trans_end ioctls can lead
3748  * to deadlocks.  They should only be used by applications that
3749  * basically own the machine, and have a very in depth understanding
3750  * of all the possible deadlocks and enospc problems.
3751  */
3752 static long btrfs_ioctl_trans_start(struct file *file)
3753 {
3754 	struct inode *inode = file_inode(file);
3755 	struct btrfs_root *root = BTRFS_I(inode)->root;
3756 	struct btrfs_trans_handle *trans;
3757 	int ret;
3758 
3759 	ret = -EPERM;
3760 	if (!capable(CAP_SYS_ADMIN))
3761 		goto out;
3762 
3763 	ret = -EINPROGRESS;
3764 	if (file->private_data)
3765 		goto out;
3766 
3767 	ret = -EROFS;
3768 	if (btrfs_root_readonly(root))
3769 		goto out;
3770 
3771 	ret = mnt_want_write_file(file);
3772 	if (ret)
3773 		goto out;
3774 
3775 	atomic_inc(&root->fs_info->open_ioctl_trans);
3776 
3777 	ret = -ENOMEM;
3778 	trans = btrfs_start_ioctl_transaction(root);
3779 	if (IS_ERR(trans))
3780 		goto out_drop;
3781 
3782 	file->private_data = trans;
3783 	return 0;
3784 
3785 out_drop:
3786 	atomic_dec(&root->fs_info->open_ioctl_trans);
3787 	mnt_drop_write_file(file);
3788 out:
3789 	return ret;
3790 }
3791 
3792 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3793 {
3794 	struct inode *inode = file_inode(file);
3795 	struct btrfs_root *root = BTRFS_I(inode)->root;
3796 	struct btrfs_root *new_root;
3797 	struct btrfs_dir_item *di;
3798 	struct btrfs_trans_handle *trans;
3799 	struct btrfs_path *path;
3800 	struct btrfs_key location;
3801 	struct btrfs_disk_key disk_key;
3802 	u64 objectid = 0;
3803 	u64 dir_id;
3804 	int ret;
3805 
3806 	if (!capable(CAP_SYS_ADMIN))
3807 		return -EPERM;
3808 
3809 	ret = mnt_want_write_file(file);
3810 	if (ret)
3811 		return ret;
3812 
3813 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3814 		ret = -EFAULT;
3815 		goto out;
3816 	}
3817 
3818 	if (!objectid)
3819 		objectid = BTRFS_FS_TREE_OBJECTID;
3820 
3821 	location.objectid = objectid;
3822 	location.type = BTRFS_ROOT_ITEM_KEY;
3823 	location.offset = (u64)-1;
3824 
3825 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3826 	if (IS_ERR(new_root)) {
3827 		ret = PTR_ERR(new_root);
3828 		goto out;
3829 	}
3830 
3831 	path = btrfs_alloc_path();
3832 	if (!path) {
3833 		ret = -ENOMEM;
3834 		goto out;
3835 	}
3836 	path->leave_spinning = 1;
3837 
3838 	trans = btrfs_start_transaction(root, 1);
3839 	if (IS_ERR(trans)) {
3840 		btrfs_free_path(path);
3841 		ret = PTR_ERR(trans);
3842 		goto out;
3843 	}
3844 
3845 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3846 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3847 				   dir_id, "default", 7, 1);
3848 	if (IS_ERR_OR_NULL(di)) {
3849 		btrfs_free_path(path);
3850 		btrfs_end_transaction(trans, root);
3851 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3852 			   "item, this isn't going to work");
3853 		ret = -ENOENT;
3854 		goto out;
3855 	}
3856 
3857 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3858 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3859 	btrfs_mark_buffer_dirty(path->nodes[0]);
3860 	btrfs_free_path(path);
3861 
3862 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3863 	btrfs_end_transaction(trans, root);
3864 out:
3865 	mnt_drop_write_file(file);
3866 	return ret;
3867 }
3868 
3869 void btrfs_get_block_group_info(struct list_head *groups_list,
3870 				struct btrfs_ioctl_space_info *space)
3871 {
3872 	struct btrfs_block_group_cache *block_group;
3873 
3874 	space->total_bytes = 0;
3875 	space->used_bytes = 0;
3876 	space->flags = 0;
3877 	list_for_each_entry(block_group, groups_list, list) {
3878 		space->flags = block_group->flags;
3879 		space->total_bytes += block_group->key.offset;
3880 		space->used_bytes +=
3881 			btrfs_block_group_used(&block_group->item);
3882 	}
3883 }
3884 
3885 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3886 {
3887 	struct btrfs_ioctl_space_args space_args;
3888 	struct btrfs_ioctl_space_info space;
3889 	struct btrfs_ioctl_space_info *dest;
3890 	struct btrfs_ioctl_space_info *dest_orig;
3891 	struct btrfs_ioctl_space_info __user *user_dest;
3892 	struct btrfs_space_info *info;
3893 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3894 		       BTRFS_BLOCK_GROUP_SYSTEM,
3895 		       BTRFS_BLOCK_GROUP_METADATA,
3896 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3897 	int num_types = 4;
3898 	int alloc_size;
3899 	int ret = 0;
3900 	u64 slot_count = 0;
3901 	int i, c;
3902 
3903 	if (copy_from_user(&space_args,
3904 			   (struct btrfs_ioctl_space_args __user *)arg,
3905 			   sizeof(space_args)))
3906 		return -EFAULT;
3907 
3908 	for (i = 0; i < num_types; i++) {
3909 		struct btrfs_space_info *tmp;
3910 
3911 		info = NULL;
3912 		rcu_read_lock();
3913 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3914 					list) {
3915 			if (tmp->flags == types[i]) {
3916 				info = tmp;
3917 				break;
3918 			}
3919 		}
3920 		rcu_read_unlock();
3921 
3922 		if (!info)
3923 			continue;
3924 
3925 		down_read(&info->groups_sem);
3926 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3927 			if (!list_empty(&info->block_groups[c]))
3928 				slot_count++;
3929 		}
3930 		up_read(&info->groups_sem);
3931 	}
3932 
3933 	/*
3934 	 * Global block reserve, exported as a space_info
3935 	 */
3936 	slot_count++;
3937 
3938 	/* space_slots == 0 means they are asking for a count */
3939 	if (space_args.space_slots == 0) {
3940 		space_args.total_spaces = slot_count;
3941 		goto out;
3942 	}
3943 
3944 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3945 
3946 	alloc_size = sizeof(*dest) * slot_count;
3947 
3948 	/* we generally have at most 6 or so space infos, one for each raid
3949 	 * level.  So, a whole page should be more than enough for everyone
3950 	 */
3951 	if (alloc_size > PAGE_CACHE_SIZE)
3952 		return -ENOMEM;
3953 
3954 	space_args.total_spaces = 0;
3955 	dest = kmalloc(alloc_size, GFP_NOFS);
3956 	if (!dest)
3957 		return -ENOMEM;
3958 	dest_orig = dest;
3959 
3960 	/* now we have a buffer to copy into */
3961 	for (i = 0; i < num_types; i++) {
3962 		struct btrfs_space_info *tmp;
3963 
3964 		if (!slot_count)
3965 			break;
3966 
3967 		info = NULL;
3968 		rcu_read_lock();
3969 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3970 					list) {
3971 			if (tmp->flags == types[i]) {
3972 				info = tmp;
3973 				break;
3974 			}
3975 		}
3976 		rcu_read_unlock();
3977 
3978 		if (!info)
3979 			continue;
3980 		down_read(&info->groups_sem);
3981 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3982 			if (!list_empty(&info->block_groups[c])) {
3983 				btrfs_get_block_group_info(
3984 					&info->block_groups[c], &space);
3985 				memcpy(dest, &space, sizeof(space));
3986 				dest++;
3987 				space_args.total_spaces++;
3988 				slot_count--;
3989 			}
3990 			if (!slot_count)
3991 				break;
3992 		}
3993 		up_read(&info->groups_sem);
3994 	}
3995 
3996 	/*
3997 	 * Add global block reserve
3998 	 */
3999 	if (slot_count) {
4000 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4001 
4002 		spin_lock(&block_rsv->lock);
4003 		space.total_bytes = block_rsv->size;
4004 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4005 		spin_unlock(&block_rsv->lock);
4006 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4007 		memcpy(dest, &space, sizeof(space));
4008 		space_args.total_spaces++;
4009 	}
4010 
4011 	user_dest = (struct btrfs_ioctl_space_info __user *)
4012 		(arg + sizeof(struct btrfs_ioctl_space_args));
4013 
4014 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4015 		ret = -EFAULT;
4016 
4017 	kfree(dest_orig);
4018 out:
4019 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4020 		ret = -EFAULT;
4021 
4022 	return ret;
4023 }
4024 
4025 /*
4026  * there are many ways the trans_start and trans_end ioctls can lead
4027  * to deadlocks.  They should only be used by applications that
4028  * basically own the machine, and have a very in depth understanding
4029  * of all the possible deadlocks and enospc problems.
4030  */
4031 long btrfs_ioctl_trans_end(struct file *file)
4032 {
4033 	struct inode *inode = file_inode(file);
4034 	struct btrfs_root *root = BTRFS_I(inode)->root;
4035 	struct btrfs_trans_handle *trans;
4036 
4037 	trans = file->private_data;
4038 	if (!trans)
4039 		return -EINVAL;
4040 	file->private_data = NULL;
4041 
4042 	btrfs_end_transaction(trans, root);
4043 
4044 	atomic_dec(&root->fs_info->open_ioctl_trans);
4045 
4046 	mnt_drop_write_file(file);
4047 	return 0;
4048 }
4049 
4050 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4051 					    void __user *argp)
4052 {
4053 	struct btrfs_trans_handle *trans;
4054 	u64 transid;
4055 	int ret;
4056 
4057 	trans = btrfs_attach_transaction_barrier(root);
4058 	if (IS_ERR(trans)) {
4059 		if (PTR_ERR(trans) != -ENOENT)
4060 			return PTR_ERR(trans);
4061 
4062 		/* No running transaction, don't bother */
4063 		transid = root->fs_info->last_trans_committed;
4064 		goto out;
4065 	}
4066 	transid = trans->transid;
4067 	ret = btrfs_commit_transaction_async(trans, root, 0);
4068 	if (ret) {
4069 		btrfs_end_transaction(trans, root);
4070 		return ret;
4071 	}
4072 out:
4073 	if (argp)
4074 		if (copy_to_user(argp, &transid, sizeof(transid)))
4075 			return -EFAULT;
4076 	return 0;
4077 }
4078 
4079 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4080 					   void __user *argp)
4081 {
4082 	u64 transid;
4083 
4084 	if (argp) {
4085 		if (copy_from_user(&transid, argp, sizeof(transid)))
4086 			return -EFAULT;
4087 	} else {
4088 		transid = 0;  /* current trans */
4089 	}
4090 	return btrfs_wait_for_commit(root, transid);
4091 }
4092 
4093 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4094 {
4095 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4096 	struct btrfs_ioctl_scrub_args *sa;
4097 	int ret;
4098 
4099 	if (!capable(CAP_SYS_ADMIN))
4100 		return -EPERM;
4101 
4102 	sa = memdup_user(arg, sizeof(*sa));
4103 	if (IS_ERR(sa))
4104 		return PTR_ERR(sa);
4105 
4106 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4107 		ret = mnt_want_write_file(file);
4108 		if (ret)
4109 			goto out;
4110 	}
4111 
4112 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4113 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4114 			      0);
4115 
4116 	if (copy_to_user(arg, sa, sizeof(*sa)))
4117 		ret = -EFAULT;
4118 
4119 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4120 		mnt_drop_write_file(file);
4121 out:
4122 	kfree(sa);
4123 	return ret;
4124 }
4125 
4126 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4127 {
4128 	if (!capable(CAP_SYS_ADMIN))
4129 		return -EPERM;
4130 
4131 	return btrfs_scrub_cancel(root->fs_info);
4132 }
4133 
4134 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4135 				       void __user *arg)
4136 {
4137 	struct btrfs_ioctl_scrub_args *sa;
4138 	int ret;
4139 
4140 	if (!capable(CAP_SYS_ADMIN))
4141 		return -EPERM;
4142 
4143 	sa = memdup_user(arg, sizeof(*sa));
4144 	if (IS_ERR(sa))
4145 		return PTR_ERR(sa);
4146 
4147 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4148 
4149 	if (copy_to_user(arg, sa, sizeof(*sa)))
4150 		ret = -EFAULT;
4151 
4152 	kfree(sa);
4153 	return ret;
4154 }
4155 
4156 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4157 				      void __user *arg)
4158 {
4159 	struct btrfs_ioctl_get_dev_stats *sa;
4160 	int ret;
4161 
4162 	sa = memdup_user(arg, sizeof(*sa));
4163 	if (IS_ERR(sa))
4164 		return PTR_ERR(sa);
4165 
4166 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4167 		kfree(sa);
4168 		return -EPERM;
4169 	}
4170 
4171 	ret = btrfs_get_dev_stats(root, sa);
4172 
4173 	if (copy_to_user(arg, sa, sizeof(*sa)))
4174 		ret = -EFAULT;
4175 
4176 	kfree(sa);
4177 	return ret;
4178 }
4179 
4180 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4181 {
4182 	struct btrfs_ioctl_dev_replace_args *p;
4183 	int ret;
4184 
4185 	if (!capable(CAP_SYS_ADMIN))
4186 		return -EPERM;
4187 
4188 	p = memdup_user(arg, sizeof(*p));
4189 	if (IS_ERR(p))
4190 		return PTR_ERR(p);
4191 
4192 	switch (p->cmd) {
4193 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4194 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4195 			ret = -EROFS;
4196 			goto out;
4197 		}
4198 		if (atomic_xchg(
4199 			&root->fs_info->mutually_exclusive_operation_running,
4200 			1)) {
4201 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4202 		} else {
4203 			ret = btrfs_dev_replace_start(root, p);
4204 			atomic_set(
4205 			 &root->fs_info->mutually_exclusive_operation_running,
4206 			 0);
4207 		}
4208 		break;
4209 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4210 		btrfs_dev_replace_status(root->fs_info, p);
4211 		ret = 0;
4212 		break;
4213 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4214 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
4215 		break;
4216 	default:
4217 		ret = -EINVAL;
4218 		break;
4219 	}
4220 
4221 	if (copy_to_user(arg, p, sizeof(*p)))
4222 		ret = -EFAULT;
4223 out:
4224 	kfree(p);
4225 	return ret;
4226 }
4227 
4228 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4229 {
4230 	int ret = 0;
4231 	int i;
4232 	u64 rel_ptr;
4233 	int size;
4234 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4235 	struct inode_fs_paths *ipath = NULL;
4236 	struct btrfs_path *path;
4237 
4238 	if (!capable(CAP_DAC_READ_SEARCH))
4239 		return -EPERM;
4240 
4241 	path = btrfs_alloc_path();
4242 	if (!path) {
4243 		ret = -ENOMEM;
4244 		goto out;
4245 	}
4246 
4247 	ipa = memdup_user(arg, sizeof(*ipa));
4248 	if (IS_ERR(ipa)) {
4249 		ret = PTR_ERR(ipa);
4250 		ipa = NULL;
4251 		goto out;
4252 	}
4253 
4254 	size = min_t(u32, ipa->size, 4096);
4255 	ipath = init_ipath(size, root, path);
4256 	if (IS_ERR(ipath)) {
4257 		ret = PTR_ERR(ipath);
4258 		ipath = NULL;
4259 		goto out;
4260 	}
4261 
4262 	ret = paths_from_inode(ipa->inum, ipath);
4263 	if (ret < 0)
4264 		goto out;
4265 
4266 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4267 		rel_ptr = ipath->fspath->val[i] -
4268 			  (u64)(unsigned long)ipath->fspath->val;
4269 		ipath->fspath->val[i] = rel_ptr;
4270 	}
4271 
4272 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4273 			   (void *)(unsigned long)ipath->fspath, size);
4274 	if (ret) {
4275 		ret = -EFAULT;
4276 		goto out;
4277 	}
4278 
4279 out:
4280 	btrfs_free_path(path);
4281 	free_ipath(ipath);
4282 	kfree(ipa);
4283 
4284 	return ret;
4285 }
4286 
4287 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4288 {
4289 	struct btrfs_data_container *inodes = ctx;
4290 	const size_t c = 3 * sizeof(u64);
4291 
4292 	if (inodes->bytes_left >= c) {
4293 		inodes->bytes_left -= c;
4294 		inodes->val[inodes->elem_cnt] = inum;
4295 		inodes->val[inodes->elem_cnt + 1] = offset;
4296 		inodes->val[inodes->elem_cnt + 2] = root;
4297 		inodes->elem_cnt += 3;
4298 	} else {
4299 		inodes->bytes_missing += c - inodes->bytes_left;
4300 		inodes->bytes_left = 0;
4301 		inodes->elem_missed += 3;
4302 	}
4303 
4304 	return 0;
4305 }
4306 
4307 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4308 					void __user *arg)
4309 {
4310 	int ret = 0;
4311 	int size;
4312 	struct btrfs_ioctl_logical_ino_args *loi;
4313 	struct btrfs_data_container *inodes = NULL;
4314 	struct btrfs_path *path = NULL;
4315 
4316 	if (!capable(CAP_SYS_ADMIN))
4317 		return -EPERM;
4318 
4319 	loi = memdup_user(arg, sizeof(*loi));
4320 	if (IS_ERR(loi)) {
4321 		ret = PTR_ERR(loi);
4322 		loi = NULL;
4323 		goto out;
4324 	}
4325 
4326 	path = btrfs_alloc_path();
4327 	if (!path) {
4328 		ret = -ENOMEM;
4329 		goto out;
4330 	}
4331 
4332 	size = min_t(u32, loi->size, 64 * 1024);
4333 	inodes = init_data_container(size);
4334 	if (IS_ERR(inodes)) {
4335 		ret = PTR_ERR(inodes);
4336 		inodes = NULL;
4337 		goto out;
4338 	}
4339 
4340 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4341 					  build_ino_list, inodes);
4342 	if (ret == -EINVAL)
4343 		ret = -ENOENT;
4344 	if (ret < 0)
4345 		goto out;
4346 
4347 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4348 			   (void *)(unsigned long)inodes, size);
4349 	if (ret)
4350 		ret = -EFAULT;
4351 
4352 out:
4353 	btrfs_free_path(path);
4354 	vfree(inodes);
4355 	kfree(loi);
4356 
4357 	return ret;
4358 }
4359 
4360 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4361 			       struct btrfs_ioctl_balance_args *bargs)
4362 {
4363 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4364 
4365 	bargs->flags = bctl->flags;
4366 
4367 	if (atomic_read(&fs_info->balance_running))
4368 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4369 	if (atomic_read(&fs_info->balance_pause_req))
4370 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4371 	if (atomic_read(&fs_info->balance_cancel_req))
4372 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4373 
4374 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4375 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4376 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4377 
4378 	if (lock) {
4379 		spin_lock(&fs_info->balance_lock);
4380 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4381 		spin_unlock(&fs_info->balance_lock);
4382 	} else {
4383 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4384 	}
4385 }
4386 
4387 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4388 {
4389 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4390 	struct btrfs_fs_info *fs_info = root->fs_info;
4391 	struct btrfs_ioctl_balance_args *bargs;
4392 	struct btrfs_balance_control *bctl;
4393 	bool need_unlock; /* for mut. excl. ops lock */
4394 	int ret;
4395 
4396 	if (!capable(CAP_SYS_ADMIN))
4397 		return -EPERM;
4398 
4399 	ret = mnt_want_write_file(file);
4400 	if (ret)
4401 		return ret;
4402 
4403 again:
4404 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4405 		mutex_lock(&fs_info->volume_mutex);
4406 		mutex_lock(&fs_info->balance_mutex);
4407 		need_unlock = true;
4408 		goto locked;
4409 	}
4410 
4411 	/*
4412 	 * mut. excl. ops lock is locked.  Three possibilites:
4413 	 *   (1) some other op is running
4414 	 *   (2) balance is running
4415 	 *   (3) balance is paused -- special case (think resume)
4416 	 */
4417 	mutex_lock(&fs_info->balance_mutex);
4418 	if (fs_info->balance_ctl) {
4419 		/* this is either (2) or (3) */
4420 		if (!atomic_read(&fs_info->balance_running)) {
4421 			mutex_unlock(&fs_info->balance_mutex);
4422 			if (!mutex_trylock(&fs_info->volume_mutex))
4423 				goto again;
4424 			mutex_lock(&fs_info->balance_mutex);
4425 
4426 			if (fs_info->balance_ctl &&
4427 			    !atomic_read(&fs_info->balance_running)) {
4428 				/* this is (3) */
4429 				need_unlock = false;
4430 				goto locked;
4431 			}
4432 
4433 			mutex_unlock(&fs_info->balance_mutex);
4434 			mutex_unlock(&fs_info->volume_mutex);
4435 			goto again;
4436 		} else {
4437 			/* this is (2) */
4438 			mutex_unlock(&fs_info->balance_mutex);
4439 			ret = -EINPROGRESS;
4440 			goto out;
4441 		}
4442 	} else {
4443 		/* this is (1) */
4444 		mutex_unlock(&fs_info->balance_mutex);
4445 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4446 		goto out;
4447 	}
4448 
4449 locked:
4450 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4451 
4452 	if (arg) {
4453 		bargs = memdup_user(arg, sizeof(*bargs));
4454 		if (IS_ERR(bargs)) {
4455 			ret = PTR_ERR(bargs);
4456 			goto out_unlock;
4457 		}
4458 
4459 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4460 			if (!fs_info->balance_ctl) {
4461 				ret = -ENOTCONN;
4462 				goto out_bargs;
4463 			}
4464 
4465 			bctl = fs_info->balance_ctl;
4466 			spin_lock(&fs_info->balance_lock);
4467 			bctl->flags |= BTRFS_BALANCE_RESUME;
4468 			spin_unlock(&fs_info->balance_lock);
4469 
4470 			goto do_balance;
4471 		}
4472 	} else {
4473 		bargs = NULL;
4474 	}
4475 
4476 	if (fs_info->balance_ctl) {
4477 		ret = -EINPROGRESS;
4478 		goto out_bargs;
4479 	}
4480 
4481 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4482 	if (!bctl) {
4483 		ret = -ENOMEM;
4484 		goto out_bargs;
4485 	}
4486 
4487 	bctl->fs_info = fs_info;
4488 	if (arg) {
4489 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4490 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4491 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4492 
4493 		bctl->flags = bargs->flags;
4494 	} else {
4495 		/* balance everything - no filters */
4496 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4497 	}
4498 
4499 do_balance:
4500 	/*
4501 	 * Ownership of bctl and mutually_exclusive_operation_running
4502 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4503 	 * or, if restriper was paused all the way until unmount, in
4504 	 * free_fs_info.  mutually_exclusive_operation_running is
4505 	 * cleared in __cancel_balance.
4506 	 */
4507 	need_unlock = false;
4508 
4509 	ret = btrfs_balance(bctl, bargs);
4510 
4511 	if (arg) {
4512 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4513 			ret = -EFAULT;
4514 	}
4515 
4516 out_bargs:
4517 	kfree(bargs);
4518 out_unlock:
4519 	mutex_unlock(&fs_info->balance_mutex);
4520 	mutex_unlock(&fs_info->volume_mutex);
4521 	if (need_unlock)
4522 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4523 out:
4524 	mnt_drop_write_file(file);
4525 	return ret;
4526 }
4527 
4528 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4529 {
4530 	if (!capable(CAP_SYS_ADMIN))
4531 		return -EPERM;
4532 
4533 	switch (cmd) {
4534 	case BTRFS_BALANCE_CTL_PAUSE:
4535 		return btrfs_pause_balance(root->fs_info);
4536 	case BTRFS_BALANCE_CTL_CANCEL:
4537 		return btrfs_cancel_balance(root->fs_info);
4538 	}
4539 
4540 	return -EINVAL;
4541 }
4542 
4543 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4544 					 void __user *arg)
4545 {
4546 	struct btrfs_fs_info *fs_info = root->fs_info;
4547 	struct btrfs_ioctl_balance_args *bargs;
4548 	int ret = 0;
4549 
4550 	if (!capable(CAP_SYS_ADMIN))
4551 		return -EPERM;
4552 
4553 	mutex_lock(&fs_info->balance_mutex);
4554 	if (!fs_info->balance_ctl) {
4555 		ret = -ENOTCONN;
4556 		goto out;
4557 	}
4558 
4559 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4560 	if (!bargs) {
4561 		ret = -ENOMEM;
4562 		goto out;
4563 	}
4564 
4565 	update_ioctl_balance_args(fs_info, 1, bargs);
4566 
4567 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4568 		ret = -EFAULT;
4569 
4570 	kfree(bargs);
4571 out:
4572 	mutex_unlock(&fs_info->balance_mutex);
4573 	return ret;
4574 }
4575 
4576 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4577 {
4578 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4579 	struct btrfs_ioctl_quota_ctl_args *sa;
4580 	struct btrfs_trans_handle *trans = NULL;
4581 	int ret;
4582 	int err;
4583 
4584 	if (!capable(CAP_SYS_ADMIN))
4585 		return -EPERM;
4586 
4587 	ret = mnt_want_write_file(file);
4588 	if (ret)
4589 		return ret;
4590 
4591 	sa = memdup_user(arg, sizeof(*sa));
4592 	if (IS_ERR(sa)) {
4593 		ret = PTR_ERR(sa);
4594 		goto drop_write;
4595 	}
4596 
4597 	down_write(&root->fs_info->subvol_sem);
4598 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4599 	if (IS_ERR(trans)) {
4600 		ret = PTR_ERR(trans);
4601 		goto out;
4602 	}
4603 
4604 	switch (sa->cmd) {
4605 	case BTRFS_QUOTA_CTL_ENABLE:
4606 		ret = btrfs_quota_enable(trans, root->fs_info);
4607 		break;
4608 	case BTRFS_QUOTA_CTL_DISABLE:
4609 		ret = btrfs_quota_disable(trans, root->fs_info);
4610 		break;
4611 	default:
4612 		ret = -EINVAL;
4613 		break;
4614 	}
4615 
4616 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4617 	if (err && !ret)
4618 		ret = err;
4619 out:
4620 	kfree(sa);
4621 	up_write(&root->fs_info->subvol_sem);
4622 drop_write:
4623 	mnt_drop_write_file(file);
4624 	return ret;
4625 }
4626 
4627 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4628 {
4629 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4630 	struct btrfs_ioctl_qgroup_assign_args *sa;
4631 	struct btrfs_trans_handle *trans;
4632 	int ret;
4633 	int err;
4634 
4635 	if (!capable(CAP_SYS_ADMIN))
4636 		return -EPERM;
4637 
4638 	ret = mnt_want_write_file(file);
4639 	if (ret)
4640 		return ret;
4641 
4642 	sa = memdup_user(arg, sizeof(*sa));
4643 	if (IS_ERR(sa)) {
4644 		ret = PTR_ERR(sa);
4645 		goto drop_write;
4646 	}
4647 
4648 	trans = btrfs_join_transaction(root);
4649 	if (IS_ERR(trans)) {
4650 		ret = PTR_ERR(trans);
4651 		goto out;
4652 	}
4653 
4654 	/* FIXME: check if the IDs really exist */
4655 	if (sa->assign) {
4656 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4657 						sa->src, sa->dst);
4658 	} else {
4659 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4660 						sa->src, sa->dst);
4661 	}
4662 
4663 	/* update qgroup status and info */
4664 	err = btrfs_run_qgroups(trans, root->fs_info);
4665 	if (err < 0)
4666 		btrfs_error(root->fs_info, ret,
4667 			    "failed to update qgroup status and info\n");
4668 	err = btrfs_end_transaction(trans, root);
4669 	if (err && !ret)
4670 		ret = err;
4671 
4672 out:
4673 	kfree(sa);
4674 drop_write:
4675 	mnt_drop_write_file(file);
4676 	return ret;
4677 }
4678 
4679 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4680 {
4681 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4682 	struct btrfs_ioctl_qgroup_create_args *sa;
4683 	struct btrfs_trans_handle *trans;
4684 	int ret;
4685 	int err;
4686 
4687 	if (!capable(CAP_SYS_ADMIN))
4688 		return -EPERM;
4689 
4690 	ret = mnt_want_write_file(file);
4691 	if (ret)
4692 		return ret;
4693 
4694 	sa = memdup_user(arg, sizeof(*sa));
4695 	if (IS_ERR(sa)) {
4696 		ret = PTR_ERR(sa);
4697 		goto drop_write;
4698 	}
4699 
4700 	if (!sa->qgroupid) {
4701 		ret = -EINVAL;
4702 		goto out;
4703 	}
4704 
4705 	trans = btrfs_join_transaction(root);
4706 	if (IS_ERR(trans)) {
4707 		ret = PTR_ERR(trans);
4708 		goto out;
4709 	}
4710 
4711 	/* FIXME: check if the IDs really exist */
4712 	if (sa->create) {
4713 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4714 	} else {
4715 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4716 	}
4717 
4718 	err = btrfs_end_transaction(trans, root);
4719 	if (err && !ret)
4720 		ret = err;
4721 
4722 out:
4723 	kfree(sa);
4724 drop_write:
4725 	mnt_drop_write_file(file);
4726 	return ret;
4727 }
4728 
4729 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4730 {
4731 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4732 	struct btrfs_ioctl_qgroup_limit_args *sa;
4733 	struct btrfs_trans_handle *trans;
4734 	int ret;
4735 	int err;
4736 	u64 qgroupid;
4737 
4738 	if (!capable(CAP_SYS_ADMIN))
4739 		return -EPERM;
4740 
4741 	ret = mnt_want_write_file(file);
4742 	if (ret)
4743 		return ret;
4744 
4745 	sa = memdup_user(arg, sizeof(*sa));
4746 	if (IS_ERR(sa)) {
4747 		ret = PTR_ERR(sa);
4748 		goto drop_write;
4749 	}
4750 
4751 	trans = btrfs_join_transaction(root);
4752 	if (IS_ERR(trans)) {
4753 		ret = PTR_ERR(trans);
4754 		goto out;
4755 	}
4756 
4757 	qgroupid = sa->qgroupid;
4758 	if (!qgroupid) {
4759 		/* take the current subvol as qgroup */
4760 		qgroupid = root->root_key.objectid;
4761 	}
4762 
4763 	/* FIXME: check if the IDs really exist */
4764 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4765 
4766 	err = btrfs_end_transaction(trans, root);
4767 	if (err && !ret)
4768 		ret = err;
4769 
4770 out:
4771 	kfree(sa);
4772 drop_write:
4773 	mnt_drop_write_file(file);
4774 	return ret;
4775 }
4776 
4777 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4778 {
4779 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4780 	struct btrfs_ioctl_quota_rescan_args *qsa;
4781 	int ret;
4782 
4783 	if (!capable(CAP_SYS_ADMIN))
4784 		return -EPERM;
4785 
4786 	ret = mnt_want_write_file(file);
4787 	if (ret)
4788 		return ret;
4789 
4790 	qsa = memdup_user(arg, sizeof(*qsa));
4791 	if (IS_ERR(qsa)) {
4792 		ret = PTR_ERR(qsa);
4793 		goto drop_write;
4794 	}
4795 
4796 	if (qsa->flags) {
4797 		ret = -EINVAL;
4798 		goto out;
4799 	}
4800 
4801 	ret = btrfs_qgroup_rescan(root->fs_info);
4802 
4803 out:
4804 	kfree(qsa);
4805 drop_write:
4806 	mnt_drop_write_file(file);
4807 	return ret;
4808 }
4809 
4810 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4811 {
4812 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4813 	struct btrfs_ioctl_quota_rescan_args *qsa;
4814 	int ret = 0;
4815 
4816 	if (!capable(CAP_SYS_ADMIN))
4817 		return -EPERM;
4818 
4819 	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4820 	if (!qsa)
4821 		return -ENOMEM;
4822 
4823 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4824 		qsa->flags = 1;
4825 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4826 	}
4827 
4828 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4829 		ret = -EFAULT;
4830 
4831 	kfree(qsa);
4832 	return ret;
4833 }
4834 
4835 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4836 {
4837 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4838 
4839 	if (!capable(CAP_SYS_ADMIN))
4840 		return -EPERM;
4841 
4842 	return btrfs_qgroup_wait_for_completion(root->fs_info);
4843 }
4844 
4845 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4846 					    struct btrfs_ioctl_received_subvol_args *sa)
4847 {
4848 	struct inode *inode = file_inode(file);
4849 	struct btrfs_root *root = BTRFS_I(inode)->root;
4850 	struct btrfs_root_item *root_item = &root->root_item;
4851 	struct btrfs_trans_handle *trans;
4852 	struct timespec ct = CURRENT_TIME;
4853 	int ret = 0;
4854 	int received_uuid_changed;
4855 
4856 	if (!inode_owner_or_capable(inode))
4857 		return -EPERM;
4858 
4859 	ret = mnt_want_write_file(file);
4860 	if (ret < 0)
4861 		return ret;
4862 
4863 	down_write(&root->fs_info->subvol_sem);
4864 
4865 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4866 		ret = -EINVAL;
4867 		goto out;
4868 	}
4869 
4870 	if (btrfs_root_readonly(root)) {
4871 		ret = -EROFS;
4872 		goto out;
4873 	}
4874 
4875 	/*
4876 	 * 1 - root item
4877 	 * 2 - uuid items (received uuid + subvol uuid)
4878 	 */
4879 	trans = btrfs_start_transaction(root, 3);
4880 	if (IS_ERR(trans)) {
4881 		ret = PTR_ERR(trans);
4882 		trans = NULL;
4883 		goto out;
4884 	}
4885 
4886 	sa->rtransid = trans->transid;
4887 	sa->rtime.sec = ct.tv_sec;
4888 	sa->rtime.nsec = ct.tv_nsec;
4889 
4890 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4891 				       BTRFS_UUID_SIZE);
4892 	if (received_uuid_changed &&
4893 	    !btrfs_is_empty_uuid(root_item->received_uuid))
4894 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4895 				    root_item->received_uuid,
4896 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4897 				    root->root_key.objectid);
4898 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4899 	btrfs_set_root_stransid(root_item, sa->stransid);
4900 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4901 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4902 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4903 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4904 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4905 
4906 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4907 				&root->root_key, &root->root_item);
4908 	if (ret < 0) {
4909 		btrfs_end_transaction(trans, root);
4910 		goto out;
4911 	}
4912 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4913 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4914 					  sa->uuid,
4915 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4916 					  root->root_key.objectid);
4917 		if (ret < 0 && ret != -EEXIST) {
4918 			btrfs_abort_transaction(trans, root, ret);
4919 			goto out;
4920 		}
4921 	}
4922 	ret = btrfs_commit_transaction(trans, root);
4923 	if (ret < 0) {
4924 		btrfs_abort_transaction(trans, root, ret);
4925 		goto out;
4926 	}
4927 
4928 out:
4929 	up_write(&root->fs_info->subvol_sem);
4930 	mnt_drop_write_file(file);
4931 	return ret;
4932 }
4933 
4934 #ifdef CONFIG_64BIT
4935 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4936 						void __user *arg)
4937 {
4938 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4939 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4940 	int ret = 0;
4941 
4942 	args32 = memdup_user(arg, sizeof(*args32));
4943 	if (IS_ERR(args32)) {
4944 		ret = PTR_ERR(args32);
4945 		args32 = NULL;
4946 		goto out;
4947 	}
4948 
4949 	args64 = kmalloc(sizeof(*args64), GFP_NOFS);
4950 	if (!args64) {
4951 		ret = -ENOMEM;
4952 		goto out;
4953 	}
4954 
4955 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4956 	args64->stransid = args32->stransid;
4957 	args64->rtransid = args32->rtransid;
4958 	args64->stime.sec = args32->stime.sec;
4959 	args64->stime.nsec = args32->stime.nsec;
4960 	args64->rtime.sec = args32->rtime.sec;
4961 	args64->rtime.nsec = args32->rtime.nsec;
4962 	args64->flags = args32->flags;
4963 
4964 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4965 	if (ret)
4966 		goto out;
4967 
4968 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4969 	args32->stransid = args64->stransid;
4970 	args32->rtransid = args64->rtransid;
4971 	args32->stime.sec = args64->stime.sec;
4972 	args32->stime.nsec = args64->stime.nsec;
4973 	args32->rtime.sec = args64->rtime.sec;
4974 	args32->rtime.nsec = args64->rtime.nsec;
4975 	args32->flags = args64->flags;
4976 
4977 	ret = copy_to_user(arg, args32, sizeof(*args32));
4978 	if (ret)
4979 		ret = -EFAULT;
4980 
4981 out:
4982 	kfree(args32);
4983 	kfree(args64);
4984 	return ret;
4985 }
4986 #endif
4987 
4988 static long btrfs_ioctl_set_received_subvol(struct file *file,
4989 					    void __user *arg)
4990 {
4991 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4992 	int ret = 0;
4993 
4994 	sa = memdup_user(arg, sizeof(*sa));
4995 	if (IS_ERR(sa)) {
4996 		ret = PTR_ERR(sa);
4997 		sa = NULL;
4998 		goto out;
4999 	}
5000 
5001 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5002 
5003 	if (ret)
5004 		goto out;
5005 
5006 	ret = copy_to_user(arg, sa, sizeof(*sa));
5007 	if (ret)
5008 		ret = -EFAULT;
5009 
5010 out:
5011 	kfree(sa);
5012 	return ret;
5013 }
5014 
5015 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5016 {
5017 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5018 	size_t len;
5019 	int ret;
5020 	char label[BTRFS_LABEL_SIZE];
5021 
5022 	spin_lock(&root->fs_info->super_lock);
5023 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5024 	spin_unlock(&root->fs_info->super_lock);
5025 
5026 	len = strnlen(label, BTRFS_LABEL_SIZE);
5027 
5028 	if (len == BTRFS_LABEL_SIZE) {
5029 		btrfs_warn(root->fs_info,
5030 			"label is too long, return the first %zu bytes", --len);
5031 	}
5032 
5033 	ret = copy_to_user(arg, label, len);
5034 
5035 	return ret ? -EFAULT : 0;
5036 }
5037 
5038 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5039 {
5040 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5041 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5042 	struct btrfs_trans_handle *trans;
5043 	char label[BTRFS_LABEL_SIZE];
5044 	int ret;
5045 
5046 	if (!capable(CAP_SYS_ADMIN))
5047 		return -EPERM;
5048 
5049 	if (copy_from_user(label, arg, sizeof(label)))
5050 		return -EFAULT;
5051 
5052 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5053 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5054 		       BTRFS_LABEL_SIZE - 1);
5055 		return -EINVAL;
5056 	}
5057 
5058 	ret = mnt_want_write_file(file);
5059 	if (ret)
5060 		return ret;
5061 
5062 	trans = btrfs_start_transaction(root, 0);
5063 	if (IS_ERR(trans)) {
5064 		ret = PTR_ERR(trans);
5065 		goto out_unlock;
5066 	}
5067 
5068 	spin_lock(&root->fs_info->super_lock);
5069 	strcpy(super_block->label, label);
5070 	spin_unlock(&root->fs_info->super_lock);
5071 	ret = btrfs_commit_transaction(trans, root);
5072 
5073 out_unlock:
5074 	mnt_drop_write_file(file);
5075 	return ret;
5076 }
5077 
5078 #define INIT_FEATURE_FLAGS(suffix) \
5079 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5080 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5081 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5082 
5083 static int btrfs_ioctl_get_supported_features(struct file *file,
5084 					      void __user *arg)
5085 {
5086 	static struct btrfs_ioctl_feature_flags features[3] = {
5087 		INIT_FEATURE_FLAGS(SUPP),
5088 		INIT_FEATURE_FLAGS(SAFE_SET),
5089 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5090 	};
5091 
5092 	if (copy_to_user(arg, &features, sizeof(features)))
5093 		return -EFAULT;
5094 
5095 	return 0;
5096 }
5097 
5098 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5099 {
5100 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5101 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5102 	struct btrfs_ioctl_feature_flags features;
5103 
5104 	features.compat_flags = btrfs_super_compat_flags(super_block);
5105 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5106 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5107 
5108 	if (copy_to_user(arg, &features, sizeof(features)))
5109 		return -EFAULT;
5110 
5111 	return 0;
5112 }
5113 
5114 static int check_feature_bits(struct btrfs_root *root,
5115 			      enum btrfs_feature_set set,
5116 			      u64 change_mask, u64 flags, u64 supported_flags,
5117 			      u64 safe_set, u64 safe_clear)
5118 {
5119 	const char *type = btrfs_feature_set_names[set];
5120 	char *names;
5121 	u64 disallowed, unsupported;
5122 	u64 set_mask = flags & change_mask;
5123 	u64 clear_mask = ~flags & change_mask;
5124 
5125 	unsupported = set_mask & ~supported_flags;
5126 	if (unsupported) {
5127 		names = btrfs_printable_features(set, unsupported);
5128 		if (names) {
5129 			btrfs_warn(root->fs_info,
5130 			   "this kernel does not support the %s feature bit%s",
5131 			   names, strchr(names, ',') ? "s" : "");
5132 			kfree(names);
5133 		} else
5134 			btrfs_warn(root->fs_info,
5135 			   "this kernel does not support %s bits 0x%llx",
5136 			   type, unsupported);
5137 		return -EOPNOTSUPP;
5138 	}
5139 
5140 	disallowed = set_mask & ~safe_set;
5141 	if (disallowed) {
5142 		names = btrfs_printable_features(set, disallowed);
5143 		if (names) {
5144 			btrfs_warn(root->fs_info,
5145 			   "can't set the %s feature bit%s while mounted",
5146 			   names, strchr(names, ',') ? "s" : "");
5147 			kfree(names);
5148 		} else
5149 			btrfs_warn(root->fs_info,
5150 			   "can't set %s bits 0x%llx while mounted",
5151 			   type, disallowed);
5152 		return -EPERM;
5153 	}
5154 
5155 	disallowed = clear_mask & ~safe_clear;
5156 	if (disallowed) {
5157 		names = btrfs_printable_features(set, disallowed);
5158 		if (names) {
5159 			btrfs_warn(root->fs_info,
5160 			   "can't clear the %s feature bit%s while mounted",
5161 			   names, strchr(names, ',') ? "s" : "");
5162 			kfree(names);
5163 		} else
5164 			btrfs_warn(root->fs_info,
5165 			   "can't clear %s bits 0x%llx while mounted",
5166 			   type, disallowed);
5167 		return -EPERM;
5168 	}
5169 
5170 	return 0;
5171 }
5172 
5173 #define check_feature(root, change_mask, flags, mask_base)	\
5174 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5175 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5176 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5177 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5178 
5179 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5180 {
5181 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5182 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5183 	struct btrfs_ioctl_feature_flags flags[2];
5184 	struct btrfs_trans_handle *trans;
5185 	u64 newflags;
5186 	int ret;
5187 
5188 	if (!capable(CAP_SYS_ADMIN))
5189 		return -EPERM;
5190 
5191 	if (copy_from_user(flags, arg, sizeof(flags)))
5192 		return -EFAULT;
5193 
5194 	/* Nothing to do */
5195 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5196 	    !flags[0].incompat_flags)
5197 		return 0;
5198 
5199 	ret = check_feature(root, flags[0].compat_flags,
5200 			    flags[1].compat_flags, COMPAT);
5201 	if (ret)
5202 		return ret;
5203 
5204 	ret = check_feature(root, flags[0].compat_ro_flags,
5205 			    flags[1].compat_ro_flags, COMPAT_RO);
5206 	if (ret)
5207 		return ret;
5208 
5209 	ret = check_feature(root, flags[0].incompat_flags,
5210 			    flags[1].incompat_flags, INCOMPAT);
5211 	if (ret)
5212 		return ret;
5213 
5214 	trans = btrfs_start_transaction(root, 0);
5215 	if (IS_ERR(trans))
5216 		return PTR_ERR(trans);
5217 
5218 	spin_lock(&root->fs_info->super_lock);
5219 	newflags = btrfs_super_compat_flags(super_block);
5220 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5221 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5222 	btrfs_set_super_compat_flags(super_block, newflags);
5223 
5224 	newflags = btrfs_super_compat_ro_flags(super_block);
5225 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5226 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5227 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5228 
5229 	newflags = btrfs_super_incompat_flags(super_block);
5230 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5231 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5232 	btrfs_set_super_incompat_flags(super_block, newflags);
5233 	spin_unlock(&root->fs_info->super_lock);
5234 
5235 	return btrfs_commit_transaction(trans, root);
5236 }
5237 
5238 long btrfs_ioctl(struct file *file, unsigned int
5239 		cmd, unsigned long arg)
5240 {
5241 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5242 	void __user *argp = (void __user *)arg;
5243 
5244 	switch (cmd) {
5245 	case FS_IOC_GETFLAGS:
5246 		return btrfs_ioctl_getflags(file, argp);
5247 	case FS_IOC_SETFLAGS:
5248 		return btrfs_ioctl_setflags(file, argp);
5249 	case FS_IOC_GETVERSION:
5250 		return btrfs_ioctl_getversion(file, argp);
5251 	case FITRIM:
5252 		return btrfs_ioctl_fitrim(file, argp);
5253 	case BTRFS_IOC_SNAP_CREATE:
5254 		return btrfs_ioctl_snap_create(file, argp, 0);
5255 	case BTRFS_IOC_SNAP_CREATE_V2:
5256 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5257 	case BTRFS_IOC_SUBVOL_CREATE:
5258 		return btrfs_ioctl_snap_create(file, argp, 1);
5259 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5260 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5261 	case BTRFS_IOC_SNAP_DESTROY:
5262 		return btrfs_ioctl_snap_destroy(file, argp);
5263 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5264 		return btrfs_ioctl_subvol_getflags(file, argp);
5265 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5266 		return btrfs_ioctl_subvol_setflags(file, argp);
5267 	case BTRFS_IOC_DEFAULT_SUBVOL:
5268 		return btrfs_ioctl_default_subvol(file, argp);
5269 	case BTRFS_IOC_DEFRAG:
5270 		return btrfs_ioctl_defrag(file, NULL);
5271 	case BTRFS_IOC_DEFRAG_RANGE:
5272 		return btrfs_ioctl_defrag(file, argp);
5273 	case BTRFS_IOC_RESIZE:
5274 		return btrfs_ioctl_resize(file, argp);
5275 	case BTRFS_IOC_ADD_DEV:
5276 		return btrfs_ioctl_add_dev(root, argp);
5277 	case BTRFS_IOC_RM_DEV:
5278 		return btrfs_ioctl_rm_dev(file, argp);
5279 	case BTRFS_IOC_FS_INFO:
5280 		return btrfs_ioctl_fs_info(root, argp);
5281 	case BTRFS_IOC_DEV_INFO:
5282 		return btrfs_ioctl_dev_info(root, argp);
5283 	case BTRFS_IOC_BALANCE:
5284 		return btrfs_ioctl_balance(file, NULL);
5285 	case BTRFS_IOC_CLONE:
5286 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
5287 	case BTRFS_IOC_CLONE_RANGE:
5288 		return btrfs_ioctl_clone_range(file, argp);
5289 	case BTRFS_IOC_TRANS_START:
5290 		return btrfs_ioctl_trans_start(file);
5291 	case BTRFS_IOC_TRANS_END:
5292 		return btrfs_ioctl_trans_end(file);
5293 	case BTRFS_IOC_TREE_SEARCH:
5294 		return btrfs_ioctl_tree_search(file, argp);
5295 	case BTRFS_IOC_TREE_SEARCH_V2:
5296 		return btrfs_ioctl_tree_search_v2(file, argp);
5297 	case BTRFS_IOC_INO_LOOKUP:
5298 		return btrfs_ioctl_ino_lookup(file, argp);
5299 	case BTRFS_IOC_INO_PATHS:
5300 		return btrfs_ioctl_ino_to_path(root, argp);
5301 	case BTRFS_IOC_LOGICAL_INO:
5302 		return btrfs_ioctl_logical_to_ino(root, argp);
5303 	case BTRFS_IOC_SPACE_INFO:
5304 		return btrfs_ioctl_space_info(root, argp);
5305 	case BTRFS_IOC_SYNC: {
5306 		int ret;
5307 
5308 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5309 		if (ret)
5310 			return ret;
5311 		ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5312 		/*
5313 		 * The transaction thread may want to do more work,
5314 		 * namely it pokes the cleaner ktread that will start
5315 		 * processing uncleaned subvols.
5316 		 */
5317 		wake_up_process(root->fs_info->transaction_kthread);
5318 		return ret;
5319 	}
5320 	case BTRFS_IOC_START_SYNC:
5321 		return btrfs_ioctl_start_sync(root, argp);
5322 	case BTRFS_IOC_WAIT_SYNC:
5323 		return btrfs_ioctl_wait_sync(root, argp);
5324 	case BTRFS_IOC_SCRUB:
5325 		return btrfs_ioctl_scrub(file, argp);
5326 	case BTRFS_IOC_SCRUB_CANCEL:
5327 		return btrfs_ioctl_scrub_cancel(root, argp);
5328 	case BTRFS_IOC_SCRUB_PROGRESS:
5329 		return btrfs_ioctl_scrub_progress(root, argp);
5330 	case BTRFS_IOC_BALANCE_V2:
5331 		return btrfs_ioctl_balance(file, argp);
5332 	case BTRFS_IOC_BALANCE_CTL:
5333 		return btrfs_ioctl_balance_ctl(root, arg);
5334 	case BTRFS_IOC_BALANCE_PROGRESS:
5335 		return btrfs_ioctl_balance_progress(root, argp);
5336 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5337 		return btrfs_ioctl_set_received_subvol(file, argp);
5338 #ifdef CONFIG_64BIT
5339 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5340 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5341 #endif
5342 	case BTRFS_IOC_SEND:
5343 		return btrfs_ioctl_send(file, argp);
5344 	case BTRFS_IOC_GET_DEV_STATS:
5345 		return btrfs_ioctl_get_dev_stats(root, argp);
5346 	case BTRFS_IOC_QUOTA_CTL:
5347 		return btrfs_ioctl_quota_ctl(file, argp);
5348 	case BTRFS_IOC_QGROUP_ASSIGN:
5349 		return btrfs_ioctl_qgroup_assign(file, argp);
5350 	case BTRFS_IOC_QGROUP_CREATE:
5351 		return btrfs_ioctl_qgroup_create(file, argp);
5352 	case BTRFS_IOC_QGROUP_LIMIT:
5353 		return btrfs_ioctl_qgroup_limit(file, argp);
5354 	case BTRFS_IOC_QUOTA_RESCAN:
5355 		return btrfs_ioctl_quota_rescan(file, argp);
5356 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5357 		return btrfs_ioctl_quota_rescan_status(file, argp);
5358 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5359 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5360 	case BTRFS_IOC_DEV_REPLACE:
5361 		return btrfs_ioctl_dev_replace(root, argp);
5362 	case BTRFS_IOC_GET_FSLABEL:
5363 		return btrfs_ioctl_get_fslabel(file, argp);
5364 	case BTRFS_IOC_SET_FSLABEL:
5365 		return btrfs_ioctl_set_fslabel(file, argp);
5366 	case BTRFS_IOC_FILE_EXTENT_SAME:
5367 		return btrfs_ioctl_file_extent_same(file, argp);
5368 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5369 		return btrfs_ioctl_get_supported_features(file, argp);
5370 	case BTRFS_IOC_GET_FEATURES:
5371 		return btrfs_ioctl_get_features(file, argp);
5372 	case BTRFS_IOC_SET_FEATURES:
5373 		return btrfs_ioctl_set_features(file, argp);
5374 	}
5375 
5376 	return -ENOTTY;
5377 }
5378