1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include <linux/io_uring/cmd.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "export.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "volumes.h"
39 #include "locking.h"
40 #include "backref.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "block-group.h"
50 #include "fs.h"
51 #include "accessors.h"
52 #include "extent-tree.h"
53 #include "root-tree.h"
54 #include "defrag.h"
55 #include "dir-item.h"
56 #include "uuid-tree.h"
57 #include "ioctl.h"
58 #include "file.h"
59 #include "scrub.h"
60 #include "super.h"
61
62 #ifdef CONFIG_64BIT
63 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
64 * structures are incorrect, as the timespec structure from userspace
65 * is 4 bytes too small. We define these alternatives here to teach
66 * the kernel about the 32-bit struct packing.
67 */
68 struct btrfs_ioctl_timespec_32 {
69 __u64 sec;
70 __u32 nsec;
71 } __attribute__ ((__packed__));
72
73 struct btrfs_ioctl_received_subvol_args_32 {
74 char uuid[BTRFS_UUID_SIZE]; /* in */
75 __u64 stransid; /* in */
76 __u64 rtransid; /* out */
77 struct btrfs_ioctl_timespec_32 stime; /* in */
78 struct btrfs_ioctl_timespec_32 rtime; /* out */
79 __u64 flags; /* in */
80 __u64 reserved[16]; /* in */
81 } __attribute__ ((__packed__));
82
83 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
84 struct btrfs_ioctl_received_subvol_args_32)
85 #endif
86
87 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
88 struct btrfs_ioctl_send_args_32 {
89 __s64 send_fd; /* in */
90 __u64 clone_sources_count; /* in */
91 compat_uptr_t clone_sources; /* in */
92 __u64 parent_root; /* in */
93 __u64 flags; /* in */
94 __u32 version; /* in */
95 __u8 reserved[28]; /* in */
96 } __attribute__ ((__packed__));
97
98 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
99 struct btrfs_ioctl_send_args_32)
100
101 struct btrfs_ioctl_encoded_io_args_32 {
102 compat_uptr_t iov;
103 compat_ulong_t iovcnt;
104 __s64 offset;
105 __u64 flags;
106 __u64 len;
107 __u64 unencoded_len;
108 __u64 unencoded_offset;
109 __u32 compression;
110 __u32 encryption;
111 __u8 reserved[64];
112 };
113
114 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
115 struct btrfs_ioctl_encoded_io_args_32)
116 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
117 struct btrfs_ioctl_encoded_io_args_32)
118 #endif
119
120 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(const struct inode * inode,unsigned int flags)121 static unsigned int btrfs_mask_fsflags_for_type(const struct inode *inode,
122 unsigned int flags)
123 {
124 if (S_ISDIR(inode->i_mode))
125 return flags;
126 else if (S_ISREG(inode->i_mode))
127 return flags & ~FS_DIRSYNC_FL;
128 else
129 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
130 }
131
132 /*
133 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
134 * ioctl.
135 */
btrfs_inode_flags_to_fsflags(const struct btrfs_inode * inode)136 static unsigned int btrfs_inode_flags_to_fsflags(const struct btrfs_inode *inode)
137 {
138 unsigned int iflags = 0;
139 u32 flags = inode->flags;
140 u32 ro_flags = inode->ro_flags;
141
142 if (flags & BTRFS_INODE_SYNC)
143 iflags |= FS_SYNC_FL;
144 if (flags & BTRFS_INODE_IMMUTABLE)
145 iflags |= FS_IMMUTABLE_FL;
146 if (flags & BTRFS_INODE_APPEND)
147 iflags |= FS_APPEND_FL;
148 if (flags & BTRFS_INODE_NODUMP)
149 iflags |= FS_NODUMP_FL;
150 if (flags & BTRFS_INODE_NOATIME)
151 iflags |= FS_NOATIME_FL;
152 if (flags & BTRFS_INODE_DIRSYNC)
153 iflags |= FS_DIRSYNC_FL;
154 if (flags & BTRFS_INODE_NODATACOW)
155 iflags |= FS_NOCOW_FL;
156 if (ro_flags & BTRFS_INODE_RO_VERITY)
157 iflags |= FS_VERITY_FL;
158
159 if (flags & BTRFS_INODE_NOCOMPRESS)
160 iflags |= FS_NOCOMP_FL;
161 else if (flags & BTRFS_INODE_COMPRESS)
162 iflags |= FS_COMPR_FL;
163
164 return iflags;
165 }
166
167 /*
168 * Update inode->i_flags based on the btrfs internal flags.
169 */
btrfs_sync_inode_flags_to_i_flags(struct btrfs_inode * inode)170 void btrfs_sync_inode_flags_to_i_flags(struct btrfs_inode *inode)
171 {
172 unsigned int new_fl = 0;
173
174 if (inode->flags & BTRFS_INODE_SYNC)
175 new_fl |= S_SYNC;
176 if (inode->flags & BTRFS_INODE_IMMUTABLE)
177 new_fl |= S_IMMUTABLE;
178 if (inode->flags & BTRFS_INODE_APPEND)
179 new_fl |= S_APPEND;
180 if (inode->flags & BTRFS_INODE_NOATIME)
181 new_fl |= S_NOATIME;
182 if (inode->flags & BTRFS_INODE_DIRSYNC)
183 new_fl |= S_DIRSYNC;
184 if (inode->ro_flags & BTRFS_INODE_RO_VERITY)
185 new_fl |= S_VERITY;
186
187 set_mask_bits(&inode->vfs_inode.i_flags,
188 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
189 S_VERITY, new_fl);
190 }
191
192 /*
193 * Check if @flags are a supported and valid set of FS_*_FL flags and that
194 * the old and new flags are not conflicting
195 */
check_fsflags(unsigned int old_flags,unsigned int flags)196 static int check_fsflags(unsigned int old_flags, unsigned int flags)
197 {
198 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 FS_NOATIME_FL | FS_NODUMP_FL | \
200 FS_SYNC_FL | FS_DIRSYNC_FL | \
201 FS_NOCOMP_FL | FS_COMPR_FL |
202 FS_NOCOW_FL))
203 return -EOPNOTSUPP;
204
205 /* COMPR and NOCOMP on new/old are valid */
206 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
207 return -EINVAL;
208
209 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
210 return -EINVAL;
211
212 /* NOCOW and compression options are mutually exclusive */
213 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214 return -EINVAL;
215 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
216 return -EINVAL;
217
218 return 0;
219 }
220
check_fsflags_compatible(const struct btrfs_fs_info * fs_info,unsigned int flags)221 static int check_fsflags_compatible(const struct btrfs_fs_info *fs_info,
222 unsigned int flags)
223 {
224 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
225 return -EPERM;
226
227 return 0;
228 }
229
btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args * vol_args)230 int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
231 {
232 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
233 return -ENAMETOOLONG;
234 return 0;
235 }
236
btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 * vol_args2)237 static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
238 {
239 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
240 return -ENAMETOOLONG;
241 return 0;
242 }
243
244 /*
245 * Set flags/xflags from the internal inode flags. The remaining items of
246 * fsxattr are zeroed.
247 */
btrfs_fileattr_get(struct dentry * dentry,struct file_kattr * fa)248 int btrfs_fileattr_get(struct dentry *dentry, struct file_kattr *fa)
249 {
250 const struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
251
252 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(inode));
253 return 0;
254 }
255
btrfs_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct file_kattr * fa)256 int btrfs_fileattr_set(struct mnt_idmap *idmap,
257 struct dentry *dentry, struct file_kattr *fa)
258 {
259 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
260 struct btrfs_root *root = inode->root;
261 struct btrfs_fs_info *fs_info = root->fs_info;
262 struct btrfs_trans_handle *trans;
263 unsigned int fsflags, old_fsflags;
264 int ret;
265 const char *comp = NULL;
266 u32 inode_flags;
267
268 if (btrfs_root_readonly(root))
269 return -EROFS;
270
271 if (fileattr_has_fsx(fa))
272 return -EOPNOTSUPP;
273
274 fsflags = btrfs_mask_fsflags_for_type(&inode->vfs_inode, fa->flags);
275 old_fsflags = btrfs_inode_flags_to_fsflags(inode);
276 ret = check_fsflags(old_fsflags, fsflags);
277 if (ret)
278 return ret;
279
280 ret = check_fsflags_compatible(fs_info, fsflags);
281 if (ret)
282 return ret;
283
284 inode_flags = inode->flags;
285 if (fsflags & FS_SYNC_FL)
286 inode_flags |= BTRFS_INODE_SYNC;
287 else
288 inode_flags &= ~BTRFS_INODE_SYNC;
289 if (fsflags & FS_IMMUTABLE_FL)
290 inode_flags |= BTRFS_INODE_IMMUTABLE;
291 else
292 inode_flags &= ~BTRFS_INODE_IMMUTABLE;
293 if (fsflags & FS_APPEND_FL)
294 inode_flags |= BTRFS_INODE_APPEND;
295 else
296 inode_flags &= ~BTRFS_INODE_APPEND;
297 if (fsflags & FS_NODUMP_FL)
298 inode_flags |= BTRFS_INODE_NODUMP;
299 else
300 inode_flags &= ~BTRFS_INODE_NODUMP;
301 if (fsflags & FS_NOATIME_FL)
302 inode_flags |= BTRFS_INODE_NOATIME;
303 else
304 inode_flags &= ~BTRFS_INODE_NOATIME;
305
306 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
307 if (!fa->flags_valid) {
308 /* 1 item for the inode */
309 trans = btrfs_start_transaction(root, 1);
310 if (IS_ERR(trans))
311 return PTR_ERR(trans);
312 goto update_flags;
313 }
314
315 if (fsflags & FS_DIRSYNC_FL)
316 inode_flags |= BTRFS_INODE_DIRSYNC;
317 else
318 inode_flags &= ~BTRFS_INODE_DIRSYNC;
319 if (fsflags & FS_NOCOW_FL) {
320 if (S_ISREG(inode->vfs_inode.i_mode)) {
321 /*
322 * It's safe to turn csums off here, no extents exist.
323 * Otherwise we want the flag to reflect the real COW
324 * status of the file and will not set it.
325 */
326 if (inode->vfs_inode.i_size == 0)
327 inode_flags |= BTRFS_INODE_NODATACOW |
328 BTRFS_INODE_NODATASUM;
329 } else {
330 inode_flags |= BTRFS_INODE_NODATACOW;
331 }
332 } else {
333 /*
334 * Revert back under same assumptions as above
335 */
336 if (S_ISREG(inode->vfs_inode.i_mode)) {
337 if (inode->vfs_inode.i_size == 0)
338 inode_flags &= ~(BTRFS_INODE_NODATACOW |
339 BTRFS_INODE_NODATASUM);
340 } else {
341 inode_flags &= ~BTRFS_INODE_NODATACOW;
342 }
343 }
344
345 /*
346 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
347 * flag may be changed automatically if compression code won't make
348 * things smaller.
349 */
350 if (fsflags & FS_NOCOMP_FL) {
351 inode_flags &= ~BTRFS_INODE_COMPRESS;
352 inode_flags |= BTRFS_INODE_NOCOMPRESS;
353 } else if (fsflags & FS_COMPR_FL) {
354
355 if (IS_SWAPFILE(&inode->vfs_inode))
356 return -ETXTBSY;
357
358 inode_flags |= BTRFS_INODE_COMPRESS;
359 inode_flags &= ~BTRFS_INODE_NOCOMPRESS;
360
361 comp = btrfs_compress_type2str(fs_info->compress_type);
362 if (!comp || comp[0] == 0)
363 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
364 } else {
365 inode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
366 }
367
368 /*
369 * 1 for inode item
370 * 2 for properties
371 */
372 trans = btrfs_start_transaction(root, 3);
373 if (IS_ERR(trans))
374 return PTR_ERR(trans);
375
376 if (comp) {
377 ret = btrfs_set_prop(trans, inode, "btrfs.compression",
378 comp, strlen(comp), 0);
379 if (unlikely(ret)) {
380 btrfs_abort_transaction(trans, ret);
381 goto out_end_trans;
382 }
383 } else {
384 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 0, 0);
385 if (unlikely(ret && ret != -ENODATA)) {
386 btrfs_abort_transaction(trans, ret);
387 goto out_end_trans;
388 }
389 }
390
391 update_flags:
392 inode->flags = inode_flags;
393 btrfs_update_inode_mapping_flags(inode);
394 btrfs_sync_inode_flags_to_i_flags(inode);
395 inode_inc_iversion(&inode->vfs_inode);
396 inode_set_ctime_current(&inode->vfs_inode);
397 ret = btrfs_update_inode(trans, inode);
398
399 out_end_trans:
400 btrfs_end_transaction(trans);
401 return ret;
402 }
403
btrfs_ioctl_getversion(const struct inode * inode,int __user * arg)404 static int btrfs_ioctl_getversion(const struct inode *inode, int __user *arg)
405 {
406 return put_user(inode->i_generation, arg);
407 }
408
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)409 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
410 void __user *arg)
411 {
412 struct btrfs_device *device;
413 struct fstrim_range range;
414 u64 minlen = ULLONG_MAX;
415 u64 num_devices = 0;
416 int ret;
417
418 if (!capable(CAP_SYS_ADMIN))
419 return -EPERM;
420
421 /*
422 * btrfs_trim_block_group() depends on space cache, which is not
423 * available in zoned filesystem. So, disallow fitrim on a zoned
424 * filesystem for now.
425 */
426 if (btrfs_is_zoned(fs_info))
427 return -EOPNOTSUPP;
428
429 /*
430 * If the fs is mounted with nologreplay, which requires it to be
431 * mounted in RO mode as well, we can not allow discard on free space
432 * inside block groups, because log trees refer to extents that are not
433 * pinned in a block group's free space cache (pinning the extents is
434 * precisely the first phase of replaying a log tree).
435 */
436 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
437 return -EROFS;
438
439 rcu_read_lock();
440 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
441 dev_list) {
442 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
443 continue;
444 num_devices++;
445 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
446 minlen);
447 }
448 rcu_read_unlock();
449
450 if (!num_devices)
451 return -EOPNOTSUPP;
452 if (copy_from_user(&range, arg, sizeof(range)))
453 return -EFAULT;
454
455 /*
456 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
457 * block group is in the logical address space, which can be any
458 * sectorsize aligned bytenr in the range [0, U64_MAX].
459 */
460 if (range.len < fs_info->sectorsize)
461 return -EINVAL;
462
463 range.minlen = max(range.minlen, minlen);
464 ret = btrfs_trim_fs(fs_info, &range);
465
466 if (copy_to_user(arg, &range, sizeof(range)))
467 return -EFAULT;
468
469 return ret;
470 }
471
472 /*
473 * Calculate the number of transaction items to reserve for creating a subvolume
474 * or snapshot, not including the inode, directory entries, or parent directory.
475 */
create_subvol_num_items(const struct btrfs_qgroup_inherit * inherit)476 static unsigned int create_subvol_num_items(const struct btrfs_qgroup_inherit *inherit)
477 {
478 /*
479 * 1 to add root block
480 * 1 to add root item
481 * 1 to add root ref
482 * 1 to add root backref
483 * 1 to add UUID item
484 * 1 to add qgroup info
485 * 1 to add qgroup limit
486 *
487 * Ideally the last two would only be accounted if qgroups are enabled,
488 * but that can change between now and the time we would insert them.
489 */
490 unsigned int num_items = 7;
491
492 if (inherit) {
493 /* 2 to add qgroup relations for each inherited qgroup */
494 num_items += 2 * inherit->num_qgroups;
495 }
496 return num_items;
497 }
498
create_subvol(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct btrfs_qgroup_inherit * inherit)499 static noinline int create_subvol(struct mnt_idmap *idmap,
500 struct inode *dir, struct dentry *dentry,
501 struct btrfs_qgroup_inherit *inherit)
502 {
503 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
504 struct btrfs_trans_handle *trans;
505 struct btrfs_key key;
506 struct btrfs_root_item *root_item;
507 struct btrfs_inode_item *inode_item;
508 struct extent_buffer *leaf;
509 struct btrfs_root *root = BTRFS_I(dir)->root;
510 struct btrfs_root *new_root;
511 struct btrfs_block_rsv block_rsv;
512 struct timespec64 cur_time = current_time(dir);
513 struct btrfs_new_inode_args new_inode_args = {
514 .dir = dir,
515 .dentry = dentry,
516 .subvol = true,
517 };
518 unsigned int trans_num_items;
519 int ret;
520 dev_t anon_dev;
521 u64 objectid;
522 u64 qgroup_reserved = 0;
523
524 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
525 if (!root_item)
526 return -ENOMEM;
527
528 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
529 if (ret)
530 goto out_root_item;
531
532 /*
533 * Don't create subvolume whose level is not zero. Or qgroup will be
534 * screwed up since it assumes subvolume qgroup's level to be 0.
535 */
536 if (btrfs_qgroup_level(objectid)) {
537 ret = -ENOSPC;
538 goto out_root_item;
539 }
540
541 ret = get_anon_bdev(&anon_dev);
542 if (ret < 0)
543 goto out_root_item;
544
545 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
546 if (!new_inode_args.inode) {
547 ret = -ENOMEM;
548 goto out_anon_dev;
549 }
550 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
551 if (ret)
552 goto out_inode;
553 trans_num_items += create_subvol_num_items(inherit);
554
555 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
556 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
557 trans_num_items, false);
558 if (ret)
559 goto out_new_inode_args;
560 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
561
562 trans = btrfs_start_transaction(root, 0);
563 if (IS_ERR(trans)) {
564 ret = PTR_ERR(trans);
565 goto out_release_rsv;
566 }
567 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
568 qgroup_reserved = 0;
569 trans->block_rsv = &block_rsv;
570 trans->bytes_reserved = block_rsv.size;
571
572 ret = btrfs_qgroup_inherit(trans, 0, objectid, btrfs_root_id(root), inherit);
573 if (ret)
574 goto out;
575
576 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
577 0, BTRFS_NESTING_NORMAL);
578 if (IS_ERR(leaf)) {
579 ret = PTR_ERR(leaf);
580 goto out;
581 }
582
583 btrfs_mark_buffer_dirty(trans, leaf);
584
585 inode_item = &root_item->inode;
586 btrfs_set_stack_inode_generation(inode_item, 1);
587 btrfs_set_stack_inode_size(inode_item, 3);
588 btrfs_set_stack_inode_nlink(inode_item, 1);
589 btrfs_set_stack_inode_nbytes(inode_item,
590 fs_info->nodesize);
591 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
592
593 btrfs_set_root_flags(root_item, 0);
594 btrfs_set_root_limit(root_item, 0);
595 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
596
597 btrfs_set_root_bytenr(root_item, leaf->start);
598 btrfs_set_root_generation(root_item, trans->transid);
599 btrfs_set_root_level(root_item, 0);
600 btrfs_set_root_refs(root_item, 1);
601 btrfs_set_root_used(root_item, leaf->len);
602 btrfs_set_root_last_snapshot(root_item, 0);
603
604 btrfs_set_root_generation_v2(root_item,
605 btrfs_root_generation(root_item));
606 generate_random_guid(root_item->uuid);
607 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
608 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
609 root_item->ctime = root_item->otime;
610 btrfs_set_root_ctransid(root_item, trans->transid);
611 btrfs_set_root_otransid(root_item, trans->transid);
612
613 btrfs_tree_unlock(leaf);
614
615 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
616
617 key.objectid = objectid;
618 key.type = BTRFS_ROOT_ITEM_KEY;
619 key.offset = 0;
620 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
621 root_item);
622 if (ret) {
623 int ret2;
624
625 /*
626 * Since we don't abort the transaction in this case, free the
627 * tree block so that we don't leak space and leave the
628 * filesystem in an inconsistent state (an extent item in the
629 * extent tree with a backreference for a root that does not
630 * exists).
631 */
632 btrfs_tree_lock(leaf);
633 btrfs_clear_buffer_dirty(trans, leaf);
634 btrfs_tree_unlock(leaf);
635 ret2 = btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
636 if (unlikely(ret2 < 0))
637 btrfs_abort_transaction(trans, ret2);
638 free_extent_buffer(leaf);
639 goto out;
640 }
641
642 free_extent_buffer(leaf);
643 leaf = NULL;
644
645 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
646 if (IS_ERR(new_root)) {
647 ret = PTR_ERR(new_root);
648 btrfs_abort_transaction(trans, ret);
649 goto out;
650 }
651 /* anon_dev is owned by new_root now. */
652 anon_dev = 0;
653 BTRFS_I(new_inode_args.inode)->root = new_root;
654 /* ... and new_root is owned by new_inode_args.inode now. */
655
656 ret = btrfs_record_root_in_trans(trans, new_root);
657 if (unlikely(ret)) {
658 btrfs_abort_transaction(trans, ret);
659 goto out;
660 }
661
662 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
663 BTRFS_UUID_KEY_SUBVOL, objectid);
664 if (unlikely(ret)) {
665 btrfs_abort_transaction(trans, ret);
666 goto out;
667 }
668
669 btrfs_record_new_subvolume(trans, BTRFS_I(dir));
670
671 ret = btrfs_create_new_inode(trans, &new_inode_args);
672 if (unlikely(ret)) {
673 btrfs_abort_transaction(trans, ret);
674 goto out;
675 }
676
677 d_instantiate_new(dentry, new_inode_args.inode);
678 new_inode_args.inode = NULL;
679
680 out:
681 trans->block_rsv = NULL;
682 trans->bytes_reserved = 0;
683 btrfs_end_transaction(trans);
684 out_release_rsv:
685 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
686 if (qgroup_reserved)
687 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
688 out_new_inode_args:
689 btrfs_new_inode_args_destroy(&new_inode_args);
690 out_inode:
691 iput(new_inode_args.inode);
692 out_anon_dev:
693 if (anon_dev)
694 free_anon_bdev(anon_dev);
695 out_root_item:
696 kfree(root_item);
697 return ret;
698 }
699
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)700 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
701 struct dentry *dentry, bool readonly,
702 struct btrfs_qgroup_inherit *inherit)
703 {
704 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
705 struct inode *inode;
706 struct btrfs_pending_snapshot *pending_snapshot;
707 unsigned int trans_num_items;
708 struct btrfs_trans_handle *trans;
709 struct btrfs_block_rsv *block_rsv;
710 u64 qgroup_reserved = 0;
711 int ret;
712
713 /* We do not support snapshotting right now. */
714 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
715 btrfs_warn(fs_info,
716 "extent tree v2 doesn't support snapshotting yet");
717 return -EOPNOTSUPP;
718 }
719
720 if (btrfs_root_refs(&root->root_item) == 0)
721 return -ENOENT;
722
723 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
724 return -EINVAL;
725
726 if (atomic_read(&root->nr_swapfiles)) {
727 btrfs_warn(fs_info,
728 "cannot snapshot subvolume with active swapfile");
729 return -ETXTBSY;
730 }
731
732 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
733 if (!pending_snapshot)
734 return -ENOMEM;
735
736 ret = get_anon_bdev(&pending_snapshot->anon_dev);
737 if (ret < 0)
738 goto free_pending;
739 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
740 GFP_KERNEL);
741 pending_snapshot->path = btrfs_alloc_path();
742 if (!pending_snapshot->root_item || !pending_snapshot->path) {
743 ret = -ENOMEM;
744 goto free_pending;
745 }
746
747 block_rsv = &pending_snapshot->block_rsv;
748 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
749 /*
750 * 1 to add dir item
751 * 1 to add dir index
752 * 1 to update parent inode item
753 */
754 trans_num_items = create_subvol_num_items(inherit) + 3;
755 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
756 trans_num_items, false);
757 if (ret)
758 goto free_pending;
759 qgroup_reserved = block_rsv->qgroup_rsv_reserved;
760
761 pending_snapshot->dentry = dentry;
762 pending_snapshot->root = root;
763 pending_snapshot->readonly = readonly;
764 pending_snapshot->dir = BTRFS_I(dir);
765 pending_snapshot->inherit = inherit;
766
767 trans = btrfs_start_transaction(root, 0);
768 if (IS_ERR(trans)) {
769 ret = PTR_ERR(trans);
770 goto fail;
771 }
772 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
773 if (ret) {
774 btrfs_end_transaction(trans);
775 goto fail;
776 }
777 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
778 qgroup_reserved = 0;
779
780 trans->pending_snapshot = pending_snapshot;
781
782 ret = btrfs_commit_transaction(trans);
783 if (ret)
784 goto fail;
785
786 ret = pending_snapshot->error;
787 if (ret)
788 goto fail;
789
790 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
791 if (ret)
792 goto fail;
793
794 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
795 if (IS_ERR(inode)) {
796 ret = PTR_ERR(inode);
797 goto fail;
798 }
799
800 d_instantiate(dentry, inode);
801 ret = 0;
802 pending_snapshot->anon_dev = 0;
803 fail:
804 /* Prevent double freeing of anon_dev */
805 if (ret && pending_snapshot->snap)
806 pending_snapshot->snap->anon_dev = 0;
807 btrfs_put_root(pending_snapshot->snap);
808 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
809 if (qgroup_reserved)
810 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
811 free_pending:
812 if (pending_snapshot->anon_dev)
813 free_anon_bdev(pending_snapshot->anon_dev);
814 kfree(pending_snapshot->root_item);
815 btrfs_free_path(pending_snapshot->path);
816 kfree(pending_snapshot);
817
818 return ret;
819 }
820
821 /* copy of may_delete in fs/namei.c()
822 * Check whether we can remove a link victim from directory dir, check
823 * whether the type of victim is right.
824 * 1. We can't do it if dir is read-only (done in permission())
825 * 2. We should have write and exec permissions on dir
826 * 3. We can't remove anything from append-only dir
827 * 4. We can't do anything with immutable dir (done in permission())
828 * 5. If the sticky bit on dir is set we should either
829 * a. be owner of dir, or
830 * b. be owner of victim, or
831 * c. have CAP_FOWNER capability
832 * 6. If the victim is append-only or immutable we can't do anything with
833 * links pointing to it.
834 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
835 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
836 * 9. We can't remove a root or mountpoint.
837 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
838 * nfs_async_unlink().
839 */
840
btrfs_may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,int isdir)841 static int btrfs_may_delete(struct mnt_idmap *idmap,
842 struct inode *dir, struct dentry *victim, int isdir)
843 {
844 int ret;
845
846 if (d_really_is_negative(victim))
847 return -ENOENT;
848
849 /* The @victim is not inside @dir. */
850 if (d_inode(victim->d_parent) != dir)
851 return -EINVAL;
852 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
853
854 ret = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
855 if (ret)
856 return ret;
857 if (IS_APPEND(dir))
858 return -EPERM;
859 if (check_sticky(idmap, dir, d_inode(victim)) ||
860 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
861 IS_SWAPFILE(d_inode(victim)))
862 return -EPERM;
863 if (isdir) {
864 if (!d_is_dir(victim))
865 return -ENOTDIR;
866 if (IS_ROOT(victim))
867 return -EBUSY;
868 } else if (d_is_dir(victim))
869 return -EISDIR;
870 if (IS_DEADDIR(dir))
871 return -ENOENT;
872 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
873 return -EBUSY;
874 return 0;
875 }
876
877 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct mnt_idmap * idmap,struct inode * dir,const struct dentry * child)878 static inline int btrfs_may_create(struct mnt_idmap *idmap,
879 struct inode *dir, const struct dentry *child)
880 {
881 if (d_really_is_positive(child))
882 return -EEXIST;
883 if (IS_DEADDIR(dir))
884 return -ENOENT;
885 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
886 return -EOVERFLOW;
887 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
888 }
889
890 /*
891 * Create a new subvolume below @parent. This is largely modeled after
892 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
893 * inside this filesystem so it's quite a bit simpler.
894 */
btrfs_mksubvol(struct dentry * parent,struct mnt_idmap * idmap,struct qstr * qname,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)895 static noinline int btrfs_mksubvol(struct dentry *parent,
896 struct mnt_idmap *idmap,
897 struct qstr *qname, struct btrfs_root *snap_src,
898 bool readonly,
899 struct btrfs_qgroup_inherit *inherit)
900 {
901 struct inode *dir = d_inode(parent);
902 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
903 struct dentry *dentry;
904 struct fscrypt_str name_str = FSTR_INIT((char *)qname->name, qname->len);
905 int ret;
906
907 dentry = start_creating_killable(idmap, parent, qname);
908 if (IS_ERR(dentry))
909 return PTR_ERR(dentry);
910
911 ret = btrfs_may_create(idmap, dir, dentry);
912 if (ret)
913 goto out_dput;
914
915 /*
916 * even if this name doesn't exist, we may get hash collisions.
917 * check for them now when we can safely fail
918 */
919 ret = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, dir->i_ino, &name_str);
920 if (ret)
921 goto out_dput;
922
923 down_read(&fs_info->subvol_sem);
924
925 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
926 goto out_up_read;
927
928 if (snap_src)
929 ret = create_snapshot(snap_src, dir, dentry, readonly, inherit);
930 else
931 ret = create_subvol(idmap, dir, dentry, inherit);
932
933 if (!ret)
934 fsnotify_mkdir(dir, dentry);
935 out_up_read:
936 up_read(&fs_info->subvol_sem);
937 out_dput:
938 end_creating(dentry);
939 return ret;
940 }
941
btrfs_mksnapshot(struct dentry * parent,struct mnt_idmap * idmap,struct qstr * qname,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)942 static noinline int btrfs_mksnapshot(struct dentry *parent,
943 struct mnt_idmap *idmap,
944 struct qstr *qname,
945 struct btrfs_root *root,
946 bool readonly,
947 struct btrfs_qgroup_inherit *inherit)
948 {
949 int ret;
950
951 /*
952 * Force new buffered writes to reserve space even when NOCOW is
953 * possible. This is to avoid later writeback (running delalloc) to
954 * fallback to COW mode and unexpectedly fail with ENOSPC.
955 */
956 btrfs_drew_read_lock(&root->snapshot_lock);
957
958 ret = btrfs_start_delalloc_snapshot(root, false);
959 if (ret)
960 goto out;
961
962 /*
963 * All previous writes have started writeback in NOCOW mode, so now
964 * we force future writes to fallback to COW mode during snapshot
965 * creation.
966 */
967 atomic_inc(&root->snapshot_force_cow);
968
969 btrfs_wait_ordered_extents(root, U64_MAX, NULL);
970
971 ret = btrfs_mksubvol(parent, idmap, qname, root, readonly, inherit);
972
973 atomic_dec(&root->snapshot_force_cow);
974 out:
975 btrfs_drew_read_unlock(&root->snapshot_lock);
976 return ret;
977 }
978
979 /*
980 * Try to start exclusive operation @type or cancel it if it's running.
981 *
982 * Return:
983 * 0 - normal mode, newly claimed op started
984 * >0 - normal mode, something else is running,
985 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
986 * ECANCELED - cancel mode, successful cancel
987 * ENOTCONN - cancel mode, operation not running anymore
988 */
exclop_start_or_cancel_reloc(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type,bool cancel)989 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
990 enum btrfs_exclusive_operation type, bool cancel)
991 {
992 if (!cancel) {
993 /* Start normal op */
994 if (!btrfs_exclop_start(fs_info, type))
995 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
996 /* Exclusive operation is now claimed */
997 return 0;
998 }
999
1000 /* Cancel running op */
1001 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1002 /*
1003 * This blocks any exclop finish from setting it to NONE, so we
1004 * request cancellation. Either it runs and we will wait for it,
1005 * or it has finished and no waiting will happen.
1006 */
1007 atomic_inc(&fs_info->reloc_cancel_req);
1008 btrfs_exclop_start_unlock(fs_info);
1009
1010 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1011 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1012 TASK_INTERRUPTIBLE);
1013
1014 return -ECANCELED;
1015 }
1016
1017 /* Something else is running or none */
1018 return -ENOTCONN;
1019 }
1020
btrfs_ioctl_resize(struct file * file,void __user * arg)1021 static noinline int btrfs_ioctl_resize(struct file *file,
1022 void __user *arg)
1023 {
1024 BTRFS_DEV_LOOKUP_ARGS(args);
1025 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1026 struct btrfs_fs_info *fs_info = root->fs_info;
1027 u64 new_size;
1028 u64 old_size;
1029 u64 devid = 1;
1030 struct btrfs_ioctl_vol_args *vol_args;
1031 struct btrfs_device *device = NULL;
1032 char *sizestr;
1033 char *devstr = NULL;
1034 int ret = 0;
1035 int mod = 0;
1036 bool cancel;
1037
1038 if (!capable(CAP_SYS_ADMIN))
1039 return -EPERM;
1040
1041 ret = mnt_want_write_file(file);
1042 if (ret)
1043 return ret;
1044
1045 /*
1046 * Read the arguments before checking exclusivity to be able to
1047 * distinguish regular resize and cancel
1048 */
1049 vol_args = memdup_user(arg, sizeof(*vol_args));
1050 if (IS_ERR(vol_args)) {
1051 ret = PTR_ERR(vol_args);
1052 goto out_drop;
1053 }
1054 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1055 if (ret < 0)
1056 goto out_free;
1057
1058 sizestr = vol_args->name;
1059 cancel = (strcmp("cancel", sizestr) == 0);
1060 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1061 if (ret)
1062 goto out_free;
1063 /* Exclusive operation is now claimed */
1064
1065 devstr = strchr(sizestr, ':');
1066 if (devstr) {
1067 sizestr = devstr + 1;
1068 *devstr = '\0';
1069 devstr = vol_args->name;
1070 ret = kstrtoull(devstr, 10, &devid);
1071 if (ret)
1072 goto out_finish;
1073 if (!devid) {
1074 ret = -EINVAL;
1075 goto out_finish;
1076 }
1077 btrfs_info(fs_info, "resizing devid %llu", devid);
1078 }
1079
1080 args.devid = devid;
1081 device = btrfs_find_device(fs_info->fs_devices, &args);
1082 if (!device) {
1083 btrfs_info(fs_info, "resizer unable to find device %llu",
1084 devid);
1085 ret = -ENODEV;
1086 goto out_finish;
1087 }
1088
1089 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1090 btrfs_info(fs_info,
1091 "resizer unable to apply on readonly device %llu",
1092 devid);
1093 ret = -EPERM;
1094 goto out_finish;
1095 }
1096
1097 if (!strcmp(sizestr, "max"))
1098 new_size = bdev_nr_bytes(device->bdev);
1099 else {
1100 char *retptr;
1101
1102 if (sizestr[0] == '-') {
1103 mod = -1;
1104 sizestr++;
1105 } else if (sizestr[0] == '+') {
1106 mod = 1;
1107 sizestr++;
1108 }
1109 new_size = memparse(sizestr, &retptr);
1110 if (*retptr != '\0' || new_size == 0) {
1111 ret = -EINVAL;
1112 goto out_finish;
1113 }
1114 }
1115
1116 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1117 ret = -EPERM;
1118 goto out_finish;
1119 }
1120
1121 old_size = btrfs_device_get_total_bytes(device);
1122
1123 if (mod < 0) {
1124 if (new_size > old_size) {
1125 ret = -EINVAL;
1126 goto out_finish;
1127 }
1128 new_size = old_size - new_size;
1129 } else if (mod > 0) {
1130 if (new_size > ULLONG_MAX - old_size) {
1131 ret = -ERANGE;
1132 goto out_finish;
1133 }
1134 new_size = old_size + new_size;
1135 }
1136
1137 if (new_size < SZ_256M) {
1138 ret = -EINVAL;
1139 goto out_finish;
1140 }
1141 if (new_size > bdev_nr_bytes(device->bdev)) {
1142 ret = -EFBIG;
1143 goto out_finish;
1144 }
1145
1146 new_size = round_down(new_size, fs_info->sectorsize);
1147
1148 if (new_size > old_size) {
1149 struct btrfs_trans_handle *trans;
1150
1151 trans = btrfs_start_transaction(root, 0);
1152 if (IS_ERR(trans)) {
1153 ret = PTR_ERR(trans);
1154 goto out_finish;
1155 }
1156 ret = btrfs_grow_device(trans, device, new_size);
1157 btrfs_commit_transaction(trans);
1158 } else if (new_size < old_size) {
1159 ret = btrfs_shrink_device(device, new_size);
1160 } /* equal, nothing need to do */
1161
1162 if (ret == 0 && new_size != old_size)
1163 btrfs_info(fs_info,
1164 "resize device %s (devid %llu) from %llu to %llu",
1165 btrfs_dev_name(device), device->devid,
1166 old_size, new_size);
1167 out_finish:
1168 btrfs_exclop_finish(fs_info);
1169 out_free:
1170 kfree(vol_args);
1171 out_drop:
1172 mnt_drop_write_file(file);
1173 return ret;
1174 }
1175
__btrfs_ioctl_snap_create(struct file * file,struct mnt_idmap * idmap,const char * name,unsigned long fd,bool subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1176 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1177 struct mnt_idmap *idmap,
1178 const char *name, unsigned long fd, bool subvol,
1179 bool readonly,
1180 struct btrfs_qgroup_inherit *inherit)
1181 {
1182 int ret = 0;
1183 struct qstr qname = QSTR_INIT(name, strlen(name));
1184
1185 if (!S_ISDIR(file_inode(file)->i_mode))
1186 return -ENOTDIR;
1187
1188 ret = mnt_want_write_file(file);
1189 if (ret)
1190 goto out;
1191
1192 if (strchr(name, '/')) {
1193 ret = -EINVAL;
1194 goto out_drop_write;
1195 }
1196
1197 if (qname.name[0] == '.' &&
1198 (qname.len == 1 || (qname.name[1] == '.' && qname.len == 2))) {
1199 ret = -EEXIST;
1200 goto out_drop_write;
1201 }
1202
1203 if (subvol) {
1204 ret = btrfs_mksubvol(file_dentry(file), idmap, &qname, NULL,
1205 readonly, inherit);
1206 } else {
1207 CLASS(fd, src)(fd);
1208 struct inode *src_inode;
1209 if (fd_empty(src)) {
1210 ret = -EINVAL;
1211 goto out_drop_write;
1212 }
1213
1214 src_inode = file_inode(fd_file(src));
1215 if (src_inode->i_sb != file_inode(file)->i_sb) {
1216 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1217 "Snapshot src from another FS");
1218 ret = -EXDEV;
1219 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1220 /*
1221 * Subvolume creation is not restricted, but snapshots
1222 * are limited to own subvolumes only
1223 */
1224 ret = -EPERM;
1225 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1226 /*
1227 * Snapshots must be made with the src_inode referring
1228 * to the subvolume inode, otherwise the permission
1229 * checking above is useless because we may have
1230 * permission on a lower directory but not the subvol
1231 * itself.
1232 */
1233 ret = -EINVAL;
1234 } else {
1235 ret = btrfs_mksnapshot(file_dentry(file), idmap, &qname,
1236 BTRFS_I(src_inode)->root,
1237 readonly, inherit);
1238 }
1239 }
1240 out_drop_write:
1241 mnt_drop_write_file(file);
1242 out:
1243 return ret;
1244 }
1245
btrfs_ioctl_snap_create(struct file * file,void __user * arg,bool subvol)1246 static noinline int btrfs_ioctl_snap_create(struct file *file,
1247 void __user *arg, bool subvol)
1248 {
1249 struct btrfs_ioctl_vol_args *vol_args;
1250 int ret;
1251
1252 if (!S_ISDIR(file_inode(file)->i_mode))
1253 return -ENOTDIR;
1254
1255 vol_args = memdup_user(arg, sizeof(*vol_args));
1256 if (IS_ERR(vol_args))
1257 return PTR_ERR(vol_args);
1258 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1259 if (ret < 0)
1260 goto out;
1261
1262 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1263 vol_args->name, vol_args->fd, subvol,
1264 false, NULL);
1265
1266 out:
1267 kfree(vol_args);
1268 return ret;
1269 }
1270
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,bool subvol)1271 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1272 void __user *arg, bool subvol)
1273 {
1274 struct btrfs_ioctl_vol_args_v2 *vol_args;
1275 int ret;
1276 bool readonly = false;
1277 struct btrfs_qgroup_inherit *inherit = NULL;
1278
1279 if (!S_ISDIR(file_inode(file)->i_mode))
1280 return -ENOTDIR;
1281
1282 vol_args = memdup_user(arg, sizeof(*vol_args));
1283 if (IS_ERR(vol_args))
1284 return PTR_ERR(vol_args);
1285 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1286 if (ret < 0)
1287 goto free_args;
1288
1289 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1290 ret = -EOPNOTSUPP;
1291 goto free_args;
1292 }
1293
1294 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1295 readonly = true;
1296 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1297 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1298
1299 if (vol_args->size < sizeof(*inherit) ||
1300 vol_args->size > PAGE_SIZE) {
1301 ret = -EINVAL;
1302 goto free_args;
1303 }
1304 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1305 if (IS_ERR(inherit)) {
1306 ret = PTR_ERR(inherit);
1307 goto free_args;
1308 }
1309
1310 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1311 if (ret < 0)
1312 goto free_inherit;
1313 }
1314
1315 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1316 vol_args->name, vol_args->fd, subvol,
1317 readonly, inherit);
1318 if (ret)
1319 goto free_inherit;
1320 free_inherit:
1321 kfree(inherit);
1322 free_args:
1323 kfree(vol_args);
1324 return ret;
1325 }
1326
btrfs_ioctl_subvol_getflags(struct btrfs_inode * inode,void __user * arg)1327 static noinline int btrfs_ioctl_subvol_getflags(struct btrfs_inode *inode,
1328 void __user *arg)
1329 {
1330 struct btrfs_root *root = inode->root;
1331 struct btrfs_fs_info *fs_info = root->fs_info;
1332 int ret = 0;
1333 u64 flags = 0;
1334
1335 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1336 return -EINVAL;
1337
1338 down_read(&fs_info->subvol_sem);
1339 if (btrfs_root_readonly(root))
1340 flags |= BTRFS_SUBVOL_RDONLY;
1341 up_read(&fs_info->subvol_sem);
1342
1343 if (copy_to_user(arg, &flags, sizeof(flags)))
1344 ret = -EFAULT;
1345
1346 return ret;
1347 }
1348
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1349 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1350 void __user *arg)
1351 {
1352 struct inode *inode = file_inode(file);
1353 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1354 struct btrfs_root *root = BTRFS_I(inode)->root;
1355 struct btrfs_trans_handle *trans;
1356 u64 root_flags;
1357 u64 flags;
1358 int ret = 0;
1359
1360 if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1361 return -EPERM;
1362
1363 ret = mnt_want_write_file(file);
1364 if (ret)
1365 goto out;
1366
1367 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1368 ret = -EINVAL;
1369 goto out_drop_write;
1370 }
1371
1372 if (copy_from_user(&flags, arg, sizeof(flags))) {
1373 ret = -EFAULT;
1374 goto out_drop_write;
1375 }
1376
1377 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1378 ret = -EOPNOTSUPP;
1379 goto out_drop_write;
1380 }
1381
1382 down_write(&fs_info->subvol_sem);
1383
1384 /* nothing to do */
1385 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1386 goto out_drop_sem;
1387
1388 root_flags = btrfs_root_flags(&root->root_item);
1389 if (flags & BTRFS_SUBVOL_RDONLY) {
1390 btrfs_set_root_flags(&root->root_item,
1391 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1392 } else {
1393 /*
1394 * Block RO -> RW transition if this subvolume is involved in
1395 * send
1396 */
1397 spin_lock(&root->root_item_lock);
1398 if (root->send_in_progress == 0) {
1399 btrfs_set_root_flags(&root->root_item,
1400 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1401 spin_unlock(&root->root_item_lock);
1402 } else {
1403 spin_unlock(&root->root_item_lock);
1404 btrfs_warn(fs_info,
1405 "Attempt to set subvolume %llu read-write during send",
1406 btrfs_root_id(root));
1407 ret = -EPERM;
1408 goto out_drop_sem;
1409 }
1410 }
1411
1412 trans = btrfs_start_transaction(root, 1);
1413 if (IS_ERR(trans)) {
1414 ret = PTR_ERR(trans);
1415 goto out_reset;
1416 }
1417
1418 ret = btrfs_update_root(trans, fs_info->tree_root,
1419 &root->root_key, &root->root_item);
1420 if (ret < 0) {
1421 btrfs_end_transaction(trans);
1422 goto out_reset;
1423 }
1424
1425 ret = btrfs_commit_transaction(trans);
1426
1427 out_reset:
1428 if (ret)
1429 btrfs_set_root_flags(&root->root_item, root_flags);
1430 out_drop_sem:
1431 up_write(&fs_info->subvol_sem);
1432 out_drop_write:
1433 mnt_drop_write_file(file);
1434 out:
1435 return ret;
1436 }
1437
key_in_sk(const struct btrfs_key * key,const struct btrfs_ioctl_search_key * sk)1438 static noinline bool key_in_sk(const struct btrfs_key *key,
1439 const struct btrfs_ioctl_search_key *sk)
1440 {
1441 struct btrfs_key test;
1442 int ret;
1443
1444 test.objectid = sk->min_objectid;
1445 test.type = sk->min_type;
1446 test.offset = sk->min_offset;
1447
1448 ret = btrfs_comp_cpu_keys(key, &test);
1449 if (ret < 0)
1450 return false;
1451
1452 test.objectid = sk->max_objectid;
1453 test.type = sk->max_type;
1454 test.offset = sk->max_offset;
1455
1456 ret = btrfs_comp_cpu_keys(key, &test);
1457 if (ret > 0)
1458 return false;
1459 return true;
1460 }
1461
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,const struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)1462 static noinline int copy_to_sk(struct btrfs_path *path,
1463 struct btrfs_key *key,
1464 const struct btrfs_ioctl_search_key *sk,
1465 u64 *buf_size,
1466 char __user *ubuf,
1467 unsigned long *sk_offset,
1468 int *num_found)
1469 {
1470 u64 found_transid;
1471 struct extent_buffer *leaf;
1472 struct btrfs_ioctl_search_header sh;
1473 struct btrfs_key test;
1474 unsigned long item_off;
1475 unsigned long item_len;
1476 int nritems;
1477 int i;
1478 int slot;
1479 int ret = 0;
1480
1481 leaf = path->nodes[0];
1482 slot = path->slots[0];
1483 nritems = btrfs_header_nritems(leaf);
1484
1485 if (btrfs_header_generation(leaf) > sk->max_transid) {
1486 i = nritems;
1487 goto advance_key;
1488 }
1489 found_transid = btrfs_header_generation(leaf);
1490
1491 for (i = slot; i < nritems; i++) {
1492 item_off = btrfs_item_ptr_offset(leaf, i);
1493 item_len = btrfs_item_size(leaf, i);
1494
1495 btrfs_item_key_to_cpu(leaf, key, i);
1496 if (!key_in_sk(key, sk))
1497 continue;
1498
1499 if (sizeof(sh) + item_len > *buf_size) {
1500 if (*num_found) {
1501 ret = 1;
1502 goto out;
1503 }
1504
1505 /*
1506 * return one empty item back for v1, which does not
1507 * handle -EOVERFLOW
1508 */
1509
1510 *buf_size = sizeof(sh) + item_len;
1511 item_len = 0;
1512 ret = -EOVERFLOW;
1513 }
1514
1515 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1516 ret = 1;
1517 goto out;
1518 }
1519
1520 sh.objectid = key->objectid;
1521 sh.type = key->type;
1522 sh.offset = key->offset;
1523 sh.len = item_len;
1524 sh.transid = found_transid;
1525
1526 /*
1527 * Copy search result header. If we fault then loop again so we
1528 * can fault in the pages and -EFAULT there if there's a
1529 * problem. Otherwise we'll fault and then copy the buffer in
1530 * properly this next time through
1531 */
1532 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1533 ret = 0;
1534 goto out;
1535 }
1536
1537 *sk_offset += sizeof(sh);
1538
1539 if (item_len) {
1540 char __user *up = ubuf + *sk_offset;
1541 /*
1542 * Copy the item, same behavior as above, but reset the
1543 * * sk_offset so we copy the full thing again.
1544 */
1545 if (read_extent_buffer_to_user_nofault(leaf, up,
1546 item_off, item_len)) {
1547 ret = 0;
1548 *sk_offset -= sizeof(sh);
1549 goto out;
1550 }
1551
1552 *sk_offset += item_len;
1553 }
1554 (*num_found)++;
1555
1556 if (ret) /* -EOVERFLOW from above */
1557 goto out;
1558
1559 if (*num_found >= sk->nr_items) {
1560 ret = 1;
1561 goto out;
1562 }
1563 }
1564 advance_key:
1565 ret = 0;
1566 test.objectid = sk->max_objectid;
1567 test.type = sk->max_type;
1568 test.offset = sk->max_offset;
1569 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1570 ret = 1;
1571 else if (key->offset < (u64)-1)
1572 key->offset++;
1573 else if (key->type < (u8)-1) {
1574 key->offset = 0;
1575 key->type++;
1576 } else if (key->objectid < (u64)-1) {
1577 key->offset = 0;
1578 key->type = 0;
1579 key->objectid++;
1580 } else
1581 ret = 1;
1582 out:
1583 /*
1584 * 0: all items from this leaf copied, continue with next
1585 * 1: * more items can be copied, but unused buffer is too small
1586 * * all items were found
1587 * Either way, it will stops the loop which iterates to the next
1588 * leaf
1589 * -EOVERFLOW: item was to large for buffer
1590 * -EFAULT: could not copy extent buffer back to userspace
1591 */
1592 return ret;
1593 }
1594
search_ioctl(struct btrfs_root * root,struct btrfs_ioctl_search_key * sk,u64 * buf_size,char __user * ubuf)1595 static noinline int search_ioctl(struct btrfs_root *root,
1596 struct btrfs_ioctl_search_key *sk,
1597 u64 *buf_size,
1598 char __user *ubuf)
1599 {
1600 struct btrfs_fs_info *info = root->fs_info;
1601 struct btrfs_key key;
1602 struct btrfs_path *path;
1603 int ret;
1604 int num_found = 0;
1605 unsigned long sk_offset = 0;
1606
1607 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1608 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1609 return -EOVERFLOW;
1610 }
1611
1612 path = btrfs_alloc_path();
1613 if (!path)
1614 return -ENOMEM;
1615
1616 if (sk->tree_id == 0) {
1617 /* Search the root that we got passed. */
1618 root = btrfs_grab_root(root);
1619 } else {
1620 /* Look up the root from the arguments. */
1621 root = btrfs_get_fs_root(info, sk->tree_id, true);
1622 if (IS_ERR(root)) {
1623 btrfs_free_path(path);
1624 return PTR_ERR(root);
1625 }
1626 }
1627
1628 key.objectid = sk->min_objectid;
1629 key.type = sk->min_type;
1630 key.offset = sk->min_offset;
1631
1632 while (1) {
1633 /*
1634 * Ensure that the whole user buffer is faulted in at sub-page
1635 * granularity, otherwise the loop may live-lock.
1636 */
1637 if (fault_in_subpage_writeable(ubuf + sk_offset, *buf_size - sk_offset)) {
1638 ret = -EFAULT;
1639 break;
1640 }
1641
1642 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1643 if (ret)
1644 break;
1645
1646 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1647 &sk_offset, &num_found);
1648 btrfs_release_path(path);
1649 if (ret)
1650 break;
1651
1652 }
1653 /* Normalize return values from btrfs_search_forward() and copy_to_sk(). */
1654 if (ret > 0)
1655 ret = 0;
1656
1657 sk->nr_items = num_found;
1658 btrfs_put_root(root);
1659 btrfs_free_path(path);
1660 return ret;
1661 }
1662
btrfs_ioctl_tree_search(struct btrfs_root * root,void __user * argp)1663 static noinline int btrfs_ioctl_tree_search(struct btrfs_root *root,
1664 void __user *argp)
1665 {
1666 struct btrfs_ioctl_search_args __user *uargs = argp;
1667 struct btrfs_ioctl_search_key sk;
1668 int ret;
1669 u64 buf_size;
1670
1671 if (!capable(CAP_SYS_ADMIN))
1672 return -EPERM;
1673
1674 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1675 return -EFAULT;
1676
1677 buf_size = sizeof(uargs->buf);
1678
1679 ret = search_ioctl(root, &sk, &buf_size, uargs->buf);
1680
1681 /*
1682 * In the origin implementation an overflow is handled by returning a
1683 * search header with a len of zero, so reset ret.
1684 */
1685 if (ret == -EOVERFLOW)
1686 ret = 0;
1687
1688 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1689 ret = -EFAULT;
1690 return ret;
1691 }
1692
btrfs_ioctl_tree_search_v2(struct btrfs_root * root,void __user * argp)1693 static noinline int btrfs_ioctl_tree_search_v2(struct btrfs_root *root,
1694 void __user *argp)
1695 {
1696 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1697 struct btrfs_ioctl_search_args_v2 args;
1698 int ret;
1699 u64 buf_size;
1700 const u64 buf_limit = SZ_16M;
1701
1702 if (!capable(CAP_SYS_ADMIN))
1703 return -EPERM;
1704
1705 /* copy search header and buffer size */
1706 if (copy_from_user(&args, uarg, sizeof(args)))
1707 return -EFAULT;
1708
1709 buf_size = args.buf_size;
1710
1711 /* limit result size to 16MB */
1712 if (buf_size > buf_limit)
1713 buf_size = buf_limit;
1714
1715 ret = search_ioctl(root, &args.key, &buf_size,
1716 (char __user *)(&uarg->buf[0]));
1717 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1718 ret = -EFAULT;
1719 else if (ret == -EOVERFLOW &&
1720 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1721 ret = -EFAULT;
1722
1723 return ret;
1724 }
1725
1726 /*
1727 * Search INODE_REFs to identify path name of 'dirid' directory
1728 * in a 'tree_id' tree. and sets path name to 'name'.
1729 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)1730 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1731 u64 tree_id, u64 dirid, char *name)
1732 {
1733 struct btrfs_root *root;
1734 struct btrfs_key key;
1735 char *ptr;
1736 int ret = -1;
1737 int slot;
1738 int len;
1739 int total_len = 0;
1740 struct btrfs_inode_ref *iref;
1741 struct extent_buffer *l;
1742 struct btrfs_path *path;
1743
1744 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1745 name[0]='\0';
1746 return 0;
1747 }
1748
1749 path = btrfs_alloc_path();
1750 if (!path)
1751 return -ENOMEM;
1752
1753 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1754
1755 root = btrfs_get_fs_root(info, tree_id, true);
1756 if (IS_ERR(root)) {
1757 ret = PTR_ERR(root);
1758 root = NULL;
1759 goto out;
1760 }
1761
1762 key.objectid = dirid;
1763 key.type = BTRFS_INODE_REF_KEY;
1764 key.offset = (u64)-1;
1765
1766 while (1) {
1767 ret = btrfs_search_backwards(root, &key, path);
1768 if (ret < 0)
1769 goto out;
1770 else if (ret > 0) {
1771 ret = -ENOENT;
1772 goto out;
1773 }
1774
1775 l = path->nodes[0];
1776 slot = path->slots[0];
1777
1778 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1779 len = btrfs_inode_ref_name_len(l, iref);
1780 ptr -= len + 1;
1781 total_len += len + 1;
1782 if (ptr < name) {
1783 ret = -ENAMETOOLONG;
1784 goto out;
1785 }
1786
1787 *(ptr + len) = '/';
1788 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1789
1790 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1791 break;
1792
1793 btrfs_release_path(path);
1794 key.objectid = key.offset;
1795 key.offset = (u64)-1;
1796 dirid = key.objectid;
1797 }
1798 memmove(name, ptr, total_len);
1799 name[total_len] = '\0';
1800 ret = 0;
1801 out:
1802 btrfs_put_root(root);
1803 btrfs_free_path(path);
1804 return ret;
1805 }
1806
btrfs_search_path_in_tree_user(struct mnt_idmap * idmap,struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)1807 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1808 struct inode *inode,
1809 struct btrfs_ioctl_ino_lookup_user_args *args)
1810 {
1811 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1812 u64 upper_limit = btrfs_ino(BTRFS_I(inode));
1813 u64 treeid = btrfs_root_id(BTRFS_I(inode)->root);
1814 u64 dirid = args->dirid;
1815 unsigned long item_off;
1816 unsigned long item_len;
1817 struct btrfs_inode_ref *iref;
1818 struct btrfs_root_ref *rref;
1819 struct btrfs_root *root = NULL;
1820 struct btrfs_path *path;
1821 struct btrfs_key key, key2;
1822 struct extent_buffer *leaf;
1823 char *ptr;
1824 int slot;
1825 int len;
1826 int total_len = 0;
1827 int ret;
1828
1829 path = btrfs_alloc_path();
1830 if (!path)
1831 return -ENOMEM;
1832
1833 /*
1834 * If the bottom subvolume does not exist directly under upper_limit,
1835 * construct the path in from the bottom up.
1836 */
1837 if (dirid != upper_limit) {
1838 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1839
1840 root = btrfs_get_fs_root(fs_info, treeid, true);
1841 if (IS_ERR(root)) {
1842 ret = PTR_ERR(root);
1843 goto out;
1844 }
1845
1846 key.objectid = dirid;
1847 key.type = BTRFS_INODE_REF_KEY;
1848 key.offset = (u64)-1;
1849 while (1) {
1850 struct btrfs_inode *temp_inode;
1851
1852 ret = btrfs_search_backwards(root, &key, path);
1853 if (ret < 0)
1854 goto out_put;
1855 else if (ret > 0) {
1856 ret = -ENOENT;
1857 goto out_put;
1858 }
1859
1860 leaf = path->nodes[0];
1861 slot = path->slots[0];
1862
1863 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1864 len = btrfs_inode_ref_name_len(leaf, iref);
1865 ptr -= len + 1;
1866 total_len += len + 1;
1867 if (ptr < args->path) {
1868 ret = -ENAMETOOLONG;
1869 goto out_put;
1870 }
1871
1872 *(ptr + len) = '/';
1873 read_extent_buffer(leaf, ptr,
1874 (unsigned long)(iref + 1), len);
1875
1876 /* Check the read+exec permission of this directory */
1877 ret = btrfs_previous_item(root, path, dirid,
1878 BTRFS_INODE_ITEM_KEY);
1879 if (ret < 0) {
1880 goto out_put;
1881 } else if (ret > 0) {
1882 ret = -ENOENT;
1883 goto out_put;
1884 }
1885
1886 leaf = path->nodes[0];
1887 slot = path->slots[0];
1888 btrfs_item_key_to_cpu(leaf, &key2, slot);
1889 if (key2.objectid != dirid) {
1890 ret = -ENOENT;
1891 goto out_put;
1892 }
1893
1894 /*
1895 * We don't need the path anymore, so release it and
1896 * avoid deadlocks and lockdep warnings in case
1897 * btrfs_iget() needs to lookup the inode from its root
1898 * btree and lock the same leaf.
1899 */
1900 btrfs_release_path(path);
1901 temp_inode = btrfs_iget(key2.objectid, root);
1902 if (IS_ERR(temp_inode)) {
1903 ret = PTR_ERR(temp_inode);
1904 goto out_put;
1905 }
1906 ret = inode_permission(idmap, &temp_inode->vfs_inode,
1907 MAY_READ | MAY_EXEC);
1908 iput(&temp_inode->vfs_inode);
1909 if (ret) {
1910 ret = -EACCES;
1911 goto out_put;
1912 }
1913
1914 if (key.offset == upper_limit)
1915 break;
1916 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1917 ret = -EACCES;
1918 goto out_put;
1919 }
1920
1921 key.objectid = key.offset;
1922 key.offset = (u64)-1;
1923 dirid = key.objectid;
1924 }
1925
1926 memmove(args->path, ptr, total_len);
1927 args->path[total_len] = '\0';
1928 btrfs_put_root(root);
1929 root = NULL;
1930 btrfs_release_path(path);
1931 }
1932
1933 /* Get the bottom subvolume's name from ROOT_REF */
1934 key.objectid = treeid;
1935 key.type = BTRFS_ROOT_REF_KEY;
1936 key.offset = args->treeid;
1937 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1938 if (ret < 0) {
1939 goto out;
1940 } else if (ret > 0) {
1941 ret = -ENOENT;
1942 goto out;
1943 }
1944
1945 leaf = path->nodes[0];
1946 slot = path->slots[0];
1947 btrfs_item_key_to_cpu(leaf, &key, slot);
1948
1949 item_off = btrfs_item_ptr_offset(leaf, slot);
1950 item_len = btrfs_item_size(leaf, slot);
1951 /* Check if dirid in ROOT_REF corresponds to passed dirid */
1952 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
1953 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
1954 ret = -EINVAL;
1955 goto out;
1956 }
1957
1958 /* Copy subvolume's name */
1959 item_off += sizeof(struct btrfs_root_ref);
1960 item_len -= sizeof(struct btrfs_root_ref);
1961 read_extent_buffer(leaf, args->name, item_off, item_len);
1962 args->name[item_len] = 0;
1963
1964 out_put:
1965 btrfs_put_root(root);
1966 out:
1967 btrfs_free_path(path);
1968 return ret;
1969 }
1970
btrfs_ioctl_ino_lookup(struct btrfs_root * root,void __user * argp)1971 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
1972 void __user *argp)
1973 {
1974 struct btrfs_ioctl_ino_lookup_args *args;
1975 int ret = 0;
1976
1977 args = memdup_user(argp, sizeof(*args));
1978 if (IS_ERR(args))
1979 return PTR_ERR(args);
1980
1981 /*
1982 * Unprivileged query to obtain the containing subvolume root id. The
1983 * path is reset so it's consistent with btrfs_search_path_in_tree.
1984 */
1985 if (args->treeid == 0)
1986 args->treeid = btrfs_root_id(root);
1987
1988 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
1989 args->name[0] = 0;
1990 goto out;
1991 }
1992
1993 if (!capable(CAP_SYS_ADMIN)) {
1994 ret = -EPERM;
1995 goto out;
1996 }
1997
1998 ret = btrfs_search_path_in_tree(root->fs_info,
1999 args->treeid, args->objectid,
2000 args->name);
2001
2002 out:
2003 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2004 ret = -EFAULT;
2005
2006 kfree(args);
2007 return ret;
2008 }
2009
2010 /*
2011 * Version of ino_lookup ioctl (unprivileged)
2012 *
2013 * The main differences from ino_lookup ioctl are:
2014 *
2015 * 1. Read + Exec permission will be checked using inode_permission() during
2016 * path construction. -EACCES will be returned in case of failure.
2017 * 2. Path construction will be stopped at the inode number which corresponds
2018 * to the fd with which this ioctl is called. If constructed path does not
2019 * exist under fd's inode, -EACCES will be returned.
2020 * 3. The name of bottom subvolume is also searched and filled.
2021 */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2022 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2023 {
2024 struct btrfs_ioctl_ino_lookup_user_args *args;
2025 struct inode *inode;
2026 int ret;
2027
2028 args = memdup_user(argp, sizeof(*args));
2029 if (IS_ERR(args))
2030 return PTR_ERR(args);
2031
2032 inode = file_inode(file);
2033
2034 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2035 btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2036 /*
2037 * The subvolume does not exist under fd with which this is
2038 * called
2039 */
2040 kfree(args);
2041 return -EACCES;
2042 }
2043
2044 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2045
2046 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2047 ret = -EFAULT;
2048
2049 kfree(args);
2050 return ret;
2051 }
2052
2053 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct inode * inode,void __user * argp)2054 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2055 {
2056 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2057 struct btrfs_fs_info *fs_info;
2058 struct btrfs_root *root;
2059 struct btrfs_path *path;
2060 struct btrfs_key key;
2061 struct btrfs_root_item *root_item;
2062 struct btrfs_root_ref *rref;
2063 struct extent_buffer *leaf;
2064 unsigned long item_off;
2065 unsigned long item_len;
2066 int slot;
2067 int ret = 0;
2068
2069 path = btrfs_alloc_path();
2070 if (!path)
2071 return -ENOMEM;
2072
2073 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2074 if (!subvol_info) {
2075 btrfs_free_path(path);
2076 return -ENOMEM;
2077 }
2078
2079 fs_info = BTRFS_I(inode)->root->fs_info;
2080
2081 /* Get root_item of inode's subvolume */
2082 key.objectid = btrfs_root_id(BTRFS_I(inode)->root);
2083 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2084 if (IS_ERR(root)) {
2085 ret = PTR_ERR(root);
2086 goto out_free;
2087 }
2088 root_item = &root->root_item;
2089
2090 subvol_info->treeid = key.objectid;
2091
2092 subvol_info->generation = btrfs_root_generation(root_item);
2093 subvol_info->flags = btrfs_root_flags(root_item);
2094
2095 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2096 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2097 BTRFS_UUID_SIZE);
2098 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2099 BTRFS_UUID_SIZE);
2100
2101 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2102 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2103 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2104
2105 subvol_info->otransid = btrfs_root_otransid(root_item);
2106 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2107 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2108
2109 subvol_info->stransid = btrfs_root_stransid(root_item);
2110 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2111 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2112
2113 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2114 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2115 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2116
2117 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2118 /* Search root tree for ROOT_BACKREF of this subvolume */
2119 key.type = BTRFS_ROOT_BACKREF_KEY;
2120 key.offset = 0;
2121 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2122 if (ret < 0) {
2123 goto out;
2124 } else if (path->slots[0] >=
2125 btrfs_header_nritems(path->nodes[0])) {
2126 ret = btrfs_next_leaf(fs_info->tree_root, path);
2127 if (ret < 0) {
2128 goto out;
2129 } else if (unlikely(ret > 0)) {
2130 ret = -EUCLEAN;
2131 goto out;
2132 }
2133 }
2134
2135 leaf = path->nodes[0];
2136 slot = path->slots[0];
2137 btrfs_item_key_to_cpu(leaf, &key, slot);
2138 if (key.objectid == subvol_info->treeid &&
2139 key.type == BTRFS_ROOT_BACKREF_KEY) {
2140 subvol_info->parent_id = key.offset;
2141
2142 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2143 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2144
2145 item_off = btrfs_item_ptr_offset(leaf, slot)
2146 + sizeof(struct btrfs_root_ref);
2147 item_len = btrfs_item_size(leaf, slot)
2148 - sizeof(struct btrfs_root_ref);
2149 read_extent_buffer(leaf, subvol_info->name,
2150 item_off, item_len);
2151 } else {
2152 ret = -ENOENT;
2153 goto out;
2154 }
2155 }
2156
2157 btrfs_free_path(path);
2158 path = NULL;
2159 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2160 ret = -EFAULT;
2161
2162 out:
2163 btrfs_put_root(root);
2164 out_free:
2165 btrfs_free_path(path);
2166 kfree(subvol_info);
2167 return ret;
2168 }
2169
2170 /*
2171 * Return ROOT_REF information of the subvolume containing this inode
2172 * except the subvolume name.
2173 */
btrfs_ioctl_get_subvol_rootref(struct btrfs_root * root,void __user * argp)2174 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2175 void __user *argp)
2176 {
2177 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2178 struct btrfs_root_ref *rref;
2179 struct btrfs_path *path;
2180 struct btrfs_key key;
2181 struct extent_buffer *leaf;
2182 u64 objectid;
2183 int slot;
2184 int ret;
2185 u8 found;
2186
2187 path = btrfs_alloc_path();
2188 if (!path)
2189 return -ENOMEM;
2190
2191 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2192 if (IS_ERR(rootrefs)) {
2193 btrfs_free_path(path);
2194 return PTR_ERR(rootrefs);
2195 }
2196
2197 objectid = btrfs_root_id(root);
2198 key.objectid = objectid;
2199 key.type = BTRFS_ROOT_REF_KEY;
2200 key.offset = rootrefs->min_treeid;
2201 found = 0;
2202
2203 root = root->fs_info->tree_root;
2204 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2205 if (ret < 0) {
2206 goto out;
2207 } else if (path->slots[0] >=
2208 btrfs_header_nritems(path->nodes[0])) {
2209 ret = btrfs_next_leaf(root, path);
2210 if (ret < 0) {
2211 goto out;
2212 } else if (unlikely(ret > 0)) {
2213 ret = -EUCLEAN;
2214 goto out;
2215 }
2216 }
2217 while (1) {
2218 leaf = path->nodes[0];
2219 slot = path->slots[0];
2220
2221 btrfs_item_key_to_cpu(leaf, &key, slot);
2222 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2223 ret = 0;
2224 goto out;
2225 }
2226
2227 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2228 ret = -EOVERFLOW;
2229 goto out;
2230 }
2231
2232 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2233 rootrefs->rootref[found].treeid = key.offset;
2234 rootrefs->rootref[found].dirid =
2235 btrfs_root_ref_dirid(leaf, rref);
2236 found++;
2237
2238 ret = btrfs_next_item(root, path);
2239 if (ret < 0) {
2240 goto out;
2241 } else if (unlikely(ret > 0)) {
2242 ret = -EUCLEAN;
2243 goto out;
2244 }
2245 }
2246
2247 out:
2248 btrfs_free_path(path);
2249
2250 if (!ret || ret == -EOVERFLOW) {
2251 rootrefs->num_items = found;
2252 /* update min_treeid for next search */
2253 if (found)
2254 rootrefs->min_treeid =
2255 rootrefs->rootref[found - 1].treeid + 1;
2256 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2257 ret = -EFAULT;
2258 }
2259
2260 kfree(rootrefs);
2261
2262 return ret;
2263 }
2264
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2265 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2266 void __user *arg,
2267 bool destroy_v2)
2268 {
2269 struct dentry *parent = file->f_path.dentry;
2270 struct dentry *dentry;
2271 struct inode *dir = d_inode(parent);
2272 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2273 struct inode *inode;
2274 struct btrfs_root *root = BTRFS_I(dir)->root;
2275 struct btrfs_root *dest = NULL;
2276 struct btrfs_ioctl_vol_args *vol_args = NULL;
2277 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2278 struct mnt_idmap *idmap = file_mnt_idmap(file);
2279 char *subvol_name, *subvol_name_ptr = NULL;
2280 int ret = 0;
2281 bool destroy_parent = false;
2282
2283 /* We don't support snapshots with extent tree v2 yet. */
2284 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2285 btrfs_err(fs_info,
2286 "extent tree v2 doesn't support snapshot deletion yet");
2287 return -EOPNOTSUPP;
2288 }
2289
2290 if (destroy_v2) {
2291 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2292 if (IS_ERR(vol_args2))
2293 return PTR_ERR(vol_args2);
2294
2295 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2296 ret = -EOPNOTSUPP;
2297 goto out;
2298 }
2299
2300 /*
2301 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2302 * name, same as v1 currently does.
2303 */
2304 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2305 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2306 if (ret < 0)
2307 goto out;
2308 subvol_name = vol_args2->name;
2309
2310 ret = mnt_want_write_file(file);
2311 if (ret)
2312 goto out;
2313 } else {
2314 struct inode *old_dir;
2315
2316 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2317 ret = -EINVAL;
2318 goto out;
2319 }
2320
2321 ret = mnt_want_write_file(file);
2322 if (ret)
2323 goto out;
2324
2325 dentry = btrfs_get_dentry(fs_info->sb,
2326 BTRFS_FIRST_FREE_OBJECTID,
2327 vol_args2->subvolid, 0);
2328 if (IS_ERR(dentry)) {
2329 ret = PTR_ERR(dentry);
2330 goto out_drop_write;
2331 }
2332
2333 /*
2334 * Change the default parent since the subvolume being
2335 * deleted can be outside of the current mount point.
2336 */
2337 parent = btrfs_get_parent(dentry);
2338
2339 /*
2340 * At this point dentry->d_name can point to '/' if the
2341 * subvolume we want to destroy is outsite of the
2342 * current mount point, so we need to release the
2343 * current dentry and execute the lookup to return a new
2344 * one with ->d_name pointing to the
2345 * <mount point>/subvol_name.
2346 */
2347 dput(dentry);
2348 if (IS_ERR(parent)) {
2349 ret = PTR_ERR(parent);
2350 goto out_drop_write;
2351 }
2352 old_dir = dir;
2353 dir = d_inode(parent);
2354
2355 /*
2356 * If v2 was used with SPEC_BY_ID, a new parent was
2357 * allocated since the subvolume can be outside of the
2358 * current mount point. Later on we need to release this
2359 * new parent dentry.
2360 */
2361 destroy_parent = true;
2362
2363 /*
2364 * On idmapped mounts, deletion via subvolid is
2365 * restricted to subvolumes that are immediate
2366 * ancestors of the inode referenced by the file
2367 * descriptor in the ioctl. Otherwise the idmapping
2368 * could potentially be abused to delete subvolumes
2369 * anywhere in the filesystem the user wouldn't be able
2370 * to delete without an idmapped mount.
2371 */
2372 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2373 ret = -EOPNOTSUPP;
2374 goto free_parent;
2375 }
2376
2377 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2378 fs_info, vol_args2->subvolid);
2379 if (IS_ERR(subvol_name_ptr)) {
2380 ret = PTR_ERR(subvol_name_ptr);
2381 goto free_parent;
2382 }
2383 /* subvol_name_ptr is already nul terminated */
2384 subvol_name = (char *)kbasename(subvol_name_ptr);
2385 }
2386 } else {
2387 vol_args = memdup_user(arg, sizeof(*vol_args));
2388 if (IS_ERR(vol_args))
2389 return PTR_ERR(vol_args);
2390
2391 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2392 if (ret < 0)
2393 goto out;
2394
2395 subvol_name = vol_args->name;
2396
2397 ret = mnt_want_write_file(file);
2398 if (ret)
2399 goto out;
2400 }
2401
2402 if (strchr(subvol_name, '/') ||
2403 strcmp(subvol_name, "..") == 0) {
2404 ret = -EINVAL;
2405 goto free_subvol_name;
2406 }
2407
2408 if (!S_ISDIR(dir->i_mode)) {
2409 ret = -ENOTDIR;
2410 goto free_subvol_name;
2411 }
2412
2413 dentry = start_removing_killable(idmap, parent, &QSTR(subvol_name));
2414 if (IS_ERR(dentry)) {
2415 ret = PTR_ERR(dentry);
2416 goto out_end_removing;
2417 }
2418
2419 inode = d_inode(dentry);
2420 dest = BTRFS_I(inode)->root;
2421 if (!capable(CAP_SYS_ADMIN)) {
2422 /*
2423 * Regular user. Only allow this with a special mount
2424 * option, when the user has write+exec access to the
2425 * subvol root, and when rmdir(2) would have been
2426 * allowed.
2427 *
2428 * Note that this is _not_ check that the subvol is
2429 * empty or doesn't contain data that we wouldn't
2430 * otherwise be able to delete.
2431 *
2432 * Users who want to delete empty subvols should try
2433 * rmdir(2).
2434 */
2435 ret = -EPERM;
2436 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2437 goto out_end_removing;
2438
2439 /*
2440 * Do not allow deletion if the parent dir is the same
2441 * as the dir to be deleted. That means the ioctl
2442 * must be called on the dentry referencing the root
2443 * of the subvol, not a random directory contained
2444 * within it.
2445 */
2446 ret = -EINVAL;
2447 if (root == dest)
2448 goto out_end_removing;
2449
2450 ret = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2451 if (ret)
2452 goto out_end_removing;
2453 }
2454
2455 /* check if subvolume may be deleted by a user */
2456 ret = btrfs_may_delete(idmap, dir, dentry, 1);
2457 if (ret)
2458 goto out_end_removing;
2459
2460 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2461 ret = -EINVAL;
2462 goto out_end_removing;
2463 }
2464
2465 btrfs_inode_lock(BTRFS_I(inode), 0);
2466 ret = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2467 btrfs_inode_unlock(BTRFS_I(inode), 0);
2468 if (!ret)
2469 d_delete_notify(dir, dentry);
2470
2471 out_end_removing:
2472 end_removing(dentry);
2473 free_subvol_name:
2474 kfree(subvol_name_ptr);
2475 free_parent:
2476 if (destroy_parent)
2477 dput(parent);
2478 out_drop_write:
2479 mnt_drop_write_file(file);
2480 out:
2481 kfree(vol_args2);
2482 kfree(vol_args);
2483 return ret;
2484 }
2485
btrfs_ioctl_defrag(struct file * file,void __user * argp)2486 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2487 {
2488 struct inode *inode = file_inode(file);
2489 struct btrfs_root *root = BTRFS_I(inode)->root;
2490 struct btrfs_ioctl_defrag_range_args range = {0};
2491 int ret;
2492
2493 ret = mnt_want_write_file(file);
2494 if (ret)
2495 return ret;
2496
2497 if (btrfs_root_readonly(root)) {
2498 ret = -EROFS;
2499 goto out;
2500 }
2501
2502 switch (inode->i_mode & S_IFMT) {
2503 case S_IFDIR:
2504 if (!capable(CAP_SYS_ADMIN)) {
2505 ret = -EPERM;
2506 goto out;
2507 }
2508 ret = btrfs_defrag_root(root);
2509 break;
2510 case S_IFREG:
2511 /*
2512 * Note that this does not check the file descriptor for write
2513 * access. This prevents defragmenting executables that are
2514 * running and allows defrag on files open in read-only mode.
2515 */
2516 if (!capable(CAP_SYS_ADMIN) &&
2517 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2518 ret = -EPERM;
2519 goto out;
2520 }
2521
2522 /*
2523 * Don't allow defrag on pre-content watched files, as it could
2524 * populate the page cache with 0's via readahead.
2525 */
2526 if (unlikely(FMODE_FSNOTIFY_HSM(file->f_mode))) {
2527 ret = -EINVAL;
2528 goto out;
2529 }
2530
2531 if (argp) {
2532 if (copy_from_user(&range, argp, sizeof(range))) {
2533 ret = -EFAULT;
2534 goto out;
2535 }
2536 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2537 ret = -EOPNOTSUPP;
2538 goto out;
2539 }
2540 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS) &&
2541 (range.flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS)) {
2542 ret = -EINVAL;
2543 goto out;
2544 }
2545 /* Compression or no-compression require to start the IO. */
2546 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS) ||
2547 (range.flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS)) {
2548 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2549 range.extent_thresh = (u32)-1;
2550 }
2551 } else {
2552 /* the rest are all set to zero by kzalloc */
2553 range.len = (u64)-1;
2554 }
2555 ret = btrfs_defrag_file(BTRFS_I(file_inode(file)), &file->f_ra,
2556 &range, BTRFS_OLDEST_GENERATION, 0);
2557 if (ret > 0)
2558 ret = 0;
2559 break;
2560 default:
2561 ret = -EINVAL;
2562 }
2563 out:
2564 mnt_drop_write_file(file);
2565 return ret;
2566 }
2567
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)2568 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2569 {
2570 struct btrfs_ioctl_vol_args *vol_args;
2571 bool restore_op = false;
2572 int ret;
2573
2574 if (!capable(CAP_SYS_ADMIN))
2575 return -EPERM;
2576
2577 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2578 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2579 return -EINVAL;
2580 }
2581
2582 if (fs_info->fs_devices->temp_fsid) {
2583 btrfs_err(fs_info,
2584 "device add not supported on cloned temp-fsid mount");
2585 return -EINVAL;
2586 }
2587
2588 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2589 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2590 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2591
2592 /*
2593 * We can do the device add because we have a paused balanced,
2594 * change the exclusive op type and remember we should bring
2595 * back the paused balance
2596 */
2597 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2598 btrfs_exclop_start_unlock(fs_info);
2599 restore_op = true;
2600 }
2601
2602 vol_args = memdup_user(arg, sizeof(*vol_args));
2603 if (IS_ERR(vol_args)) {
2604 ret = PTR_ERR(vol_args);
2605 goto out;
2606 }
2607
2608 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2609 if (ret < 0)
2610 goto out_free;
2611
2612 ret = btrfs_init_new_device(fs_info, vol_args->name);
2613
2614 if (!ret)
2615 btrfs_info(fs_info, "disk added %s", vol_args->name);
2616
2617 out_free:
2618 kfree(vol_args);
2619 out:
2620 if (restore_op)
2621 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2622 else
2623 btrfs_exclop_finish(fs_info);
2624 return ret;
2625 }
2626
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)2627 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2628 {
2629 BTRFS_DEV_LOOKUP_ARGS(args);
2630 struct inode *inode = file_inode(file);
2631 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2632 struct btrfs_ioctl_vol_args_v2 *vol_args;
2633 struct file *bdev_file = NULL;
2634 int ret;
2635 bool cancel = false;
2636
2637 if (!capable(CAP_SYS_ADMIN))
2638 return -EPERM;
2639
2640 vol_args = memdup_user(arg, sizeof(*vol_args));
2641 if (IS_ERR(vol_args))
2642 return PTR_ERR(vol_args);
2643
2644 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2645 ret = -EOPNOTSUPP;
2646 goto out;
2647 }
2648
2649 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2650 if (ret < 0)
2651 goto out;
2652
2653 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2654 args.devid = vol_args->devid;
2655 } else if (!strcmp("cancel", vol_args->name)) {
2656 cancel = true;
2657 } else {
2658 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2659 if (ret)
2660 goto out;
2661 }
2662
2663 ret = mnt_want_write_file(file);
2664 if (ret)
2665 goto out;
2666
2667 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2668 cancel);
2669 if (ret)
2670 goto err_drop;
2671
2672 /* Exclusive operation is now claimed */
2673 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2674
2675 btrfs_exclop_finish(fs_info);
2676
2677 if (!ret) {
2678 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2679 btrfs_info(fs_info, "device deleted: id %llu",
2680 vol_args->devid);
2681 else
2682 btrfs_info(fs_info, "device deleted: %s",
2683 vol_args->name);
2684 }
2685 err_drop:
2686 mnt_drop_write_file(file);
2687 if (bdev_file)
2688 bdev_fput(bdev_file);
2689 out:
2690 btrfs_put_dev_args_from_path(&args);
2691 kfree(vol_args);
2692 return ret;
2693 }
2694
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)2695 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2696 {
2697 BTRFS_DEV_LOOKUP_ARGS(args);
2698 struct inode *inode = file_inode(file);
2699 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2700 struct btrfs_ioctl_vol_args *vol_args;
2701 struct file *bdev_file = NULL;
2702 int ret;
2703 bool cancel = false;
2704
2705 if (!capable(CAP_SYS_ADMIN))
2706 return -EPERM;
2707
2708 vol_args = memdup_user(arg, sizeof(*vol_args));
2709 if (IS_ERR(vol_args))
2710 return PTR_ERR(vol_args);
2711
2712 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2713 if (ret < 0)
2714 goto out_free;
2715
2716 if (!strcmp("cancel", vol_args->name)) {
2717 cancel = true;
2718 } else {
2719 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2720 if (ret)
2721 goto out;
2722 }
2723
2724 ret = mnt_want_write_file(file);
2725 if (ret)
2726 goto out;
2727
2728 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2729 cancel);
2730 if (ret == 0) {
2731 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2732 if (!ret)
2733 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2734 btrfs_exclop_finish(fs_info);
2735 }
2736
2737 mnt_drop_write_file(file);
2738 if (bdev_file)
2739 bdev_fput(bdev_file);
2740 out:
2741 btrfs_put_dev_args_from_path(&args);
2742 out_free:
2743 kfree(vol_args);
2744 return ret;
2745 }
2746
btrfs_ioctl_fs_info(const struct btrfs_fs_info * fs_info,void __user * arg)2747 static long btrfs_ioctl_fs_info(const struct btrfs_fs_info *fs_info,
2748 void __user *arg)
2749 {
2750 struct btrfs_ioctl_fs_info_args *fi_args;
2751 struct btrfs_device *device;
2752 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2753 u64 flags_in;
2754 int ret = 0;
2755
2756 fi_args = memdup_user(arg, sizeof(*fi_args));
2757 if (IS_ERR(fi_args))
2758 return PTR_ERR(fi_args);
2759
2760 flags_in = fi_args->flags;
2761 memset(fi_args, 0, sizeof(*fi_args));
2762
2763 rcu_read_lock();
2764 fi_args->num_devices = fs_devices->num_devices;
2765
2766 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2767 if (device->devid > fi_args->max_id)
2768 fi_args->max_id = device->devid;
2769 }
2770 rcu_read_unlock();
2771
2772 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2773 fi_args->nodesize = fs_info->nodesize;
2774 fi_args->sectorsize = fs_info->sectorsize;
2775 fi_args->clone_alignment = fs_info->sectorsize;
2776
2777 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2778 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2779 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2780 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2781 }
2782
2783 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2784 fi_args->generation = btrfs_get_fs_generation(fs_info);
2785 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2786 }
2787
2788 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2789 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2790 sizeof(fi_args->metadata_uuid));
2791 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2792 }
2793
2794 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2795 ret = -EFAULT;
2796
2797 kfree(fi_args);
2798 return ret;
2799 }
2800
btrfs_ioctl_dev_info(const struct btrfs_fs_info * fs_info,void __user * arg)2801 static long btrfs_ioctl_dev_info(const struct btrfs_fs_info *fs_info,
2802 void __user *arg)
2803 {
2804 BTRFS_DEV_LOOKUP_ARGS(args);
2805 struct btrfs_ioctl_dev_info_args *di_args;
2806 struct btrfs_device *dev;
2807 int ret = 0;
2808
2809 di_args = memdup_user(arg, sizeof(*di_args));
2810 if (IS_ERR(di_args))
2811 return PTR_ERR(di_args);
2812
2813 args.devid = di_args->devid;
2814 if (!btrfs_is_empty_uuid(di_args->uuid))
2815 args.uuid = di_args->uuid;
2816
2817 rcu_read_lock();
2818 dev = btrfs_find_device(fs_info->fs_devices, &args);
2819 if (!dev) {
2820 ret = -ENODEV;
2821 goto out;
2822 }
2823
2824 di_args->devid = dev->devid;
2825 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2826 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2827 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2828 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2829 if (dev->name)
2830 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2831 else
2832 di_args->path[0] = '\0';
2833
2834 out:
2835 rcu_read_unlock();
2836 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2837 ret = -EFAULT;
2838
2839 kfree(di_args);
2840 return ret;
2841 }
2842
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)2843 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2844 {
2845 struct inode *inode = file_inode(file);
2846 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2847 struct btrfs_root *root = BTRFS_I(inode)->root;
2848 struct btrfs_root *new_root;
2849 struct btrfs_dir_item *di;
2850 struct btrfs_trans_handle *trans;
2851 struct btrfs_path *path = NULL;
2852 struct btrfs_disk_key disk_key;
2853 struct fscrypt_str name = FSTR_INIT("default", 7);
2854 u64 objectid = 0;
2855 u64 dir_id;
2856 int ret;
2857
2858 if (!capable(CAP_SYS_ADMIN))
2859 return -EPERM;
2860
2861 ret = mnt_want_write_file(file);
2862 if (ret)
2863 return ret;
2864
2865 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2866 ret = -EFAULT;
2867 goto out;
2868 }
2869
2870 if (!objectid)
2871 objectid = BTRFS_FS_TREE_OBJECTID;
2872
2873 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2874 if (IS_ERR(new_root)) {
2875 ret = PTR_ERR(new_root);
2876 goto out;
2877 }
2878 if (!btrfs_is_fstree(btrfs_root_id(new_root))) {
2879 ret = -ENOENT;
2880 goto out_free;
2881 }
2882
2883 path = btrfs_alloc_path();
2884 if (!path) {
2885 ret = -ENOMEM;
2886 goto out_free;
2887 }
2888
2889 trans = btrfs_start_transaction(root, 1);
2890 if (IS_ERR(trans)) {
2891 ret = PTR_ERR(trans);
2892 goto out_free;
2893 }
2894
2895 dir_id = btrfs_super_root_dir(fs_info->super_copy);
2896 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2897 dir_id, &name, 1);
2898 if (IS_ERR_OR_NULL(di)) {
2899 btrfs_release_path(path);
2900 btrfs_end_transaction(trans);
2901 btrfs_err(fs_info,
2902 "Umm, you don't have the default diritem, this isn't going to work");
2903 ret = -ENOENT;
2904 goto out_free;
2905 }
2906
2907 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2908 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2909 btrfs_release_path(path);
2910
2911 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2912 btrfs_end_transaction(trans);
2913 out_free:
2914 btrfs_put_root(new_root);
2915 btrfs_free_path(path);
2916 out:
2917 mnt_drop_write_file(file);
2918 return ret;
2919 }
2920
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)2921 static void get_block_group_info(struct list_head *groups_list,
2922 struct btrfs_ioctl_space_info *space)
2923 {
2924 struct btrfs_block_group *block_group;
2925
2926 space->total_bytes = 0;
2927 space->used_bytes = 0;
2928 space->flags = 0;
2929 list_for_each_entry(block_group, groups_list, list) {
2930 space->flags = block_group->flags;
2931 space->total_bytes += block_group->length;
2932 space->used_bytes += block_group->used;
2933 }
2934 }
2935
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)2936 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2937 void __user *arg)
2938 {
2939 struct btrfs_ioctl_space_args space_args = { 0 };
2940 struct btrfs_ioctl_space_info space;
2941 struct btrfs_ioctl_space_info *dest;
2942 struct btrfs_ioctl_space_info *dest_orig;
2943 struct btrfs_ioctl_space_info __user *user_dest;
2944 struct btrfs_space_info *info;
2945 static const u64 types[] = {
2946 BTRFS_BLOCK_GROUP_DATA,
2947 BTRFS_BLOCK_GROUP_SYSTEM,
2948 BTRFS_BLOCK_GROUP_METADATA,
2949 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2950 };
2951 int num_types = 4;
2952 int alloc_size;
2953 int ret = 0;
2954 u64 slot_count = 0;
2955 int i, c;
2956
2957 if (copy_from_user(&space_args,
2958 (struct btrfs_ioctl_space_args __user *)arg,
2959 sizeof(space_args)))
2960 return -EFAULT;
2961
2962 for (i = 0; i < num_types; i++) {
2963 struct btrfs_space_info *tmp;
2964
2965 info = NULL;
2966 list_for_each_entry(tmp, &fs_info->space_info, list) {
2967 if (tmp->flags == types[i]) {
2968 info = tmp;
2969 break;
2970 }
2971 }
2972
2973 if (!info)
2974 continue;
2975
2976 down_read(&info->groups_sem);
2977 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2978 if (!list_empty(&info->block_groups[c]))
2979 slot_count++;
2980 }
2981 up_read(&info->groups_sem);
2982 }
2983
2984 /*
2985 * Global block reserve, exported as a space_info
2986 */
2987 slot_count++;
2988
2989 /* space_slots == 0 means they are asking for a count */
2990 if (space_args.space_slots == 0) {
2991 space_args.total_spaces = slot_count;
2992 goto out;
2993 }
2994
2995 slot_count = min_t(u64, space_args.space_slots, slot_count);
2996
2997 alloc_size = sizeof(*dest) * slot_count;
2998
2999 /* we generally have at most 6 or so space infos, one for each raid
3000 * level. So, a whole page should be more than enough for everyone
3001 */
3002 if (alloc_size > PAGE_SIZE)
3003 return -ENOMEM;
3004
3005 space_args.total_spaces = 0;
3006 dest = kmalloc(alloc_size, GFP_KERNEL);
3007 if (!dest)
3008 return -ENOMEM;
3009 dest_orig = dest;
3010
3011 /* now we have a buffer to copy into */
3012 for (i = 0; i < num_types; i++) {
3013 struct btrfs_space_info *tmp;
3014
3015 if (!slot_count)
3016 break;
3017
3018 info = NULL;
3019 list_for_each_entry(tmp, &fs_info->space_info, list) {
3020 if (tmp->flags == types[i]) {
3021 info = tmp;
3022 break;
3023 }
3024 }
3025
3026 if (!info)
3027 continue;
3028 down_read(&info->groups_sem);
3029 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3030 if (!list_empty(&info->block_groups[c])) {
3031 get_block_group_info(&info->block_groups[c],
3032 &space);
3033 memcpy(dest, &space, sizeof(space));
3034 dest++;
3035 space_args.total_spaces++;
3036 slot_count--;
3037 }
3038 if (!slot_count)
3039 break;
3040 }
3041 up_read(&info->groups_sem);
3042 }
3043
3044 /*
3045 * Add global block reserve
3046 */
3047 if (slot_count) {
3048 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3049
3050 spin_lock(&block_rsv->lock);
3051 space.total_bytes = block_rsv->size;
3052 space.used_bytes = block_rsv->size - block_rsv->reserved;
3053 spin_unlock(&block_rsv->lock);
3054 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3055 memcpy(dest, &space, sizeof(space));
3056 space_args.total_spaces++;
3057 }
3058
3059 user_dest = (struct btrfs_ioctl_space_info __user *)
3060 (arg + sizeof(struct btrfs_ioctl_space_args));
3061
3062 if (copy_to_user(user_dest, dest_orig, alloc_size))
3063 ret = -EFAULT;
3064
3065 kfree(dest_orig);
3066 out:
3067 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3068 ret = -EFAULT;
3069
3070 return ret;
3071 }
3072
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3073 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3074 void __user *argp)
3075 {
3076 struct btrfs_trans_handle *trans;
3077 u64 transid;
3078
3079 /*
3080 * Start orphan cleanup here for the given root in case it hasn't been
3081 * started already by other means. Errors are handled in the other
3082 * functions during transaction commit.
3083 */
3084 btrfs_orphan_cleanup(root);
3085
3086 trans = btrfs_attach_transaction_barrier(root);
3087 if (IS_ERR(trans)) {
3088 if (PTR_ERR(trans) != -ENOENT)
3089 return PTR_ERR(trans);
3090
3091 /* No running transaction, don't bother */
3092 transid = btrfs_get_last_trans_committed(root->fs_info);
3093 goto out;
3094 }
3095 transid = trans->transid;
3096 btrfs_commit_transaction_async(trans);
3097 out:
3098 if (argp)
3099 if (copy_to_user(argp, &transid, sizeof(transid)))
3100 return -EFAULT;
3101 return 0;
3102 }
3103
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3104 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3105 void __user *argp)
3106 {
3107 /* By default wait for the current transaction. */
3108 u64 transid = 0;
3109
3110 if (argp)
3111 if (copy_from_user(&transid, argp, sizeof(transid)))
3112 return -EFAULT;
3113
3114 return btrfs_wait_for_commit(fs_info, transid);
3115 }
3116
btrfs_ioctl_scrub(struct file * file,void __user * arg)3117 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3118 {
3119 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3120 struct btrfs_ioctl_scrub_args *sa;
3121 int ret;
3122
3123 if (!capable(CAP_SYS_ADMIN))
3124 return -EPERM;
3125
3126 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3127 btrfs_err(fs_info, "scrub: extent tree v2 not yet supported");
3128 return -EINVAL;
3129 }
3130
3131 sa = memdup_user(arg, sizeof(*sa));
3132 if (IS_ERR(sa))
3133 return PTR_ERR(sa);
3134
3135 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3136 ret = -EOPNOTSUPP;
3137 goto out;
3138 }
3139
3140 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3141 ret = mnt_want_write_file(file);
3142 if (ret)
3143 goto out;
3144 }
3145
3146 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3147 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3148 0);
3149
3150 /*
3151 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3152 * error. This is important as it allows user space to know how much
3153 * progress scrub has done. For example, if scrub is canceled we get
3154 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3155 * space. Later user space can inspect the progress from the structure
3156 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3157 * previously (btrfs-progs does this).
3158 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3159 * then return -EFAULT to signal the structure was not copied or it may
3160 * be corrupt and unreliable due to a partial copy.
3161 */
3162 if (copy_to_user(arg, sa, sizeof(*sa)))
3163 ret = -EFAULT;
3164
3165 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3166 mnt_drop_write_file(file);
3167 out:
3168 kfree(sa);
3169 return ret;
3170 }
3171
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3172 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3173 {
3174 if (!capable(CAP_SYS_ADMIN))
3175 return -EPERM;
3176
3177 return btrfs_scrub_cancel(fs_info);
3178 }
3179
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3180 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3181 void __user *arg)
3182 {
3183 struct btrfs_ioctl_scrub_args *sa;
3184 int ret;
3185
3186 if (!capable(CAP_SYS_ADMIN))
3187 return -EPERM;
3188
3189 sa = memdup_user(arg, sizeof(*sa));
3190 if (IS_ERR(sa))
3191 return PTR_ERR(sa);
3192
3193 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3194
3195 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3196 ret = -EFAULT;
3197
3198 kfree(sa);
3199 return ret;
3200 }
3201
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3202 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3203 void __user *arg)
3204 {
3205 struct btrfs_ioctl_get_dev_stats *sa;
3206 int ret;
3207
3208 sa = memdup_user(arg, sizeof(*sa));
3209 if (IS_ERR(sa))
3210 return PTR_ERR(sa);
3211
3212 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3213 kfree(sa);
3214 return -EPERM;
3215 }
3216
3217 ret = btrfs_get_dev_stats(fs_info, sa);
3218
3219 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3220 ret = -EFAULT;
3221
3222 kfree(sa);
3223 return ret;
3224 }
3225
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3226 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3227 void __user *arg)
3228 {
3229 struct btrfs_ioctl_dev_replace_args *p;
3230 int ret;
3231
3232 if (!capable(CAP_SYS_ADMIN))
3233 return -EPERM;
3234
3235 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3236 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3237 return -EINVAL;
3238 }
3239
3240 p = memdup_user(arg, sizeof(*p));
3241 if (IS_ERR(p))
3242 return PTR_ERR(p);
3243
3244 switch (p->cmd) {
3245 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3246 if (sb_rdonly(fs_info->sb)) {
3247 ret = -EROFS;
3248 goto out;
3249 }
3250 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3251 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3252 } else {
3253 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3254 btrfs_exclop_finish(fs_info);
3255 }
3256 break;
3257 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3258 btrfs_dev_replace_status(fs_info, p);
3259 ret = 0;
3260 break;
3261 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3262 p->result = btrfs_dev_replace_cancel(fs_info);
3263 ret = 0;
3264 break;
3265 default:
3266 ret = -EINVAL;
3267 break;
3268 }
3269
3270 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3271 ret = -EFAULT;
3272 out:
3273 kfree(p);
3274 return ret;
3275 }
3276
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3277 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3278 {
3279 int ret = 0;
3280 int i;
3281 u64 rel_ptr;
3282 int size;
3283 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3284 struct inode_fs_paths *ipath = NULL;
3285 struct btrfs_path *path;
3286
3287 if (!capable(CAP_DAC_READ_SEARCH))
3288 return -EPERM;
3289
3290 path = btrfs_alloc_path();
3291 if (!path) {
3292 ret = -ENOMEM;
3293 goto out;
3294 }
3295
3296 ipa = memdup_user(arg, sizeof(*ipa));
3297 if (IS_ERR(ipa)) {
3298 ret = PTR_ERR(ipa);
3299 ipa = NULL;
3300 goto out;
3301 }
3302
3303 size = min_t(u32, ipa->size, 4096);
3304 ipath = init_ipath(size, root, path);
3305 if (IS_ERR(ipath)) {
3306 ret = PTR_ERR(ipath);
3307 ipath = NULL;
3308 goto out;
3309 }
3310
3311 ret = paths_from_inode(ipa->inum, ipath);
3312 if (ret < 0)
3313 goto out;
3314
3315 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3316 rel_ptr = ipath->fspath->val[i] -
3317 (u64)(unsigned long)ipath->fspath->val;
3318 ipath->fspath->val[i] = rel_ptr;
3319 }
3320
3321 btrfs_free_path(path);
3322 path = NULL;
3323 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3324 ipath->fspath, size);
3325 if (ret) {
3326 ret = -EFAULT;
3327 goto out;
3328 }
3329
3330 out:
3331 btrfs_free_path(path);
3332 free_ipath(ipath);
3333 kfree(ipa);
3334
3335 return ret;
3336 }
3337
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3338 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3339 void __user *arg, int version)
3340 {
3341 int ret = 0;
3342 int size;
3343 struct btrfs_ioctl_logical_ino_args *loi;
3344 struct btrfs_data_container *inodes = NULL;
3345 bool ignore_offset;
3346
3347 if (!capable(CAP_SYS_ADMIN))
3348 return -EPERM;
3349
3350 loi = memdup_user(arg, sizeof(*loi));
3351 if (IS_ERR(loi))
3352 return PTR_ERR(loi);
3353
3354 if (version == 1) {
3355 ignore_offset = false;
3356 size = min_t(u32, loi->size, SZ_64K);
3357 } else {
3358 /* All reserved bits must be 0 for now */
3359 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3360 ret = -EINVAL;
3361 goto out_loi;
3362 }
3363 /* Only accept flags we have defined so far */
3364 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3365 ret = -EINVAL;
3366 goto out_loi;
3367 }
3368 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3369 size = min_t(u32, loi->size, SZ_16M);
3370 }
3371
3372 inodes = init_data_container(size);
3373 if (IS_ERR(inodes)) {
3374 ret = PTR_ERR(inodes);
3375 goto out_loi;
3376 }
3377
3378 ret = iterate_inodes_from_logical(loi->logical, fs_info, inodes, ignore_offset);
3379 if (ret == -EINVAL)
3380 ret = -ENOENT;
3381 if (ret < 0)
3382 goto out;
3383
3384 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3385 size);
3386 if (ret)
3387 ret = -EFAULT;
3388
3389 out:
3390 kvfree(inodes);
3391 out_loi:
3392 kfree(loi);
3393
3394 return ret;
3395 }
3396
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3397 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3398 struct btrfs_ioctl_balance_args *bargs)
3399 {
3400 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3401
3402 bargs->flags = bctl->flags;
3403
3404 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3405 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3406 if (atomic_read(&fs_info->balance_pause_req))
3407 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3408 if (atomic_read(&fs_info->balance_cancel_req))
3409 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3410
3411 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3412 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3413 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3414
3415 spin_lock(&fs_info->balance_lock);
3416 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3417 spin_unlock(&fs_info->balance_lock);
3418 }
3419
3420 /*
3421 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3422 * required.
3423 *
3424 * @fs_info: the filesystem
3425 * @excl_acquired: ptr to boolean value which is set to false in case balance
3426 * is being resumed
3427 *
3428 * Return 0 on success in which case both fs_info::balance is acquired as well
3429 * as exclusive ops are blocked. In case of failure return an error code.
3430 */
btrfs_try_lock_balance(struct btrfs_fs_info * fs_info,bool * excl_acquired)3431 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3432 {
3433 int ret;
3434
3435 /*
3436 * Exclusive operation is locked. Three possibilities:
3437 * (1) some other op is running
3438 * (2) balance is running
3439 * (3) balance is paused -- special case (think resume)
3440 */
3441 while (1) {
3442 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3443 *excl_acquired = true;
3444 mutex_lock(&fs_info->balance_mutex);
3445 return 0;
3446 }
3447
3448 mutex_lock(&fs_info->balance_mutex);
3449 if (fs_info->balance_ctl) {
3450 /* This is either (2) or (3) */
3451 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3452 /* This is (2) */
3453 ret = -EINPROGRESS;
3454 goto out_failure;
3455
3456 } else {
3457 mutex_unlock(&fs_info->balance_mutex);
3458 /*
3459 * Lock released to allow other waiters to
3460 * continue, we'll reexamine the status again.
3461 */
3462 mutex_lock(&fs_info->balance_mutex);
3463
3464 if (fs_info->balance_ctl &&
3465 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3466 /* This is (3) */
3467 *excl_acquired = false;
3468 return 0;
3469 }
3470 }
3471 } else {
3472 /* This is (1) */
3473 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3474 goto out_failure;
3475 }
3476
3477 mutex_unlock(&fs_info->balance_mutex);
3478 }
3479
3480 out_failure:
3481 mutex_unlock(&fs_info->balance_mutex);
3482 *excl_acquired = false;
3483 return ret;
3484 }
3485
btrfs_ioctl_balance(struct file * file,void __user * arg)3486 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3487 {
3488 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3489 struct btrfs_fs_info *fs_info = root->fs_info;
3490 struct btrfs_ioctl_balance_args *bargs;
3491 struct btrfs_balance_control *bctl;
3492 bool need_unlock = true;
3493 int ret;
3494
3495 if (!capable(CAP_SYS_ADMIN))
3496 return -EPERM;
3497
3498 ret = mnt_want_write_file(file);
3499 if (ret)
3500 return ret;
3501
3502 bargs = memdup_user(arg, sizeof(*bargs));
3503 if (IS_ERR(bargs)) {
3504 ret = PTR_ERR(bargs);
3505 bargs = NULL;
3506 goto out;
3507 }
3508
3509 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3510 if (ret)
3511 goto out;
3512
3513 lockdep_assert_held(&fs_info->balance_mutex);
3514
3515 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3516 if (!fs_info->balance_ctl) {
3517 ret = -ENOTCONN;
3518 goto out_unlock;
3519 }
3520
3521 bctl = fs_info->balance_ctl;
3522 spin_lock(&fs_info->balance_lock);
3523 bctl->flags |= BTRFS_BALANCE_RESUME;
3524 spin_unlock(&fs_info->balance_lock);
3525 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3526
3527 goto do_balance;
3528 }
3529
3530 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3531 ret = -EINVAL;
3532 goto out_unlock;
3533 }
3534
3535 if (fs_info->balance_ctl) {
3536 ret = -EINPROGRESS;
3537 goto out_unlock;
3538 }
3539
3540 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3541 if (!bctl) {
3542 ret = -ENOMEM;
3543 goto out_unlock;
3544 }
3545
3546 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3547 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3548 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3549
3550 bctl->flags = bargs->flags;
3551 do_balance:
3552 /*
3553 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3554 * bctl is freed in reset_balance_state, or, if restriper was paused
3555 * all the way until unmount, in free_fs_info. The flag should be
3556 * cleared after reset_balance_state.
3557 */
3558 need_unlock = false;
3559
3560 ret = btrfs_balance(fs_info, bctl, bargs);
3561 bctl = NULL;
3562
3563 if (ret == 0 || ret == -ECANCELED) {
3564 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3565 ret = -EFAULT;
3566 }
3567
3568 kfree(bctl);
3569 out_unlock:
3570 mutex_unlock(&fs_info->balance_mutex);
3571 if (need_unlock)
3572 btrfs_exclop_finish(fs_info);
3573 out:
3574 mnt_drop_write_file(file);
3575 kfree(bargs);
3576 return ret;
3577 }
3578
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)3579 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3580 {
3581 if (!capable(CAP_SYS_ADMIN))
3582 return -EPERM;
3583
3584 switch (cmd) {
3585 case BTRFS_BALANCE_CTL_PAUSE:
3586 return btrfs_pause_balance(fs_info);
3587 case BTRFS_BALANCE_CTL_CANCEL:
3588 return btrfs_cancel_balance(fs_info);
3589 }
3590
3591 return -EINVAL;
3592 }
3593
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)3594 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3595 void __user *arg)
3596 {
3597 struct btrfs_ioctl_balance_args *bargs;
3598 int ret = 0;
3599
3600 if (!capable(CAP_SYS_ADMIN))
3601 return -EPERM;
3602
3603 mutex_lock(&fs_info->balance_mutex);
3604 if (!fs_info->balance_ctl) {
3605 ret = -ENOTCONN;
3606 goto out;
3607 }
3608
3609 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3610 if (!bargs) {
3611 ret = -ENOMEM;
3612 goto out;
3613 }
3614
3615 btrfs_update_ioctl_balance_args(fs_info, bargs);
3616
3617 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3618 ret = -EFAULT;
3619
3620 kfree(bargs);
3621 out:
3622 mutex_unlock(&fs_info->balance_mutex);
3623 return ret;
3624 }
3625
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)3626 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3627 {
3628 struct inode *inode = file_inode(file);
3629 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3630 struct btrfs_ioctl_quota_ctl_args *sa;
3631 int ret;
3632
3633 if (!capable(CAP_SYS_ADMIN))
3634 return -EPERM;
3635
3636 ret = mnt_want_write_file(file);
3637 if (ret)
3638 return ret;
3639
3640 sa = memdup_user(arg, sizeof(*sa));
3641 if (IS_ERR(sa)) {
3642 ret = PTR_ERR(sa);
3643 goto drop_write;
3644 }
3645
3646 switch (sa->cmd) {
3647 case BTRFS_QUOTA_CTL_ENABLE:
3648 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3649 down_write(&fs_info->subvol_sem);
3650 ret = btrfs_quota_enable(fs_info, sa);
3651 up_write(&fs_info->subvol_sem);
3652 break;
3653 case BTRFS_QUOTA_CTL_DISABLE:
3654 /*
3655 * Lock the cleaner mutex to prevent races with concurrent
3656 * relocation, because relocation may be building backrefs for
3657 * blocks of the quota root while we are deleting the root. This
3658 * is like dropping fs roots of deleted snapshots/subvolumes, we
3659 * need the same protection.
3660 *
3661 * This also prevents races between concurrent tasks trying to
3662 * disable quotas, because we will unlock and relock
3663 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3664 *
3665 * We take this here because we have the dependency of
3666 *
3667 * inode_lock -> subvol_sem
3668 *
3669 * because of rename. With relocation we can prealloc extents,
3670 * so that makes the dependency chain
3671 *
3672 * cleaner_mutex -> inode_lock -> subvol_sem
3673 *
3674 * so we must take the cleaner_mutex here before we take the
3675 * subvol_sem. The deadlock can't actually happen, but this
3676 * quiets lockdep.
3677 */
3678 mutex_lock(&fs_info->cleaner_mutex);
3679 down_write(&fs_info->subvol_sem);
3680 ret = btrfs_quota_disable(fs_info);
3681 up_write(&fs_info->subvol_sem);
3682 mutex_unlock(&fs_info->cleaner_mutex);
3683 break;
3684 default:
3685 ret = -EINVAL;
3686 break;
3687 }
3688
3689 kfree(sa);
3690 drop_write:
3691 mnt_drop_write_file(file);
3692 return ret;
3693 }
3694
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)3695 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3696 {
3697 struct inode *inode = file_inode(file);
3698 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3699 struct btrfs_root *root = BTRFS_I(inode)->root;
3700 struct btrfs_ioctl_qgroup_assign_args *sa;
3701 struct btrfs_qgroup_list *prealloc = NULL;
3702 struct btrfs_trans_handle *trans;
3703 int ret;
3704 int err;
3705
3706 if (!capable(CAP_SYS_ADMIN))
3707 return -EPERM;
3708
3709 if (!btrfs_qgroup_enabled(fs_info))
3710 return -ENOTCONN;
3711
3712 ret = mnt_want_write_file(file);
3713 if (ret)
3714 return ret;
3715
3716 sa = memdup_user(arg, sizeof(*sa));
3717 if (IS_ERR(sa)) {
3718 ret = PTR_ERR(sa);
3719 goto drop_write;
3720 }
3721
3722 if (sa->assign) {
3723 prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
3724 if (!prealloc) {
3725 ret = -ENOMEM;
3726 goto out;
3727 }
3728 }
3729
3730 trans = btrfs_join_transaction(root);
3731 if (IS_ERR(trans)) {
3732 ret = PTR_ERR(trans);
3733 goto out;
3734 }
3735
3736 /*
3737 * Prealloc ownership is moved to the relation handler, there it's used
3738 * or freed on error.
3739 */
3740 if (sa->assign) {
3741 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
3742 prealloc = NULL;
3743 } else {
3744 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3745 }
3746
3747 /* update qgroup status and info */
3748 mutex_lock(&fs_info->qgroup_ioctl_lock);
3749 err = btrfs_run_qgroups(trans);
3750 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3751 if (err < 0)
3752 btrfs_warn(fs_info,
3753 "qgroup status update failed after %s relation, marked as inconsistent",
3754 sa->assign ? "adding" : "deleting");
3755 err = btrfs_end_transaction(trans);
3756 if (err && !ret)
3757 ret = err;
3758
3759 out:
3760 kfree(prealloc);
3761 kfree(sa);
3762 drop_write:
3763 mnt_drop_write_file(file);
3764 return ret;
3765 }
3766
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)3767 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3768 {
3769 struct inode *inode = file_inode(file);
3770 struct btrfs_root *root = BTRFS_I(inode)->root;
3771 struct btrfs_ioctl_qgroup_create_args *sa;
3772 struct btrfs_trans_handle *trans;
3773 int ret;
3774 int err;
3775
3776 if (!capable(CAP_SYS_ADMIN))
3777 return -EPERM;
3778
3779 if (!btrfs_qgroup_enabled(root->fs_info))
3780 return -ENOTCONN;
3781
3782 ret = mnt_want_write_file(file);
3783 if (ret)
3784 return ret;
3785
3786 sa = memdup_user(arg, sizeof(*sa));
3787 if (IS_ERR(sa)) {
3788 ret = PTR_ERR(sa);
3789 goto drop_write;
3790 }
3791
3792 if (!sa->qgroupid) {
3793 ret = -EINVAL;
3794 goto out;
3795 }
3796
3797 if (sa->create && btrfs_is_fstree(sa->qgroupid)) {
3798 ret = -EINVAL;
3799 goto out;
3800 }
3801
3802 trans = btrfs_join_transaction(root);
3803 if (IS_ERR(trans)) {
3804 ret = PTR_ERR(trans);
3805 goto out;
3806 }
3807
3808 if (sa->create) {
3809 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3810 } else {
3811 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3812 }
3813
3814 err = btrfs_end_transaction(trans);
3815 if (err && !ret)
3816 ret = err;
3817
3818 out:
3819 kfree(sa);
3820 drop_write:
3821 mnt_drop_write_file(file);
3822 return ret;
3823 }
3824
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)3825 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3826 {
3827 struct inode *inode = file_inode(file);
3828 struct btrfs_root *root = BTRFS_I(inode)->root;
3829 struct btrfs_ioctl_qgroup_limit_args *sa;
3830 struct btrfs_trans_handle *trans;
3831 int ret;
3832 int err;
3833 u64 qgroupid;
3834
3835 if (!capable(CAP_SYS_ADMIN))
3836 return -EPERM;
3837
3838 if (!btrfs_qgroup_enabled(root->fs_info))
3839 return -ENOTCONN;
3840
3841 ret = mnt_want_write_file(file);
3842 if (ret)
3843 return ret;
3844
3845 sa = memdup_user(arg, sizeof(*sa));
3846 if (IS_ERR(sa)) {
3847 ret = PTR_ERR(sa);
3848 goto drop_write;
3849 }
3850
3851 trans = btrfs_join_transaction(root);
3852 if (IS_ERR(trans)) {
3853 ret = PTR_ERR(trans);
3854 goto out;
3855 }
3856
3857 qgroupid = sa->qgroupid;
3858 if (!qgroupid) {
3859 /* take the current subvol as qgroup */
3860 qgroupid = btrfs_root_id(root);
3861 }
3862
3863 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3864
3865 err = btrfs_end_transaction(trans);
3866 if (err && !ret)
3867 ret = err;
3868
3869 out:
3870 kfree(sa);
3871 drop_write:
3872 mnt_drop_write_file(file);
3873 return ret;
3874 }
3875
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)3876 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3877 {
3878 struct inode *inode = file_inode(file);
3879 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3880 struct btrfs_ioctl_quota_rescan_args *qsa;
3881 int ret;
3882
3883 if (!capable(CAP_SYS_ADMIN))
3884 return -EPERM;
3885
3886 if (!btrfs_qgroup_enabled(fs_info))
3887 return -ENOTCONN;
3888
3889 ret = mnt_want_write_file(file);
3890 if (ret)
3891 return ret;
3892
3893 qsa = memdup_user(arg, sizeof(*qsa));
3894 if (IS_ERR(qsa)) {
3895 ret = PTR_ERR(qsa);
3896 goto drop_write;
3897 }
3898
3899 if (qsa->flags) {
3900 ret = -EINVAL;
3901 goto out;
3902 }
3903
3904 ret = btrfs_qgroup_rescan(fs_info);
3905
3906 out:
3907 kfree(qsa);
3908 drop_write:
3909 mnt_drop_write_file(file);
3910 return ret;
3911 }
3912
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)3913 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3914 void __user *arg)
3915 {
3916 struct btrfs_ioctl_quota_rescan_args qsa = {0};
3917
3918 if (!capable(CAP_SYS_ADMIN))
3919 return -EPERM;
3920
3921 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3922 qsa.flags = 1;
3923 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3924 }
3925
3926 if (copy_to_user(arg, &qsa, sizeof(qsa)))
3927 return -EFAULT;
3928
3929 return 0;
3930 }
3931
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info)3932 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info)
3933 {
3934 if (!capable(CAP_SYS_ADMIN))
3935 return -EPERM;
3936
3937 return btrfs_qgroup_wait_for_completion(fs_info, true);
3938 }
3939
_btrfs_ioctl_set_received_subvol(struct file * file,struct mnt_idmap * idmap,struct btrfs_ioctl_received_subvol_args * sa)3940 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3941 struct mnt_idmap *idmap,
3942 struct btrfs_ioctl_received_subvol_args *sa)
3943 {
3944 struct inode *inode = file_inode(file);
3945 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3946 struct btrfs_root *root = BTRFS_I(inode)->root;
3947 struct btrfs_root_item *root_item = &root->root_item;
3948 struct btrfs_trans_handle *trans;
3949 struct timespec64 ct = current_time(inode);
3950 int ret = 0;
3951 int received_uuid_changed;
3952
3953 if (!inode_owner_or_capable(idmap, inode))
3954 return -EPERM;
3955
3956 ret = mnt_want_write_file(file);
3957 if (ret < 0)
3958 return ret;
3959
3960 down_write(&fs_info->subvol_sem);
3961
3962 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3963 ret = -EINVAL;
3964 goto out;
3965 }
3966
3967 if (btrfs_root_readonly(root)) {
3968 ret = -EROFS;
3969 goto out;
3970 }
3971
3972 /*
3973 * 1 - root item
3974 * 2 - uuid items (received uuid + subvol uuid)
3975 */
3976 trans = btrfs_start_transaction(root, 3);
3977 if (IS_ERR(trans)) {
3978 ret = PTR_ERR(trans);
3979 trans = NULL;
3980 goto out;
3981 }
3982
3983 sa->rtransid = trans->transid;
3984 sa->rtime.sec = ct.tv_sec;
3985 sa->rtime.nsec = ct.tv_nsec;
3986
3987 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
3988 BTRFS_UUID_SIZE);
3989 if (received_uuid_changed &&
3990 !btrfs_is_empty_uuid(root_item->received_uuid)) {
3991 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
3992 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3993 btrfs_root_id(root));
3994 if (unlikely(ret && ret != -ENOENT)) {
3995 btrfs_abort_transaction(trans, ret);
3996 btrfs_end_transaction(trans);
3997 goto out;
3998 }
3999 }
4000 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4001 btrfs_set_root_stransid(root_item, sa->stransid);
4002 btrfs_set_root_rtransid(root_item, sa->rtransid);
4003 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4004 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4005 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4006 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4007
4008 ret = btrfs_update_root(trans, fs_info->tree_root,
4009 &root->root_key, &root->root_item);
4010 if (ret < 0) {
4011 btrfs_end_transaction(trans);
4012 goto out;
4013 }
4014 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4015 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4016 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4017 btrfs_root_id(root));
4018 if (unlikely(ret < 0 && ret != -EEXIST)) {
4019 btrfs_abort_transaction(trans, ret);
4020 btrfs_end_transaction(trans);
4021 goto out;
4022 }
4023 }
4024 ret = btrfs_commit_transaction(trans);
4025 out:
4026 up_write(&fs_info->subvol_sem);
4027 mnt_drop_write_file(file);
4028 return ret;
4029 }
4030
4031 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4032 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4033 void __user *arg)
4034 {
4035 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4036 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4037 int ret = 0;
4038
4039 args32 = memdup_user(arg, sizeof(*args32));
4040 if (IS_ERR(args32))
4041 return PTR_ERR(args32);
4042
4043 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4044 if (!args64) {
4045 ret = -ENOMEM;
4046 goto out;
4047 }
4048
4049 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4050 args64->stransid = args32->stransid;
4051 args64->rtransid = args32->rtransid;
4052 args64->stime.sec = args32->stime.sec;
4053 args64->stime.nsec = args32->stime.nsec;
4054 args64->rtime.sec = args32->rtime.sec;
4055 args64->rtime.nsec = args32->rtime.nsec;
4056 args64->flags = args32->flags;
4057
4058 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4059 if (ret)
4060 goto out;
4061
4062 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4063 args32->stransid = args64->stransid;
4064 args32->rtransid = args64->rtransid;
4065 args32->stime.sec = args64->stime.sec;
4066 args32->stime.nsec = args64->stime.nsec;
4067 args32->rtime.sec = args64->rtime.sec;
4068 args32->rtime.nsec = args64->rtime.nsec;
4069 args32->flags = args64->flags;
4070
4071 ret = copy_to_user(arg, args32, sizeof(*args32));
4072 if (ret)
4073 ret = -EFAULT;
4074
4075 out:
4076 kfree(args32);
4077 kfree(args64);
4078 return ret;
4079 }
4080 #endif
4081
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4082 static long btrfs_ioctl_set_received_subvol(struct file *file,
4083 void __user *arg)
4084 {
4085 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4086 int ret = 0;
4087
4088 sa = memdup_user(arg, sizeof(*sa));
4089 if (IS_ERR(sa))
4090 return PTR_ERR(sa);
4091
4092 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4093
4094 if (ret)
4095 goto out;
4096
4097 ret = copy_to_user(arg, sa, sizeof(*sa));
4098 if (ret)
4099 ret = -EFAULT;
4100
4101 out:
4102 kfree(sa);
4103 return ret;
4104 }
4105
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4106 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4107 void __user *arg)
4108 {
4109 size_t len;
4110 int ret;
4111 char label[BTRFS_LABEL_SIZE];
4112
4113 spin_lock(&fs_info->super_lock);
4114 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4115 spin_unlock(&fs_info->super_lock);
4116
4117 len = strnlen(label, BTRFS_LABEL_SIZE);
4118
4119 if (len == BTRFS_LABEL_SIZE) {
4120 btrfs_warn(fs_info,
4121 "label is too long, return the first %zu bytes",
4122 --len);
4123 }
4124
4125 ret = copy_to_user(arg, label, len);
4126
4127 return ret ? -EFAULT : 0;
4128 }
4129
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4130 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4131 {
4132 struct inode *inode = file_inode(file);
4133 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4134 struct btrfs_root *root = BTRFS_I(inode)->root;
4135 struct btrfs_super_block *super_block = fs_info->super_copy;
4136 struct btrfs_trans_handle *trans;
4137 char label[BTRFS_LABEL_SIZE];
4138 int ret;
4139
4140 if (!capable(CAP_SYS_ADMIN))
4141 return -EPERM;
4142
4143 if (copy_from_user(label, arg, sizeof(label)))
4144 return -EFAULT;
4145
4146 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4147 btrfs_err(fs_info,
4148 "unable to set label with more than %d bytes",
4149 BTRFS_LABEL_SIZE - 1);
4150 return -EINVAL;
4151 }
4152
4153 ret = mnt_want_write_file(file);
4154 if (ret)
4155 return ret;
4156
4157 trans = btrfs_start_transaction(root, 0);
4158 if (IS_ERR(trans)) {
4159 ret = PTR_ERR(trans);
4160 goto out_unlock;
4161 }
4162
4163 spin_lock(&fs_info->super_lock);
4164 strscpy(super_block->label, label);
4165 spin_unlock(&fs_info->super_lock);
4166 ret = btrfs_commit_transaction(trans);
4167
4168 out_unlock:
4169 mnt_drop_write_file(file);
4170 return ret;
4171 }
4172
4173 #define INIT_FEATURE_FLAGS(suffix) \
4174 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4175 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4176 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4177
btrfs_ioctl_get_supported_features(void __user * arg)4178 int btrfs_ioctl_get_supported_features(void __user *arg)
4179 {
4180 static const struct btrfs_ioctl_feature_flags features[3] = {
4181 INIT_FEATURE_FLAGS(SUPP),
4182 INIT_FEATURE_FLAGS(SAFE_SET),
4183 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4184 };
4185
4186 if (copy_to_user(arg, &features, sizeof(features)))
4187 return -EFAULT;
4188
4189 return 0;
4190 }
4191
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4192 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4193 void __user *arg)
4194 {
4195 struct btrfs_super_block *super_block = fs_info->super_copy;
4196 struct btrfs_ioctl_feature_flags features;
4197
4198 features.compat_flags = btrfs_super_compat_flags(super_block);
4199 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4200 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4201
4202 if (copy_to_user(arg, &features, sizeof(features)))
4203 return -EFAULT;
4204
4205 return 0;
4206 }
4207
check_feature_bits(const struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4208 static int check_feature_bits(const struct btrfs_fs_info *fs_info,
4209 enum btrfs_feature_set set,
4210 u64 change_mask, u64 flags, u64 supported_flags,
4211 u64 safe_set, u64 safe_clear)
4212 {
4213 const char *type = btrfs_feature_set_name(set);
4214 char *names;
4215 u64 disallowed, unsupported;
4216 u64 set_mask = flags & change_mask;
4217 u64 clear_mask = ~flags & change_mask;
4218
4219 unsupported = set_mask & ~supported_flags;
4220 if (unsupported) {
4221 names = btrfs_printable_features(set, unsupported);
4222 if (names) {
4223 btrfs_warn(fs_info,
4224 "this kernel does not support the %s feature bit%s",
4225 names, strchr(names, ',') ? "s" : "");
4226 kfree(names);
4227 } else
4228 btrfs_warn(fs_info,
4229 "this kernel does not support %s bits 0x%llx",
4230 type, unsupported);
4231 return -EOPNOTSUPP;
4232 }
4233
4234 disallowed = set_mask & ~safe_set;
4235 if (disallowed) {
4236 names = btrfs_printable_features(set, disallowed);
4237 if (names) {
4238 btrfs_warn(fs_info,
4239 "can't set the %s feature bit%s while mounted",
4240 names, strchr(names, ',') ? "s" : "");
4241 kfree(names);
4242 } else
4243 btrfs_warn(fs_info,
4244 "can't set %s bits 0x%llx while mounted",
4245 type, disallowed);
4246 return -EPERM;
4247 }
4248
4249 disallowed = clear_mask & ~safe_clear;
4250 if (disallowed) {
4251 names = btrfs_printable_features(set, disallowed);
4252 if (names) {
4253 btrfs_warn(fs_info,
4254 "can't clear the %s feature bit%s while mounted",
4255 names, strchr(names, ',') ? "s" : "");
4256 kfree(names);
4257 } else
4258 btrfs_warn(fs_info,
4259 "can't clear %s bits 0x%llx while mounted",
4260 type, disallowed);
4261 return -EPERM;
4262 }
4263
4264 return 0;
4265 }
4266
4267 #define check_feature(fs_info, change_mask, flags, mask_base) \
4268 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4269 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4270 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4271 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4272
btrfs_ioctl_set_features(struct file * file,void __user * arg)4273 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4274 {
4275 struct inode *inode = file_inode(file);
4276 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4277 struct btrfs_root *root = BTRFS_I(inode)->root;
4278 struct btrfs_super_block *super_block = fs_info->super_copy;
4279 struct btrfs_ioctl_feature_flags flags[2];
4280 struct btrfs_trans_handle *trans;
4281 u64 newflags;
4282 int ret;
4283
4284 if (!capable(CAP_SYS_ADMIN))
4285 return -EPERM;
4286
4287 if (copy_from_user(flags, arg, sizeof(flags)))
4288 return -EFAULT;
4289
4290 /* Nothing to do */
4291 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4292 !flags[0].incompat_flags)
4293 return 0;
4294
4295 ret = check_feature(fs_info, flags[0].compat_flags,
4296 flags[1].compat_flags, COMPAT);
4297 if (ret)
4298 return ret;
4299
4300 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4301 flags[1].compat_ro_flags, COMPAT_RO);
4302 if (ret)
4303 return ret;
4304
4305 ret = check_feature(fs_info, flags[0].incompat_flags,
4306 flags[1].incompat_flags, INCOMPAT);
4307 if (ret)
4308 return ret;
4309
4310 ret = mnt_want_write_file(file);
4311 if (ret)
4312 return ret;
4313
4314 trans = btrfs_start_transaction(root, 0);
4315 if (IS_ERR(trans)) {
4316 ret = PTR_ERR(trans);
4317 goto out_drop_write;
4318 }
4319
4320 spin_lock(&fs_info->super_lock);
4321 newflags = btrfs_super_compat_flags(super_block);
4322 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4323 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4324 btrfs_set_super_compat_flags(super_block, newflags);
4325
4326 newflags = btrfs_super_compat_ro_flags(super_block);
4327 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4328 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4329 btrfs_set_super_compat_ro_flags(super_block, newflags);
4330
4331 newflags = btrfs_super_incompat_flags(super_block);
4332 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4333 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4334 btrfs_set_super_incompat_flags(super_block, newflags);
4335 spin_unlock(&fs_info->super_lock);
4336
4337 ret = btrfs_commit_transaction(trans);
4338 out_drop_write:
4339 mnt_drop_write_file(file);
4340
4341 return ret;
4342 }
4343
_btrfs_ioctl_send(struct btrfs_root * root,void __user * argp,bool compat)4344 static int _btrfs_ioctl_send(struct btrfs_root *root, void __user *argp, bool compat)
4345 {
4346 struct btrfs_ioctl_send_args *arg;
4347 int ret;
4348
4349 if (compat) {
4350 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4351 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4352
4353 ret = copy_from_user(&args32, argp, sizeof(args32));
4354 if (ret)
4355 return -EFAULT;
4356 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4357 if (!arg)
4358 return -ENOMEM;
4359 arg->send_fd = args32.send_fd;
4360 arg->clone_sources_count = args32.clone_sources_count;
4361 arg->clone_sources = compat_ptr(args32.clone_sources);
4362 arg->parent_root = args32.parent_root;
4363 arg->flags = args32.flags;
4364 arg->version = args32.version;
4365 memcpy(arg->reserved, args32.reserved,
4366 sizeof(args32.reserved));
4367 #else
4368 return -ENOTTY;
4369 #endif
4370 } else {
4371 arg = memdup_user(argp, sizeof(*arg));
4372 if (IS_ERR(arg))
4373 return PTR_ERR(arg);
4374 }
4375 ret = btrfs_ioctl_send(root, arg);
4376 kfree(arg);
4377 return ret;
4378 }
4379
btrfs_ioctl_encoded_read(struct file * file,void __user * argp,bool compat)4380 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4381 bool compat)
4382 {
4383 struct btrfs_ioctl_encoded_io_args args = { 0 };
4384 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4385 flags);
4386 size_t copy_end;
4387 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
4388 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4389 struct extent_io_tree *io_tree = &inode->io_tree;
4390 struct iovec iovstack[UIO_FASTIOV];
4391 struct iovec *iov = iovstack;
4392 struct iov_iter iter;
4393 loff_t pos;
4394 struct kiocb kiocb;
4395 ssize_t ret;
4396 u64 disk_bytenr, disk_io_size;
4397 struct extent_state *cached_state = NULL;
4398
4399 if (!capable(CAP_SYS_ADMIN)) {
4400 ret = -EPERM;
4401 goto out_acct;
4402 }
4403
4404 if (fs_info->sectorsize > PAGE_SIZE) {
4405 ret = -ENOTTY;
4406 goto out_acct;
4407 }
4408 if (compat) {
4409 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4410 struct btrfs_ioctl_encoded_io_args_32 args32;
4411
4412 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4413 flags);
4414 if (copy_from_user(&args32, argp, copy_end)) {
4415 ret = -EFAULT;
4416 goto out_acct;
4417 }
4418 args.iov = compat_ptr(args32.iov);
4419 args.iovcnt = args32.iovcnt;
4420 args.offset = args32.offset;
4421 args.flags = args32.flags;
4422 #else
4423 return -ENOTTY;
4424 #endif
4425 } else {
4426 copy_end = copy_end_kernel;
4427 if (copy_from_user(&args, argp, copy_end)) {
4428 ret = -EFAULT;
4429 goto out_acct;
4430 }
4431 }
4432 if (args.flags != 0) {
4433 ret = -EINVAL;
4434 goto out_acct;
4435 }
4436
4437 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4438 &iov, &iter);
4439 if (ret < 0)
4440 goto out_acct;
4441
4442 if (iov_iter_count(&iter) == 0) {
4443 ret = 0;
4444 goto out_iov;
4445 }
4446 pos = args.offset;
4447 ret = rw_verify_area(READ, file, &pos, args.len);
4448 if (ret < 0)
4449 goto out_iov;
4450
4451 init_sync_kiocb(&kiocb, file);
4452 kiocb.ki_pos = pos;
4453
4454 ret = btrfs_encoded_read(&kiocb, &iter, &args, &cached_state,
4455 &disk_bytenr, &disk_io_size);
4456
4457 if (ret == -EIOCBQUEUED) {
4458 bool unlocked = false;
4459 u64 start, lockend, count;
4460
4461 start = ALIGN_DOWN(kiocb.ki_pos, fs_info->sectorsize);
4462 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4463
4464 if (args.compression)
4465 count = disk_io_size;
4466 else
4467 count = args.len;
4468
4469 ret = btrfs_encoded_read_regular(&kiocb, &iter, start, lockend,
4470 &cached_state, disk_bytenr,
4471 disk_io_size, count,
4472 args.compression, &unlocked);
4473
4474 if (!unlocked) {
4475 btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4476 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4477 }
4478 }
4479
4480 if (ret >= 0) {
4481 fsnotify_access(file);
4482 if (copy_to_user(argp + copy_end,
4483 (char *)&args + copy_end_kernel,
4484 sizeof(args) - copy_end_kernel))
4485 ret = -EFAULT;
4486 }
4487
4488 out_iov:
4489 kfree(iov);
4490 out_acct:
4491 if (ret > 0)
4492 add_rchar(current, ret);
4493 inc_syscr(current);
4494 return ret;
4495 }
4496
btrfs_ioctl_encoded_write(struct file * file,void __user * argp,bool compat)4497 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4498 {
4499 struct btrfs_fs_info *fs_info = inode_to_fs_info(file->f_inode);
4500 struct btrfs_ioctl_encoded_io_args args;
4501 struct iovec iovstack[UIO_FASTIOV];
4502 struct iovec *iov = iovstack;
4503 struct iov_iter iter;
4504 loff_t pos;
4505 struct kiocb kiocb;
4506 ssize_t ret;
4507
4508 if (!capable(CAP_SYS_ADMIN)) {
4509 ret = -EPERM;
4510 goto out_acct;
4511 }
4512
4513 if (fs_info->sectorsize > PAGE_SIZE) {
4514 ret = -ENOTTY;
4515 goto out_acct;
4516 }
4517
4518 if (!(file->f_mode & FMODE_WRITE)) {
4519 ret = -EBADF;
4520 goto out_acct;
4521 }
4522
4523 if (compat) {
4524 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4525 struct btrfs_ioctl_encoded_io_args_32 args32;
4526
4527 if (copy_from_user(&args32, argp, sizeof(args32))) {
4528 ret = -EFAULT;
4529 goto out_acct;
4530 }
4531 args.iov = compat_ptr(args32.iov);
4532 args.iovcnt = args32.iovcnt;
4533 args.offset = args32.offset;
4534 args.flags = args32.flags;
4535 args.len = args32.len;
4536 args.unencoded_len = args32.unencoded_len;
4537 args.unencoded_offset = args32.unencoded_offset;
4538 args.compression = args32.compression;
4539 args.encryption = args32.encryption;
4540 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4541 #else
4542 return -ENOTTY;
4543 #endif
4544 } else {
4545 if (copy_from_user(&args, argp, sizeof(args))) {
4546 ret = -EFAULT;
4547 goto out_acct;
4548 }
4549 }
4550
4551 ret = -EINVAL;
4552 if (args.flags != 0)
4553 goto out_acct;
4554 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4555 goto out_acct;
4556 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4557 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4558 goto out_acct;
4559 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4560 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4561 goto out_acct;
4562 if (args.unencoded_offset > args.unencoded_len)
4563 goto out_acct;
4564 if (args.len > args.unencoded_len - args.unencoded_offset)
4565 goto out_acct;
4566
4567 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4568 &iov, &iter);
4569 if (ret < 0)
4570 goto out_acct;
4571
4572 if (iov_iter_count(&iter) == 0) {
4573 ret = 0;
4574 goto out_iov;
4575 }
4576 pos = args.offset;
4577 ret = rw_verify_area(WRITE, file, &pos, args.len);
4578 if (ret < 0)
4579 goto out_iov;
4580
4581 init_sync_kiocb(&kiocb, file);
4582 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
4583 if (ret)
4584 goto out_iov;
4585 kiocb.ki_pos = pos;
4586
4587 file_start_write(file);
4588
4589 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4590 if (ret > 0)
4591 fsnotify_modify(file);
4592
4593 file_end_write(file);
4594 out_iov:
4595 kfree(iov);
4596 out_acct:
4597 if (ret > 0)
4598 add_wchar(current, ret);
4599 inc_syscw(current);
4600 return ret;
4601 }
4602
4603 struct btrfs_uring_encoded_data {
4604 struct btrfs_ioctl_encoded_io_args args;
4605 struct iovec iovstack[UIO_FASTIOV];
4606 struct iovec *iov;
4607 struct iov_iter iter;
4608 };
4609
4610 /*
4611 * Context that's attached to an encoded read io_uring command, in cmd->pdu. It
4612 * contains the fields in btrfs_uring_read_extent that are necessary to finish
4613 * off and cleanup the I/O in btrfs_uring_read_finished.
4614 */
4615 struct btrfs_uring_priv {
4616 struct io_uring_cmd *cmd;
4617 struct page **pages;
4618 unsigned long nr_pages;
4619 struct kiocb iocb;
4620 struct iovec *iov;
4621 struct iov_iter iter;
4622 struct extent_state *cached_state;
4623 u64 count;
4624 u64 start;
4625 u64 lockend;
4626 int err;
4627 bool compressed;
4628 };
4629
4630 struct io_btrfs_cmd {
4631 struct btrfs_uring_encoded_data *data;
4632 struct btrfs_uring_priv *priv;
4633 };
4634
btrfs_uring_read_finished(struct io_uring_cmd * cmd,unsigned int issue_flags)4635 static void btrfs_uring_read_finished(struct io_uring_cmd *cmd, unsigned int issue_flags)
4636 {
4637 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4638 struct btrfs_uring_priv *priv = bc->priv;
4639 struct btrfs_inode *inode = BTRFS_I(file_inode(priv->iocb.ki_filp));
4640 struct extent_io_tree *io_tree = &inode->io_tree;
4641 pgoff_t index;
4642 u64 cur;
4643 size_t page_offset;
4644 ssize_t ret;
4645
4646 /* The inode lock has already been acquired in btrfs_uring_read_extent. */
4647 btrfs_lockdep_inode_acquire(inode, i_rwsem);
4648
4649 if (priv->err) {
4650 ret = priv->err;
4651 goto out;
4652 }
4653
4654 if (priv->compressed) {
4655 index = 0;
4656 page_offset = 0;
4657 } else {
4658 index = (priv->iocb.ki_pos - priv->start) >> PAGE_SHIFT;
4659 page_offset = offset_in_page(priv->iocb.ki_pos - priv->start);
4660 }
4661 cur = 0;
4662 while (cur < priv->count) {
4663 size_t bytes = min_t(size_t, priv->count - cur, PAGE_SIZE - page_offset);
4664
4665 if (copy_page_to_iter(priv->pages[index], page_offset, bytes,
4666 &priv->iter) != bytes) {
4667 ret = -EFAULT;
4668 goto out;
4669 }
4670
4671 index++;
4672 cur += bytes;
4673 page_offset = 0;
4674 }
4675 ret = priv->count;
4676
4677 out:
4678 btrfs_unlock_extent(io_tree, priv->start, priv->lockend, &priv->cached_state);
4679 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4680
4681 io_uring_cmd_done(cmd, ret, issue_flags);
4682 add_rchar(current, ret);
4683
4684 for (index = 0; index < priv->nr_pages; index++)
4685 __free_page(priv->pages[index]);
4686
4687 kfree(priv->pages);
4688 kfree(priv->iov);
4689 kfree(priv);
4690 kfree(bc->data);
4691 }
4692
btrfs_uring_read_extent_endio(void * ctx,int err)4693 void btrfs_uring_read_extent_endio(void *ctx, int err)
4694 {
4695 struct btrfs_uring_priv *priv = ctx;
4696 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(priv->cmd, struct io_btrfs_cmd);
4697
4698 priv->err = err;
4699 bc->priv = priv;
4700
4701 io_uring_cmd_complete_in_task(priv->cmd, btrfs_uring_read_finished);
4702 }
4703
btrfs_uring_read_extent(struct kiocb * iocb,struct iov_iter * iter,u64 start,u64 lockend,struct extent_state * cached_state,u64 disk_bytenr,u64 disk_io_size,size_t count,bool compressed,struct iovec * iov,struct io_uring_cmd * cmd)4704 static int btrfs_uring_read_extent(struct kiocb *iocb, struct iov_iter *iter,
4705 u64 start, u64 lockend,
4706 struct extent_state *cached_state,
4707 u64 disk_bytenr, u64 disk_io_size,
4708 size_t count, bool compressed,
4709 struct iovec *iov, struct io_uring_cmd *cmd)
4710 {
4711 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
4712 struct extent_io_tree *io_tree = &inode->io_tree;
4713 struct page **pages;
4714 struct btrfs_uring_priv *priv = NULL;
4715 unsigned long nr_pages;
4716 int ret;
4717
4718 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
4719 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
4720 if (!pages)
4721 return -ENOMEM;
4722 ret = btrfs_alloc_page_array(nr_pages, pages, 0);
4723 if (ret) {
4724 ret = -ENOMEM;
4725 goto out_fail;
4726 }
4727
4728 priv = kmalloc(sizeof(*priv), GFP_NOFS);
4729 if (!priv) {
4730 ret = -ENOMEM;
4731 goto out_fail;
4732 }
4733
4734 priv->iocb = *iocb;
4735 priv->iov = iov;
4736 priv->iter = *iter;
4737 priv->count = count;
4738 priv->cmd = cmd;
4739 priv->cached_state = cached_state;
4740 priv->compressed = compressed;
4741 priv->nr_pages = nr_pages;
4742 priv->pages = pages;
4743 priv->start = start;
4744 priv->lockend = lockend;
4745 priv->err = 0;
4746
4747 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
4748 disk_io_size, pages, priv);
4749 if (ret && ret != -EIOCBQUEUED)
4750 goto out_fail;
4751
4752 /*
4753 * If we return -EIOCBQUEUED, we're deferring the cleanup to
4754 * btrfs_uring_read_finished(), which will handle unlocking the extent
4755 * and inode and freeing the allocations.
4756 */
4757
4758 /*
4759 * We're returning to userspace with the inode lock held, and that's
4760 * okay - it'll get unlocked in a worker thread. Call
4761 * btrfs_lockdep_inode_release() to avoid confusing lockdep.
4762 */
4763 btrfs_lockdep_inode_release(inode, i_rwsem);
4764
4765 return -EIOCBQUEUED;
4766
4767 out_fail:
4768 btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4769 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4770 kfree(priv);
4771 return ret;
4772 }
4773
btrfs_uring_encoded_read(struct io_uring_cmd * cmd,unsigned int issue_flags)4774 static int btrfs_uring_encoded_read(struct io_uring_cmd *cmd, unsigned int issue_flags)
4775 {
4776 struct file *file = cmd->file;
4777 struct btrfs_inode *inode = BTRFS_I(file->f_inode);
4778 struct extent_io_tree *io_tree = &inode->io_tree;
4779 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4780 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, flags);
4781 size_t copy_end;
4782 int ret;
4783 u64 disk_bytenr, disk_io_size;
4784 loff_t pos;
4785 struct kiocb kiocb;
4786 struct extent_state *cached_state = NULL;
4787 u64 start, lockend;
4788 void __user *sqe_addr;
4789 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4790 struct btrfs_uring_encoded_data *data = NULL;
4791
4792 if (cmd->flags & IORING_URING_CMD_REISSUE)
4793 data = bc->data;
4794
4795 if (!capable(CAP_SYS_ADMIN)) {
4796 ret = -EPERM;
4797 goto out_acct;
4798 }
4799 if (fs_info->sectorsize > PAGE_SIZE) {
4800 ret = -ENOTTY;
4801 goto out_acct;
4802 }
4803
4804 sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4805
4806 if (issue_flags & IO_URING_F_COMPAT) {
4807 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4808 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, flags);
4809 #else
4810 ret = -ENOTTY;
4811 goto out_acct;
4812 #endif
4813 } else {
4814 copy_end = copy_end_kernel;
4815 }
4816
4817 if (!data) {
4818 data = kzalloc(sizeof(*data), GFP_NOFS);
4819 if (!data) {
4820 ret = -ENOMEM;
4821 goto out_acct;
4822 }
4823
4824 bc->data = data;
4825
4826 if (issue_flags & IO_URING_F_COMPAT) {
4827 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4828 struct btrfs_ioctl_encoded_io_args_32 args32;
4829
4830 if (copy_from_user(&args32, sqe_addr, copy_end)) {
4831 ret = -EFAULT;
4832 goto out_acct;
4833 }
4834
4835 data->args.iov = compat_ptr(args32.iov);
4836 data->args.iovcnt = args32.iovcnt;
4837 data->args.offset = args32.offset;
4838 data->args.flags = args32.flags;
4839 #endif
4840 } else {
4841 if (copy_from_user(&data->args, sqe_addr, copy_end)) {
4842 ret = -EFAULT;
4843 goto out_acct;
4844 }
4845 }
4846
4847 if (data->args.flags != 0) {
4848 ret = -EINVAL;
4849 goto out_acct;
4850 }
4851
4852 data->iov = data->iovstack;
4853 ret = import_iovec(ITER_DEST, data->args.iov, data->args.iovcnt,
4854 ARRAY_SIZE(data->iovstack), &data->iov,
4855 &data->iter);
4856 if (ret < 0)
4857 goto out_acct;
4858
4859 if (iov_iter_count(&data->iter) == 0) {
4860 ret = 0;
4861 goto out_free;
4862 }
4863 }
4864
4865 pos = data->args.offset;
4866 ret = rw_verify_area(READ, file, &pos, data->args.len);
4867 if (ret < 0)
4868 goto out_free;
4869
4870 init_sync_kiocb(&kiocb, file);
4871 kiocb.ki_pos = pos;
4872
4873 if (issue_flags & IO_URING_F_NONBLOCK)
4874 kiocb.ki_flags |= IOCB_NOWAIT;
4875
4876 start = ALIGN_DOWN(pos, fs_info->sectorsize);
4877 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
4878
4879 ret = btrfs_encoded_read(&kiocb, &data->iter, &data->args, &cached_state,
4880 &disk_bytenr, &disk_io_size);
4881 if (ret == -EAGAIN)
4882 goto out_acct;
4883 if (ret < 0 && ret != -EIOCBQUEUED)
4884 goto out_free;
4885
4886 file_accessed(file);
4887
4888 if (copy_to_user(sqe_addr + copy_end,
4889 (const char *)&data->args + copy_end_kernel,
4890 sizeof(data->args) - copy_end_kernel)) {
4891 if (ret == -EIOCBQUEUED) {
4892 btrfs_unlock_extent(io_tree, start, lockend, &cached_state);
4893 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
4894 }
4895 ret = -EFAULT;
4896 goto out_free;
4897 }
4898
4899 if (ret == -EIOCBQUEUED) {
4900 u64 count = min_t(u64, iov_iter_count(&data->iter), disk_io_size);
4901
4902 /* Match ioctl by not returning past EOF if uncompressed. */
4903 if (!data->args.compression)
4904 count = min_t(u64, count, data->args.len);
4905
4906 ret = btrfs_uring_read_extent(&kiocb, &data->iter, start, lockend,
4907 cached_state, disk_bytenr, disk_io_size,
4908 count, data->args.compression,
4909 data->iov, cmd);
4910
4911 goto out_acct;
4912 }
4913
4914 out_free:
4915 kfree(data->iov);
4916
4917 out_acct:
4918 if (ret > 0)
4919 add_rchar(current, ret);
4920 inc_syscr(current);
4921
4922 if (ret != -EIOCBQUEUED && ret != -EAGAIN)
4923 kfree(data);
4924
4925 return ret;
4926 }
4927
btrfs_uring_encoded_write(struct io_uring_cmd * cmd,unsigned int issue_flags)4928 static int btrfs_uring_encoded_write(struct io_uring_cmd *cmd, unsigned int issue_flags)
4929 {
4930 struct file *file = cmd->file;
4931 struct btrfs_fs_info *fs_info = inode_to_fs_info(file->f_inode);
4932 loff_t pos;
4933 struct kiocb kiocb;
4934 ssize_t ret;
4935 void __user *sqe_addr;
4936 struct io_btrfs_cmd *bc = io_uring_cmd_to_pdu(cmd, struct io_btrfs_cmd);
4937 struct btrfs_uring_encoded_data *data = NULL;
4938
4939 if (cmd->flags & IORING_URING_CMD_REISSUE)
4940 data = bc->data;
4941
4942 if (!capable(CAP_SYS_ADMIN)) {
4943 ret = -EPERM;
4944 goto out_acct;
4945 }
4946 if (fs_info->sectorsize > PAGE_SIZE) {
4947 ret = -ENOTTY;
4948 goto out_acct;
4949 }
4950
4951 sqe_addr = u64_to_user_ptr(READ_ONCE(cmd->sqe->addr));
4952
4953 if (!(file->f_mode & FMODE_WRITE)) {
4954 ret = -EBADF;
4955 goto out_acct;
4956 }
4957
4958 if (!data) {
4959 data = kzalloc(sizeof(*data), GFP_NOFS);
4960 if (!data) {
4961 ret = -ENOMEM;
4962 goto out_acct;
4963 }
4964
4965 bc->data = data;
4966
4967 if (issue_flags & IO_URING_F_COMPAT) {
4968 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4969 struct btrfs_ioctl_encoded_io_args_32 args32;
4970
4971 if (copy_from_user(&args32, sqe_addr, sizeof(args32))) {
4972 ret = -EFAULT;
4973 goto out_acct;
4974 }
4975 data->args.iov = compat_ptr(args32.iov);
4976 data->args.iovcnt = args32.iovcnt;
4977 data->args.offset = args32.offset;
4978 data->args.flags = args32.flags;
4979 data->args.len = args32.len;
4980 data->args.unencoded_len = args32.unencoded_len;
4981 data->args.unencoded_offset = args32.unencoded_offset;
4982 data->args.compression = args32.compression;
4983 data->args.encryption = args32.encryption;
4984 memcpy(data->args.reserved, args32.reserved,
4985 sizeof(data->args.reserved));
4986 #else
4987 ret = -ENOTTY;
4988 goto out_acct;
4989 #endif
4990 } else {
4991 if (copy_from_user(&data->args, sqe_addr, sizeof(data->args))) {
4992 ret = -EFAULT;
4993 goto out_acct;
4994 }
4995 }
4996
4997 ret = -EINVAL;
4998 if (data->args.flags != 0)
4999 goto out_acct;
5000 if (memchr_inv(data->args.reserved, 0, sizeof(data->args.reserved)))
5001 goto out_acct;
5002 if (data->args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
5003 data->args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
5004 goto out_acct;
5005 if (data->args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
5006 data->args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
5007 goto out_acct;
5008 if (data->args.unencoded_offset > data->args.unencoded_len)
5009 goto out_acct;
5010 if (data->args.len > data->args.unencoded_len - data->args.unencoded_offset)
5011 goto out_acct;
5012
5013 data->iov = data->iovstack;
5014 ret = import_iovec(ITER_SOURCE, data->args.iov, data->args.iovcnt,
5015 ARRAY_SIZE(data->iovstack), &data->iov,
5016 &data->iter);
5017 if (ret < 0)
5018 goto out_acct;
5019
5020 if (iov_iter_count(&data->iter) == 0) {
5021 ret = 0;
5022 goto out_iov;
5023 }
5024 }
5025
5026 if (issue_flags & IO_URING_F_NONBLOCK) {
5027 ret = -EAGAIN;
5028 goto out_acct;
5029 }
5030
5031 pos = data->args.offset;
5032 ret = rw_verify_area(WRITE, file, &pos, data->args.len);
5033 if (ret < 0)
5034 goto out_iov;
5035
5036 init_sync_kiocb(&kiocb, file);
5037 ret = kiocb_set_rw_flags(&kiocb, 0, WRITE);
5038 if (ret)
5039 goto out_iov;
5040 kiocb.ki_pos = pos;
5041
5042 file_start_write(file);
5043
5044 ret = btrfs_do_write_iter(&kiocb, &data->iter, &data->args);
5045 if (ret > 0)
5046 fsnotify_modify(file);
5047
5048 file_end_write(file);
5049 out_iov:
5050 kfree(data->iov);
5051 out_acct:
5052 if (ret > 0)
5053 add_wchar(current, ret);
5054 inc_syscw(current);
5055
5056 if (ret != -EAGAIN)
5057 kfree(data);
5058 return ret;
5059 }
5060
btrfs_uring_cmd(struct io_uring_cmd * cmd,unsigned int issue_flags)5061 int btrfs_uring_cmd(struct io_uring_cmd *cmd, unsigned int issue_flags)
5062 {
5063 switch (cmd->cmd_op) {
5064 case BTRFS_IOC_ENCODED_READ:
5065 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5066 case BTRFS_IOC_ENCODED_READ_32:
5067 #endif
5068 return btrfs_uring_encoded_read(cmd, issue_flags);
5069
5070 case BTRFS_IOC_ENCODED_WRITE:
5071 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5072 case BTRFS_IOC_ENCODED_WRITE_32:
5073 #endif
5074 return btrfs_uring_encoded_write(cmd, issue_flags);
5075 }
5076
5077 return -EINVAL;
5078 }
5079
btrfs_ioctl_subvol_sync(struct btrfs_fs_info * fs_info,void __user * argp)5080 static int btrfs_ioctl_subvol_sync(struct btrfs_fs_info *fs_info, void __user *argp)
5081 {
5082 struct btrfs_root *root;
5083 struct btrfs_ioctl_subvol_wait args = { 0 };
5084 signed long sched_ret;
5085 int refs;
5086 u64 root_flags;
5087 bool wait_for_deletion = false;
5088 bool found = false;
5089
5090 if (copy_from_user(&args, argp, sizeof(args)))
5091 return -EFAULT;
5092
5093 switch (args.mode) {
5094 case BTRFS_SUBVOL_SYNC_WAIT_FOR_QUEUED:
5095 /*
5096 * Wait for the first one deleted that waits until all previous
5097 * are cleaned.
5098 */
5099 spin_lock(&fs_info->trans_lock);
5100 if (!list_empty(&fs_info->dead_roots)) {
5101 root = list_last_entry(&fs_info->dead_roots,
5102 struct btrfs_root, root_list);
5103 args.subvolid = btrfs_root_id(root);
5104 found = true;
5105 }
5106 spin_unlock(&fs_info->trans_lock);
5107 if (!found)
5108 return -ENOENT;
5109
5110 fallthrough;
5111 case BTRFS_SUBVOL_SYNC_WAIT_FOR_ONE:
5112 if ((0 < args.subvolid && args.subvolid < BTRFS_FIRST_FREE_OBJECTID) ||
5113 BTRFS_LAST_FREE_OBJECTID < args.subvolid)
5114 return -EINVAL;
5115 break;
5116 case BTRFS_SUBVOL_SYNC_COUNT:
5117 spin_lock(&fs_info->trans_lock);
5118 args.count = list_count_nodes(&fs_info->dead_roots);
5119 spin_unlock(&fs_info->trans_lock);
5120 if (copy_to_user(argp, &args, sizeof(args)))
5121 return -EFAULT;
5122 return 0;
5123 case BTRFS_SUBVOL_SYNC_PEEK_FIRST:
5124 spin_lock(&fs_info->trans_lock);
5125 /* Last in the list was deleted first. */
5126 if (!list_empty(&fs_info->dead_roots)) {
5127 root = list_last_entry(&fs_info->dead_roots,
5128 struct btrfs_root, root_list);
5129 args.subvolid = btrfs_root_id(root);
5130 } else {
5131 args.subvolid = 0;
5132 }
5133 spin_unlock(&fs_info->trans_lock);
5134 if (copy_to_user(argp, &args, sizeof(args)))
5135 return -EFAULT;
5136 return 0;
5137 case BTRFS_SUBVOL_SYNC_PEEK_LAST:
5138 spin_lock(&fs_info->trans_lock);
5139 /* First in the list was deleted last. */
5140 if (!list_empty(&fs_info->dead_roots)) {
5141 root = list_first_entry(&fs_info->dead_roots,
5142 struct btrfs_root, root_list);
5143 args.subvolid = btrfs_root_id(root);
5144 } else {
5145 args.subvolid = 0;
5146 }
5147 spin_unlock(&fs_info->trans_lock);
5148 if (copy_to_user(argp, &args, sizeof(args)))
5149 return -EFAULT;
5150 return 0;
5151 default:
5152 return -EINVAL;
5153 }
5154
5155 /* 32bit limitation: fs_roots_radix key is not wide enough. */
5156 if (sizeof(unsigned long) != sizeof(u64) && args.subvolid > U32_MAX)
5157 return -EOVERFLOW;
5158
5159 while (1) {
5160 /* Wait for the specific one. */
5161 if (down_read_interruptible(&fs_info->subvol_sem) == -EINTR)
5162 return -EINTR;
5163 refs = -1;
5164 spin_lock(&fs_info->fs_roots_radix_lock);
5165 root = radix_tree_lookup(&fs_info->fs_roots_radix,
5166 (unsigned long)args.subvolid);
5167 if (root) {
5168 spin_lock(&root->root_item_lock);
5169 refs = btrfs_root_refs(&root->root_item);
5170 root_flags = btrfs_root_flags(&root->root_item);
5171 spin_unlock(&root->root_item_lock);
5172 }
5173 spin_unlock(&fs_info->fs_roots_radix_lock);
5174 up_read(&fs_info->subvol_sem);
5175
5176 /* Subvolume does not exist. */
5177 if (!root)
5178 return -ENOENT;
5179
5180 /* Subvolume not deleted at all. */
5181 if (refs > 0)
5182 return -EEXIST;
5183 /* We've waited and now the subvolume is gone. */
5184 if (wait_for_deletion && refs == -1) {
5185 /* Return the one we waited for as the last one. */
5186 if (copy_to_user(argp, &args, sizeof(args)))
5187 return -EFAULT;
5188 return 0;
5189 }
5190
5191 /* Subvolume not found on the first try (deleted or never existed). */
5192 if (refs == -1)
5193 return -ENOENT;
5194
5195 wait_for_deletion = true;
5196 ASSERT(root_flags & BTRFS_ROOT_SUBVOL_DEAD);
5197 sched_ret = schedule_timeout_interruptible(HZ);
5198 /* Early wake up or error. */
5199 if (sched_ret != 0)
5200 return -EINTR;
5201 }
5202
5203 return 0;
5204 }
5205
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5206 long btrfs_ioctl(struct file *file, unsigned int
5207 cmd, unsigned long arg)
5208 {
5209 struct inode *inode = file_inode(file);
5210 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5211 struct btrfs_root *root = BTRFS_I(inode)->root;
5212 void __user *argp = (void __user *)arg;
5213
5214 switch (cmd) {
5215 case FS_IOC_GETVERSION:
5216 return btrfs_ioctl_getversion(inode, argp);
5217 case FS_IOC_GETFSLABEL:
5218 return btrfs_ioctl_get_fslabel(fs_info, argp);
5219 case FS_IOC_SETFSLABEL:
5220 return btrfs_ioctl_set_fslabel(file, argp);
5221 case FITRIM:
5222 return btrfs_ioctl_fitrim(fs_info, argp);
5223 case BTRFS_IOC_SNAP_CREATE:
5224 return btrfs_ioctl_snap_create(file, argp, false);
5225 case BTRFS_IOC_SNAP_CREATE_V2:
5226 return btrfs_ioctl_snap_create_v2(file, argp, false);
5227 case BTRFS_IOC_SUBVOL_CREATE:
5228 return btrfs_ioctl_snap_create(file, argp, true);
5229 case BTRFS_IOC_SUBVOL_CREATE_V2:
5230 return btrfs_ioctl_snap_create_v2(file, argp, true);
5231 case BTRFS_IOC_SNAP_DESTROY:
5232 return btrfs_ioctl_snap_destroy(file, argp, false);
5233 case BTRFS_IOC_SNAP_DESTROY_V2:
5234 return btrfs_ioctl_snap_destroy(file, argp, true);
5235 case BTRFS_IOC_SUBVOL_GETFLAGS:
5236 return btrfs_ioctl_subvol_getflags(BTRFS_I(inode), argp);
5237 case BTRFS_IOC_SUBVOL_SETFLAGS:
5238 return btrfs_ioctl_subvol_setflags(file, argp);
5239 case BTRFS_IOC_DEFAULT_SUBVOL:
5240 return btrfs_ioctl_default_subvol(file, argp);
5241 case BTRFS_IOC_DEFRAG:
5242 return btrfs_ioctl_defrag(file, NULL);
5243 case BTRFS_IOC_DEFRAG_RANGE:
5244 return btrfs_ioctl_defrag(file, argp);
5245 case BTRFS_IOC_RESIZE:
5246 return btrfs_ioctl_resize(file, argp);
5247 case BTRFS_IOC_ADD_DEV:
5248 return btrfs_ioctl_add_dev(fs_info, argp);
5249 case BTRFS_IOC_RM_DEV:
5250 return btrfs_ioctl_rm_dev(file, argp);
5251 case BTRFS_IOC_RM_DEV_V2:
5252 return btrfs_ioctl_rm_dev_v2(file, argp);
5253 case BTRFS_IOC_FS_INFO:
5254 return btrfs_ioctl_fs_info(fs_info, argp);
5255 case BTRFS_IOC_DEV_INFO:
5256 return btrfs_ioctl_dev_info(fs_info, argp);
5257 case BTRFS_IOC_TREE_SEARCH:
5258 return btrfs_ioctl_tree_search(root, argp);
5259 case BTRFS_IOC_TREE_SEARCH_V2:
5260 return btrfs_ioctl_tree_search_v2(root, argp);
5261 case BTRFS_IOC_INO_LOOKUP:
5262 return btrfs_ioctl_ino_lookup(root, argp);
5263 case BTRFS_IOC_INO_PATHS:
5264 return btrfs_ioctl_ino_to_path(root, argp);
5265 case BTRFS_IOC_LOGICAL_INO:
5266 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5267 case BTRFS_IOC_LOGICAL_INO_V2:
5268 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5269 case BTRFS_IOC_SPACE_INFO:
5270 return btrfs_ioctl_space_info(fs_info, argp);
5271 case BTRFS_IOC_SYNC: {
5272 int ret;
5273
5274 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
5275 if (ret)
5276 return ret;
5277 ret = btrfs_sync_fs(inode->i_sb, 1);
5278 /*
5279 * There may be work for the cleaner kthread to do (subvolume
5280 * deletion, delayed iputs, defrag inodes, etc), so wake it up.
5281 */
5282 wake_up_process(fs_info->cleaner_kthread);
5283 return ret;
5284 }
5285 case BTRFS_IOC_START_SYNC:
5286 return btrfs_ioctl_start_sync(root, argp);
5287 case BTRFS_IOC_WAIT_SYNC:
5288 return btrfs_ioctl_wait_sync(fs_info, argp);
5289 case BTRFS_IOC_SCRUB:
5290 return btrfs_ioctl_scrub(file, argp);
5291 case BTRFS_IOC_SCRUB_CANCEL:
5292 return btrfs_ioctl_scrub_cancel(fs_info);
5293 case BTRFS_IOC_SCRUB_PROGRESS:
5294 return btrfs_ioctl_scrub_progress(fs_info, argp);
5295 case BTRFS_IOC_BALANCE_V2:
5296 return btrfs_ioctl_balance(file, argp);
5297 case BTRFS_IOC_BALANCE_CTL:
5298 return btrfs_ioctl_balance_ctl(fs_info, arg);
5299 case BTRFS_IOC_BALANCE_PROGRESS:
5300 return btrfs_ioctl_balance_progress(fs_info, argp);
5301 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5302 return btrfs_ioctl_set_received_subvol(file, argp);
5303 #ifdef CONFIG_64BIT
5304 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5305 return btrfs_ioctl_set_received_subvol_32(file, argp);
5306 #endif
5307 case BTRFS_IOC_SEND:
5308 return _btrfs_ioctl_send(root, argp, false);
5309 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5310 case BTRFS_IOC_SEND_32:
5311 return _btrfs_ioctl_send(root, argp, true);
5312 #endif
5313 case BTRFS_IOC_GET_DEV_STATS:
5314 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5315 case BTRFS_IOC_QUOTA_CTL:
5316 return btrfs_ioctl_quota_ctl(file, argp);
5317 case BTRFS_IOC_QGROUP_ASSIGN:
5318 return btrfs_ioctl_qgroup_assign(file, argp);
5319 case BTRFS_IOC_QGROUP_CREATE:
5320 return btrfs_ioctl_qgroup_create(file, argp);
5321 case BTRFS_IOC_QGROUP_LIMIT:
5322 return btrfs_ioctl_qgroup_limit(file, argp);
5323 case BTRFS_IOC_QUOTA_RESCAN:
5324 return btrfs_ioctl_quota_rescan(file, argp);
5325 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5326 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5327 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5328 return btrfs_ioctl_quota_rescan_wait(fs_info);
5329 case BTRFS_IOC_DEV_REPLACE:
5330 return btrfs_ioctl_dev_replace(fs_info, argp);
5331 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5332 return btrfs_ioctl_get_supported_features(argp);
5333 case BTRFS_IOC_GET_FEATURES:
5334 return btrfs_ioctl_get_features(fs_info, argp);
5335 case BTRFS_IOC_SET_FEATURES:
5336 return btrfs_ioctl_set_features(file, argp);
5337 case BTRFS_IOC_GET_SUBVOL_INFO:
5338 return btrfs_ioctl_get_subvol_info(inode, argp);
5339 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5340 return btrfs_ioctl_get_subvol_rootref(root, argp);
5341 case BTRFS_IOC_INO_LOOKUP_USER:
5342 return btrfs_ioctl_ino_lookup_user(file, argp);
5343 case FS_IOC_ENABLE_VERITY:
5344 return fsverity_ioctl_enable(file, (const void __user *)argp);
5345 case FS_IOC_MEASURE_VERITY:
5346 return fsverity_ioctl_measure(file, argp);
5347 case FS_IOC_READ_VERITY_METADATA:
5348 return fsverity_ioctl_read_metadata(file, argp);
5349 case BTRFS_IOC_ENCODED_READ:
5350 return btrfs_ioctl_encoded_read(file, argp, false);
5351 case BTRFS_IOC_ENCODED_WRITE:
5352 return btrfs_ioctl_encoded_write(file, argp, false);
5353 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5354 case BTRFS_IOC_ENCODED_READ_32:
5355 return btrfs_ioctl_encoded_read(file, argp, true);
5356 case BTRFS_IOC_ENCODED_WRITE_32:
5357 return btrfs_ioctl_encoded_write(file, argp, true);
5358 #endif
5359 case BTRFS_IOC_SUBVOL_SYNC_WAIT:
5360 return btrfs_ioctl_subvol_sync(fs_info, argp);
5361 }
5362
5363 return -ENOTTY;
5364 }
5365
5366 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5367 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5368 {
5369 /*
5370 * These all access 32-bit values anyway so no further
5371 * handling is necessary.
5372 */
5373 switch (cmd) {
5374 case FS_IOC32_GETVERSION:
5375 cmd = FS_IOC_GETVERSION;
5376 break;
5377 }
5378
5379 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5380 }
5381 #endif
5382