1 // SPDX-License-Identifier: GPL-2.0 2 3 /* erasure coding */ 4 5 #include "bcachefs.h" 6 #include "alloc_background.h" 7 #include "alloc_foreground.h" 8 #include "backpointers.h" 9 #include "bkey_buf.h" 10 #include "bset.h" 11 #include "btree_gc.h" 12 #include "btree_update.h" 13 #include "btree_write_buffer.h" 14 #include "buckets.h" 15 #include "checksum.h" 16 #include "disk_accounting.h" 17 #include "disk_groups.h" 18 #include "ec.h" 19 #include "error.h" 20 #include "io_read.h" 21 #include "io_write.h" 22 #include "keylist.h" 23 #include "lru.h" 24 #include "recovery.h" 25 #include "replicas.h" 26 #include "super-io.h" 27 #include "util.h" 28 29 #include <linux/sort.h> 30 #include <linux/string_choices.h> 31 32 #ifdef __KERNEL__ 33 34 #include <linux/raid/pq.h> 35 #include <linux/raid/xor.h> 36 37 static void raid5_recov(unsigned disks, unsigned failed_idx, 38 size_t size, void **data) 39 { 40 unsigned i = 2, nr; 41 42 BUG_ON(failed_idx >= disks); 43 44 swap(data[0], data[failed_idx]); 45 memcpy(data[0], data[1], size); 46 47 while (i < disks) { 48 nr = min_t(unsigned, disks - i, MAX_XOR_BLOCKS); 49 xor_blocks(nr, size, data[0], data + i); 50 i += nr; 51 } 52 53 swap(data[0], data[failed_idx]); 54 } 55 56 static void raid_gen(int nd, int np, size_t size, void **v) 57 { 58 if (np >= 1) 59 raid5_recov(nd + np, nd, size, v); 60 if (np >= 2) 61 raid6_call.gen_syndrome(nd + np, size, v); 62 BUG_ON(np > 2); 63 } 64 65 static void raid_rec(int nr, int *ir, int nd, int np, size_t size, void **v) 66 { 67 switch (nr) { 68 case 0: 69 break; 70 case 1: 71 if (ir[0] < nd + 1) 72 raid5_recov(nd + 1, ir[0], size, v); 73 else 74 raid6_call.gen_syndrome(nd + np, size, v); 75 break; 76 case 2: 77 if (ir[1] < nd) { 78 /* data+data failure. */ 79 raid6_2data_recov(nd + np, size, ir[0], ir[1], v); 80 } else if (ir[0] < nd) { 81 /* data + p/q failure */ 82 83 if (ir[1] == nd) /* data + p failure */ 84 raid6_datap_recov(nd + np, size, ir[0], v); 85 else { /* data + q failure */ 86 raid5_recov(nd + 1, ir[0], size, v); 87 raid6_call.gen_syndrome(nd + np, size, v); 88 } 89 } else { 90 raid_gen(nd, np, size, v); 91 } 92 break; 93 default: 94 BUG(); 95 } 96 } 97 98 #else 99 100 #include <raid/raid.h> 101 102 #endif 103 104 struct ec_bio { 105 struct bch_dev *ca; 106 struct ec_stripe_buf *buf; 107 size_t idx; 108 int rw; 109 u64 submit_time; 110 struct bio bio; 111 }; 112 113 /* Stripes btree keys: */ 114 115 int bch2_stripe_validate(struct bch_fs *c, struct bkey_s_c k, 116 struct bkey_validate_context from) 117 { 118 const struct bch_stripe *s = bkey_s_c_to_stripe(k).v; 119 int ret = 0; 120 121 bkey_fsck_err_on(bkey_eq(k.k->p, POS_MIN) || 122 bpos_gt(k.k->p, POS(0, U32_MAX)), 123 c, stripe_pos_bad, 124 "stripe at bad pos"); 125 126 bkey_fsck_err_on(bkey_val_u64s(k.k) < stripe_val_u64s(s), 127 c, stripe_val_size_bad, 128 "incorrect value size (%zu < %u)", 129 bkey_val_u64s(k.k), stripe_val_u64s(s)); 130 131 bkey_fsck_err_on(s->csum_granularity_bits >= 64, 132 c, stripe_csum_granularity_bad, 133 "invalid csum granularity (%u >= 64)", 134 s->csum_granularity_bits); 135 136 ret = bch2_bkey_ptrs_validate(c, k, from); 137 fsck_err: 138 return ret; 139 } 140 141 void bch2_stripe_to_text(struct printbuf *out, struct bch_fs *c, 142 struct bkey_s_c k) 143 { 144 const struct bch_stripe *sp = bkey_s_c_to_stripe(k).v; 145 struct bch_stripe s = {}; 146 147 memcpy(&s, sp, min(sizeof(s), bkey_val_bytes(k.k))); 148 149 unsigned nr_data = s.nr_blocks - s.nr_redundant; 150 151 prt_printf(out, "algo %u sectors %u blocks %u:%u csum ", 152 s.algorithm, 153 le16_to_cpu(s.sectors), 154 nr_data, 155 s.nr_redundant); 156 bch2_prt_csum_type(out, s.csum_type); 157 prt_str(out, " gran "); 158 if (s.csum_granularity_bits < 64) 159 prt_printf(out, "%llu", 1ULL << s.csum_granularity_bits); 160 else 161 prt_printf(out, "(invalid shift %u)", s.csum_granularity_bits); 162 163 if (s.disk_label) { 164 prt_str(out, " label"); 165 bch2_disk_path_to_text(out, c, s.disk_label - 1); 166 } 167 168 for (unsigned i = 0; i < s.nr_blocks; i++) { 169 const struct bch_extent_ptr *ptr = sp->ptrs + i; 170 171 if ((void *) ptr >= bkey_val_end(k)) 172 break; 173 174 prt_char(out, ' '); 175 bch2_extent_ptr_to_text(out, c, ptr); 176 177 if (s.csum_type < BCH_CSUM_NR && 178 i < nr_data && 179 stripe_blockcount_offset(&s, i) < bkey_val_bytes(k.k)) 180 prt_printf(out, "#%u", stripe_blockcount_get(sp, i)); 181 } 182 } 183 184 /* Triggers: */ 185 186 static int __mark_stripe_bucket(struct btree_trans *trans, 187 struct bch_dev *ca, 188 struct bkey_s_c_stripe s, 189 unsigned ptr_idx, bool deleting, 190 struct bpos bucket, 191 struct bch_alloc_v4 *a, 192 enum btree_iter_update_trigger_flags flags) 193 { 194 const struct bch_extent_ptr *ptr = s.v->ptrs + ptr_idx; 195 unsigned nr_data = s.v->nr_blocks - s.v->nr_redundant; 196 bool parity = ptr_idx >= nr_data; 197 enum bch_data_type data_type = parity ? BCH_DATA_parity : BCH_DATA_stripe; 198 s64 sectors = parity ? le16_to_cpu(s.v->sectors) : 0; 199 struct printbuf buf = PRINTBUF; 200 int ret = 0; 201 202 struct bch_fs *c = trans->c; 203 if (deleting) 204 sectors = -sectors; 205 206 if (!deleting) { 207 if (bch2_trans_inconsistent_on(a->stripe || 208 a->stripe_redundancy, trans, 209 "bucket %llu:%llu gen %u data type %s dirty_sectors %u: multiple stripes using same bucket (%u, %llu)\n%s", 210 bucket.inode, bucket.offset, a->gen, 211 bch2_data_type_str(a->data_type), 212 a->dirty_sectors, 213 a->stripe, s.k->p.offset, 214 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 215 ret = -BCH_ERR_mark_stripe; 216 goto err; 217 } 218 219 if (bch2_trans_inconsistent_on(parity && bch2_bucket_sectors_total(*a), trans, 220 "bucket %llu:%llu gen %u data type %s dirty_sectors %u cached_sectors %u: data already in parity bucket\n%s", 221 bucket.inode, bucket.offset, a->gen, 222 bch2_data_type_str(a->data_type), 223 a->dirty_sectors, 224 a->cached_sectors, 225 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 226 ret = -BCH_ERR_mark_stripe; 227 goto err; 228 } 229 } else { 230 if (bch2_trans_inconsistent_on(a->stripe != s.k->p.offset || 231 a->stripe_redundancy != s.v->nr_redundant, trans, 232 "bucket %llu:%llu gen %u: not marked as stripe when deleting stripe (got %u)\n%s", 233 bucket.inode, bucket.offset, a->gen, 234 a->stripe, 235 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 236 ret = -BCH_ERR_mark_stripe; 237 goto err; 238 } 239 240 if (bch2_trans_inconsistent_on(a->data_type != data_type, trans, 241 "bucket %llu:%llu gen %u data type %s: wrong data type when stripe, should be %s\n%s", 242 bucket.inode, bucket.offset, a->gen, 243 bch2_data_type_str(a->data_type), 244 bch2_data_type_str(data_type), 245 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 246 ret = -BCH_ERR_mark_stripe; 247 goto err; 248 } 249 250 if (bch2_trans_inconsistent_on(parity && 251 (a->dirty_sectors != -sectors || 252 a->cached_sectors), trans, 253 "bucket %llu:%llu gen %u dirty_sectors %u cached_sectors %u: wrong sectors when deleting parity block of stripe\n%s", 254 bucket.inode, bucket.offset, a->gen, 255 a->dirty_sectors, 256 a->cached_sectors, 257 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 258 ret = -BCH_ERR_mark_stripe; 259 goto err; 260 } 261 } 262 263 if (sectors) { 264 ret = bch2_bucket_ref_update(trans, ca, s.s_c, ptr, sectors, data_type, 265 a->gen, a->data_type, &a->dirty_sectors); 266 if (ret) 267 goto err; 268 } 269 270 if (!deleting) { 271 a->stripe = s.k->p.offset; 272 a->stripe_redundancy = s.v->nr_redundant; 273 alloc_data_type_set(a, data_type); 274 } else { 275 a->stripe = 0; 276 a->stripe_redundancy = 0; 277 alloc_data_type_set(a, BCH_DATA_user); 278 } 279 err: 280 printbuf_exit(&buf); 281 return ret; 282 } 283 284 static int mark_stripe_bucket(struct btree_trans *trans, 285 struct bkey_s_c_stripe s, 286 unsigned ptr_idx, bool deleting, 287 enum btree_iter_update_trigger_flags flags) 288 { 289 struct bch_fs *c = trans->c; 290 const struct bch_extent_ptr *ptr = s.v->ptrs + ptr_idx; 291 struct printbuf buf = PRINTBUF; 292 int ret = 0; 293 294 struct bch_dev *ca = bch2_dev_tryget(c, ptr->dev); 295 if (unlikely(!ca)) { 296 if (ptr->dev != BCH_SB_MEMBER_INVALID && !(flags & BTREE_TRIGGER_overwrite)) 297 ret = -BCH_ERR_mark_stripe; 298 goto err; 299 } 300 301 struct bpos bucket = PTR_BUCKET_POS(ca, ptr); 302 303 if (flags & BTREE_TRIGGER_transactional) { 304 struct extent_ptr_decoded p = { 305 .ptr = *ptr, 306 .crc = bch2_extent_crc_unpack(s.k, NULL), 307 }; 308 struct bkey_i_backpointer bp; 309 bch2_extent_ptr_to_bp(c, BTREE_ID_stripes, 0, s.s_c, p, 310 (const union bch_extent_entry *) ptr, &bp); 311 312 struct bkey_i_alloc_v4 *a = 313 bch2_trans_start_alloc_update(trans, bucket, 0); 314 ret = PTR_ERR_OR_ZERO(a) ?: 315 __mark_stripe_bucket(trans, ca, s, ptr_idx, deleting, bucket, &a->v, flags) ?: 316 bch2_bucket_backpointer_mod(trans, s.s_c, &bp, 317 !(flags & BTREE_TRIGGER_overwrite)); 318 if (ret) 319 goto err; 320 } 321 322 if (flags & BTREE_TRIGGER_gc) { 323 struct bucket *g = gc_bucket(ca, bucket.offset); 324 if (bch2_fs_inconsistent_on(!g, c, "reference to invalid bucket on device %u\n%s", 325 ptr->dev, 326 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 327 ret = -BCH_ERR_mark_stripe; 328 goto err; 329 } 330 331 bucket_lock(g); 332 struct bch_alloc_v4 old = bucket_m_to_alloc(*g), new = old; 333 ret = __mark_stripe_bucket(trans, ca, s, ptr_idx, deleting, bucket, &new, flags); 334 alloc_to_bucket(g, new); 335 bucket_unlock(g); 336 337 if (!ret) 338 ret = bch2_alloc_key_to_dev_counters(trans, ca, &old, &new, flags); 339 } 340 err: 341 bch2_dev_put(ca); 342 printbuf_exit(&buf); 343 return ret; 344 } 345 346 static int mark_stripe_buckets(struct btree_trans *trans, 347 struct bkey_s_c old, struct bkey_s_c new, 348 enum btree_iter_update_trigger_flags flags) 349 { 350 const struct bch_stripe *old_s = old.k->type == KEY_TYPE_stripe 351 ? bkey_s_c_to_stripe(old).v : NULL; 352 const struct bch_stripe *new_s = new.k->type == KEY_TYPE_stripe 353 ? bkey_s_c_to_stripe(new).v : NULL; 354 355 BUG_ON(old_s && new_s && old_s->nr_blocks != new_s->nr_blocks); 356 357 unsigned nr_blocks = new_s ? new_s->nr_blocks : old_s->nr_blocks; 358 359 for (unsigned i = 0; i < nr_blocks; i++) { 360 if (new_s && old_s && 361 !memcmp(&new_s->ptrs[i], 362 &old_s->ptrs[i], 363 sizeof(new_s->ptrs[i]))) 364 continue; 365 366 if (new_s) { 367 int ret = mark_stripe_bucket(trans, 368 bkey_s_c_to_stripe(new), i, false, flags); 369 if (ret) 370 return ret; 371 } 372 373 if (old_s) { 374 int ret = mark_stripe_bucket(trans, 375 bkey_s_c_to_stripe(old), i, true, flags); 376 if (ret) 377 return ret; 378 } 379 } 380 381 return 0; 382 } 383 384 int bch2_trigger_stripe(struct btree_trans *trans, 385 enum btree_id btree, unsigned level, 386 struct bkey_s_c old, struct bkey_s _new, 387 enum btree_iter_update_trigger_flags flags) 388 { 389 struct bkey_s_c new = _new.s_c; 390 struct bch_fs *c = trans->c; 391 u64 idx = new.k->p.offset; 392 const struct bch_stripe *old_s = old.k->type == KEY_TYPE_stripe 393 ? bkey_s_c_to_stripe(old).v : NULL; 394 const struct bch_stripe *new_s = new.k->type == KEY_TYPE_stripe 395 ? bkey_s_c_to_stripe(new).v : NULL; 396 397 if (unlikely(flags & BTREE_TRIGGER_check_repair)) 398 return bch2_check_fix_ptrs(trans, btree, level, _new.s_c, flags); 399 400 BUG_ON(new_s && old_s && 401 (new_s->nr_blocks != old_s->nr_blocks || 402 new_s->nr_redundant != old_s->nr_redundant)); 403 404 if (flags & BTREE_TRIGGER_transactional) { 405 int ret = bch2_lru_change(trans, 406 BCH_LRU_STRIPE_FRAGMENTATION, 407 idx, 408 stripe_lru_pos(old_s), 409 stripe_lru_pos(new_s)); 410 if (ret) 411 return ret; 412 } 413 414 if (flags & (BTREE_TRIGGER_transactional|BTREE_TRIGGER_gc)) { 415 /* 416 * If the pointers aren't changing, we don't need to do anything: 417 */ 418 if (new_s && old_s && 419 new_s->nr_blocks == old_s->nr_blocks && 420 new_s->nr_redundant == old_s->nr_redundant && 421 !memcmp(old_s->ptrs, new_s->ptrs, 422 new_s->nr_blocks * sizeof(struct bch_extent_ptr))) 423 return 0; 424 425 struct gc_stripe *gc = NULL; 426 if (flags & BTREE_TRIGGER_gc) { 427 gc = genradix_ptr_alloc(&c->gc_stripes, idx, GFP_KERNEL); 428 if (!gc) { 429 bch_err(c, "error allocating memory for gc_stripes, idx %llu", idx); 430 return -BCH_ERR_ENOMEM_mark_stripe; 431 } 432 433 /* 434 * This will be wrong when we bring back runtime gc: we should 435 * be unmarking the old key and then marking the new key 436 * 437 * Also: when we bring back runtime gc, locking 438 */ 439 gc->alive = true; 440 gc->sectors = le16_to_cpu(new_s->sectors); 441 gc->nr_blocks = new_s->nr_blocks; 442 gc->nr_redundant = new_s->nr_redundant; 443 444 for (unsigned i = 0; i < new_s->nr_blocks; i++) 445 gc->ptrs[i] = new_s->ptrs[i]; 446 447 /* 448 * gc recalculates this field from stripe ptr 449 * references: 450 */ 451 memset(gc->block_sectors, 0, sizeof(gc->block_sectors)); 452 } 453 454 if (new_s) { 455 s64 sectors = (u64) le16_to_cpu(new_s->sectors) * new_s->nr_redundant; 456 457 struct disk_accounting_pos acc; 458 memset(&acc, 0, sizeof(acc)); 459 acc.type = BCH_DISK_ACCOUNTING_replicas; 460 bch2_bkey_to_replicas(&acc.replicas, new); 461 int ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc); 462 if (ret) 463 return ret; 464 465 if (gc) 466 unsafe_memcpy(&gc->r.e, &acc.replicas, 467 replicas_entry_bytes(&acc.replicas), "VLA"); 468 } 469 470 if (old_s) { 471 s64 sectors = -((s64) le16_to_cpu(old_s->sectors)) * old_s->nr_redundant; 472 473 struct disk_accounting_pos acc; 474 memset(&acc, 0, sizeof(acc)); 475 acc.type = BCH_DISK_ACCOUNTING_replicas; 476 bch2_bkey_to_replicas(&acc.replicas, old); 477 int ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc); 478 if (ret) 479 return ret; 480 } 481 482 int ret = mark_stripe_buckets(trans, old, new, flags); 483 if (ret) 484 return ret; 485 } 486 487 return 0; 488 } 489 490 /* returns blocknr in stripe that we matched: */ 491 static const struct bch_extent_ptr *bkey_matches_stripe(struct bch_stripe *s, 492 struct bkey_s_c k, unsigned *block) 493 { 494 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 495 unsigned i, nr_data = s->nr_blocks - s->nr_redundant; 496 497 bkey_for_each_ptr(ptrs, ptr) 498 for (i = 0; i < nr_data; i++) 499 if (__bch2_ptr_matches_stripe(&s->ptrs[i], ptr, 500 le16_to_cpu(s->sectors))) { 501 *block = i; 502 return ptr; 503 } 504 505 return NULL; 506 } 507 508 static bool extent_has_stripe_ptr(struct bkey_s_c k, u64 idx) 509 { 510 switch (k.k->type) { 511 case KEY_TYPE_extent: { 512 struct bkey_s_c_extent e = bkey_s_c_to_extent(k); 513 const union bch_extent_entry *entry; 514 515 extent_for_each_entry(e, entry) 516 if (extent_entry_type(entry) == 517 BCH_EXTENT_ENTRY_stripe_ptr && 518 entry->stripe_ptr.idx == idx) 519 return true; 520 521 break; 522 } 523 } 524 525 return false; 526 } 527 528 /* Stripe bufs: */ 529 530 static void ec_stripe_buf_exit(struct ec_stripe_buf *buf) 531 { 532 if (buf->key.k.type == KEY_TYPE_stripe) { 533 struct bkey_i_stripe *s = bkey_i_to_stripe(&buf->key); 534 unsigned i; 535 536 for (i = 0; i < s->v.nr_blocks; i++) { 537 kvfree(buf->data[i]); 538 buf->data[i] = NULL; 539 } 540 } 541 } 542 543 /* XXX: this is a non-mempoolified memory allocation: */ 544 static int ec_stripe_buf_init(struct ec_stripe_buf *buf, 545 unsigned offset, unsigned size) 546 { 547 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 548 unsigned csum_granularity = 1U << v->csum_granularity_bits; 549 unsigned end = offset + size; 550 unsigned i; 551 552 BUG_ON(end > le16_to_cpu(v->sectors)); 553 554 offset = round_down(offset, csum_granularity); 555 end = min_t(unsigned, le16_to_cpu(v->sectors), 556 round_up(end, csum_granularity)); 557 558 buf->offset = offset; 559 buf->size = end - offset; 560 561 memset(buf->valid, 0xFF, sizeof(buf->valid)); 562 563 for (i = 0; i < v->nr_blocks; i++) { 564 buf->data[i] = kvmalloc(buf->size << 9, GFP_KERNEL); 565 if (!buf->data[i]) 566 goto err; 567 } 568 569 return 0; 570 err: 571 ec_stripe_buf_exit(buf); 572 return -BCH_ERR_ENOMEM_stripe_buf; 573 } 574 575 /* Checksumming: */ 576 577 static struct bch_csum ec_block_checksum(struct ec_stripe_buf *buf, 578 unsigned block, unsigned offset) 579 { 580 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 581 unsigned csum_granularity = 1 << v->csum_granularity_bits; 582 unsigned end = buf->offset + buf->size; 583 unsigned len = min(csum_granularity, end - offset); 584 585 BUG_ON(offset >= end); 586 BUG_ON(offset < buf->offset); 587 BUG_ON(offset & (csum_granularity - 1)); 588 BUG_ON(offset + len != le16_to_cpu(v->sectors) && 589 (len & (csum_granularity - 1))); 590 591 return bch2_checksum(NULL, v->csum_type, 592 null_nonce(), 593 buf->data[block] + ((offset - buf->offset) << 9), 594 len << 9); 595 } 596 597 static void ec_generate_checksums(struct ec_stripe_buf *buf) 598 { 599 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 600 unsigned i, j, csums_per_device = stripe_csums_per_device(v); 601 602 if (!v->csum_type) 603 return; 604 605 BUG_ON(buf->offset); 606 BUG_ON(buf->size != le16_to_cpu(v->sectors)); 607 608 for (i = 0; i < v->nr_blocks; i++) 609 for (j = 0; j < csums_per_device; j++) 610 stripe_csum_set(v, i, j, 611 ec_block_checksum(buf, i, j << v->csum_granularity_bits)); 612 } 613 614 static void ec_validate_checksums(struct bch_fs *c, struct ec_stripe_buf *buf) 615 { 616 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 617 unsigned csum_granularity = 1 << v->csum_granularity_bits; 618 unsigned i; 619 620 if (!v->csum_type) 621 return; 622 623 for (i = 0; i < v->nr_blocks; i++) { 624 unsigned offset = buf->offset; 625 unsigned end = buf->offset + buf->size; 626 627 if (!test_bit(i, buf->valid)) 628 continue; 629 630 while (offset < end) { 631 unsigned j = offset >> v->csum_granularity_bits; 632 unsigned len = min(csum_granularity, end - offset); 633 struct bch_csum want = stripe_csum_get(v, i, j); 634 struct bch_csum got = ec_block_checksum(buf, i, offset); 635 636 if (bch2_crc_cmp(want, got)) { 637 struct bch_dev *ca = bch2_dev_tryget(c, v->ptrs[i].dev); 638 if (ca) { 639 struct printbuf err = PRINTBUF; 640 641 prt_str(&err, "stripe "); 642 bch2_csum_err_msg(&err, v->csum_type, want, got); 643 prt_printf(&err, " for %ps at %u of\n ", (void *) _RET_IP_, i); 644 bch2_bkey_val_to_text(&err, c, bkey_i_to_s_c(&buf->key)); 645 bch_err_ratelimited(ca, "%s", err.buf); 646 printbuf_exit(&err); 647 648 bch2_io_error(ca, BCH_MEMBER_ERROR_checksum); 649 } 650 651 clear_bit(i, buf->valid); 652 break; 653 } 654 655 offset += len; 656 } 657 } 658 } 659 660 /* Erasure coding: */ 661 662 static void ec_generate_ec(struct ec_stripe_buf *buf) 663 { 664 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 665 unsigned nr_data = v->nr_blocks - v->nr_redundant; 666 unsigned bytes = le16_to_cpu(v->sectors) << 9; 667 668 raid_gen(nr_data, v->nr_redundant, bytes, buf->data); 669 } 670 671 static unsigned ec_nr_failed(struct ec_stripe_buf *buf) 672 { 673 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 674 675 return v->nr_blocks - bitmap_weight(buf->valid, v->nr_blocks); 676 } 677 678 static int ec_do_recov(struct bch_fs *c, struct ec_stripe_buf *buf) 679 { 680 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 681 unsigned i, failed[BCH_BKEY_PTRS_MAX], nr_failed = 0; 682 unsigned nr_data = v->nr_blocks - v->nr_redundant; 683 unsigned bytes = buf->size << 9; 684 685 if (ec_nr_failed(buf) > v->nr_redundant) { 686 bch_err_ratelimited(c, 687 "error doing reconstruct read: unable to read enough blocks"); 688 return -1; 689 } 690 691 for (i = 0; i < nr_data; i++) 692 if (!test_bit(i, buf->valid)) 693 failed[nr_failed++] = i; 694 695 raid_rec(nr_failed, failed, nr_data, v->nr_redundant, bytes, buf->data); 696 return 0; 697 } 698 699 /* IO: */ 700 701 static void ec_block_endio(struct bio *bio) 702 { 703 struct ec_bio *ec_bio = container_of(bio, struct ec_bio, bio); 704 struct bch_stripe *v = &bkey_i_to_stripe(&ec_bio->buf->key)->v; 705 struct bch_extent_ptr *ptr = &v->ptrs[ec_bio->idx]; 706 struct bch_dev *ca = ec_bio->ca; 707 struct closure *cl = bio->bi_private; 708 int rw = ec_bio->rw; 709 710 bch2_account_io_completion(ca, bio_data_dir(bio), 711 ec_bio->submit_time, !bio->bi_status); 712 713 if (bio->bi_status) { 714 bch_err_dev_ratelimited(ca, "erasure coding %s error: %s", 715 str_write_read(bio_data_dir(bio)), 716 bch2_blk_status_to_str(bio->bi_status)); 717 clear_bit(ec_bio->idx, ec_bio->buf->valid); 718 } 719 720 int stale = dev_ptr_stale(ca, ptr); 721 if (stale) { 722 bch_err_ratelimited(ca->fs, 723 "error %s stripe: stale/invalid pointer (%i) after io", 724 bio_data_dir(bio) == READ ? "reading from" : "writing to", 725 stale); 726 clear_bit(ec_bio->idx, ec_bio->buf->valid); 727 } 728 729 bio_put(&ec_bio->bio); 730 percpu_ref_put(&ca->io_ref[rw]); 731 closure_put(cl); 732 } 733 734 static void ec_block_io(struct bch_fs *c, struct ec_stripe_buf *buf, 735 blk_opf_t opf, unsigned idx, struct closure *cl) 736 { 737 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 738 unsigned offset = 0, bytes = buf->size << 9; 739 struct bch_extent_ptr *ptr = &v->ptrs[idx]; 740 enum bch_data_type data_type = idx < v->nr_blocks - v->nr_redundant 741 ? BCH_DATA_user 742 : BCH_DATA_parity; 743 int rw = op_is_write(opf); 744 745 struct bch_dev *ca = bch2_dev_get_ioref(c, ptr->dev, rw); 746 if (!ca) { 747 clear_bit(idx, buf->valid); 748 return; 749 } 750 751 int stale = dev_ptr_stale(ca, ptr); 752 if (stale) { 753 bch_err_ratelimited(c, 754 "error %s stripe: stale pointer (%i)", 755 rw == READ ? "reading from" : "writing to", 756 stale); 757 clear_bit(idx, buf->valid); 758 return; 759 } 760 761 762 this_cpu_add(ca->io_done->sectors[rw][data_type], buf->size); 763 764 while (offset < bytes) { 765 unsigned nr_iovecs = min_t(size_t, BIO_MAX_VECS, 766 DIV_ROUND_UP(bytes, PAGE_SIZE)); 767 unsigned b = min_t(size_t, bytes - offset, 768 nr_iovecs << PAGE_SHIFT); 769 struct ec_bio *ec_bio; 770 771 ec_bio = container_of(bio_alloc_bioset(ca->disk_sb.bdev, 772 nr_iovecs, 773 opf, 774 GFP_KERNEL, 775 &c->ec_bioset), 776 struct ec_bio, bio); 777 778 ec_bio->ca = ca; 779 ec_bio->buf = buf; 780 ec_bio->idx = idx; 781 ec_bio->rw = rw; 782 ec_bio->submit_time = local_clock(); 783 784 ec_bio->bio.bi_iter.bi_sector = ptr->offset + buf->offset + (offset >> 9); 785 ec_bio->bio.bi_end_io = ec_block_endio; 786 ec_bio->bio.bi_private = cl; 787 788 bch2_bio_map(&ec_bio->bio, buf->data[idx] + offset, b); 789 790 closure_get(cl); 791 percpu_ref_get(&ca->io_ref[rw]); 792 793 submit_bio(&ec_bio->bio); 794 795 offset += b; 796 } 797 798 percpu_ref_put(&ca->io_ref[rw]); 799 } 800 801 static int get_stripe_key_trans(struct btree_trans *trans, u64 idx, 802 struct ec_stripe_buf *stripe) 803 { 804 struct btree_iter iter; 805 struct bkey_s_c k; 806 int ret; 807 808 k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_stripes, 809 POS(0, idx), BTREE_ITER_slots); 810 ret = bkey_err(k); 811 if (ret) 812 goto err; 813 if (k.k->type != KEY_TYPE_stripe) { 814 ret = -ENOENT; 815 goto err; 816 } 817 bkey_reassemble(&stripe->key, k); 818 err: 819 bch2_trans_iter_exit(trans, &iter); 820 return ret; 821 } 822 823 /* recovery read path: */ 824 int bch2_ec_read_extent(struct btree_trans *trans, struct bch_read_bio *rbio, 825 struct bkey_s_c orig_k) 826 { 827 struct bch_fs *c = trans->c; 828 struct ec_stripe_buf *buf = NULL; 829 struct closure cl; 830 struct bch_stripe *v; 831 unsigned i, offset; 832 const char *msg = NULL; 833 struct printbuf msgbuf = PRINTBUF; 834 int ret = 0; 835 836 closure_init_stack(&cl); 837 838 BUG_ON(!rbio->pick.has_ec); 839 840 buf = kzalloc(sizeof(*buf), GFP_NOFS); 841 if (!buf) 842 return -BCH_ERR_ENOMEM_ec_read_extent; 843 844 ret = lockrestart_do(trans, get_stripe_key_trans(trans, rbio->pick.ec.idx, buf)); 845 if (ret) { 846 msg = "stripe not found"; 847 goto err; 848 } 849 850 v = &bkey_i_to_stripe(&buf->key)->v; 851 852 if (!bch2_ptr_matches_stripe(v, rbio->pick)) { 853 msg = "pointer doesn't match stripe"; 854 goto err; 855 } 856 857 offset = rbio->bio.bi_iter.bi_sector - v->ptrs[rbio->pick.ec.block].offset; 858 if (offset + bio_sectors(&rbio->bio) > le16_to_cpu(v->sectors)) { 859 msg = "read is bigger than stripe"; 860 goto err; 861 } 862 863 ret = ec_stripe_buf_init(buf, offset, bio_sectors(&rbio->bio)); 864 if (ret) { 865 msg = "-ENOMEM"; 866 goto err; 867 } 868 869 for (i = 0; i < v->nr_blocks; i++) 870 ec_block_io(c, buf, REQ_OP_READ, i, &cl); 871 872 closure_sync(&cl); 873 874 if (ec_nr_failed(buf) > v->nr_redundant) { 875 msg = "unable to read enough blocks"; 876 goto err; 877 } 878 879 ec_validate_checksums(c, buf); 880 881 ret = ec_do_recov(c, buf); 882 if (ret) 883 goto err; 884 885 memcpy_to_bio(&rbio->bio, rbio->bio.bi_iter, 886 buf->data[rbio->pick.ec.block] + ((offset - buf->offset) << 9)); 887 out: 888 ec_stripe_buf_exit(buf); 889 kfree(buf); 890 return ret; 891 err: 892 bch2_bkey_val_to_text(&msgbuf, c, orig_k); 893 bch_err_ratelimited(c, 894 "error doing reconstruct read: %s\n %s", msg, msgbuf.buf); 895 printbuf_exit(&msgbuf); 896 ret = -BCH_ERR_stripe_reconstruct; 897 goto out; 898 } 899 900 /* stripe bucket accounting: */ 901 902 static int __ec_stripe_mem_alloc(struct bch_fs *c, size_t idx, gfp_t gfp) 903 { 904 if (c->gc_pos.phase != GC_PHASE_not_running && 905 !genradix_ptr_alloc(&c->gc_stripes, idx, gfp)) 906 return -BCH_ERR_ENOMEM_ec_stripe_mem_alloc; 907 908 return 0; 909 } 910 911 static int ec_stripe_mem_alloc(struct btree_trans *trans, 912 struct btree_iter *iter) 913 { 914 return allocate_dropping_locks_errcode(trans, 915 __ec_stripe_mem_alloc(trans->c, iter->pos.offset, _gfp)); 916 } 917 918 /* 919 * Hash table of open stripes: 920 * Stripes that are being created or modified are kept in a hash table, so that 921 * stripe deletion can skip them. 922 */ 923 924 static bool __bch2_stripe_is_open(struct bch_fs *c, u64 idx) 925 { 926 unsigned hash = hash_64(idx, ilog2(ARRAY_SIZE(c->ec_stripes_new))); 927 struct ec_stripe_new *s; 928 929 hlist_for_each_entry(s, &c->ec_stripes_new[hash], hash) 930 if (s->idx == idx) 931 return true; 932 return false; 933 } 934 935 static bool bch2_stripe_is_open(struct bch_fs *c, u64 idx) 936 { 937 bool ret = false; 938 939 spin_lock(&c->ec_stripes_new_lock); 940 ret = __bch2_stripe_is_open(c, idx); 941 spin_unlock(&c->ec_stripes_new_lock); 942 943 return ret; 944 } 945 946 static bool bch2_try_open_stripe(struct bch_fs *c, 947 struct ec_stripe_new *s, 948 u64 idx) 949 { 950 bool ret; 951 952 spin_lock(&c->ec_stripes_new_lock); 953 ret = !__bch2_stripe_is_open(c, idx); 954 if (ret) { 955 unsigned hash = hash_64(idx, ilog2(ARRAY_SIZE(c->ec_stripes_new))); 956 957 s->idx = idx; 958 hlist_add_head(&s->hash, &c->ec_stripes_new[hash]); 959 } 960 spin_unlock(&c->ec_stripes_new_lock); 961 962 return ret; 963 } 964 965 static void bch2_stripe_close(struct bch_fs *c, struct ec_stripe_new *s) 966 { 967 BUG_ON(!s->idx); 968 969 spin_lock(&c->ec_stripes_new_lock); 970 hlist_del_init(&s->hash); 971 spin_unlock(&c->ec_stripes_new_lock); 972 973 s->idx = 0; 974 } 975 976 /* stripe deletion */ 977 978 static int ec_stripe_delete(struct btree_trans *trans, u64 idx) 979 { 980 struct btree_iter iter; 981 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, 982 BTREE_ID_stripes, POS(0, idx), 983 BTREE_ITER_intent); 984 int ret = bkey_err(k); 985 if (ret) 986 goto err; 987 988 /* 989 * We expect write buffer races here 990 * Important: check stripe_is_open with stripe key locked: 991 */ 992 if (k.k->type == KEY_TYPE_stripe && 993 !bch2_stripe_is_open(trans->c, idx) && 994 stripe_lru_pos(bkey_s_c_to_stripe(k).v) == 1) 995 ret = bch2_btree_delete_at(trans, &iter, 0); 996 err: 997 bch2_trans_iter_exit(trans, &iter); 998 return ret; 999 } 1000 1001 /* 1002 * XXX 1003 * can we kill this and delete stripes from the trigger? 1004 */ 1005 static void ec_stripe_delete_work(struct work_struct *work) 1006 { 1007 struct bch_fs *c = 1008 container_of(work, struct bch_fs, ec_stripe_delete_work); 1009 1010 bch2_trans_run(c, 1011 bch2_btree_write_buffer_tryflush(trans) ?: 1012 for_each_btree_key_max_commit(trans, lru_iter, BTREE_ID_lru, 1013 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 1, 0), 1014 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 1, LRU_TIME_MAX), 1015 0, lru_k, 1016 NULL, NULL, 1017 BCH_TRANS_COMMIT_no_enospc, ({ 1018 ec_stripe_delete(trans, lru_k.k->p.offset); 1019 }))); 1020 bch2_write_ref_put(c, BCH_WRITE_REF_stripe_delete); 1021 } 1022 1023 void bch2_do_stripe_deletes(struct bch_fs *c) 1024 { 1025 if (bch2_write_ref_tryget(c, BCH_WRITE_REF_stripe_delete) && 1026 !queue_work(c->write_ref_wq, &c->ec_stripe_delete_work)) 1027 bch2_write_ref_put(c, BCH_WRITE_REF_stripe_delete); 1028 } 1029 1030 /* stripe creation: */ 1031 1032 static int ec_stripe_key_update(struct btree_trans *trans, 1033 struct bkey_i_stripe *old, 1034 struct bkey_i_stripe *new) 1035 { 1036 struct bch_fs *c = trans->c; 1037 bool create = !old; 1038 1039 struct btree_iter iter; 1040 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_stripes, 1041 new->k.p, BTREE_ITER_intent); 1042 int ret = bkey_err(k); 1043 if (ret) 1044 goto err; 1045 1046 if (bch2_fs_inconsistent_on(k.k->type != (create ? KEY_TYPE_deleted : KEY_TYPE_stripe), 1047 c, "error %s stripe: got existing key type %s", 1048 create ? "creating" : "updating", 1049 bch2_bkey_types[k.k->type])) { 1050 ret = -EINVAL; 1051 goto err; 1052 } 1053 1054 if (k.k->type == KEY_TYPE_stripe) { 1055 const struct bch_stripe *v = bkey_s_c_to_stripe(k).v; 1056 1057 BUG_ON(old->v.nr_blocks != new->v.nr_blocks); 1058 BUG_ON(old->v.nr_blocks != v->nr_blocks); 1059 1060 for (unsigned i = 0; i < new->v.nr_blocks; i++) { 1061 unsigned sectors = stripe_blockcount_get(v, i); 1062 1063 if (!bch2_extent_ptr_eq(old->v.ptrs[i], new->v.ptrs[i]) && sectors) { 1064 struct printbuf buf = PRINTBUF; 1065 1066 prt_printf(&buf, "stripe changed nonempty block %u", i); 1067 prt_str(&buf, "\nold: "); 1068 bch2_bkey_val_to_text(&buf, c, k); 1069 prt_str(&buf, "\nnew: "); 1070 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&new->k_i)); 1071 bch2_fs_inconsistent(c, "%s", buf.buf); 1072 printbuf_exit(&buf); 1073 ret = -EINVAL; 1074 goto err; 1075 } 1076 1077 /* 1078 * If the stripe ptr changed underneath us, it must have 1079 * been dev_remove_stripes() -> * invalidate_stripe_to_dev() 1080 */ 1081 if (!bch2_extent_ptr_eq(old->v.ptrs[i], v->ptrs[i])) { 1082 BUG_ON(v->ptrs[i].dev != BCH_SB_MEMBER_INVALID); 1083 1084 if (bch2_extent_ptr_eq(old->v.ptrs[i], new->v.ptrs[i])) 1085 new->v.ptrs[i].dev = BCH_SB_MEMBER_INVALID; 1086 } 1087 1088 stripe_blockcount_set(&new->v, i, sectors); 1089 } 1090 } 1091 1092 ret = bch2_trans_update(trans, &iter, &new->k_i, 0); 1093 err: 1094 bch2_trans_iter_exit(trans, &iter); 1095 return ret; 1096 } 1097 1098 static int ec_stripe_update_extent(struct btree_trans *trans, 1099 struct bch_dev *ca, 1100 struct bpos bucket, u8 gen, 1101 struct ec_stripe_buf *s, 1102 struct bkey_s_c_backpointer bp, 1103 struct bkey_buf *last_flushed) 1104 { 1105 struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v; 1106 struct bch_fs *c = trans->c; 1107 struct btree_iter iter; 1108 struct bkey_s_c k; 1109 const struct bch_extent_ptr *ptr_c; 1110 struct bch_extent_ptr *ec_ptr = NULL; 1111 struct bch_extent_stripe_ptr stripe_ptr; 1112 struct bkey_i *n; 1113 int ret, dev, block; 1114 1115 if (bp.v->level) { 1116 struct printbuf buf = PRINTBUF; 1117 struct btree_iter node_iter; 1118 struct btree *b; 1119 1120 b = bch2_backpointer_get_node(trans, bp, &node_iter, last_flushed); 1121 bch2_trans_iter_exit(trans, &node_iter); 1122 1123 if (!b) 1124 return 0; 1125 1126 prt_printf(&buf, "found btree node in erasure coded bucket: b=%px\n", b); 1127 bch2_bkey_val_to_text(&buf, c, bp.s_c); 1128 1129 bch2_fs_inconsistent(c, "%s", buf.buf); 1130 printbuf_exit(&buf); 1131 return -BCH_ERR_erasure_coding_found_btree_node; 1132 } 1133 1134 k = bch2_backpointer_get_key(trans, bp, &iter, BTREE_ITER_intent, last_flushed); 1135 ret = bkey_err(k); 1136 if (ret) 1137 return ret; 1138 if (!k.k) { 1139 /* 1140 * extent no longer exists - we could flush the btree 1141 * write buffer and retry to verify, but no need: 1142 */ 1143 return 0; 1144 } 1145 1146 if (extent_has_stripe_ptr(k, s->key.k.p.offset)) 1147 goto out; 1148 1149 ptr_c = bkey_matches_stripe(v, k, &block); 1150 /* 1151 * It doesn't generally make sense to erasure code cached ptrs: 1152 * XXX: should we be incrementing a counter? 1153 */ 1154 if (!ptr_c || ptr_c->cached) 1155 goto out; 1156 1157 dev = v->ptrs[block].dev; 1158 1159 n = bch2_trans_kmalloc(trans, bkey_bytes(k.k) + sizeof(stripe_ptr)); 1160 ret = PTR_ERR_OR_ZERO(n); 1161 if (ret) 1162 goto out; 1163 1164 bkey_reassemble(n, k); 1165 1166 bch2_bkey_drop_ptrs_noerror(bkey_i_to_s(n), ptr, ptr->dev != dev); 1167 ec_ptr = bch2_bkey_has_device(bkey_i_to_s(n), dev); 1168 BUG_ON(!ec_ptr); 1169 1170 stripe_ptr = (struct bch_extent_stripe_ptr) { 1171 .type = 1 << BCH_EXTENT_ENTRY_stripe_ptr, 1172 .block = block, 1173 .redundancy = v->nr_redundant, 1174 .idx = s->key.k.p.offset, 1175 }; 1176 1177 __extent_entry_insert(n, 1178 (union bch_extent_entry *) ec_ptr, 1179 (union bch_extent_entry *) &stripe_ptr); 1180 1181 ret = bch2_trans_update(trans, &iter, n, 0); 1182 out: 1183 bch2_trans_iter_exit(trans, &iter); 1184 return ret; 1185 } 1186 1187 static int ec_stripe_update_bucket(struct btree_trans *trans, struct ec_stripe_buf *s, 1188 unsigned block) 1189 { 1190 struct bch_fs *c = trans->c; 1191 struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v; 1192 struct bch_extent_ptr ptr = v->ptrs[block]; 1193 int ret = 0; 1194 1195 struct bch_dev *ca = bch2_dev_tryget(c, ptr.dev); 1196 if (!ca) 1197 return -BCH_ERR_ENOENT_dev_not_found; 1198 1199 struct bpos bucket_pos = PTR_BUCKET_POS(ca, &ptr); 1200 1201 struct bkey_buf last_flushed; 1202 bch2_bkey_buf_init(&last_flushed); 1203 bkey_init(&last_flushed.k->k); 1204 1205 ret = for_each_btree_key_max_commit(trans, bp_iter, BTREE_ID_backpointers, 1206 bucket_pos_to_bp_start(ca, bucket_pos), 1207 bucket_pos_to_bp_end(ca, bucket_pos), 0, bp_k, 1208 NULL, NULL, 1209 BCH_TRANS_COMMIT_no_check_rw| 1210 BCH_TRANS_COMMIT_no_enospc, ({ 1211 if (bkey_ge(bp_k.k->p, bucket_pos_to_bp(ca, bpos_nosnap_successor(bucket_pos), 0))) 1212 break; 1213 1214 if (bp_k.k->type != KEY_TYPE_backpointer) 1215 continue; 1216 1217 struct bkey_s_c_backpointer bp = bkey_s_c_to_backpointer(bp_k); 1218 if (bp.v->btree_id == BTREE_ID_stripes) 1219 continue; 1220 1221 ec_stripe_update_extent(trans, ca, bucket_pos, ptr.gen, s, 1222 bp, &last_flushed); 1223 })); 1224 1225 bch2_bkey_buf_exit(&last_flushed, c); 1226 bch2_dev_put(ca); 1227 return ret; 1228 } 1229 1230 static int ec_stripe_update_extents(struct bch_fs *c, struct ec_stripe_buf *s) 1231 { 1232 struct btree_trans *trans = bch2_trans_get(c); 1233 struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v; 1234 unsigned nr_data = v->nr_blocks - v->nr_redundant; 1235 1236 int ret = bch2_btree_write_buffer_flush_sync(trans); 1237 if (ret) 1238 goto err; 1239 1240 for (unsigned i = 0; i < nr_data; i++) { 1241 ret = ec_stripe_update_bucket(trans, s, i); 1242 if (ret) 1243 break; 1244 } 1245 err: 1246 bch2_trans_put(trans); 1247 return ret; 1248 } 1249 1250 static void zero_out_rest_of_ec_bucket(struct bch_fs *c, 1251 struct ec_stripe_new *s, 1252 unsigned block, 1253 struct open_bucket *ob) 1254 { 1255 struct bch_dev *ca = bch2_dev_get_ioref(c, ob->dev, WRITE); 1256 if (!ca) { 1257 s->err = -BCH_ERR_erofs_no_writes; 1258 return; 1259 } 1260 1261 unsigned offset = ca->mi.bucket_size - ob->sectors_free; 1262 memset(s->new_stripe.data[block] + (offset << 9), 1263 0, 1264 ob->sectors_free << 9); 1265 1266 int ret = blkdev_issue_zeroout(ca->disk_sb.bdev, 1267 ob->bucket * ca->mi.bucket_size + offset, 1268 ob->sectors_free, 1269 GFP_KERNEL, 0); 1270 1271 percpu_ref_put(&ca->io_ref[WRITE]); 1272 1273 if (ret) 1274 s->err = ret; 1275 } 1276 1277 void bch2_ec_stripe_new_free(struct bch_fs *c, struct ec_stripe_new *s) 1278 { 1279 if (s->idx) 1280 bch2_stripe_close(c, s); 1281 kfree(s); 1282 } 1283 1284 /* 1285 * data buckets of new stripe all written: create the stripe 1286 */ 1287 static void ec_stripe_create(struct ec_stripe_new *s) 1288 { 1289 struct bch_fs *c = s->c; 1290 struct open_bucket *ob; 1291 struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v; 1292 unsigned i, nr_data = v->nr_blocks - v->nr_redundant; 1293 int ret; 1294 1295 BUG_ON(s->h->s == s); 1296 1297 closure_sync(&s->iodone); 1298 1299 if (!s->err) { 1300 for (i = 0; i < nr_data; i++) 1301 if (s->blocks[i]) { 1302 ob = c->open_buckets + s->blocks[i]; 1303 1304 if (ob->sectors_free) 1305 zero_out_rest_of_ec_bucket(c, s, i, ob); 1306 } 1307 } 1308 1309 if (s->err) { 1310 if (!bch2_err_matches(s->err, EROFS)) 1311 bch_err(c, "error creating stripe: error writing data buckets"); 1312 ret = s->err; 1313 goto err; 1314 } 1315 1316 if (s->have_existing_stripe) { 1317 ec_validate_checksums(c, &s->existing_stripe); 1318 1319 if (ec_do_recov(c, &s->existing_stripe)) { 1320 bch_err(c, "error creating stripe: error reading existing stripe"); 1321 ret = -BCH_ERR_ec_block_read; 1322 goto err; 1323 } 1324 1325 for (i = 0; i < nr_data; i++) 1326 if (stripe_blockcount_get(&bkey_i_to_stripe(&s->existing_stripe.key)->v, i)) 1327 swap(s->new_stripe.data[i], 1328 s->existing_stripe.data[i]); 1329 1330 ec_stripe_buf_exit(&s->existing_stripe); 1331 } 1332 1333 BUG_ON(!s->allocated); 1334 BUG_ON(!s->idx); 1335 1336 ec_generate_ec(&s->new_stripe); 1337 1338 ec_generate_checksums(&s->new_stripe); 1339 1340 /* write p/q: */ 1341 for (i = nr_data; i < v->nr_blocks; i++) 1342 ec_block_io(c, &s->new_stripe, REQ_OP_WRITE, i, &s->iodone); 1343 closure_sync(&s->iodone); 1344 1345 if (ec_nr_failed(&s->new_stripe)) { 1346 bch_err(c, "error creating stripe: error writing redundancy buckets"); 1347 ret = -BCH_ERR_ec_block_write; 1348 goto err; 1349 } 1350 1351 ret = bch2_trans_commit_do(c, &s->res, NULL, 1352 BCH_TRANS_COMMIT_no_check_rw| 1353 BCH_TRANS_COMMIT_no_enospc, 1354 ec_stripe_key_update(trans, 1355 s->have_existing_stripe 1356 ? bkey_i_to_stripe(&s->existing_stripe.key) 1357 : NULL, 1358 bkey_i_to_stripe(&s->new_stripe.key))); 1359 bch_err_msg(c, ret, "creating stripe key"); 1360 if (ret) { 1361 goto err; 1362 } 1363 1364 ret = ec_stripe_update_extents(c, &s->new_stripe); 1365 bch_err_msg(c, ret, "error updating extents"); 1366 if (ret) 1367 goto err; 1368 err: 1369 trace_stripe_create(c, s->idx, ret); 1370 1371 bch2_disk_reservation_put(c, &s->res); 1372 1373 for (i = 0; i < v->nr_blocks; i++) 1374 if (s->blocks[i]) { 1375 ob = c->open_buckets + s->blocks[i]; 1376 1377 if (i < nr_data) { 1378 ob->ec = NULL; 1379 __bch2_open_bucket_put(c, ob); 1380 } else { 1381 bch2_open_bucket_put(c, ob); 1382 } 1383 } 1384 1385 mutex_lock(&c->ec_stripe_new_lock); 1386 list_del(&s->list); 1387 mutex_unlock(&c->ec_stripe_new_lock); 1388 wake_up(&c->ec_stripe_new_wait); 1389 1390 ec_stripe_buf_exit(&s->existing_stripe); 1391 ec_stripe_buf_exit(&s->new_stripe); 1392 closure_debug_destroy(&s->iodone); 1393 1394 ec_stripe_new_put(c, s, STRIPE_REF_stripe); 1395 } 1396 1397 static struct ec_stripe_new *get_pending_stripe(struct bch_fs *c) 1398 { 1399 struct ec_stripe_new *s; 1400 1401 mutex_lock(&c->ec_stripe_new_lock); 1402 list_for_each_entry(s, &c->ec_stripe_new_list, list) 1403 if (!atomic_read(&s->ref[STRIPE_REF_io])) 1404 goto out; 1405 s = NULL; 1406 out: 1407 mutex_unlock(&c->ec_stripe_new_lock); 1408 1409 return s; 1410 } 1411 1412 static void ec_stripe_create_work(struct work_struct *work) 1413 { 1414 struct bch_fs *c = container_of(work, 1415 struct bch_fs, ec_stripe_create_work); 1416 struct ec_stripe_new *s; 1417 1418 while ((s = get_pending_stripe(c))) 1419 ec_stripe_create(s); 1420 1421 bch2_write_ref_put(c, BCH_WRITE_REF_stripe_create); 1422 } 1423 1424 void bch2_ec_do_stripe_creates(struct bch_fs *c) 1425 { 1426 bch2_write_ref_get(c, BCH_WRITE_REF_stripe_create); 1427 1428 if (!queue_work(system_long_wq, &c->ec_stripe_create_work)) 1429 bch2_write_ref_put(c, BCH_WRITE_REF_stripe_create); 1430 } 1431 1432 static void ec_stripe_new_set_pending(struct bch_fs *c, struct ec_stripe_head *h) 1433 { 1434 struct ec_stripe_new *s = h->s; 1435 1436 lockdep_assert_held(&h->lock); 1437 1438 BUG_ON(!s->allocated && !s->err); 1439 1440 h->s = NULL; 1441 s->pending = true; 1442 1443 mutex_lock(&c->ec_stripe_new_lock); 1444 list_add(&s->list, &c->ec_stripe_new_list); 1445 mutex_unlock(&c->ec_stripe_new_lock); 1446 1447 ec_stripe_new_put(c, s, STRIPE_REF_io); 1448 } 1449 1450 static void ec_stripe_new_cancel(struct bch_fs *c, struct ec_stripe_head *h, int err) 1451 { 1452 h->s->err = err; 1453 ec_stripe_new_set_pending(c, h); 1454 } 1455 1456 void bch2_ec_bucket_cancel(struct bch_fs *c, struct open_bucket *ob, int err) 1457 { 1458 struct ec_stripe_new *s = ob->ec; 1459 1460 s->err = err; 1461 } 1462 1463 void *bch2_writepoint_ec_buf(struct bch_fs *c, struct write_point *wp) 1464 { 1465 struct open_bucket *ob = ec_open_bucket(c, &wp->ptrs); 1466 if (!ob) 1467 return NULL; 1468 1469 BUG_ON(!ob->ec->new_stripe.data[ob->ec_idx]); 1470 1471 struct bch_dev *ca = ob_dev(c, ob); 1472 unsigned offset = ca->mi.bucket_size - ob->sectors_free; 1473 1474 return ob->ec->new_stripe.data[ob->ec_idx] + (offset << 9); 1475 } 1476 1477 static int unsigned_cmp(const void *_l, const void *_r) 1478 { 1479 unsigned l = *((const unsigned *) _l); 1480 unsigned r = *((const unsigned *) _r); 1481 1482 return cmp_int(l, r); 1483 } 1484 1485 /* pick most common bucket size: */ 1486 static unsigned pick_blocksize(struct bch_fs *c, 1487 struct bch_devs_mask *devs) 1488 { 1489 unsigned nr = 0, sizes[BCH_SB_MEMBERS_MAX]; 1490 struct { 1491 unsigned nr, size; 1492 } cur = { 0, 0 }, best = { 0, 0 }; 1493 1494 for_each_member_device_rcu(c, ca, devs) 1495 sizes[nr++] = ca->mi.bucket_size; 1496 1497 sort(sizes, nr, sizeof(unsigned), unsigned_cmp, NULL); 1498 1499 for (unsigned i = 0; i < nr; i++) { 1500 if (sizes[i] != cur.size) { 1501 if (cur.nr > best.nr) 1502 best = cur; 1503 1504 cur.nr = 0; 1505 cur.size = sizes[i]; 1506 } 1507 1508 cur.nr++; 1509 } 1510 1511 if (cur.nr > best.nr) 1512 best = cur; 1513 1514 return best.size; 1515 } 1516 1517 static bool may_create_new_stripe(struct bch_fs *c) 1518 { 1519 return false; 1520 } 1521 1522 static void ec_stripe_key_init(struct bch_fs *c, 1523 struct bkey_i *k, 1524 unsigned nr_data, 1525 unsigned nr_parity, 1526 unsigned stripe_size, 1527 unsigned disk_label) 1528 { 1529 struct bkey_i_stripe *s = bkey_stripe_init(k); 1530 unsigned u64s; 1531 1532 s->v.sectors = cpu_to_le16(stripe_size); 1533 s->v.algorithm = 0; 1534 s->v.nr_blocks = nr_data + nr_parity; 1535 s->v.nr_redundant = nr_parity; 1536 s->v.csum_granularity_bits = ilog2(c->opts.encoded_extent_max >> 9); 1537 s->v.csum_type = BCH_CSUM_crc32c; 1538 s->v.disk_label = disk_label; 1539 1540 while ((u64s = stripe_val_u64s(&s->v)) > BKEY_VAL_U64s_MAX) { 1541 BUG_ON(1 << s->v.csum_granularity_bits >= 1542 le16_to_cpu(s->v.sectors) || 1543 s->v.csum_granularity_bits == U8_MAX); 1544 s->v.csum_granularity_bits++; 1545 } 1546 1547 set_bkey_val_u64s(&s->k, u64s); 1548 } 1549 1550 static struct ec_stripe_new *ec_new_stripe_alloc(struct bch_fs *c, struct ec_stripe_head *h) 1551 { 1552 struct ec_stripe_new *s; 1553 1554 lockdep_assert_held(&h->lock); 1555 1556 s = kzalloc(sizeof(*s), GFP_KERNEL); 1557 if (!s) 1558 return NULL; 1559 1560 mutex_init(&s->lock); 1561 closure_init(&s->iodone, NULL); 1562 atomic_set(&s->ref[STRIPE_REF_stripe], 1); 1563 atomic_set(&s->ref[STRIPE_REF_io], 1); 1564 s->c = c; 1565 s->h = h; 1566 s->nr_data = min_t(unsigned, h->nr_active_devs, 1567 BCH_BKEY_PTRS_MAX) - h->redundancy; 1568 s->nr_parity = h->redundancy; 1569 1570 ec_stripe_key_init(c, &s->new_stripe.key, 1571 s->nr_data, s->nr_parity, 1572 h->blocksize, h->disk_label); 1573 return s; 1574 } 1575 1576 static void ec_stripe_head_devs_update(struct bch_fs *c, struct ec_stripe_head *h) 1577 { 1578 struct bch_devs_mask devs = h->devs; 1579 1580 rcu_read_lock(); 1581 h->devs = target_rw_devs(c, BCH_DATA_user, h->disk_label 1582 ? group_to_target(h->disk_label - 1) 1583 : 0); 1584 unsigned nr_devs = dev_mask_nr(&h->devs); 1585 1586 for_each_member_device_rcu(c, ca, &h->devs) 1587 if (!ca->mi.durability) 1588 __clear_bit(ca->dev_idx, h->devs.d); 1589 unsigned nr_devs_with_durability = dev_mask_nr(&h->devs); 1590 1591 h->blocksize = pick_blocksize(c, &h->devs); 1592 1593 h->nr_active_devs = 0; 1594 for_each_member_device_rcu(c, ca, &h->devs) 1595 if (ca->mi.bucket_size == h->blocksize) 1596 h->nr_active_devs++; 1597 1598 rcu_read_unlock(); 1599 1600 /* 1601 * If we only have redundancy + 1 devices, we're better off with just 1602 * replication: 1603 */ 1604 h->insufficient_devs = h->nr_active_devs < h->redundancy + 2; 1605 1606 if (h->insufficient_devs) { 1607 const char *err; 1608 1609 if (nr_devs < h->redundancy + 2) 1610 err = NULL; 1611 else if (nr_devs_with_durability < h->redundancy + 2) 1612 err = "cannot use durability=0 devices"; 1613 else 1614 err = "mismatched bucket sizes"; 1615 1616 if (err) 1617 bch_err(c, "insufficient devices available to create stripe (have %u, need %u): %s", 1618 h->nr_active_devs, h->redundancy + 2, err); 1619 } 1620 1621 struct bch_devs_mask devs_leaving; 1622 bitmap_andnot(devs_leaving.d, devs.d, h->devs.d, BCH_SB_MEMBERS_MAX); 1623 1624 if (h->s && !h->s->allocated && dev_mask_nr(&devs_leaving)) 1625 ec_stripe_new_cancel(c, h, -EINTR); 1626 1627 h->rw_devs_change_count = c->rw_devs_change_count; 1628 } 1629 1630 static struct ec_stripe_head * 1631 ec_new_stripe_head_alloc(struct bch_fs *c, unsigned disk_label, 1632 unsigned algo, unsigned redundancy, 1633 enum bch_watermark watermark) 1634 { 1635 struct ec_stripe_head *h; 1636 1637 h = kzalloc(sizeof(*h), GFP_KERNEL); 1638 if (!h) 1639 return NULL; 1640 1641 mutex_init(&h->lock); 1642 BUG_ON(!mutex_trylock(&h->lock)); 1643 1644 h->disk_label = disk_label; 1645 h->algo = algo; 1646 h->redundancy = redundancy; 1647 h->watermark = watermark; 1648 1649 list_add(&h->list, &c->ec_stripe_head_list); 1650 return h; 1651 } 1652 1653 void bch2_ec_stripe_head_put(struct bch_fs *c, struct ec_stripe_head *h) 1654 { 1655 if (h->s && 1656 h->s->allocated && 1657 bitmap_weight(h->s->blocks_allocated, 1658 h->s->nr_data) == h->s->nr_data) 1659 ec_stripe_new_set_pending(c, h); 1660 1661 mutex_unlock(&h->lock); 1662 } 1663 1664 static struct ec_stripe_head * 1665 __bch2_ec_stripe_head_get(struct btree_trans *trans, 1666 unsigned disk_label, 1667 unsigned algo, 1668 unsigned redundancy, 1669 enum bch_watermark watermark) 1670 { 1671 struct bch_fs *c = trans->c; 1672 struct ec_stripe_head *h; 1673 int ret; 1674 1675 if (!redundancy) 1676 return NULL; 1677 1678 ret = bch2_trans_mutex_lock(trans, &c->ec_stripe_head_lock); 1679 if (ret) 1680 return ERR_PTR(ret); 1681 1682 if (test_bit(BCH_FS_going_ro, &c->flags)) { 1683 h = ERR_PTR(-BCH_ERR_erofs_no_writes); 1684 goto err; 1685 } 1686 1687 list_for_each_entry(h, &c->ec_stripe_head_list, list) 1688 if (h->disk_label == disk_label && 1689 h->algo == algo && 1690 h->redundancy == redundancy && 1691 h->watermark == watermark) { 1692 ret = bch2_trans_mutex_lock(trans, &h->lock); 1693 if (ret) { 1694 h = ERR_PTR(ret); 1695 goto err; 1696 } 1697 goto found; 1698 } 1699 1700 h = ec_new_stripe_head_alloc(c, disk_label, algo, redundancy, watermark); 1701 if (!h) { 1702 h = ERR_PTR(-BCH_ERR_ENOMEM_stripe_head_alloc); 1703 goto err; 1704 } 1705 found: 1706 if (h->rw_devs_change_count != c->rw_devs_change_count) 1707 ec_stripe_head_devs_update(c, h); 1708 1709 if (h->insufficient_devs) { 1710 mutex_unlock(&h->lock); 1711 h = NULL; 1712 } 1713 err: 1714 mutex_unlock(&c->ec_stripe_head_lock); 1715 return h; 1716 } 1717 1718 static int new_stripe_alloc_buckets(struct btree_trans *trans, 1719 struct ec_stripe_head *h, struct ec_stripe_new *s, 1720 enum bch_watermark watermark, struct closure *cl) 1721 { 1722 struct bch_fs *c = trans->c; 1723 struct bch_devs_mask devs = h->devs; 1724 struct open_bucket *ob; 1725 struct open_buckets buckets; 1726 struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v; 1727 unsigned i, j, nr_have_parity = 0, nr_have_data = 0; 1728 bool have_cache = true; 1729 int ret = 0; 1730 1731 BUG_ON(v->nr_blocks != s->nr_data + s->nr_parity); 1732 BUG_ON(v->nr_redundant != s->nr_parity); 1733 1734 /* * We bypass the sector allocator which normally does this: */ 1735 bitmap_and(devs.d, devs.d, c->rw_devs[BCH_DATA_user].d, BCH_SB_MEMBERS_MAX); 1736 1737 for_each_set_bit(i, s->blocks_gotten, v->nr_blocks) { 1738 /* 1739 * Note: we don't yet repair invalid blocks (failed/removed 1740 * devices) when reusing stripes - we still need a codepath to 1741 * walk backpointers and update all extents that point to that 1742 * block when updating the stripe 1743 */ 1744 if (v->ptrs[i].dev != BCH_SB_MEMBER_INVALID) 1745 __clear_bit(v->ptrs[i].dev, devs.d); 1746 1747 if (i < s->nr_data) 1748 nr_have_data++; 1749 else 1750 nr_have_parity++; 1751 } 1752 1753 BUG_ON(nr_have_data > s->nr_data); 1754 BUG_ON(nr_have_parity > s->nr_parity); 1755 1756 buckets.nr = 0; 1757 if (nr_have_parity < s->nr_parity) { 1758 ret = bch2_bucket_alloc_set_trans(trans, &buckets, 1759 &h->parity_stripe, 1760 &devs, 1761 s->nr_parity, 1762 &nr_have_parity, 1763 &have_cache, 0, 1764 BCH_DATA_parity, 1765 watermark, 1766 cl); 1767 1768 open_bucket_for_each(c, &buckets, ob, i) { 1769 j = find_next_zero_bit(s->blocks_gotten, 1770 s->nr_data + s->nr_parity, 1771 s->nr_data); 1772 BUG_ON(j >= s->nr_data + s->nr_parity); 1773 1774 s->blocks[j] = buckets.v[i]; 1775 v->ptrs[j] = bch2_ob_ptr(c, ob); 1776 __set_bit(j, s->blocks_gotten); 1777 } 1778 1779 if (ret) 1780 return ret; 1781 } 1782 1783 buckets.nr = 0; 1784 if (nr_have_data < s->nr_data) { 1785 ret = bch2_bucket_alloc_set_trans(trans, &buckets, 1786 &h->block_stripe, 1787 &devs, 1788 s->nr_data, 1789 &nr_have_data, 1790 &have_cache, 0, 1791 BCH_DATA_user, 1792 watermark, 1793 cl); 1794 1795 open_bucket_for_each(c, &buckets, ob, i) { 1796 j = find_next_zero_bit(s->blocks_gotten, 1797 s->nr_data, 0); 1798 BUG_ON(j >= s->nr_data); 1799 1800 s->blocks[j] = buckets.v[i]; 1801 v->ptrs[j] = bch2_ob_ptr(c, ob); 1802 __set_bit(j, s->blocks_gotten); 1803 } 1804 1805 if (ret) 1806 return ret; 1807 } 1808 1809 return 0; 1810 } 1811 1812 static int __get_existing_stripe(struct btree_trans *trans, 1813 struct ec_stripe_head *head, 1814 struct ec_stripe_buf *stripe, 1815 u64 idx) 1816 { 1817 struct bch_fs *c = trans->c; 1818 1819 struct btree_iter iter; 1820 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, 1821 BTREE_ID_stripes, POS(0, idx), 0); 1822 int ret = bkey_err(k); 1823 if (ret) 1824 goto err; 1825 1826 /* We expect write buffer races here */ 1827 if (k.k->type != KEY_TYPE_stripe) 1828 goto out; 1829 1830 struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); 1831 if (stripe_lru_pos(s.v) <= 1) 1832 goto out; 1833 1834 if (s.v->disk_label == head->disk_label && 1835 s.v->algorithm == head->algo && 1836 s.v->nr_redundant == head->redundancy && 1837 le16_to_cpu(s.v->sectors) == head->blocksize && 1838 bch2_try_open_stripe(c, head->s, idx)) { 1839 bkey_reassemble(&stripe->key, k); 1840 ret = 1; 1841 } 1842 out: 1843 bch2_set_btree_iter_dontneed(trans, &iter); 1844 err: 1845 bch2_trans_iter_exit(trans, &iter); 1846 return ret; 1847 } 1848 1849 static int init_new_stripe_from_existing(struct bch_fs *c, struct ec_stripe_new *s) 1850 { 1851 struct bch_stripe *new_v = &bkey_i_to_stripe(&s->new_stripe.key)->v; 1852 struct bch_stripe *existing_v = &bkey_i_to_stripe(&s->existing_stripe.key)->v; 1853 unsigned i; 1854 1855 BUG_ON(existing_v->nr_redundant != s->nr_parity); 1856 s->nr_data = existing_v->nr_blocks - 1857 existing_v->nr_redundant; 1858 1859 int ret = ec_stripe_buf_init(&s->existing_stripe, 0, le16_to_cpu(existing_v->sectors)); 1860 if (ret) { 1861 bch2_stripe_close(c, s); 1862 return ret; 1863 } 1864 1865 BUG_ON(s->existing_stripe.size != le16_to_cpu(existing_v->sectors)); 1866 1867 /* 1868 * Free buckets we initially allocated - they might conflict with 1869 * blocks from the stripe we're reusing: 1870 */ 1871 for_each_set_bit(i, s->blocks_gotten, new_v->nr_blocks) { 1872 bch2_open_bucket_put(c, c->open_buckets + s->blocks[i]); 1873 s->blocks[i] = 0; 1874 } 1875 memset(s->blocks_gotten, 0, sizeof(s->blocks_gotten)); 1876 memset(s->blocks_allocated, 0, sizeof(s->blocks_allocated)); 1877 1878 for (unsigned i = 0; i < existing_v->nr_blocks; i++) { 1879 if (stripe_blockcount_get(existing_v, i)) { 1880 __set_bit(i, s->blocks_gotten); 1881 __set_bit(i, s->blocks_allocated); 1882 } 1883 1884 ec_block_io(c, &s->existing_stripe, READ, i, &s->iodone); 1885 } 1886 1887 bkey_copy(&s->new_stripe.key, &s->existing_stripe.key); 1888 s->have_existing_stripe = true; 1889 1890 return 0; 1891 } 1892 1893 static int __bch2_ec_stripe_head_reuse(struct btree_trans *trans, struct ec_stripe_head *h, 1894 struct ec_stripe_new *s) 1895 { 1896 struct bch_fs *c = trans->c; 1897 1898 /* 1899 * If we can't allocate a new stripe, and there's no stripes with empty 1900 * blocks for us to reuse, that means we have to wait on copygc: 1901 */ 1902 if (may_create_new_stripe(c)) 1903 return -1; 1904 1905 struct btree_iter lru_iter; 1906 struct bkey_s_c lru_k; 1907 int ret = 0; 1908 1909 for_each_btree_key_max_norestart(trans, lru_iter, BTREE_ID_lru, 1910 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 2, 0), 1911 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 2, LRU_TIME_MAX), 1912 0, lru_k, ret) { 1913 ret = __get_existing_stripe(trans, h, &s->existing_stripe, lru_k.k->p.offset); 1914 if (ret) 1915 break; 1916 } 1917 bch2_trans_iter_exit(trans, &lru_iter); 1918 if (!ret) 1919 ret = -BCH_ERR_stripe_alloc_blocked; 1920 if (ret == 1) 1921 ret = 0; 1922 if (ret) 1923 return ret; 1924 1925 return init_new_stripe_from_existing(c, s); 1926 } 1927 1928 static int __bch2_ec_stripe_head_reserve(struct btree_trans *trans, struct ec_stripe_head *h, 1929 struct ec_stripe_new *s) 1930 { 1931 struct bch_fs *c = trans->c; 1932 struct btree_iter iter; 1933 struct bkey_s_c k; 1934 struct bpos min_pos = POS(0, 1); 1935 struct bpos start_pos = bpos_max(min_pos, POS(0, c->ec_stripe_hint)); 1936 int ret; 1937 1938 if (!s->res.sectors) { 1939 ret = bch2_disk_reservation_get(c, &s->res, 1940 h->blocksize, 1941 s->nr_parity, 1942 BCH_DISK_RESERVATION_NOFAIL); 1943 if (ret) 1944 return ret; 1945 } 1946 1947 /* 1948 * Allocate stripe slot 1949 * XXX: we're going to need a bitrange btree of free stripes 1950 */ 1951 for_each_btree_key_norestart(trans, iter, BTREE_ID_stripes, start_pos, 1952 BTREE_ITER_slots|BTREE_ITER_intent, k, ret) { 1953 if (bkey_gt(k.k->p, POS(0, U32_MAX))) { 1954 if (start_pos.offset) { 1955 start_pos = min_pos; 1956 bch2_btree_iter_set_pos(trans, &iter, start_pos); 1957 continue; 1958 } 1959 1960 ret = -BCH_ERR_ENOSPC_stripe_create; 1961 break; 1962 } 1963 1964 if (bkey_deleted(k.k) && 1965 bch2_try_open_stripe(c, s, k.k->p.offset)) 1966 break; 1967 } 1968 1969 c->ec_stripe_hint = iter.pos.offset; 1970 1971 if (ret) 1972 goto err; 1973 1974 ret = ec_stripe_mem_alloc(trans, &iter); 1975 if (ret) { 1976 bch2_stripe_close(c, s); 1977 goto err; 1978 } 1979 1980 s->new_stripe.key.k.p = iter.pos; 1981 out: 1982 bch2_trans_iter_exit(trans, &iter); 1983 return ret; 1984 err: 1985 bch2_disk_reservation_put(c, &s->res); 1986 goto out; 1987 } 1988 1989 struct ec_stripe_head *bch2_ec_stripe_head_get(struct btree_trans *trans, 1990 unsigned target, 1991 unsigned algo, 1992 unsigned redundancy, 1993 enum bch_watermark watermark, 1994 struct closure *cl) 1995 { 1996 struct bch_fs *c = trans->c; 1997 struct ec_stripe_head *h; 1998 bool waiting = false; 1999 unsigned disk_label = 0; 2000 struct target t = target_decode(target); 2001 int ret; 2002 2003 if (t.type == TARGET_GROUP) { 2004 if (t.group > U8_MAX) { 2005 bch_err(c, "cannot create a stripe when disk_label > U8_MAX"); 2006 return NULL; 2007 } 2008 disk_label = t.group + 1; /* 0 == no label */ 2009 } 2010 2011 h = __bch2_ec_stripe_head_get(trans, disk_label, algo, redundancy, watermark); 2012 if (IS_ERR_OR_NULL(h)) 2013 return h; 2014 2015 if (!h->s) { 2016 h->s = ec_new_stripe_alloc(c, h); 2017 if (!h->s) { 2018 ret = -BCH_ERR_ENOMEM_ec_new_stripe_alloc; 2019 bch_err(c, "failed to allocate new stripe"); 2020 goto err; 2021 } 2022 2023 h->nr_created++; 2024 } 2025 2026 struct ec_stripe_new *s = h->s; 2027 2028 if (s->allocated) 2029 goto allocated; 2030 2031 if (s->have_existing_stripe) 2032 goto alloc_existing; 2033 2034 /* First, try to allocate a full stripe: */ 2035 ret = new_stripe_alloc_buckets(trans, h, s, BCH_WATERMARK_stripe, NULL) ?: 2036 __bch2_ec_stripe_head_reserve(trans, h, s); 2037 if (!ret) 2038 goto allocate_buf; 2039 if (bch2_err_matches(ret, BCH_ERR_transaction_restart) || 2040 bch2_err_matches(ret, ENOMEM)) 2041 goto err; 2042 2043 /* 2044 * Not enough buckets available for a full stripe: we must reuse an 2045 * existing stripe: 2046 */ 2047 while (1) { 2048 ret = __bch2_ec_stripe_head_reuse(trans, h, s); 2049 if (!ret) 2050 break; 2051 if (waiting || !cl || ret != -BCH_ERR_stripe_alloc_blocked) 2052 goto err; 2053 2054 if (watermark == BCH_WATERMARK_copygc) { 2055 ret = new_stripe_alloc_buckets(trans, h, s, watermark, NULL) ?: 2056 __bch2_ec_stripe_head_reserve(trans, h, s); 2057 if (ret) 2058 goto err; 2059 goto allocate_buf; 2060 } 2061 2062 /* XXX freelist_wait? */ 2063 closure_wait(&c->freelist_wait, cl); 2064 waiting = true; 2065 } 2066 2067 if (waiting) 2068 closure_wake_up(&c->freelist_wait); 2069 alloc_existing: 2070 /* 2071 * Retry allocating buckets, with the watermark for this 2072 * particular write: 2073 */ 2074 ret = new_stripe_alloc_buckets(trans, h, s, watermark, cl); 2075 if (ret) 2076 goto err; 2077 2078 allocate_buf: 2079 ret = ec_stripe_buf_init(&s->new_stripe, 0, h->blocksize); 2080 if (ret) 2081 goto err; 2082 2083 s->allocated = true; 2084 allocated: 2085 BUG_ON(!s->idx); 2086 BUG_ON(!s->new_stripe.data[0]); 2087 BUG_ON(trans->restarted); 2088 return h; 2089 err: 2090 bch2_ec_stripe_head_put(c, h); 2091 return ERR_PTR(ret); 2092 } 2093 2094 /* device removal */ 2095 2096 static int bch2_invalidate_stripe_to_dev(struct btree_trans *trans, struct bkey_s_c k_a) 2097 { 2098 struct bch_alloc_v4 a_convert; 2099 const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k_a, &a_convert); 2100 2101 if (!a->stripe) 2102 return 0; 2103 2104 if (a->stripe_sectors) { 2105 bch_err(trans->c, "trying to invalidate device in stripe when bucket has stripe data"); 2106 return -BCH_ERR_invalidate_stripe_to_dev; 2107 } 2108 2109 struct btree_iter iter; 2110 struct bkey_i_stripe *s = 2111 bch2_bkey_get_mut_typed(trans, &iter, BTREE_ID_stripes, POS(0, a->stripe), 2112 BTREE_ITER_slots, stripe); 2113 int ret = PTR_ERR_OR_ZERO(s); 2114 if (ret) 2115 return ret; 2116 2117 struct disk_accounting_pos acc; 2118 2119 s64 sectors = 0; 2120 for (unsigned i = 0; i < s->v.nr_blocks; i++) 2121 sectors -= stripe_blockcount_get(&s->v, i); 2122 2123 memset(&acc, 0, sizeof(acc)); 2124 acc.type = BCH_DISK_ACCOUNTING_replicas; 2125 bch2_bkey_to_replicas(&acc.replicas, bkey_i_to_s_c(&s->k_i)); 2126 acc.replicas.data_type = BCH_DATA_user; 2127 ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, false); 2128 if (ret) 2129 goto err; 2130 2131 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(&s->k_i)); 2132 bkey_for_each_ptr(ptrs, ptr) 2133 if (ptr->dev == k_a.k->p.inode) 2134 ptr->dev = BCH_SB_MEMBER_INVALID; 2135 2136 sectors = -sectors; 2137 2138 memset(&acc, 0, sizeof(acc)); 2139 acc.type = BCH_DISK_ACCOUNTING_replicas; 2140 bch2_bkey_to_replicas(&acc.replicas, bkey_i_to_s_c(&s->k_i)); 2141 acc.replicas.data_type = BCH_DATA_user; 2142 ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, false); 2143 if (ret) 2144 goto err; 2145 err: 2146 bch2_trans_iter_exit(trans, &iter); 2147 return ret; 2148 } 2149 2150 int bch2_dev_remove_stripes(struct bch_fs *c, unsigned dev_idx) 2151 { 2152 return bch2_trans_run(c, 2153 for_each_btree_key_max_commit(trans, iter, 2154 BTREE_ID_alloc, POS(dev_idx, 0), POS(dev_idx, U64_MAX), 2155 BTREE_ITER_intent, k, 2156 NULL, NULL, 0, ({ 2157 bch2_invalidate_stripe_to_dev(trans, k); 2158 }))); 2159 } 2160 2161 /* startup/shutdown */ 2162 2163 static void __bch2_ec_stop(struct bch_fs *c, struct bch_dev *ca) 2164 { 2165 struct ec_stripe_head *h; 2166 struct open_bucket *ob; 2167 unsigned i; 2168 2169 mutex_lock(&c->ec_stripe_head_lock); 2170 list_for_each_entry(h, &c->ec_stripe_head_list, list) { 2171 mutex_lock(&h->lock); 2172 if (!h->s) 2173 goto unlock; 2174 2175 if (!ca) 2176 goto found; 2177 2178 for (i = 0; i < bkey_i_to_stripe(&h->s->new_stripe.key)->v.nr_blocks; i++) { 2179 if (!h->s->blocks[i]) 2180 continue; 2181 2182 ob = c->open_buckets + h->s->blocks[i]; 2183 if (ob->dev == ca->dev_idx) 2184 goto found; 2185 } 2186 goto unlock; 2187 found: 2188 ec_stripe_new_cancel(c, h, -BCH_ERR_erofs_no_writes); 2189 unlock: 2190 mutex_unlock(&h->lock); 2191 } 2192 mutex_unlock(&c->ec_stripe_head_lock); 2193 } 2194 2195 void bch2_ec_stop_dev(struct bch_fs *c, struct bch_dev *ca) 2196 { 2197 __bch2_ec_stop(c, ca); 2198 } 2199 2200 void bch2_fs_ec_stop(struct bch_fs *c) 2201 { 2202 __bch2_ec_stop(c, NULL); 2203 } 2204 2205 static bool bch2_fs_ec_flush_done(struct bch_fs *c) 2206 { 2207 bool ret; 2208 2209 mutex_lock(&c->ec_stripe_new_lock); 2210 ret = list_empty(&c->ec_stripe_new_list); 2211 mutex_unlock(&c->ec_stripe_new_lock); 2212 2213 return ret; 2214 } 2215 2216 void bch2_fs_ec_flush(struct bch_fs *c) 2217 { 2218 wait_event(c->ec_stripe_new_wait, bch2_fs_ec_flush_done(c)); 2219 } 2220 2221 int bch2_stripes_read(struct bch_fs *c) 2222 { 2223 return 0; 2224 } 2225 2226 static void bch2_new_stripe_to_text(struct printbuf *out, struct bch_fs *c, 2227 struct ec_stripe_new *s) 2228 { 2229 prt_printf(out, "\tidx %llu blocks %u+%u allocated %u ref %u %u %s obs", 2230 s->idx, s->nr_data, s->nr_parity, 2231 bitmap_weight(s->blocks_allocated, s->nr_data), 2232 atomic_read(&s->ref[STRIPE_REF_io]), 2233 atomic_read(&s->ref[STRIPE_REF_stripe]), 2234 bch2_watermarks[s->h->watermark]); 2235 2236 struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v; 2237 unsigned i; 2238 for_each_set_bit(i, s->blocks_gotten, v->nr_blocks) 2239 prt_printf(out, " %u", s->blocks[i]); 2240 prt_newline(out); 2241 bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&s->new_stripe.key)); 2242 prt_newline(out); 2243 } 2244 2245 void bch2_new_stripes_to_text(struct printbuf *out, struct bch_fs *c) 2246 { 2247 struct ec_stripe_head *h; 2248 struct ec_stripe_new *s; 2249 2250 mutex_lock(&c->ec_stripe_head_lock); 2251 list_for_each_entry(h, &c->ec_stripe_head_list, list) { 2252 prt_printf(out, "disk label %u algo %u redundancy %u %s nr created %llu:\n", 2253 h->disk_label, h->algo, h->redundancy, 2254 bch2_watermarks[h->watermark], 2255 h->nr_created); 2256 2257 if (h->s) 2258 bch2_new_stripe_to_text(out, c, h->s); 2259 } 2260 mutex_unlock(&c->ec_stripe_head_lock); 2261 2262 prt_printf(out, "in flight:\n"); 2263 2264 mutex_lock(&c->ec_stripe_new_lock); 2265 list_for_each_entry(s, &c->ec_stripe_new_list, list) 2266 bch2_new_stripe_to_text(out, c, s); 2267 mutex_unlock(&c->ec_stripe_new_lock); 2268 } 2269 2270 void bch2_fs_ec_exit(struct bch_fs *c) 2271 { 2272 struct ec_stripe_head *h; 2273 unsigned i; 2274 2275 while (1) { 2276 mutex_lock(&c->ec_stripe_head_lock); 2277 h = list_pop_entry(&c->ec_stripe_head_list, struct ec_stripe_head, list); 2278 mutex_unlock(&c->ec_stripe_head_lock); 2279 2280 if (!h) 2281 break; 2282 2283 if (h->s) { 2284 for (i = 0; i < bkey_i_to_stripe(&h->s->new_stripe.key)->v.nr_blocks; i++) 2285 BUG_ON(h->s->blocks[i]); 2286 2287 kfree(h->s); 2288 } 2289 kfree(h); 2290 } 2291 2292 BUG_ON(!list_empty(&c->ec_stripe_new_list)); 2293 2294 bioset_exit(&c->ec_bioset); 2295 } 2296 2297 void bch2_fs_ec_init_early(struct bch_fs *c) 2298 { 2299 spin_lock_init(&c->ec_stripes_new_lock); 2300 2301 INIT_LIST_HEAD(&c->ec_stripe_head_list); 2302 mutex_init(&c->ec_stripe_head_lock); 2303 2304 INIT_LIST_HEAD(&c->ec_stripe_new_list); 2305 mutex_init(&c->ec_stripe_new_lock); 2306 init_waitqueue_head(&c->ec_stripe_new_wait); 2307 2308 INIT_WORK(&c->ec_stripe_create_work, ec_stripe_create_work); 2309 INIT_WORK(&c->ec_stripe_delete_work, ec_stripe_delete_work); 2310 } 2311 2312 int bch2_fs_ec_init(struct bch_fs *c) 2313 { 2314 return bioset_init(&c->ec_bioset, 1, offsetof(struct ec_bio, bio), 2315 BIOSET_NEED_BVECS); 2316 } 2317 2318 static int bch2_check_stripe_to_lru_ref(struct btree_trans *trans, 2319 struct bkey_s_c k, 2320 struct bkey_buf *last_flushed) 2321 { 2322 if (k.k->type != KEY_TYPE_stripe) 2323 return 0; 2324 2325 struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); 2326 2327 u64 lru_idx = stripe_lru_pos(s.v); 2328 if (lru_idx) { 2329 int ret = bch2_lru_check_set(trans, BCH_LRU_STRIPE_FRAGMENTATION, 2330 k.k->p.offset, lru_idx, k, last_flushed); 2331 if (ret) 2332 return ret; 2333 } 2334 return 0; 2335 } 2336 2337 int bch2_check_stripe_to_lru_refs(struct bch_fs *c) 2338 { 2339 struct bkey_buf last_flushed; 2340 2341 bch2_bkey_buf_init(&last_flushed); 2342 bkey_init(&last_flushed.k->k); 2343 2344 int ret = bch2_trans_run(c, 2345 for_each_btree_key_commit(trans, iter, BTREE_ID_stripes, 2346 POS_MIN, BTREE_ITER_prefetch, k, 2347 NULL, NULL, BCH_TRANS_COMMIT_no_enospc, 2348 bch2_check_stripe_to_lru_ref(trans, k, &last_flushed))); 2349 2350 bch2_bkey_buf_exit(&last_flushed, c); 2351 bch_err_fn(c, ret); 2352 return ret; 2353 } 2354