1 // SPDX-License-Identifier: GPL-2.0 2 3 /* erasure coding */ 4 5 #include "bcachefs.h" 6 #include "alloc_background.h" 7 #include "alloc_foreground.h" 8 #include "backpointers.h" 9 #include "bkey_buf.h" 10 #include "bset.h" 11 #include "btree_gc.h" 12 #include "btree_update.h" 13 #include "btree_write_buffer.h" 14 #include "buckets.h" 15 #include "checksum.h" 16 #include "disk_accounting.h" 17 #include "disk_groups.h" 18 #include "ec.h" 19 #include "enumerated_ref.h" 20 #include "error.h" 21 #include "io_read.h" 22 #include "io_write.h" 23 #include "keylist.h" 24 #include "lru.h" 25 #include "recovery.h" 26 #include "replicas.h" 27 #include "super-io.h" 28 #include "util.h" 29 30 #include <linux/sort.h> 31 #include <linux/string_choices.h> 32 33 #ifdef __KERNEL__ 34 35 #include <linux/raid/pq.h> 36 #include <linux/raid/xor.h> 37 38 static void raid5_recov(unsigned disks, unsigned failed_idx, 39 size_t size, void **data) 40 { 41 unsigned i = 2, nr; 42 43 BUG_ON(failed_idx >= disks); 44 45 swap(data[0], data[failed_idx]); 46 memcpy(data[0], data[1], size); 47 48 while (i < disks) { 49 nr = min_t(unsigned, disks - i, MAX_XOR_BLOCKS); 50 xor_blocks(nr, size, data[0], data + i); 51 i += nr; 52 } 53 54 swap(data[0], data[failed_idx]); 55 } 56 57 static void raid_gen(int nd, int np, size_t size, void **v) 58 { 59 if (np >= 1) 60 raid5_recov(nd + np, nd, size, v); 61 if (np >= 2) 62 raid6_call.gen_syndrome(nd + np, size, v); 63 BUG_ON(np > 2); 64 } 65 66 static void raid_rec(int nr, int *ir, int nd, int np, size_t size, void **v) 67 { 68 switch (nr) { 69 case 0: 70 break; 71 case 1: 72 if (ir[0] < nd + 1) 73 raid5_recov(nd + 1, ir[0], size, v); 74 else 75 raid6_call.gen_syndrome(nd + np, size, v); 76 break; 77 case 2: 78 if (ir[1] < nd) { 79 /* data+data failure. */ 80 raid6_2data_recov(nd + np, size, ir[0], ir[1], v); 81 } else if (ir[0] < nd) { 82 /* data + p/q failure */ 83 84 if (ir[1] == nd) /* data + p failure */ 85 raid6_datap_recov(nd + np, size, ir[0], v); 86 else { /* data + q failure */ 87 raid5_recov(nd + 1, ir[0], size, v); 88 raid6_call.gen_syndrome(nd + np, size, v); 89 } 90 } else { 91 raid_gen(nd, np, size, v); 92 } 93 break; 94 default: 95 BUG(); 96 } 97 } 98 99 #else 100 101 #include <raid/raid.h> 102 103 #endif 104 105 struct ec_bio { 106 struct bch_dev *ca; 107 struct ec_stripe_buf *buf; 108 size_t idx; 109 int rw; 110 u64 submit_time; 111 struct bio bio; 112 }; 113 114 /* Stripes btree keys: */ 115 116 int bch2_stripe_validate(struct bch_fs *c, struct bkey_s_c k, 117 struct bkey_validate_context from) 118 { 119 const struct bch_stripe *s = bkey_s_c_to_stripe(k).v; 120 int ret = 0; 121 122 bkey_fsck_err_on(bkey_eq(k.k->p, POS_MIN) || 123 bpos_gt(k.k->p, POS(0, U32_MAX)), 124 c, stripe_pos_bad, 125 "stripe at bad pos"); 126 127 bkey_fsck_err_on(bkey_val_u64s(k.k) < stripe_val_u64s(s), 128 c, stripe_val_size_bad, 129 "incorrect value size (%zu < %u)", 130 bkey_val_u64s(k.k), stripe_val_u64s(s)); 131 132 bkey_fsck_err_on(s->csum_granularity_bits >= 64, 133 c, stripe_csum_granularity_bad, 134 "invalid csum granularity (%u >= 64)", 135 s->csum_granularity_bits); 136 137 ret = bch2_bkey_ptrs_validate(c, k, from); 138 fsck_err: 139 return ret; 140 } 141 142 void bch2_stripe_to_text(struct printbuf *out, struct bch_fs *c, 143 struct bkey_s_c k) 144 { 145 const struct bch_stripe *sp = bkey_s_c_to_stripe(k).v; 146 struct bch_stripe s = {}; 147 148 memcpy(&s, sp, min(sizeof(s), bkey_val_bytes(k.k))); 149 150 unsigned nr_data = s.nr_blocks - s.nr_redundant; 151 152 prt_printf(out, "algo %u sectors %u blocks %u:%u csum ", 153 s.algorithm, 154 le16_to_cpu(s.sectors), 155 nr_data, 156 s.nr_redundant); 157 bch2_prt_csum_type(out, s.csum_type); 158 prt_str(out, " gran "); 159 if (s.csum_granularity_bits < 64) 160 prt_printf(out, "%llu", 1ULL << s.csum_granularity_bits); 161 else 162 prt_printf(out, "(invalid shift %u)", s.csum_granularity_bits); 163 164 if (s.disk_label) { 165 prt_str(out, " label"); 166 bch2_disk_path_to_text(out, c, s.disk_label - 1); 167 } 168 169 for (unsigned i = 0; i < s.nr_blocks; i++) { 170 const struct bch_extent_ptr *ptr = sp->ptrs + i; 171 172 if ((void *) ptr >= bkey_val_end(k)) 173 break; 174 175 prt_char(out, ' '); 176 bch2_extent_ptr_to_text(out, c, ptr); 177 178 if (s.csum_type < BCH_CSUM_NR && 179 i < nr_data && 180 stripe_blockcount_offset(&s, i) < bkey_val_bytes(k.k)) 181 prt_printf(out, "#%u", stripe_blockcount_get(sp, i)); 182 } 183 } 184 185 /* Triggers: */ 186 187 static int __mark_stripe_bucket(struct btree_trans *trans, 188 struct bch_dev *ca, 189 struct bkey_s_c_stripe s, 190 unsigned ptr_idx, bool deleting, 191 struct bpos bucket, 192 struct bch_alloc_v4 *a, 193 enum btree_iter_update_trigger_flags flags) 194 { 195 const struct bch_extent_ptr *ptr = s.v->ptrs + ptr_idx; 196 unsigned nr_data = s.v->nr_blocks - s.v->nr_redundant; 197 bool parity = ptr_idx >= nr_data; 198 enum bch_data_type data_type = parity ? BCH_DATA_parity : BCH_DATA_stripe; 199 s64 sectors = parity ? le16_to_cpu(s.v->sectors) : 0; 200 struct printbuf buf = PRINTBUF; 201 int ret = 0; 202 203 struct bch_fs *c = trans->c; 204 if (deleting) 205 sectors = -sectors; 206 207 if (!deleting) { 208 if (bch2_trans_inconsistent_on(a->stripe || 209 a->stripe_redundancy, trans, 210 "bucket %llu:%llu gen %u data type %s dirty_sectors %u: multiple stripes using same bucket (%u, %llu)\n%s", 211 bucket.inode, bucket.offset, a->gen, 212 bch2_data_type_str(a->data_type), 213 a->dirty_sectors, 214 a->stripe, s.k->p.offset, 215 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 216 ret = bch_err_throw(c, mark_stripe); 217 goto err; 218 } 219 220 if (bch2_trans_inconsistent_on(parity && bch2_bucket_sectors_total(*a), trans, 221 "bucket %llu:%llu gen %u data type %s dirty_sectors %u cached_sectors %u: data already in parity bucket\n%s", 222 bucket.inode, bucket.offset, a->gen, 223 bch2_data_type_str(a->data_type), 224 a->dirty_sectors, 225 a->cached_sectors, 226 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 227 ret = bch_err_throw(c, mark_stripe); 228 goto err; 229 } 230 } else { 231 if (bch2_trans_inconsistent_on(a->stripe != s.k->p.offset || 232 a->stripe_redundancy != s.v->nr_redundant, trans, 233 "bucket %llu:%llu gen %u: not marked as stripe when deleting stripe (got %u)\n%s", 234 bucket.inode, bucket.offset, a->gen, 235 a->stripe, 236 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 237 ret = bch_err_throw(c, mark_stripe); 238 goto err; 239 } 240 241 if (bch2_trans_inconsistent_on(a->data_type != data_type, trans, 242 "bucket %llu:%llu gen %u data type %s: wrong data type when stripe, should be %s\n%s", 243 bucket.inode, bucket.offset, a->gen, 244 bch2_data_type_str(a->data_type), 245 bch2_data_type_str(data_type), 246 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 247 ret = bch_err_throw(c, mark_stripe); 248 goto err; 249 } 250 251 if (bch2_trans_inconsistent_on(parity && 252 (a->dirty_sectors != -sectors || 253 a->cached_sectors), trans, 254 "bucket %llu:%llu gen %u dirty_sectors %u cached_sectors %u: wrong sectors when deleting parity block of stripe\n%s", 255 bucket.inode, bucket.offset, a->gen, 256 a->dirty_sectors, 257 a->cached_sectors, 258 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 259 ret = bch_err_throw(c, mark_stripe); 260 goto err; 261 } 262 } 263 264 if (sectors) { 265 ret = bch2_bucket_ref_update(trans, ca, s.s_c, ptr, sectors, data_type, 266 a->gen, a->data_type, &a->dirty_sectors); 267 if (ret) 268 goto err; 269 } 270 271 if (!deleting) { 272 a->stripe = s.k->p.offset; 273 a->stripe_redundancy = s.v->nr_redundant; 274 alloc_data_type_set(a, data_type); 275 } else { 276 a->stripe = 0; 277 a->stripe_redundancy = 0; 278 alloc_data_type_set(a, BCH_DATA_user); 279 } 280 err: 281 printbuf_exit(&buf); 282 return ret; 283 } 284 285 static int mark_stripe_bucket(struct btree_trans *trans, 286 struct bkey_s_c_stripe s, 287 unsigned ptr_idx, bool deleting, 288 enum btree_iter_update_trigger_flags flags) 289 { 290 struct bch_fs *c = trans->c; 291 const struct bch_extent_ptr *ptr = s.v->ptrs + ptr_idx; 292 struct printbuf buf = PRINTBUF; 293 int ret = 0; 294 295 struct bch_dev *ca = bch2_dev_tryget(c, ptr->dev); 296 if (unlikely(!ca)) { 297 if (ptr->dev != BCH_SB_MEMBER_INVALID && !(flags & BTREE_TRIGGER_overwrite)) 298 ret = bch_err_throw(c, mark_stripe); 299 goto err; 300 } 301 302 struct bpos bucket = PTR_BUCKET_POS(ca, ptr); 303 304 if (flags & BTREE_TRIGGER_transactional) { 305 struct extent_ptr_decoded p = { 306 .ptr = *ptr, 307 .crc = bch2_extent_crc_unpack(s.k, NULL), 308 }; 309 struct bkey_i_backpointer bp; 310 bch2_extent_ptr_to_bp(c, BTREE_ID_stripes, 0, s.s_c, p, 311 (const union bch_extent_entry *) ptr, &bp); 312 313 struct bkey_i_alloc_v4 *a = 314 bch2_trans_start_alloc_update(trans, bucket, 0); 315 ret = PTR_ERR_OR_ZERO(a) ?: 316 __mark_stripe_bucket(trans, ca, s, ptr_idx, deleting, bucket, &a->v, flags) ?: 317 bch2_bucket_backpointer_mod(trans, s.s_c, &bp, 318 !(flags & BTREE_TRIGGER_overwrite)); 319 if (ret) 320 goto err; 321 } 322 323 if (flags & BTREE_TRIGGER_gc) { 324 struct bucket *g = gc_bucket(ca, bucket.offset); 325 if (bch2_fs_inconsistent_on(!g, c, "reference to invalid bucket on device %u\n%s", 326 ptr->dev, 327 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 328 ret = bch_err_throw(c, mark_stripe); 329 goto err; 330 } 331 332 bucket_lock(g); 333 struct bch_alloc_v4 old = bucket_m_to_alloc(*g), new = old; 334 ret = __mark_stripe_bucket(trans, ca, s, ptr_idx, deleting, bucket, &new, flags); 335 alloc_to_bucket(g, new); 336 bucket_unlock(g); 337 338 if (!ret) 339 ret = bch2_alloc_key_to_dev_counters(trans, ca, &old, &new, flags); 340 } 341 err: 342 bch2_dev_put(ca); 343 printbuf_exit(&buf); 344 return ret; 345 } 346 347 static int mark_stripe_buckets(struct btree_trans *trans, 348 struct bkey_s_c old, struct bkey_s_c new, 349 enum btree_iter_update_trigger_flags flags) 350 { 351 const struct bch_stripe *old_s = old.k->type == KEY_TYPE_stripe 352 ? bkey_s_c_to_stripe(old).v : NULL; 353 const struct bch_stripe *new_s = new.k->type == KEY_TYPE_stripe 354 ? bkey_s_c_to_stripe(new).v : NULL; 355 356 BUG_ON(old_s && new_s && old_s->nr_blocks != new_s->nr_blocks); 357 358 unsigned nr_blocks = new_s ? new_s->nr_blocks : old_s->nr_blocks; 359 360 for (unsigned i = 0; i < nr_blocks; i++) { 361 if (new_s && old_s && 362 !memcmp(&new_s->ptrs[i], 363 &old_s->ptrs[i], 364 sizeof(new_s->ptrs[i]))) 365 continue; 366 367 if (new_s) { 368 int ret = mark_stripe_bucket(trans, 369 bkey_s_c_to_stripe(new), i, false, flags); 370 if (ret) 371 return ret; 372 } 373 374 if (old_s) { 375 int ret = mark_stripe_bucket(trans, 376 bkey_s_c_to_stripe(old), i, true, flags); 377 if (ret) 378 return ret; 379 } 380 } 381 382 return 0; 383 } 384 385 int bch2_trigger_stripe(struct btree_trans *trans, 386 enum btree_id btree, unsigned level, 387 struct bkey_s_c old, struct bkey_s _new, 388 enum btree_iter_update_trigger_flags flags) 389 { 390 struct bkey_s_c new = _new.s_c; 391 struct bch_fs *c = trans->c; 392 u64 idx = new.k->p.offset; 393 const struct bch_stripe *old_s = old.k->type == KEY_TYPE_stripe 394 ? bkey_s_c_to_stripe(old).v : NULL; 395 const struct bch_stripe *new_s = new.k->type == KEY_TYPE_stripe 396 ? bkey_s_c_to_stripe(new).v : NULL; 397 398 if (unlikely(flags & BTREE_TRIGGER_check_repair)) 399 return bch2_check_fix_ptrs(trans, btree, level, _new.s_c, flags); 400 401 BUG_ON(new_s && old_s && 402 (new_s->nr_blocks != old_s->nr_blocks || 403 new_s->nr_redundant != old_s->nr_redundant)); 404 405 if (flags & BTREE_TRIGGER_transactional) { 406 int ret = bch2_lru_change(trans, 407 BCH_LRU_STRIPE_FRAGMENTATION, 408 idx, 409 stripe_lru_pos(old_s), 410 stripe_lru_pos(new_s)); 411 if (ret) 412 return ret; 413 } 414 415 if (flags & (BTREE_TRIGGER_transactional|BTREE_TRIGGER_gc)) { 416 /* 417 * If the pointers aren't changing, we don't need to do anything: 418 */ 419 if (new_s && old_s && 420 new_s->nr_blocks == old_s->nr_blocks && 421 new_s->nr_redundant == old_s->nr_redundant && 422 !memcmp(old_s->ptrs, new_s->ptrs, 423 new_s->nr_blocks * sizeof(struct bch_extent_ptr))) 424 return 0; 425 426 struct gc_stripe *gc = NULL; 427 if (flags & BTREE_TRIGGER_gc) { 428 gc = genradix_ptr_alloc(&c->gc_stripes, idx, GFP_KERNEL); 429 if (!gc) { 430 bch_err(c, "error allocating memory for gc_stripes, idx %llu", idx); 431 return bch_err_throw(c, ENOMEM_mark_stripe); 432 } 433 434 /* 435 * This will be wrong when we bring back runtime gc: we should 436 * be unmarking the old key and then marking the new key 437 * 438 * Also: when we bring back runtime gc, locking 439 */ 440 gc->alive = true; 441 gc->sectors = le16_to_cpu(new_s->sectors); 442 gc->nr_blocks = new_s->nr_blocks; 443 gc->nr_redundant = new_s->nr_redundant; 444 445 for (unsigned i = 0; i < new_s->nr_blocks; i++) 446 gc->ptrs[i] = new_s->ptrs[i]; 447 448 /* 449 * gc recalculates this field from stripe ptr 450 * references: 451 */ 452 memset(gc->block_sectors, 0, sizeof(gc->block_sectors)); 453 } 454 455 if (new_s) { 456 s64 sectors = (u64) le16_to_cpu(new_s->sectors) * new_s->nr_redundant; 457 458 struct disk_accounting_pos acc; 459 memset(&acc, 0, sizeof(acc)); 460 acc.type = BCH_DISK_ACCOUNTING_replicas; 461 bch2_bkey_to_replicas(&acc.replicas, new); 462 int ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc); 463 if (ret) 464 return ret; 465 466 if (gc) 467 unsafe_memcpy(&gc->r.e, &acc.replicas, 468 replicas_entry_bytes(&acc.replicas), "VLA"); 469 } 470 471 if (old_s) { 472 s64 sectors = -((s64) le16_to_cpu(old_s->sectors)) * old_s->nr_redundant; 473 474 struct disk_accounting_pos acc; 475 memset(&acc, 0, sizeof(acc)); 476 acc.type = BCH_DISK_ACCOUNTING_replicas; 477 bch2_bkey_to_replicas(&acc.replicas, old); 478 int ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc); 479 if (ret) 480 return ret; 481 } 482 483 int ret = mark_stripe_buckets(trans, old, new, flags); 484 if (ret) 485 return ret; 486 } 487 488 return 0; 489 } 490 491 /* returns blocknr in stripe that we matched: */ 492 static const struct bch_extent_ptr *bkey_matches_stripe(struct bch_stripe *s, 493 struct bkey_s_c k, unsigned *block) 494 { 495 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 496 unsigned i, nr_data = s->nr_blocks - s->nr_redundant; 497 498 bkey_for_each_ptr(ptrs, ptr) 499 for (i = 0; i < nr_data; i++) 500 if (__bch2_ptr_matches_stripe(&s->ptrs[i], ptr, 501 le16_to_cpu(s->sectors))) { 502 *block = i; 503 return ptr; 504 } 505 506 return NULL; 507 } 508 509 static bool extent_has_stripe_ptr(struct bkey_s_c k, u64 idx) 510 { 511 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 512 const union bch_extent_entry *entry; 513 514 bkey_extent_entry_for_each(ptrs, entry) 515 if (extent_entry_type(entry) == 516 BCH_EXTENT_ENTRY_stripe_ptr && 517 entry->stripe_ptr.idx == idx) 518 return true; 519 520 return false; 521 } 522 523 /* Stripe bufs: */ 524 525 static void ec_stripe_buf_exit(struct ec_stripe_buf *buf) 526 { 527 if (buf->key.k.type == KEY_TYPE_stripe) { 528 struct bkey_i_stripe *s = bkey_i_to_stripe(&buf->key); 529 unsigned i; 530 531 for (i = 0; i < s->v.nr_blocks; i++) { 532 kvfree(buf->data[i]); 533 buf->data[i] = NULL; 534 } 535 } 536 } 537 538 /* XXX: this is a non-mempoolified memory allocation: */ 539 static int ec_stripe_buf_init(struct bch_fs *c, 540 struct ec_stripe_buf *buf, 541 unsigned offset, unsigned size) 542 { 543 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 544 unsigned csum_granularity = 1U << v->csum_granularity_bits; 545 unsigned end = offset + size; 546 unsigned i; 547 548 BUG_ON(end > le16_to_cpu(v->sectors)); 549 550 offset = round_down(offset, csum_granularity); 551 end = min_t(unsigned, le16_to_cpu(v->sectors), 552 round_up(end, csum_granularity)); 553 554 buf->offset = offset; 555 buf->size = end - offset; 556 557 memset(buf->valid, 0xFF, sizeof(buf->valid)); 558 559 for (i = 0; i < v->nr_blocks; i++) { 560 buf->data[i] = kvmalloc(buf->size << 9, GFP_KERNEL); 561 if (!buf->data[i]) 562 goto err; 563 } 564 565 return 0; 566 err: 567 ec_stripe_buf_exit(buf); 568 return bch_err_throw(c, ENOMEM_stripe_buf); 569 } 570 571 /* Checksumming: */ 572 573 static struct bch_csum ec_block_checksum(struct ec_stripe_buf *buf, 574 unsigned block, unsigned offset) 575 { 576 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 577 unsigned csum_granularity = 1 << v->csum_granularity_bits; 578 unsigned end = buf->offset + buf->size; 579 unsigned len = min(csum_granularity, end - offset); 580 581 BUG_ON(offset >= end); 582 BUG_ON(offset < buf->offset); 583 BUG_ON(offset & (csum_granularity - 1)); 584 BUG_ON(offset + len != le16_to_cpu(v->sectors) && 585 (len & (csum_granularity - 1))); 586 587 return bch2_checksum(NULL, v->csum_type, 588 null_nonce(), 589 buf->data[block] + ((offset - buf->offset) << 9), 590 len << 9); 591 } 592 593 static void ec_generate_checksums(struct ec_stripe_buf *buf) 594 { 595 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 596 unsigned i, j, csums_per_device = stripe_csums_per_device(v); 597 598 if (!v->csum_type) 599 return; 600 601 BUG_ON(buf->offset); 602 BUG_ON(buf->size != le16_to_cpu(v->sectors)); 603 604 for (i = 0; i < v->nr_blocks; i++) 605 for (j = 0; j < csums_per_device; j++) 606 stripe_csum_set(v, i, j, 607 ec_block_checksum(buf, i, j << v->csum_granularity_bits)); 608 } 609 610 static void ec_validate_checksums(struct bch_fs *c, struct ec_stripe_buf *buf) 611 { 612 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 613 unsigned csum_granularity = 1 << v->csum_granularity_bits; 614 unsigned i; 615 616 if (!v->csum_type) 617 return; 618 619 for (i = 0; i < v->nr_blocks; i++) { 620 unsigned offset = buf->offset; 621 unsigned end = buf->offset + buf->size; 622 623 if (!test_bit(i, buf->valid)) 624 continue; 625 626 while (offset < end) { 627 unsigned j = offset >> v->csum_granularity_bits; 628 unsigned len = min(csum_granularity, end - offset); 629 struct bch_csum want = stripe_csum_get(v, i, j); 630 struct bch_csum got = ec_block_checksum(buf, i, offset); 631 632 if (bch2_crc_cmp(want, got)) { 633 struct bch_dev *ca = bch2_dev_tryget(c, v->ptrs[i].dev); 634 if (ca) { 635 struct printbuf err = PRINTBUF; 636 637 prt_str(&err, "stripe "); 638 bch2_csum_err_msg(&err, v->csum_type, want, got); 639 prt_printf(&err, " for %ps at %u of\n ", (void *) _RET_IP_, i); 640 bch2_bkey_val_to_text(&err, c, bkey_i_to_s_c(&buf->key)); 641 bch_err_ratelimited(ca, "%s", err.buf); 642 printbuf_exit(&err); 643 644 bch2_io_error(ca, BCH_MEMBER_ERROR_checksum); 645 } 646 647 clear_bit(i, buf->valid); 648 break; 649 } 650 651 offset += len; 652 } 653 } 654 } 655 656 /* Erasure coding: */ 657 658 static void ec_generate_ec(struct ec_stripe_buf *buf) 659 { 660 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 661 unsigned nr_data = v->nr_blocks - v->nr_redundant; 662 unsigned bytes = le16_to_cpu(v->sectors) << 9; 663 664 raid_gen(nr_data, v->nr_redundant, bytes, buf->data); 665 } 666 667 static unsigned ec_nr_failed(struct ec_stripe_buf *buf) 668 { 669 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 670 671 return v->nr_blocks - bitmap_weight(buf->valid, v->nr_blocks); 672 } 673 674 static int ec_do_recov(struct bch_fs *c, struct ec_stripe_buf *buf) 675 { 676 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 677 unsigned i, failed[BCH_BKEY_PTRS_MAX], nr_failed = 0; 678 unsigned nr_data = v->nr_blocks - v->nr_redundant; 679 unsigned bytes = buf->size << 9; 680 681 if (ec_nr_failed(buf) > v->nr_redundant) { 682 bch_err_ratelimited(c, 683 "error doing reconstruct read: unable to read enough blocks"); 684 return -1; 685 } 686 687 for (i = 0; i < nr_data; i++) 688 if (!test_bit(i, buf->valid)) 689 failed[nr_failed++] = i; 690 691 raid_rec(nr_failed, failed, nr_data, v->nr_redundant, bytes, buf->data); 692 return 0; 693 } 694 695 /* IO: */ 696 697 static void ec_block_endio(struct bio *bio) 698 { 699 struct ec_bio *ec_bio = container_of(bio, struct ec_bio, bio); 700 struct bch_stripe *v = &bkey_i_to_stripe(&ec_bio->buf->key)->v; 701 struct bch_extent_ptr *ptr = &v->ptrs[ec_bio->idx]; 702 struct bch_dev *ca = ec_bio->ca; 703 struct closure *cl = bio->bi_private; 704 int rw = ec_bio->rw; 705 unsigned ref = rw == READ 706 ? BCH_DEV_READ_REF_ec_block 707 : BCH_DEV_WRITE_REF_ec_block; 708 709 bch2_account_io_completion(ca, bio_data_dir(bio), 710 ec_bio->submit_time, !bio->bi_status); 711 712 if (bio->bi_status) { 713 bch_err_dev_ratelimited(ca, "erasure coding %s error: %s", 714 str_write_read(bio_data_dir(bio)), 715 bch2_blk_status_to_str(bio->bi_status)); 716 clear_bit(ec_bio->idx, ec_bio->buf->valid); 717 } 718 719 int stale = dev_ptr_stale(ca, ptr); 720 if (stale) { 721 bch_err_ratelimited(ca->fs, 722 "error %s stripe: stale/invalid pointer (%i) after io", 723 bio_data_dir(bio) == READ ? "reading from" : "writing to", 724 stale); 725 clear_bit(ec_bio->idx, ec_bio->buf->valid); 726 } 727 728 bio_put(&ec_bio->bio); 729 enumerated_ref_put(&ca->io_ref[rw], ref); 730 closure_put(cl); 731 } 732 733 static void ec_block_io(struct bch_fs *c, struct ec_stripe_buf *buf, 734 blk_opf_t opf, unsigned idx, struct closure *cl) 735 { 736 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 737 unsigned offset = 0, bytes = buf->size << 9; 738 struct bch_extent_ptr *ptr = &v->ptrs[idx]; 739 enum bch_data_type data_type = idx < v->nr_blocks - v->nr_redundant 740 ? BCH_DATA_user 741 : BCH_DATA_parity; 742 int rw = op_is_write(opf); 743 unsigned ref = rw == READ 744 ? BCH_DEV_READ_REF_ec_block 745 : BCH_DEV_WRITE_REF_ec_block; 746 747 struct bch_dev *ca = bch2_dev_get_ioref(c, ptr->dev, rw, ref); 748 if (!ca) { 749 clear_bit(idx, buf->valid); 750 return; 751 } 752 753 int stale = dev_ptr_stale(ca, ptr); 754 if (stale) { 755 bch_err_ratelimited(c, 756 "error %s stripe: stale pointer (%i)", 757 rw == READ ? "reading from" : "writing to", 758 stale); 759 clear_bit(idx, buf->valid); 760 return; 761 } 762 763 764 this_cpu_add(ca->io_done->sectors[rw][data_type], buf->size); 765 766 while (offset < bytes) { 767 unsigned nr_iovecs = min_t(size_t, BIO_MAX_VECS, 768 DIV_ROUND_UP(bytes, PAGE_SIZE)); 769 unsigned b = min_t(size_t, bytes - offset, 770 nr_iovecs << PAGE_SHIFT); 771 struct ec_bio *ec_bio; 772 773 ec_bio = container_of(bio_alloc_bioset(ca->disk_sb.bdev, 774 nr_iovecs, 775 opf, 776 GFP_KERNEL, 777 &c->ec_bioset), 778 struct ec_bio, bio); 779 780 ec_bio->ca = ca; 781 ec_bio->buf = buf; 782 ec_bio->idx = idx; 783 ec_bio->rw = rw; 784 ec_bio->submit_time = local_clock(); 785 786 ec_bio->bio.bi_iter.bi_sector = ptr->offset + buf->offset + (offset >> 9); 787 ec_bio->bio.bi_end_io = ec_block_endio; 788 ec_bio->bio.bi_private = cl; 789 790 bch2_bio_map(&ec_bio->bio, buf->data[idx] + offset, b); 791 792 closure_get(cl); 793 enumerated_ref_get(&ca->io_ref[rw], ref); 794 795 submit_bio(&ec_bio->bio); 796 797 offset += b; 798 } 799 800 enumerated_ref_put(&ca->io_ref[rw], ref); 801 } 802 803 static int get_stripe_key_trans(struct btree_trans *trans, u64 idx, 804 struct ec_stripe_buf *stripe) 805 { 806 struct btree_iter iter; 807 struct bkey_s_c k; 808 int ret; 809 810 k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_stripes, 811 POS(0, idx), BTREE_ITER_slots); 812 ret = bkey_err(k); 813 if (ret) 814 goto err; 815 if (k.k->type != KEY_TYPE_stripe) { 816 ret = -ENOENT; 817 goto err; 818 } 819 bkey_reassemble(&stripe->key, k); 820 err: 821 bch2_trans_iter_exit(trans, &iter); 822 return ret; 823 } 824 825 /* recovery read path: */ 826 int bch2_ec_read_extent(struct btree_trans *trans, struct bch_read_bio *rbio, 827 struct bkey_s_c orig_k) 828 { 829 struct bch_fs *c = trans->c; 830 struct ec_stripe_buf *buf = NULL; 831 struct closure cl; 832 struct bch_stripe *v; 833 unsigned i, offset; 834 const char *msg = NULL; 835 struct printbuf msgbuf = PRINTBUF; 836 int ret = 0; 837 838 closure_init_stack(&cl); 839 840 BUG_ON(!rbio->pick.has_ec); 841 842 buf = kzalloc(sizeof(*buf), GFP_NOFS); 843 if (!buf) 844 return bch_err_throw(c, ENOMEM_ec_read_extent); 845 846 ret = lockrestart_do(trans, get_stripe_key_trans(trans, rbio->pick.ec.idx, buf)); 847 if (ret) { 848 msg = "stripe not found"; 849 goto err; 850 } 851 852 v = &bkey_i_to_stripe(&buf->key)->v; 853 854 if (!bch2_ptr_matches_stripe(v, rbio->pick)) { 855 msg = "pointer doesn't match stripe"; 856 goto err; 857 } 858 859 offset = rbio->bio.bi_iter.bi_sector - v->ptrs[rbio->pick.ec.block].offset; 860 if (offset + bio_sectors(&rbio->bio) > le16_to_cpu(v->sectors)) { 861 msg = "read is bigger than stripe"; 862 goto err; 863 } 864 865 ret = ec_stripe_buf_init(c, buf, offset, bio_sectors(&rbio->bio)); 866 if (ret) { 867 msg = "-ENOMEM"; 868 goto err; 869 } 870 871 for (i = 0; i < v->nr_blocks; i++) 872 ec_block_io(c, buf, REQ_OP_READ, i, &cl); 873 874 closure_sync(&cl); 875 876 if (ec_nr_failed(buf) > v->nr_redundant) { 877 msg = "unable to read enough blocks"; 878 goto err; 879 } 880 881 ec_validate_checksums(c, buf); 882 883 ret = ec_do_recov(c, buf); 884 if (ret) 885 goto err; 886 887 memcpy_to_bio(&rbio->bio, rbio->bio.bi_iter, 888 buf->data[rbio->pick.ec.block] + ((offset - buf->offset) << 9)); 889 out: 890 ec_stripe_buf_exit(buf); 891 kfree(buf); 892 return ret; 893 err: 894 bch2_bkey_val_to_text(&msgbuf, c, orig_k); 895 bch_err_ratelimited(c, 896 "error doing reconstruct read: %s\n %s", msg, msgbuf.buf); 897 printbuf_exit(&msgbuf); 898 ret = bch_err_throw(c, stripe_reconstruct); 899 goto out; 900 } 901 902 /* stripe bucket accounting: */ 903 904 static int __ec_stripe_mem_alloc(struct bch_fs *c, size_t idx, gfp_t gfp) 905 { 906 if (c->gc_pos.phase != GC_PHASE_not_running && 907 !genradix_ptr_alloc(&c->gc_stripes, idx, gfp)) 908 return bch_err_throw(c, ENOMEM_ec_stripe_mem_alloc); 909 910 return 0; 911 } 912 913 static int ec_stripe_mem_alloc(struct btree_trans *trans, 914 struct btree_iter *iter) 915 { 916 return allocate_dropping_locks_errcode(trans, 917 __ec_stripe_mem_alloc(trans->c, iter->pos.offset, _gfp)); 918 } 919 920 /* 921 * Hash table of open stripes: 922 * Stripes that are being created or modified are kept in a hash table, so that 923 * stripe deletion can skip them. 924 */ 925 926 static bool __bch2_stripe_is_open(struct bch_fs *c, u64 idx) 927 { 928 unsigned hash = hash_64(idx, ilog2(ARRAY_SIZE(c->ec_stripes_new))); 929 struct ec_stripe_new *s; 930 931 hlist_for_each_entry(s, &c->ec_stripes_new[hash], hash) 932 if (s->idx == idx) 933 return true; 934 return false; 935 } 936 937 static bool bch2_stripe_is_open(struct bch_fs *c, u64 idx) 938 { 939 bool ret = false; 940 941 spin_lock(&c->ec_stripes_new_lock); 942 ret = __bch2_stripe_is_open(c, idx); 943 spin_unlock(&c->ec_stripes_new_lock); 944 945 return ret; 946 } 947 948 static bool bch2_try_open_stripe(struct bch_fs *c, 949 struct ec_stripe_new *s, 950 u64 idx) 951 { 952 bool ret; 953 954 spin_lock(&c->ec_stripes_new_lock); 955 ret = !__bch2_stripe_is_open(c, idx); 956 if (ret) { 957 unsigned hash = hash_64(idx, ilog2(ARRAY_SIZE(c->ec_stripes_new))); 958 959 s->idx = idx; 960 hlist_add_head(&s->hash, &c->ec_stripes_new[hash]); 961 } 962 spin_unlock(&c->ec_stripes_new_lock); 963 964 return ret; 965 } 966 967 static void bch2_stripe_close(struct bch_fs *c, struct ec_stripe_new *s) 968 { 969 BUG_ON(!s->idx); 970 971 spin_lock(&c->ec_stripes_new_lock); 972 hlist_del_init(&s->hash); 973 spin_unlock(&c->ec_stripes_new_lock); 974 975 s->idx = 0; 976 } 977 978 /* stripe deletion */ 979 980 static int ec_stripe_delete(struct btree_trans *trans, u64 idx) 981 { 982 struct btree_iter iter; 983 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, 984 BTREE_ID_stripes, POS(0, idx), 985 BTREE_ITER_intent); 986 int ret = bkey_err(k); 987 if (ret) 988 goto err; 989 990 /* 991 * We expect write buffer races here 992 * Important: check stripe_is_open with stripe key locked: 993 */ 994 if (k.k->type == KEY_TYPE_stripe && 995 !bch2_stripe_is_open(trans->c, idx) && 996 stripe_lru_pos(bkey_s_c_to_stripe(k).v) == 1) 997 ret = bch2_btree_delete_at(trans, &iter, 0); 998 err: 999 bch2_trans_iter_exit(trans, &iter); 1000 return ret; 1001 } 1002 1003 /* 1004 * XXX 1005 * can we kill this and delete stripes from the trigger? 1006 */ 1007 static void ec_stripe_delete_work(struct work_struct *work) 1008 { 1009 struct bch_fs *c = 1010 container_of(work, struct bch_fs, ec_stripe_delete_work); 1011 1012 bch2_trans_run(c, 1013 bch2_btree_write_buffer_tryflush(trans) ?: 1014 for_each_btree_key_max_commit(trans, lru_iter, BTREE_ID_lru, 1015 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 1, 0), 1016 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 1, LRU_TIME_MAX), 1017 0, lru_k, 1018 NULL, NULL, 1019 BCH_TRANS_COMMIT_no_enospc, ({ 1020 ec_stripe_delete(trans, lru_k.k->p.offset); 1021 }))); 1022 enumerated_ref_put(&c->writes, BCH_WRITE_REF_stripe_delete); 1023 } 1024 1025 void bch2_do_stripe_deletes(struct bch_fs *c) 1026 { 1027 if (enumerated_ref_tryget(&c->writes, BCH_WRITE_REF_stripe_delete) && 1028 !queue_work(c->write_ref_wq, &c->ec_stripe_delete_work)) 1029 enumerated_ref_put(&c->writes, BCH_WRITE_REF_stripe_delete); 1030 } 1031 1032 /* stripe creation: */ 1033 1034 static int ec_stripe_key_update(struct btree_trans *trans, 1035 struct bkey_i_stripe *old, 1036 struct bkey_i_stripe *new) 1037 { 1038 struct bch_fs *c = trans->c; 1039 bool create = !old; 1040 1041 struct btree_iter iter; 1042 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_stripes, 1043 new->k.p, BTREE_ITER_intent); 1044 int ret = bkey_err(k); 1045 if (ret) 1046 goto err; 1047 1048 if (bch2_fs_inconsistent_on(k.k->type != (create ? KEY_TYPE_deleted : KEY_TYPE_stripe), 1049 c, "error %s stripe: got existing key type %s", 1050 create ? "creating" : "updating", 1051 bch2_bkey_types[k.k->type])) { 1052 ret = -EINVAL; 1053 goto err; 1054 } 1055 1056 if (k.k->type == KEY_TYPE_stripe) { 1057 const struct bch_stripe *v = bkey_s_c_to_stripe(k).v; 1058 1059 BUG_ON(old->v.nr_blocks != new->v.nr_blocks); 1060 BUG_ON(old->v.nr_blocks != v->nr_blocks); 1061 1062 for (unsigned i = 0; i < new->v.nr_blocks; i++) { 1063 unsigned sectors = stripe_blockcount_get(v, i); 1064 1065 if (!bch2_extent_ptr_eq(old->v.ptrs[i], new->v.ptrs[i]) && sectors) { 1066 struct printbuf buf = PRINTBUF; 1067 1068 prt_printf(&buf, "stripe changed nonempty block %u", i); 1069 prt_str(&buf, "\nold: "); 1070 bch2_bkey_val_to_text(&buf, c, k); 1071 prt_str(&buf, "\nnew: "); 1072 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&new->k_i)); 1073 bch2_fs_inconsistent(c, "%s", buf.buf); 1074 printbuf_exit(&buf); 1075 ret = -EINVAL; 1076 goto err; 1077 } 1078 1079 /* 1080 * If the stripe ptr changed underneath us, it must have 1081 * been dev_remove_stripes() -> * invalidate_stripe_to_dev() 1082 */ 1083 if (!bch2_extent_ptr_eq(old->v.ptrs[i], v->ptrs[i])) { 1084 BUG_ON(v->ptrs[i].dev != BCH_SB_MEMBER_INVALID); 1085 1086 if (bch2_extent_ptr_eq(old->v.ptrs[i], new->v.ptrs[i])) 1087 new->v.ptrs[i].dev = BCH_SB_MEMBER_INVALID; 1088 } 1089 1090 stripe_blockcount_set(&new->v, i, sectors); 1091 } 1092 } 1093 1094 ret = bch2_trans_update(trans, &iter, &new->k_i, 0); 1095 err: 1096 bch2_trans_iter_exit(trans, &iter); 1097 return ret; 1098 } 1099 1100 static int ec_stripe_update_extent(struct btree_trans *trans, 1101 struct bch_dev *ca, 1102 struct bpos bucket, u8 gen, 1103 struct ec_stripe_buf *s, 1104 struct bkey_s_c_backpointer bp, 1105 struct bkey_buf *last_flushed) 1106 { 1107 struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v; 1108 struct bch_fs *c = trans->c; 1109 struct btree_iter iter; 1110 struct bkey_s_c k; 1111 const struct bch_extent_ptr *ptr_c; 1112 struct bch_extent_ptr *ec_ptr = NULL; 1113 struct bch_extent_stripe_ptr stripe_ptr; 1114 struct bkey_i *n; 1115 int ret, dev, block; 1116 1117 if (bp.v->level) { 1118 struct printbuf buf = PRINTBUF; 1119 struct btree_iter node_iter; 1120 struct btree *b; 1121 1122 b = bch2_backpointer_get_node(trans, bp, &node_iter, last_flushed); 1123 bch2_trans_iter_exit(trans, &node_iter); 1124 1125 if (!b) 1126 return 0; 1127 1128 prt_printf(&buf, "found btree node in erasure coded bucket: b=%px\n", b); 1129 bch2_bkey_val_to_text(&buf, c, bp.s_c); 1130 1131 bch2_fs_inconsistent(c, "%s", buf.buf); 1132 printbuf_exit(&buf); 1133 return bch_err_throw(c, erasure_coding_found_btree_node); 1134 } 1135 1136 k = bch2_backpointer_get_key(trans, bp, &iter, BTREE_ITER_intent, last_flushed); 1137 ret = bkey_err(k); 1138 if (ret) 1139 return ret; 1140 if (!k.k) { 1141 /* 1142 * extent no longer exists - we could flush the btree 1143 * write buffer and retry to verify, but no need: 1144 */ 1145 return 0; 1146 } 1147 1148 if (extent_has_stripe_ptr(k, s->key.k.p.offset)) 1149 goto out; 1150 1151 ptr_c = bkey_matches_stripe(v, k, &block); 1152 /* 1153 * It doesn't generally make sense to erasure code cached ptrs: 1154 * XXX: should we be incrementing a counter? 1155 */ 1156 if (!ptr_c || ptr_c->cached) 1157 goto out; 1158 1159 dev = v->ptrs[block].dev; 1160 1161 n = bch2_trans_kmalloc(trans, bkey_bytes(k.k) + sizeof(stripe_ptr)); 1162 ret = PTR_ERR_OR_ZERO(n); 1163 if (ret) 1164 goto out; 1165 1166 bkey_reassemble(n, k); 1167 1168 bch2_bkey_drop_ptrs_noerror(bkey_i_to_s(n), ptr, ptr->dev != dev); 1169 ec_ptr = bch2_bkey_has_device(bkey_i_to_s(n), dev); 1170 BUG_ON(!ec_ptr); 1171 1172 stripe_ptr = (struct bch_extent_stripe_ptr) { 1173 .type = 1 << BCH_EXTENT_ENTRY_stripe_ptr, 1174 .block = block, 1175 .redundancy = v->nr_redundant, 1176 .idx = s->key.k.p.offset, 1177 }; 1178 1179 __extent_entry_insert(n, 1180 (union bch_extent_entry *) ec_ptr, 1181 (union bch_extent_entry *) &stripe_ptr); 1182 1183 ret = bch2_trans_update(trans, &iter, n, 0); 1184 out: 1185 bch2_trans_iter_exit(trans, &iter); 1186 return ret; 1187 } 1188 1189 static int ec_stripe_update_bucket(struct btree_trans *trans, struct ec_stripe_buf *s, 1190 unsigned block) 1191 { 1192 struct bch_fs *c = trans->c; 1193 struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v; 1194 struct bch_extent_ptr ptr = v->ptrs[block]; 1195 int ret = 0; 1196 1197 struct bch_dev *ca = bch2_dev_tryget(c, ptr.dev); 1198 if (!ca) 1199 return bch_err_throw(c, ENOENT_dev_not_found); 1200 1201 struct bpos bucket_pos = PTR_BUCKET_POS(ca, &ptr); 1202 1203 struct bkey_buf last_flushed; 1204 bch2_bkey_buf_init(&last_flushed); 1205 bkey_init(&last_flushed.k->k); 1206 1207 ret = for_each_btree_key_max_commit(trans, bp_iter, BTREE_ID_backpointers, 1208 bucket_pos_to_bp_start(ca, bucket_pos), 1209 bucket_pos_to_bp_end(ca, bucket_pos), 0, bp_k, 1210 NULL, NULL, 1211 BCH_TRANS_COMMIT_no_check_rw| 1212 BCH_TRANS_COMMIT_no_enospc, ({ 1213 if (bkey_ge(bp_k.k->p, bucket_pos_to_bp(ca, bpos_nosnap_successor(bucket_pos), 0))) 1214 break; 1215 1216 if (bp_k.k->type != KEY_TYPE_backpointer) 1217 continue; 1218 1219 struct bkey_s_c_backpointer bp = bkey_s_c_to_backpointer(bp_k); 1220 if (bp.v->btree_id == BTREE_ID_stripes) 1221 continue; 1222 1223 ec_stripe_update_extent(trans, ca, bucket_pos, ptr.gen, s, 1224 bp, &last_flushed); 1225 })); 1226 1227 bch2_bkey_buf_exit(&last_flushed, c); 1228 bch2_dev_put(ca); 1229 return ret; 1230 } 1231 1232 static int ec_stripe_update_extents(struct bch_fs *c, struct ec_stripe_buf *s) 1233 { 1234 struct btree_trans *trans = bch2_trans_get(c); 1235 struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v; 1236 unsigned nr_data = v->nr_blocks - v->nr_redundant; 1237 1238 int ret = bch2_btree_write_buffer_flush_sync(trans); 1239 if (ret) 1240 goto err; 1241 1242 for (unsigned i = 0; i < nr_data; i++) { 1243 ret = ec_stripe_update_bucket(trans, s, i); 1244 if (ret) 1245 break; 1246 } 1247 err: 1248 bch2_trans_put(trans); 1249 return ret; 1250 } 1251 1252 static void zero_out_rest_of_ec_bucket(struct bch_fs *c, 1253 struct ec_stripe_new *s, 1254 unsigned block, 1255 struct open_bucket *ob) 1256 { 1257 struct bch_dev *ca = bch2_dev_get_ioref(c, ob->dev, WRITE, 1258 BCH_DEV_WRITE_REF_ec_bucket_zero); 1259 if (!ca) { 1260 s->err = bch_err_throw(c, erofs_no_writes); 1261 return; 1262 } 1263 1264 unsigned offset = ca->mi.bucket_size - ob->sectors_free; 1265 memset(s->new_stripe.data[block] + (offset << 9), 1266 0, 1267 ob->sectors_free << 9); 1268 1269 int ret = blkdev_issue_zeroout(ca->disk_sb.bdev, 1270 ob->bucket * ca->mi.bucket_size + offset, 1271 ob->sectors_free, 1272 GFP_KERNEL, 0); 1273 1274 enumerated_ref_put(&ca->io_ref[WRITE], BCH_DEV_WRITE_REF_ec_bucket_zero); 1275 1276 if (ret) 1277 s->err = ret; 1278 } 1279 1280 void bch2_ec_stripe_new_free(struct bch_fs *c, struct ec_stripe_new *s) 1281 { 1282 if (s->idx) 1283 bch2_stripe_close(c, s); 1284 kfree(s); 1285 } 1286 1287 /* 1288 * data buckets of new stripe all written: create the stripe 1289 */ 1290 static void ec_stripe_create(struct ec_stripe_new *s) 1291 { 1292 struct bch_fs *c = s->c; 1293 struct open_bucket *ob; 1294 struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v; 1295 unsigned i, nr_data = v->nr_blocks - v->nr_redundant; 1296 int ret; 1297 1298 BUG_ON(s->h->s == s); 1299 1300 closure_sync(&s->iodone); 1301 1302 if (!s->err) { 1303 for (i = 0; i < nr_data; i++) 1304 if (s->blocks[i]) { 1305 ob = c->open_buckets + s->blocks[i]; 1306 1307 if (ob->sectors_free) 1308 zero_out_rest_of_ec_bucket(c, s, i, ob); 1309 } 1310 } 1311 1312 if (s->err) { 1313 if (!bch2_err_matches(s->err, EROFS)) 1314 bch_err(c, "error creating stripe: error writing data buckets"); 1315 ret = s->err; 1316 goto err; 1317 } 1318 1319 if (s->have_existing_stripe) { 1320 ec_validate_checksums(c, &s->existing_stripe); 1321 1322 if (ec_do_recov(c, &s->existing_stripe)) { 1323 bch_err(c, "error creating stripe: error reading existing stripe"); 1324 ret = bch_err_throw(c, ec_block_read); 1325 goto err; 1326 } 1327 1328 for (i = 0; i < nr_data; i++) 1329 if (stripe_blockcount_get(&bkey_i_to_stripe(&s->existing_stripe.key)->v, i)) 1330 swap(s->new_stripe.data[i], 1331 s->existing_stripe.data[i]); 1332 1333 ec_stripe_buf_exit(&s->existing_stripe); 1334 } 1335 1336 BUG_ON(!s->allocated); 1337 BUG_ON(!s->idx); 1338 1339 ec_generate_ec(&s->new_stripe); 1340 1341 ec_generate_checksums(&s->new_stripe); 1342 1343 /* write p/q: */ 1344 for (i = nr_data; i < v->nr_blocks; i++) 1345 ec_block_io(c, &s->new_stripe, REQ_OP_WRITE, i, &s->iodone); 1346 closure_sync(&s->iodone); 1347 1348 if (ec_nr_failed(&s->new_stripe)) { 1349 bch_err(c, "error creating stripe: error writing redundancy buckets"); 1350 ret = bch_err_throw(c, ec_block_write); 1351 goto err; 1352 } 1353 1354 ret = bch2_trans_commit_do(c, &s->res, NULL, 1355 BCH_TRANS_COMMIT_no_check_rw| 1356 BCH_TRANS_COMMIT_no_enospc, 1357 ec_stripe_key_update(trans, 1358 s->have_existing_stripe 1359 ? bkey_i_to_stripe(&s->existing_stripe.key) 1360 : NULL, 1361 bkey_i_to_stripe(&s->new_stripe.key))); 1362 bch_err_msg(c, ret, "creating stripe key"); 1363 if (ret) { 1364 goto err; 1365 } 1366 1367 ret = ec_stripe_update_extents(c, &s->new_stripe); 1368 bch_err_msg(c, ret, "error updating extents"); 1369 if (ret) 1370 goto err; 1371 err: 1372 trace_stripe_create(c, s->idx, ret); 1373 1374 bch2_disk_reservation_put(c, &s->res); 1375 1376 for (i = 0; i < v->nr_blocks; i++) 1377 if (s->blocks[i]) { 1378 ob = c->open_buckets + s->blocks[i]; 1379 1380 if (i < nr_data) { 1381 ob->ec = NULL; 1382 __bch2_open_bucket_put(c, ob); 1383 } else { 1384 bch2_open_bucket_put(c, ob); 1385 } 1386 } 1387 1388 mutex_lock(&c->ec_stripe_new_lock); 1389 list_del(&s->list); 1390 mutex_unlock(&c->ec_stripe_new_lock); 1391 wake_up(&c->ec_stripe_new_wait); 1392 1393 ec_stripe_buf_exit(&s->existing_stripe); 1394 ec_stripe_buf_exit(&s->new_stripe); 1395 closure_debug_destroy(&s->iodone); 1396 1397 ec_stripe_new_put(c, s, STRIPE_REF_stripe); 1398 } 1399 1400 static struct ec_stripe_new *get_pending_stripe(struct bch_fs *c) 1401 { 1402 struct ec_stripe_new *s; 1403 1404 mutex_lock(&c->ec_stripe_new_lock); 1405 list_for_each_entry(s, &c->ec_stripe_new_list, list) 1406 if (!atomic_read(&s->ref[STRIPE_REF_io])) 1407 goto out; 1408 s = NULL; 1409 out: 1410 mutex_unlock(&c->ec_stripe_new_lock); 1411 1412 return s; 1413 } 1414 1415 static void ec_stripe_create_work(struct work_struct *work) 1416 { 1417 struct bch_fs *c = container_of(work, 1418 struct bch_fs, ec_stripe_create_work); 1419 struct ec_stripe_new *s; 1420 1421 while ((s = get_pending_stripe(c))) 1422 ec_stripe_create(s); 1423 1424 enumerated_ref_put(&c->writes, BCH_WRITE_REF_stripe_create); 1425 } 1426 1427 void bch2_ec_do_stripe_creates(struct bch_fs *c) 1428 { 1429 enumerated_ref_get(&c->writes, BCH_WRITE_REF_stripe_create); 1430 1431 if (!queue_work(system_long_wq, &c->ec_stripe_create_work)) 1432 enumerated_ref_put(&c->writes, BCH_WRITE_REF_stripe_create); 1433 } 1434 1435 static void ec_stripe_new_set_pending(struct bch_fs *c, struct ec_stripe_head *h) 1436 { 1437 struct ec_stripe_new *s = h->s; 1438 1439 lockdep_assert_held(&h->lock); 1440 1441 BUG_ON(!s->allocated && !s->err); 1442 1443 h->s = NULL; 1444 s->pending = true; 1445 1446 mutex_lock(&c->ec_stripe_new_lock); 1447 list_add(&s->list, &c->ec_stripe_new_list); 1448 mutex_unlock(&c->ec_stripe_new_lock); 1449 1450 ec_stripe_new_put(c, s, STRIPE_REF_io); 1451 } 1452 1453 static void ec_stripe_new_cancel(struct bch_fs *c, struct ec_stripe_head *h, int err) 1454 { 1455 h->s->err = err; 1456 ec_stripe_new_set_pending(c, h); 1457 } 1458 1459 void bch2_ec_bucket_cancel(struct bch_fs *c, struct open_bucket *ob, int err) 1460 { 1461 struct ec_stripe_new *s = ob->ec; 1462 1463 s->err = err; 1464 } 1465 1466 void *bch2_writepoint_ec_buf(struct bch_fs *c, struct write_point *wp) 1467 { 1468 struct open_bucket *ob = ec_open_bucket(c, &wp->ptrs); 1469 if (!ob) 1470 return NULL; 1471 1472 BUG_ON(!ob->ec->new_stripe.data[ob->ec_idx]); 1473 1474 struct bch_dev *ca = ob_dev(c, ob); 1475 unsigned offset = ca->mi.bucket_size - ob->sectors_free; 1476 1477 return ob->ec->new_stripe.data[ob->ec_idx] + (offset << 9); 1478 } 1479 1480 static int unsigned_cmp(const void *_l, const void *_r) 1481 { 1482 unsigned l = *((const unsigned *) _l); 1483 unsigned r = *((const unsigned *) _r); 1484 1485 return cmp_int(l, r); 1486 } 1487 1488 /* pick most common bucket size: */ 1489 static unsigned pick_blocksize(struct bch_fs *c, 1490 struct bch_devs_mask *devs) 1491 { 1492 unsigned nr = 0, sizes[BCH_SB_MEMBERS_MAX]; 1493 struct { 1494 unsigned nr, size; 1495 } cur = { 0, 0 }, best = { 0, 0 }; 1496 1497 for_each_member_device_rcu(c, ca, devs) 1498 sizes[nr++] = ca->mi.bucket_size; 1499 1500 sort(sizes, nr, sizeof(unsigned), unsigned_cmp, NULL); 1501 1502 for (unsigned i = 0; i < nr; i++) { 1503 if (sizes[i] != cur.size) { 1504 if (cur.nr > best.nr) 1505 best = cur; 1506 1507 cur.nr = 0; 1508 cur.size = sizes[i]; 1509 } 1510 1511 cur.nr++; 1512 } 1513 1514 if (cur.nr > best.nr) 1515 best = cur; 1516 1517 return best.size; 1518 } 1519 1520 static bool may_create_new_stripe(struct bch_fs *c) 1521 { 1522 return false; 1523 } 1524 1525 static void ec_stripe_key_init(struct bch_fs *c, 1526 struct bkey_i *k, 1527 unsigned nr_data, 1528 unsigned nr_parity, 1529 unsigned stripe_size, 1530 unsigned disk_label) 1531 { 1532 struct bkey_i_stripe *s = bkey_stripe_init(k); 1533 unsigned u64s; 1534 1535 s->v.sectors = cpu_to_le16(stripe_size); 1536 s->v.algorithm = 0; 1537 s->v.nr_blocks = nr_data + nr_parity; 1538 s->v.nr_redundant = nr_parity; 1539 s->v.csum_granularity_bits = ilog2(c->opts.encoded_extent_max >> 9); 1540 s->v.csum_type = BCH_CSUM_crc32c; 1541 s->v.disk_label = disk_label; 1542 1543 while ((u64s = stripe_val_u64s(&s->v)) > BKEY_VAL_U64s_MAX) { 1544 BUG_ON(1 << s->v.csum_granularity_bits >= 1545 le16_to_cpu(s->v.sectors) || 1546 s->v.csum_granularity_bits == U8_MAX); 1547 s->v.csum_granularity_bits++; 1548 } 1549 1550 set_bkey_val_u64s(&s->k, u64s); 1551 } 1552 1553 static struct ec_stripe_new *ec_new_stripe_alloc(struct bch_fs *c, struct ec_stripe_head *h) 1554 { 1555 struct ec_stripe_new *s; 1556 1557 lockdep_assert_held(&h->lock); 1558 1559 s = kzalloc(sizeof(*s), GFP_KERNEL); 1560 if (!s) 1561 return NULL; 1562 1563 mutex_init(&s->lock); 1564 closure_init(&s->iodone, NULL); 1565 atomic_set(&s->ref[STRIPE_REF_stripe], 1); 1566 atomic_set(&s->ref[STRIPE_REF_io], 1); 1567 s->c = c; 1568 s->h = h; 1569 s->nr_data = min_t(unsigned, h->nr_active_devs, 1570 BCH_BKEY_PTRS_MAX) - h->redundancy; 1571 s->nr_parity = h->redundancy; 1572 1573 ec_stripe_key_init(c, &s->new_stripe.key, 1574 s->nr_data, s->nr_parity, 1575 h->blocksize, h->disk_label); 1576 return s; 1577 } 1578 1579 static void ec_stripe_head_devs_update(struct bch_fs *c, struct ec_stripe_head *h) 1580 { 1581 struct bch_devs_mask devs = h->devs; 1582 unsigned nr_devs, nr_devs_with_durability; 1583 1584 scoped_guard(rcu) { 1585 h->devs = target_rw_devs(c, BCH_DATA_user, h->disk_label 1586 ? group_to_target(h->disk_label - 1) 1587 : 0); 1588 nr_devs = dev_mask_nr(&h->devs); 1589 1590 for_each_member_device_rcu(c, ca, &h->devs) 1591 if (!ca->mi.durability) 1592 __clear_bit(ca->dev_idx, h->devs.d); 1593 nr_devs_with_durability = dev_mask_nr(&h->devs); 1594 1595 h->blocksize = pick_blocksize(c, &h->devs); 1596 1597 h->nr_active_devs = 0; 1598 for_each_member_device_rcu(c, ca, &h->devs) 1599 if (ca->mi.bucket_size == h->blocksize) 1600 h->nr_active_devs++; 1601 } 1602 1603 /* 1604 * If we only have redundancy + 1 devices, we're better off with just 1605 * replication: 1606 */ 1607 h->insufficient_devs = h->nr_active_devs < h->redundancy + 2; 1608 1609 if (h->insufficient_devs) { 1610 const char *err; 1611 1612 if (nr_devs < h->redundancy + 2) 1613 err = NULL; 1614 else if (nr_devs_with_durability < h->redundancy + 2) 1615 err = "cannot use durability=0 devices"; 1616 else 1617 err = "mismatched bucket sizes"; 1618 1619 if (err) 1620 bch_err(c, "insufficient devices available to create stripe (have %u, need %u): %s", 1621 h->nr_active_devs, h->redundancy + 2, err); 1622 } 1623 1624 struct bch_devs_mask devs_leaving; 1625 bitmap_andnot(devs_leaving.d, devs.d, h->devs.d, BCH_SB_MEMBERS_MAX); 1626 1627 if (h->s && !h->s->allocated && dev_mask_nr(&devs_leaving)) 1628 ec_stripe_new_cancel(c, h, -EINTR); 1629 1630 h->rw_devs_change_count = c->rw_devs_change_count; 1631 } 1632 1633 static struct ec_stripe_head * 1634 ec_new_stripe_head_alloc(struct bch_fs *c, unsigned disk_label, 1635 unsigned algo, unsigned redundancy, 1636 enum bch_watermark watermark) 1637 { 1638 struct ec_stripe_head *h; 1639 1640 h = kzalloc(sizeof(*h), GFP_KERNEL); 1641 if (!h) 1642 return NULL; 1643 1644 mutex_init(&h->lock); 1645 BUG_ON(!mutex_trylock(&h->lock)); 1646 1647 h->disk_label = disk_label; 1648 h->algo = algo; 1649 h->redundancy = redundancy; 1650 h->watermark = watermark; 1651 1652 list_add(&h->list, &c->ec_stripe_head_list); 1653 return h; 1654 } 1655 1656 void bch2_ec_stripe_head_put(struct bch_fs *c, struct ec_stripe_head *h) 1657 { 1658 if (h->s && 1659 h->s->allocated && 1660 bitmap_weight(h->s->blocks_allocated, 1661 h->s->nr_data) == h->s->nr_data) 1662 ec_stripe_new_set_pending(c, h); 1663 1664 mutex_unlock(&h->lock); 1665 } 1666 1667 static struct ec_stripe_head * 1668 __bch2_ec_stripe_head_get(struct btree_trans *trans, 1669 unsigned disk_label, 1670 unsigned algo, 1671 unsigned redundancy, 1672 enum bch_watermark watermark) 1673 { 1674 struct bch_fs *c = trans->c; 1675 struct ec_stripe_head *h; 1676 int ret; 1677 1678 if (!redundancy) 1679 return NULL; 1680 1681 ret = bch2_trans_mutex_lock(trans, &c->ec_stripe_head_lock); 1682 if (ret) 1683 return ERR_PTR(ret); 1684 1685 if (test_bit(BCH_FS_going_ro, &c->flags)) { 1686 h = ERR_PTR(-BCH_ERR_erofs_no_writes); 1687 goto err; 1688 } 1689 1690 list_for_each_entry(h, &c->ec_stripe_head_list, list) 1691 if (h->disk_label == disk_label && 1692 h->algo == algo && 1693 h->redundancy == redundancy && 1694 h->watermark == watermark) { 1695 ret = bch2_trans_mutex_lock(trans, &h->lock); 1696 if (ret) { 1697 h = ERR_PTR(ret); 1698 goto err; 1699 } 1700 goto found; 1701 } 1702 1703 h = ec_new_stripe_head_alloc(c, disk_label, algo, redundancy, watermark); 1704 if (!h) { 1705 h = ERR_PTR(-BCH_ERR_ENOMEM_stripe_head_alloc); 1706 goto err; 1707 } 1708 found: 1709 if (h->rw_devs_change_count != c->rw_devs_change_count) 1710 ec_stripe_head_devs_update(c, h); 1711 1712 if (h->insufficient_devs) { 1713 mutex_unlock(&h->lock); 1714 h = NULL; 1715 } 1716 err: 1717 mutex_unlock(&c->ec_stripe_head_lock); 1718 return h; 1719 } 1720 1721 static int new_stripe_alloc_buckets(struct btree_trans *trans, 1722 struct alloc_request *req, 1723 struct ec_stripe_head *h, struct ec_stripe_new *s, 1724 struct closure *cl) 1725 { 1726 struct bch_fs *c = trans->c; 1727 struct open_bucket *ob; 1728 struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v; 1729 unsigned i, j, nr_have_parity = 0, nr_have_data = 0; 1730 int ret = 0; 1731 1732 req->scratch_data_type = req->data_type; 1733 req->scratch_ptrs = req->ptrs; 1734 req->scratch_nr_replicas = req->nr_replicas; 1735 req->scratch_nr_effective = req->nr_effective; 1736 req->scratch_have_cache = req->have_cache; 1737 req->scratch_devs_may_alloc = req->devs_may_alloc; 1738 1739 req->devs_may_alloc = h->devs; 1740 req->have_cache = true; 1741 1742 BUG_ON(v->nr_blocks != s->nr_data + s->nr_parity); 1743 BUG_ON(v->nr_redundant != s->nr_parity); 1744 1745 /* * We bypass the sector allocator which normally does this: */ 1746 bitmap_and(req->devs_may_alloc.d, req->devs_may_alloc.d, 1747 c->rw_devs[BCH_DATA_user].d, BCH_SB_MEMBERS_MAX); 1748 1749 for_each_set_bit(i, s->blocks_gotten, v->nr_blocks) { 1750 /* 1751 * Note: we don't yet repair invalid blocks (failed/removed 1752 * devices) when reusing stripes - we still need a codepath to 1753 * walk backpointers and update all extents that point to that 1754 * block when updating the stripe 1755 */ 1756 if (v->ptrs[i].dev != BCH_SB_MEMBER_INVALID) 1757 __clear_bit(v->ptrs[i].dev, req->devs_may_alloc.d); 1758 1759 if (i < s->nr_data) 1760 nr_have_data++; 1761 else 1762 nr_have_parity++; 1763 } 1764 1765 BUG_ON(nr_have_data > s->nr_data); 1766 BUG_ON(nr_have_parity > s->nr_parity); 1767 1768 req->ptrs.nr = 0; 1769 if (nr_have_parity < s->nr_parity) { 1770 req->nr_replicas = s->nr_parity; 1771 req->nr_effective = nr_have_parity; 1772 req->data_type = BCH_DATA_parity; 1773 1774 ret = bch2_bucket_alloc_set_trans(trans, req, &h->parity_stripe, cl); 1775 1776 open_bucket_for_each(c, &req->ptrs, ob, i) { 1777 j = find_next_zero_bit(s->blocks_gotten, 1778 s->nr_data + s->nr_parity, 1779 s->nr_data); 1780 BUG_ON(j >= s->nr_data + s->nr_parity); 1781 1782 s->blocks[j] = req->ptrs.v[i]; 1783 v->ptrs[j] = bch2_ob_ptr(c, ob); 1784 __set_bit(j, s->blocks_gotten); 1785 } 1786 1787 if (ret) 1788 goto err; 1789 } 1790 1791 req->ptrs.nr = 0; 1792 if (nr_have_data < s->nr_data) { 1793 req->nr_replicas = s->nr_data; 1794 req->nr_effective = nr_have_data; 1795 req->data_type = BCH_DATA_user; 1796 1797 ret = bch2_bucket_alloc_set_trans(trans, req, &h->block_stripe, cl); 1798 1799 open_bucket_for_each(c, &req->ptrs, ob, i) { 1800 j = find_next_zero_bit(s->blocks_gotten, 1801 s->nr_data, 0); 1802 BUG_ON(j >= s->nr_data); 1803 1804 s->blocks[j] = req->ptrs.v[i]; 1805 v->ptrs[j] = bch2_ob_ptr(c, ob); 1806 __set_bit(j, s->blocks_gotten); 1807 } 1808 1809 if (ret) 1810 goto err; 1811 } 1812 err: 1813 req->data_type = req->scratch_data_type; 1814 req->ptrs = req->scratch_ptrs; 1815 req->nr_replicas = req->scratch_nr_replicas; 1816 req->nr_effective = req->scratch_nr_effective; 1817 req->have_cache = req->scratch_have_cache; 1818 req->devs_may_alloc = req->scratch_devs_may_alloc; 1819 return ret; 1820 } 1821 1822 static int __get_existing_stripe(struct btree_trans *trans, 1823 struct ec_stripe_head *head, 1824 struct ec_stripe_buf *stripe, 1825 u64 idx) 1826 { 1827 struct bch_fs *c = trans->c; 1828 1829 struct btree_iter iter; 1830 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, 1831 BTREE_ID_stripes, POS(0, idx), 0); 1832 int ret = bkey_err(k); 1833 if (ret) 1834 goto err; 1835 1836 /* We expect write buffer races here */ 1837 if (k.k->type != KEY_TYPE_stripe) 1838 goto out; 1839 1840 struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); 1841 if (stripe_lru_pos(s.v) <= 1) 1842 goto out; 1843 1844 if (s.v->disk_label == head->disk_label && 1845 s.v->algorithm == head->algo && 1846 s.v->nr_redundant == head->redundancy && 1847 le16_to_cpu(s.v->sectors) == head->blocksize && 1848 bch2_try_open_stripe(c, head->s, idx)) { 1849 bkey_reassemble(&stripe->key, k); 1850 ret = 1; 1851 } 1852 out: 1853 bch2_set_btree_iter_dontneed(trans, &iter); 1854 err: 1855 bch2_trans_iter_exit(trans, &iter); 1856 return ret; 1857 } 1858 1859 static int init_new_stripe_from_existing(struct bch_fs *c, struct ec_stripe_new *s) 1860 { 1861 struct bch_stripe *new_v = &bkey_i_to_stripe(&s->new_stripe.key)->v; 1862 struct bch_stripe *existing_v = &bkey_i_to_stripe(&s->existing_stripe.key)->v; 1863 unsigned i; 1864 1865 BUG_ON(existing_v->nr_redundant != s->nr_parity); 1866 s->nr_data = existing_v->nr_blocks - 1867 existing_v->nr_redundant; 1868 1869 int ret = ec_stripe_buf_init(c, &s->existing_stripe, 0, le16_to_cpu(existing_v->sectors)); 1870 if (ret) { 1871 bch2_stripe_close(c, s); 1872 return ret; 1873 } 1874 1875 BUG_ON(s->existing_stripe.size != le16_to_cpu(existing_v->sectors)); 1876 1877 /* 1878 * Free buckets we initially allocated - they might conflict with 1879 * blocks from the stripe we're reusing: 1880 */ 1881 for_each_set_bit(i, s->blocks_gotten, new_v->nr_blocks) { 1882 bch2_open_bucket_put(c, c->open_buckets + s->blocks[i]); 1883 s->blocks[i] = 0; 1884 } 1885 memset(s->blocks_gotten, 0, sizeof(s->blocks_gotten)); 1886 memset(s->blocks_allocated, 0, sizeof(s->blocks_allocated)); 1887 1888 for (unsigned i = 0; i < existing_v->nr_blocks; i++) { 1889 if (stripe_blockcount_get(existing_v, i)) { 1890 __set_bit(i, s->blocks_gotten); 1891 __set_bit(i, s->blocks_allocated); 1892 } 1893 1894 ec_block_io(c, &s->existing_stripe, READ, i, &s->iodone); 1895 } 1896 1897 bkey_copy(&s->new_stripe.key, &s->existing_stripe.key); 1898 s->have_existing_stripe = true; 1899 1900 return 0; 1901 } 1902 1903 static int __bch2_ec_stripe_head_reuse(struct btree_trans *trans, struct ec_stripe_head *h, 1904 struct ec_stripe_new *s) 1905 { 1906 struct bch_fs *c = trans->c; 1907 1908 /* 1909 * If we can't allocate a new stripe, and there's no stripes with empty 1910 * blocks for us to reuse, that means we have to wait on copygc: 1911 */ 1912 if (may_create_new_stripe(c)) 1913 return -1; 1914 1915 struct btree_iter lru_iter; 1916 struct bkey_s_c lru_k; 1917 int ret = 0; 1918 1919 for_each_btree_key_max_norestart(trans, lru_iter, BTREE_ID_lru, 1920 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 2, 0), 1921 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 2, LRU_TIME_MAX), 1922 0, lru_k, ret) { 1923 ret = __get_existing_stripe(trans, h, &s->existing_stripe, lru_k.k->p.offset); 1924 if (ret) 1925 break; 1926 } 1927 bch2_trans_iter_exit(trans, &lru_iter); 1928 if (!ret) 1929 ret = bch_err_throw(c, stripe_alloc_blocked); 1930 if (ret == 1) 1931 ret = 0; 1932 if (ret) 1933 return ret; 1934 1935 return init_new_stripe_from_existing(c, s); 1936 } 1937 1938 static int __bch2_ec_stripe_head_reserve(struct btree_trans *trans, struct ec_stripe_head *h, 1939 struct ec_stripe_new *s) 1940 { 1941 struct bch_fs *c = trans->c; 1942 struct btree_iter iter; 1943 struct bkey_s_c k; 1944 struct bpos min_pos = POS(0, 1); 1945 struct bpos start_pos = bpos_max(min_pos, POS(0, c->ec_stripe_hint)); 1946 int ret; 1947 1948 if (!s->res.sectors) { 1949 ret = bch2_disk_reservation_get(c, &s->res, 1950 h->blocksize, 1951 s->nr_parity, 1952 BCH_DISK_RESERVATION_NOFAIL); 1953 if (ret) 1954 return ret; 1955 } 1956 1957 /* 1958 * Allocate stripe slot 1959 * XXX: we're going to need a bitrange btree of free stripes 1960 */ 1961 for_each_btree_key_norestart(trans, iter, BTREE_ID_stripes, start_pos, 1962 BTREE_ITER_slots|BTREE_ITER_intent, k, ret) { 1963 if (bkey_gt(k.k->p, POS(0, U32_MAX))) { 1964 if (start_pos.offset) { 1965 start_pos = min_pos; 1966 bch2_btree_iter_set_pos(trans, &iter, start_pos); 1967 continue; 1968 } 1969 1970 ret = bch_err_throw(c, ENOSPC_stripe_create); 1971 break; 1972 } 1973 1974 if (bkey_deleted(k.k) && 1975 bch2_try_open_stripe(c, s, k.k->p.offset)) 1976 break; 1977 } 1978 1979 c->ec_stripe_hint = iter.pos.offset; 1980 1981 if (ret) 1982 goto err; 1983 1984 ret = ec_stripe_mem_alloc(trans, &iter); 1985 if (ret) { 1986 bch2_stripe_close(c, s); 1987 goto err; 1988 } 1989 1990 s->new_stripe.key.k.p = iter.pos; 1991 out: 1992 bch2_trans_iter_exit(trans, &iter); 1993 return ret; 1994 err: 1995 bch2_disk_reservation_put(c, &s->res); 1996 goto out; 1997 } 1998 1999 struct ec_stripe_head *bch2_ec_stripe_head_get(struct btree_trans *trans, 2000 struct alloc_request *req, 2001 unsigned algo, 2002 struct closure *cl) 2003 { 2004 struct bch_fs *c = trans->c; 2005 unsigned redundancy = req->nr_replicas - 1; 2006 unsigned disk_label = 0; 2007 struct target t = target_decode(req->target); 2008 bool waiting = false; 2009 int ret; 2010 2011 if (t.type == TARGET_GROUP) { 2012 if (t.group > U8_MAX) { 2013 bch_err(c, "cannot create a stripe when disk_label > U8_MAX"); 2014 return NULL; 2015 } 2016 disk_label = t.group + 1; /* 0 == no label */ 2017 } 2018 2019 struct ec_stripe_head *h = 2020 __bch2_ec_stripe_head_get(trans, disk_label, algo, 2021 redundancy, req->watermark); 2022 if (IS_ERR_OR_NULL(h)) 2023 return h; 2024 2025 if (!h->s) { 2026 h->s = ec_new_stripe_alloc(c, h); 2027 if (!h->s) { 2028 ret = bch_err_throw(c, ENOMEM_ec_new_stripe_alloc); 2029 bch_err(c, "failed to allocate new stripe"); 2030 goto err; 2031 } 2032 2033 h->nr_created++; 2034 } 2035 2036 struct ec_stripe_new *s = h->s; 2037 2038 if (s->allocated) 2039 goto allocated; 2040 2041 if (s->have_existing_stripe) 2042 goto alloc_existing; 2043 2044 /* First, try to allocate a full stripe: */ 2045 enum bch_watermark saved_watermark = BCH_WATERMARK_stripe; 2046 swap(req->watermark, saved_watermark); 2047 ret = new_stripe_alloc_buckets(trans, req, h, s, NULL) ?: 2048 __bch2_ec_stripe_head_reserve(trans, h, s); 2049 swap(req->watermark, saved_watermark); 2050 2051 if (!ret) 2052 goto allocate_buf; 2053 if (bch2_err_matches(ret, BCH_ERR_transaction_restart) || 2054 bch2_err_matches(ret, ENOMEM)) 2055 goto err; 2056 2057 /* 2058 * Not enough buckets available for a full stripe: we must reuse an 2059 * existing stripe: 2060 */ 2061 while (1) { 2062 ret = __bch2_ec_stripe_head_reuse(trans, h, s); 2063 if (!ret) 2064 break; 2065 if (waiting || !cl || ret != -BCH_ERR_stripe_alloc_blocked) 2066 goto err; 2067 2068 if (req->watermark == BCH_WATERMARK_copygc) { 2069 ret = new_stripe_alloc_buckets(trans, req, h, s, NULL) ?: 2070 __bch2_ec_stripe_head_reserve(trans, h, s); 2071 if (ret) 2072 goto err; 2073 goto allocate_buf; 2074 } 2075 2076 /* XXX freelist_wait? */ 2077 closure_wait(&c->freelist_wait, cl); 2078 waiting = true; 2079 } 2080 2081 if (waiting) 2082 closure_wake_up(&c->freelist_wait); 2083 alloc_existing: 2084 /* 2085 * Retry allocating buckets, with the watermark for this 2086 * particular write: 2087 */ 2088 ret = new_stripe_alloc_buckets(trans, req, h, s, cl); 2089 if (ret) 2090 goto err; 2091 2092 allocate_buf: 2093 ret = ec_stripe_buf_init(c, &s->new_stripe, 0, h->blocksize); 2094 if (ret) 2095 goto err; 2096 2097 s->allocated = true; 2098 allocated: 2099 BUG_ON(!s->idx); 2100 BUG_ON(!s->new_stripe.data[0]); 2101 BUG_ON(trans->restarted); 2102 return h; 2103 err: 2104 bch2_ec_stripe_head_put(c, h); 2105 return ERR_PTR(ret); 2106 } 2107 2108 /* device removal */ 2109 2110 int bch2_invalidate_stripe_to_dev(struct btree_trans *trans, 2111 struct btree_iter *iter, 2112 struct bkey_s_c k, 2113 unsigned dev_idx, 2114 unsigned flags) 2115 { 2116 if (k.k->type != KEY_TYPE_stripe) 2117 return 0; 2118 2119 struct bch_fs *c = trans->c; 2120 struct bkey_i_stripe *s = 2121 bch2_bkey_make_mut_typed(trans, iter, &k, 0, stripe); 2122 int ret = PTR_ERR_OR_ZERO(s); 2123 if (ret) 2124 return ret; 2125 2126 struct disk_accounting_pos acc; 2127 2128 s64 sectors = 0; 2129 for (unsigned i = 0; i < s->v.nr_blocks; i++) 2130 sectors -= stripe_blockcount_get(&s->v, i); 2131 2132 memset(&acc, 0, sizeof(acc)); 2133 acc.type = BCH_DISK_ACCOUNTING_replicas; 2134 bch2_bkey_to_replicas(&acc.replicas, bkey_i_to_s_c(&s->k_i)); 2135 acc.replicas.data_type = BCH_DATA_user; 2136 ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, false); 2137 if (ret) 2138 return ret; 2139 2140 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(&s->k_i)); 2141 2142 /* XXX: how much redundancy do we still have? check degraded flags */ 2143 2144 unsigned nr_good = 0; 2145 2146 scoped_guard(rcu) 2147 bkey_for_each_ptr(ptrs, ptr) { 2148 if (ptr->dev == dev_idx) 2149 ptr->dev = BCH_SB_MEMBER_INVALID; 2150 2151 struct bch_dev *ca = bch2_dev_rcu(c, ptr->dev); 2152 nr_good += ca && ca->mi.state != BCH_MEMBER_STATE_failed; 2153 } 2154 2155 if (nr_good < s->v.nr_blocks && !(flags & BCH_FORCE_IF_DATA_DEGRADED)) 2156 return bch_err_throw(c, remove_would_lose_data); 2157 2158 unsigned nr_data = s->v.nr_blocks - s->v.nr_redundant; 2159 2160 if (nr_good < nr_data && !(flags & BCH_FORCE_IF_DATA_LOST)) 2161 return bch_err_throw(c, remove_would_lose_data); 2162 2163 sectors = -sectors; 2164 2165 memset(&acc, 0, sizeof(acc)); 2166 acc.type = BCH_DISK_ACCOUNTING_replicas; 2167 bch2_bkey_to_replicas(&acc.replicas, bkey_i_to_s_c(&s->k_i)); 2168 acc.replicas.data_type = BCH_DATA_user; 2169 return bch2_disk_accounting_mod(trans, &acc, §ors, 1, false); 2170 } 2171 2172 static int bch2_invalidate_stripe_to_dev_from_alloc(struct btree_trans *trans, struct bkey_s_c k_a, 2173 unsigned flags) 2174 { 2175 struct bch_alloc_v4 a_convert; 2176 const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k_a, &a_convert); 2177 2178 if (!a->stripe) 2179 return 0; 2180 2181 if (a->stripe_sectors) { 2182 struct bch_fs *c = trans->c; 2183 bch_err(c, "trying to invalidate device in stripe when bucket has stripe data"); 2184 return bch_err_throw(c, invalidate_stripe_to_dev); 2185 } 2186 2187 struct btree_iter iter; 2188 struct bkey_s_c_stripe s = 2189 bch2_bkey_get_iter_typed(trans, &iter, BTREE_ID_stripes, POS(0, a->stripe), 2190 BTREE_ITER_slots, stripe); 2191 int ret = bkey_err(s); 2192 if (ret) 2193 return ret; 2194 2195 ret = bch2_invalidate_stripe_to_dev(trans, &iter, s.s_c, k_a.k->p.inode, flags); 2196 bch2_trans_iter_exit(trans, &iter); 2197 return ret; 2198 } 2199 2200 int bch2_dev_remove_stripes(struct bch_fs *c, unsigned dev_idx, unsigned flags) 2201 { 2202 int ret = bch2_trans_run(c, 2203 for_each_btree_key_max_commit(trans, iter, 2204 BTREE_ID_alloc, POS(dev_idx, 0), POS(dev_idx, U64_MAX), 2205 BTREE_ITER_intent, k, 2206 NULL, NULL, 0, ({ 2207 bch2_invalidate_stripe_to_dev_from_alloc(trans, k, flags); 2208 }))); 2209 bch_err_fn(c, ret); 2210 return ret; 2211 } 2212 2213 /* startup/shutdown */ 2214 2215 static void __bch2_ec_stop(struct bch_fs *c, struct bch_dev *ca) 2216 { 2217 struct ec_stripe_head *h; 2218 struct open_bucket *ob; 2219 unsigned i; 2220 2221 mutex_lock(&c->ec_stripe_head_lock); 2222 list_for_each_entry(h, &c->ec_stripe_head_list, list) { 2223 mutex_lock(&h->lock); 2224 if (!h->s) 2225 goto unlock; 2226 2227 if (!ca) 2228 goto found; 2229 2230 for (i = 0; i < bkey_i_to_stripe(&h->s->new_stripe.key)->v.nr_blocks; i++) { 2231 if (!h->s->blocks[i]) 2232 continue; 2233 2234 ob = c->open_buckets + h->s->blocks[i]; 2235 if (ob->dev == ca->dev_idx) 2236 goto found; 2237 } 2238 goto unlock; 2239 found: 2240 ec_stripe_new_cancel(c, h, -BCH_ERR_erofs_no_writes); 2241 unlock: 2242 mutex_unlock(&h->lock); 2243 } 2244 mutex_unlock(&c->ec_stripe_head_lock); 2245 } 2246 2247 void bch2_ec_stop_dev(struct bch_fs *c, struct bch_dev *ca) 2248 { 2249 __bch2_ec_stop(c, ca); 2250 } 2251 2252 void bch2_fs_ec_stop(struct bch_fs *c) 2253 { 2254 __bch2_ec_stop(c, NULL); 2255 } 2256 2257 static bool bch2_fs_ec_flush_done(struct bch_fs *c) 2258 { 2259 sched_annotate_sleep(); 2260 2261 mutex_lock(&c->ec_stripe_new_lock); 2262 bool ret = list_empty(&c->ec_stripe_new_list); 2263 mutex_unlock(&c->ec_stripe_new_lock); 2264 2265 return ret; 2266 } 2267 2268 void bch2_fs_ec_flush(struct bch_fs *c) 2269 { 2270 wait_event(c->ec_stripe_new_wait, bch2_fs_ec_flush_done(c)); 2271 } 2272 2273 int bch2_stripes_read(struct bch_fs *c) 2274 { 2275 return 0; 2276 } 2277 2278 static void bch2_new_stripe_to_text(struct printbuf *out, struct bch_fs *c, 2279 struct ec_stripe_new *s) 2280 { 2281 prt_printf(out, "\tidx %llu blocks %u+%u allocated %u ref %u %u %s obs", 2282 s->idx, s->nr_data, s->nr_parity, 2283 bitmap_weight(s->blocks_allocated, s->nr_data), 2284 atomic_read(&s->ref[STRIPE_REF_io]), 2285 atomic_read(&s->ref[STRIPE_REF_stripe]), 2286 bch2_watermarks[s->h->watermark]); 2287 2288 struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v; 2289 unsigned i; 2290 for_each_set_bit(i, s->blocks_gotten, v->nr_blocks) 2291 prt_printf(out, " %u", s->blocks[i]); 2292 prt_newline(out); 2293 bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&s->new_stripe.key)); 2294 prt_newline(out); 2295 } 2296 2297 void bch2_new_stripes_to_text(struct printbuf *out, struct bch_fs *c) 2298 { 2299 struct ec_stripe_head *h; 2300 struct ec_stripe_new *s; 2301 2302 mutex_lock(&c->ec_stripe_head_lock); 2303 list_for_each_entry(h, &c->ec_stripe_head_list, list) { 2304 prt_printf(out, "disk label %u algo %u redundancy %u %s nr created %llu:\n", 2305 h->disk_label, h->algo, h->redundancy, 2306 bch2_watermarks[h->watermark], 2307 h->nr_created); 2308 2309 if (h->s) 2310 bch2_new_stripe_to_text(out, c, h->s); 2311 } 2312 mutex_unlock(&c->ec_stripe_head_lock); 2313 2314 prt_printf(out, "in flight:\n"); 2315 2316 mutex_lock(&c->ec_stripe_new_lock); 2317 list_for_each_entry(s, &c->ec_stripe_new_list, list) 2318 bch2_new_stripe_to_text(out, c, s); 2319 mutex_unlock(&c->ec_stripe_new_lock); 2320 } 2321 2322 void bch2_fs_ec_exit(struct bch_fs *c) 2323 { 2324 struct ec_stripe_head *h; 2325 unsigned i; 2326 2327 while (1) { 2328 mutex_lock(&c->ec_stripe_head_lock); 2329 h = list_pop_entry(&c->ec_stripe_head_list, struct ec_stripe_head, list); 2330 mutex_unlock(&c->ec_stripe_head_lock); 2331 2332 if (!h) 2333 break; 2334 2335 if (h->s) { 2336 for (i = 0; i < bkey_i_to_stripe(&h->s->new_stripe.key)->v.nr_blocks; i++) 2337 BUG_ON(h->s->blocks[i]); 2338 2339 kfree(h->s); 2340 } 2341 kfree(h); 2342 } 2343 2344 BUG_ON(!list_empty(&c->ec_stripe_new_list)); 2345 2346 bioset_exit(&c->ec_bioset); 2347 } 2348 2349 void bch2_fs_ec_init_early(struct bch_fs *c) 2350 { 2351 spin_lock_init(&c->ec_stripes_new_lock); 2352 2353 INIT_LIST_HEAD(&c->ec_stripe_head_list); 2354 mutex_init(&c->ec_stripe_head_lock); 2355 2356 INIT_LIST_HEAD(&c->ec_stripe_new_list); 2357 mutex_init(&c->ec_stripe_new_lock); 2358 init_waitqueue_head(&c->ec_stripe_new_wait); 2359 2360 INIT_WORK(&c->ec_stripe_create_work, ec_stripe_create_work); 2361 INIT_WORK(&c->ec_stripe_delete_work, ec_stripe_delete_work); 2362 } 2363 2364 int bch2_fs_ec_init(struct bch_fs *c) 2365 { 2366 return bioset_init(&c->ec_bioset, 1, offsetof(struct ec_bio, bio), 2367 BIOSET_NEED_BVECS); 2368 } 2369 2370 static int bch2_check_stripe_to_lru_ref(struct btree_trans *trans, 2371 struct bkey_s_c k, 2372 struct bkey_buf *last_flushed) 2373 { 2374 if (k.k->type != KEY_TYPE_stripe) 2375 return 0; 2376 2377 struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); 2378 2379 u64 lru_idx = stripe_lru_pos(s.v); 2380 if (lru_idx) { 2381 int ret = bch2_lru_check_set(trans, BCH_LRU_STRIPE_FRAGMENTATION, 2382 k.k->p.offset, lru_idx, k, last_flushed); 2383 if (ret) 2384 return ret; 2385 } 2386 return 0; 2387 } 2388 2389 int bch2_check_stripe_to_lru_refs(struct bch_fs *c) 2390 { 2391 struct bkey_buf last_flushed; 2392 2393 bch2_bkey_buf_init(&last_flushed); 2394 bkey_init(&last_flushed.k->k); 2395 2396 int ret = bch2_trans_run(c, 2397 for_each_btree_key_commit(trans, iter, BTREE_ID_stripes, 2398 POS_MIN, BTREE_ITER_prefetch, k, 2399 NULL, NULL, BCH_TRANS_COMMIT_no_enospc, 2400 bch2_check_stripe_to_lru_ref(trans, k, &last_flushed))); 2401 2402 bch2_bkey_buf_exit(&last_flushed, c); 2403 bch_err_fn(c, ret); 2404 return ret; 2405 } 2406