1 // SPDX-License-Identifier: GPL-2.0 2 3 /* erasure coding */ 4 5 #include "bcachefs.h" 6 #include "alloc_background.h" 7 #include "alloc_foreground.h" 8 #include "backpointers.h" 9 #include "bkey_buf.h" 10 #include "bset.h" 11 #include "btree_gc.h" 12 #include "btree_update.h" 13 #include "btree_write_buffer.h" 14 #include "buckets.h" 15 #include "checksum.h" 16 #include "disk_accounting.h" 17 #include "disk_groups.h" 18 #include "ec.h" 19 #include "error.h" 20 #include "io_read.h" 21 #include "io_write.h" 22 #include "keylist.h" 23 #include "lru.h" 24 #include "recovery.h" 25 #include "replicas.h" 26 #include "super-io.h" 27 #include "util.h" 28 29 #include <linux/sort.h> 30 #include <linux/string_choices.h> 31 32 #ifdef __KERNEL__ 33 34 #include <linux/raid/pq.h> 35 #include <linux/raid/xor.h> 36 37 static void raid5_recov(unsigned disks, unsigned failed_idx, 38 size_t size, void **data) 39 { 40 unsigned i = 2, nr; 41 42 BUG_ON(failed_idx >= disks); 43 44 swap(data[0], data[failed_idx]); 45 memcpy(data[0], data[1], size); 46 47 while (i < disks) { 48 nr = min_t(unsigned, disks - i, MAX_XOR_BLOCKS); 49 xor_blocks(nr, size, data[0], data + i); 50 i += nr; 51 } 52 53 swap(data[0], data[failed_idx]); 54 } 55 56 static void raid_gen(int nd, int np, size_t size, void **v) 57 { 58 if (np >= 1) 59 raid5_recov(nd + np, nd, size, v); 60 if (np >= 2) 61 raid6_call.gen_syndrome(nd + np, size, v); 62 BUG_ON(np > 2); 63 } 64 65 static void raid_rec(int nr, int *ir, int nd, int np, size_t size, void **v) 66 { 67 switch (nr) { 68 case 0: 69 break; 70 case 1: 71 if (ir[0] < nd + 1) 72 raid5_recov(nd + 1, ir[0], size, v); 73 else 74 raid6_call.gen_syndrome(nd + np, size, v); 75 break; 76 case 2: 77 if (ir[1] < nd) { 78 /* data+data failure. */ 79 raid6_2data_recov(nd + np, size, ir[0], ir[1], v); 80 } else if (ir[0] < nd) { 81 /* data + p/q failure */ 82 83 if (ir[1] == nd) /* data + p failure */ 84 raid6_datap_recov(nd + np, size, ir[0], v); 85 else { /* data + q failure */ 86 raid5_recov(nd + 1, ir[0], size, v); 87 raid6_call.gen_syndrome(nd + np, size, v); 88 } 89 } else { 90 raid_gen(nd, np, size, v); 91 } 92 break; 93 default: 94 BUG(); 95 } 96 } 97 98 #else 99 100 #include <raid/raid.h> 101 102 #endif 103 104 struct ec_bio { 105 struct bch_dev *ca; 106 struct ec_stripe_buf *buf; 107 size_t idx; 108 u64 submit_time; 109 struct bio bio; 110 }; 111 112 /* Stripes btree keys: */ 113 114 int bch2_stripe_validate(struct bch_fs *c, struct bkey_s_c k, 115 struct bkey_validate_context from) 116 { 117 const struct bch_stripe *s = bkey_s_c_to_stripe(k).v; 118 int ret = 0; 119 120 bkey_fsck_err_on(bkey_eq(k.k->p, POS_MIN) || 121 bpos_gt(k.k->p, POS(0, U32_MAX)), 122 c, stripe_pos_bad, 123 "stripe at bad pos"); 124 125 bkey_fsck_err_on(bkey_val_u64s(k.k) < stripe_val_u64s(s), 126 c, stripe_val_size_bad, 127 "incorrect value size (%zu < %u)", 128 bkey_val_u64s(k.k), stripe_val_u64s(s)); 129 130 bkey_fsck_err_on(s->csum_granularity_bits >= 64, 131 c, stripe_csum_granularity_bad, 132 "invalid csum granularity (%u >= 64)", 133 s->csum_granularity_bits); 134 135 ret = bch2_bkey_ptrs_validate(c, k, from); 136 fsck_err: 137 return ret; 138 } 139 140 void bch2_stripe_to_text(struct printbuf *out, struct bch_fs *c, 141 struct bkey_s_c k) 142 { 143 const struct bch_stripe *sp = bkey_s_c_to_stripe(k).v; 144 struct bch_stripe s = {}; 145 146 memcpy(&s, sp, min(sizeof(s), bkey_val_bytes(k.k))); 147 148 unsigned nr_data = s.nr_blocks - s.nr_redundant; 149 150 prt_printf(out, "algo %u sectors %u blocks %u:%u csum ", 151 s.algorithm, 152 le16_to_cpu(s.sectors), 153 nr_data, 154 s.nr_redundant); 155 bch2_prt_csum_type(out, s.csum_type); 156 prt_str(out, " gran "); 157 if (s.csum_granularity_bits < 64) 158 prt_printf(out, "%llu", 1ULL << s.csum_granularity_bits); 159 else 160 prt_printf(out, "(invalid shift %u)", s.csum_granularity_bits); 161 162 if (s.disk_label) { 163 prt_str(out, " label"); 164 bch2_disk_path_to_text(out, c, s.disk_label - 1); 165 } 166 167 for (unsigned i = 0; i < s.nr_blocks; i++) { 168 const struct bch_extent_ptr *ptr = sp->ptrs + i; 169 170 if ((void *) ptr >= bkey_val_end(k)) 171 break; 172 173 prt_char(out, ' '); 174 bch2_extent_ptr_to_text(out, c, ptr); 175 176 if (s.csum_type < BCH_CSUM_NR && 177 i < nr_data && 178 stripe_blockcount_offset(&s, i) < bkey_val_bytes(k.k)) 179 prt_printf(out, "#%u", stripe_blockcount_get(sp, i)); 180 } 181 } 182 183 /* Triggers: */ 184 185 static int __mark_stripe_bucket(struct btree_trans *trans, 186 struct bch_dev *ca, 187 struct bkey_s_c_stripe s, 188 unsigned ptr_idx, bool deleting, 189 struct bpos bucket, 190 struct bch_alloc_v4 *a, 191 enum btree_iter_update_trigger_flags flags) 192 { 193 const struct bch_extent_ptr *ptr = s.v->ptrs + ptr_idx; 194 unsigned nr_data = s.v->nr_blocks - s.v->nr_redundant; 195 bool parity = ptr_idx >= nr_data; 196 enum bch_data_type data_type = parity ? BCH_DATA_parity : BCH_DATA_stripe; 197 s64 sectors = parity ? le16_to_cpu(s.v->sectors) : 0; 198 struct printbuf buf = PRINTBUF; 199 int ret = 0; 200 201 struct bch_fs *c = trans->c; 202 if (deleting) 203 sectors = -sectors; 204 205 if (!deleting) { 206 if (bch2_trans_inconsistent_on(a->stripe || 207 a->stripe_redundancy, trans, 208 "bucket %llu:%llu gen %u data type %s dirty_sectors %u: multiple stripes using same bucket (%u, %llu)\n%s", 209 bucket.inode, bucket.offset, a->gen, 210 bch2_data_type_str(a->data_type), 211 a->dirty_sectors, 212 a->stripe, s.k->p.offset, 213 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 214 ret = -BCH_ERR_mark_stripe; 215 goto err; 216 } 217 218 if (bch2_trans_inconsistent_on(parity && bch2_bucket_sectors_total(*a), trans, 219 "bucket %llu:%llu gen %u data type %s dirty_sectors %u cached_sectors %u: data already in parity bucket\n%s", 220 bucket.inode, bucket.offset, a->gen, 221 bch2_data_type_str(a->data_type), 222 a->dirty_sectors, 223 a->cached_sectors, 224 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 225 ret = -BCH_ERR_mark_stripe; 226 goto err; 227 } 228 } else { 229 if (bch2_trans_inconsistent_on(a->stripe != s.k->p.offset || 230 a->stripe_redundancy != s.v->nr_redundant, trans, 231 "bucket %llu:%llu gen %u: not marked as stripe when deleting stripe (got %u)\n%s", 232 bucket.inode, bucket.offset, a->gen, 233 a->stripe, 234 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 235 ret = -BCH_ERR_mark_stripe; 236 goto err; 237 } 238 239 if (bch2_trans_inconsistent_on(a->data_type != data_type, trans, 240 "bucket %llu:%llu gen %u data type %s: wrong data type when stripe, should be %s\n%s", 241 bucket.inode, bucket.offset, a->gen, 242 bch2_data_type_str(a->data_type), 243 bch2_data_type_str(data_type), 244 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 245 ret = -BCH_ERR_mark_stripe; 246 goto err; 247 } 248 249 if (bch2_trans_inconsistent_on(parity && 250 (a->dirty_sectors != -sectors || 251 a->cached_sectors), trans, 252 "bucket %llu:%llu gen %u dirty_sectors %u cached_sectors %u: wrong sectors when deleting parity block of stripe\n%s", 253 bucket.inode, bucket.offset, a->gen, 254 a->dirty_sectors, 255 a->cached_sectors, 256 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 257 ret = -BCH_ERR_mark_stripe; 258 goto err; 259 } 260 } 261 262 if (sectors) { 263 ret = bch2_bucket_ref_update(trans, ca, s.s_c, ptr, sectors, data_type, 264 a->gen, a->data_type, &a->dirty_sectors); 265 if (ret) 266 goto err; 267 } 268 269 if (!deleting) { 270 a->stripe = s.k->p.offset; 271 a->stripe_redundancy = s.v->nr_redundant; 272 alloc_data_type_set(a, data_type); 273 } else { 274 a->stripe = 0; 275 a->stripe_redundancy = 0; 276 alloc_data_type_set(a, BCH_DATA_user); 277 } 278 err: 279 printbuf_exit(&buf); 280 return ret; 281 } 282 283 static int mark_stripe_bucket(struct btree_trans *trans, 284 struct bkey_s_c_stripe s, 285 unsigned ptr_idx, bool deleting, 286 enum btree_iter_update_trigger_flags flags) 287 { 288 struct bch_fs *c = trans->c; 289 const struct bch_extent_ptr *ptr = s.v->ptrs + ptr_idx; 290 struct printbuf buf = PRINTBUF; 291 int ret = 0; 292 293 struct bch_dev *ca = bch2_dev_tryget(c, ptr->dev); 294 if (unlikely(!ca)) { 295 if (ptr->dev != BCH_SB_MEMBER_INVALID && !(flags & BTREE_TRIGGER_overwrite)) 296 ret = -BCH_ERR_mark_stripe; 297 goto err; 298 } 299 300 struct bpos bucket = PTR_BUCKET_POS(ca, ptr); 301 302 if (flags & BTREE_TRIGGER_transactional) { 303 struct extent_ptr_decoded p = { 304 .ptr = *ptr, 305 .crc = bch2_extent_crc_unpack(s.k, NULL), 306 }; 307 struct bkey_i_backpointer bp; 308 bch2_extent_ptr_to_bp(c, BTREE_ID_stripes, 0, s.s_c, p, 309 (const union bch_extent_entry *) ptr, &bp); 310 311 struct bkey_i_alloc_v4 *a = 312 bch2_trans_start_alloc_update(trans, bucket, 0); 313 ret = PTR_ERR_OR_ZERO(a) ?: 314 __mark_stripe_bucket(trans, ca, s, ptr_idx, deleting, bucket, &a->v, flags) ?: 315 bch2_bucket_backpointer_mod(trans, s.s_c, &bp, 316 !(flags & BTREE_TRIGGER_overwrite)); 317 if (ret) 318 goto err; 319 } 320 321 if (flags & BTREE_TRIGGER_gc) { 322 struct bucket *g = gc_bucket(ca, bucket.offset); 323 if (bch2_fs_inconsistent_on(!g, c, "reference to invalid bucket on device %u\n %s", 324 ptr->dev, 325 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) { 326 ret = -BCH_ERR_mark_stripe; 327 goto err; 328 } 329 330 bucket_lock(g); 331 struct bch_alloc_v4 old = bucket_m_to_alloc(*g), new = old; 332 ret = __mark_stripe_bucket(trans, ca, s, ptr_idx, deleting, bucket, &new, flags); 333 alloc_to_bucket(g, new); 334 bucket_unlock(g); 335 336 if (!ret) 337 ret = bch2_alloc_key_to_dev_counters(trans, ca, &old, &new, flags); 338 } 339 err: 340 bch2_dev_put(ca); 341 printbuf_exit(&buf); 342 return ret; 343 } 344 345 static int mark_stripe_buckets(struct btree_trans *trans, 346 struct bkey_s_c old, struct bkey_s_c new, 347 enum btree_iter_update_trigger_flags flags) 348 { 349 const struct bch_stripe *old_s = old.k->type == KEY_TYPE_stripe 350 ? bkey_s_c_to_stripe(old).v : NULL; 351 const struct bch_stripe *new_s = new.k->type == KEY_TYPE_stripe 352 ? bkey_s_c_to_stripe(new).v : NULL; 353 354 BUG_ON(old_s && new_s && old_s->nr_blocks != new_s->nr_blocks); 355 356 unsigned nr_blocks = new_s ? new_s->nr_blocks : old_s->nr_blocks; 357 358 for (unsigned i = 0; i < nr_blocks; i++) { 359 if (new_s && old_s && 360 !memcmp(&new_s->ptrs[i], 361 &old_s->ptrs[i], 362 sizeof(new_s->ptrs[i]))) 363 continue; 364 365 if (new_s) { 366 int ret = mark_stripe_bucket(trans, 367 bkey_s_c_to_stripe(new), i, false, flags); 368 if (ret) 369 return ret; 370 } 371 372 if (old_s) { 373 int ret = mark_stripe_bucket(trans, 374 bkey_s_c_to_stripe(old), i, true, flags); 375 if (ret) 376 return ret; 377 } 378 } 379 380 return 0; 381 } 382 383 int bch2_trigger_stripe(struct btree_trans *trans, 384 enum btree_id btree, unsigned level, 385 struct bkey_s_c old, struct bkey_s _new, 386 enum btree_iter_update_trigger_flags flags) 387 { 388 struct bkey_s_c new = _new.s_c; 389 struct bch_fs *c = trans->c; 390 u64 idx = new.k->p.offset; 391 const struct bch_stripe *old_s = old.k->type == KEY_TYPE_stripe 392 ? bkey_s_c_to_stripe(old).v : NULL; 393 const struct bch_stripe *new_s = new.k->type == KEY_TYPE_stripe 394 ? bkey_s_c_to_stripe(new).v : NULL; 395 396 if (unlikely(flags & BTREE_TRIGGER_check_repair)) 397 return bch2_check_fix_ptrs(trans, btree, level, _new.s_c, flags); 398 399 BUG_ON(new_s && old_s && 400 (new_s->nr_blocks != old_s->nr_blocks || 401 new_s->nr_redundant != old_s->nr_redundant)); 402 403 if (flags & BTREE_TRIGGER_transactional) { 404 int ret = bch2_lru_change(trans, 405 BCH_LRU_STRIPE_FRAGMENTATION, 406 idx, 407 stripe_lru_pos(old_s), 408 stripe_lru_pos(new_s)); 409 if (ret) 410 return ret; 411 } 412 413 if (flags & (BTREE_TRIGGER_transactional|BTREE_TRIGGER_gc)) { 414 /* 415 * If the pointers aren't changing, we don't need to do anything: 416 */ 417 if (new_s && old_s && 418 new_s->nr_blocks == old_s->nr_blocks && 419 new_s->nr_redundant == old_s->nr_redundant && 420 !memcmp(old_s->ptrs, new_s->ptrs, 421 new_s->nr_blocks * sizeof(struct bch_extent_ptr))) 422 return 0; 423 424 struct gc_stripe *gc = NULL; 425 if (flags & BTREE_TRIGGER_gc) { 426 gc = genradix_ptr_alloc(&c->gc_stripes, idx, GFP_KERNEL); 427 if (!gc) { 428 bch_err(c, "error allocating memory for gc_stripes, idx %llu", idx); 429 return -BCH_ERR_ENOMEM_mark_stripe; 430 } 431 432 /* 433 * This will be wrong when we bring back runtime gc: we should 434 * be unmarking the old key and then marking the new key 435 * 436 * Also: when we bring back runtime gc, locking 437 */ 438 gc->alive = true; 439 gc->sectors = le16_to_cpu(new_s->sectors); 440 gc->nr_blocks = new_s->nr_blocks; 441 gc->nr_redundant = new_s->nr_redundant; 442 443 for (unsigned i = 0; i < new_s->nr_blocks; i++) 444 gc->ptrs[i] = new_s->ptrs[i]; 445 446 /* 447 * gc recalculates this field from stripe ptr 448 * references: 449 */ 450 memset(gc->block_sectors, 0, sizeof(gc->block_sectors)); 451 } 452 453 if (new_s) { 454 s64 sectors = (u64) le16_to_cpu(new_s->sectors) * new_s->nr_redundant; 455 456 struct disk_accounting_pos acc = { 457 .type = BCH_DISK_ACCOUNTING_replicas, 458 }; 459 bch2_bkey_to_replicas(&acc.replicas, new); 460 int ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc); 461 if (ret) 462 return ret; 463 464 if (gc) 465 memcpy(&gc->r.e, &acc.replicas, replicas_entry_bytes(&acc.replicas)); 466 } 467 468 if (old_s) { 469 s64 sectors = -((s64) le16_to_cpu(old_s->sectors)) * old_s->nr_redundant; 470 471 struct disk_accounting_pos acc = { 472 .type = BCH_DISK_ACCOUNTING_replicas, 473 }; 474 bch2_bkey_to_replicas(&acc.replicas, old); 475 int ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc); 476 if (ret) 477 return ret; 478 } 479 480 int ret = mark_stripe_buckets(trans, old, new, flags); 481 if (ret) 482 return ret; 483 } 484 485 return 0; 486 } 487 488 /* returns blocknr in stripe that we matched: */ 489 static const struct bch_extent_ptr *bkey_matches_stripe(struct bch_stripe *s, 490 struct bkey_s_c k, unsigned *block) 491 { 492 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); 493 unsigned i, nr_data = s->nr_blocks - s->nr_redundant; 494 495 bkey_for_each_ptr(ptrs, ptr) 496 for (i = 0; i < nr_data; i++) 497 if (__bch2_ptr_matches_stripe(&s->ptrs[i], ptr, 498 le16_to_cpu(s->sectors))) { 499 *block = i; 500 return ptr; 501 } 502 503 return NULL; 504 } 505 506 static bool extent_has_stripe_ptr(struct bkey_s_c k, u64 idx) 507 { 508 switch (k.k->type) { 509 case KEY_TYPE_extent: { 510 struct bkey_s_c_extent e = bkey_s_c_to_extent(k); 511 const union bch_extent_entry *entry; 512 513 extent_for_each_entry(e, entry) 514 if (extent_entry_type(entry) == 515 BCH_EXTENT_ENTRY_stripe_ptr && 516 entry->stripe_ptr.idx == idx) 517 return true; 518 519 break; 520 } 521 } 522 523 return false; 524 } 525 526 /* Stripe bufs: */ 527 528 static void ec_stripe_buf_exit(struct ec_stripe_buf *buf) 529 { 530 if (buf->key.k.type == KEY_TYPE_stripe) { 531 struct bkey_i_stripe *s = bkey_i_to_stripe(&buf->key); 532 unsigned i; 533 534 for (i = 0; i < s->v.nr_blocks; i++) { 535 kvfree(buf->data[i]); 536 buf->data[i] = NULL; 537 } 538 } 539 } 540 541 /* XXX: this is a non-mempoolified memory allocation: */ 542 static int ec_stripe_buf_init(struct ec_stripe_buf *buf, 543 unsigned offset, unsigned size) 544 { 545 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 546 unsigned csum_granularity = 1U << v->csum_granularity_bits; 547 unsigned end = offset + size; 548 unsigned i; 549 550 BUG_ON(end > le16_to_cpu(v->sectors)); 551 552 offset = round_down(offset, csum_granularity); 553 end = min_t(unsigned, le16_to_cpu(v->sectors), 554 round_up(end, csum_granularity)); 555 556 buf->offset = offset; 557 buf->size = end - offset; 558 559 memset(buf->valid, 0xFF, sizeof(buf->valid)); 560 561 for (i = 0; i < v->nr_blocks; i++) { 562 buf->data[i] = kvmalloc(buf->size << 9, GFP_KERNEL); 563 if (!buf->data[i]) 564 goto err; 565 } 566 567 return 0; 568 err: 569 ec_stripe_buf_exit(buf); 570 return -BCH_ERR_ENOMEM_stripe_buf; 571 } 572 573 /* Checksumming: */ 574 575 static struct bch_csum ec_block_checksum(struct ec_stripe_buf *buf, 576 unsigned block, unsigned offset) 577 { 578 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 579 unsigned csum_granularity = 1 << v->csum_granularity_bits; 580 unsigned end = buf->offset + buf->size; 581 unsigned len = min(csum_granularity, end - offset); 582 583 BUG_ON(offset >= end); 584 BUG_ON(offset < buf->offset); 585 BUG_ON(offset & (csum_granularity - 1)); 586 BUG_ON(offset + len != le16_to_cpu(v->sectors) && 587 (len & (csum_granularity - 1))); 588 589 return bch2_checksum(NULL, v->csum_type, 590 null_nonce(), 591 buf->data[block] + ((offset - buf->offset) << 9), 592 len << 9); 593 } 594 595 static void ec_generate_checksums(struct ec_stripe_buf *buf) 596 { 597 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 598 unsigned i, j, csums_per_device = stripe_csums_per_device(v); 599 600 if (!v->csum_type) 601 return; 602 603 BUG_ON(buf->offset); 604 BUG_ON(buf->size != le16_to_cpu(v->sectors)); 605 606 for (i = 0; i < v->nr_blocks; i++) 607 for (j = 0; j < csums_per_device; j++) 608 stripe_csum_set(v, i, j, 609 ec_block_checksum(buf, i, j << v->csum_granularity_bits)); 610 } 611 612 static void ec_validate_checksums(struct bch_fs *c, struct ec_stripe_buf *buf) 613 { 614 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 615 unsigned csum_granularity = 1 << v->csum_granularity_bits; 616 unsigned i; 617 618 if (!v->csum_type) 619 return; 620 621 for (i = 0; i < v->nr_blocks; i++) { 622 unsigned offset = buf->offset; 623 unsigned end = buf->offset + buf->size; 624 625 if (!test_bit(i, buf->valid)) 626 continue; 627 628 while (offset < end) { 629 unsigned j = offset >> v->csum_granularity_bits; 630 unsigned len = min(csum_granularity, end - offset); 631 struct bch_csum want = stripe_csum_get(v, i, j); 632 struct bch_csum got = ec_block_checksum(buf, i, offset); 633 634 if (bch2_crc_cmp(want, got)) { 635 struct bch_dev *ca = bch2_dev_tryget(c, v->ptrs[i].dev); 636 if (ca) { 637 struct printbuf err = PRINTBUF; 638 639 prt_str(&err, "stripe "); 640 bch2_csum_err_msg(&err, v->csum_type, want, got); 641 prt_printf(&err, " for %ps at %u of\n ", (void *) _RET_IP_, i); 642 bch2_bkey_val_to_text(&err, c, bkey_i_to_s_c(&buf->key)); 643 bch_err_ratelimited(ca, "%s", err.buf); 644 printbuf_exit(&err); 645 646 bch2_io_error(ca, BCH_MEMBER_ERROR_checksum); 647 } 648 649 clear_bit(i, buf->valid); 650 break; 651 } 652 653 offset += len; 654 } 655 } 656 } 657 658 /* Erasure coding: */ 659 660 static void ec_generate_ec(struct ec_stripe_buf *buf) 661 { 662 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 663 unsigned nr_data = v->nr_blocks - v->nr_redundant; 664 unsigned bytes = le16_to_cpu(v->sectors) << 9; 665 666 raid_gen(nr_data, v->nr_redundant, bytes, buf->data); 667 } 668 669 static unsigned ec_nr_failed(struct ec_stripe_buf *buf) 670 { 671 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 672 673 return v->nr_blocks - bitmap_weight(buf->valid, v->nr_blocks); 674 } 675 676 static int ec_do_recov(struct bch_fs *c, struct ec_stripe_buf *buf) 677 { 678 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 679 unsigned i, failed[BCH_BKEY_PTRS_MAX], nr_failed = 0; 680 unsigned nr_data = v->nr_blocks - v->nr_redundant; 681 unsigned bytes = buf->size << 9; 682 683 if (ec_nr_failed(buf) > v->nr_redundant) { 684 bch_err_ratelimited(c, 685 "error doing reconstruct read: unable to read enough blocks"); 686 return -1; 687 } 688 689 for (i = 0; i < nr_data; i++) 690 if (!test_bit(i, buf->valid)) 691 failed[nr_failed++] = i; 692 693 raid_rec(nr_failed, failed, nr_data, v->nr_redundant, bytes, buf->data); 694 return 0; 695 } 696 697 /* IO: */ 698 699 static void ec_block_endio(struct bio *bio) 700 { 701 struct ec_bio *ec_bio = container_of(bio, struct ec_bio, bio); 702 struct bch_stripe *v = &bkey_i_to_stripe(&ec_bio->buf->key)->v; 703 struct bch_extent_ptr *ptr = &v->ptrs[ec_bio->idx]; 704 struct bch_dev *ca = ec_bio->ca; 705 struct closure *cl = bio->bi_private; 706 707 bch2_account_io_completion(ca, bio_data_dir(bio), 708 ec_bio->submit_time, !bio->bi_status); 709 710 if (bio->bi_status) { 711 bch_err_dev_ratelimited(ca, "erasure coding %s error: %s", 712 str_write_read(bio_data_dir(bio)), 713 bch2_blk_status_to_str(bio->bi_status)); 714 clear_bit(ec_bio->idx, ec_bio->buf->valid); 715 } 716 717 int stale = dev_ptr_stale(ca, ptr); 718 if (stale) { 719 bch_err_ratelimited(ca->fs, 720 "error %s stripe: stale/invalid pointer (%i) after io", 721 bio_data_dir(bio) == READ ? "reading from" : "writing to", 722 stale); 723 clear_bit(ec_bio->idx, ec_bio->buf->valid); 724 } 725 726 bio_put(&ec_bio->bio); 727 percpu_ref_put(&ca->io_ref); 728 closure_put(cl); 729 } 730 731 static void ec_block_io(struct bch_fs *c, struct ec_stripe_buf *buf, 732 blk_opf_t opf, unsigned idx, struct closure *cl) 733 { 734 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; 735 unsigned offset = 0, bytes = buf->size << 9; 736 struct bch_extent_ptr *ptr = &v->ptrs[idx]; 737 enum bch_data_type data_type = idx < v->nr_blocks - v->nr_redundant 738 ? BCH_DATA_user 739 : BCH_DATA_parity; 740 int rw = op_is_write(opf); 741 742 struct bch_dev *ca = bch2_dev_get_ioref(c, ptr->dev, rw); 743 if (!ca) { 744 clear_bit(idx, buf->valid); 745 return; 746 } 747 748 int stale = dev_ptr_stale(ca, ptr); 749 if (stale) { 750 bch_err_ratelimited(c, 751 "error %s stripe: stale pointer (%i)", 752 rw == READ ? "reading from" : "writing to", 753 stale); 754 clear_bit(idx, buf->valid); 755 return; 756 } 757 758 759 this_cpu_add(ca->io_done->sectors[rw][data_type], buf->size); 760 761 while (offset < bytes) { 762 unsigned nr_iovecs = min_t(size_t, BIO_MAX_VECS, 763 DIV_ROUND_UP(bytes, PAGE_SIZE)); 764 unsigned b = min_t(size_t, bytes - offset, 765 nr_iovecs << PAGE_SHIFT); 766 struct ec_bio *ec_bio; 767 768 ec_bio = container_of(bio_alloc_bioset(ca->disk_sb.bdev, 769 nr_iovecs, 770 opf, 771 GFP_KERNEL, 772 &c->ec_bioset), 773 struct ec_bio, bio); 774 775 ec_bio->ca = ca; 776 ec_bio->buf = buf; 777 ec_bio->idx = idx; 778 ec_bio->submit_time = local_clock(); 779 780 ec_bio->bio.bi_iter.bi_sector = ptr->offset + buf->offset + (offset >> 9); 781 ec_bio->bio.bi_end_io = ec_block_endio; 782 ec_bio->bio.bi_private = cl; 783 784 bch2_bio_map(&ec_bio->bio, buf->data[idx] + offset, b); 785 786 closure_get(cl); 787 percpu_ref_get(&ca->io_ref); 788 789 submit_bio(&ec_bio->bio); 790 791 offset += b; 792 } 793 794 percpu_ref_put(&ca->io_ref); 795 } 796 797 static int get_stripe_key_trans(struct btree_trans *trans, u64 idx, 798 struct ec_stripe_buf *stripe) 799 { 800 struct btree_iter iter; 801 struct bkey_s_c k; 802 int ret; 803 804 k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_stripes, 805 POS(0, idx), BTREE_ITER_slots); 806 ret = bkey_err(k); 807 if (ret) 808 goto err; 809 if (k.k->type != KEY_TYPE_stripe) { 810 ret = -ENOENT; 811 goto err; 812 } 813 bkey_reassemble(&stripe->key, k); 814 err: 815 bch2_trans_iter_exit(trans, &iter); 816 return ret; 817 } 818 819 /* recovery read path: */ 820 int bch2_ec_read_extent(struct btree_trans *trans, struct bch_read_bio *rbio, 821 struct bkey_s_c orig_k) 822 { 823 struct bch_fs *c = trans->c; 824 struct ec_stripe_buf *buf = NULL; 825 struct closure cl; 826 struct bch_stripe *v; 827 unsigned i, offset; 828 const char *msg = NULL; 829 struct printbuf msgbuf = PRINTBUF; 830 int ret = 0; 831 832 closure_init_stack(&cl); 833 834 BUG_ON(!rbio->pick.has_ec); 835 836 buf = kzalloc(sizeof(*buf), GFP_NOFS); 837 if (!buf) 838 return -BCH_ERR_ENOMEM_ec_read_extent; 839 840 ret = lockrestart_do(trans, get_stripe_key_trans(trans, rbio->pick.ec.idx, buf)); 841 if (ret) { 842 msg = "stripe not found"; 843 goto err; 844 } 845 846 v = &bkey_i_to_stripe(&buf->key)->v; 847 848 if (!bch2_ptr_matches_stripe(v, rbio->pick)) { 849 msg = "pointer doesn't match stripe"; 850 goto err; 851 } 852 853 offset = rbio->bio.bi_iter.bi_sector - v->ptrs[rbio->pick.ec.block].offset; 854 if (offset + bio_sectors(&rbio->bio) > le16_to_cpu(v->sectors)) { 855 msg = "read is bigger than stripe"; 856 goto err; 857 } 858 859 ret = ec_stripe_buf_init(buf, offset, bio_sectors(&rbio->bio)); 860 if (ret) { 861 msg = "-ENOMEM"; 862 goto err; 863 } 864 865 for (i = 0; i < v->nr_blocks; i++) 866 ec_block_io(c, buf, REQ_OP_READ, i, &cl); 867 868 closure_sync(&cl); 869 870 if (ec_nr_failed(buf) > v->nr_redundant) { 871 msg = "unable to read enough blocks"; 872 goto err; 873 } 874 875 ec_validate_checksums(c, buf); 876 877 ret = ec_do_recov(c, buf); 878 if (ret) 879 goto err; 880 881 memcpy_to_bio(&rbio->bio, rbio->bio.bi_iter, 882 buf->data[rbio->pick.ec.block] + ((offset - buf->offset) << 9)); 883 out: 884 ec_stripe_buf_exit(buf); 885 kfree(buf); 886 return ret; 887 err: 888 bch2_bkey_val_to_text(&msgbuf, c, orig_k); 889 bch_err_ratelimited(c, 890 "error doing reconstruct read: %s\n %s", msg, msgbuf.buf); 891 printbuf_exit(&msgbuf); 892 ret = -BCH_ERR_stripe_reconstruct; 893 goto out; 894 } 895 896 /* stripe bucket accounting: */ 897 898 static int __ec_stripe_mem_alloc(struct bch_fs *c, size_t idx, gfp_t gfp) 899 { 900 if (c->gc_pos.phase != GC_PHASE_not_running && 901 !genradix_ptr_alloc(&c->gc_stripes, idx, gfp)) 902 return -BCH_ERR_ENOMEM_ec_stripe_mem_alloc; 903 904 return 0; 905 } 906 907 static int ec_stripe_mem_alloc(struct btree_trans *trans, 908 struct btree_iter *iter) 909 { 910 return allocate_dropping_locks_errcode(trans, 911 __ec_stripe_mem_alloc(trans->c, iter->pos.offset, _gfp)); 912 } 913 914 /* 915 * Hash table of open stripes: 916 * Stripes that are being created or modified are kept in a hash table, so that 917 * stripe deletion can skip them. 918 */ 919 920 static bool __bch2_stripe_is_open(struct bch_fs *c, u64 idx) 921 { 922 unsigned hash = hash_64(idx, ilog2(ARRAY_SIZE(c->ec_stripes_new))); 923 struct ec_stripe_new *s; 924 925 hlist_for_each_entry(s, &c->ec_stripes_new[hash], hash) 926 if (s->idx == idx) 927 return true; 928 return false; 929 } 930 931 static bool bch2_stripe_is_open(struct bch_fs *c, u64 idx) 932 { 933 bool ret = false; 934 935 spin_lock(&c->ec_stripes_new_lock); 936 ret = __bch2_stripe_is_open(c, idx); 937 spin_unlock(&c->ec_stripes_new_lock); 938 939 return ret; 940 } 941 942 static bool bch2_try_open_stripe(struct bch_fs *c, 943 struct ec_stripe_new *s, 944 u64 idx) 945 { 946 bool ret; 947 948 spin_lock(&c->ec_stripes_new_lock); 949 ret = !__bch2_stripe_is_open(c, idx); 950 if (ret) { 951 unsigned hash = hash_64(idx, ilog2(ARRAY_SIZE(c->ec_stripes_new))); 952 953 s->idx = idx; 954 hlist_add_head(&s->hash, &c->ec_stripes_new[hash]); 955 } 956 spin_unlock(&c->ec_stripes_new_lock); 957 958 return ret; 959 } 960 961 static void bch2_stripe_close(struct bch_fs *c, struct ec_stripe_new *s) 962 { 963 BUG_ON(!s->idx); 964 965 spin_lock(&c->ec_stripes_new_lock); 966 hlist_del_init(&s->hash); 967 spin_unlock(&c->ec_stripes_new_lock); 968 969 s->idx = 0; 970 } 971 972 /* stripe deletion */ 973 974 static int ec_stripe_delete(struct btree_trans *trans, u64 idx) 975 { 976 struct btree_iter iter; 977 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, 978 BTREE_ID_stripes, POS(0, idx), 979 BTREE_ITER_intent); 980 int ret = bkey_err(k); 981 if (ret) 982 goto err; 983 984 /* 985 * We expect write buffer races here 986 * Important: check stripe_is_open with stripe key locked: 987 */ 988 if (k.k->type == KEY_TYPE_stripe && 989 !bch2_stripe_is_open(trans->c, idx) && 990 stripe_lru_pos(bkey_s_c_to_stripe(k).v) == 1) 991 ret = bch2_btree_delete_at(trans, &iter, 0); 992 err: 993 bch2_trans_iter_exit(trans, &iter); 994 return ret; 995 } 996 997 /* 998 * XXX 999 * can we kill this and delete stripes from the trigger? 1000 */ 1001 static void ec_stripe_delete_work(struct work_struct *work) 1002 { 1003 struct bch_fs *c = 1004 container_of(work, struct bch_fs, ec_stripe_delete_work); 1005 1006 bch2_trans_run(c, 1007 bch2_btree_write_buffer_tryflush(trans) ?: 1008 for_each_btree_key_max_commit(trans, lru_iter, BTREE_ID_lru, 1009 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 1, 0), 1010 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 1, LRU_TIME_MAX), 1011 0, lru_k, 1012 NULL, NULL, 1013 BCH_TRANS_COMMIT_no_enospc, ({ 1014 ec_stripe_delete(trans, lru_k.k->p.offset); 1015 }))); 1016 bch2_write_ref_put(c, BCH_WRITE_REF_stripe_delete); 1017 } 1018 1019 void bch2_do_stripe_deletes(struct bch_fs *c) 1020 { 1021 if (bch2_write_ref_tryget(c, BCH_WRITE_REF_stripe_delete) && 1022 !queue_work(c->write_ref_wq, &c->ec_stripe_delete_work)) 1023 bch2_write_ref_put(c, BCH_WRITE_REF_stripe_delete); 1024 } 1025 1026 /* stripe creation: */ 1027 1028 static int ec_stripe_key_update(struct btree_trans *trans, 1029 struct bkey_i_stripe *old, 1030 struct bkey_i_stripe *new) 1031 { 1032 struct bch_fs *c = trans->c; 1033 bool create = !old; 1034 1035 struct btree_iter iter; 1036 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_stripes, 1037 new->k.p, BTREE_ITER_intent); 1038 int ret = bkey_err(k); 1039 if (ret) 1040 goto err; 1041 1042 if (bch2_fs_inconsistent_on(k.k->type != (create ? KEY_TYPE_deleted : KEY_TYPE_stripe), 1043 c, "error %s stripe: got existing key type %s", 1044 create ? "creating" : "updating", 1045 bch2_bkey_types[k.k->type])) { 1046 ret = -EINVAL; 1047 goto err; 1048 } 1049 1050 if (k.k->type == KEY_TYPE_stripe) { 1051 const struct bch_stripe *v = bkey_s_c_to_stripe(k).v; 1052 1053 BUG_ON(old->v.nr_blocks != new->v.nr_blocks); 1054 BUG_ON(old->v.nr_blocks != v->nr_blocks); 1055 1056 for (unsigned i = 0; i < new->v.nr_blocks; i++) { 1057 unsigned sectors = stripe_blockcount_get(v, i); 1058 1059 if (!bch2_extent_ptr_eq(old->v.ptrs[i], new->v.ptrs[i]) && sectors) { 1060 struct printbuf buf = PRINTBUF; 1061 1062 prt_printf(&buf, "stripe changed nonempty block %u", i); 1063 prt_str(&buf, "\nold: "); 1064 bch2_bkey_val_to_text(&buf, c, k); 1065 prt_str(&buf, "\nnew: "); 1066 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&new->k_i)); 1067 bch2_fs_inconsistent(c, "%s", buf.buf); 1068 printbuf_exit(&buf); 1069 ret = -EINVAL; 1070 goto err; 1071 } 1072 1073 /* 1074 * If the stripe ptr changed underneath us, it must have 1075 * been dev_remove_stripes() -> * invalidate_stripe_to_dev() 1076 */ 1077 if (!bch2_extent_ptr_eq(old->v.ptrs[i], v->ptrs[i])) { 1078 BUG_ON(v->ptrs[i].dev != BCH_SB_MEMBER_INVALID); 1079 1080 if (bch2_extent_ptr_eq(old->v.ptrs[i], new->v.ptrs[i])) 1081 new->v.ptrs[i].dev = BCH_SB_MEMBER_INVALID; 1082 } 1083 1084 stripe_blockcount_set(&new->v, i, sectors); 1085 } 1086 } 1087 1088 ret = bch2_trans_update(trans, &iter, &new->k_i, 0); 1089 err: 1090 bch2_trans_iter_exit(trans, &iter); 1091 return ret; 1092 } 1093 1094 static int ec_stripe_update_extent(struct btree_trans *trans, 1095 struct bch_dev *ca, 1096 struct bpos bucket, u8 gen, 1097 struct ec_stripe_buf *s, 1098 struct bkey_s_c_backpointer bp, 1099 struct bkey_buf *last_flushed) 1100 { 1101 struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v; 1102 struct bch_fs *c = trans->c; 1103 struct btree_iter iter; 1104 struct bkey_s_c k; 1105 const struct bch_extent_ptr *ptr_c; 1106 struct bch_extent_ptr *ec_ptr = NULL; 1107 struct bch_extent_stripe_ptr stripe_ptr; 1108 struct bkey_i *n; 1109 int ret, dev, block; 1110 1111 if (bp.v->level) { 1112 struct printbuf buf = PRINTBUF; 1113 struct btree_iter node_iter; 1114 struct btree *b; 1115 1116 b = bch2_backpointer_get_node(trans, bp, &node_iter, last_flushed); 1117 bch2_trans_iter_exit(trans, &node_iter); 1118 1119 if (!b) 1120 return 0; 1121 1122 prt_printf(&buf, "found btree node in erasure coded bucket: b=%px\n", b); 1123 bch2_bkey_val_to_text(&buf, c, bp.s_c); 1124 1125 bch2_fs_inconsistent(c, "%s", buf.buf); 1126 printbuf_exit(&buf); 1127 return -BCH_ERR_erasure_coding_found_btree_node; 1128 } 1129 1130 k = bch2_backpointer_get_key(trans, bp, &iter, BTREE_ITER_intent, last_flushed); 1131 ret = bkey_err(k); 1132 if (ret) 1133 return ret; 1134 if (!k.k) { 1135 /* 1136 * extent no longer exists - we could flush the btree 1137 * write buffer and retry to verify, but no need: 1138 */ 1139 return 0; 1140 } 1141 1142 if (extent_has_stripe_ptr(k, s->key.k.p.offset)) 1143 goto out; 1144 1145 ptr_c = bkey_matches_stripe(v, k, &block); 1146 /* 1147 * It doesn't generally make sense to erasure code cached ptrs: 1148 * XXX: should we be incrementing a counter? 1149 */ 1150 if (!ptr_c || ptr_c->cached) 1151 goto out; 1152 1153 dev = v->ptrs[block].dev; 1154 1155 n = bch2_trans_kmalloc(trans, bkey_bytes(k.k) + sizeof(stripe_ptr)); 1156 ret = PTR_ERR_OR_ZERO(n); 1157 if (ret) 1158 goto out; 1159 1160 bkey_reassemble(n, k); 1161 1162 bch2_bkey_drop_ptrs_noerror(bkey_i_to_s(n), ptr, ptr->dev != dev); 1163 ec_ptr = bch2_bkey_has_device(bkey_i_to_s(n), dev); 1164 BUG_ON(!ec_ptr); 1165 1166 stripe_ptr = (struct bch_extent_stripe_ptr) { 1167 .type = 1 << BCH_EXTENT_ENTRY_stripe_ptr, 1168 .block = block, 1169 .redundancy = v->nr_redundant, 1170 .idx = s->key.k.p.offset, 1171 }; 1172 1173 __extent_entry_insert(n, 1174 (union bch_extent_entry *) ec_ptr, 1175 (union bch_extent_entry *) &stripe_ptr); 1176 1177 ret = bch2_trans_update(trans, &iter, n, 0); 1178 out: 1179 bch2_trans_iter_exit(trans, &iter); 1180 return ret; 1181 } 1182 1183 static int ec_stripe_update_bucket(struct btree_trans *trans, struct ec_stripe_buf *s, 1184 unsigned block) 1185 { 1186 struct bch_fs *c = trans->c; 1187 struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v; 1188 struct bch_extent_ptr ptr = v->ptrs[block]; 1189 int ret = 0; 1190 1191 struct bch_dev *ca = bch2_dev_tryget(c, ptr.dev); 1192 if (!ca) 1193 return -BCH_ERR_ENOENT_dev_not_found; 1194 1195 struct bpos bucket_pos = PTR_BUCKET_POS(ca, &ptr); 1196 1197 struct bkey_buf last_flushed; 1198 bch2_bkey_buf_init(&last_flushed); 1199 bkey_init(&last_flushed.k->k); 1200 1201 ret = for_each_btree_key_max_commit(trans, bp_iter, BTREE_ID_backpointers, 1202 bucket_pos_to_bp_start(ca, bucket_pos), 1203 bucket_pos_to_bp_end(ca, bucket_pos), 0, bp_k, 1204 NULL, NULL, 1205 BCH_TRANS_COMMIT_no_check_rw| 1206 BCH_TRANS_COMMIT_no_enospc, ({ 1207 if (bkey_ge(bp_k.k->p, bucket_pos_to_bp(ca, bpos_nosnap_successor(bucket_pos), 0))) 1208 break; 1209 1210 if (bp_k.k->type != KEY_TYPE_backpointer) 1211 continue; 1212 1213 struct bkey_s_c_backpointer bp = bkey_s_c_to_backpointer(bp_k); 1214 if (bp.v->btree_id == BTREE_ID_stripes) 1215 continue; 1216 1217 ec_stripe_update_extent(trans, ca, bucket_pos, ptr.gen, s, 1218 bp, &last_flushed); 1219 })); 1220 1221 bch2_bkey_buf_exit(&last_flushed, c); 1222 bch2_dev_put(ca); 1223 return ret; 1224 } 1225 1226 static int ec_stripe_update_extents(struct bch_fs *c, struct ec_stripe_buf *s) 1227 { 1228 struct btree_trans *trans = bch2_trans_get(c); 1229 struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v; 1230 unsigned nr_data = v->nr_blocks - v->nr_redundant; 1231 1232 int ret = bch2_btree_write_buffer_flush_sync(trans); 1233 if (ret) 1234 goto err; 1235 1236 for (unsigned i = 0; i < nr_data; i++) { 1237 ret = ec_stripe_update_bucket(trans, s, i); 1238 if (ret) 1239 break; 1240 } 1241 err: 1242 bch2_trans_put(trans); 1243 return ret; 1244 } 1245 1246 static void zero_out_rest_of_ec_bucket(struct bch_fs *c, 1247 struct ec_stripe_new *s, 1248 unsigned block, 1249 struct open_bucket *ob) 1250 { 1251 struct bch_dev *ca = bch2_dev_get_ioref(c, ob->dev, WRITE); 1252 if (!ca) { 1253 s->err = -BCH_ERR_erofs_no_writes; 1254 return; 1255 } 1256 1257 unsigned offset = ca->mi.bucket_size - ob->sectors_free; 1258 memset(s->new_stripe.data[block] + (offset << 9), 1259 0, 1260 ob->sectors_free << 9); 1261 1262 int ret = blkdev_issue_zeroout(ca->disk_sb.bdev, 1263 ob->bucket * ca->mi.bucket_size + offset, 1264 ob->sectors_free, 1265 GFP_KERNEL, 0); 1266 1267 percpu_ref_put(&ca->io_ref); 1268 1269 if (ret) 1270 s->err = ret; 1271 } 1272 1273 void bch2_ec_stripe_new_free(struct bch_fs *c, struct ec_stripe_new *s) 1274 { 1275 if (s->idx) 1276 bch2_stripe_close(c, s); 1277 kfree(s); 1278 } 1279 1280 /* 1281 * data buckets of new stripe all written: create the stripe 1282 */ 1283 static void ec_stripe_create(struct ec_stripe_new *s) 1284 { 1285 struct bch_fs *c = s->c; 1286 struct open_bucket *ob; 1287 struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v; 1288 unsigned i, nr_data = v->nr_blocks - v->nr_redundant; 1289 int ret; 1290 1291 BUG_ON(s->h->s == s); 1292 1293 closure_sync(&s->iodone); 1294 1295 if (!s->err) { 1296 for (i = 0; i < nr_data; i++) 1297 if (s->blocks[i]) { 1298 ob = c->open_buckets + s->blocks[i]; 1299 1300 if (ob->sectors_free) 1301 zero_out_rest_of_ec_bucket(c, s, i, ob); 1302 } 1303 } 1304 1305 if (s->err) { 1306 if (!bch2_err_matches(s->err, EROFS)) 1307 bch_err(c, "error creating stripe: error writing data buckets"); 1308 ret = s->err; 1309 goto err; 1310 } 1311 1312 if (s->have_existing_stripe) { 1313 ec_validate_checksums(c, &s->existing_stripe); 1314 1315 if (ec_do_recov(c, &s->existing_stripe)) { 1316 bch_err(c, "error creating stripe: error reading existing stripe"); 1317 ret = -BCH_ERR_ec_block_read; 1318 goto err; 1319 } 1320 1321 for (i = 0; i < nr_data; i++) 1322 if (stripe_blockcount_get(&bkey_i_to_stripe(&s->existing_stripe.key)->v, i)) 1323 swap(s->new_stripe.data[i], 1324 s->existing_stripe.data[i]); 1325 1326 ec_stripe_buf_exit(&s->existing_stripe); 1327 } 1328 1329 BUG_ON(!s->allocated); 1330 BUG_ON(!s->idx); 1331 1332 ec_generate_ec(&s->new_stripe); 1333 1334 ec_generate_checksums(&s->new_stripe); 1335 1336 /* write p/q: */ 1337 for (i = nr_data; i < v->nr_blocks; i++) 1338 ec_block_io(c, &s->new_stripe, REQ_OP_WRITE, i, &s->iodone); 1339 closure_sync(&s->iodone); 1340 1341 if (ec_nr_failed(&s->new_stripe)) { 1342 bch_err(c, "error creating stripe: error writing redundancy buckets"); 1343 ret = -BCH_ERR_ec_block_write; 1344 goto err; 1345 } 1346 1347 ret = bch2_trans_commit_do(c, &s->res, NULL, 1348 BCH_TRANS_COMMIT_no_check_rw| 1349 BCH_TRANS_COMMIT_no_enospc, 1350 ec_stripe_key_update(trans, 1351 s->have_existing_stripe 1352 ? bkey_i_to_stripe(&s->existing_stripe.key) 1353 : NULL, 1354 bkey_i_to_stripe(&s->new_stripe.key))); 1355 bch_err_msg(c, ret, "creating stripe key"); 1356 if (ret) { 1357 goto err; 1358 } 1359 1360 ret = ec_stripe_update_extents(c, &s->new_stripe); 1361 bch_err_msg(c, ret, "error updating extents"); 1362 if (ret) 1363 goto err; 1364 err: 1365 trace_stripe_create(c, s->idx, ret); 1366 1367 bch2_disk_reservation_put(c, &s->res); 1368 1369 for (i = 0; i < v->nr_blocks; i++) 1370 if (s->blocks[i]) { 1371 ob = c->open_buckets + s->blocks[i]; 1372 1373 if (i < nr_data) { 1374 ob->ec = NULL; 1375 __bch2_open_bucket_put(c, ob); 1376 } else { 1377 bch2_open_bucket_put(c, ob); 1378 } 1379 } 1380 1381 mutex_lock(&c->ec_stripe_new_lock); 1382 list_del(&s->list); 1383 mutex_unlock(&c->ec_stripe_new_lock); 1384 wake_up(&c->ec_stripe_new_wait); 1385 1386 ec_stripe_buf_exit(&s->existing_stripe); 1387 ec_stripe_buf_exit(&s->new_stripe); 1388 closure_debug_destroy(&s->iodone); 1389 1390 ec_stripe_new_put(c, s, STRIPE_REF_stripe); 1391 } 1392 1393 static struct ec_stripe_new *get_pending_stripe(struct bch_fs *c) 1394 { 1395 struct ec_stripe_new *s; 1396 1397 mutex_lock(&c->ec_stripe_new_lock); 1398 list_for_each_entry(s, &c->ec_stripe_new_list, list) 1399 if (!atomic_read(&s->ref[STRIPE_REF_io])) 1400 goto out; 1401 s = NULL; 1402 out: 1403 mutex_unlock(&c->ec_stripe_new_lock); 1404 1405 return s; 1406 } 1407 1408 static void ec_stripe_create_work(struct work_struct *work) 1409 { 1410 struct bch_fs *c = container_of(work, 1411 struct bch_fs, ec_stripe_create_work); 1412 struct ec_stripe_new *s; 1413 1414 while ((s = get_pending_stripe(c))) 1415 ec_stripe_create(s); 1416 1417 bch2_write_ref_put(c, BCH_WRITE_REF_stripe_create); 1418 } 1419 1420 void bch2_ec_do_stripe_creates(struct bch_fs *c) 1421 { 1422 bch2_write_ref_get(c, BCH_WRITE_REF_stripe_create); 1423 1424 if (!queue_work(system_long_wq, &c->ec_stripe_create_work)) 1425 bch2_write_ref_put(c, BCH_WRITE_REF_stripe_create); 1426 } 1427 1428 static void ec_stripe_new_set_pending(struct bch_fs *c, struct ec_stripe_head *h) 1429 { 1430 struct ec_stripe_new *s = h->s; 1431 1432 lockdep_assert_held(&h->lock); 1433 1434 BUG_ON(!s->allocated && !s->err); 1435 1436 h->s = NULL; 1437 s->pending = true; 1438 1439 mutex_lock(&c->ec_stripe_new_lock); 1440 list_add(&s->list, &c->ec_stripe_new_list); 1441 mutex_unlock(&c->ec_stripe_new_lock); 1442 1443 ec_stripe_new_put(c, s, STRIPE_REF_io); 1444 } 1445 1446 static void ec_stripe_new_cancel(struct bch_fs *c, struct ec_stripe_head *h, int err) 1447 { 1448 h->s->err = err; 1449 ec_stripe_new_set_pending(c, h); 1450 } 1451 1452 void bch2_ec_bucket_cancel(struct bch_fs *c, struct open_bucket *ob, int err) 1453 { 1454 struct ec_stripe_new *s = ob->ec; 1455 1456 s->err = err; 1457 } 1458 1459 void *bch2_writepoint_ec_buf(struct bch_fs *c, struct write_point *wp) 1460 { 1461 struct open_bucket *ob = ec_open_bucket(c, &wp->ptrs); 1462 if (!ob) 1463 return NULL; 1464 1465 BUG_ON(!ob->ec->new_stripe.data[ob->ec_idx]); 1466 1467 struct bch_dev *ca = ob_dev(c, ob); 1468 unsigned offset = ca->mi.bucket_size - ob->sectors_free; 1469 1470 return ob->ec->new_stripe.data[ob->ec_idx] + (offset << 9); 1471 } 1472 1473 static int unsigned_cmp(const void *_l, const void *_r) 1474 { 1475 unsigned l = *((const unsigned *) _l); 1476 unsigned r = *((const unsigned *) _r); 1477 1478 return cmp_int(l, r); 1479 } 1480 1481 /* pick most common bucket size: */ 1482 static unsigned pick_blocksize(struct bch_fs *c, 1483 struct bch_devs_mask *devs) 1484 { 1485 unsigned nr = 0, sizes[BCH_SB_MEMBERS_MAX]; 1486 struct { 1487 unsigned nr, size; 1488 } cur = { 0, 0 }, best = { 0, 0 }; 1489 1490 for_each_member_device_rcu(c, ca, devs) 1491 sizes[nr++] = ca->mi.bucket_size; 1492 1493 sort(sizes, nr, sizeof(unsigned), unsigned_cmp, NULL); 1494 1495 for (unsigned i = 0; i < nr; i++) { 1496 if (sizes[i] != cur.size) { 1497 if (cur.nr > best.nr) 1498 best = cur; 1499 1500 cur.nr = 0; 1501 cur.size = sizes[i]; 1502 } 1503 1504 cur.nr++; 1505 } 1506 1507 if (cur.nr > best.nr) 1508 best = cur; 1509 1510 return best.size; 1511 } 1512 1513 static bool may_create_new_stripe(struct bch_fs *c) 1514 { 1515 return false; 1516 } 1517 1518 static void ec_stripe_key_init(struct bch_fs *c, 1519 struct bkey_i *k, 1520 unsigned nr_data, 1521 unsigned nr_parity, 1522 unsigned stripe_size, 1523 unsigned disk_label) 1524 { 1525 struct bkey_i_stripe *s = bkey_stripe_init(k); 1526 unsigned u64s; 1527 1528 s->v.sectors = cpu_to_le16(stripe_size); 1529 s->v.algorithm = 0; 1530 s->v.nr_blocks = nr_data + nr_parity; 1531 s->v.nr_redundant = nr_parity; 1532 s->v.csum_granularity_bits = ilog2(c->opts.encoded_extent_max >> 9); 1533 s->v.csum_type = BCH_CSUM_crc32c; 1534 s->v.disk_label = disk_label; 1535 1536 while ((u64s = stripe_val_u64s(&s->v)) > BKEY_VAL_U64s_MAX) { 1537 BUG_ON(1 << s->v.csum_granularity_bits >= 1538 le16_to_cpu(s->v.sectors) || 1539 s->v.csum_granularity_bits == U8_MAX); 1540 s->v.csum_granularity_bits++; 1541 } 1542 1543 set_bkey_val_u64s(&s->k, u64s); 1544 } 1545 1546 static struct ec_stripe_new *ec_new_stripe_alloc(struct bch_fs *c, struct ec_stripe_head *h) 1547 { 1548 struct ec_stripe_new *s; 1549 1550 lockdep_assert_held(&h->lock); 1551 1552 s = kzalloc(sizeof(*s), GFP_KERNEL); 1553 if (!s) 1554 return NULL; 1555 1556 mutex_init(&s->lock); 1557 closure_init(&s->iodone, NULL); 1558 atomic_set(&s->ref[STRIPE_REF_stripe], 1); 1559 atomic_set(&s->ref[STRIPE_REF_io], 1); 1560 s->c = c; 1561 s->h = h; 1562 s->nr_data = min_t(unsigned, h->nr_active_devs, 1563 BCH_BKEY_PTRS_MAX) - h->redundancy; 1564 s->nr_parity = h->redundancy; 1565 1566 ec_stripe_key_init(c, &s->new_stripe.key, 1567 s->nr_data, s->nr_parity, 1568 h->blocksize, h->disk_label); 1569 return s; 1570 } 1571 1572 static void ec_stripe_head_devs_update(struct bch_fs *c, struct ec_stripe_head *h) 1573 { 1574 struct bch_devs_mask devs = h->devs; 1575 1576 rcu_read_lock(); 1577 h->devs = target_rw_devs(c, BCH_DATA_user, h->disk_label 1578 ? group_to_target(h->disk_label - 1) 1579 : 0); 1580 unsigned nr_devs = dev_mask_nr(&h->devs); 1581 1582 for_each_member_device_rcu(c, ca, &h->devs) 1583 if (!ca->mi.durability) 1584 __clear_bit(ca->dev_idx, h->devs.d); 1585 unsigned nr_devs_with_durability = dev_mask_nr(&h->devs); 1586 1587 h->blocksize = pick_blocksize(c, &h->devs); 1588 1589 h->nr_active_devs = 0; 1590 for_each_member_device_rcu(c, ca, &h->devs) 1591 if (ca->mi.bucket_size == h->blocksize) 1592 h->nr_active_devs++; 1593 1594 rcu_read_unlock(); 1595 1596 /* 1597 * If we only have redundancy + 1 devices, we're better off with just 1598 * replication: 1599 */ 1600 h->insufficient_devs = h->nr_active_devs < h->redundancy + 2; 1601 1602 if (h->insufficient_devs) { 1603 const char *err; 1604 1605 if (nr_devs < h->redundancy + 2) 1606 err = NULL; 1607 else if (nr_devs_with_durability < h->redundancy + 2) 1608 err = "cannot use durability=0 devices"; 1609 else 1610 err = "mismatched bucket sizes"; 1611 1612 if (err) 1613 bch_err(c, "insufficient devices available to create stripe (have %u, need %u): %s", 1614 h->nr_active_devs, h->redundancy + 2, err); 1615 } 1616 1617 struct bch_devs_mask devs_leaving; 1618 bitmap_andnot(devs_leaving.d, devs.d, h->devs.d, BCH_SB_MEMBERS_MAX); 1619 1620 if (h->s && !h->s->allocated && dev_mask_nr(&devs_leaving)) 1621 ec_stripe_new_cancel(c, h, -EINTR); 1622 1623 h->rw_devs_change_count = c->rw_devs_change_count; 1624 } 1625 1626 static struct ec_stripe_head * 1627 ec_new_stripe_head_alloc(struct bch_fs *c, unsigned disk_label, 1628 unsigned algo, unsigned redundancy, 1629 enum bch_watermark watermark) 1630 { 1631 struct ec_stripe_head *h; 1632 1633 h = kzalloc(sizeof(*h), GFP_KERNEL); 1634 if (!h) 1635 return NULL; 1636 1637 mutex_init(&h->lock); 1638 BUG_ON(!mutex_trylock(&h->lock)); 1639 1640 h->disk_label = disk_label; 1641 h->algo = algo; 1642 h->redundancy = redundancy; 1643 h->watermark = watermark; 1644 1645 list_add(&h->list, &c->ec_stripe_head_list); 1646 return h; 1647 } 1648 1649 void bch2_ec_stripe_head_put(struct bch_fs *c, struct ec_stripe_head *h) 1650 { 1651 if (h->s && 1652 h->s->allocated && 1653 bitmap_weight(h->s->blocks_allocated, 1654 h->s->nr_data) == h->s->nr_data) 1655 ec_stripe_new_set_pending(c, h); 1656 1657 mutex_unlock(&h->lock); 1658 } 1659 1660 static struct ec_stripe_head * 1661 __bch2_ec_stripe_head_get(struct btree_trans *trans, 1662 unsigned disk_label, 1663 unsigned algo, 1664 unsigned redundancy, 1665 enum bch_watermark watermark) 1666 { 1667 struct bch_fs *c = trans->c; 1668 struct ec_stripe_head *h; 1669 int ret; 1670 1671 if (!redundancy) 1672 return NULL; 1673 1674 ret = bch2_trans_mutex_lock(trans, &c->ec_stripe_head_lock); 1675 if (ret) 1676 return ERR_PTR(ret); 1677 1678 if (test_bit(BCH_FS_going_ro, &c->flags)) { 1679 h = ERR_PTR(-BCH_ERR_erofs_no_writes); 1680 goto err; 1681 } 1682 1683 list_for_each_entry(h, &c->ec_stripe_head_list, list) 1684 if (h->disk_label == disk_label && 1685 h->algo == algo && 1686 h->redundancy == redundancy && 1687 h->watermark == watermark) { 1688 ret = bch2_trans_mutex_lock(trans, &h->lock); 1689 if (ret) { 1690 h = ERR_PTR(ret); 1691 goto err; 1692 } 1693 goto found; 1694 } 1695 1696 h = ec_new_stripe_head_alloc(c, disk_label, algo, redundancy, watermark); 1697 if (!h) { 1698 h = ERR_PTR(-BCH_ERR_ENOMEM_stripe_head_alloc); 1699 goto err; 1700 } 1701 found: 1702 if (h->rw_devs_change_count != c->rw_devs_change_count) 1703 ec_stripe_head_devs_update(c, h); 1704 1705 if (h->insufficient_devs) { 1706 mutex_unlock(&h->lock); 1707 h = NULL; 1708 } 1709 err: 1710 mutex_unlock(&c->ec_stripe_head_lock); 1711 return h; 1712 } 1713 1714 static int new_stripe_alloc_buckets(struct btree_trans *trans, 1715 struct ec_stripe_head *h, struct ec_stripe_new *s, 1716 enum bch_watermark watermark, struct closure *cl) 1717 { 1718 struct bch_fs *c = trans->c; 1719 struct bch_devs_mask devs = h->devs; 1720 struct open_bucket *ob; 1721 struct open_buckets buckets; 1722 struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v; 1723 unsigned i, j, nr_have_parity = 0, nr_have_data = 0; 1724 bool have_cache = true; 1725 int ret = 0; 1726 1727 BUG_ON(v->nr_blocks != s->nr_data + s->nr_parity); 1728 BUG_ON(v->nr_redundant != s->nr_parity); 1729 1730 /* * We bypass the sector allocator which normally does this: */ 1731 bitmap_and(devs.d, devs.d, c->rw_devs[BCH_DATA_user].d, BCH_SB_MEMBERS_MAX); 1732 1733 for_each_set_bit(i, s->blocks_gotten, v->nr_blocks) { 1734 /* 1735 * Note: we don't yet repair invalid blocks (failed/removed 1736 * devices) when reusing stripes - we still need a codepath to 1737 * walk backpointers and update all extents that point to that 1738 * block when updating the stripe 1739 */ 1740 if (v->ptrs[i].dev != BCH_SB_MEMBER_INVALID) 1741 __clear_bit(v->ptrs[i].dev, devs.d); 1742 1743 if (i < s->nr_data) 1744 nr_have_data++; 1745 else 1746 nr_have_parity++; 1747 } 1748 1749 BUG_ON(nr_have_data > s->nr_data); 1750 BUG_ON(nr_have_parity > s->nr_parity); 1751 1752 buckets.nr = 0; 1753 if (nr_have_parity < s->nr_parity) { 1754 ret = bch2_bucket_alloc_set_trans(trans, &buckets, 1755 &h->parity_stripe, 1756 &devs, 1757 s->nr_parity, 1758 &nr_have_parity, 1759 &have_cache, 0, 1760 BCH_DATA_parity, 1761 watermark, 1762 cl); 1763 1764 open_bucket_for_each(c, &buckets, ob, i) { 1765 j = find_next_zero_bit(s->blocks_gotten, 1766 s->nr_data + s->nr_parity, 1767 s->nr_data); 1768 BUG_ON(j >= s->nr_data + s->nr_parity); 1769 1770 s->blocks[j] = buckets.v[i]; 1771 v->ptrs[j] = bch2_ob_ptr(c, ob); 1772 __set_bit(j, s->blocks_gotten); 1773 } 1774 1775 if (ret) 1776 return ret; 1777 } 1778 1779 buckets.nr = 0; 1780 if (nr_have_data < s->nr_data) { 1781 ret = bch2_bucket_alloc_set_trans(trans, &buckets, 1782 &h->block_stripe, 1783 &devs, 1784 s->nr_data, 1785 &nr_have_data, 1786 &have_cache, 0, 1787 BCH_DATA_user, 1788 watermark, 1789 cl); 1790 1791 open_bucket_for_each(c, &buckets, ob, i) { 1792 j = find_next_zero_bit(s->blocks_gotten, 1793 s->nr_data, 0); 1794 BUG_ON(j >= s->nr_data); 1795 1796 s->blocks[j] = buckets.v[i]; 1797 v->ptrs[j] = bch2_ob_ptr(c, ob); 1798 __set_bit(j, s->blocks_gotten); 1799 } 1800 1801 if (ret) 1802 return ret; 1803 } 1804 1805 return 0; 1806 } 1807 1808 static int __get_existing_stripe(struct btree_trans *trans, 1809 struct ec_stripe_head *head, 1810 struct ec_stripe_buf *stripe, 1811 u64 idx) 1812 { 1813 struct bch_fs *c = trans->c; 1814 1815 struct btree_iter iter; 1816 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, 1817 BTREE_ID_stripes, POS(0, idx), 0); 1818 int ret = bkey_err(k); 1819 if (ret) 1820 goto err; 1821 1822 /* We expect write buffer races here */ 1823 if (k.k->type != KEY_TYPE_stripe) 1824 goto out; 1825 1826 struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); 1827 if (stripe_lru_pos(s.v) <= 1) 1828 goto out; 1829 1830 if (s.v->disk_label == head->disk_label && 1831 s.v->algorithm == head->algo && 1832 s.v->nr_redundant == head->redundancy && 1833 le16_to_cpu(s.v->sectors) == head->blocksize && 1834 bch2_try_open_stripe(c, head->s, idx)) { 1835 bkey_reassemble(&stripe->key, k); 1836 ret = 1; 1837 } 1838 out: 1839 bch2_set_btree_iter_dontneed(&iter); 1840 err: 1841 bch2_trans_iter_exit(trans, &iter); 1842 return ret; 1843 } 1844 1845 static int init_new_stripe_from_existing(struct bch_fs *c, struct ec_stripe_new *s) 1846 { 1847 struct bch_stripe *new_v = &bkey_i_to_stripe(&s->new_stripe.key)->v; 1848 struct bch_stripe *existing_v = &bkey_i_to_stripe(&s->existing_stripe.key)->v; 1849 unsigned i; 1850 1851 BUG_ON(existing_v->nr_redundant != s->nr_parity); 1852 s->nr_data = existing_v->nr_blocks - 1853 existing_v->nr_redundant; 1854 1855 int ret = ec_stripe_buf_init(&s->existing_stripe, 0, le16_to_cpu(existing_v->sectors)); 1856 if (ret) { 1857 bch2_stripe_close(c, s); 1858 return ret; 1859 } 1860 1861 BUG_ON(s->existing_stripe.size != le16_to_cpu(existing_v->sectors)); 1862 1863 /* 1864 * Free buckets we initially allocated - they might conflict with 1865 * blocks from the stripe we're reusing: 1866 */ 1867 for_each_set_bit(i, s->blocks_gotten, new_v->nr_blocks) { 1868 bch2_open_bucket_put(c, c->open_buckets + s->blocks[i]); 1869 s->blocks[i] = 0; 1870 } 1871 memset(s->blocks_gotten, 0, sizeof(s->blocks_gotten)); 1872 memset(s->blocks_allocated, 0, sizeof(s->blocks_allocated)); 1873 1874 for (unsigned i = 0; i < existing_v->nr_blocks; i++) { 1875 if (stripe_blockcount_get(existing_v, i)) { 1876 __set_bit(i, s->blocks_gotten); 1877 __set_bit(i, s->blocks_allocated); 1878 } 1879 1880 ec_block_io(c, &s->existing_stripe, READ, i, &s->iodone); 1881 } 1882 1883 bkey_copy(&s->new_stripe.key, &s->existing_stripe.key); 1884 s->have_existing_stripe = true; 1885 1886 return 0; 1887 } 1888 1889 static int __bch2_ec_stripe_head_reuse(struct btree_trans *trans, struct ec_stripe_head *h, 1890 struct ec_stripe_new *s) 1891 { 1892 struct bch_fs *c = trans->c; 1893 1894 /* 1895 * If we can't allocate a new stripe, and there's no stripes with empty 1896 * blocks for us to reuse, that means we have to wait on copygc: 1897 */ 1898 if (may_create_new_stripe(c)) 1899 return -1; 1900 1901 struct btree_iter lru_iter; 1902 struct bkey_s_c lru_k; 1903 int ret = 0; 1904 1905 for_each_btree_key_max_norestart(trans, lru_iter, BTREE_ID_lru, 1906 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 2, 0), 1907 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 2, LRU_TIME_MAX), 1908 0, lru_k, ret) { 1909 ret = __get_existing_stripe(trans, h, &s->existing_stripe, lru_k.k->p.offset); 1910 if (ret) 1911 break; 1912 } 1913 bch2_trans_iter_exit(trans, &lru_iter); 1914 if (!ret) 1915 ret = -BCH_ERR_stripe_alloc_blocked; 1916 if (ret == 1) 1917 ret = 0; 1918 if (ret) 1919 return ret; 1920 1921 return init_new_stripe_from_existing(c, s); 1922 } 1923 1924 static int __bch2_ec_stripe_head_reserve(struct btree_trans *trans, struct ec_stripe_head *h, 1925 struct ec_stripe_new *s) 1926 { 1927 struct bch_fs *c = trans->c; 1928 struct btree_iter iter; 1929 struct bkey_s_c k; 1930 struct bpos min_pos = POS(0, 1); 1931 struct bpos start_pos = bpos_max(min_pos, POS(0, c->ec_stripe_hint)); 1932 int ret; 1933 1934 if (!s->res.sectors) { 1935 ret = bch2_disk_reservation_get(c, &s->res, 1936 h->blocksize, 1937 s->nr_parity, 1938 BCH_DISK_RESERVATION_NOFAIL); 1939 if (ret) 1940 return ret; 1941 } 1942 1943 /* 1944 * Allocate stripe slot 1945 * XXX: we're going to need a bitrange btree of free stripes 1946 */ 1947 for_each_btree_key_norestart(trans, iter, BTREE_ID_stripes, start_pos, 1948 BTREE_ITER_slots|BTREE_ITER_intent, k, ret) { 1949 if (bkey_gt(k.k->p, POS(0, U32_MAX))) { 1950 if (start_pos.offset) { 1951 start_pos = min_pos; 1952 bch2_btree_iter_set_pos(&iter, start_pos); 1953 continue; 1954 } 1955 1956 ret = -BCH_ERR_ENOSPC_stripe_create; 1957 break; 1958 } 1959 1960 if (bkey_deleted(k.k) && 1961 bch2_try_open_stripe(c, s, k.k->p.offset)) 1962 break; 1963 } 1964 1965 c->ec_stripe_hint = iter.pos.offset; 1966 1967 if (ret) 1968 goto err; 1969 1970 ret = ec_stripe_mem_alloc(trans, &iter); 1971 if (ret) { 1972 bch2_stripe_close(c, s); 1973 goto err; 1974 } 1975 1976 s->new_stripe.key.k.p = iter.pos; 1977 out: 1978 bch2_trans_iter_exit(trans, &iter); 1979 return ret; 1980 err: 1981 bch2_disk_reservation_put(c, &s->res); 1982 goto out; 1983 } 1984 1985 struct ec_stripe_head *bch2_ec_stripe_head_get(struct btree_trans *trans, 1986 unsigned target, 1987 unsigned algo, 1988 unsigned redundancy, 1989 enum bch_watermark watermark, 1990 struct closure *cl) 1991 { 1992 struct bch_fs *c = trans->c; 1993 struct ec_stripe_head *h; 1994 bool waiting = false; 1995 unsigned disk_label = 0; 1996 struct target t = target_decode(target); 1997 int ret; 1998 1999 if (t.type == TARGET_GROUP) { 2000 if (t.group > U8_MAX) { 2001 bch_err(c, "cannot create a stripe when disk_label > U8_MAX"); 2002 return NULL; 2003 } 2004 disk_label = t.group + 1; /* 0 == no label */ 2005 } 2006 2007 h = __bch2_ec_stripe_head_get(trans, disk_label, algo, redundancy, watermark); 2008 if (IS_ERR_OR_NULL(h)) 2009 return h; 2010 2011 if (!h->s) { 2012 h->s = ec_new_stripe_alloc(c, h); 2013 if (!h->s) { 2014 ret = -BCH_ERR_ENOMEM_ec_new_stripe_alloc; 2015 bch_err(c, "failed to allocate new stripe"); 2016 goto err; 2017 } 2018 2019 h->nr_created++; 2020 } 2021 2022 struct ec_stripe_new *s = h->s; 2023 2024 if (s->allocated) 2025 goto allocated; 2026 2027 if (s->have_existing_stripe) 2028 goto alloc_existing; 2029 2030 /* First, try to allocate a full stripe: */ 2031 ret = new_stripe_alloc_buckets(trans, h, s, BCH_WATERMARK_stripe, NULL) ?: 2032 __bch2_ec_stripe_head_reserve(trans, h, s); 2033 if (!ret) 2034 goto allocate_buf; 2035 if (bch2_err_matches(ret, BCH_ERR_transaction_restart) || 2036 bch2_err_matches(ret, ENOMEM)) 2037 goto err; 2038 2039 /* 2040 * Not enough buckets available for a full stripe: we must reuse an 2041 * existing stripe: 2042 */ 2043 while (1) { 2044 ret = __bch2_ec_stripe_head_reuse(trans, h, s); 2045 if (!ret) 2046 break; 2047 if (waiting || !cl || ret != -BCH_ERR_stripe_alloc_blocked) 2048 goto err; 2049 2050 if (watermark == BCH_WATERMARK_copygc) { 2051 ret = new_stripe_alloc_buckets(trans, h, s, watermark, NULL) ?: 2052 __bch2_ec_stripe_head_reserve(trans, h, s); 2053 if (ret) 2054 goto err; 2055 goto allocate_buf; 2056 } 2057 2058 /* XXX freelist_wait? */ 2059 closure_wait(&c->freelist_wait, cl); 2060 waiting = true; 2061 } 2062 2063 if (waiting) 2064 closure_wake_up(&c->freelist_wait); 2065 alloc_existing: 2066 /* 2067 * Retry allocating buckets, with the watermark for this 2068 * particular write: 2069 */ 2070 ret = new_stripe_alloc_buckets(trans, h, s, watermark, cl); 2071 if (ret) 2072 goto err; 2073 2074 allocate_buf: 2075 ret = ec_stripe_buf_init(&s->new_stripe, 0, h->blocksize); 2076 if (ret) 2077 goto err; 2078 2079 s->allocated = true; 2080 allocated: 2081 BUG_ON(!s->idx); 2082 BUG_ON(!s->new_stripe.data[0]); 2083 BUG_ON(trans->restarted); 2084 return h; 2085 err: 2086 bch2_ec_stripe_head_put(c, h); 2087 return ERR_PTR(ret); 2088 } 2089 2090 /* device removal */ 2091 2092 static int bch2_invalidate_stripe_to_dev(struct btree_trans *trans, struct bkey_s_c k_a) 2093 { 2094 struct bch_alloc_v4 a_convert; 2095 const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k_a, &a_convert); 2096 2097 if (!a->stripe) 2098 return 0; 2099 2100 if (a->stripe_sectors) { 2101 bch_err(trans->c, "trying to invalidate device in stripe when bucket has stripe data"); 2102 return -BCH_ERR_invalidate_stripe_to_dev; 2103 } 2104 2105 struct btree_iter iter; 2106 struct bkey_i_stripe *s = 2107 bch2_bkey_get_mut_typed(trans, &iter, BTREE_ID_stripes, POS(0, a->stripe), 2108 BTREE_ITER_slots, stripe); 2109 int ret = PTR_ERR_OR_ZERO(s); 2110 if (ret) 2111 return ret; 2112 2113 struct disk_accounting_pos acc = { 2114 .type = BCH_DISK_ACCOUNTING_replicas, 2115 }; 2116 2117 s64 sectors = 0; 2118 for (unsigned i = 0; i < s->v.nr_blocks; i++) 2119 sectors -= stripe_blockcount_get(&s->v, i); 2120 2121 bch2_bkey_to_replicas(&acc.replicas, bkey_i_to_s_c(&s->k_i)); 2122 acc.replicas.data_type = BCH_DATA_user; 2123 ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, false); 2124 if (ret) 2125 goto err; 2126 2127 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(&s->k_i)); 2128 bkey_for_each_ptr(ptrs, ptr) 2129 if (ptr->dev == k_a.k->p.inode) 2130 ptr->dev = BCH_SB_MEMBER_INVALID; 2131 2132 sectors = -sectors; 2133 2134 bch2_bkey_to_replicas(&acc.replicas, bkey_i_to_s_c(&s->k_i)); 2135 acc.replicas.data_type = BCH_DATA_user; 2136 ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, false); 2137 if (ret) 2138 goto err; 2139 err: 2140 bch2_trans_iter_exit(trans, &iter); 2141 return ret; 2142 } 2143 2144 int bch2_dev_remove_stripes(struct bch_fs *c, unsigned dev_idx) 2145 { 2146 return bch2_trans_run(c, 2147 for_each_btree_key_max_commit(trans, iter, 2148 BTREE_ID_alloc, POS(dev_idx, 0), POS(dev_idx, U64_MAX), 2149 BTREE_ITER_intent, k, 2150 NULL, NULL, 0, ({ 2151 bch2_invalidate_stripe_to_dev(trans, k); 2152 }))); 2153 } 2154 2155 /* startup/shutdown */ 2156 2157 static void __bch2_ec_stop(struct bch_fs *c, struct bch_dev *ca) 2158 { 2159 struct ec_stripe_head *h; 2160 struct open_bucket *ob; 2161 unsigned i; 2162 2163 mutex_lock(&c->ec_stripe_head_lock); 2164 list_for_each_entry(h, &c->ec_stripe_head_list, list) { 2165 mutex_lock(&h->lock); 2166 if (!h->s) 2167 goto unlock; 2168 2169 if (!ca) 2170 goto found; 2171 2172 for (i = 0; i < bkey_i_to_stripe(&h->s->new_stripe.key)->v.nr_blocks; i++) { 2173 if (!h->s->blocks[i]) 2174 continue; 2175 2176 ob = c->open_buckets + h->s->blocks[i]; 2177 if (ob->dev == ca->dev_idx) 2178 goto found; 2179 } 2180 goto unlock; 2181 found: 2182 ec_stripe_new_cancel(c, h, -BCH_ERR_erofs_no_writes); 2183 unlock: 2184 mutex_unlock(&h->lock); 2185 } 2186 mutex_unlock(&c->ec_stripe_head_lock); 2187 } 2188 2189 void bch2_ec_stop_dev(struct bch_fs *c, struct bch_dev *ca) 2190 { 2191 __bch2_ec_stop(c, ca); 2192 } 2193 2194 void bch2_fs_ec_stop(struct bch_fs *c) 2195 { 2196 __bch2_ec_stop(c, NULL); 2197 } 2198 2199 static bool bch2_fs_ec_flush_done(struct bch_fs *c) 2200 { 2201 bool ret; 2202 2203 mutex_lock(&c->ec_stripe_new_lock); 2204 ret = list_empty(&c->ec_stripe_new_list); 2205 mutex_unlock(&c->ec_stripe_new_lock); 2206 2207 return ret; 2208 } 2209 2210 void bch2_fs_ec_flush(struct bch_fs *c) 2211 { 2212 wait_event(c->ec_stripe_new_wait, bch2_fs_ec_flush_done(c)); 2213 } 2214 2215 int bch2_stripes_read(struct bch_fs *c) 2216 { 2217 return 0; 2218 } 2219 2220 static void bch2_new_stripe_to_text(struct printbuf *out, struct bch_fs *c, 2221 struct ec_stripe_new *s) 2222 { 2223 prt_printf(out, "\tidx %llu blocks %u+%u allocated %u ref %u %u %s obs", 2224 s->idx, s->nr_data, s->nr_parity, 2225 bitmap_weight(s->blocks_allocated, s->nr_data), 2226 atomic_read(&s->ref[STRIPE_REF_io]), 2227 atomic_read(&s->ref[STRIPE_REF_stripe]), 2228 bch2_watermarks[s->h->watermark]); 2229 2230 struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v; 2231 unsigned i; 2232 for_each_set_bit(i, s->blocks_gotten, v->nr_blocks) 2233 prt_printf(out, " %u", s->blocks[i]); 2234 prt_newline(out); 2235 bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&s->new_stripe.key)); 2236 prt_newline(out); 2237 } 2238 2239 void bch2_new_stripes_to_text(struct printbuf *out, struct bch_fs *c) 2240 { 2241 struct ec_stripe_head *h; 2242 struct ec_stripe_new *s; 2243 2244 mutex_lock(&c->ec_stripe_head_lock); 2245 list_for_each_entry(h, &c->ec_stripe_head_list, list) { 2246 prt_printf(out, "disk label %u algo %u redundancy %u %s nr created %llu:\n", 2247 h->disk_label, h->algo, h->redundancy, 2248 bch2_watermarks[h->watermark], 2249 h->nr_created); 2250 2251 if (h->s) 2252 bch2_new_stripe_to_text(out, c, h->s); 2253 } 2254 mutex_unlock(&c->ec_stripe_head_lock); 2255 2256 prt_printf(out, "in flight:\n"); 2257 2258 mutex_lock(&c->ec_stripe_new_lock); 2259 list_for_each_entry(s, &c->ec_stripe_new_list, list) 2260 bch2_new_stripe_to_text(out, c, s); 2261 mutex_unlock(&c->ec_stripe_new_lock); 2262 } 2263 2264 void bch2_fs_ec_exit(struct bch_fs *c) 2265 { 2266 struct ec_stripe_head *h; 2267 unsigned i; 2268 2269 while (1) { 2270 mutex_lock(&c->ec_stripe_head_lock); 2271 h = list_pop_entry(&c->ec_stripe_head_list, struct ec_stripe_head, list); 2272 mutex_unlock(&c->ec_stripe_head_lock); 2273 2274 if (!h) 2275 break; 2276 2277 if (h->s) { 2278 for (i = 0; i < bkey_i_to_stripe(&h->s->new_stripe.key)->v.nr_blocks; i++) 2279 BUG_ON(h->s->blocks[i]); 2280 2281 kfree(h->s); 2282 } 2283 kfree(h); 2284 } 2285 2286 BUG_ON(!list_empty(&c->ec_stripe_new_list)); 2287 2288 bioset_exit(&c->ec_bioset); 2289 } 2290 2291 void bch2_fs_ec_init_early(struct bch_fs *c) 2292 { 2293 spin_lock_init(&c->ec_stripes_new_lock); 2294 2295 INIT_LIST_HEAD(&c->ec_stripe_head_list); 2296 mutex_init(&c->ec_stripe_head_lock); 2297 2298 INIT_LIST_HEAD(&c->ec_stripe_new_list); 2299 mutex_init(&c->ec_stripe_new_lock); 2300 init_waitqueue_head(&c->ec_stripe_new_wait); 2301 2302 INIT_WORK(&c->ec_stripe_create_work, ec_stripe_create_work); 2303 INIT_WORK(&c->ec_stripe_delete_work, ec_stripe_delete_work); 2304 } 2305 2306 int bch2_fs_ec_init(struct bch_fs *c) 2307 { 2308 return bioset_init(&c->ec_bioset, 1, offsetof(struct ec_bio, bio), 2309 BIOSET_NEED_BVECS); 2310 } 2311 2312 static int bch2_check_stripe_to_lru_ref(struct btree_trans *trans, 2313 struct bkey_s_c k, 2314 struct bkey_buf *last_flushed) 2315 { 2316 if (k.k->type != KEY_TYPE_stripe) 2317 return 0; 2318 2319 struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); 2320 2321 u64 lru_idx = stripe_lru_pos(s.v); 2322 if (lru_idx) { 2323 int ret = bch2_lru_check_set(trans, BCH_LRU_STRIPE_FRAGMENTATION, 2324 k.k->p.offset, lru_idx, k, last_flushed); 2325 if (ret) 2326 return ret; 2327 } 2328 return 0; 2329 } 2330 2331 int bch2_check_stripe_to_lru_refs(struct bch_fs *c) 2332 { 2333 struct bkey_buf last_flushed; 2334 2335 bch2_bkey_buf_init(&last_flushed); 2336 bkey_init(&last_flushed.k->k); 2337 2338 int ret = bch2_trans_run(c, 2339 for_each_btree_key_commit(trans, iter, BTREE_ID_stripes, 2340 POS_MIN, BTREE_ITER_prefetch, k, 2341 NULL, NULL, BCH_TRANS_COMMIT_no_enospc, 2342 bch2_check_stripe_to_lru_ref(trans, k, &last_flushed))); 2343 2344 bch2_bkey_buf_exit(&last_flushed, c); 2345 bch_err_fn(c, ret); 2346 return ret; 2347 } 2348