xref: /linux/drivers/xen/xenbus/xenbus_client.c (revision 7050096d07755c53f71e486af18475050cc4e04b)
1 /******************************************************************************
2  * Client-facing interface for the Xenbus driver.  In other words, the
3  * interface between the Xenbus and the device-specific code, be it the
4  * frontend or the backend of that driver.
5  *
6  * Copyright (C) 2005 XenSource Ltd
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version 2
10  * as published by the Free Software Foundation; or, when distributed
11  * separately from the Linux kernel or incorporated into other
12  * software packages, subject to the following license:
13  *
14  * Permission is hereby granted, free of charge, to any person obtaining a copy
15  * of this source file (the "Software"), to deal in the Software without
16  * restriction, including without limitation the rights to use, copy, modify,
17  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
18  * and to permit persons to whom the Software is furnished to do so, subject to
19  * the following conditions:
20  *
21  * The above copyright notice and this permission notice shall be included in
22  * all copies or substantial portions of the Software.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
27  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30  * IN THE SOFTWARE.
31  */
32 
33 #include <linux/mm.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/spinlock.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <asm/xen/hypervisor.h>
40 #include <xen/page.h>
41 #include <xen/interface/xen.h>
42 #include <xen/interface/event_channel.h>
43 #include <xen/balloon.h>
44 #include <xen/events.h>
45 #include <xen/grant_table.h>
46 #include <xen/xenbus.h>
47 #include <xen/xen.h>
48 #include <xen/features.h>
49 
50 #include "xenbus.h"
51 
52 #define XENBUS_PAGES(_grants)	(DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE))
53 
54 #define XENBUS_MAX_RING_PAGES	(XENBUS_PAGES(XENBUS_MAX_RING_GRANTS))
55 
56 struct xenbus_map_node {
57 	struct list_head next;
58 	union {
59 		struct {
60 			struct vm_struct *area;
61 		} pv;
62 		struct {
63 			struct page *pages[XENBUS_MAX_RING_PAGES];
64 			unsigned long addrs[XENBUS_MAX_RING_GRANTS];
65 			void *addr;
66 		} hvm;
67 	};
68 	grant_handle_t handles[XENBUS_MAX_RING_GRANTS];
69 	unsigned int   nr_handles;
70 };
71 
72 struct map_ring_valloc {
73 	struct xenbus_map_node *node;
74 
75 	/* Why do we need two arrays? See comment of __xenbus_map_ring */
76 	unsigned long addrs[XENBUS_MAX_RING_GRANTS];
77 	phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
78 
79 	struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS];
80 	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
81 
82 	unsigned int idx;
83 };
84 
85 static DEFINE_SPINLOCK(xenbus_valloc_lock);
86 static LIST_HEAD(xenbus_valloc_pages);
87 
88 struct xenbus_ring_ops {
89 	int (*map)(struct xenbus_device *dev, struct map_ring_valloc *info,
90 		   grant_ref_t *gnt_refs, unsigned int nr_grefs,
91 		   void **vaddr);
92 	int (*unmap)(struct xenbus_device *dev, void *vaddr);
93 };
94 
95 static const struct xenbus_ring_ops *ring_ops __read_mostly;
96 
97 const char *xenbus_strstate(enum xenbus_state state)
98 {
99 	static const char *const name[] = {
100 		[ XenbusStateUnknown      ] = "Unknown",
101 		[ XenbusStateInitialising ] = "Initialising",
102 		[ XenbusStateInitWait     ] = "InitWait",
103 		[ XenbusStateInitialised  ] = "Initialised",
104 		[ XenbusStateConnected    ] = "Connected",
105 		[ XenbusStateClosing      ] = "Closing",
106 		[ XenbusStateClosed	  ] = "Closed",
107 		[XenbusStateReconfiguring] = "Reconfiguring",
108 		[XenbusStateReconfigured] = "Reconfigured",
109 	};
110 	return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID";
111 }
112 EXPORT_SYMBOL_GPL(xenbus_strstate);
113 
114 /**
115  * xenbus_watch_path - register a watch
116  * @dev: xenbus device
117  * @path: path to watch
118  * @watch: watch to register
119  * @callback: callback to register
120  *
121  * Register a @watch on the given path, using the given xenbus_watch structure
122  * for storage, and the given @callback function as the callback.  Return 0 on
123  * success, or -errno on error.  On success, the given @path will be saved as
124  * @watch->node, and remains the caller's to free.  On error, @watch->node will
125  * be NULL, the device will switch to %XenbusStateClosing, and the error will
126  * be saved in the store.
127  */
128 int xenbus_watch_path(struct xenbus_device *dev, const char *path,
129 		      struct xenbus_watch *watch,
130 		      bool (*will_handle)(struct xenbus_watch *,
131 					  const char *, const char *),
132 		      void (*callback)(struct xenbus_watch *,
133 				       const char *, const char *))
134 {
135 	int err;
136 
137 	watch->node = path;
138 	watch->will_handle = will_handle;
139 	watch->callback = callback;
140 
141 	err = register_xenbus_watch(watch);
142 
143 	if (err) {
144 		watch->node = NULL;
145 		watch->will_handle = NULL;
146 		watch->callback = NULL;
147 		xenbus_dev_fatal(dev, err, "adding watch on %s", path);
148 	}
149 
150 	return err;
151 }
152 EXPORT_SYMBOL_GPL(xenbus_watch_path);
153 
154 
155 /**
156  * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path
157  * @dev: xenbus device
158  * @watch: watch to register
159  * @callback: callback to register
160  * @pathfmt: format of path to watch
161  *
162  * Register a watch on the given @path, using the given xenbus_watch
163  * structure for storage, and the given @callback function as the callback.
164  * Return 0 on success, or -errno on error.  On success, the watched path
165  * (@path/@path2) will be saved as @watch->node, and becomes the caller's to
166  * kfree().  On error, watch->node will be NULL, so the caller has nothing to
167  * free, the device will switch to %XenbusStateClosing, and the error will be
168  * saved in the store.
169  */
170 int xenbus_watch_pathfmt(struct xenbus_device *dev,
171 			 struct xenbus_watch *watch,
172 			 bool (*will_handle)(struct xenbus_watch *,
173 					const char *, const char *),
174 			 void (*callback)(struct xenbus_watch *,
175 					  const char *, const char *),
176 			 const char *pathfmt, ...)
177 {
178 	int err;
179 	va_list ap;
180 	char *path;
181 
182 	va_start(ap, pathfmt);
183 	path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap);
184 	va_end(ap);
185 
186 	if (!path) {
187 		xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch");
188 		return -ENOMEM;
189 	}
190 	err = xenbus_watch_path(dev, path, watch, will_handle, callback);
191 
192 	if (err)
193 		kfree(path);
194 	return err;
195 }
196 EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt);
197 
198 static void xenbus_switch_fatal(struct xenbus_device *, int, int,
199 				const char *, ...);
200 
201 static int
202 __xenbus_switch_state(struct xenbus_device *dev,
203 		      enum xenbus_state state, int depth)
204 {
205 	/* We check whether the state is currently set to the given value, and
206 	   if not, then the state is set.  We don't want to unconditionally
207 	   write the given state, because we don't want to fire watches
208 	   unnecessarily.  Furthermore, if the node has gone, we don't write
209 	   to it, as the device will be tearing down, and we don't want to
210 	   resurrect that directory.
211 
212 	   Note that, because of this cached value of our state, this
213 	   function will not take a caller's Xenstore transaction
214 	   (something it was trying to in the past) because dev->state
215 	   would not get reset if the transaction was aborted.
216 	 */
217 
218 	struct xenbus_transaction xbt;
219 	int current_state;
220 	int err, abort;
221 
222 	if (state == dev->state)
223 		return 0;
224 
225 again:
226 	abort = 1;
227 
228 	err = xenbus_transaction_start(&xbt);
229 	if (err) {
230 		xenbus_switch_fatal(dev, depth, err, "starting transaction");
231 		return 0;
232 	}
233 
234 	err = xenbus_scanf(xbt, dev->nodename, "state", "%d", &current_state);
235 	if (err != 1)
236 		goto abort;
237 
238 	err = xenbus_printf(xbt, dev->nodename, "state", "%d", state);
239 	if (err) {
240 		xenbus_switch_fatal(dev, depth, err, "writing new state");
241 		goto abort;
242 	}
243 
244 	abort = 0;
245 abort:
246 	err = xenbus_transaction_end(xbt, abort);
247 	if (err) {
248 		if (err == -EAGAIN && !abort)
249 			goto again;
250 		xenbus_switch_fatal(dev, depth, err, "ending transaction");
251 	} else
252 		dev->state = state;
253 
254 	return 0;
255 }
256 
257 /**
258  * xenbus_switch_state
259  * @dev: xenbus device
260  * @state: new state
261  *
262  * Advertise in the store a change of the given driver to the given new_state.
263  * Return 0 on success, or -errno on error.  On error, the device will switch
264  * to XenbusStateClosing, and the error will be saved in the store.
265  */
266 int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state)
267 {
268 	return __xenbus_switch_state(dev, state, 0);
269 }
270 
271 EXPORT_SYMBOL_GPL(xenbus_switch_state);
272 
273 int xenbus_frontend_closed(struct xenbus_device *dev)
274 {
275 	xenbus_switch_state(dev, XenbusStateClosed);
276 	complete(&dev->down);
277 	return 0;
278 }
279 EXPORT_SYMBOL_GPL(xenbus_frontend_closed);
280 
281 static void xenbus_va_dev_error(struct xenbus_device *dev, int err,
282 				const char *fmt, va_list ap)
283 {
284 	unsigned int len;
285 	char *printf_buffer;
286 	char *path_buffer;
287 
288 #define PRINTF_BUFFER_SIZE 4096
289 
290 	printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL);
291 	if (!printf_buffer)
292 		return;
293 
294 	len = sprintf(printf_buffer, "%i ", -err);
295 	vsnprintf(printf_buffer + len, PRINTF_BUFFER_SIZE - len, fmt, ap);
296 
297 	dev_err(&dev->dev, "%s\n", printf_buffer);
298 
299 	path_buffer = kasprintf(GFP_KERNEL, "error/%s", dev->nodename);
300 	if (path_buffer)
301 		xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer);
302 
303 	kfree(printf_buffer);
304 	kfree(path_buffer);
305 }
306 
307 /**
308  * xenbus_dev_error
309  * @dev: xenbus device
310  * @err: error to report
311  * @fmt: error message format
312  *
313  * Report the given negative errno into the store, along with the given
314  * formatted message.
315  */
316 void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...)
317 {
318 	va_list ap;
319 
320 	va_start(ap, fmt);
321 	xenbus_va_dev_error(dev, err, fmt, ap);
322 	va_end(ap);
323 }
324 EXPORT_SYMBOL_GPL(xenbus_dev_error);
325 
326 /**
327  * xenbus_dev_fatal
328  * @dev: xenbus device
329  * @err: error to report
330  * @fmt: error message format
331  *
332  * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by
333  * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly
334  * closedown of this driver and its peer.
335  */
336 
337 void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...)
338 {
339 	va_list ap;
340 
341 	va_start(ap, fmt);
342 	xenbus_va_dev_error(dev, err, fmt, ap);
343 	va_end(ap);
344 
345 	xenbus_switch_state(dev, XenbusStateClosing);
346 }
347 EXPORT_SYMBOL_GPL(xenbus_dev_fatal);
348 
349 /**
350  * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps
351  * avoiding recursion within xenbus_switch_state.
352  */
353 static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err,
354 				const char *fmt, ...)
355 {
356 	va_list ap;
357 
358 	va_start(ap, fmt);
359 	xenbus_va_dev_error(dev, err, fmt, ap);
360 	va_end(ap);
361 
362 	if (!depth)
363 		__xenbus_switch_state(dev, XenbusStateClosing, 1);
364 }
365 
366 /**
367  * xenbus_grant_ring
368  * @dev: xenbus device
369  * @vaddr: starting virtual address of the ring
370  * @nr_pages: number of pages to be granted
371  * @grefs: grant reference array to be filled in
372  *
373  * Grant access to the given @vaddr to the peer of the given device.
374  * Then fill in @grefs with grant references.  Return 0 on success, or
375  * -errno on error.  On error, the device will switch to
376  * XenbusStateClosing, and the error will be saved in the store.
377  */
378 int xenbus_grant_ring(struct xenbus_device *dev, void *vaddr,
379 		      unsigned int nr_pages, grant_ref_t *grefs)
380 {
381 	int err;
382 	unsigned int i;
383 	grant_ref_t gref_head;
384 
385 	err = gnttab_alloc_grant_references(nr_pages, &gref_head);
386 	if (err) {
387 		xenbus_dev_fatal(dev, err, "granting access to ring page");
388 		return err;
389 	}
390 
391 	for (i = 0; i < nr_pages; i++) {
392 		unsigned long gfn;
393 
394 		if (is_vmalloc_addr(vaddr))
395 			gfn = pfn_to_gfn(vmalloc_to_pfn(vaddr));
396 		else
397 			gfn = virt_to_gfn(vaddr);
398 
399 		grefs[i] = gnttab_claim_grant_reference(&gref_head);
400 		gnttab_grant_foreign_access_ref(grefs[i], dev->otherend_id,
401 						gfn, 0);
402 
403 		vaddr = vaddr + XEN_PAGE_SIZE;
404 	}
405 
406 	return 0;
407 }
408 EXPORT_SYMBOL_GPL(xenbus_grant_ring);
409 
410 /*
411  * xenbus_setup_ring
412  * @dev: xenbus device
413  * @vaddr: pointer to starting virtual address of the ring
414  * @nr_pages: number of pages to be granted
415  * @grefs: grant reference array to be filled in
416  *
417  * Allocate physically contiguous pages for a shared ring buffer and grant it
418  * to the peer of the given device. The ring buffer is initially filled with
419  * zeroes. The virtual address of the ring is stored at @vaddr and the
420  * grant references are stored in the @grefs array. In case of error @vaddr
421  * will be set to NULL and @grefs will be filled with INVALID_GRANT_REF.
422  */
423 int xenbus_setup_ring(struct xenbus_device *dev, gfp_t gfp, void **vaddr,
424 		      unsigned int nr_pages, grant_ref_t *grefs)
425 {
426 	unsigned long ring_size = nr_pages * XEN_PAGE_SIZE;
427 	unsigned int i;
428 	int ret;
429 
430 	*vaddr = alloc_pages_exact(ring_size, gfp | __GFP_ZERO);
431 	if (!*vaddr) {
432 		ret = -ENOMEM;
433 		goto err;
434 	}
435 
436 	ret = xenbus_grant_ring(dev, *vaddr, nr_pages, grefs);
437 	if (ret)
438 		goto err;
439 
440 	return 0;
441 
442  err:
443 	if (*vaddr)
444 		free_pages_exact(*vaddr, ring_size);
445 	for (i = 0; i < nr_pages; i++)
446 		grefs[i] = INVALID_GRANT_REF;
447 	*vaddr = NULL;
448 
449 	return ret;
450 }
451 EXPORT_SYMBOL_GPL(xenbus_setup_ring);
452 
453 /*
454  * xenbus_teardown_ring
455  * @vaddr: starting virtual address of the ring
456  * @nr_pages: number of pages
457  * @grefs: grant reference array
458  *
459  * Remove grants for the shared ring buffer and free the associated memory.
460  * On return the grant reference array is filled with INVALID_GRANT_REF.
461  */
462 void xenbus_teardown_ring(void **vaddr, unsigned int nr_pages,
463 			  grant_ref_t *grefs)
464 {
465 	unsigned int i;
466 
467 	for (i = 0; i < nr_pages; i++) {
468 		if (grefs[i] != INVALID_GRANT_REF) {
469 			gnttab_end_foreign_access(grefs[i], 0);
470 			grefs[i] = INVALID_GRANT_REF;
471 		}
472 	}
473 
474 	if (*vaddr)
475 		free_pages_exact(*vaddr, nr_pages * XEN_PAGE_SIZE);
476 	*vaddr = NULL;
477 }
478 EXPORT_SYMBOL_GPL(xenbus_teardown_ring);
479 
480 /**
481  * Allocate an event channel for the given xenbus_device, assigning the newly
482  * created local port to *port.  Return 0 on success, or -errno on error.  On
483  * error, the device will switch to XenbusStateClosing, and the error will be
484  * saved in the store.
485  */
486 int xenbus_alloc_evtchn(struct xenbus_device *dev, evtchn_port_t *port)
487 {
488 	struct evtchn_alloc_unbound alloc_unbound;
489 	int err;
490 
491 	alloc_unbound.dom = DOMID_SELF;
492 	alloc_unbound.remote_dom = dev->otherend_id;
493 
494 	err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound,
495 					  &alloc_unbound);
496 	if (err)
497 		xenbus_dev_fatal(dev, err, "allocating event channel");
498 	else
499 		*port = alloc_unbound.port;
500 
501 	return err;
502 }
503 EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn);
504 
505 
506 /**
507  * Free an existing event channel. Returns 0 on success or -errno on error.
508  */
509 int xenbus_free_evtchn(struct xenbus_device *dev, evtchn_port_t port)
510 {
511 	struct evtchn_close close;
512 	int err;
513 
514 	close.port = port;
515 
516 	err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close);
517 	if (err)
518 		xenbus_dev_error(dev, err, "freeing event channel %u", port);
519 
520 	return err;
521 }
522 EXPORT_SYMBOL_GPL(xenbus_free_evtchn);
523 
524 
525 /**
526  * xenbus_map_ring_valloc
527  * @dev: xenbus device
528  * @gnt_refs: grant reference array
529  * @nr_grefs: number of grant references
530  * @vaddr: pointer to address to be filled out by mapping
531  *
532  * Map @nr_grefs pages of memory into this domain from another
533  * domain's grant table.  xenbus_map_ring_valloc allocates @nr_grefs
534  * pages of virtual address space, maps the pages to that address, and
535  * sets *vaddr to that address.  Returns 0 on success, and -errno on
536  * error. If an error is returned, device will switch to
537  * XenbusStateClosing and the error message will be saved in XenStore.
538  */
539 int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs,
540 			   unsigned int nr_grefs, void **vaddr)
541 {
542 	int err;
543 	struct map_ring_valloc *info;
544 
545 	*vaddr = NULL;
546 
547 	if (nr_grefs > XENBUS_MAX_RING_GRANTS)
548 		return -EINVAL;
549 
550 	info = kzalloc(sizeof(*info), GFP_KERNEL);
551 	if (!info)
552 		return -ENOMEM;
553 
554 	info->node = kzalloc(sizeof(*info->node), GFP_KERNEL);
555 	if (!info->node)
556 		err = -ENOMEM;
557 	else
558 		err = ring_ops->map(dev, info, gnt_refs, nr_grefs, vaddr);
559 
560 	kfree(info->node);
561 	kfree(info);
562 	return err;
563 }
564 EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc);
565 
566 /* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned
567  * long), e.g. 32-on-64.  Caller is responsible for preparing the
568  * right array to feed into this function */
569 static int __xenbus_map_ring(struct xenbus_device *dev,
570 			     grant_ref_t *gnt_refs,
571 			     unsigned int nr_grefs,
572 			     grant_handle_t *handles,
573 			     struct map_ring_valloc *info,
574 			     unsigned int flags,
575 			     bool *leaked)
576 {
577 	int i, j;
578 
579 	if (nr_grefs > XENBUS_MAX_RING_GRANTS)
580 		return -EINVAL;
581 
582 	for (i = 0; i < nr_grefs; i++) {
583 		gnttab_set_map_op(&info->map[i], info->phys_addrs[i], flags,
584 				  gnt_refs[i], dev->otherend_id);
585 		handles[i] = INVALID_GRANT_HANDLE;
586 	}
587 
588 	gnttab_batch_map(info->map, i);
589 
590 	for (i = 0; i < nr_grefs; i++) {
591 		if (info->map[i].status != GNTST_okay) {
592 			xenbus_dev_fatal(dev, info->map[i].status,
593 					 "mapping in shared page %d from domain %d",
594 					 gnt_refs[i], dev->otherend_id);
595 			goto fail;
596 		} else
597 			handles[i] = info->map[i].handle;
598 	}
599 
600 	return 0;
601 
602  fail:
603 	for (i = j = 0; i < nr_grefs; i++) {
604 		if (handles[i] != INVALID_GRANT_HANDLE) {
605 			gnttab_set_unmap_op(&info->unmap[j],
606 					    info->phys_addrs[i],
607 					    GNTMAP_host_map, handles[i]);
608 			j++;
609 		}
610 	}
611 
612 	BUG_ON(HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, info->unmap, j));
613 
614 	*leaked = false;
615 	for (i = 0; i < j; i++) {
616 		if (info->unmap[i].status != GNTST_okay) {
617 			*leaked = true;
618 			break;
619 		}
620 	}
621 
622 	return -ENOENT;
623 }
624 
625 /**
626  * xenbus_unmap_ring
627  * @dev: xenbus device
628  * @handles: grant handle array
629  * @nr_handles: number of handles in the array
630  * @vaddrs: addresses to unmap
631  *
632  * Unmap memory in this domain that was imported from another domain.
633  * Returns 0 on success and returns GNTST_* on error
634  * (see xen/include/interface/grant_table.h).
635  */
636 static int xenbus_unmap_ring(struct xenbus_device *dev, grant_handle_t *handles,
637 			     unsigned int nr_handles, unsigned long *vaddrs)
638 {
639 	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
640 	int i;
641 	int err;
642 
643 	if (nr_handles > XENBUS_MAX_RING_GRANTS)
644 		return -EINVAL;
645 
646 	for (i = 0; i < nr_handles; i++)
647 		gnttab_set_unmap_op(&unmap[i], vaddrs[i],
648 				    GNTMAP_host_map, handles[i]);
649 
650 	BUG_ON(HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i));
651 
652 	err = GNTST_okay;
653 	for (i = 0; i < nr_handles; i++) {
654 		if (unmap[i].status != GNTST_okay) {
655 			xenbus_dev_error(dev, unmap[i].status,
656 					 "unmapping page at handle %d error %d",
657 					 handles[i], unmap[i].status);
658 			err = unmap[i].status;
659 			break;
660 		}
661 	}
662 
663 	return err;
664 }
665 
666 static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn,
667 					    unsigned int goffset,
668 					    unsigned int len,
669 					    void *data)
670 {
671 	struct map_ring_valloc *info = data;
672 	unsigned long vaddr = (unsigned long)gfn_to_virt(gfn);
673 
674 	info->phys_addrs[info->idx] = vaddr;
675 	info->addrs[info->idx] = vaddr;
676 
677 	info->idx++;
678 }
679 
680 static int xenbus_map_ring_hvm(struct xenbus_device *dev,
681 			       struct map_ring_valloc *info,
682 			       grant_ref_t *gnt_ref,
683 			       unsigned int nr_grefs,
684 			       void **vaddr)
685 {
686 	struct xenbus_map_node *node = info->node;
687 	int err;
688 	void *addr;
689 	bool leaked = false;
690 	unsigned int nr_pages = XENBUS_PAGES(nr_grefs);
691 
692 	err = xen_alloc_unpopulated_pages(nr_pages, node->hvm.pages);
693 	if (err)
694 		goto out_err;
695 
696 	gnttab_foreach_grant(node->hvm.pages, nr_grefs,
697 			     xenbus_map_ring_setup_grant_hvm,
698 			     info);
699 
700 	err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles,
701 				info, GNTMAP_host_map, &leaked);
702 	node->nr_handles = nr_grefs;
703 
704 	if (err)
705 		goto out_free_ballooned_pages;
706 
707 	addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP,
708 		    PAGE_KERNEL);
709 	if (!addr) {
710 		err = -ENOMEM;
711 		goto out_xenbus_unmap_ring;
712 	}
713 
714 	node->hvm.addr = addr;
715 
716 	spin_lock(&xenbus_valloc_lock);
717 	list_add(&node->next, &xenbus_valloc_pages);
718 	spin_unlock(&xenbus_valloc_lock);
719 
720 	*vaddr = addr;
721 	info->node = NULL;
722 
723 	return 0;
724 
725  out_xenbus_unmap_ring:
726 	if (!leaked)
727 		xenbus_unmap_ring(dev, node->handles, nr_grefs, info->addrs);
728 	else
729 		pr_alert("leaking %p size %u page(s)",
730 			 addr, nr_pages);
731  out_free_ballooned_pages:
732 	if (!leaked)
733 		xen_free_unpopulated_pages(nr_pages, node->hvm.pages);
734  out_err:
735 	return err;
736 }
737 
738 /**
739  * xenbus_unmap_ring_vfree
740  * @dev: xenbus device
741  * @vaddr: addr to unmap
742  *
743  * Based on Rusty Russell's skeleton driver's unmap_page.
744  * Unmap a page of memory in this domain that was imported from another domain.
745  * Use xenbus_unmap_ring_vfree if you mapped in your memory with
746  * xenbus_map_ring_valloc (it will free the virtual address space).
747  * Returns 0 on success and returns GNTST_* on error
748  * (see xen/include/interface/grant_table.h).
749  */
750 int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr)
751 {
752 	return ring_ops->unmap(dev, vaddr);
753 }
754 EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree);
755 
756 #ifdef CONFIG_XEN_PV
757 static int map_ring_apply(pte_t *pte, unsigned long addr, void *data)
758 {
759 	struct map_ring_valloc *info = data;
760 
761 	info->phys_addrs[info->idx++] = arbitrary_virt_to_machine(pte).maddr;
762 	return 0;
763 }
764 
765 static int xenbus_map_ring_pv(struct xenbus_device *dev,
766 			      struct map_ring_valloc *info,
767 			      grant_ref_t *gnt_refs,
768 			      unsigned int nr_grefs,
769 			      void **vaddr)
770 {
771 	struct xenbus_map_node *node = info->node;
772 	struct vm_struct *area;
773 	bool leaked = false;
774 	int err = -ENOMEM;
775 
776 	area = get_vm_area(XEN_PAGE_SIZE * nr_grefs, VM_IOREMAP);
777 	if (!area)
778 		return -ENOMEM;
779 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
780 				XEN_PAGE_SIZE * nr_grefs, map_ring_apply, info))
781 		goto failed;
782 	err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles,
783 				info, GNTMAP_host_map | GNTMAP_contains_pte,
784 				&leaked);
785 	if (err)
786 		goto failed;
787 
788 	node->nr_handles = nr_grefs;
789 	node->pv.area = area;
790 
791 	spin_lock(&xenbus_valloc_lock);
792 	list_add(&node->next, &xenbus_valloc_pages);
793 	spin_unlock(&xenbus_valloc_lock);
794 
795 	*vaddr = area->addr;
796 	info->node = NULL;
797 
798 	return 0;
799 
800 failed:
801 	if (!leaked)
802 		free_vm_area(area);
803 	else
804 		pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs);
805 
806 	return err;
807 }
808 
809 static int xenbus_unmap_ring_pv(struct xenbus_device *dev, void *vaddr)
810 {
811 	struct xenbus_map_node *node;
812 	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
813 	unsigned int level;
814 	int i;
815 	bool leaked = false;
816 	int err;
817 
818 	spin_lock(&xenbus_valloc_lock);
819 	list_for_each_entry(node, &xenbus_valloc_pages, next) {
820 		if (node->pv.area->addr == vaddr) {
821 			list_del(&node->next);
822 			goto found;
823 		}
824 	}
825 	node = NULL;
826  found:
827 	spin_unlock(&xenbus_valloc_lock);
828 
829 	if (!node) {
830 		xenbus_dev_error(dev, -ENOENT,
831 				 "can't find mapped virtual address %p", vaddr);
832 		return GNTST_bad_virt_addr;
833 	}
834 
835 	for (i = 0; i < node->nr_handles; i++) {
836 		unsigned long addr;
837 
838 		memset(&unmap[i], 0, sizeof(unmap[i]));
839 		addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i);
840 		unmap[i].host_addr = arbitrary_virt_to_machine(
841 			lookup_address(addr, &level)).maddr;
842 		unmap[i].dev_bus_addr = 0;
843 		unmap[i].handle = node->handles[i];
844 	}
845 
846 	BUG_ON(HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i));
847 
848 	err = GNTST_okay;
849 	leaked = false;
850 	for (i = 0; i < node->nr_handles; i++) {
851 		if (unmap[i].status != GNTST_okay) {
852 			leaked = true;
853 			xenbus_dev_error(dev, unmap[i].status,
854 					 "unmapping page at handle %d error %d",
855 					 node->handles[i], unmap[i].status);
856 			err = unmap[i].status;
857 			break;
858 		}
859 	}
860 
861 	if (!leaked)
862 		free_vm_area(node->pv.area);
863 	else
864 		pr_alert("leaking VM area %p size %u page(s)",
865 			 node->pv.area, node->nr_handles);
866 
867 	kfree(node);
868 	return err;
869 }
870 
871 static const struct xenbus_ring_ops ring_ops_pv = {
872 	.map = xenbus_map_ring_pv,
873 	.unmap = xenbus_unmap_ring_pv,
874 };
875 #endif
876 
877 struct unmap_ring_hvm
878 {
879 	unsigned int idx;
880 	unsigned long addrs[XENBUS_MAX_RING_GRANTS];
881 };
882 
883 static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,
884 					      unsigned int goffset,
885 					      unsigned int len,
886 					      void *data)
887 {
888 	struct unmap_ring_hvm *info = data;
889 
890 	info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn);
891 
892 	info->idx++;
893 }
894 
895 static int xenbus_unmap_ring_hvm(struct xenbus_device *dev, void *vaddr)
896 {
897 	int rv;
898 	struct xenbus_map_node *node;
899 	void *addr;
900 	struct unmap_ring_hvm info = {
901 		.idx = 0,
902 	};
903 	unsigned int nr_pages;
904 
905 	spin_lock(&xenbus_valloc_lock);
906 	list_for_each_entry(node, &xenbus_valloc_pages, next) {
907 		addr = node->hvm.addr;
908 		if (addr == vaddr) {
909 			list_del(&node->next);
910 			goto found;
911 		}
912 	}
913 	node = addr = NULL;
914  found:
915 	spin_unlock(&xenbus_valloc_lock);
916 
917 	if (!node) {
918 		xenbus_dev_error(dev, -ENOENT,
919 				 "can't find mapped virtual address %p", vaddr);
920 		return GNTST_bad_virt_addr;
921 	}
922 
923 	nr_pages = XENBUS_PAGES(node->nr_handles);
924 
925 	gnttab_foreach_grant(node->hvm.pages, node->nr_handles,
926 			     xenbus_unmap_ring_setup_grant_hvm,
927 			     &info);
928 
929 	rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles,
930 			       info.addrs);
931 	if (!rv) {
932 		vunmap(vaddr);
933 		xen_free_unpopulated_pages(nr_pages, node->hvm.pages);
934 	}
935 	else
936 		WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages);
937 
938 	kfree(node);
939 	return rv;
940 }
941 
942 /**
943  * xenbus_read_driver_state
944  * @path: path for driver
945  *
946  * Return the state of the driver rooted at the given store path, or
947  * XenbusStateUnknown if no state can be read.
948  */
949 enum xenbus_state xenbus_read_driver_state(const char *path)
950 {
951 	enum xenbus_state result;
952 	int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL);
953 	if (err)
954 		result = XenbusStateUnknown;
955 
956 	return result;
957 }
958 EXPORT_SYMBOL_GPL(xenbus_read_driver_state);
959 
960 static const struct xenbus_ring_ops ring_ops_hvm = {
961 	.map = xenbus_map_ring_hvm,
962 	.unmap = xenbus_unmap_ring_hvm,
963 };
964 
965 void __init xenbus_ring_ops_init(void)
966 {
967 #ifdef CONFIG_XEN_PV
968 	if (!xen_feature(XENFEAT_auto_translated_physmap))
969 		ring_ops = &ring_ops_pv;
970 	else
971 #endif
972 		ring_ops = &ring_ops_hvm;
973 }
974