1 /******************************************************************************
2 * Client-facing interface for the Xenbus driver. In other words, the
3 * interface between the Xenbus and the device-specific code, be it the
4 * frontend or the backend of that driver.
5 *
6 * Copyright (C) 2005 XenSource Ltd
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version 2
10 * as published by the Free Software Foundation; or, when distributed
11 * separately from the Linux kernel or incorporated into other
12 * software packages, subject to the following license:
13 *
14 * Permission is hereby granted, free of charge, to any person obtaining a copy
15 * of this source file (the "Software"), to deal in the Software without
16 * restriction, including without limitation the rights to use, copy, modify,
17 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
18 * and to permit persons to whom the Software is furnished to do so, subject to
19 * the following conditions:
20 *
21 * The above copyright notice and this permission notice shall be included in
22 * all copies or substantial portions of the Software.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
27 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30 * IN THE SOFTWARE.
31 */
32
33 #include <linux/mm.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/spinlock.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <asm/xen/hypervisor.h>
40 #include <xen/page.h>
41 #include <xen/interface/xen.h>
42 #include <xen/interface/event_channel.h>
43 #include <xen/balloon.h>
44 #include <xen/events.h>
45 #include <xen/grant_table.h>
46 #include <xen/xenbus.h>
47 #include <xen/xen.h>
48 #include <xen/features.h>
49
50 #include "xenbus.h"
51
52 #define XENBUS_PAGES(_grants) (DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE))
53
54 #define XENBUS_MAX_RING_PAGES (XENBUS_PAGES(XENBUS_MAX_RING_GRANTS))
55
56 struct xenbus_map_node {
57 struct list_head next;
58 union {
59 struct {
60 struct vm_struct *area;
61 } pv;
62 struct {
63 struct page *pages[XENBUS_MAX_RING_PAGES];
64 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
65 void *addr;
66 } hvm;
67 };
68 grant_handle_t handles[XENBUS_MAX_RING_GRANTS];
69 unsigned int nr_handles;
70 };
71
72 struct map_ring_valloc {
73 struct xenbus_map_node *node;
74
75 /* Why do we need two arrays? See comment of __xenbus_map_ring */
76 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
77 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
78
79 struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS];
80 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
81
82 unsigned int idx;
83 };
84
85 static DEFINE_SPINLOCK(xenbus_valloc_lock);
86 static LIST_HEAD(xenbus_valloc_pages);
87
88 struct xenbus_ring_ops {
89 int (*map)(struct xenbus_device *dev, struct map_ring_valloc *info,
90 grant_ref_t *gnt_refs, unsigned int nr_grefs,
91 void **vaddr);
92 int (*unmap)(struct xenbus_device *dev, void *vaddr);
93 };
94
95 static const struct xenbus_ring_ops *ring_ops __read_mostly;
96
xenbus_strstate(enum xenbus_state state)97 const char *xenbus_strstate(enum xenbus_state state)
98 {
99 static const char *const name[] = {
100 [ XenbusStateUnknown ] = "Unknown",
101 [ XenbusStateInitialising ] = "Initialising",
102 [ XenbusStateInitWait ] = "InitWait",
103 [ XenbusStateInitialised ] = "Initialised",
104 [ XenbusStateConnected ] = "Connected",
105 [ XenbusStateClosing ] = "Closing",
106 [ XenbusStateClosed ] = "Closed",
107 [XenbusStateReconfiguring] = "Reconfiguring",
108 [XenbusStateReconfigured] = "Reconfigured",
109 };
110 return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID";
111 }
112 EXPORT_SYMBOL_GPL(xenbus_strstate);
113
114 /**
115 * xenbus_watch_path - register a watch
116 * @dev: xenbus device
117 * @path: path to watch
118 * @watch: watch to register
119 * @will_handle: events queuing determine callback
120 * @callback: callback to register
121 *
122 * Register a @watch on the given path, using the given xenbus_watch structure
123 * for storage, @will_handle function as the callback to determine if each
124 * event need to be queued, and the given @callback function as the callback.
125 * On success, the given @path will be saved as @watch->node, and remains the
126 * caller's to free. On error, @watch->node will be NULL, the device will
127 * switch to %XenbusStateClosing, and the error will be saved in the store.
128 *
129 * Returns: %0 on success or -errno on error
130 */
xenbus_watch_path(struct xenbus_device * dev,const char * path,struct xenbus_watch * watch,bool (* will_handle)(struct xenbus_watch *,const char *,const char *),void (* callback)(struct xenbus_watch *,const char *,const char *))131 int xenbus_watch_path(struct xenbus_device *dev, const char *path,
132 struct xenbus_watch *watch,
133 bool (*will_handle)(struct xenbus_watch *,
134 const char *, const char *),
135 void (*callback)(struct xenbus_watch *,
136 const char *, const char *))
137 {
138 int err;
139
140 watch->node = path;
141 watch->will_handle = will_handle;
142 watch->callback = callback;
143
144 err = register_xenbus_watch(watch);
145
146 if (err) {
147 watch->node = NULL;
148 watch->will_handle = NULL;
149 watch->callback = NULL;
150 xenbus_dev_fatal(dev, err, "adding watch on %s", path);
151 }
152
153 return err;
154 }
155 EXPORT_SYMBOL_GPL(xenbus_watch_path);
156
157
158 /**
159 * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path
160 * @dev: xenbus device
161 * @watch: watch to register
162 * @will_handle: events queuing determine callback
163 * @callback: callback to register
164 * @pathfmt: format of path to watch
165 *
166 * Register a watch on the given @path, using the given xenbus_watch
167 * structure for storage, @will_handle function as the callback to determine if
168 * each event need to be queued, and the given @callback function as the
169 * callback. On success, the watched path (@path/@path2) will be saved
170 * as @watch->node, and becomes the caller's to kfree().
171 * On error, watch->node will be NULL, so the caller has nothing to
172 * free, the device will switch to %XenbusStateClosing, and the error will be
173 * saved in the store.
174 *
175 * Returns: %0 on success or -errno on error
176 */
xenbus_watch_pathfmt(struct xenbus_device * dev,struct xenbus_watch * watch,bool (* will_handle)(struct xenbus_watch *,const char *,const char *),void (* callback)(struct xenbus_watch *,const char *,const char *),const char * pathfmt,...)177 int xenbus_watch_pathfmt(struct xenbus_device *dev,
178 struct xenbus_watch *watch,
179 bool (*will_handle)(struct xenbus_watch *,
180 const char *, const char *),
181 void (*callback)(struct xenbus_watch *,
182 const char *, const char *),
183 const char *pathfmt, ...)
184 {
185 int err;
186 va_list ap;
187 char *path;
188
189 va_start(ap, pathfmt);
190 path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap);
191 va_end(ap);
192
193 if (!path) {
194 xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch");
195 return -ENOMEM;
196 }
197 err = xenbus_watch_path(dev, path, watch, will_handle, callback);
198
199 if (err)
200 kfree(path);
201 return err;
202 }
203 EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt);
204
205 static void xenbus_switch_fatal(struct xenbus_device *, int, int,
206 const char *, ...);
207
208 static int
__xenbus_switch_state(struct xenbus_device * dev,enum xenbus_state state,int depth)209 __xenbus_switch_state(struct xenbus_device *dev,
210 enum xenbus_state state, int depth)
211 {
212 /* We check whether the state is currently set to the given value, and
213 if not, then the state is set. We don't want to unconditionally
214 write the given state, because we don't want to fire watches
215 unnecessarily. Furthermore, if the node has gone, we don't write
216 to it, as the device will be tearing down, and we don't want to
217 resurrect that directory.
218
219 Note that, because of this cached value of our state, this
220 function will not take a caller's Xenstore transaction
221 (something it was trying to in the past) because dev->state
222 would not get reset if the transaction was aborted.
223 */
224
225 struct xenbus_transaction xbt;
226 int current_state;
227 int err, abort;
228
229 if (state == dev->state)
230 return 0;
231
232 again:
233 abort = 1;
234
235 err = xenbus_transaction_start(&xbt);
236 if (err) {
237 xenbus_switch_fatal(dev, depth, err, "starting transaction");
238 return 0;
239 }
240
241 err = xenbus_scanf(xbt, dev->nodename, "state", "%d", ¤t_state);
242 if (err != 1)
243 goto abort;
244
245 err = xenbus_printf(xbt, dev->nodename, "state", "%d", state);
246 if (err) {
247 xenbus_switch_fatal(dev, depth, err, "writing new state");
248 goto abort;
249 }
250
251 abort = 0;
252 abort:
253 err = xenbus_transaction_end(xbt, abort);
254 if (err) {
255 if (err == -EAGAIN && !abort)
256 goto again;
257 xenbus_switch_fatal(dev, depth, err, "ending transaction");
258 } else
259 dev->state = state;
260
261 return 0;
262 }
263
264 /**
265 * xenbus_switch_state - save the new state of a driver
266 * @dev: xenbus device
267 * @state: new state
268 *
269 * Advertise in the store a change of the given driver to the given new_state.
270 * On error, the device will switch to XenbusStateClosing, and the error
271 * will be saved in the store.
272 *
273 * Returns: %0 on success or -errno on error
274 */
xenbus_switch_state(struct xenbus_device * dev,enum xenbus_state state)275 int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state)
276 {
277 return __xenbus_switch_state(dev, state, 0);
278 }
279
280 EXPORT_SYMBOL_GPL(xenbus_switch_state);
281
xenbus_frontend_closed(struct xenbus_device * dev)282 int xenbus_frontend_closed(struct xenbus_device *dev)
283 {
284 xenbus_switch_state(dev, XenbusStateClosed);
285 complete(&dev->down);
286 return 0;
287 }
288 EXPORT_SYMBOL_GPL(xenbus_frontend_closed);
289
xenbus_va_dev_error(struct xenbus_device * dev,int err,const char * fmt,va_list ap)290 static void xenbus_va_dev_error(struct xenbus_device *dev, int err,
291 const char *fmt, va_list ap)
292 {
293 unsigned int len;
294 char *printf_buffer;
295 char *path_buffer;
296
297 #define PRINTF_BUFFER_SIZE 4096
298
299 printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL);
300 if (!printf_buffer)
301 return;
302
303 len = sprintf(printf_buffer, "%i ", -err);
304 vsnprintf(printf_buffer + len, PRINTF_BUFFER_SIZE - len, fmt, ap);
305
306 dev_err(&dev->dev, "%s\n", printf_buffer);
307
308 path_buffer = kasprintf(GFP_KERNEL, "error/%s", dev->nodename);
309 if (path_buffer)
310 xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer);
311
312 kfree(printf_buffer);
313 kfree(path_buffer);
314 }
315
316 /**
317 * xenbus_dev_error - place an error message into the store
318 * @dev: xenbus device
319 * @err: error to report
320 * @fmt: error message format
321 *
322 * Report the given negative errno into the store, along with the given
323 * formatted message.
324 */
xenbus_dev_error(struct xenbus_device * dev,int err,const char * fmt,...)325 void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...)
326 {
327 va_list ap;
328
329 va_start(ap, fmt);
330 xenbus_va_dev_error(dev, err, fmt, ap);
331 va_end(ap);
332 }
333 EXPORT_SYMBOL_GPL(xenbus_dev_error);
334
335 /**
336 * xenbus_dev_fatal - put an error messages into the store and then shutdown
337 * @dev: xenbus device
338 * @err: error to report
339 * @fmt: error message format
340 *
341 * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by
342 * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly
343 * closedown of this driver and its peer.
344 */
345
xenbus_dev_fatal(struct xenbus_device * dev,int err,const char * fmt,...)346 void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...)
347 {
348 va_list ap;
349
350 va_start(ap, fmt);
351 xenbus_va_dev_error(dev, err, fmt, ap);
352 va_end(ap);
353
354 xenbus_switch_state(dev, XenbusStateClosing);
355 }
356 EXPORT_SYMBOL_GPL(xenbus_dev_fatal);
357
358 /*
359 * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps
360 * avoiding recursion within xenbus_switch_state.
361 */
xenbus_switch_fatal(struct xenbus_device * dev,int depth,int err,const char * fmt,...)362 static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err,
363 const char *fmt, ...)
364 {
365 va_list ap;
366
367 va_start(ap, fmt);
368 xenbus_va_dev_error(dev, err, fmt, ap);
369 va_end(ap);
370
371 if (!depth)
372 __xenbus_switch_state(dev, XenbusStateClosing, 1);
373 }
374
375 /*
376 * xenbus_setup_ring
377 * @dev: xenbus device
378 * @vaddr: pointer to starting virtual address of the ring
379 * @nr_pages: number of pages to be granted
380 * @grefs: grant reference array to be filled in
381 *
382 * Allocate physically contiguous pages for a shared ring buffer and grant it
383 * to the peer of the given device. The ring buffer is initially filled with
384 * zeroes. The virtual address of the ring is stored at @vaddr and the
385 * grant references are stored in the @grefs array. In case of error @vaddr
386 * will be set to NULL and @grefs will be filled with INVALID_GRANT_REF.
387 */
xenbus_setup_ring(struct xenbus_device * dev,gfp_t gfp,void ** vaddr,unsigned int nr_pages,grant_ref_t * grefs)388 int xenbus_setup_ring(struct xenbus_device *dev, gfp_t gfp, void **vaddr,
389 unsigned int nr_pages, grant_ref_t *grefs)
390 {
391 unsigned long ring_size = nr_pages * XEN_PAGE_SIZE;
392 grant_ref_t gref_head;
393 unsigned int i;
394 void *addr;
395 int ret;
396
397 addr = *vaddr = alloc_pages_exact(ring_size, gfp | __GFP_ZERO);
398 if (!*vaddr) {
399 ret = -ENOMEM;
400 goto err;
401 }
402
403 ret = gnttab_alloc_grant_references(nr_pages, &gref_head);
404 if (ret) {
405 xenbus_dev_fatal(dev, ret, "granting access to %u ring pages",
406 nr_pages);
407 goto err;
408 }
409
410 for (i = 0; i < nr_pages; i++) {
411 unsigned long gfn;
412
413 if (is_vmalloc_addr(*vaddr))
414 gfn = pfn_to_gfn(vmalloc_to_pfn(addr));
415 else
416 gfn = virt_to_gfn(addr);
417
418 grefs[i] = gnttab_claim_grant_reference(&gref_head);
419 gnttab_grant_foreign_access_ref(grefs[i], dev->otherend_id,
420 gfn, 0);
421
422 addr += XEN_PAGE_SIZE;
423 }
424
425 return 0;
426
427 err:
428 if (*vaddr)
429 free_pages_exact(*vaddr, ring_size);
430 for (i = 0; i < nr_pages; i++)
431 grefs[i] = INVALID_GRANT_REF;
432 *vaddr = NULL;
433
434 return ret;
435 }
436 EXPORT_SYMBOL_GPL(xenbus_setup_ring);
437
438 /*
439 * xenbus_teardown_ring
440 * @vaddr: starting virtual address of the ring
441 * @nr_pages: number of pages
442 * @grefs: grant reference array
443 *
444 * Remove grants for the shared ring buffer and free the associated memory.
445 * On return the grant reference array is filled with INVALID_GRANT_REF.
446 */
xenbus_teardown_ring(void ** vaddr,unsigned int nr_pages,grant_ref_t * grefs)447 void xenbus_teardown_ring(void **vaddr, unsigned int nr_pages,
448 grant_ref_t *grefs)
449 {
450 unsigned int i;
451
452 for (i = 0; i < nr_pages; i++) {
453 if (grefs[i] != INVALID_GRANT_REF) {
454 gnttab_end_foreign_access(grefs[i], NULL);
455 grefs[i] = INVALID_GRANT_REF;
456 }
457 }
458
459 if (*vaddr)
460 free_pages_exact(*vaddr, nr_pages * XEN_PAGE_SIZE);
461 *vaddr = NULL;
462 }
463 EXPORT_SYMBOL_GPL(xenbus_teardown_ring);
464
465 /*
466 * Allocate an event channel for the given xenbus_device, assigning the newly
467 * created local port to *port. Return 0 on success, or -errno on error. On
468 * error, the device will switch to XenbusStateClosing, and the error will be
469 * saved in the store.
470 */
xenbus_alloc_evtchn(struct xenbus_device * dev,evtchn_port_t * port)471 int xenbus_alloc_evtchn(struct xenbus_device *dev, evtchn_port_t *port)
472 {
473 struct evtchn_alloc_unbound alloc_unbound;
474 int err;
475
476 alloc_unbound.dom = DOMID_SELF;
477 alloc_unbound.remote_dom = dev->otherend_id;
478
479 err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound,
480 &alloc_unbound);
481 if (err)
482 xenbus_dev_fatal(dev, err, "allocating event channel");
483 else
484 *port = alloc_unbound.port;
485
486 return err;
487 }
488 EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn);
489
490
491 /*
492 * Free an existing event channel. Returns 0 on success or -errno on error.
493 */
xenbus_free_evtchn(struct xenbus_device * dev,evtchn_port_t port)494 int xenbus_free_evtchn(struct xenbus_device *dev, evtchn_port_t port)
495 {
496 struct evtchn_close close;
497 int err;
498
499 close.port = port;
500
501 err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close);
502 if (err)
503 xenbus_dev_error(dev, err, "freeing event channel %u", port);
504
505 return err;
506 }
507 EXPORT_SYMBOL_GPL(xenbus_free_evtchn);
508
509
510 /**
511 * xenbus_map_ring_valloc - allocate & map pages of VA space
512 * @dev: xenbus device
513 * @gnt_refs: grant reference array
514 * @nr_grefs: number of grant references
515 * @vaddr: pointer to address to be filled out by mapping
516 *
517 * Map @nr_grefs pages of memory into this domain from another
518 * domain's grant table. xenbus_map_ring_valloc allocates @nr_grefs
519 * pages of virtual address space, maps the pages to that address, and sets
520 * *vaddr to that address. If an error is returned, device will switch to
521 * XenbusStateClosing and the error message will be saved in XenStore.
522 *
523 * Returns: %0 on success or -errno on error
524 */
xenbus_map_ring_valloc(struct xenbus_device * dev,grant_ref_t * gnt_refs,unsigned int nr_grefs,void ** vaddr)525 int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs,
526 unsigned int nr_grefs, void **vaddr)
527 {
528 int err;
529 struct map_ring_valloc *info;
530
531 *vaddr = NULL;
532
533 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
534 return -EINVAL;
535
536 info = kzalloc(sizeof(*info), GFP_KERNEL);
537 if (!info)
538 return -ENOMEM;
539
540 info->node = kzalloc(sizeof(*info->node), GFP_KERNEL);
541 if (!info->node)
542 err = -ENOMEM;
543 else
544 err = ring_ops->map(dev, info, gnt_refs, nr_grefs, vaddr);
545
546 kfree(info->node);
547 kfree(info);
548 return err;
549 }
550 EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc);
551
552 /* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned
553 * long), e.g. 32-on-64. Caller is responsible for preparing the
554 * right array to feed into this function */
__xenbus_map_ring(struct xenbus_device * dev,grant_ref_t * gnt_refs,unsigned int nr_grefs,grant_handle_t * handles,struct map_ring_valloc * info,unsigned int flags,bool * leaked)555 static int __xenbus_map_ring(struct xenbus_device *dev,
556 grant_ref_t *gnt_refs,
557 unsigned int nr_grefs,
558 grant_handle_t *handles,
559 struct map_ring_valloc *info,
560 unsigned int flags,
561 bool *leaked)
562 {
563 int i, j;
564
565 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
566 return -EINVAL;
567
568 for (i = 0; i < nr_grefs; i++) {
569 gnttab_set_map_op(&info->map[i], info->phys_addrs[i], flags,
570 gnt_refs[i], dev->otherend_id);
571 handles[i] = INVALID_GRANT_HANDLE;
572 }
573
574 gnttab_batch_map(info->map, i);
575
576 for (i = 0; i < nr_grefs; i++) {
577 if (info->map[i].status != GNTST_okay) {
578 xenbus_dev_fatal(dev, info->map[i].status,
579 "mapping in shared page %d from domain %d",
580 gnt_refs[i], dev->otherend_id);
581 goto fail;
582 } else
583 handles[i] = info->map[i].handle;
584 }
585
586 return 0;
587
588 fail:
589 for (i = j = 0; i < nr_grefs; i++) {
590 if (handles[i] != INVALID_GRANT_HANDLE) {
591 gnttab_set_unmap_op(&info->unmap[j],
592 info->phys_addrs[i],
593 GNTMAP_host_map, handles[i]);
594 j++;
595 }
596 }
597
598 BUG_ON(HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, info->unmap, j));
599
600 *leaked = false;
601 for (i = 0; i < j; i++) {
602 if (info->unmap[i].status != GNTST_okay) {
603 *leaked = true;
604 break;
605 }
606 }
607
608 return -ENOENT;
609 }
610
611 /**
612 * xenbus_unmap_ring - unmap memory from another domain
613 * @dev: xenbus device
614 * @handles: grant handle array
615 * @nr_handles: number of handles in the array
616 * @vaddrs: addresses to unmap
617 *
618 * Unmap memory in this domain that was imported from another domain.
619 *
620 * Returns: %0 on success or GNTST_* on error
621 * (see xen/include/interface/grant_table.h).
622 */
xenbus_unmap_ring(struct xenbus_device * dev,grant_handle_t * handles,unsigned int nr_handles,unsigned long * vaddrs)623 static int xenbus_unmap_ring(struct xenbus_device *dev, grant_handle_t *handles,
624 unsigned int nr_handles, unsigned long *vaddrs)
625 {
626 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
627 int i;
628 int err;
629
630 if (nr_handles > XENBUS_MAX_RING_GRANTS)
631 return -EINVAL;
632
633 for (i = 0; i < nr_handles; i++)
634 gnttab_set_unmap_op(&unmap[i], vaddrs[i],
635 GNTMAP_host_map, handles[i]);
636
637 BUG_ON(HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i));
638
639 err = GNTST_okay;
640 for (i = 0; i < nr_handles; i++) {
641 if (unmap[i].status != GNTST_okay) {
642 xenbus_dev_error(dev, unmap[i].status,
643 "unmapping page at handle %d error %d",
644 handles[i], unmap[i].status);
645 err = unmap[i].status;
646 break;
647 }
648 }
649
650 return err;
651 }
652
xenbus_map_ring_setup_grant_hvm(unsigned long gfn,unsigned int goffset,unsigned int len,void * data)653 static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn,
654 unsigned int goffset,
655 unsigned int len,
656 void *data)
657 {
658 struct map_ring_valloc *info = data;
659 unsigned long vaddr = (unsigned long)gfn_to_virt(gfn);
660
661 info->phys_addrs[info->idx] = vaddr;
662 info->addrs[info->idx] = vaddr;
663
664 info->idx++;
665 }
666
xenbus_map_ring_hvm(struct xenbus_device * dev,struct map_ring_valloc * info,grant_ref_t * gnt_ref,unsigned int nr_grefs,void ** vaddr)667 static int xenbus_map_ring_hvm(struct xenbus_device *dev,
668 struct map_ring_valloc *info,
669 grant_ref_t *gnt_ref,
670 unsigned int nr_grefs,
671 void **vaddr)
672 {
673 struct xenbus_map_node *node = info->node;
674 int err;
675 void *addr;
676 bool leaked = false;
677 unsigned int nr_pages = XENBUS_PAGES(nr_grefs);
678
679 err = xen_alloc_unpopulated_pages(nr_pages, node->hvm.pages);
680 if (err)
681 goto out_err;
682
683 gnttab_foreach_grant(node->hvm.pages, nr_grefs,
684 xenbus_map_ring_setup_grant_hvm,
685 info);
686
687 err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles,
688 info, GNTMAP_host_map, &leaked);
689 node->nr_handles = nr_grefs;
690
691 if (err)
692 goto out_free_ballooned_pages;
693
694 addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP,
695 PAGE_KERNEL);
696 if (!addr) {
697 err = -ENOMEM;
698 goto out_xenbus_unmap_ring;
699 }
700
701 node->hvm.addr = addr;
702
703 spin_lock(&xenbus_valloc_lock);
704 list_add(&node->next, &xenbus_valloc_pages);
705 spin_unlock(&xenbus_valloc_lock);
706
707 *vaddr = addr;
708 info->node = NULL;
709
710 return 0;
711
712 out_xenbus_unmap_ring:
713 if (!leaked)
714 xenbus_unmap_ring(dev, node->handles, nr_grefs, info->addrs);
715 else
716 pr_alert("leaking %p size %u page(s)",
717 addr, nr_pages);
718 out_free_ballooned_pages:
719 if (!leaked)
720 xen_free_unpopulated_pages(nr_pages, node->hvm.pages);
721 out_err:
722 return err;
723 }
724
725 /**
726 * xenbus_unmap_ring_vfree - unmap a page of memory from another domain
727 * @dev: xenbus device
728 * @vaddr: addr to unmap
729 *
730 * Based on Rusty Russell's skeleton driver's unmap_page.
731 * Unmap a page of memory in this domain that was imported from another domain.
732 * Use xenbus_unmap_ring_vfree if you mapped in your memory with
733 * xenbus_map_ring_valloc (it will free the virtual address space).
734 *
735 * Returns: %0 on success or GNTST_* on error
736 * (see xen/include/interface/grant_table.h).
737 */
xenbus_unmap_ring_vfree(struct xenbus_device * dev,void * vaddr)738 int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr)
739 {
740 return ring_ops->unmap(dev, vaddr);
741 }
742 EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree);
743
744 #ifdef CONFIG_XEN_PV
map_ring_apply(pte_t * pte,unsigned long addr,void * data)745 static int map_ring_apply(pte_t *pte, unsigned long addr, void *data)
746 {
747 struct map_ring_valloc *info = data;
748
749 info->phys_addrs[info->idx++] = arbitrary_virt_to_machine(pte).maddr;
750 return 0;
751 }
752
xenbus_map_ring_pv(struct xenbus_device * dev,struct map_ring_valloc * info,grant_ref_t * gnt_refs,unsigned int nr_grefs,void ** vaddr)753 static int xenbus_map_ring_pv(struct xenbus_device *dev,
754 struct map_ring_valloc *info,
755 grant_ref_t *gnt_refs,
756 unsigned int nr_grefs,
757 void **vaddr)
758 {
759 struct xenbus_map_node *node = info->node;
760 struct vm_struct *area;
761 bool leaked = false;
762 int err = -ENOMEM;
763
764 area = get_vm_area(XEN_PAGE_SIZE * nr_grefs, VM_IOREMAP);
765 if (!area)
766 return -ENOMEM;
767 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
768 XEN_PAGE_SIZE * nr_grefs, map_ring_apply, info))
769 goto failed;
770 err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles,
771 info, GNTMAP_host_map | GNTMAP_contains_pte,
772 &leaked);
773 if (err)
774 goto failed;
775
776 node->nr_handles = nr_grefs;
777 node->pv.area = area;
778
779 spin_lock(&xenbus_valloc_lock);
780 list_add(&node->next, &xenbus_valloc_pages);
781 spin_unlock(&xenbus_valloc_lock);
782
783 *vaddr = area->addr;
784 info->node = NULL;
785
786 return 0;
787
788 failed:
789 if (!leaked)
790 free_vm_area(area);
791 else
792 pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs);
793
794 return err;
795 }
796
xenbus_unmap_ring_pv(struct xenbus_device * dev,void * vaddr)797 static int xenbus_unmap_ring_pv(struct xenbus_device *dev, void *vaddr)
798 {
799 struct xenbus_map_node *node;
800 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
801 unsigned int level;
802 int i;
803 bool leaked = false;
804 int err;
805
806 spin_lock(&xenbus_valloc_lock);
807 list_for_each_entry(node, &xenbus_valloc_pages, next) {
808 if (node->pv.area->addr == vaddr) {
809 list_del(&node->next);
810 goto found;
811 }
812 }
813 node = NULL;
814 found:
815 spin_unlock(&xenbus_valloc_lock);
816
817 if (!node) {
818 xenbus_dev_error(dev, -ENOENT,
819 "can't find mapped virtual address %p", vaddr);
820 return GNTST_bad_virt_addr;
821 }
822
823 for (i = 0; i < node->nr_handles; i++) {
824 unsigned long addr;
825
826 memset(&unmap[i], 0, sizeof(unmap[i]));
827 addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i);
828 unmap[i].host_addr = arbitrary_virt_to_machine(
829 lookup_address(addr, &level)).maddr;
830 unmap[i].dev_bus_addr = 0;
831 unmap[i].handle = node->handles[i];
832 }
833
834 BUG_ON(HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i));
835
836 err = GNTST_okay;
837 leaked = false;
838 for (i = 0; i < node->nr_handles; i++) {
839 if (unmap[i].status != GNTST_okay) {
840 leaked = true;
841 xenbus_dev_error(dev, unmap[i].status,
842 "unmapping page at handle %d error %d",
843 node->handles[i], unmap[i].status);
844 err = unmap[i].status;
845 break;
846 }
847 }
848
849 if (!leaked)
850 free_vm_area(node->pv.area);
851 else
852 pr_alert("leaking VM area %p size %u page(s)",
853 node->pv.area, node->nr_handles);
854
855 kfree(node);
856 return err;
857 }
858
859 static const struct xenbus_ring_ops ring_ops_pv = {
860 .map = xenbus_map_ring_pv,
861 .unmap = xenbus_unmap_ring_pv,
862 };
863 #endif
864
865 struct unmap_ring_hvm
866 {
867 unsigned int idx;
868 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
869 };
870
xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,unsigned int goffset,unsigned int len,void * data)871 static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,
872 unsigned int goffset,
873 unsigned int len,
874 void *data)
875 {
876 struct unmap_ring_hvm *info = data;
877
878 info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn);
879
880 info->idx++;
881 }
882
xenbus_unmap_ring_hvm(struct xenbus_device * dev,void * vaddr)883 static int xenbus_unmap_ring_hvm(struct xenbus_device *dev, void *vaddr)
884 {
885 int rv;
886 struct xenbus_map_node *node;
887 void *addr;
888 struct unmap_ring_hvm info = {
889 .idx = 0,
890 };
891 unsigned int nr_pages;
892
893 spin_lock(&xenbus_valloc_lock);
894 list_for_each_entry(node, &xenbus_valloc_pages, next) {
895 addr = node->hvm.addr;
896 if (addr == vaddr) {
897 list_del(&node->next);
898 goto found;
899 }
900 }
901 node = addr = NULL;
902 found:
903 spin_unlock(&xenbus_valloc_lock);
904
905 if (!node) {
906 xenbus_dev_error(dev, -ENOENT,
907 "can't find mapped virtual address %p", vaddr);
908 return GNTST_bad_virt_addr;
909 }
910
911 nr_pages = XENBUS_PAGES(node->nr_handles);
912
913 gnttab_foreach_grant(node->hvm.pages, node->nr_handles,
914 xenbus_unmap_ring_setup_grant_hvm,
915 &info);
916
917 rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles,
918 info.addrs);
919 if (!rv) {
920 vunmap(vaddr);
921 xen_free_unpopulated_pages(nr_pages, node->hvm.pages);
922 }
923 else
924 WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages);
925
926 kfree(node);
927 return rv;
928 }
929
930 /**
931 * xenbus_read_driver_state - read state from a store path
932 * @path: path for driver
933 *
934 * Returns: the state of the driver rooted at the given store path, or
935 * XenbusStateUnknown if no state can be read.
936 */
xenbus_read_driver_state(const char * path)937 enum xenbus_state xenbus_read_driver_state(const char *path)
938 {
939 enum xenbus_state result;
940 int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL);
941 if (err)
942 result = XenbusStateUnknown;
943
944 return result;
945 }
946 EXPORT_SYMBOL_GPL(xenbus_read_driver_state);
947
948 static const struct xenbus_ring_ops ring_ops_hvm = {
949 .map = xenbus_map_ring_hvm,
950 .unmap = xenbus_unmap_ring_hvm,
951 };
952
xenbus_ring_ops_init(void)953 void __init xenbus_ring_ops_init(void)
954 {
955 #ifdef CONFIG_XEN_PV
956 if (!xen_feature(XENFEAT_auto_translated_physmap))
957 ring_ops = &ring_ops_pv;
958 else
959 #endif
960 ring_ops = &ring_ops_hvm;
961 }
962