1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Driver for Datafab USB Compact Flash reader
4 *
5 * datafab driver v0.1:
6 *
7 * First release
8 *
9 * Current development and maintenance by:
10 * (c) 2000 Jimmie Mayfield (mayfield+datafab@sackheads.org)
11 *
12 * Many thanks to Robert Baruch for the SanDisk SmartMedia reader driver
13 * which I used as a template for this driver.
14 *
15 * Some bugfixes and scatter-gather code by Gregory P. Smith
16 * (greg-usb@electricrain.com)
17 *
18 * Fix for media change by Joerg Schneider (js@joergschneider.com)
19 *
20 * Other contributors:
21 * (c) 2002 Alan Stern <stern@rowland.org>
22 */
23
24 /*
25 * This driver attempts to support USB CompactFlash reader/writer devices
26 * based on Datafab USB-to-ATA chips. It was specifically developed for the
27 * Datafab MDCFE-B USB CompactFlash reader but has since been found to work
28 * with a variety of Datafab-based devices from a number of manufacturers.
29 * I've received a report of this driver working with a Datafab-based
30 * SmartMedia device though please be aware that I'm personally unable to
31 * test SmartMedia support.
32 *
33 * This driver supports reading and writing. If you're truly paranoid,
34 * however, you can force the driver into a write-protected state by setting
35 * the WP enable bits in datafab_handle_mode_sense(). See the comments
36 * in that routine.
37 */
38
39 #include <linux/errno.h>
40 #include <linux/module.h>
41 #include <linux/slab.h>
42
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45
46 #include "usb.h"
47 #include "transport.h"
48 #include "protocol.h"
49 #include "debug.h"
50 #include "scsiglue.h"
51
52 #define DRV_NAME "ums-datafab"
53
54 MODULE_DESCRIPTION("Driver for Datafab USB Compact Flash reader");
55 MODULE_AUTHOR("Jimmie Mayfield <mayfield+datafab@sackheads.org>");
56 MODULE_LICENSE("GPL");
57 MODULE_IMPORT_NS(USB_STORAGE);
58
59 struct datafab_info {
60 unsigned long sectors; /* total sector count */
61 unsigned long ssize; /* sector size in bytes */
62 signed char lun; /* used for dual-slot readers */
63
64 /* the following aren't used yet */
65 unsigned char sense_key;
66 unsigned long sense_asc; /* additional sense code */
67 unsigned long sense_ascq; /* additional sense code qualifier */
68 };
69
70 static int datafab_determine_lun(struct us_data *us,
71 struct datafab_info *info);
72
73
74 /*
75 * The table of devices
76 */
77 #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
78 vendorName, productName, useProtocol, useTransport, \
79 initFunction, flags) \
80 { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
81 .driver_info = (flags) }
82
83 static const struct usb_device_id datafab_usb_ids[] = {
84 # include "unusual_datafab.h"
85 { } /* Terminating entry */
86 };
87 MODULE_DEVICE_TABLE(usb, datafab_usb_ids);
88
89 #undef UNUSUAL_DEV
90
91 /*
92 * The flags table
93 */
94 #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
95 vendor_name, product_name, use_protocol, use_transport, \
96 init_function, Flags) \
97 { \
98 .vendorName = vendor_name, \
99 .productName = product_name, \
100 .useProtocol = use_protocol, \
101 .useTransport = use_transport, \
102 .initFunction = init_function, \
103 }
104
105 static const struct us_unusual_dev datafab_unusual_dev_list[] = {
106 # include "unusual_datafab.h"
107 { } /* Terminating entry */
108 };
109
110 #undef UNUSUAL_DEV
111
112
113 static inline int
datafab_bulk_read(struct us_data * us,unsigned char * data,unsigned int len)114 datafab_bulk_read(struct us_data *us, unsigned char *data, unsigned int len) {
115 if (len == 0)
116 return USB_STOR_XFER_GOOD;
117
118 usb_stor_dbg(us, "len = %d\n", len);
119 return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
120 data, len, NULL);
121 }
122
123
124 static inline int
datafab_bulk_write(struct us_data * us,unsigned char * data,unsigned int len)125 datafab_bulk_write(struct us_data *us, unsigned char *data, unsigned int len) {
126 if (len == 0)
127 return USB_STOR_XFER_GOOD;
128
129 usb_stor_dbg(us, "len = %d\n", len);
130 return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
131 data, len, NULL);
132 }
133
134
datafab_read_data(struct us_data * us,struct datafab_info * info,u32 sector,u32 sectors)135 static int datafab_read_data(struct us_data *us,
136 struct datafab_info *info,
137 u32 sector,
138 u32 sectors)
139 {
140 unsigned char *command = us->iobuf;
141 unsigned char *buffer;
142 unsigned char thistime;
143 unsigned int totallen, alloclen;
144 int len, result;
145 unsigned int sg_offset = 0;
146 struct scatterlist *sg = NULL;
147
148 // we're working in LBA mode. according to the ATA spec,
149 // we can support up to 28-bit addressing. I don't know if Datafab
150 // supports beyond 24-bit addressing. It's kind of hard to test
151 // since it requires > 8GB CF card.
152 //
153 if (sectors > 0x0FFFFFFF)
154 return USB_STOR_TRANSPORT_ERROR;
155
156 if (info->lun == -1) {
157 result = datafab_determine_lun(us, info);
158 if (result != USB_STOR_TRANSPORT_GOOD)
159 return result;
160 }
161
162 totallen = sectors * info->ssize;
163
164 // Since we don't read more than 64 KB at a time, we have to create
165 // a bounce buffer and move the data a piece at a time between the
166 // bounce buffer and the actual transfer buffer.
167
168 alloclen = min(totallen, 65536u);
169 buffer = kmalloc(alloclen, GFP_NOIO);
170 if (buffer == NULL)
171 return USB_STOR_TRANSPORT_ERROR;
172
173 do {
174 // loop, never allocate or transfer more than 64k at once
175 // (min(128k, 255*info->ssize) is the real limit)
176
177 len = min(totallen, alloclen);
178 thistime = (len / info->ssize) & 0xff;
179
180 command[0] = 0;
181 command[1] = thistime;
182 command[2] = sector & 0xFF;
183 command[3] = (sector >> 8) & 0xFF;
184 command[4] = (sector >> 16) & 0xFF;
185
186 command[5] = 0xE0 + (info->lun << 4);
187 command[5] |= (sector >> 24) & 0x0F;
188 command[6] = 0x20;
189 command[7] = 0x01;
190
191 // send the read command
192 result = datafab_bulk_write(us, command, 8);
193 if (result != USB_STOR_XFER_GOOD)
194 goto leave;
195
196 // read the result
197 result = datafab_bulk_read(us, buffer, len);
198 if (result != USB_STOR_XFER_GOOD)
199 goto leave;
200
201 // Store the data in the transfer buffer
202 usb_stor_access_xfer_buf(buffer, len, us->srb,
203 &sg, &sg_offset, TO_XFER_BUF);
204
205 sector += thistime;
206 totallen -= len;
207 } while (totallen > 0);
208
209 kfree(buffer);
210 return USB_STOR_TRANSPORT_GOOD;
211
212 leave:
213 kfree(buffer);
214 return USB_STOR_TRANSPORT_ERROR;
215 }
216
217
datafab_write_data(struct us_data * us,struct datafab_info * info,u32 sector,u32 sectors)218 static int datafab_write_data(struct us_data *us,
219 struct datafab_info *info,
220 u32 sector,
221 u32 sectors)
222 {
223 unsigned char *command = us->iobuf;
224 unsigned char *reply = us->iobuf;
225 unsigned char *buffer;
226 unsigned char thistime;
227 unsigned int totallen, alloclen;
228 int len, result;
229 unsigned int sg_offset = 0;
230 struct scatterlist *sg = NULL;
231
232 // we're working in LBA mode. according to the ATA spec,
233 // we can support up to 28-bit addressing. I don't know if Datafab
234 // supports beyond 24-bit addressing. It's kind of hard to test
235 // since it requires > 8GB CF card.
236 //
237 if (sectors > 0x0FFFFFFF)
238 return USB_STOR_TRANSPORT_ERROR;
239
240 if (info->lun == -1) {
241 result = datafab_determine_lun(us, info);
242 if (result != USB_STOR_TRANSPORT_GOOD)
243 return result;
244 }
245
246 totallen = sectors * info->ssize;
247
248 // Since we don't write more than 64 KB at a time, we have to create
249 // a bounce buffer and move the data a piece at a time between the
250 // bounce buffer and the actual transfer buffer.
251
252 alloclen = min(totallen, 65536u);
253 buffer = kmalloc(alloclen, GFP_NOIO);
254 if (buffer == NULL)
255 return USB_STOR_TRANSPORT_ERROR;
256
257 do {
258 // loop, never allocate or transfer more than 64k at once
259 // (min(128k, 255*info->ssize) is the real limit)
260
261 len = min(totallen, alloclen);
262 thistime = (len / info->ssize) & 0xff;
263
264 // Get the data from the transfer buffer
265 usb_stor_access_xfer_buf(buffer, len, us->srb,
266 &sg, &sg_offset, FROM_XFER_BUF);
267
268 command[0] = 0;
269 command[1] = thistime;
270 command[2] = sector & 0xFF;
271 command[3] = (sector >> 8) & 0xFF;
272 command[4] = (sector >> 16) & 0xFF;
273
274 command[5] = 0xE0 + (info->lun << 4);
275 command[5] |= (sector >> 24) & 0x0F;
276 command[6] = 0x30;
277 command[7] = 0x02;
278
279 // send the command
280 result = datafab_bulk_write(us, command, 8);
281 if (result != USB_STOR_XFER_GOOD)
282 goto leave;
283
284 // send the data
285 result = datafab_bulk_write(us, buffer, len);
286 if (result != USB_STOR_XFER_GOOD)
287 goto leave;
288
289 // read the result
290 result = datafab_bulk_read(us, reply, 2);
291 if (result != USB_STOR_XFER_GOOD)
292 goto leave;
293
294 if (reply[0] != 0x50 && reply[1] != 0) {
295 usb_stor_dbg(us, "Gah! write return code: %02x %02x\n",
296 reply[0], reply[1]);
297 goto leave;
298 }
299
300 sector += thistime;
301 totallen -= len;
302 } while (totallen > 0);
303
304 kfree(buffer);
305 return USB_STOR_TRANSPORT_GOOD;
306
307 leave:
308 kfree(buffer);
309 return USB_STOR_TRANSPORT_ERROR;
310 }
311
312
datafab_determine_lun(struct us_data * us,struct datafab_info * info)313 static int datafab_determine_lun(struct us_data *us,
314 struct datafab_info *info)
315 {
316 // Dual-slot readers can be thought of as dual-LUN devices.
317 // We need to determine which card slot is being used.
318 // We'll send an IDENTIFY DEVICE command and see which LUN responds...
319 //
320 // There might be a better way of doing this?
321
322 static unsigned char scommand[8] = { 0, 1, 0, 0, 0, 0xa0, 0xec, 1 };
323 unsigned char *command = us->iobuf;
324 unsigned char *buf;
325 int count = 0, rc;
326
327 if (!info)
328 return USB_STOR_TRANSPORT_ERROR;
329
330 memcpy(command, scommand, 8);
331 buf = kmalloc(512, GFP_NOIO);
332 if (!buf)
333 return USB_STOR_TRANSPORT_ERROR;
334
335 usb_stor_dbg(us, "locating...\n");
336
337 // we'll try 3 times before giving up...
338 //
339 while (count++ < 3) {
340 command[5] = 0xa0;
341
342 rc = datafab_bulk_write(us, command, 8);
343 if (rc != USB_STOR_XFER_GOOD) {
344 rc = USB_STOR_TRANSPORT_ERROR;
345 goto leave;
346 }
347
348 rc = datafab_bulk_read(us, buf, 512);
349 if (rc == USB_STOR_XFER_GOOD) {
350 info->lun = 0;
351 rc = USB_STOR_TRANSPORT_GOOD;
352 goto leave;
353 }
354
355 command[5] = 0xb0;
356
357 rc = datafab_bulk_write(us, command, 8);
358 if (rc != USB_STOR_XFER_GOOD) {
359 rc = USB_STOR_TRANSPORT_ERROR;
360 goto leave;
361 }
362
363 rc = datafab_bulk_read(us, buf, 512);
364 if (rc == USB_STOR_XFER_GOOD) {
365 info->lun = 1;
366 rc = USB_STOR_TRANSPORT_GOOD;
367 goto leave;
368 }
369
370 msleep(20);
371 }
372
373 rc = USB_STOR_TRANSPORT_ERROR;
374
375 leave:
376 kfree(buf);
377 return rc;
378 }
379
datafab_id_device(struct us_data * us,struct datafab_info * info)380 static int datafab_id_device(struct us_data *us,
381 struct datafab_info *info)
382 {
383 // this is a variation of the ATA "IDENTIFY DEVICE" command...according
384 // to the ATA spec, 'Sector Count' isn't used but the Windows driver
385 // sets this bit so we do too...
386 //
387 static unsigned char scommand[8] = { 0, 1, 0, 0, 0, 0xa0, 0xec, 1 };
388 unsigned char *command = us->iobuf;
389 unsigned char *reply;
390 int rc;
391
392 if (!info)
393 return USB_STOR_TRANSPORT_ERROR;
394
395 if (info->lun == -1) {
396 rc = datafab_determine_lun(us, info);
397 if (rc != USB_STOR_TRANSPORT_GOOD)
398 return rc;
399 }
400
401 memcpy(command, scommand, 8);
402 reply = kmalloc(512, GFP_NOIO);
403 if (!reply)
404 return USB_STOR_TRANSPORT_ERROR;
405
406 command[5] += (info->lun << 4);
407
408 rc = datafab_bulk_write(us, command, 8);
409 if (rc != USB_STOR_XFER_GOOD) {
410 rc = USB_STOR_TRANSPORT_ERROR;
411 goto leave;
412 }
413
414 // we'll go ahead and extract the media capacity while we're here...
415 //
416 rc = datafab_bulk_read(us, reply, 512);
417 if (rc == USB_STOR_XFER_GOOD) {
418 // capacity is at word offset 57-58
419 //
420 info->sectors = ((u32)(reply[117]) << 24) |
421 ((u32)(reply[116]) << 16) |
422 ((u32)(reply[115]) << 8) |
423 ((u32)(reply[114]) );
424 rc = USB_STOR_TRANSPORT_GOOD;
425 goto leave;
426 }
427
428 rc = USB_STOR_TRANSPORT_ERROR;
429
430 leave:
431 kfree(reply);
432 return rc;
433 }
434
435
datafab_handle_mode_sense(struct us_data * us,struct scsi_cmnd * srb,int sense_6)436 static int datafab_handle_mode_sense(struct us_data *us,
437 struct scsi_cmnd * srb,
438 int sense_6)
439 {
440 static unsigned char rw_err_page[12] = {
441 0x1, 0xA, 0x21, 1, 0, 0, 0, 0, 1, 0, 0, 0
442 };
443 static unsigned char cache_page[12] = {
444 0x8, 0xA, 0x1, 0, 0, 0, 0, 0, 0, 0, 0, 0
445 };
446 static unsigned char rbac_page[12] = {
447 0x1B, 0xA, 0, 0x81, 0, 0, 0, 0, 0, 0, 0, 0
448 };
449 static unsigned char timer_page[8] = {
450 0x1C, 0x6, 0, 0, 0, 0
451 };
452 unsigned char pc, page_code;
453 unsigned int i = 0;
454 struct datafab_info *info = (struct datafab_info *) (us->extra);
455 unsigned char *ptr = us->iobuf;
456
457 // most of this stuff is just a hack to get things working. the
458 // datafab reader doesn't present a SCSI interface so we
459 // fudge the SCSI commands...
460 //
461
462 pc = srb->cmnd[2] >> 6;
463 page_code = srb->cmnd[2] & 0x3F;
464
465 switch (pc) {
466 case 0x0:
467 usb_stor_dbg(us, "Current values\n");
468 break;
469 case 0x1:
470 usb_stor_dbg(us, "Changeable values\n");
471 break;
472 case 0x2:
473 usb_stor_dbg(us, "Default values\n");
474 break;
475 case 0x3:
476 usb_stor_dbg(us, "Saves values\n");
477 break;
478 }
479
480 memset(ptr, 0, 8);
481 if (sense_6) {
482 ptr[2] = 0x00; // WP enable: 0x80
483 i = 4;
484 } else {
485 ptr[3] = 0x00; // WP enable: 0x80
486 i = 8;
487 }
488
489 switch (page_code) {
490 default:
491 // vendor-specific mode
492 info->sense_key = 0x05;
493 info->sense_asc = 0x24;
494 info->sense_ascq = 0x00;
495 return USB_STOR_TRANSPORT_FAILED;
496
497 case 0x1:
498 memcpy(ptr + i, rw_err_page, sizeof(rw_err_page));
499 i += sizeof(rw_err_page);
500 break;
501
502 case 0x8:
503 memcpy(ptr + i, cache_page, sizeof(cache_page));
504 i += sizeof(cache_page);
505 break;
506
507 case 0x1B:
508 memcpy(ptr + i, rbac_page, sizeof(rbac_page));
509 i += sizeof(rbac_page);
510 break;
511
512 case 0x1C:
513 memcpy(ptr + i, timer_page, sizeof(timer_page));
514 i += sizeof(timer_page);
515 break;
516
517 case 0x3F: // retrieve all pages
518 memcpy(ptr + i, timer_page, sizeof(timer_page));
519 i += sizeof(timer_page);
520 memcpy(ptr + i, rbac_page, sizeof(rbac_page));
521 i += sizeof(rbac_page);
522 memcpy(ptr + i, cache_page, sizeof(cache_page));
523 i += sizeof(cache_page);
524 memcpy(ptr + i, rw_err_page, sizeof(rw_err_page));
525 i += sizeof(rw_err_page);
526 break;
527 }
528
529 if (sense_6)
530 ptr[0] = i - 1;
531 else
532 ((__be16 *) ptr)[0] = cpu_to_be16(i - 2);
533 usb_stor_set_xfer_buf(ptr, i, srb);
534
535 return USB_STOR_TRANSPORT_GOOD;
536 }
537
datafab_info_destructor(void * extra)538 static void datafab_info_destructor(void *extra)
539 {
540 // this routine is a placeholder...
541 // currently, we don't allocate any extra memory so we're okay
542 }
543
544
545 // Transport for the Datafab MDCFE-B
546 //
datafab_transport(struct scsi_cmnd * srb,struct us_data * us)547 static int datafab_transport(struct scsi_cmnd *srb, struct us_data *us)
548 {
549 struct datafab_info *info;
550 int rc;
551 unsigned long block, blocks;
552 unsigned char *ptr = us->iobuf;
553 static unsigned char inquiry_reply[8] = {
554 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
555 };
556
557 if (!us->extra) {
558 us->extra = kzalloc(sizeof(struct datafab_info), GFP_NOIO);
559 if (!us->extra)
560 return USB_STOR_TRANSPORT_ERROR;
561
562 us->extra_destructor = datafab_info_destructor;
563 ((struct datafab_info *)us->extra)->lun = -1;
564 }
565
566 info = (struct datafab_info *) (us->extra);
567
568 if (srb->cmnd[0] == INQUIRY) {
569 usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
570 memcpy(ptr, inquiry_reply, sizeof(inquiry_reply));
571 fill_inquiry_response(us, ptr, 36);
572 return USB_STOR_TRANSPORT_GOOD;
573 }
574
575 if (srb->cmnd[0] == READ_CAPACITY) {
576 info->ssize = 0x200; // hard coded 512 byte sectors as per ATA spec
577 rc = datafab_id_device(us, info);
578 if (rc != USB_STOR_TRANSPORT_GOOD)
579 return rc;
580
581 usb_stor_dbg(us, "READ_CAPACITY: %ld sectors, %ld bytes per sector\n",
582 info->sectors, info->ssize);
583
584 // build the reply
585 // we need the last sector, not the number of sectors
586 ((__be32 *) ptr)[0] = cpu_to_be32(info->sectors - 1);
587 ((__be32 *) ptr)[1] = cpu_to_be32(info->ssize);
588 usb_stor_set_xfer_buf(ptr, 8, srb);
589
590 return USB_STOR_TRANSPORT_GOOD;
591 }
592
593 if (srb->cmnd[0] == MODE_SELECT_10) {
594 usb_stor_dbg(us, "Gah! MODE_SELECT_10\n");
595 return USB_STOR_TRANSPORT_ERROR;
596 }
597
598 // don't bother implementing READ_6 or WRITE_6.
599 //
600 if (srb->cmnd[0] == READ_10) {
601 block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
602 ((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5]));
603
604 blocks = ((u32)(srb->cmnd[7]) << 8) | ((u32)(srb->cmnd[8]));
605
606 usb_stor_dbg(us, "READ_10: read block 0x%04lx count %ld\n",
607 block, blocks);
608 return datafab_read_data(us, info, block, blocks);
609 }
610
611 if (srb->cmnd[0] == READ_12) {
612 // we'll probably never see a READ_12 but we'll do it anyway...
613 //
614 block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
615 ((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5]));
616
617 blocks = ((u32)(srb->cmnd[6]) << 24) | ((u32)(srb->cmnd[7]) << 16) |
618 ((u32)(srb->cmnd[8]) << 8) | ((u32)(srb->cmnd[9]));
619
620 usb_stor_dbg(us, "READ_12: read block 0x%04lx count %ld\n",
621 block, blocks);
622 return datafab_read_data(us, info, block, blocks);
623 }
624
625 if (srb->cmnd[0] == WRITE_10) {
626 block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
627 ((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5]));
628
629 blocks = ((u32)(srb->cmnd[7]) << 8) | ((u32)(srb->cmnd[8]));
630
631 usb_stor_dbg(us, "WRITE_10: write block 0x%04lx count %ld\n",
632 block, blocks);
633 return datafab_write_data(us, info, block, blocks);
634 }
635
636 if (srb->cmnd[0] == WRITE_12) {
637 // we'll probably never see a WRITE_12 but we'll do it anyway...
638 //
639 block = ((u32)(srb->cmnd[2]) << 24) | ((u32)(srb->cmnd[3]) << 16) |
640 ((u32)(srb->cmnd[4]) << 8) | ((u32)(srb->cmnd[5]));
641
642 blocks = ((u32)(srb->cmnd[6]) << 24) | ((u32)(srb->cmnd[7]) << 16) |
643 ((u32)(srb->cmnd[8]) << 8) | ((u32)(srb->cmnd[9]));
644
645 usb_stor_dbg(us, "WRITE_12: write block 0x%04lx count %ld\n",
646 block, blocks);
647 return datafab_write_data(us, info, block, blocks);
648 }
649
650 if (srb->cmnd[0] == TEST_UNIT_READY) {
651 usb_stor_dbg(us, "TEST_UNIT_READY\n");
652 return datafab_id_device(us, info);
653 }
654
655 if (srb->cmnd[0] == REQUEST_SENSE) {
656 usb_stor_dbg(us, "REQUEST_SENSE - Returning faked response\n");
657
658 // this response is pretty bogus right now. eventually if necessary
659 // we can set the correct sense data. so far though it hasn't been
660 // necessary
661 //
662 memset(ptr, 0, 18);
663 ptr[0] = 0xF0;
664 ptr[2] = info->sense_key;
665 ptr[7] = 11;
666 ptr[12] = info->sense_asc;
667 ptr[13] = info->sense_ascq;
668 usb_stor_set_xfer_buf(ptr, 18, srb);
669
670 return USB_STOR_TRANSPORT_GOOD;
671 }
672
673 if (srb->cmnd[0] == MODE_SENSE) {
674 usb_stor_dbg(us, "MODE_SENSE_6 detected\n");
675 return datafab_handle_mode_sense(us, srb, 1);
676 }
677
678 if (srb->cmnd[0] == MODE_SENSE_10) {
679 usb_stor_dbg(us, "MODE_SENSE_10 detected\n");
680 return datafab_handle_mode_sense(us, srb, 0);
681 }
682
683 if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
684 /*
685 * sure. whatever. not like we can stop the user from
686 * popping the media out of the device (no locking doors, etc)
687 */
688 return USB_STOR_TRANSPORT_GOOD;
689 }
690
691 if (srb->cmnd[0] == START_STOP) {
692 /*
693 * this is used by sd.c'check_scsidisk_media_change to detect
694 * media change
695 */
696 usb_stor_dbg(us, "START_STOP\n");
697 /*
698 * the first datafab_id_device after a media change returns
699 * an error (determined experimentally)
700 */
701 rc = datafab_id_device(us, info);
702 if (rc == USB_STOR_TRANSPORT_GOOD) {
703 info->sense_key = NO_SENSE;
704 srb->result = SUCCESS;
705 } else {
706 info->sense_key = UNIT_ATTENTION;
707 srb->result = SAM_STAT_CHECK_CONDITION;
708 }
709 return rc;
710 }
711
712 usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
713 srb->cmnd[0], srb->cmnd[0]);
714 info->sense_key = 0x05;
715 info->sense_asc = 0x20;
716 info->sense_ascq = 0x00;
717 return USB_STOR_TRANSPORT_FAILED;
718 }
719
720 static struct scsi_host_template datafab_host_template;
721
datafab_probe(struct usb_interface * intf,const struct usb_device_id * id)722 static int datafab_probe(struct usb_interface *intf,
723 const struct usb_device_id *id)
724 {
725 struct us_data *us;
726 int result;
727
728 result = usb_stor_probe1(&us, intf, id,
729 (id - datafab_usb_ids) + datafab_unusual_dev_list,
730 &datafab_host_template);
731 if (result)
732 return result;
733
734 us->transport_name = "Datafab Bulk-Only";
735 us->transport = datafab_transport;
736 us->transport_reset = usb_stor_Bulk_reset;
737 us->max_lun = 1;
738
739 result = usb_stor_probe2(us);
740 return result;
741 }
742
743 static struct usb_driver datafab_driver = {
744 .name = DRV_NAME,
745 .probe = datafab_probe,
746 .disconnect = usb_stor_disconnect,
747 .suspend = usb_stor_suspend,
748 .resume = usb_stor_resume,
749 .reset_resume = usb_stor_reset_resume,
750 .pre_reset = usb_stor_pre_reset,
751 .post_reset = usb_stor_post_reset,
752 .id_table = datafab_usb_ids,
753 .soft_unbind = 1,
754 .no_dynamic_id = 1,
755 };
756
757 module_usb_stor_driver(datafab_driver, datafab_host_template, DRV_NAME);
758