1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Handles the Intel 27x USB Device Controller (UDC) 4 * 5 * Inspired by original driver by Frank Becker, David Brownell, and others. 6 * Copyright (C) 2008 Robert Jarzmik 7 */ 8 #include <linux/module.h> 9 #include <linux/kernel.h> 10 #include <linux/types.h> 11 #include <linux/errno.h> 12 #include <linux/err.h> 13 #include <linux/platform_device.h> 14 #include <linux/delay.h> 15 #include <linux/list.h> 16 #include <linux/interrupt.h> 17 #include <linux/proc_fs.h> 18 #include <linux/clk.h> 19 #include <linux/irq.h> 20 #include <linux/gpio.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/slab.h> 23 #include <linux/prefetch.h> 24 #include <linux/byteorder/generic.h> 25 #include <linux/platform_data/pxa2xx_udc.h> 26 #include <linux/of_device.h> 27 #include <linux/of_gpio.h> 28 29 #include <linux/usb.h> 30 #include <linux/usb/ch9.h> 31 #include <linux/usb/gadget.h> 32 #include <linux/usb/phy.h> 33 34 #include "pxa27x_udc.h" 35 36 /* 37 * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x 38 * series processors. 39 * 40 * Such controller drivers work with a gadget driver. The gadget driver 41 * returns descriptors, implements configuration and data protocols used 42 * by the host to interact with this device, and allocates endpoints to 43 * the different protocol interfaces. The controller driver virtualizes 44 * usb hardware so that the gadget drivers will be more portable. 45 * 46 * This UDC hardware wants to implement a bit too much USB protocol. The 47 * biggest issues are: that the endpoints have to be set up before the 48 * controller can be enabled (minor, and not uncommon); and each endpoint 49 * can only have one configuration, interface and alternative interface 50 * number (major, and very unusual). Once set up, these cannot be changed 51 * without a controller reset. 52 * 53 * The workaround is to setup all combinations necessary for the gadgets which 54 * will work with this driver. This is done in pxa_udc structure, statically. 55 * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep. 56 * (You could modify this if needed. Some drivers have a "fifo_mode" module 57 * parameter to facilitate such changes.) 58 * 59 * The combinations have been tested with these gadgets : 60 * - zero gadget 61 * - file storage gadget 62 * - ether gadget 63 * 64 * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is 65 * made of UDC's double buffering either. USB "On-The-Go" is not implemented. 66 * 67 * All the requests are handled the same way : 68 * - the drivers tries to handle the request directly to the IO 69 * - if the IO fifo is not big enough, the remaining is send/received in 70 * interrupt handling. 71 */ 72 73 #define DRIVER_VERSION "2008-04-18" 74 #define DRIVER_DESC "PXA 27x USB Device Controller driver" 75 76 static const char driver_name[] = "pxa27x_udc"; 77 static struct pxa_udc *the_controller; 78 79 static void handle_ep(struct pxa_ep *ep); 80 81 /* 82 * Debug filesystem 83 */ 84 #ifdef CONFIG_USB_GADGET_DEBUG_FS 85 86 #include <linux/debugfs.h> 87 #include <linux/uaccess.h> 88 #include <linux/seq_file.h> 89 90 static int state_dbg_show(struct seq_file *s, void *p) 91 { 92 struct pxa_udc *udc = s->private; 93 u32 tmp; 94 95 if (!udc->driver) 96 return -ENODEV; 97 98 /* basic device status */ 99 seq_printf(s, DRIVER_DESC "\n" 100 "%s version: %s\n" 101 "Gadget driver: %s\n", 102 driver_name, DRIVER_VERSION, 103 udc->driver ? udc->driver->driver.name : "(none)"); 104 105 tmp = udc_readl(udc, UDCCR); 106 seq_printf(s, 107 "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), con=%d,inter=%d,altinter=%d\n", 108 tmp, 109 (tmp & UDCCR_OEN) ? " oen":"", 110 (tmp & UDCCR_AALTHNP) ? " aalthnp":"", 111 (tmp & UDCCR_AHNP) ? " rem" : "", 112 (tmp & UDCCR_BHNP) ? " rstir" : "", 113 (tmp & UDCCR_DWRE) ? " dwre" : "", 114 (tmp & UDCCR_SMAC) ? " smac" : "", 115 (tmp & UDCCR_EMCE) ? " emce" : "", 116 (tmp & UDCCR_UDR) ? " udr" : "", 117 (tmp & UDCCR_UDA) ? " uda" : "", 118 (tmp & UDCCR_UDE) ? " ude" : "", 119 (tmp & UDCCR_ACN) >> UDCCR_ACN_S, 120 (tmp & UDCCR_AIN) >> UDCCR_AIN_S, 121 (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S); 122 /* registers for device and ep0 */ 123 seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n", 124 udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1)); 125 seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n", 126 udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1)); 127 seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR)); 128 seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, reconfig=%lu\n", 129 udc->stats.irqs_reset, udc->stats.irqs_suspend, 130 udc->stats.irqs_resume, udc->stats.irqs_reconfig); 131 132 return 0; 133 } 134 DEFINE_SHOW_ATTRIBUTE(state_dbg); 135 136 static int queues_dbg_show(struct seq_file *s, void *p) 137 { 138 struct pxa_udc *udc = s->private; 139 struct pxa_ep *ep; 140 struct pxa27x_request *req; 141 int i, maxpkt; 142 143 if (!udc->driver) 144 return -ENODEV; 145 146 /* dump endpoint queues */ 147 for (i = 0; i < NR_PXA_ENDPOINTS; i++) { 148 ep = &udc->pxa_ep[i]; 149 maxpkt = ep->fifo_size; 150 seq_printf(s, "%-12s max_pkt=%d %s\n", 151 EPNAME(ep), maxpkt, "pio"); 152 153 if (list_empty(&ep->queue)) { 154 seq_puts(s, "\t(nothing queued)\n"); 155 continue; 156 } 157 158 list_for_each_entry(req, &ep->queue, queue) { 159 seq_printf(s, "\treq %p len %d/%d buf %p\n", 160 &req->req, req->req.actual, 161 req->req.length, req->req.buf); 162 } 163 } 164 165 return 0; 166 } 167 DEFINE_SHOW_ATTRIBUTE(queues_dbg); 168 169 static int eps_dbg_show(struct seq_file *s, void *p) 170 { 171 struct pxa_udc *udc = s->private; 172 struct pxa_ep *ep; 173 int i; 174 u32 tmp; 175 176 if (!udc->driver) 177 return -ENODEV; 178 179 ep = &udc->pxa_ep[0]; 180 tmp = udc_ep_readl(ep, UDCCSR); 181 seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n", 182 tmp, 183 (tmp & UDCCSR0_SA) ? " sa" : "", 184 (tmp & UDCCSR0_RNE) ? " rne" : "", 185 (tmp & UDCCSR0_FST) ? " fst" : "", 186 (tmp & UDCCSR0_SST) ? " sst" : "", 187 (tmp & UDCCSR0_DME) ? " dme" : "", 188 (tmp & UDCCSR0_IPR) ? " ipr" : "", 189 (tmp & UDCCSR0_OPC) ? " opc" : ""); 190 for (i = 0; i < NR_PXA_ENDPOINTS; i++) { 191 ep = &udc->pxa_ep[i]; 192 tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR); 193 seq_printf(s, "%-12s: IN %lu(%lu reqs), OUT %lu(%lu reqs), irqs=%lu, udccr=0x%08x, udccsr=0x%03x, udcbcr=%d\n", 194 EPNAME(ep), 195 ep->stats.in_bytes, ep->stats.in_ops, 196 ep->stats.out_bytes, ep->stats.out_ops, 197 ep->stats.irqs, 198 tmp, udc_ep_readl(ep, UDCCSR), 199 udc_ep_readl(ep, UDCBCR)); 200 } 201 202 return 0; 203 } 204 DEFINE_SHOW_ATTRIBUTE(eps_dbg); 205 206 static void pxa_init_debugfs(struct pxa_udc *udc) 207 { 208 struct dentry *root, *state, *queues, *eps; 209 210 root = debugfs_create_dir(udc->gadget.name, NULL); 211 if (IS_ERR(root) || !root) 212 goto err_root; 213 214 state = debugfs_create_file("udcstate", 0400, root, udc, 215 &state_dbg_fops); 216 if (!state) 217 goto err_state; 218 queues = debugfs_create_file("queues", 0400, root, udc, 219 &queues_dbg_fops); 220 if (!queues) 221 goto err_queues; 222 eps = debugfs_create_file("epstate", 0400, root, udc, 223 &eps_dbg_fops); 224 if (!eps) 225 goto err_eps; 226 227 udc->debugfs_root = root; 228 udc->debugfs_state = state; 229 udc->debugfs_queues = queues; 230 udc->debugfs_eps = eps; 231 return; 232 err_eps: 233 debugfs_remove(eps); 234 err_queues: 235 debugfs_remove(queues); 236 err_state: 237 debugfs_remove(root); 238 err_root: 239 dev_err(udc->dev, "debugfs is not available\n"); 240 } 241 242 static void pxa_cleanup_debugfs(struct pxa_udc *udc) 243 { 244 debugfs_remove(udc->debugfs_eps); 245 debugfs_remove(udc->debugfs_queues); 246 debugfs_remove(udc->debugfs_state); 247 debugfs_remove(udc->debugfs_root); 248 udc->debugfs_eps = NULL; 249 udc->debugfs_queues = NULL; 250 udc->debugfs_state = NULL; 251 udc->debugfs_root = NULL; 252 } 253 254 #else 255 static inline void pxa_init_debugfs(struct pxa_udc *udc) 256 { 257 } 258 259 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc) 260 { 261 } 262 #endif 263 264 /** 265 * is_match_usb_pxa - check if usb_ep and pxa_ep match 266 * @udc_usb_ep: usb endpoint 267 * @ep: pxa endpoint 268 * @config: configuration required in pxa_ep 269 * @interface: interface required in pxa_ep 270 * @altsetting: altsetting required in pxa_ep 271 * 272 * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise 273 */ 274 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep, 275 int config, int interface, int altsetting) 276 { 277 if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr) 278 return 0; 279 if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in) 280 return 0; 281 if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type) 282 return 0; 283 if ((ep->config != config) || (ep->interface != interface) 284 || (ep->alternate != altsetting)) 285 return 0; 286 return 1; 287 } 288 289 /** 290 * find_pxa_ep - find pxa_ep structure matching udc_usb_ep 291 * @udc: pxa udc 292 * @udc_usb_ep: udc_usb_ep structure 293 * 294 * Match udc_usb_ep and all pxa_ep available, to see if one matches. 295 * This is necessary because of the strong pxa hardware restriction requiring 296 * that once pxa endpoints are initialized, their configuration is freezed, and 297 * no change can be made to their address, direction, or in which configuration, 298 * interface or altsetting they are active ... which differs from more usual 299 * models which have endpoints be roughly just addressable fifos, and leave 300 * configuration events up to gadget drivers (like all control messages). 301 * 302 * Note that there is still a blurred point here : 303 * - we rely on UDCCR register "active interface" and "active altsetting". 304 * This is a nonsense in regard of USB spec, where multiple interfaces are 305 * active at the same time. 306 * - if we knew for sure that the pxa can handle multiple interface at the 307 * same time, assuming Intel's Developer Guide is wrong, this function 308 * should be reviewed, and a cache of couples (iface, altsetting) should 309 * be kept in the pxa_udc structure. In this case this function would match 310 * against the cache of couples instead of the "last altsetting" set up. 311 * 312 * Returns the matched pxa_ep structure or NULL if none found 313 */ 314 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc, 315 struct udc_usb_ep *udc_usb_ep) 316 { 317 int i; 318 struct pxa_ep *ep; 319 int cfg = udc->config; 320 int iface = udc->last_interface; 321 int alt = udc->last_alternate; 322 323 if (udc_usb_ep == &udc->udc_usb_ep[0]) 324 return &udc->pxa_ep[0]; 325 326 for (i = 1; i < NR_PXA_ENDPOINTS; i++) { 327 ep = &udc->pxa_ep[i]; 328 if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt)) 329 return ep; 330 } 331 return NULL; 332 } 333 334 /** 335 * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep 336 * @udc: pxa udc 337 * 338 * Context: in_interrupt() 339 * 340 * Updates all pxa_ep fields in udc_usb_ep structures, if this field was 341 * previously set up (and is not NULL). The update is necessary is a 342 * configuration change or altsetting change was issued by the USB host. 343 */ 344 static void update_pxa_ep_matches(struct pxa_udc *udc) 345 { 346 int i; 347 struct udc_usb_ep *udc_usb_ep; 348 349 for (i = 1; i < NR_USB_ENDPOINTS; i++) { 350 udc_usb_ep = &udc->udc_usb_ep[i]; 351 if (udc_usb_ep->pxa_ep) 352 udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep); 353 } 354 } 355 356 /** 357 * pio_irq_enable - Enables irq generation for one endpoint 358 * @ep: udc endpoint 359 */ 360 static void pio_irq_enable(struct pxa_ep *ep) 361 { 362 struct pxa_udc *udc = ep->dev; 363 int index = EPIDX(ep); 364 u32 udcicr0 = udc_readl(udc, UDCICR0); 365 u32 udcicr1 = udc_readl(udc, UDCICR1); 366 367 if (index < 16) 368 udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2))); 369 else 370 udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2))); 371 } 372 373 /** 374 * pio_irq_disable - Disables irq generation for one endpoint 375 * @ep: udc endpoint 376 */ 377 static void pio_irq_disable(struct pxa_ep *ep) 378 { 379 struct pxa_udc *udc = ep->dev; 380 int index = EPIDX(ep); 381 u32 udcicr0 = udc_readl(udc, UDCICR0); 382 u32 udcicr1 = udc_readl(udc, UDCICR1); 383 384 if (index < 16) 385 udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2))); 386 else 387 udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2))); 388 } 389 390 /** 391 * udc_set_mask_UDCCR - set bits in UDCCR 392 * @udc: udc device 393 * @mask: bits to set in UDCCR 394 * 395 * Sets bits in UDCCR, leaving DME and FST bits as they were. 396 */ 397 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask) 398 { 399 u32 udccr = udc_readl(udc, UDCCR); 400 udc_writel(udc, UDCCR, 401 (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS)); 402 } 403 404 /** 405 * udc_clear_mask_UDCCR - clears bits in UDCCR 406 * @udc: udc device 407 * @mask: bit to clear in UDCCR 408 * 409 * Clears bits in UDCCR, leaving DME and FST bits as they were. 410 */ 411 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask) 412 { 413 u32 udccr = udc_readl(udc, UDCCR); 414 udc_writel(udc, UDCCR, 415 (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS)); 416 } 417 418 /** 419 * ep_write_UDCCSR - set bits in UDCCSR 420 * @udc: udc device 421 * @mask: bits to set in UDCCR 422 * 423 * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*). 424 * 425 * A specific case is applied to ep0 : the ACM bit is always set to 1, for 426 * SET_INTERFACE and SET_CONFIGURATION. 427 */ 428 static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask) 429 { 430 if (is_ep0(ep)) 431 mask |= UDCCSR0_ACM; 432 udc_ep_writel(ep, UDCCSR, mask); 433 } 434 435 /** 436 * ep_count_bytes_remain - get how many bytes in udc endpoint 437 * @ep: udc endpoint 438 * 439 * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP) 440 */ 441 static int ep_count_bytes_remain(struct pxa_ep *ep) 442 { 443 if (ep->dir_in) 444 return -EOPNOTSUPP; 445 return udc_ep_readl(ep, UDCBCR) & 0x3ff; 446 } 447 448 /** 449 * ep_is_empty - checks if ep has byte ready for reading 450 * @ep: udc endpoint 451 * 452 * If endpoint is the control endpoint, checks if there are bytes in the 453 * control endpoint fifo. If endpoint is a data endpoint, checks if bytes 454 * are ready for reading on OUT endpoint. 455 * 456 * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint 457 */ 458 static int ep_is_empty(struct pxa_ep *ep) 459 { 460 int ret; 461 462 if (!is_ep0(ep) && ep->dir_in) 463 return -EOPNOTSUPP; 464 if (is_ep0(ep)) 465 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE); 466 else 467 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE); 468 return ret; 469 } 470 471 /** 472 * ep_is_full - checks if ep has place to write bytes 473 * @ep: udc endpoint 474 * 475 * If endpoint is not the control endpoint and is an IN endpoint, checks if 476 * there is place to write bytes into the endpoint. 477 * 478 * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint 479 */ 480 static int ep_is_full(struct pxa_ep *ep) 481 { 482 if (is_ep0(ep)) 483 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR); 484 if (!ep->dir_in) 485 return -EOPNOTSUPP; 486 return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF)); 487 } 488 489 /** 490 * epout_has_pkt - checks if OUT endpoint fifo has a packet available 491 * @ep: pxa endpoint 492 * 493 * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep. 494 */ 495 static int epout_has_pkt(struct pxa_ep *ep) 496 { 497 if (!is_ep0(ep) && ep->dir_in) 498 return -EOPNOTSUPP; 499 if (is_ep0(ep)) 500 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC); 501 return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC); 502 } 503 504 /** 505 * set_ep0state - Set ep0 automata state 506 * @dev: udc device 507 * @state: state 508 */ 509 static void set_ep0state(struct pxa_udc *udc, int state) 510 { 511 struct pxa_ep *ep = &udc->pxa_ep[0]; 512 char *old_stname = EP0_STNAME(udc); 513 514 udc->ep0state = state; 515 ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname, 516 EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR), 517 udc_ep_readl(ep, UDCBCR)); 518 } 519 520 /** 521 * ep0_idle - Put control endpoint into idle state 522 * @dev: udc device 523 */ 524 static void ep0_idle(struct pxa_udc *dev) 525 { 526 set_ep0state(dev, WAIT_FOR_SETUP); 527 } 528 529 /** 530 * inc_ep_stats_reqs - Update ep stats counts 531 * @ep: physical endpoint 532 * @req: usb request 533 * @is_in: ep direction (USB_DIR_IN or 0) 534 * 535 */ 536 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in) 537 { 538 if (is_in) 539 ep->stats.in_ops++; 540 else 541 ep->stats.out_ops++; 542 } 543 544 /** 545 * inc_ep_stats_bytes - Update ep stats counts 546 * @ep: physical endpoint 547 * @count: bytes transferred on endpoint 548 * @is_in: ep direction (USB_DIR_IN or 0) 549 */ 550 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in) 551 { 552 if (is_in) 553 ep->stats.in_bytes += count; 554 else 555 ep->stats.out_bytes += count; 556 } 557 558 /** 559 * pxa_ep_setup - Sets up an usb physical endpoint 560 * @ep: pxa27x physical endpoint 561 * 562 * Find the physical pxa27x ep, and setup its UDCCR 563 */ 564 static void pxa_ep_setup(struct pxa_ep *ep) 565 { 566 u32 new_udccr; 567 568 new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN) 569 | ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN) 570 | ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN) 571 | ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN) 572 | ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET) 573 | ((ep->dir_in) ? UDCCONR_ED : 0) 574 | ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS) 575 | UDCCONR_EE; 576 577 udc_ep_writel(ep, UDCCR, new_udccr); 578 } 579 580 /** 581 * pxa_eps_setup - Sets up all usb physical endpoints 582 * @dev: udc device 583 * 584 * Setup all pxa physical endpoints, except ep0 585 */ 586 static void pxa_eps_setup(struct pxa_udc *dev) 587 { 588 unsigned int i; 589 590 dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev); 591 592 for (i = 1; i < NR_PXA_ENDPOINTS; i++) 593 pxa_ep_setup(&dev->pxa_ep[i]); 594 } 595 596 /** 597 * pxa_ep_alloc_request - Allocate usb request 598 * @_ep: usb endpoint 599 * @gfp_flags: 600 * 601 * For the pxa27x, these can just wrap kmalloc/kfree. gadget drivers 602 * must still pass correctly initialized endpoints, since other controller 603 * drivers may care about how it's currently set up (dma issues etc). 604 */ 605 static struct usb_request * 606 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags) 607 { 608 struct pxa27x_request *req; 609 610 req = kzalloc(sizeof *req, gfp_flags); 611 if (!req) 612 return NULL; 613 614 INIT_LIST_HEAD(&req->queue); 615 req->in_use = 0; 616 req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 617 618 return &req->req; 619 } 620 621 /** 622 * pxa_ep_free_request - Free usb request 623 * @_ep: usb endpoint 624 * @_req: usb request 625 * 626 * Wrapper around kfree to free _req 627 */ 628 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req) 629 { 630 struct pxa27x_request *req; 631 632 req = container_of(_req, struct pxa27x_request, req); 633 WARN_ON(!list_empty(&req->queue)); 634 kfree(req); 635 } 636 637 /** 638 * ep_add_request - add a request to the endpoint's queue 639 * @ep: usb endpoint 640 * @req: usb request 641 * 642 * Context: ep->lock held 643 * 644 * Queues the request in the endpoint's queue, and enables the interrupts 645 * on the endpoint. 646 */ 647 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req) 648 { 649 if (unlikely(!req)) 650 return; 651 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req, 652 req->req.length, udc_ep_readl(ep, UDCCSR)); 653 654 req->in_use = 1; 655 list_add_tail(&req->queue, &ep->queue); 656 pio_irq_enable(ep); 657 } 658 659 /** 660 * ep_del_request - removes a request from the endpoint's queue 661 * @ep: usb endpoint 662 * @req: usb request 663 * 664 * Context: ep->lock held 665 * 666 * Unqueue the request from the endpoint's queue. If there are no more requests 667 * on the endpoint, and if it's not the control endpoint, interrupts are 668 * disabled on the endpoint. 669 */ 670 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req) 671 { 672 if (unlikely(!req)) 673 return; 674 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req, 675 req->req.length, udc_ep_readl(ep, UDCCSR)); 676 677 list_del_init(&req->queue); 678 req->in_use = 0; 679 if (!is_ep0(ep) && list_empty(&ep->queue)) 680 pio_irq_disable(ep); 681 } 682 683 /** 684 * req_done - Complete an usb request 685 * @ep: pxa physical endpoint 686 * @req: pxa request 687 * @status: usb request status sent to gadget API 688 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 689 * 690 * Context: ep->lock held if flags not NULL, else ep->lock released 691 * 692 * Retire a pxa27x usb request. Endpoint must be locked. 693 */ 694 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status, 695 unsigned long *pflags) 696 { 697 unsigned long flags; 698 699 ep_del_request(ep, req); 700 if (likely(req->req.status == -EINPROGRESS)) 701 req->req.status = status; 702 else 703 status = req->req.status; 704 705 if (status && status != -ESHUTDOWN) 706 ep_dbg(ep, "complete req %p stat %d len %u/%u\n", 707 &req->req, status, 708 req->req.actual, req->req.length); 709 710 if (pflags) 711 spin_unlock_irqrestore(&ep->lock, *pflags); 712 local_irq_save(flags); 713 usb_gadget_giveback_request(&req->udc_usb_ep->usb_ep, &req->req); 714 local_irq_restore(flags); 715 if (pflags) 716 spin_lock_irqsave(&ep->lock, *pflags); 717 } 718 719 /** 720 * ep_end_out_req - Ends endpoint OUT request 721 * @ep: physical endpoint 722 * @req: pxa request 723 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 724 * 725 * Context: ep->lock held or released (see req_done()) 726 * 727 * Ends endpoint OUT request (completes usb request). 728 */ 729 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req, 730 unsigned long *pflags) 731 { 732 inc_ep_stats_reqs(ep, !USB_DIR_IN); 733 req_done(ep, req, 0, pflags); 734 } 735 736 /** 737 * ep0_end_out_req - Ends control endpoint OUT request (ends data stage) 738 * @ep: physical endpoint 739 * @req: pxa request 740 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 741 * 742 * Context: ep->lock held or released (see req_done()) 743 * 744 * Ends control endpoint OUT request (completes usb request), and puts 745 * control endpoint into idle state 746 */ 747 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req, 748 unsigned long *pflags) 749 { 750 set_ep0state(ep->dev, OUT_STATUS_STAGE); 751 ep_end_out_req(ep, req, pflags); 752 ep0_idle(ep->dev); 753 } 754 755 /** 756 * ep_end_in_req - Ends endpoint IN request 757 * @ep: physical endpoint 758 * @req: pxa request 759 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 760 * 761 * Context: ep->lock held or released (see req_done()) 762 * 763 * Ends endpoint IN request (completes usb request). 764 */ 765 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req, 766 unsigned long *pflags) 767 { 768 inc_ep_stats_reqs(ep, USB_DIR_IN); 769 req_done(ep, req, 0, pflags); 770 } 771 772 /** 773 * ep0_end_in_req - Ends control endpoint IN request (ends data stage) 774 * @ep: physical endpoint 775 * @req: pxa request 776 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 777 * 778 * Context: ep->lock held or released (see req_done()) 779 * 780 * Ends control endpoint IN request (completes usb request), and puts 781 * control endpoint into status state 782 */ 783 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req, 784 unsigned long *pflags) 785 { 786 set_ep0state(ep->dev, IN_STATUS_STAGE); 787 ep_end_in_req(ep, req, pflags); 788 } 789 790 /** 791 * nuke - Dequeue all requests 792 * @ep: pxa endpoint 793 * @status: usb request status 794 * 795 * Context: ep->lock released 796 * 797 * Dequeues all requests on an endpoint. As a side effect, interrupts will be 798 * disabled on that endpoint (because no more requests). 799 */ 800 static void nuke(struct pxa_ep *ep, int status) 801 { 802 struct pxa27x_request *req; 803 unsigned long flags; 804 805 spin_lock_irqsave(&ep->lock, flags); 806 while (!list_empty(&ep->queue)) { 807 req = list_entry(ep->queue.next, struct pxa27x_request, queue); 808 req_done(ep, req, status, &flags); 809 } 810 spin_unlock_irqrestore(&ep->lock, flags); 811 } 812 813 /** 814 * read_packet - transfer 1 packet from an OUT endpoint into request 815 * @ep: pxa physical endpoint 816 * @req: usb request 817 * 818 * Takes bytes from OUT endpoint and transfers them info the usb request. 819 * If there is less space in request than bytes received in OUT endpoint, 820 * bytes are left in the OUT endpoint. 821 * 822 * Returns how many bytes were actually transferred 823 */ 824 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req) 825 { 826 u32 *buf; 827 int bytes_ep, bufferspace, count, i; 828 829 bytes_ep = ep_count_bytes_remain(ep); 830 bufferspace = req->req.length - req->req.actual; 831 832 buf = (u32 *)(req->req.buf + req->req.actual); 833 prefetchw(buf); 834 835 if (likely(!ep_is_empty(ep))) 836 count = min(bytes_ep, bufferspace); 837 else /* zlp */ 838 count = 0; 839 840 for (i = count; i > 0; i -= 4) 841 *buf++ = udc_ep_readl(ep, UDCDR); 842 req->req.actual += count; 843 844 ep_write_UDCCSR(ep, UDCCSR_PC); 845 846 return count; 847 } 848 849 /** 850 * write_packet - transfer 1 packet from request into an IN endpoint 851 * @ep: pxa physical endpoint 852 * @req: usb request 853 * @max: max bytes that fit into endpoint 854 * 855 * Takes bytes from usb request, and transfers them into the physical 856 * endpoint. If there are no bytes to transfer, doesn't write anything 857 * to physical endpoint. 858 * 859 * Returns how many bytes were actually transferred. 860 */ 861 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req, 862 unsigned int max) 863 { 864 int length, count, remain, i; 865 u32 *buf; 866 u8 *buf_8; 867 868 buf = (u32 *)(req->req.buf + req->req.actual); 869 prefetch(buf); 870 871 length = min(req->req.length - req->req.actual, max); 872 req->req.actual += length; 873 874 remain = length & 0x3; 875 count = length & ~(0x3); 876 for (i = count; i > 0 ; i -= 4) 877 udc_ep_writel(ep, UDCDR, *buf++); 878 879 buf_8 = (u8 *)buf; 880 for (i = remain; i > 0; i--) 881 udc_ep_writeb(ep, UDCDR, *buf_8++); 882 883 ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain, 884 udc_ep_readl(ep, UDCCSR)); 885 886 return length; 887 } 888 889 /** 890 * read_fifo - Transfer packets from OUT endpoint into usb request 891 * @ep: pxa physical endpoint 892 * @req: usb request 893 * 894 * Context: callable when in_interrupt() 895 * 896 * Unload as many packets as possible from the fifo we use for usb OUT 897 * transfers and put them into the request. Caller should have made sure 898 * there's at least one packet ready. 899 * Doesn't complete the request, that's the caller's job 900 * 901 * Returns 1 if the request completed, 0 otherwise 902 */ 903 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 904 { 905 int count, is_short, completed = 0; 906 907 while (epout_has_pkt(ep)) { 908 count = read_packet(ep, req); 909 inc_ep_stats_bytes(ep, count, !USB_DIR_IN); 910 911 is_short = (count < ep->fifo_size); 912 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n", 913 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "", 914 &req->req, req->req.actual, req->req.length); 915 916 /* completion */ 917 if (is_short || req->req.actual == req->req.length) { 918 completed = 1; 919 break; 920 } 921 /* finished that packet. the next one may be waiting... */ 922 } 923 return completed; 924 } 925 926 /** 927 * write_fifo - transfer packets from usb request into an IN endpoint 928 * @ep: pxa physical endpoint 929 * @req: pxa usb request 930 * 931 * Write to an IN endpoint fifo, as many packets as possible. 932 * irqs will use this to write the rest later. 933 * caller guarantees at least one packet buffer is ready (or a zlp). 934 * Doesn't complete the request, that's the caller's job 935 * 936 * Returns 1 if request fully transferred, 0 if partial transfer 937 */ 938 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 939 { 940 unsigned max; 941 int count, is_short, is_last = 0, completed = 0, totcount = 0; 942 u32 udccsr; 943 944 max = ep->fifo_size; 945 do { 946 udccsr = udc_ep_readl(ep, UDCCSR); 947 if (udccsr & UDCCSR_PC) { 948 ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n", 949 udccsr); 950 ep_write_UDCCSR(ep, UDCCSR_PC); 951 } 952 if (udccsr & UDCCSR_TRN) { 953 ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n", 954 udccsr); 955 ep_write_UDCCSR(ep, UDCCSR_TRN); 956 } 957 958 count = write_packet(ep, req, max); 959 inc_ep_stats_bytes(ep, count, USB_DIR_IN); 960 totcount += count; 961 962 /* last packet is usually short (or a zlp) */ 963 if (unlikely(count < max)) { 964 is_last = 1; 965 is_short = 1; 966 } else { 967 if (likely(req->req.length > req->req.actual) 968 || req->req.zero) 969 is_last = 0; 970 else 971 is_last = 1; 972 /* interrupt/iso maxpacket may not fill the fifo */ 973 is_short = unlikely(max < ep->fifo_size); 974 } 975 976 if (is_short) 977 ep_write_UDCCSR(ep, UDCCSR_SP); 978 979 /* requests complete when all IN data is in the FIFO */ 980 if (is_last) { 981 completed = 1; 982 break; 983 } 984 } while (!ep_is_full(ep)); 985 986 ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n", 987 totcount, is_last ? "/L" : "", is_short ? "/S" : "", 988 req->req.length - req->req.actual, &req->req); 989 990 return completed; 991 } 992 993 /** 994 * read_ep0_fifo - Transfer packets from control endpoint into usb request 995 * @ep: control endpoint 996 * @req: pxa usb request 997 * 998 * Special ep0 version of the above read_fifo. Reads as many bytes from control 999 * endpoint as can be read, and stores them into usb request (limited by request 1000 * maximum length). 1001 * 1002 * Returns 0 if usb request only partially filled, 1 if fully filled 1003 */ 1004 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 1005 { 1006 int count, is_short, completed = 0; 1007 1008 while (epout_has_pkt(ep)) { 1009 count = read_packet(ep, req); 1010 ep_write_UDCCSR(ep, UDCCSR0_OPC); 1011 inc_ep_stats_bytes(ep, count, !USB_DIR_IN); 1012 1013 is_short = (count < ep->fifo_size); 1014 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n", 1015 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "", 1016 &req->req, req->req.actual, req->req.length); 1017 1018 if (is_short || req->req.actual >= req->req.length) { 1019 completed = 1; 1020 break; 1021 } 1022 } 1023 1024 return completed; 1025 } 1026 1027 /** 1028 * write_ep0_fifo - Send a request to control endpoint (ep0 in) 1029 * @ep: control endpoint 1030 * @req: request 1031 * 1032 * Context: callable when in_interrupt() 1033 * 1034 * Sends a request (or a part of the request) to the control endpoint (ep0 in). 1035 * If the request doesn't fit, the remaining part will be sent from irq. 1036 * The request is considered fully written only if either : 1037 * - last write transferred all remaining bytes, but fifo was not fully filled 1038 * - last write was a 0 length write 1039 * 1040 * Returns 1 if request fully written, 0 if request only partially sent 1041 */ 1042 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 1043 { 1044 unsigned count; 1045 int is_last, is_short; 1046 1047 count = write_packet(ep, req, EP0_FIFO_SIZE); 1048 inc_ep_stats_bytes(ep, count, USB_DIR_IN); 1049 1050 is_short = (count < EP0_FIFO_SIZE); 1051 is_last = ((count == 0) || (count < EP0_FIFO_SIZE)); 1052 1053 /* Sends either a short packet or a 0 length packet */ 1054 if (unlikely(is_short)) 1055 ep_write_UDCCSR(ep, UDCCSR0_IPR); 1056 1057 ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n", 1058 count, is_short ? "/S" : "", is_last ? "/L" : "", 1059 req->req.length - req->req.actual, 1060 &req->req, udc_ep_readl(ep, UDCCSR)); 1061 1062 return is_last; 1063 } 1064 1065 /** 1066 * pxa_ep_queue - Queue a request into an IN endpoint 1067 * @_ep: usb endpoint 1068 * @_req: usb request 1069 * @gfp_flags: flags 1070 * 1071 * Context: normally called when !in_interrupt, but callable when in_interrupt() 1072 * in the special case of ep0 setup : 1073 * (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue) 1074 * 1075 * Returns 0 if succedeed, error otherwise 1076 */ 1077 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req, 1078 gfp_t gfp_flags) 1079 { 1080 struct udc_usb_ep *udc_usb_ep; 1081 struct pxa_ep *ep; 1082 struct pxa27x_request *req; 1083 struct pxa_udc *dev; 1084 unsigned long flags; 1085 int rc = 0; 1086 int is_first_req; 1087 unsigned length; 1088 int recursion_detected; 1089 1090 req = container_of(_req, struct pxa27x_request, req); 1091 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1092 1093 if (unlikely(!_req || !_req->complete || !_req->buf)) 1094 return -EINVAL; 1095 1096 if (unlikely(!_ep)) 1097 return -EINVAL; 1098 1099 ep = udc_usb_ep->pxa_ep; 1100 if (unlikely(!ep)) 1101 return -EINVAL; 1102 1103 dev = ep->dev; 1104 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) { 1105 ep_dbg(ep, "bogus device state\n"); 1106 return -ESHUTDOWN; 1107 } 1108 1109 /* iso is always one packet per request, that's the only way 1110 * we can report per-packet status. that also helps with dma. 1111 */ 1112 if (unlikely(EPXFERTYPE_is_ISO(ep) 1113 && req->req.length > ep->fifo_size)) 1114 return -EMSGSIZE; 1115 1116 spin_lock_irqsave(&ep->lock, flags); 1117 recursion_detected = ep->in_handle_ep; 1118 1119 is_first_req = list_empty(&ep->queue); 1120 ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n", 1121 _req, is_first_req ? "yes" : "no", 1122 _req->length, _req->buf); 1123 1124 if (!ep->enabled) { 1125 _req->status = -ESHUTDOWN; 1126 rc = -ESHUTDOWN; 1127 goto out_locked; 1128 } 1129 1130 if (req->in_use) { 1131 ep_err(ep, "refusing to queue req %p (already queued)\n", req); 1132 goto out_locked; 1133 } 1134 1135 length = _req->length; 1136 _req->status = -EINPROGRESS; 1137 _req->actual = 0; 1138 1139 ep_add_request(ep, req); 1140 spin_unlock_irqrestore(&ep->lock, flags); 1141 1142 if (is_ep0(ep)) { 1143 switch (dev->ep0state) { 1144 case WAIT_ACK_SET_CONF_INTERF: 1145 if (length == 0) { 1146 ep_end_in_req(ep, req, NULL); 1147 } else { 1148 ep_err(ep, "got a request of %d bytes while" 1149 "in state WAIT_ACK_SET_CONF_INTERF\n", 1150 length); 1151 ep_del_request(ep, req); 1152 rc = -EL2HLT; 1153 } 1154 ep0_idle(ep->dev); 1155 break; 1156 case IN_DATA_STAGE: 1157 if (!ep_is_full(ep)) 1158 if (write_ep0_fifo(ep, req)) 1159 ep0_end_in_req(ep, req, NULL); 1160 break; 1161 case OUT_DATA_STAGE: 1162 if ((length == 0) || !epout_has_pkt(ep)) 1163 if (read_ep0_fifo(ep, req)) 1164 ep0_end_out_req(ep, req, NULL); 1165 break; 1166 default: 1167 ep_err(ep, "odd state %s to send me a request\n", 1168 EP0_STNAME(ep->dev)); 1169 ep_del_request(ep, req); 1170 rc = -EL2HLT; 1171 break; 1172 } 1173 } else { 1174 if (!recursion_detected) 1175 handle_ep(ep); 1176 } 1177 1178 out: 1179 return rc; 1180 out_locked: 1181 spin_unlock_irqrestore(&ep->lock, flags); 1182 goto out; 1183 } 1184 1185 /** 1186 * pxa_ep_dequeue - Dequeue one request 1187 * @_ep: usb endpoint 1188 * @_req: usb request 1189 * 1190 * Return 0 if no error, -EINVAL or -ECONNRESET otherwise 1191 */ 1192 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) 1193 { 1194 struct pxa_ep *ep; 1195 struct udc_usb_ep *udc_usb_ep; 1196 struct pxa27x_request *req; 1197 unsigned long flags; 1198 int rc = -EINVAL; 1199 1200 if (!_ep) 1201 return rc; 1202 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1203 ep = udc_usb_ep->pxa_ep; 1204 if (!ep || is_ep0(ep)) 1205 return rc; 1206 1207 spin_lock_irqsave(&ep->lock, flags); 1208 1209 /* make sure it's actually queued on this endpoint */ 1210 list_for_each_entry(req, &ep->queue, queue) { 1211 if (&req->req == _req) { 1212 rc = 0; 1213 break; 1214 } 1215 } 1216 1217 spin_unlock_irqrestore(&ep->lock, flags); 1218 if (!rc) 1219 req_done(ep, req, -ECONNRESET, NULL); 1220 return rc; 1221 } 1222 1223 /** 1224 * pxa_ep_set_halt - Halts operations on one endpoint 1225 * @_ep: usb endpoint 1226 * @value: 1227 * 1228 * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise 1229 */ 1230 static int pxa_ep_set_halt(struct usb_ep *_ep, int value) 1231 { 1232 struct pxa_ep *ep; 1233 struct udc_usb_ep *udc_usb_ep; 1234 unsigned long flags; 1235 int rc; 1236 1237 1238 if (!_ep) 1239 return -EINVAL; 1240 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1241 ep = udc_usb_ep->pxa_ep; 1242 if (!ep || is_ep0(ep)) 1243 return -EINVAL; 1244 1245 if (value == 0) { 1246 /* 1247 * This path (reset toggle+halt) is needed to implement 1248 * SET_INTERFACE on normal hardware. but it can't be 1249 * done from software on the PXA UDC, and the hardware 1250 * forgets to do it as part of SET_INTERFACE automagic. 1251 */ 1252 ep_dbg(ep, "only host can clear halt\n"); 1253 return -EROFS; 1254 } 1255 1256 spin_lock_irqsave(&ep->lock, flags); 1257 1258 rc = -EAGAIN; 1259 if (ep->dir_in && (ep_is_full(ep) || !list_empty(&ep->queue))) 1260 goto out; 1261 1262 /* FST, FEF bits are the same for control and non control endpoints */ 1263 rc = 0; 1264 ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF); 1265 if (is_ep0(ep)) 1266 set_ep0state(ep->dev, STALL); 1267 1268 out: 1269 spin_unlock_irqrestore(&ep->lock, flags); 1270 return rc; 1271 } 1272 1273 /** 1274 * pxa_ep_fifo_status - Get how many bytes in physical endpoint 1275 * @_ep: usb endpoint 1276 * 1277 * Returns number of bytes in OUT fifos. Broken for IN fifos. 1278 */ 1279 static int pxa_ep_fifo_status(struct usb_ep *_ep) 1280 { 1281 struct pxa_ep *ep; 1282 struct udc_usb_ep *udc_usb_ep; 1283 1284 if (!_ep) 1285 return -ENODEV; 1286 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1287 ep = udc_usb_ep->pxa_ep; 1288 if (!ep || is_ep0(ep)) 1289 return -ENODEV; 1290 1291 if (ep->dir_in) 1292 return -EOPNOTSUPP; 1293 if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep)) 1294 return 0; 1295 else 1296 return ep_count_bytes_remain(ep) + 1; 1297 } 1298 1299 /** 1300 * pxa_ep_fifo_flush - Flushes one endpoint 1301 * @_ep: usb endpoint 1302 * 1303 * Discards all data in one endpoint(IN or OUT), except control endpoint. 1304 */ 1305 static void pxa_ep_fifo_flush(struct usb_ep *_ep) 1306 { 1307 struct pxa_ep *ep; 1308 struct udc_usb_ep *udc_usb_ep; 1309 unsigned long flags; 1310 1311 if (!_ep) 1312 return; 1313 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1314 ep = udc_usb_ep->pxa_ep; 1315 if (!ep || is_ep0(ep)) 1316 return; 1317 1318 spin_lock_irqsave(&ep->lock, flags); 1319 1320 if (unlikely(!list_empty(&ep->queue))) 1321 ep_dbg(ep, "called while queue list not empty\n"); 1322 ep_dbg(ep, "called\n"); 1323 1324 /* for OUT, just read and discard the FIFO contents. */ 1325 if (!ep->dir_in) { 1326 while (!ep_is_empty(ep)) 1327 udc_ep_readl(ep, UDCDR); 1328 } else { 1329 /* most IN status is the same, but ISO can't stall */ 1330 ep_write_UDCCSR(ep, 1331 UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN 1332 | (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST)); 1333 } 1334 1335 spin_unlock_irqrestore(&ep->lock, flags); 1336 } 1337 1338 /** 1339 * pxa_ep_enable - Enables usb endpoint 1340 * @_ep: usb endpoint 1341 * @desc: usb endpoint descriptor 1342 * 1343 * Nothing much to do here, as ep configuration is done once and for all 1344 * before udc is enabled. After udc enable, no physical endpoint configuration 1345 * can be changed. 1346 * Function makes sanity checks and flushes the endpoint. 1347 */ 1348 static int pxa_ep_enable(struct usb_ep *_ep, 1349 const struct usb_endpoint_descriptor *desc) 1350 { 1351 struct pxa_ep *ep; 1352 struct udc_usb_ep *udc_usb_ep; 1353 struct pxa_udc *udc; 1354 1355 if (!_ep || !desc) 1356 return -EINVAL; 1357 1358 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1359 if (udc_usb_ep->pxa_ep) { 1360 ep = udc_usb_ep->pxa_ep; 1361 ep_warn(ep, "usb_ep %s already enabled, doing nothing\n", 1362 _ep->name); 1363 } else { 1364 ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep); 1365 } 1366 1367 if (!ep || is_ep0(ep)) { 1368 dev_err(udc_usb_ep->dev->dev, 1369 "unable to match pxa_ep for ep %s\n", 1370 _ep->name); 1371 return -EINVAL; 1372 } 1373 1374 if ((desc->bDescriptorType != USB_DT_ENDPOINT) 1375 || (ep->type != usb_endpoint_type(desc))) { 1376 ep_err(ep, "type mismatch\n"); 1377 return -EINVAL; 1378 } 1379 1380 if (ep->fifo_size < usb_endpoint_maxp(desc)) { 1381 ep_err(ep, "bad maxpacket\n"); 1382 return -ERANGE; 1383 } 1384 1385 udc_usb_ep->pxa_ep = ep; 1386 udc = ep->dev; 1387 1388 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 1389 ep_err(ep, "bogus device state\n"); 1390 return -ESHUTDOWN; 1391 } 1392 1393 ep->enabled = 1; 1394 1395 /* flush fifo (mostly for OUT buffers) */ 1396 pxa_ep_fifo_flush(_ep); 1397 1398 ep_dbg(ep, "enabled\n"); 1399 return 0; 1400 } 1401 1402 /** 1403 * pxa_ep_disable - Disable usb endpoint 1404 * @_ep: usb endpoint 1405 * 1406 * Same as for pxa_ep_enable, no physical endpoint configuration can be 1407 * changed. 1408 * Function flushes the endpoint and related requests. 1409 */ 1410 static int pxa_ep_disable(struct usb_ep *_ep) 1411 { 1412 struct pxa_ep *ep; 1413 struct udc_usb_ep *udc_usb_ep; 1414 1415 if (!_ep) 1416 return -EINVAL; 1417 1418 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1419 ep = udc_usb_ep->pxa_ep; 1420 if (!ep || is_ep0(ep) || !list_empty(&ep->queue)) 1421 return -EINVAL; 1422 1423 ep->enabled = 0; 1424 nuke(ep, -ESHUTDOWN); 1425 1426 pxa_ep_fifo_flush(_ep); 1427 udc_usb_ep->pxa_ep = NULL; 1428 1429 ep_dbg(ep, "disabled\n"); 1430 return 0; 1431 } 1432 1433 static const struct usb_ep_ops pxa_ep_ops = { 1434 .enable = pxa_ep_enable, 1435 .disable = pxa_ep_disable, 1436 1437 .alloc_request = pxa_ep_alloc_request, 1438 .free_request = pxa_ep_free_request, 1439 1440 .queue = pxa_ep_queue, 1441 .dequeue = pxa_ep_dequeue, 1442 1443 .set_halt = pxa_ep_set_halt, 1444 .fifo_status = pxa_ep_fifo_status, 1445 .fifo_flush = pxa_ep_fifo_flush, 1446 }; 1447 1448 /** 1449 * dplus_pullup - Connect or disconnect pullup resistor to D+ pin 1450 * @udc: udc device 1451 * @on: 0 if disconnect pullup resistor, 1 otherwise 1452 * Context: any 1453 * 1454 * Handle D+ pullup resistor, make the device visible to the usb bus, and 1455 * declare it as a full speed usb device 1456 */ 1457 static void dplus_pullup(struct pxa_udc *udc, int on) 1458 { 1459 if (udc->gpiod) { 1460 gpiod_set_value(udc->gpiod, on); 1461 } else if (udc->udc_command) { 1462 if (on) 1463 udc->udc_command(PXA2XX_UDC_CMD_CONNECT); 1464 else 1465 udc->udc_command(PXA2XX_UDC_CMD_DISCONNECT); 1466 } 1467 udc->pullup_on = on; 1468 } 1469 1470 /** 1471 * pxa_udc_get_frame - Returns usb frame number 1472 * @_gadget: usb gadget 1473 */ 1474 static int pxa_udc_get_frame(struct usb_gadget *_gadget) 1475 { 1476 struct pxa_udc *udc = to_gadget_udc(_gadget); 1477 1478 return (udc_readl(udc, UDCFNR) & 0x7ff); 1479 } 1480 1481 /** 1482 * pxa_udc_wakeup - Force udc device out of suspend 1483 * @_gadget: usb gadget 1484 * 1485 * Returns 0 if successful, error code otherwise 1486 */ 1487 static int pxa_udc_wakeup(struct usb_gadget *_gadget) 1488 { 1489 struct pxa_udc *udc = to_gadget_udc(_gadget); 1490 1491 /* host may not have enabled remote wakeup */ 1492 if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0) 1493 return -EHOSTUNREACH; 1494 udc_set_mask_UDCCR(udc, UDCCR_UDR); 1495 return 0; 1496 } 1497 1498 static void udc_enable(struct pxa_udc *udc); 1499 static void udc_disable(struct pxa_udc *udc); 1500 1501 /** 1502 * should_enable_udc - Tells if UDC should be enabled 1503 * @udc: udc device 1504 * Context: any 1505 * 1506 * The UDC should be enabled if : 1507 1508 * - the pullup resistor is connected 1509 * - and a gadget driver is bound 1510 * - and vbus is sensed (or no vbus sense is available) 1511 * 1512 * Returns 1 if UDC should be enabled, 0 otherwise 1513 */ 1514 static int should_enable_udc(struct pxa_udc *udc) 1515 { 1516 int put_on; 1517 1518 put_on = ((udc->pullup_on) && (udc->driver)); 1519 put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver))); 1520 return put_on; 1521 } 1522 1523 /** 1524 * should_disable_udc - Tells if UDC should be disabled 1525 * @udc: udc device 1526 * Context: any 1527 * 1528 * The UDC should be disabled if : 1529 * - the pullup resistor is not connected 1530 * - or no gadget driver is bound 1531 * - or no vbus is sensed (when vbus sesing is available) 1532 * 1533 * Returns 1 if UDC should be disabled 1534 */ 1535 static int should_disable_udc(struct pxa_udc *udc) 1536 { 1537 int put_off; 1538 1539 put_off = ((!udc->pullup_on) || (!udc->driver)); 1540 put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver))); 1541 return put_off; 1542 } 1543 1544 /** 1545 * pxa_udc_pullup - Offer manual D+ pullup control 1546 * @_gadget: usb gadget using the control 1547 * @is_active: 0 if disconnect, else connect D+ pullup resistor 1548 * Context: !in_interrupt() 1549 * 1550 * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup 1551 */ 1552 static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active) 1553 { 1554 struct pxa_udc *udc = to_gadget_udc(_gadget); 1555 1556 if (!udc->gpiod && !udc->udc_command) 1557 return -EOPNOTSUPP; 1558 1559 dplus_pullup(udc, is_active); 1560 1561 if (should_enable_udc(udc)) 1562 udc_enable(udc); 1563 if (should_disable_udc(udc)) 1564 udc_disable(udc); 1565 return 0; 1566 } 1567 1568 /** 1569 * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc 1570 * @_gadget: usb gadget 1571 * @is_active: 0 if should disable the udc, 1 if should enable 1572 * 1573 * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the 1574 * udc, and deactivates D+ pullup resistor. 1575 * 1576 * Returns 0 1577 */ 1578 static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active) 1579 { 1580 struct pxa_udc *udc = to_gadget_udc(_gadget); 1581 1582 udc->vbus_sensed = is_active; 1583 if (should_enable_udc(udc)) 1584 udc_enable(udc); 1585 if (should_disable_udc(udc)) 1586 udc_disable(udc); 1587 1588 return 0; 1589 } 1590 1591 /** 1592 * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed 1593 * @_gadget: usb gadget 1594 * @mA: current drawn 1595 * 1596 * Context: !in_interrupt() 1597 * 1598 * Called after a configuration was chosen by a USB host, to inform how much 1599 * current can be drawn by the device from VBus line. 1600 * 1601 * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc 1602 */ 1603 static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA) 1604 { 1605 struct pxa_udc *udc; 1606 1607 udc = to_gadget_udc(_gadget); 1608 if (!IS_ERR_OR_NULL(udc->transceiver)) 1609 return usb_phy_set_power(udc->transceiver, mA); 1610 return -EOPNOTSUPP; 1611 } 1612 1613 /** 1614 * pxa_udc_phy_event - Called by phy upon VBus event 1615 * @nb: notifier block 1616 * @action: phy action, is vbus connect or disconnect 1617 * @data: the usb_gadget structure in pxa_udc 1618 * 1619 * Called by the USB Phy when a cable connect or disconnect is sensed. 1620 * 1621 * Returns 0 1622 */ 1623 static int pxa_udc_phy_event(struct notifier_block *nb, unsigned long action, 1624 void *data) 1625 { 1626 struct usb_gadget *gadget = data; 1627 1628 switch (action) { 1629 case USB_EVENT_VBUS: 1630 usb_gadget_vbus_connect(gadget); 1631 return NOTIFY_OK; 1632 case USB_EVENT_NONE: 1633 usb_gadget_vbus_disconnect(gadget); 1634 return NOTIFY_OK; 1635 default: 1636 return NOTIFY_DONE; 1637 } 1638 } 1639 1640 static struct notifier_block pxa27x_udc_phy = { 1641 .notifier_call = pxa_udc_phy_event, 1642 }; 1643 1644 static int pxa27x_udc_start(struct usb_gadget *g, 1645 struct usb_gadget_driver *driver); 1646 static int pxa27x_udc_stop(struct usb_gadget *g); 1647 1648 static const struct usb_gadget_ops pxa_udc_ops = { 1649 .get_frame = pxa_udc_get_frame, 1650 .wakeup = pxa_udc_wakeup, 1651 .pullup = pxa_udc_pullup, 1652 .vbus_session = pxa_udc_vbus_session, 1653 .vbus_draw = pxa_udc_vbus_draw, 1654 .udc_start = pxa27x_udc_start, 1655 .udc_stop = pxa27x_udc_stop, 1656 }; 1657 1658 /** 1659 * udc_disable - disable udc device controller 1660 * @udc: udc device 1661 * Context: any 1662 * 1663 * Disables the udc device : disables clocks, udc interrupts, control endpoint 1664 * interrupts. 1665 */ 1666 static void udc_disable(struct pxa_udc *udc) 1667 { 1668 if (!udc->enabled) 1669 return; 1670 1671 udc_writel(udc, UDCICR0, 0); 1672 udc_writel(udc, UDCICR1, 0); 1673 1674 udc_clear_mask_UDCCR(udc, UDCCR_UDE); 1675 1676 ep0_idle(udc); 1677 udc->gadget.speed = USB_SPEED_UNKNOWN; 1678 clk_disable(udc->clk); 1679 1680 udc->enabled = 0; 1681 } 1682 1683 /** 1684 * udc_init_data - Initialize udc device data structures 1685 * @dev: udc device 1686 * 1687 * Initializes gadget endpoint list, endpoints locks. No action is taken 1688 * on the hardware. 1689 */ 1690 static void udc_init_data(struct pxa_udc *dev) 1691 { 1692 int i; 1693 struct pxa_ep *ep; 1694 1695 /* device/ep0 records init */ 1696 INIT_LIST_HEAD(&dev->gadget.ep_list); 1697 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list); 1698 dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0]; 1699 dev->gadget.quirk_altset_not_supp = 1; 1700 ep0_idle(dev); 1701 1702 /* PXA endpoints init */ 1703 for (i = 0; i < NR_PXA_ENDPOINTS; i++) { 1704 ep = &dev->pxa_ep[i]; 1705 1706 ep->enabled = is_ep0(ep); 1707 INIT_LIST_HEAD(&ep->queue); 1708 spin_lock_init(&ep->lock); 1709 } 1710 1711 /* USB endpoints init */ 1712 for (i = 1; i < NR_USB_ENDPOINTS; i++) { 1713 list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list, 1714 &dev->gadget.ep_list); 1715 usb_ep_set_maxpacket_limit(&dev->udc_usb_ep[i].usb_ep, 1716 dev->udc_usb_ep[i].usb_ep.maxpacket); 1717 } 1718 } 1719 1720 /** 1721 * udc_enable - Enables the udc device 1722 * @dev: udc device 1723 * 1724 * Enables the udc device : enables clocks, udc interrupts, control endpoint 1725 * interrupts, sets usb as UDC client and setups endpoints. 1726 */ 1727 static void udc_enable(struct pxa_udc *udc) 1728 { 1729 if (udc->enabled) 1730 return; 1731 1732 clk_enable(udc->clk); 1733 udc_writel(udc, UDCICR0, 0); 1734 udc_writel(udc, UDCICR1, 0); 1735 udc_clear_mask_UDCCR(udc, UDCCR_UDE); 1736 1737 ep0_idle(udc); 1738 udc->gadget.speed = USB_SPEED_FULL; 1739 memset(&udc->stats, 0, sizeof(udc->stats)); 1740 1741 pxa_eps_setup(udc); 1742 udc_set_mask_UDCCR(udc, UDCCR_UDE); 1743 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM); 1744 udelay(2); 1745 if (udc_readl(udc, UDCCR) & UDCCR_EMCE) 1746 dev_err(udc->dev, "Configuration errors, udc disabled\n"); 1747 1748 /* 1749 * Caller must be able to sleep in order to cope with startup transients 1750 */ 1751 msleep(100); 1752 1753 /* enable suspend/resume and reset irqs */ 1754 udc_writel(udc, UDCICR1, 1755 UDCICR1_IECC | UDCICR1_IERU 1756 | UDCICR1_IESU | UDCICR1_IERS); 1757 1758 /* enable ep0 irqs */ 1759 pio_irq_enable(&udc->pxa_ep[0]); 1760 1761 udc->enabled = 1; 1762 } 1763 1764 /** 1765 * pxa27x_start - Register gadget driver 1766 * @driver: gadget driver 1767 * @bind: bind function 1768 * 1769 * When a driver is successfully registered, it will receive control requests 1770 * including set_configuration(), which enables non-control requests. Then 1771 * usb traffic follows until a disconnect is reported. Then a host may connect 1772 * again, or the driver might get unbound. 1773 * 1774 * Note that the udc is not automatically enabled. Check function 1775 * should_enable_udc(). 1776 * 1777 * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise 1778 */ 1779 static int pxa27x_udc_start(struct usb_gadget *g, 1780 struct usb_gadget_driver *driver) 1781 { 1782 struct pxa_udc *udc = to_pxa(g); 1783 int retval; 1784 1785 /* first hook up the driver ... */ 1786 udc->driver = driver; 1787 1788 if (!IS_ERR_OR_NULL(udc->transceiver)) { 1789 retval = otg_set_peripheral(udc->transceiver->otg, 1790 &udc->gadget); 1791 if (retval) { 1792 dev_err(udc->dev, "can't bind to transceiver\n"); 1793 goto fail; 1794 } 1795 } 1796 1797 if (should_enable_udc(udc)) 1798 udc_enable(udc); 1799 return 0; 1800 1801 fail: 1802 udc->driver = NULL; 1803 return retval; 1804 } 1805 1806 /** 1807 * stop_activity - Stops udc endpoints 1808 * @udc: udc device 1809 * @driver: gadget driver 1810 * 1811 * Disables all udc endpoints (even control endpoint), report disconnect to 1812 * the gadget user. 1813 */ 1814 static void stop_activity(struct pxa_udc *udc) 1815 { 1816 int i; 1817 1818 udc->gadget.speed = USB_SPEED_UNKNOWN; 1819 1820 for (i = 0; i < NR_USB_ENDPOINTS; i++) 1821 pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep); 1822 } 1823 1824 /** 1825 * pxa27x_udc_stop - Unregister the gadget driver 1826 * @driver: gadget driver 1827 * 1828 * Returns 0 if no error, -ENODEV, -EINVAL otherwise 1829 */ 1830 static int pxa27x_udc_stop(struct usb_gadget *g) 1831 { 1832 struct pxa_udc *udc = to_pxa(g); 1833 1834 stop_activity(udc); 1835 udc_disable(udc); 1836 1837 udc->driver = NULL; 1838 1839 if (!IS_ERR_OR_NULL(udc->transceiver)) 1840 return otg_set_peripheral(udc->transceiver->otg, NULL); 1841 return 0; 1842 } 1843 1844 /** 1845 * handle_ep0_ctrl_req - handle control endpoint control request 1846 * @udc: udc device 1847 * @req: control request 1848 */ 1849 static void handle_ep0_ctrl_req(struct pxa_udc *udc, 1850 struct pxa27x_request *req) 1851 { 1852 struct pxa_ep *ep = &udc->pxa_ep[0]; 1853 union { 1854 struct usb_ctrlrequest r; 1855 u32 word[2]; 1856 } u; 1857 int i; 1858 int have_extrabytes = 0; 1859 unsigned long flags; 1860 1861 nuke(ep, -EPROTO); 1862 spin_lock_irqsave(&ep->lock, flags); 1863 1864 /* 1865 * In the PXA320 manual, in the section about Back-to-Back setup 1866 * packets, it describes this situation. The solution is to set OPC to 1867 * get rid of the status packet, and then continue with the setup 1868 * packet. Generalize to pxa27x CPUs. 1869 */ 1870 if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0)) 1871 ep_write_UDCCSR(ep, UDCCSR0_OPC); 1872 1873 /* read SETUP packet */ 1874 for (i = 0; i < 2; i++) { 1875 if (unlikely(ep_is_empty(ep))) 1876 goto stall; 1877 u.word[i] = udc_ep_readl(ep, UDCDR); 1878 } 1879 1880 have_extrabytes = !ep_is_empty(ep); 1881 while (!ep_is_empty(ep)) { 1882 i = udc_ep_readl(ep, UDCDR); 1883 ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i); 1884 } 1885 1886 ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n", 1887 u.r.bRequestType, u.r.bRequest, 1888 le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex), 1889 le16_to_cpu(u.r.wLength)); 1890 if (unlikely(have_extrabytes)) 1891 goto stall; 1892 1893 if (u.r.bRequestType & USB_DIR_IN) 1894 set_ep0state(udc, IN_DATA_STAGE); 1895 else 1896 set_ep0state(udc, OUT_DATA_STAGE); 1897 1898 /* Tell UDC to enter Data Stage */ 1899 ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC); 1900 1901 spin_unlock_irqrestore(&ep->lock, flags); 1902 i = udc->driver->setup(&udc->gadget, &u.r); 1903 spin_lock_irqsave(&ep->lock, flags); 1904 if (i < 0) 1905 goto stall; 1906 out: 1907 spin_unlock_irqrestore(&ep->lock, flags); 1908 return; 1909 stall: 1910 ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n", 1911 udc_ep_readl(ep, UDCCSR), i); 1912 ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF); 1913 set_ep0state(udc, STALL); 1914 goto out; 1915 } 1916 1917 /** 1918 * handle_ep0 - Handle control endpoint data transfers 1919 * @udc: udc device 1920 * @fifo_irq: 1 if triggered by fifo service type irq 1921 * @opc_irq: 1 if triggered by output packet complete type irq 1922 * 1923 * Context : when in_interrupt() or with ep->lock held 1924 * 1925 * Tries to transfer all pending request data into the endpoint and/or 1926 * transfer all pending data in the endpoint into usb requests. 1927 * Handles states of ep0 automata. 1928 * 1929 * PXA27x hardware handles several standard usb control requests without 1930 * driver notification. The requests fully handled by hardware are : 1931 * SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE, 1932 * GET_STATUS 1933 * The requests handled by hardware, but with irq notification are : 1934 * SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE 1935 * The remaining standard requests really handled by handle_ep0 are : 1936 * GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests. 1937 * Requests standardized outside of USB 2.0 chapter 9 are handled more 1938 * uniformly, by gadget drivers. 1939 * 1940 * The control endpoint state machine is _not_ USB spec compliant, it's even 1941 * hardly compliant with Intel PXA270 developers guide. 1942 * The key points which inferred this state machine are : 1943 * - on every setup token, bit UDCCSR0_SA is raised and held until cleared by 1944 * software. 1945 * - on every OUT packet received, UDCCSR0_OPC is raised and held until 1946 * cleared by software. 1947 * - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it 1948 * before reading ep0. 1949 * This is true only for PXA27x. This is not true anymore for PXA3xx family 1950 * (check Back-to-Back setup packet in developers guide). 1951 * - irq can be called on a "packet complete" event (opc_irq=1), while 1952 * UDCCSR0_OPC is not yet raised (delta can be as big as 100ms 1953 * from experimentation). 1954 * - as UDCCSR0_SA can be activated while in irq handling, and clearing 1955 * UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC 1956 * => we never actually read the "status stage" packet of an IN data stage 1957 * => this is not documented in Intel documentation 1958 * - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA 1959 * STAGE. The driver add STATUS STAGE to send last zero length packet in 1960 * OUT_STATUS_STAGE. 1961 * - special attention was needed for IN_STATUS_STAGE. If a packet complete 1962 * event is detected, we terminate the status stage without ackowledging the 1963 * packet (not to risk to loose a potential SETUP packet) 1964 */ 1965 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq) 1966 { 1967 u32 udccsr0; 1968 struct pxa_ep *ep = &udc->pxa_ep[0]; 1969 struct pxa27x_request *req = NULL; 1970 int completed = 0; 1971 1972 if (!list_empty(&ep->queue)) 1973 req = list_entry(ep->queue.next, struct pxa27x_request, queue); 1974 1975 udccsr0 = udc_ep_readl(ep, UDCCSR); 1976 ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n", 1977 EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR), 1978 (fifo_irq << 1 | opc_irq)); 1979 1980 if (udccsr0 & UDCCSR0_SST) { 1981 ep_dbg(ep, "clearing stall status\n"); 1982 nuke(ep, -EPIPE); 1983 ep_write_UDCCSR(ep, UDCCSR0_SST); 1984 ep0_idle(udc); 1985 } 1986 1987 if (udccsr0 & UDCCSR0_SA) { 1988 nuke(ep, 0); 1989 set_ep0state(udc, SETUP_STAGE); 1990 } 1991 1992 switch (udc->ep0state) { 1993 case WAIT_FOR_SETUP: 1994 /* 1995 * Hardware bug : beware, we cannot clear OPC, since we would 1996 * miss a potential OPC irq for a setup packet. 1997 * So, we only do ... nothing, and hope for a next irq with 1998 * UDCCSR0_SA set. 1999 */ 2000 break; 2001 case SETUP_STAGE: 2002 udccsr0 &= UDCCSR0_CTRL_REQ_MASK; 2003 if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK)) 2004 handle_ep0_ctrl_req(udc, req); 2005 break; 2006 case IN_DATA_STAGE: /* GET_DESCRIPTOR */ 2007 if (epout_has_pkt(ep)) 2008 ep_write_UDCCSR(ep, UDCCSR0_OPC); 2009 if (req && !ep_is_full(ep)) 2010 completed = write_ep0_fifo(ep, req); 2011 if (completed) 2012 ep0_end_in_req(ep, req, NULL); 2013 break; 2014 case OUT_DATA_STAGE: /* SET_DESCRIPTOR */ 2015 if (epout_has_pkt(ep) && req) 2016 completed = read_ep0_fifo(ep, req); 2017 if (completed) 2018 ep0_end_out_req(ep, req, NULL); 2019 break; 2020 case STALL: 2021 ep_write_UDCCSR(ep, UDCCSR0_FST); 2022 break; 2023 case IN_STATUS_STAGE: 2024 /* 2025 * Hardware bug : beware, we cannot clear OPC, since we would 2026 * miss a potential PC irq for a setup packet. 2027 * So, we only put the ep0 into WAIT_FOR_SETUP state. 2028 */ 2029 if (opc_irq) 2030 ep0_idle(udc); 2031 break; 2032 case OUT_STATUS_STAGE: 2033 case WAIT_ACK_SET_CONF_INTERF: 2034 ep_warn(ep, "should never get in %s state here!!!\n", 2035 EP0_STNAME(ep->dev)); 2036 ep0_idle(udc); 2037 break; 2038 } 2039 } 2040 2041 /** 2042 * handle_ep - Handle endpoint data tranfers 2043 * @ep: pxa physical endpoint 2044 * 2045 * Tries to transfer all pending request data into the endpoint and/or 2046 * transfer all pending data in the endpoint into usb requests. 2047 * 2048 * Is always called when in_interrupt() and with ep->lock released. 2049 */ 2050 static void handle_ep(struct pxa_ep *ep) 2051 { 2052 struct pxa27x_request *req; 2053 int completed; 2054 u32 udccsr; 2055 int is_in = ep->dir_in; 2056 int loop = 0; 2057 unsigned long flags; 2058 2059 spin_lock_irqsave(&ep->lock, flags); 2060 if (ep->in_handle_ep) 2061 goto recursion_detected; 2062 ep->in_handle_ep = 1; 2063 2064 do { 2065 completed = 0; 2066 udccsr = udc_ep_readl(ep, UDCCSR); 2067 2068 if (likely(!list_empty(&ep->queue))) 2069 req = list_entry(ep->queue.next, 2070 struct pxa27x_request, queue); 2071 else 2072 req = NULL; 2073 2074 ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n", 2075 req, udccsr, loop++); 2076 2077 if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN))) 2078 udc_ep_writel(ep, UDCCSR, 2079 udccsr & (UDCCSR_SST | UDCCSR_TRN)); 2080 if (!req) 2081 break; 2082 2083 if (unlikely(is_in)) { 2084 if (likely(!ep_is_full(ep))) 2085 completed = write_fifo(ep, req); 2086 } else { 2087 if (likely(epout_has_pkt(ep))) 2088 completed = read_fifo(ep, req); 2089 } 2090 2091 if (completed) { 2092 if (is_in) 2093 ep_end_in_req(ep, req, &flags); 2094 else 2095 ep_end_out_req(ep, req, &flags); 2096 } 2097 } while (completed); 2098 2099 ep->in_handle_ep = 0; 2100 recursion_detected: 2101 spin_unlock_irqrestore(&ep->lock, flags); 2102 } 2103 2104 /** 2105 * pxa27x_change_configuration - Handle SET_CONF usb request notification 2106 * @udc: udc device 2107 * @config: usb configuration 2108 * 2109 * Post the request to upper level. 2110 * Don't use any pxa specific harware configuration capabilities 2111 */ 2112 static void pxa27x_change_configuration(struct pxa_udc *udc, int config) 2113 { 2114 struct usb_ctrlrequest req ; 2115 2116 dev_dbg(udc->dev, "config=%d\n", config); 2117 2118 udc->config = config; 2119 udc->last_interface = 0; 2120 udc->last_alternate = 0; 2121 2122 req.bRequestType = 0; 2123 req.bRequest = USB_REQ_SET_CONFIGURATION; 2124 req.wValue = config; 2125 req.wIndex = 0; 2126 req.wLength = 0; 2127 2128 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF); 2129 udc->driver->setup(&udc->gadget, &req); 2130 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN); 2131 } 2132 2133 /** 2134 * pxa27x_change_interface - Handle SET_INTERF usb request notification 2135 * @udc: udc device 2136 * @iface: interface number 2137 * @alt: alternate setting number 2138 * 2139 * Post the request to upper level. 2140 * Don't use any pxa specific harware configuration capabilities 2141 */ 2142 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt) 2143 { 2144 struct usb_ctrlrequest req; 2145 2146 dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt); 2147 2148 udc->last_interface = iface; 2149 udc->last_alternate = alt; 2150 2151 req.bRequestType = USB_RECIP_INTERFACE; 2152 req.bRequest = USB_REQ_SET_INTERFACE; 2153 req.wValue = alt; 2154 req.wIndex = iface; 2155 req.wLength = 0; 2156 2157 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF); 2158 udc->driver->setup(&udc->gadget, &req); 2159 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN); 2160 } 2161 2162 /* 2163 * irq_handle_data - Handle data transfer 2164 * @irq: irq IRQ number 2165 * @udc: dev pxa_udc device structure 2166 * 2167 * Called from irq handler, transferts data to or from endpoint to queue 2168 */ 2169 static void irq_handle_data(int irq, struct pxa_udc *udc) 2170 { 2171 int i; 2172 struct pxa_ep *ep; 2173 u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK; 2174 u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK; 2175 2176 if (udcisr0 & UDCISR_INT_MASK) { 2177 udc->pxa_ep[0].stats.irqs++; 2178 udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK)); 2179 handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR), 2180 !!(udcisr0 & UDCICR_PKTCOMPL)); 2181 } 2182 2183 udcisr0 >>= 2; 2184 for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) { 2185 if (!(udcisr0 & UDCISR_INT_MASK)) 2186 continue; 2187 2188 udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK)); 2189 2190 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep)); 2191 if (i < ARRAY_SIZE(udc->pxa_ep)) { 2192 ep = &udc->pxa_ep[i]; 2193 ep->stats.irqs++; 2194 handle_ep(ep); 2195 } 2196 } 2197 2198 for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) { 2199 udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK)); 2200 if (!(udcisr1 & UDCISR_INT_MASK)) 2201 continue; 2202 2203 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep)); 2204 if (i < ARRAY_SIZE(udc->pxa_ep)) { 2205 ep = &udc->pxa_ep[i]; 2206 ep->stats.irqs++; 2207 handle_ep(ep); 2208 } 2209 } 2210 2211 } 2212 2213 /** 2214 * irq_udc_suspend - Handle IRQ "UDC Suspend" 2215 * @udc: udc device 2216 */ 2217 static void irq_udc_suspend(struct pxa_udc *udc) 2218 { 2219 udc_writel(udc, UDCISR1, UDCISR1_IRSU); 2220 udc->stats.irqs_suspend++; 2221 2222 if (udc->gadget.speed != USB_SPEED_UNKNOWN 2223 && udc->driver && udc->driver->suspend) 2224 udc->driver->suspend(&udc->gadget); 2225 ep0_idle(udc); 2226 } 2227 2228 /** 2229 * irq_udc_resume - Handle IRQ "UDC Resume" 2230 * @udc: udc device 2231 */ 2232 static void irq_udc_resume(struct pxa_udc *udc) 2233 { 2234 udc_writel(udc, UDCISR1, UDCISR1_IRRU); 2235 udc->stats.irqs_resume++; 2236 2237 if (udc->gadget.speed != USB_SPEED_UNKNOWN 2238 && udc->driver && udc->driver->resume) 2239 udc->driver->resume(&udc->gadget); 2240 } 2241 2242 /** 2243 * irq_udc_reconfig - Handle IRQ "UDC Change Configuration" 2244 * @udc: udc device 2245 */ 2246 static void irq_udc_reconfig(struct pxa_udc *udc) 2247 { 2248 unsigned config, interface, alternate, config_change; 2249 u32 udccr = udc_readl(udc, UDCCR); 2250 2251 udc_writel(udc, UDCISR1, UDCISR1_IRCC); 2252 udc->stats.irqs_reconfig++; 2253 2254 config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S; 2255 config_change = (config != udc->config); 2256 pxa27x_change_configuration(udc, config); 2257 2258 interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S; 2259 alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S; 2260 pxa27x_change_interface(udc, interface, alternate); 2261 2262 if (config_change) 2263 update_pxa_ep_matches(udc); 2264 udc_set_mask_UDCCR(udc, UDCCR_SMAC); 2265 } 2266 2267 /** 2268 * irq_udc_reset - Handle IRQ "UDC Reset" 2269 * @udc: udc device 2270 */ 2271 static void irq_udc_reset(struct pxa_udc *udc) 2272 { 2273 u32 udccr = udc_readl(udc, UDCCR); 2274 struct pxa_ep *ep = &udc->pxa_ep[0]; 2275 2276 dev_info(udc->dev, "USB reset\n"); 2277 udc_writel(udc, UDCISR1, UDCISR1_IRRS); 2278 udc->stats.irqs_reset++; 2279 2280 if ((udccr & UDCCR_UDA) == 0) { 2281 dev_dbg(udc->dev, "USB reset start\n"); 2282 stop_activity(udc); 2283 } 2284 udc->gadget.speed = USB_SPEED_FULL; 2285 memset(&udc->stats, 0, sizeof udc->stats); 2286 2287 nuke(ep, -EPROTO); 2288 ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC); 2289 ep0_idle(udc); 2290 } 2291 2292 /** 2293 * pxa_udc_irq - Main irq handler 2294 * @irq: irq number 2295 * @_dev: udc device 2296 * 2297 * Handles all udc interrupts 2298 */ 2299 static irqreturn_t pxa_udc_irq(int irq, void *_dev) 2300 { 2301 struct pxa_udc *udc = _dev; 2302 u32 udcisr0 = udc_readl(udc, UDCISR0); 2303 u32 udcisr1 = udc_readl(udc, UDCISR1); 2304 u32 udccr = udc_readl(udc, UDCCR); 2305 u32 udcisr1_spec; 2306 2307 dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, " 2308 "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr); 2309 2310 udcisr1_spec = udcisr1 & 0xf8000000; 2311 if (unlikely(udcisr1_spec & UDCISR1_IRSU)) 2312 irq_udc_suspend(udc); 2313 if (unlikely(udcisr1_spec & UDCISR1_IRRU)) 2314 irq_udc_resume(udc); 2315 if (unlikely(udcisr1_spec & UDCISR1_IRCC)) 2316 irq_udc_reconfig(udc); 2317 if (unlikely(udcisr1_spec & UDCISR1_IRRS)) 2318 irq_udc_reset(udc); 2319 2320 if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK)) 2321 irq_handle_data(irq, udc); 2322 2323 return IRQ_HANDLED; 2324 } 2325 2326 static struct pxa_udc memory = { 2327 .gadget = { 2328 .ops = &pxa_udc_ops, 2329 .ep0 = &memory.udc_usb_ep[0].usb_ep, 2330 .name = driver_name, 2331 .dev = { 2332 .init_name = "gadget", 2333 }, 2334 }, 2335 2336 .udc_usb_ep = { 2337 USB_EP_CTRL, 2338 USB_EP_OUT_BULK(1), 2339 USB_EP_IN_BULK(2), 2340 USB_EP_IN_ISO(3), 2341 USB_EP_OUT_ISO(4), 2342 USB_EP_IN_INT(5), 2343 }, 2344 2345 .pxa_ep = { 2346 PXA_EP_CTRL, 2347 /* Endpoints for gadget zero */ 2348 PXA_EP_OUT_BULK(1, 1, 3, 0, 0), 2349 PXA_EP_IN_BULK(2, 2, 3, 0, 0), 2350 /* Endpoints for ether gadget, file storage gadget */ 2351 PXA_EP_OUT_BULK(3, 1, 1, 0, 0), 2352 PXA_EP_IN_BULK(4, 2, 1, 0, 0), 2353 PXA_EP_IN_ISO(5, 3, 1, 0, 0), 2354 PXA_EP_OUT_ISO(6, 4, 1, 0, 0), 2355 PXA_EP_IN_INT(7, 5, 1, 0, 0), 2356 /* Endpoints for RNDIS, serial */ 2357 PXA_EP_OUT_BULK(8, 1, 2, 0, 0), 2358 PXA_EP_IN_BULK(9, 2, 2, 0, 0), 2359 PXA_EP_IN_INT(10, 5, 2, 0, 0), 2360 /* 2361 * All the following endpoints are only for completion. They 2362 * won't never work, as multiple interfaces are really broken on 2363 * the pxa. 2364 */ 2365 PXA_EP_OUT_BULK(11, 1, 2, 1, 0), 2366 PXA_EP_IN_BULK(12, 2, 2, 1, 0), 2367 /* Endpoint for CDC Ether */ 2368 PXA_EP_OUT_BULK(13, 1, 1, 1, 1), 2369 PXA_EP_IN_BULK(14, 2, 1, 1, 1), 2370 } 2371 }; 2372 2373 #if defined(CONFIG_OF) 2374 static const struct of_device_id udc_pxa_dt_ids[] = { 2375 { .compatible = "marvell,pxa270-udc" }, 2376 {} 2377 }; 2378 MODULE_DEVICE_TABLE(of, udc_pxa_dt_ids); 2379 #endif 2380 2381 /** 2382 * pxa_udc_probe - probes the udc device 2383 * @_dev: platform device 2384 * 2385 * Perform basic init : allocates udc clock, creates sysfs files, requests 2386 * irq. 2387 */ 2388 static int pxa_udc_probe(struct platform_device *pdev) 2389 { 2390 struct resource *regs; 2391 struct pxa_udc *udc = &memory; 2392 int retval = 0, gpio; 2393 struct pxa2xx_udc_mach_info *mach = dev_get_platdata(&pdev->dev); 2394 unsigned long gpio_flags; 2395 2396 if (mach) { 2397 gpio_flags = mach->gpio_pullup_inverted ? GPIOF_ACTIVE_LOW : 0; 2398 gpio = mach->gpio_pullup; 2399 if (gpio_is_valid(gpio)) { 2400 retval = devm_gpio_request_one(&pdev->dev, gpio, 2401 gpio_flags, 2402 "USB D+ pullup"); 2403 if (retval) 2404 return retval; 2405 udc->gpiod = gpio_to_desc(mach->gpio_pullup); 2406 } 2407 udc->udc_command = mach->udc_command; 2408 } else { 2409 udc->gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_ASIS); 2410 } 2411 2412 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2413 udc->regs = devm_ioremap_resource(&pdev->dev, regs); 2414 if (IS_ERR(udc->regs)) 2415 return PTR_ERR(udc->regs); 2416 udc->irq = platform_get_irq(pdev, 0); 2417 if (udc->irq < 0) 2418 return udc->irq; 2419 2420 udc->dev = &pdev->dev; 2421 if (of_have_populated_dt()) { 2422 udc->transceiver = 2423 devm_usb_get_phy_by_phandle(udc->dev, "phys", 0); 2424 if (IS_ERR(udc->transceiver)) 2425 return PTR_ERR(udc->transceiver); 2426 } else { 2427 udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2); 2428 } 2429 2430 if (IS_ERR(udc->gpiod)) { 2431 dev_err(&pdev->dev, "Couldn't find or request D+ gpio : %ld\n", 2432 PTR_ERR(udc->gpiod)); 2433 return PTR_ERR(udc->gpiod); 2434 } 2435 if (udc->gpiod) 2436 gpiod_direction_output(udc->gpiod, 0); 2437 2438 udc->clk = devm_clk_get(&pdev->dev, NULL); 2439 if (IS_ERR(udc->clk)) 2440 return PTR_ERR(udc->clk); 2441 2442 retval = clk_prepare(udc->clk); 2443 if (retval) 2444 return retval; 2445 2446 udc->vbus_sensed = 0; 2447 2448 the_controller = udc; 2449 platform_set_drvdata(pdev, udc); 2450 udc_init_data(udc); 2451 2452 /* irq setup after old hardware state is cleaned up */ 2453 retval = devm_request_irq(&pdev->dev, udc->irq, pxa_udc_irq, 2454 IRQF_SHARED, driver_name, udc); 2455 if (retval != 0) { 2456 dev_err(udc->dev, "%s: can't get irq %i, err %d\n", 2457 driver_name, udc->irq, retval); 2458 goto err; 2459 } 2460 2461 if (!IS_ERR_OR_NULL(udc->transceiver)) 2462 usb_register_notifier(udc->transceiver, &pxa27x_udc_phy); 2463 retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget); 2464 if (retval) 2465 goto err_add_gadget; 2466 2467 pxa_init_debugfs(udc); 2468 if (should_enable_udc(udc)) 2469 udc_enable(udc); 2470 return 0; 2471 2472 err_add_gadget: 2473 if (!IS_ERR_OR_NULL(udc->transceiver)) 2474 usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy); 2475 err: 2476 clk_unprepare(udc->clk); 2477 return retval; 2478 } 2479 2480 /** 2481 * pxa_udc_remove - removes the udc device driver 2482 * @_dev: platform device 2483 */ 2484 static int pxa_udc_remove(struct platform_device *_dev) 2485 { 2486 struct pxa_udc *udc = platform_get_drvdata(_dev); 2487 2488 usb_del_gadget_udc(&udc->gadget); 2489 pxa_cleanup_debugfs(udc); 2490 2491 if (!IS_ERR_OR_NULL(udc->transceiver)) { 2492 usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy); 2493 usb_put_phy(udc->transceiver); 2494 } 2495 2496 udc->transceiver = NULL; 2497 the_controller = NULL; 2498 clk_unprepare(udc->clk); 2499 2500 return 0; 2501 } 2502 2503 static void pxa_udc_shutdown(struct platform_device *_dev) 2504 { 2505 struct pxa_udc *udc = platform_get_drvdata(_dev); 2506 2507 if (udc_readl(udc, UDCCR) & UDCCR_UDE) 2508 udc_disable(udc); 2509 } 2510 2511 #ifdef CONFIG_PXA27x 2512 extern void pxa27x_clear_otgph(void); 2513 #else 2514 #define pxa27x_clear_otgph() do {} while (0) 2515 #endif 2516 2517 #ifdef CONFIG_PM 2518 /** 2519 * pxa_udc_suspend - Suspend udc device 2520 * @_dev: platform device 2521 * @state: suspend state 2522 * 2523 * Suspends udc : saves configuration registers (UDCCR*), then disables the udc 2524 * device. 2525 */ 2526 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state) 2527 { 2528 struct pxa_udc *udc = platform_get_drvdata(_dev); 2529 struct pxa_ep *ep; 2530 2531 ep = &udc->pxa_ep[0]; 2532 udc->udccsr0 = udc_ep_readl(ep, UDCCSR); 2533 2534 udc_disable(udc); 2535 udc->pullup_resume = udc->pullup_on; 2536 dplus_pullup(udc, 0); 2537 2538 if (udc->driver) 2539 udc->driver->disconnect(&udc->gadget); 2540 2541 return 0; 2542 } 2543 2544 /** 2545 * pxa_udc_resume - Resume udc device 2546 * @_dev: platform device 2547 * 2548 * Resumes udc : restores configuration registers (UDCCR*), then enables the udc 2549 * device. 2550 */ 2551 static int pxa_udc_resume(struct platform_device *_dev) 2552 { 2553 struct pxa_udc *udc = platform_get_drvdata(_dev); 2554 struct pxa_ep *ep; 2555 2556 ep = &udc->pxa_ep[0]; 2557 udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME)); 2558 2559 dplus_pullup(udc, udc->pullup_resume); 2560 if (should_enable_udc(udc)) 2561 udc_enable(udc); 2562 /* 2563 * We do not handle OTG yet. 2564 * 2565 * OTGPH bit is set when sleep mode is entered. 2566 * it indicates that OTG pad is retaining its state. 2567 * Upon exit from sleep mode and before clearing OTGPH, 2568 * Software must configure the USB OTG pad, UDC, and UHC 2569 * to the state they were in before entering sleep mode. 2570 */ 2571 pxa27x_clear_otgph(); 2572 2573 return 0; 2574 } 2575 #endif 2576 2577 /* work with hotplug and coldplug */ 2578 MODULE_ALIAS("platform:pxa27x-udc"); 2579 2580 static struct platform_driver udc_driver = { 2581 .driver = { 2582 .name = "pxa27x-udc", 2583 .of_match_table = of_match_ptr(udc_pxa_dt_ids), 2584 }, 2585 .probe = pxa_udc_probe, 2586 .remove = pxa_udc_remove, 2587 .shutdown = pxa_udc_shutdown, 2588 #ifdef CONFIG_PM 2589 .suspend = pxa_udc_suspend, 2590 .resume = pxa_udc_resume 2591 #endif 2592 }; 2593 2594 module_platform_driver(udc_driver); 2595 2596 MODULE_DESCRIPTION(DRIVER_DESC); 2597 MODULE_AUTHOR("Robert Jarzmik"); 2598 MODULE_LICENSE("GPL"); 2599