1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Handles the Intel 27x USB Device Controller (UDC)
4 *
5 * Inspired by original driver by Frank Becker, David Brownell, and others.
6 * Copyright (C) 2008 Robert Jarzmik
7 */
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/errno.h>
12 #include <linux/err.h>
13 #include <linux/platform_device.h>
14 #include <linux/delay.h>
15 #include <linux/list.h>
16 #include <linux/interrupt.h>
17 #include <linux/proc_fs.h>
18 #include <linux/clk.h>
19 #include <linux/irq.h>
20 #include <linux/gpio.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/slab.h>
23 #include <linux/prefetch.h>
24 #include <linux/byteorder/generic.h>
25 #include <linux/platform_data/pxa2xx_udc.h>
26 #include <linux/of.h>
27
28 #include <linux/usb.h>
29 #include <linux/usb/ch9.h>
30 #include <linux/usb/gadget.h>
31 #include <linux/usb/phy.h>
32
33 #include "pxa27x_udc.h"
34
35 /*
36 * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x
37 * series processors.
38 *
39 * Such controller drivers work with a gadget driver. The gadget driver
40 * returns descriptors, implements configuration and data protocols used
41 * by the host to interact with this device, and allocates endpoints to
42 * the different protocol interfaces. The controller driver virtualizes
43 * usb hardware so that the gadget drivers will be more portable.
44 *
45 * This UDC hardware wants to implement a bit too much USB protocol. The
46 * biggest issues are: that the endpoints have to be set up before the
47 * controller can be enabled (minor, and not uncommon); and each endpoint
48 * can only have one configuration, interface and alternative interface
49 * number (major, and very unusual). Once set up, these cannot be changed
50 * without a controller reset.
51 *
52 * The workaround is to setup all combinations necessary for the gadgets which
53 * will work with this driver. This is done in pxa_udc structure, statically.
54 * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep.
55 * (You could modify this if needed. Some drivers have a "fifo_mode" module
56 * parameter to facilitate such changes.)
57 *
58 * The combinations have been tested with these gadgets :
59 * - zero gadget
60 * - file storage gadget
61 * - ether gadget
62 *
63 * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is
64 * made of UDC's double buffering either. USB "On-The-Go" is not implemented.
65 *
66 * All the requests are handled the same way :
67 * - the drivers tries to handle the request directly to the IO
68 * - if the IO fifo is not big enough, the remaining is send/received in
69 * interrupt handling.
70 */
71
72 #define DRIVER_VERSION "2008-04-18"
73 #define DRIVER_DESC "PXA 27x USB Device Controller driver"
74
75 static const char driver_name[] = "pxa27x_udc";
76 static struct pxa_udc *the_controller;
77
78 static void handle_ep(struct pxa_ep *ep);
79
80 /*
81 * Debug filesystem
82 */
83 #ifdef CONFIG_USB_GADGET_DEBUG_FS
84
85 #include <linux/debugfs.h>
86 #include <linux/uaccess.h>
87 #include <linux/seq_file.h>
88
state_dbg_show(struct seq_file * s,void * p)89 static int state_dbg_show(struct seq_file *s, void *p)
90 {
91 struct pxa_udc *udc = s->private;
92 u32 tmp;
93
94 if (!udc->driver)
95 return -ENODEV;
96
97 /* basic device status */
98 seq_printf(s, DRIVER_DESC "\n"
99 "%s version: %s\n"
100 "Gadget driver: %s\n",
101 driver_name, DRIVER_VERSION,
102 udc->driver ? udc->driver->driver.name : "(none)");
103
104 tmp = udc_readl(udc, UDCCR);
105 seq_printf(s,
106 "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), con=%d,inter=%d,altinter=%d\n",
107 tmp,
108 (tmp & UDCCR_OEN) ? " oen":"",
109 (tmp & UDCCR_AALTHNP) ? " aalthnp":"",
110 (tmp & UDCCR_AHNP) ? " rem" : "",
111 (tmp & UDCCR_BHNP) ? " rstir" : "",
112 (tmp & UDCCR_DWRE) ? " dwre" : "",
113 (tmp & UDCCR_SMAC) ? " smac" : "",
114 (tmp & UDCCR_EMCE) ? " emce" : "",
115 (tmp & UDCCR_UDR) ? " udr" : "",
116 (tmp & UDCCR_UDA) ? " uda" : "",
117 (tmp & UDCCR_UDE) ? " ude" : "",
118 (tmp & UDCCR_ACN) >> UDCCR_ACN_S,
119 (tmp & UDCCR_AIN) >> UDCCR_AIN_S,
120 (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S);
121 /* registers for device and ep0 */
122 seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n",
123 udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1));
124 seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n",
125 udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1));
126 seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR));
127 seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, reconfig=%lu\n",
128 udc->stats.irqs_reset, udc->stats.irqs_suspend,
129 udc->stats.irqs_resume, udc->stats.irqs_reconfig);
130
131 return 0;
132 }
133 DEFINE_SHOW_ATTRIBUTE(state_dbg);
134
queues_dbg_show(struct seq_file * s,void * p)135 static int queues_dbg_show(struct seq_file *s, void *p)
136 {
137 struct pxa_udc *udc = s->private;
138 struct pxa_ep *ep;
139 struct pxa27x_request *req;
140 int i, maxpkt;
141
142 if (!udc->driver)
143 return -ENODEV;
144
145 /* dump endpoint queues */
146 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
147 ep = &udc->pxa_ep[i];
148 maxpkt = ep->fifo_size;
149 seq_printf(s, "%-12s max_pkt=%d %s\n",
150 EPNAME(ep), maxpkt, "pio");
151
152 if (list_empty(&ep->queue)) {
153 seq_puts(s, "\t(nothing queued)\n");
154 continue;
155 }
156
157 list_for_each_entry(req, &ep->queue, queue) {
158 seq_printf(s, "\treq %p len %d/%d buf %p\n",
159 &req->req, req->req.actual,
160 req->req.length, req->req.buf);
161 }
162 }
163
164 return 0;
165 }
166 DEFINE_SHOW_ATTRIBUTE(queues_dbg);
167
eps_dbg_show(struct seq_file * s,void * p)168 static int eps_dbg_show(struct seq_file *s, void *p)
169 {
170 struct pxa_udc *udc = s->private;
171 struct pxa_ep *ep;
172 int i;
173 u32 tmp;
174
175 if (!udc->driver)
176 return -ENODEV;
177
178 ep = &udc->pxa_ep[0];
179 tmp = udc_ep_readl(ep, UDCCSR);
180 seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n",
181 tmp,
182 (tmp & UDCCSR0_SA) ? " sa" : "",
183 (tmp & UDCCSR0_RNE) ? " rne" : "",
184 (tmp & UDCCSR0_FST) ? " fst" : "",
185 (tmp & UDCCSR0_SST) ? " sst" : "",
186 (tmp & UDCCSR0_DME) ? " dme" : "",
187 (tmp & UDCCSR0_IPR) ? " ipr" : "",
188 (tmp & UDCCSR0_OPC) ? " opc" : "");
189 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
190 ep = &udc->pxa_ep[i];
191 tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR);
192 seq_printf(s, "%-12s: IN %lu(%lu reqs), OUT %lu(%lu reqs), irqs=%lu, udccr=0x%08x, udccsr=0x%03x, udcbcr=%d\n",
193 EPNAME(ep),
194 ep->stats.in_bytes, ep->stats.in_ops,
195 ep->stats.out_bytes, ep->stats.out_ops,
196 ep->stats.irqs,
197 tmp, udc_ep_readl(ep, UDCCSR),
198 udc_ep_readl(ep, UDCBCR));
199 }
200
201 return 0;
202 }
203 DEFINE_SHOW_ATTRIBUTE(eps_dbg);
204
pxa_init_debugfs(struct pxa_udc * udc)205 static void pxa_init_debugfs(struct pxa_udc *udc)
206 {
207 struct dentry *root;
208
209 root = debugfs_create_dir(udc->gadget.name, usb_debug_root);
210 debugfs_create_file("udcstate", 0400, root, udc, &state_dbg_fops);
211 debugfs_create_file("queues", 0400, root, udc, &queues_dbg_fops);
212 debugfs_create_file("epstate", 0400, root, udc, &eps_dbg_fops);
213 }
214
pxa_cleanup_debugfs(struct pxa_udc * udc)215 static void pxa_cleanup_debugfs(struct pxa_udc *udc)
216 {
217 debugfs_lookup_and_remove(udc->gadget.name, usb_debug_root);
218 }
219
220 #else
pxa_init_debugfs(struct pxa_udc * udc)221 static inline void pxa_init_debugfs(struct pxa_udc *udc)
222 {
223 }
224
pxa_cleanup_debugfs(struct pxa_udc * udc)225 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc)
226 {
227 }
228 #endif
229
230 /**
231 * is_match_usb_pxa - check if usb_ep and pxa_ep match
232 * @udc_usb_ep: usb endpoint
233 * @ep: pxa endpoint
234 * @config: configuration required in pxa_ep
235 * @interface: interface required in pxa_ep
236 * @altsetting: altsetting required in pxa_ep
237 *
238 * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise
239 */
is_match_usb_pxa(struct udc_usb_ep * udc_usb_ep,struct pxa_ep * ep,int config,int interface,int altsetting)240 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep,
241 int config, int interface, int altsetting)
242 {
243 if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr)
244 return 0;
245 if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in)
246 return 0;
247 if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type)
248 return 0;
249 if ((ep->config != config) || (ep->interface != interface)
250 || (ep->alternate != altsetting))
251 return 0;
252 return 1;
253 }
254
255 /**
256 * find_pxa_ep - find pxa_ep structure matching udc_usb_ep
257 * @udc: pxa udc
258 * @udc_usb_ep: udc_usb_ep structure
259 *
260 * Match udc_usb_ep and all pxa_ep available, to see if one matches.
261 * This is necessary because of the strong pxa hardware restriction requiring
262 * that once pxa endpoints are initialized, their configuration is freezed, and
263 * no change can be made to their address, direction, or in which configuration,
264 * interface or altsetting they are active ... which differs from more usual
265 * models which have endpoints be roughly just addressable fifos, and leave
266 * configuration events up to gadget drivers (like all control messages).
267 *
268 * Note that there is still a blurred point here :
269 * - we rely on UDCCR register "active interface" and "active altsetting".
270 * This is a nonsense in regard of USB spec, where multiple interfaces are
271 * active at the same time.
272 * - if we knew for sure that the pxa can handle multiple interface at the
273 * same time, assuming Intel's Developer Guide is wrong, this function
274 * should be reviewed, and a cache of couples (iface, altsetting) should
275 * be kept in the pxa_udc structure. In this case this function would match
276 * against the cache of couples instead of the "last altsetting" set up.
277 *
278 * Returns the matched pxa_ep structure or NULL if none found
279 */
find_pxa_ep(struct pxa_udc * udc,struct udc_usb_ep * udc_usb_ep)280 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc,
281 struct udc_usb_ep *udc_usb_ep)
282 {
283 int i;
284 struct pxa_ep *ep;
285 int cfg = udc->config;
286 int iface = udc->last_interface;
287 int alt = udc->last_alternate;
288
289 if (udc_usb_ep == &udc->udc_usb_ep[0])
290 return &udc->pxa_ep[0];
291
292 for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
293 ep = &udc->pxa_ep[i];
294 if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt))
295 return ep;
296 }
297 return NULL;
298 }
299
300 /**
301 * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep
302 * @udc: pxa udc
303 *
304 * Context: interrupt handler
305 *
306 * Updates all pxa_ep fields in udc_usb_ep structures, if this field was
307 * previously set up (and is not NULL). The update is necessary is a
308 * configuration change or altsetting change was issued by the USB host.
309 */
update_pxa_ep_matches(struct pxa_udc * udc)310 static void update_pxa_ep_matches(struct pxa_udc *udc)
311 {
312 int i;
313 struct udc_usb_ep *udc_usb_ep;
314
315 for (i = 1; i < NR_USB_ENDPOINTS; i++) {
316 udc_usb_ep = &udc->udc_usb_ep[i];
317 if (udc_usb_ep->pxa_ep)
318 udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep);
319 }
320 }
321
322 /**
323 * pio_irq_enable - Enables irq generation for one endpoint
324 * @ep: udc endpoint
325 */
pio_irq_enable(struct pxa_ep * ep)326 static void pio_irq_enable(struct pxa_ep *ep)
327 {
328 struct pxa_udc *udc = ep->dev;
329 int index = EPIDX(ep);
330 u32 udcicr0 = udc_readl(udc, UDCICR0);
331 u32 udcicr1 = udc_readl(udc, UDCICR1);
332
333 if (index < 16)
334 udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2)));
335 else
336 udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2)));
337 }
338
339 /**
340 * pio_irq_disable - Disables irq generation for one endpoint
341 * @ep: udc endpoint
342 */
pio_irq_disable(struct pxa_ep * ep)343 static void pio_irq_disable(struct pxa_ep *ep)
344 {
345 struct pxa_udc *udc = ep->dev;
346 int index = EPIDX(ep);
347 u32 udcicr0 = udc_readl(udc, UDCICR0);
348 u32 udcicr1 = udc_readl(udc, UDCICR1);
349
350 if (index < 16)
351 udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2)));
352 else
353 udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2)));
354 }
355
356 /**
357 * udc_set_mask_UDCCR - set bits in UDCCR
358 * @udc: udc device
359 * @mask: bits to set in UDCCR
360 *
361 * Sets bits in UDCCR, leaving DME and FST bits as they were.
362 */
udc_set_mask_UDCCR(struct pxa_udc * udc,int mask)363 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask)
364 {
365 u32 udccr = udc_readl(udc, UDCCR);
366 udc_writel(udc, UDCCR,
367 (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS));
368 }
369
370 /**
371 * udc_clear_mask_UDCCR - clears bits in UDCCR
372 * @udc: udc device
373 * @mask: bit to clear in UDCCR
374 *
375 * Clears bits in UDCCR, leaving DME and FST bits as they were.
376 */
udc_clear_mask_UDCCR(struct pxa_udc * udc,int mask)377 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask)
378 {
379 u32 udccr = udc_readl(udc, UDCCR);
380 udc_writel(udc, UDCCR,
381 (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS));
382 }
383
384 /**
385 * ep_write_UDCCSR - set bits in UDCCSR
386 * @ep: udc endpoint
387 * @mask: bits to set in UDCCR
388 *
389 * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*).
390 *
391 * A specific case is applied to ep0 : the ACM bit is always set to 1, for
392 * SET_INTERFACE and SET_CONFIGURATION.
393 */
ep_write_UDCCSR(struct pxa_ep * ep,int mask)394 static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask)
395 {
396 if (is_ep0(ep))
397 mask |= UDCCSR0_ACM;
398 udc_ep_writel(ep, UDCCSR, mask);
399 }
400
401 /**
402 * ep_count_bytes_remain - get how many bytes in udc endpoint
403 * @ep: udc endpoint
404 *
405 * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP)
406 */
ep_count_bytes_remain(struct pxa_ep * ep)407 static int ep_count_bytes_remain(struct pxa_ep *ep)
408 {
409 if (ep->dir_in)
410 return -EOPNOTSUPP;
411 return udc_ep_readl(ep, UDCBCR) & 0x3ff;
412 }
413
414 /**
415 * ep_is_empty - checks if ep has byte ready for reading
416 * @ep: udc endpoint
417 *
418 * If endpoint is the control endpoint, checks if there are bytes in the
419 * control endpoint fifo. If endpoint is a data endpoint, checks if bytes
420 * are ready for reading on OUT endpoint.
421 *
422 * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint
423 */
ep_is_empty(struct pxa_ep * ep)424 static int ep_is_empty(struct pxa_ep *ep)
425 {
426 int ret;
427
428 if (!is_ep0(ep) && ep->dir_in)
429 return -EOPNOTSUPP;
430 if (is_ep0(ep))
431 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE);
432 else
433 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE);
434 return ret;
435 }
436
437 /**
438 * ep_is_full - checks if ep has place to write bytes
439 * @ep: udc endpoint
440 *
441 * If endpoint is not the control endpoint and is an IN endpoint, checks if
442 * there is place to write bytes into the endpoint.
443 *
444 * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint
445 */
ep_is_full(struct pxa_ep * ep)446 static int ep_is_full(struct pxa_ep *ep)
447 {
448 if (is_ep0(ep))
449 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR);
450 if (!ep->dir_in)
451 return -EOPNOTSUPP;
452 return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF));
453 }
454
455 /**
456 * epout_has_pkt - checks if OUT endpoint fifo has a packet available
457 * @ep: pxa endpoint
458 *
459 * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep.
460 */
epout_has_pkt(struct pxa_ep * ep)461 static int epout_has_pkt(struct pxa_ep *ep)
462 {
463 if (!is_ep0(ep) && ep->dir_in)
464 return -EOPNOTSUPP;
465 if (is_ep0(ep))
466 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC);
467 return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC);
468 }
469
470 /**
471 * set_ep0state - Set ep0 automata state
472 * @udc: udc device
473 * @state: state
474 */
set_ep0state(struct pxa_udc * udc,int state)475 static void set_ep0state(struct pxa_udc *udc, int state)
476 {
477 struct pxa_ep *ep = &udc->pxa_ep[0];
478 char *old_stname = EP0_STNAME(udc);
479
480 udc->ep0state = state;
481 ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname,
482 EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR),
483 udc_ep_readl(ep, UDCBCR));
484 }
485
486 /**
487 * ep0_idle - Put control endpoint into idle state
488 * @dev: udc device
489 */
ep0_idle(struct pxa_udc * dev)490 static void ep0_idle(struct pxa_udc *dev)
491 {
492 set_ep0state(dev, WAIT_FOR_SETUP);
493 }
494
495 /**
496 * inc_ep_stats_reqs - Update ep stats counts
497 * @ep: physical endpoint
498 * @is_in: ep direction (USB_DIR_IN or 0)
499 *
500 */
inc_ep_stats_reqs(struct pxa_ep * ep,int is_in)501 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in)
502 {
503 if (is_in)
504 ep->stats.in_ops++;
505 else
506 ep->stats.out_ops++;
507 }
508
509 /**
510 * inc_ep_stats_bytes - Update ep stats counts
511 * @ep: physical endpoint
512 * @count: bytes transferred on endpoint
513 * @is_in: ep direction (USB_DIR_IN or 0)
514 */
inc_ep_stats_bytes(struct pxa_ep * ep,int count,int is_in)515 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in)
516 {
517 if (is_in)
518 ep->stats.in_bytes += count;
519 else
520 ep->stats.out_bytes += count;
521 }
522
523 /**
524 * pxa_ep_setup - Sets up an usb physical endpoint
525 * @ep: pxa27x physical endpoint
526 *
527 * Find the physical pxa27x ep, and setup its UDCCR
528 */
pxa_ep_setup(struct pxa_ep * ep)529 static void pxa_ep_setup(struct pxa_ep *ep)
530 {
531 u32 new_udccr;
532
533 new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN)
534 | ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN)
535 | ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN)
536 | ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN)
537 | ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET)
538 | ((ep->dir_in) ? UDCCONR_ED : 0)
539 | ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS)
540 | UDCCONR_EE;
541
542 udc_ep_writel(ep, UDCCR, new_udccr);
543 }
544
545 /**
546 * pxa_eps_setup - Sets up all usb physical endpoints
547 * @dev: udc device
548 *
549 * Setup all pxa physical endpoints, except ep0
550 */
pxa_eps_setup(struct pxa_udc * dev)551 static void pxa_eps_setup(struct pxa_udc *dev)
552 {
553 unsigned int i;
554
555 dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev);
556
557 for (i = 1; i < NR_PXA_ENDPOINTS; i++)
558 pxa_ep_setup(&dev->pxa_ep[i]);
559 }
560
561 /**
562 * pxa_ep_alloc_request - Allocate usb request
563 * @_ep: usb endpoint
564 * @gfp_flags:
565 *
566 * For the pxa27x, these can just wrap kmalloc/kfree. gadget drivers
567 * must still pass correctly initialized endpoints, since other controller
568 * drivers may care about how it's currently set up (dma issues etc).
569 */
570 static struct usb_request *
pxa_ep_alloc_request(struct usb_ep * _ep,gfp_t gfp_flags)571 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
572 {
573 struct pxa27x_request *req;
574
575 req = kzalloc(sizeof *req, gfp_flags);
576 if (!req)
577 return NULL;
578
579 INIT_LIST_HEAD(&req->queue);
580 req->in_use = 0;
581 req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
582
583 return &req->req;
584 }
585
586 /**
587 * pxa_ep_free_request - Free usb request
588 * @_ep: usb endpoint
589 * @_req: usb request
590 *
591 * Wrapper around kfree to free _req
592 */
pxa_ep_free_request(struct usb_ep * _ep,struct usb_request * _req)593 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
594 {
595 struct pxa27x_request *req;
596
597 req = container_of(_req, struct pxa27x_request, req);
598 WARN_ON(!list_empty(&req->queue));
599 kfree(req);
600 }
601
602 /**
603 * ep_add_request - add a request to the endpoint's queue
604 * @ep: usb endpoint
605 * @req: usb request
606 *
607 * Context: ep->lock held
608 *
609 * Queues the request in the endpoint's queue, and enables the interrupts
610 * on the endpoint.
611 */
ep_add_request(struct pxa_ep * ep,struct pxa27x_request * req)612 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req)
613 {
614 if (unlikely(!req))
615 return;
616 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
617 req->req.length, udc_ep_readl(ep, UDCCSR));
618
619 req->in_use = 1;
620 list_add_tail(&req->queue, &ep->queue);
621 pio_irq_enable(ep);
622 }
623
624 /**
625 * ep_del_request - removes a request from the endpoint's queue
626 * @ep: usb endpoint
627 * @req: usb request
628 *
629 * Context: ep->lock held
630 *
631 * Unqueue the request from the endpoint's queue. If there are no more requests
632 * on the endpoint, and if it's not the control endpoint, interrupts are
633 * disabled on the endpoint.
634 */
ep_del_request(struct pxa_ep * ep,struct pxa27x_request * req)635 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req)
636 {
637 if (unlikely(!req))
638 return;
639 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
640 req->req.length, udc_ep_readl(ep, UDCCSR));
641
642 list_del_init(&req->queue);
643 req->in_use = 0;
644 if (!is_ep0(ep) && list_empty(&ep->queue))
645 pio_irq_disable(ep);
646 }
647
648 /**
649 * req_done - Complete an usb request
650 * @ep: pxa physical endpoint
651 * @req: pxa request
652 * @status: usb request status sent to gadget API
653 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
654 *
655 * Context: ep->lock held if flags not NULL, else ep->lock released
656 *
657 * Retire a pxa27x usb request. Endpoint must be locked.
658 */
req_done(struct pxa_ep * ep,struct pxa27x_request * req,int status,unsigned long * pflags)659 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status,
660 unsigned long *pflags)
661 {
662 unsigned long flags;
663
664 ep_del_request(ep, req);
665 if (likely(req->req.status == -EINPROGRESS))
666 req->req.status = status;
667 else
668 status = req->req.status;
669
670 if (status && status != -ESHUTDOWN)
671 ep_dbg(ep, "complete req %p stat %d len %u/%u\n",
672 &req->req, status,
673 req->req.actual, req->req.length);
674
675 if (pflags)
676 spin_unlock_irqrestore(&ep->lock, *pflags);
677 local_irq_save(flags);
678 usb_gadget_giveback_request(&req->udc_usb_ep->usb_ep, &req->req);
679 local_irq_restore(flags);
680 if (pflags)
681 spin_lock_irqsave(&ep->lock, *pflags);
682 }
683
684 /**
685 * ep_end_out_req - Ends endpoint OUT request
686 * @ep: physical endpoint
687 * @req: pxa request
688 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
689 *
690 * Context: ep->lock held or released (see req_done())
691 *
692 * Ends endpoint OUT request (completes usb request).
693 */
ep_end_out_req(struct pxa_ep * ep,struct pxa27x_request * req,unsigned long * pflags)694 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
695 unsigned long *pflags)
696 {
697 inc_ep_stats_reqs(ep, !USB_DIR_IN);
698 req_done(ep, req, 0, pflags);
699 }
700
701 /**
702 * ep0_end_out_req - Ends control endpoint OUT request (ends data stage)
703 * @ep: physical endpoint
704 * @req: pxa request
705 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
706 *
707 * Context: ep->lock held or released (see req_done())
708 *
709 * Ends control endpoint OUT request (completes usb request), and puts
710 * control endpoint into idle state
711 */
ep0_end_out_req(struct pxa_ep * ep,struct pxa27x_request * req,unsigned long * pflags)712 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
713 unsigned long *pflags)
714 {
715 set_ep0state(ep->dev, OUT_STATUS_STAGE);
716 ep_end_out_req(ep, req, pflags);
717 ep0_idle(ep->dev);
718 }
719
720 /**
721 * ep_end_in_req - Ends endpoint IN request
722 * @ep: physical endpoint
723 * @req: pxa request
724 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
725 *
726 * Context: ep->lock held or released (see req_done())
727 *
728 * Ends endpoint IN request (completes usb request).
729 */
ep_end_in_req(struct pxa_ep * ep,struct pxa27x_request * req,unsigned long * pflags)730 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
731 unsigned long *pflags)
732 {
733 inc_ep_stats_reqs(ep, USB_DIR_IN);
734 req_done(ep, req, 0, pflags);
735 }
736
737 /**
738 * ep0_end_in_req - Ends control endpoint IN request (ends data stage)
739 * @ep: physical endpoint
740 * @req: pxa request
741 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
742 *
743 * Context: ep->lock held or released (see req_done())
744 *
745 * Ends control endpoint IN request (completes usb request), and puts
746 * control endpoint into status state
747 */
ep0_end_in_req(struct pxa_ep * ep,struct pxa27x_request * req,unsigned long * pflags)748 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
749 unsigned long *pflags)
750 {
751 set_ep0state(ep->dev, IN_STATUS_STAGE);
752 ep_end_in_req(ep, req, pflags);
753 }
754
755 /**
756 * nuke - Dequeue all requests
757 * @ep: pxa endpoint
758 * @status: usb request status
759 *
760 * Context: ep->lock released
761 *
762 * Dequeues all requests on an endpoint. As a side effect, interrupts will be
763 * disabled on that endpoint (because no more requests).
764 */
nuke(struct pxa_ep * ep,int status)765 static void nuke(struct pxa_ep *ep, int status)
766 {
767 struct pxa27x_request *req;
768 unsigned long flags;
769
770 spin_lock_irqsave(&ep->lock, flags);
771 while (!list_empty(&ep->queue)) {
772 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
773 req_done(ep, req, status, &flags);
774 }
775 spin_unlock_irqrestore(&ep->lock, flags);
776 }
777
778 /**
779 * read_packet - transfer 1 packet from an OUT endpoint into request
780 * @ep: pxa physical endpoint
781 * @req: usb request
782 *
783 * Takes bytes from OUT endpoint and transfers them info the usb request.
784 * If there is less space in request than bytes received in OUT endpoint,
785 * bytes are left in the OUT endpoint.
786 *
787 * Returns how many bytes were actually transferred
788 */
read_packet(struct pxa_ep * ep,struct pxa27x_request * req)789 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req)
790 {
791 u32 *buf;
792 int bytes_ep, bufferspace, count, i;
793
794 bytes_ep = ep_count_bytes_remain(ep);
795 bufferspace = req->req.length - req->req.actual;
796
797 buf = (u32 *)(req->req.buf + req->req.actual);
798 prefetchw(buf);
799
800 if (likely(!ep_is_empty(ep)))
801 count = min(bytes_ep, bufferspace);
802 else /* zlp */
803 count = 0;
804
805 for (i = count; i > 0; i -= 4)
806 *buf++ = udc_ep_readl(ep, UDCDR);
807 req->req.actual += count;
808
809 ep_write_UDCCSR(ep, UDCCSR_PC);
810
811 return count;
812 }
813
814 /**
815 * write_packet - transfer 1 packet from request into an IN endpoint
816 * @ep: pxa physical endpoint
817 * @req: usb request
818 * @max: max bytes that fit into endpoint
819 *
820 * Takes bytes from usb request, and transfers them into the physical
821 * endpoint. If there are no bytes to transfer, doesn't write anything
822 * to physical endpoint.
823 *
824 * Returns how many bytes were actually transferred.
825 */
write_packet(struct pxa_ep * ep,struct pxa27x_request * req,unsigned int max)826 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req,
827 unsigned int max)
828 {
829 int length, count, remain, i;
830 u32 *buf;
831 u8 *buf_8;
832
833 buf = (u32 *)(req->req.buf + req->req.actual);
834 prefetch(buf);
835
836 length = min(req->req.length - req->req.actual, max);
837 req->req.actual += length;
838
839 remain = length & 0x3;
840 count = length & ~(0x3);
841 for (i = count; i > 0 ; i -= 4)
842 udc_ep_writel(ep, UDCDR, *buf++);
843
844 buf_8 = (u8 *)buf;
845 for (i = remain; i > 0; i--)
846 udc_ep_writeb(ep, UDCDR, *buf_8++);
847
848 ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain,
849 udc_ep_readl(ep, UDCCSR));
850
851 return length;
852 }
853
854 /**
855 * read_fifo - Transfer packets from OUT endpoint into usb request
856 * @ep: pxa physical endpoint
857 * @req: usb request
858 *
859 * Context: interrupt handler
860 *
861 * Unload as many packets as possible from the fifo we use for usb OUT
862 * transfers and put them into the request. Caller should have made sure
863 * there's at least one packet ready.
864 * Doesn't complete the request, that's the caller's job
865 *
866 * Returns 1 if the request completed, 0 otherwise
867 */
read_fifo(struct pxa_ep * ep,struct pxa27x_request * req)868 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
869 {
870 int count, is_short, completed = 0;
871
872 while (epout_has_pkt(ep)) {
873 count = read_packet(ep, req);
874 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
875
876 is_short = (count < ep->fifo_size);
877 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
878 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
879 &req->req, req->req.actual, req->req.length);
880
881 /* completion */
882 if (is_short || req->req.actual == req->req.length) {
883 completed = 1;
884 break;
885 }
886 /* finished that packet. the next one may be waiting... */
887 }
888 return completed;
889 }
890
891 /**
892 * write_fifo - transfer packets from usb request into an IN endpoint
893 * @ep: pxa physical endpoint
894 * @req: pxa usb request
895 *
896 * Write to an IN endpoint fifo, as many packets as possible.
897 * irqs will use this to write the rest later.
898 * caller guarantees at least one packet buffer is ready (or a zlp).
899 * Doesn't complete the request, that's the caller's job
900 *
901 * Returns 1 if request fully transferred, 0 if partial transfer
902 */
write_fifo(struct pxa_ep * ep,struct pxa27x_request * req)903 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
904 {
905 unsigned max;
906 int count, is_short, is_last = 0, completed = 0, totcount = 0;
907 u32 udccsr;
908
909 max = ep->fifo_size;
910 do {
911 udccsr = udc_ep_readl(ep, UDCCSR);
912 if (udccsr & UDCCSR_PC) {
913 ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n",
914 udccsr);
915 ep_write_UDCCSR(ep, UDCCSR_PC);
916 }
917 if (udccsr & UDCCSR_TRN) {
918 ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n",
919 udccsr);
920 ep_write_UDCCSR(ep, UDCCSR_TRN);
921 }
922
923 count = write_packet(ep, req, max);
924 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
925 totcount += count;
926
927 /* last packet is usually short (or a zlp) */
928 if (unlikely(count < max)) {
929 is_last = 1;
930 is_short = 1;
931 } else {
932 if (likely(req->req.length > req->req.actual)
933 || req->req.zero)
934 is_last = 0;
935 else
936 is_last = 1;
937 /* interrupt/iso maxpacket may not fill the fifo */
938 is_short = unlikely(max < ep->fifo_size);
939 }
940
941 if (is_short)
942 ep_write_UDCCSR(ep, UDCCSR_SP);
943
944 /* requests complete when all IN data is in the FIFO */
945 if (is_last) {
946 completed = 1;
947 break;
948 }
949 } while (!ep_is_full(ep));
950
951 ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n",
952 totcount, is_last ? "/L" : "", is_short ? "/S" : "",
953 req->req.length - req->req.actual, &req->req);
954
955 return completed;
956 }
957
958 /**
959 * read_ep0_fifo - Transfer packets from control endpoint into usb request
960 * @ep: control endpoint
961 * @req: pxa usb request
962 *
963 * Special ep0 version of the above read_fifo. Reads as many bytes from control
964 * endpoint as can be read, and stores them into usb request (limited by request
965 * maximum length).
966 *
967 * Returns 0 if usb request only partially filled, 1 if fully filled
968 */
read_ep0_fifo(struct pxa_ep * ep,struct pxa27x_request * req)969 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
970 {
971 int count, is_short, completed = 0;
972
973 while (epout_has_pkt(ep)) {
974 count = read_packet(ep, req);
975 ep_write_UDCCSR(ep, UDCCSR0_OPC);
976 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
977
978 is_short = (count < ep->fifo_size);
979 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
980 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
981 &req->req, req->req.actual, req->req.length);
982
983 if (is_short || req->req.actual >= req->req.length) {
984 completed = 1;
985 break;
986 }
987 }
988
989 return completed;
990 }
991
992 /**
993 * write_ep0_fifo - Send a request to control endpoint (ep0 in)
994 * @ep: control endpoint
995 * @req: request
996 *
997 * Context: interrupt handler
998 *
999 * Sends a request (or a part of the request) to the control endpoint (ep0 in).
1000 * If the request doesn't fit, the remaining part will be sent from irq.
1001 * The request is considered fully written only if either :
1002 * - last write transferred all remaining bytes, but fifo was not fully filled
1003 * - last write was a 0 length write
1004 *
1005 * Returns 1 if request fully written, 0 if request only partially sent
1006 */
write_ep0_fifo(struct pxa_ep * ep,struct pxa27x_request * req)1007 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1008 {
1009 unsigned count;
1010 int is_last, is_short;
1011
1012 count = write_packet(ep, req, EP0_FIFO_SIZE);
1013 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1014
1015 is_short = (count < EP0_FIFO_SIZE);
1016 is_last = ((count == 0) || (count < EP0_FIFO_SIZE));
1017
1018 /* Sends either a short packet or a 0 length packet */
1019 if (unlikely(is_short))
1020 ep_write_UDCCSR(ep, UDCCSR0_IPR);
1021
1022 ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n",
1023 count, is_short ? "/S" : "", is_last ? "/L" : "",
1024 req->req.length - req->req.actual,
1025 &req->req, udc_ep_readl(ep, UDCCSR));
1026
1027 return is_last;
1028 }
1029
1030 /**
1031 * pxa_ep_queue - Queue a request into an IN endpoint
1032 * @_ep: usb endpoint
1033 * @_req: usb request
1034 * @gfp_flags: flags
1035 *
1036 * Context: thread context or from the interrupt handler in the
1037 * special case of ep0 setup :
1038 * (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue)
1039 *
1040 * Returns 0 if succedeed, error otherwise
1041 */
pxa_ep_queue(struct usb_ep * _ep,struct usb_request * _req,gfp_t gfp_flags)1042 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1043 gfp_t gfp_flags)
1044 {
1045 struct udc_usb_ep *udc_usb_ep;
1046 struct pxa_ep *ep;
1047 struct pxa27x_request *req;
1048 struct pxa_udc *dev;
1049 unsigned long flags;
1050 int rc = 0;
1051 int is_first_req;
1052 unsigned length;
1053 int recursion_detected;
1054
1055 req = container_of(_req, struct pxa27x_request, req);
1056 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1057
1058 if (unlikely(!_req || !_req->complete || !_req->buf))
1059 return -EINVAL;
1060
1061 if (unlikely(!_ep))
1062 return -EINVAL;
1063
1064 ep = udc_usb_ep->pxa_ep;
1065 if (unlikely(!ep))
1066 return -EINVAL;
1067
1068 dev = ep->dev;
1069 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
1070 ep_dbg(ep, "bogus device state\n");
1071 return -ESHUTDOWN;
1072 }
1073
1074 /* iso is always one packet per request, that's the only way
1075 * we can report per-packet status. that also helps with dma.
1076 */
1077 if (unlikely(EPXFERTYPE_is_ISO(ep)
1078 && req->req.length > ep->fifo_size))
1079 return -EMSGSIZE;
1080
1081 spin_lock_irqsave(&ep->lock, flags);
1082 recursion_detected = ep->in_handle_ep;
1083
1084 is_first_req = list_empty(&ep->queue);
1085 ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n",
1086 _req, is_first_req ? "yes" : "no",
1087 _req->length, _req->buf);
1088
1089 if (!ep->enabled) {
1090 _req->status = -ESHUTDOWN;
1091 rc = -ESHUTDOWN;
1092 goto out_locked;
1093 }
1094
1095 if (req->in_use) {
1096 ep_err(ep, "refusing to queue req %p (already queued)\n", req);
1097 goto out_locked;
1098 }
1099
1100 length = _req->length;
1101 _req->status = -EINPROGRESS;
1102 _req->actual = 0;
1103
1104 ep_add_request(ep, req);
1105 spin_unlock_irqrestore(&ep->lock, flags);
1106
1107 if (is_ep0(ep)) {
1108 switch (dev->ep0state) {
1109 case WAIT_ACK_SET_CONF_INTERF:
1110 if (length == 0) {
1111 ep_end_in_req(ep, req, NULL);
1112 } else {
1113 ep_err(ep, "got a request of %d bytes while"
1114 "in state WAIT_ACK_SET_CONF_INTERF\n",
1115 length);
1116 ep_del_request(ep, req);
1117 rc = -EL2HLT;
1118 }
1119 ep0_idle(ep->dev);
1120 break;
1121 case IN_DATA_STAGE:
1122 if (!ep_is_full(ep))
1123 if (write_ep0_fifo(ep, req))
1124 ep0_end_in_req(ep, req, NULL);
1125 break;
1126 case OUT_DATA_STAGE:
1127 if ((length == 0) || !epout_has_pkt(ep))
1128 if (read_ep0_fifo(ep, req))
1129 ep0_end_out_req(ep, req, NULL);
1130 break;
1131 default:
1132 ep_err(ep, "odd state %s to send me a request\n",
1133 EP0_STNAME(ep->dev));
1134 ep_del_request(ep, req);
1135 rc = -EL2HLT;
1136 break;
1137 }
1138 } else {
1139 if (!recursion_detected)
1140 handle_ep(ep);
1141 }
1142
1143 out:
1144 return rc;
1145 out_locked:
1146 spin_unlock_irqrestore(&ep->lock, flags);
1147 goto out;
1148 }
1149
1150 /**
1151 * pxa_ep_dequeue - Dequeue one request
1152 * @_ep: usb endpoint
1153 * @_req: usb request
1154 *
1155 * Return 0 if no error, -EINVAL or -ECONNRESET otherwise
1156 */
pxa_ep_dequeue(struct usb_ep * _ep,struct usb_request * _req)1157 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1158 {
1159 struct pxa_ep *ep;
1160 struct udc_usb_ep *udc_usb_ep;
1161 struct pxa27x_request *req = NULL, *iter;
1162 unsigned long flags;
1163 int rc = -EINVAL;
1164
1165 if (!_ep)
1166 return rc;
1167 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1168 ep = udc_usb_ep->pxa_ep;
1169 if (!ep || is_ep0(ep))
1170 return rc;
1171
1172 spin_lock_irqsave(&ep->lock, flags);
1173
1174 /* make sure it's actually queued on this endpoint */
1175 list_for_each_entry(iter, &ep->queue, queue) {
1176 if (&iter->req != _req)
1177 continue;
1178 req = iter;
1179 rc = 0;
1180 break;
1181 }
1182
1183 spin_unlock_irqrestore(&ep->lock, flags);
1184 if (!rc)
1185 req_done(ep, req, -ECONNRESET, NULL);
1186 return rc;
1187 }
1188
1189 /**
1190 * pxa_ep_set_halt - Halts operations on one endpoint
1191 * @_ep: usb endpoint
1192 * @value:
1193 *
1194 * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise
1195 */
pxa_ep_set_halt(struct usb_ep * _ep,int value)1196 static int pxa_ep_set_halt(struct usb_ep *_ep, int value)
1197 {
1198 struct pxa_ep *ep;
1199 struct udc_usb_ep *udc_usb_ep;
1200 unsigned long flags;
1201 int rc;
1202
1203
1204 if (!_ep)
1205 return -EINVAL;
1206 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1207 ep = udc_usb_ep->pxa_ep;
1208 if (!ep || is_ep0(ep))
1209 return -EINVAL;
1210
1211 if (value == 0) {
1212 /*
1213 * This path (reset toggle+halt) is needed to implement
1214 * SET_INTERFACE on normal hardware. but it can't be
1215 * done from software on the PXA UDC, and the hardware
1216 * forgets to do it as part of SET_INTERFACE automagic.
1217 */
1218 ep_dbg(ep, "only host can clear halt\n");
1219 return -EROFS;
1220 }
1221
1222 spin_lock_irqsave(&ep->lock, flags);
1223
1224 rc = -EAGAIN;
1225 if (ep->dir_in && (ep_is_full(ep) || !list_empty(&ep->queue)))
1226 goto out;
1227
1228 /* FST, FEF bits are the same for control and non control endpoints */
1229 rc = 0;
1230 ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF);
1231 if (is_ep0(ep))
1232 set_ep0state(ep->dev, STALL);
1233
1234 out:
1235 spin_unlock_irqrestore(&ep->lock, flags);
1236 return rc;
1237 }
1238
1239 /**
1240 * pxa_ep_fifo_status - Get how many bytes in physical endpoint
1241 * @_ep: usb endpoint
1242 *
1243 * Returns number of bytes in OUT fifos. Broken for IN fifos.
1244 */
pxa_ep_fifo_status(struct usb_ep * _ep)1245 static int pxa_ep_fifo_status(struct usb_ep *_ep)
1246 {
1247 struct pxa_ep *ep;
1248 struct udc_usb_ep *udc_usb_ep;
1249
1250 if (!_ep)
1251 return -ENODEV;
1252 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1253 ep = udc_usb_ep->pxa_ep;
1254 if (!ep || is_ep0(ep))
1255 return -ENODEV;
1256
1257 if (ep->dir_in)
1258 return -EOPNOTSUPP;
1259 if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep))
1260 return 0;
1261 else
1262 return ep_count_bytes_remain(ep) + 1;
1263 }
1264
1265 /**
1266 * pxa_ep_fifo_flush - Flushes one endpoint
1267 * @_ep: usb endpoint
1268 *
1269 * Discards all data in one endpoint(IN or OUT), except control endpoint.
1270 */
pxa_ep_fifo_flush(struct usb_ep * _ep)1271 static void pxa_ep_fifo_flush(struct usb_ep *_ep)
1272 {
1273 struct pxa_ep *ep;
1274 struct udc_usb_ep *udc_usb_ep;
1275 unsigned long flags;
1276
1277 if (!_ep)
1278 return;
1279 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1280 ep = udc_usb_ep->pxa_ep;
1281 if (!ep || is_ep0(ep))
1282 return;
1283
1284 spin_lock_irqsave(&ep->lock, flags);
1285
1286 if (unlikely(!list_empty(&ep->queue)))
1287 ep_dbg(ep, "called while queue list not empty\n");
1288 ep_dbg(ep, "called\n");
1289
1290 /* for OUT, just read and discard the FIFO contents. */
1291 if (!ep->dir_in) {
1292 while (!ep_is_empty(ep))
1293 udc_ep_readl(ep, UDCDR);
1294 } else {
1295 /* most IN status is the same, but ISO can't stall */
1296 ep_write_UDCCSR(ep,
1297 UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN
1298 | (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST));
1299 }
1300
1301 spin_unlock_irqrestore(&ep->lock, flags);
1302 }
1303
1304 /**
1305 * pxa_ep_enable - Enables usb endpoint
1306 * @_ep: usb endpoint
1307 * @desc: usb endpoint descriptor
1308 *
1309 * Nothing much to do here, as ep configuration is done once and for all
1310 * before udc is enabled. After udc enable, no physical endpoint configuration
1311 * can be changed.
1312 * Function makes sanity checks and flushes the endpoint.
1313 */
pxa_ep_enable(struct usb_ep * _ep,const struct usb_endpoint_descriptor * desc)1314 static int pxa_ep_enable(struct usb_ep *_ep,
1315 const struct usb_endpoint_descriptor *desc)
1316 {
1317 struct pxa_ep *ep;
1318 struct udc_usb_ep *udc_usb_ep;
1319 struct pxa_udc *udc;
1320
1321 if (!_ep || !desc)
1322 return -EINVAL;
1323
1324 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1325 if (udc_usb_ep->pxa_ep) {
1326 ep = udc_usb_ep->pxa_ep;
1327 ep_warn(ep, "usb_ep %s already enabled, doing nothing\n",
1328 _ep->name);
1329 } else {
1330 ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep);
1331 }
1332
1333 if (!ep || is_ep0(ep)) {
1334 dev_err(udc_usb_ep->dev->dev,
1335 "unable to match pxa_ep for ep %s\n",
1336 _ep->name);
1337 return -EINVAL;
1338 }
1339
1340 if ((desc->bDescriptorType != USB_DT_ENDPOINT)
1341 || (ep->type != usb_endpoint_type(desc))) {
1342 ep_err(ep, "type mismatch\n");
1343 return -EINVAL;
1344 }
1345
1346 if (ep->fifo_size < usb_endpoint_maxp(desc)) {
1347 ep_err(ep, "bad maxpacket\n");
1348 return -ERANGE;
1349 }
1350
1351 udc_usb_ep->pxa_ep = ep;
1352 udc = ep->dev;
1353
1354 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1355 ep_err(ep, "bogus device state\n");
1356 return -ESHUTDOWN;
1357 }
1358
1359 ep->enabled = 1;
1360
1361 /* flush fifo (mostly for OUT buffers) */
1362 pxa_ep_fifo_flush(_ep);
1363
1364 ep_dbg(ep, "enabled\n");
1365 return 0;
1366 }
1367
1368 /**
1369 * pxa_ep_disable - Disable usb endpoint
1370 * @_ep: usb endpoint
1371 *
1372 * Same as for pxa_ep_enable, no physical endpoint configuration can be
1373 * changed.
1374 * Function flushes the endpoint and related requests.
1375 */
pxa_ep_disable(struct usb_ep * _ep)1376 static int pxa_ep_disable(struct usb_ep *_ep)
1377 {
1378 struct pxa_ep *ep;
1379 struct udc_usb_ep *udc_usb_ep;
1380
1381 if (!_ep)
1382 return -EINVAL;
1383
1384 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1385 ep = udc_usb_ep->pxa_ep;
1386 if (!ep || is_ep0(ep) || !list_empty(&ep->queue))
1387 return -EINVAL;
1388
1389 ep->enabled = 0;
1390 nuke(ep, -ESHUTDOWN);
1391
1392 pxa_ep_fifo_flush(_ep);
1393 udc_usb_ep->pxa_ep = NULL;
1394
1395 ep_dbg(ep, "disabled\n");
1396 return 0;
1397 }
1398
1399 static const struct usb_ep_ops pxa_ep_ops = {
1400 .enable = pxa_ep_enable,
1401 .disable = pxa_ep_disable,
1402
1403 .alloc_request = pxa_ep_alloc_request,
1404 .free_request = pxa_ep_free_request,
1405
1406 .queue = pxa_ep_queue,
1407 .dequeue = pxa_ep_dequeue,
1408
1409 .set_halt = pxa_ep_set_halt,
1410 .fifo_status = pxa_ep_fifo_status,
1411 .fifo_flush = pxa_ep_fifo_flush,
1412 };
1413
1414 /**
1415 * dplus_pullup - Connect or disconnect pullup resistor to D+ pin
1416 * @udc: udc device
1417 * @on: 0 if disconnect pullup resistor, 1 otherwise
1418 * Context: any
1419 *
1420 * Handle D+ pullup resistor, make the device visible to the usb bus, and
1421 * declare it as a full speed usb device
1422 */
dplus_pullup(struct pxa_udc * udc,int on)1423 static void dplus_pullup(struct pxa_udc *udc, int on)
1424 {
1425 if (udc->gpiod) {
1426 gpiod_set_value(udc->gpiod, on);
1427 } else if (udc->udc_command) {
1428 if (on)
1429 udc->udc_command(PXA2XX_UDC_CMD_CONNECT);
1430 else
1431 udc->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
1432 }
1433 udc->pullup_on = on;
1434 }
1435
1436 /**
1437 * pxa_udc_get_frame - Returns usb frame number
1438 * @_gadget: usb gadget
1439 */
pxa_udc_get_frame(struct usb_gadget * _gadget)1440 static int pxa_udc_get_frame(struct usb_gadget *_gadget)
1441 {
1442 struct pxa_udc *udc = to_gadget_udc(_gadget);
1443
1444 return (udc_readl(udc, UDCFNR) & 0x7ff);
1445 }
1446
1447 /**
1448 * pxa_udc_wakeup - Force udc device out of suspend
1449 * @_gadget: usb gadget
1450 *
1451 * Returns 0 if successful, error code otherwise
1452 */
pxa_udc_wakeup(struct usb_gadget * _gadget)1453 static int pxa_udc_wakeup(struct usb_gadget *_gadget)
1454 {
1455 struct pxa_udc *udc = to_gadget_udc(_gadget);
1456
1457 /* host may not have enabled remote wakeup */
1458 if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0)
1459 return -EHOSTUNREACH;
1460 udc_set_mask_UDCCR(udc, UDCCR_UDR);
1461 return 0;
1462 }
1463
1464 static void udc_enable(struct pxa_udc *udc);
1465 static void udc_disable(struct pxa_udc *udc);
1466
1467 /**
1468 * should_enable_udc - Tells if UDC should be enabled
1469 * @udc: udc device
1470 * Context: any
1471 *
1472 * The UDC should be enabled if :
1473 * - the pullup resistor is connected
1474 * - and a gadget driver is bound
1475 * - and vbus is sensed (or no vbus sense is available)
1476 *
1477 * Returns 1 if UDC should be enabled, 0 otherwise
1478 */
should_enable_udc(struct pxa_udc * udc)1479 static int should_enable_udc(struct pxa_udc *udc)
1480 {
1481 int put_on;
1482
1483 put_on = ((udc->pullup_on) && (udc->driver));
1484 put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver)));
1485 return put_on;
1486 }
1487
1488 /**
1489 * should_disable_udc - Tells if UDC should be disabled
1490 * @udc: udc device
1491 * Context: any
1492 *
1493 * The UDC should be disabled if :
1494 * - the pullup resistor is not connected
1495 * - or no gadget driver is bound
1496 * - or no vbus is sensed (when vbus sesing is available)
1497 *
1498 * Returns 1 if UDC should be disabled
1499 */
should_disable_udc(struct pxa_udc * udc)1500 static int should_disable_udc(struct pxa_udc *udc)
1501 {
1502 int put_off;
1503
1504 put_off = ((!udc->pullup_on) || (!udc->driver));
1505 put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver)));
1506 return put_off;
1507 }
1508
1509 /**
1510 * pxa_udc_pullup - Offer manual D+ pullup control
1511 * @_gadget: usb gadget using the control
1512 * @is_active: 0 if disconnect, else connect D+ pullup resistor
1513 *
1514 * Context: task context, might sleep
1515 *
1516 * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup
1517 */
pxa_udc_pullup(struct usb_gadget * _gadget,int is_active)1518 static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active)
1519 {
1520 struct pxa_udc *udc = to_gadget_udc(_gadget);
1521
1522 if (!udc->gpiod && !udc->udc_command)
1523 return -EOPNOTSUPP;
1524
1525 dplus_pullup(udc, is_active);
1526
1527 if (should_enable_udc(udc))
1528 udc_enable(udc);
1529 if (should_disable_udc(udc))
1530 udc_disable(udc);
1531 return 0;
1532 }
1533
1534 /**
1535 * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc
1536 * @_gadget: usb gadget
1537 * @is_active: 0 if should disable the udc, 1 if should enable
1538 *
1539 * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the
1540 * udc, and deactivates D+ pullup resistor.
1541 *
1542 * Returns 0
1543 */
pxa_udc_vbus_session(struct usb_gadget * _gadget,int is_active)1544 static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1545 {
1546 struct pxa_udc *udc = to_gadget_udc(_gadget);
1547
1548 udc->vbus_sensed = is_active;
1549 if (should_enable_udc(udc))
1550 udc_enable(udc);
1551 if (should_disable_udc(udc))
1552 udc_disable(udc);
1553
1554 return 0;
1555 }
1556
1557 /**
1558 * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed
1559 * @_gadget: usb gadget
1560 * @mA: current drawn
1561 *
1562 * Context: task context, might sleep
1563 *
1564 * Called after a configuration was chosen by a USB host, to inform how much
1565 * current can be drawn by the device from VBus line.
1566 *
1567 * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc
1568 */
pxa_udc_vbus_draw(struct usb_gadget * _gadget,unsigned mA)1569 static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
1570 {
1571 struct pxa_udc *udc;
1572
1573 udc = to_gadget_udc(_gadget);
1574 if (!IS_ERR_OR_NULL(udc->transceiver))
1575 return usb_phy_set_power(udc->transceiver, mA);
1576 return -EOPNOTSUPP;
1577 }
1578
1579 /**
1580 * pxa_udc_phy_event - Called by phy upon VBus event
1581 * @nb: notifier block
1582 * @action: phy action, is vbus connect or disconnect
1583 * @data: the usb_gadget structure in pxa_udc
1584 *
1585 * Called by the USB Phy when a cable connect or disconnect is sensed.
1586 *
1587 * Returns 0
1588 */
pxa_udc_phy_event(struct notifier_block * nb,unsigned long action,void * data)1589 static int pxa_udc_phy_event(struct notifier_block *nb, unsigned long action,
1590 void *data)
1591 {
1592 struct usb_gadget *gadget = data;
1593
1594 switch (action) {
1595 case USB_EVENT_VBUS:
1596 usb_gadget_vbus_connect(gadget);
1597 return NOTIFY_OK;
1598 case USB_EVENT_NONE:
1599 usb_gadget_vbus_disconnect(gadget);
1600 return NOTIFY_OK;
1601 default:
1602 return NOTIFY_DONE;
1603 }
1604 }
1605
1606 static struct notifier_block pxa27x_udc_phy = {
1607 .notifier_call = pxa_udc_phy_event,
1608 };
1609
1610 static int pxa27x_udc_start(struct usb_gadget *g,
1611 struct usb_gadget_driver *driver);
1612 static int pxa27x_udc_stop(struct usb_gadget *g);
1613
1614 static const struct usb_gadget_ops pxa_udc_ops = {
1615 .get_frame = pxa_udc_get_frame,
1616 .wakeup = pxa_udc_wakeup,
1617 .pullup = pxa_udc_pullup,
1618 .vbus_session = pxa_udc_vbus_session,
1619 .vbus_draw = pxa_udc_vbus_draw,
1620 .udc_start = pxa27x_udc_start,
1621 .udc_stop = pxa27x_udc_stop,
1622 };
1623
1624 /**
1625 * udc_disable - disable udc device controller
1626 * @udc: udc device
1627 * Context: any
1628 *
1629 * Disables the udc device : disables clocks, udc interrupts, control endpoint
1630 * interrupts.
1631 */
udc_disable(struct pxa_udc * udc)1632 static void udc_disable(struct pxa_udc *udc)
1633 {
1634 if (!udc->enabled)
1635 return;
1636
1637 udc_writel(udc, UDCICR0, 0);
1638 udc_writel(udc, UDCICR1, 0);
1639
1640 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1641
1642 ep0_idle(udc);
1643 udc->gadget.speed = USB_SPEED_UNKNOWN;
1644 clk_disable(udc->clk);
1645
1646 udc->enabled = 0;
1647 }
1648
1649 /**
1650 * udc_init_data - Initialize udc device data structures
1651 * @dev: udc device
1652 *
1653 * Initializes gadget endpoint list, endpoints locks. No action is taken
1654 * on the hardware.
1655 */
udc_init_data(struct pxa_udc * dev)1656 static void udc_init_data(struct pxa_udc *dev)
1657 {
1658 int i;
1659 struct pxa_ep *ep;
1660
1661 /* device/ep0 records init */
1662 INIT_LIST_HEAD(&dev->gadget.ep_list);
1663 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1664 dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0];
1665 dev->gadget.quirk_altset_not_supp = 1;
1666 ep0_idle(dev);
1667
1668 /* PXA endpoints init */
1669 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
1670 ep = &dev->pxa_ep[i];
1671
1672 ep->enabled = is_ep0(ep);
1673 INIT_LIST_HEAD(&ep->queue);
1674 spin_lock_init(&ep->lock);
1675 }
1676
1677 /* USB endpoints init */
1678 for (i = 1; i < NR_USB_ENDPOINTS; i++) {
1679 list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list,
1680 &dev->gadget.ep_list);
1681 usb_ep_set_maxpacket_limit(&dev->udc_usb_ep[i].usb_ep,
1682 dev->udc_usb_ep[i].usb_ep.maxpacket);
1683 }
1684 }
1685
1686 /**
1687 * udc_enable - Enables the udc device
1688 * @udc: udc device
1689 *
1690 * Enables the udc device : enables clocks, udc interrupts, control endpoint
1691 * interrupts, sets usb as UDC client and setups endpoints.
1692 */
udc_enable(struct pxa_udc * udc)1693 static void udc_enable(struct pxa_udc *udc)
1694 {
1695 if (udc->enabled)
1696 return;
1697
1698 clk_enable(udc->clk);
1699 udc_writel(udc, UDCICR0, 0);
1700 udc_writel(udc, UDCICR1, 0);
1701 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1702
1703 ep0_idle(udc);
1704 udc->gadget.speed = USB_SPEED_FULL;
1705 memset(&udc->stats, 0, sizeof(udc->stats));
1706
1707 pxa_eps_setup(udc);
1708 udc_set_mask_UDCCR(udc, UDCCR_UDE);
1709 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM);
1710 udelay(2);
1711 if (udc_readl(udc, UDCCR) & UDCCR_EMCE)
1712 dev_err(udc->dev, "Configuration errors, udc disabled\n");
1713
1714 /*
1715 * Caller must be able to sleep in order to cope with startup transients
1716 */
1717 msleep(100);
1718
1719 /* enable suspend/resume and reset irqs */
1720 udc_writel(udc, UDCICR1,
1721 UDCICR1_IECC | UDCICR1_IERU
1722 | UDCICR1_IESU | UDCICR1_IERS);
1723
1724 /* enable ep0 irqs */
1725 pio_irq_enable(&udc->pxa_ep[0]);
1726
1727 udc->enabled = 1;
1728 }
1729
1730 /**
1731 * pxa27x_udc_start - Register gadget driver
1732 * @g: gadget
1733 * @driver: gadget driver
1734 *
1735 * When a driver is successfully registered, it will receive control requests
1736 * including set_configuration(), which enables non-control requests. Then
1737 * usb traffic follows until a disconnect is reported. Then a host may connect
1738 * again, or the driver might get unbound.
1739 *
1740 * Note that the udc is not automatically enabled. Check function
1741 * should_enable_udc().
1742 *
1743 * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise
1744 */
pxa27x_udc_start(struct usb_gadget * g,struct usb_gadget_driver * driver)1745 static int pxa27x_udc_start(struct usb_gadget *g,
1746 struct usb_gadget_driver *driver)
1747 {
1748 struct pxa_udc *udc = to_pxa(g);
1749 int retval;
1750
1751 /* first hook up the driver ... */
1752 udc->driver = driver;
1753
1754 if (!IS_ERR_OR_NULL(udc->transceiver)) {
1755 retval = otg_set_peripheral(udc->transceiver->otg,
1756 &udc->gadget);
1757 if (retval) {
1758 dev_err(udc->dev, "can't bind to transceiver\n");
1759 goto fail;
1760 }
1761 }
1762
1763 if (should_enable_udc(udc))
1764 udc_enable(udc);
1765 return 0;
1766
1767 fail:
1768 udc->driver = NULL;
1769 return retval;
1770 }
1771
1772 /**
1773 * stop_activity - Stops udc endpoints
1774 * @udc: udc device
1775 *
1776 * Disables all udc endpoints (even control endpoint), report disconnect to
1777 * the gadget user.
1778 */
stop_activity(struct pxa_udc * udc)1779 static void stop_activity(struct pxa_udc *udc)
1780 {
1781 int i;
1782
1783 udc->gadget.speed = USB_SPEED_UNKNOWN;
1784
1785 for (i = 0; i < NR_USB_ENDPOINTS; i++)
1786 pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep);
1787 }
1788
1789 /**
1790 * pxa27x_udc_stop - Unregister the gadget driver
1791 * @g: gadget
1792 *
1793 * Returns 0 if no error, -ENODEV, -EINVAL otherwise
1794 */
pxa27x_udc_stop(struct usb_gadget * g)1795 static int pxa27x_udc_stop(struct usb_gadget *g)
1796 {
1797 struct pxa_udc *udc = to_pxa(g);
1798
1799 stop_activity(udc);
1800 udc_disable(udc);
1801
1802 udc->driver = NULL;
1803
1804 if (!IS_ERR_OR_NULL(udc->transceiver))
1805 return otg_set_peripheral(udc->transceiver->otg, NULL);
1806 return 0;
1807 }
1808
1809 /**
1810 * handle_ep0_ctrl_req - handle control endpoint control request
1811 * @udc: udc device
1812 * @req: control request
1813 */
handle_ep0_ctrl_req(struct pxa_udc * udc,struct pxa27x_request * req)1814 static void handle_ep0_ctrl_req(struct pxa_udc *udc,
1815 struct pxa27x_request *req)
1816 {
1817 struct pxa_ep *ep = &udc->pxa_ep[0];
1818 union {
1819 struct usb_ctrlrequest r;
1820 u32 word[2];
1821 } u;
1822 int i;
1823 int have_extrabytes = 0;
1824 unsigned long flags;
1825
1826 nuke(ep, -EPROTO);
1827 spin_lock_irqsave(&ep->lock, flags);
1828
1829 /*
1830 * In the PXA320 manual, in the section about Back-to-Back setup
1831 * packets, it describes this situation. The solution is to set OPC to
1832 * get rid of the status packet, and then continue with the setup
1833 * packet. Generalize to pxa27x CPUs.
1834 */
1835 if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0))
1836 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1837
1838 /* read SETUP packet */
1839 for (i = 0; i < 2; i++) {
1840 if (unlikely(ep_is_empty(ep)))
1841 goto stall;
1842 u.word[i] = udc_ep_readl(ep, UDCDR);
1843 }
1844
1845 have_extrabytes = !ep_is_empty(ep);
1846 while (!ep_is_empty(ep)) {
1847 i = udc_ep_readl(ep, UDCDR);
1848 ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i);
1849 }
1850
1851 ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1852 u.r.bRequestType, u.r.bRequest,
1853 le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex),
1854 le16_to_cpu(u.r.wLength));
1855 if (unlikely(have_extrabytes))
1856 goto stall;
1857
1858 if (u.r.bRequestType & USB_DIR_IN)
1859 set_ep0state(udc, IN_DATA_STAGE);
1860 else
1861 set_ep0state(udc, OUT_DATA_STAGE);
1862
1863 /* Tell UDC to enter Data Stage */
1864 ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC);
1865
1866 spin_unlock_irqrestore(&ep->lock, flags);
1867 i = udc->driver->setup(&udc->gadget, &u.r);
1868 spin_lock_irqsave(&ep->lock, flags);
1869 if (i < 0)
1870 goto stall;
1871 out:
1872 spin_unlock_irqrestore(&ep->lock, flags);
1873 return;
1874 stall:
1875 ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n",
1876 udc_ep_readl(ep, UDCCSR), i);
1877 ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF);
1878 set_ep0state(udc, STALL);
1879 goto out;
1880 }
1881
1882 /**
1883 * handle_ep0 - Handle control endpoint data transfers
1884 * @udc: udc device
1885 * @fifo_irq: 1 if triggered by fifo service type irq
1886 * @opc_irq: 1 if triggered by output packet complete type irq
1887 *
1888 * Context : interrupt handler
1889 *
1890 * Tries to transfer all pending request data into the endpoint and/or
1891 * transfer all pending data in the endpoint into usb requests.
1892 * Handles states of ep0 automata.
1893 *
1894 * PXA27x hardware handles several standard usb control requests without
1895 * driver notification. The requests fully handled by hardware are :
1896 * SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE,
1897 * GET_STATUS
1898 * The requests handled by hardware, but with irq notification are :
1899 * SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE
1900 * The remaining standard requests really handled by handle_ep0 are :
1901 * GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests.
1902 * Requests standardized outside of USB 2.0 chapter 9 are handled more
1903 * uniformly, by gadget drivers.
1904 *
1905 * The control endpoint state machine is _not_ USB spec compliant, it's even
1906 * hardly compliant with Intel PXA270 developers guide.
1907 * The key points which inferred this state machine are :
1908 * - on every setup token, bit UDCCSR0_SA is raised and held until cleared by
1909 * software.
1910 * - on every OUT packet received, UDCCSR0_OPC is raised and held until
1911 * cleared by software.
1912 * - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it
1913 * before reading ep0.
1914 * This is true only for PXA27x. This is not true anymore for PXA3xx family
1915 * (check Back-to-Back setup packet in developers guide).
1916 * - irq can be called on a "packet complete" event (opc_irq=1), while
1917 * UDCCSR0_OPC is not yet raised (delta can be as big as 100ms
1918 * from experimentation).
1919 * - as UDCCSR0_SA can be activated while in irq handling, and clearing
1920 * UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC
1921 * => we never actually read the "status stage" packet of an IN data stage
1922 * => this is not documented in Intel documentation
1923 * - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA
1924 * STAGE. The driver add STATUS STAGE to send last zero length packet in
1925 * OUT_STATUS_STAGE.
1926 * - special attention was needed for IN_STATUS_STAGE. If a packet complete
1927 * event is detected, we terminate the status stage without ackowledging the
1928 * packet (not to risk to loose a potential SETUP packet)
1929 */
handle_ep0(struct pxa_udc * udc,int fifo_irq,int opc_irq)1930 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq)
1931 {
1932 u32 udccsr0;
1933 struct pxa_ep *ep = &udc->pxa_ep[0];
1934 struct pxa27x_request *req = NULL;
1935 int completed = 0;
1936
1937 if (!list_empty(&ep->queue))
1938 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
1939
1940 udccsr0 = udc_ep_readl(ep, UDCCSR);
1941 ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n",
1942 EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR),
1943 (fifo_irq << 1 | opc_irq));
1944
1945 if (udccsr0 & UDCCSR0_SST) {
1946 ep_dbg(ep, "clearing stall status\n");
1947 nuke(ep, -EPIPE);
1948 ep_write_UDCCSR(ep, UDCCSR0_SST);
1949 ep0_idle(udc);
1950 }
1951
1952 if (udccsr0 & UDCCSR0_SA) {
1953 nuke(ep, 0);
1954 set_ep0state(udc, SETUP_STAGE);
1955 }
1956
1957 switch (udc->ep0state) {
1958 case WAIT_FOR_SETUP:
1959 /*
1960 * Hardware bug : beware, we cannot clear OPC, since we would
1961 * miss a potential OPC irq for a setup packet.
1962 * So, we only do ... nothing, and hope for a next irq with
1963 * UDCCSR0_SA set.
1964 */
1965 break;
1966 case SETUP_STAGE:
1967 udccsr0 &= UDCCSR0_CTRL_REQ_MASK;
1968 if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK))
1969 handle_ep0_ctrl_req(udc, req);
1970 break;
1971 case IN_DATA_STAGE: /* GET_DESCRIPTOR */
1972 if (epout_has_pkt(ep))
1973 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1974 if (req && !ep_is_full(ep))
1975 completed = write_ep0_fifo(ep, req);
1976 if (completed)
1977 ep0_end_in_req(ep, req, NULL);
1978 break;
1979 case OUT_DATA_STAGE: /* SET_DESCRIPTOR */
1980 if (epout_has_pkt(ep) && req)
1981 completed = read_ep0_fifo(ep, req);
1982 if (completed)
1983 ep0_end_out_req(ep, req, NULL);
1984 break;
1985 case STALL:
1986 ep_write_UDCCSR(ep, UDCCSR0_FST);
1987 break;
1988 case IN_STATUS_STAGE:
1989 /*
1990 * Hardware bug : beware, we cannot clear OPC, since we would
1991 * miss a potential PC irq for a setup packet.
1992 * So, we only put the ep0 into WAIT_FOR_SETUP state.
1993 */
1994 if (opc_irq)
1995 ep0_idle(udc);
1996 break;
1997 case OUT_STATUS_STAGE:
1998 case WAIT_ACK_SET_CONF_INTERF:
1999 ep_warn(ep, "should never get in %s state here!!!\n",
2000 EP0_STNAME(ep->dev));
2001 ep0_idle(udc);
2002 break;
2003 }
2004 }
2005
2006 /**
2007 * handle_ep - Handle endpoint data tranfers
2008 * @ep: pxa physical endpoint
2009 *
2010 * Tries to transfer all pending request data into the endpoint and/or
2011 * transfer all pending data in the endpoint into usb requests.
2012 *
2013 * Is always called from the interrupt handler. ep->lock must not be held.
2014 */
handle_ep(struct pxa_ep * ep)2015 static void handle_ep(struct pxa_ep *ep)
2016 {
2017 struct pxa27x_request *req;
2018 int completed;
2019 u32 udccsr;
2020 int is_in = ep->dir_in;
2021 int loop = 0;
2022 unsigned long flags;
2023
2024 spin_lock_irqsave(&ep->lock, flags);
2025 if (ep->in_handle_ep)
2026 goto recursion_detected;
2027 ep->in_handle_ep = 1;
2028
2029 do {
2030 completed = 0;
2031 udccsr = udc_ep_readl(ep, UDCCSR);
2032
2033 if (likely(!list_empty(&ep->queue)))
2034 req = list_entry(ep->queue.next,
2035 struct pxa27x_request, queue);
2036 else
2037 req = NULL;
2038
2039 ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n",
2040 req, udccsr, loop++);
2041
2042 if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN)))
2043 udc_ep_writel(ep, UDCCSR,
2044 udccsr & (UDCCSR_SST | UDCCSR_TRN));
2045 if (!req)
2046 break;
2047
2048 if (unlikely(is_in)) {
2049 if (likely(!ep_is_full(ep)))
2050 completed = write_fifo(ep, req);
2051 } else {
2052 if (likely(epout_has_pkt(ep)))
2053 completed = read_fifo(ep, req);
2054 }
2055
2056 if (completed) {
2057 if (is_in)
2058 ep_end_in_req(ep, req, &flags);
2059 else
2060 ep_end_out_req(ep, req, &flags);
2061 }
2062 } while (completed);
2063
2064 ep->in_handle_ep = 0;
2065 recursion_detected:
2066 spin_unlock_irqrestore(&ep->lock, flags);
2067 }
2068
2069 /**
2070 * pxa27x_change_configuration - Handle SET_CONF usb request notification
2071 * @udc: udc device
2072 * @config: usb configuration
2073 *
2074 * Post the request to upper level.
2075 * Don't use any pxa specific harware configuration capabilities
2076 */
pxa27x_change_configuration(struct pxa_udc * udc,int config)2077 static void pxa27x_change_configuration(struct pxa_udc *udc, int config)
2078 {
2079 struct usb_ctrlrequest req ;
2080
2081 dev_dbg(udc->dev, "config=%d\n", config);
2082
2083 udc->config = config;
2084 udc->last_interface = 0;
2085 udc->last_alternate = 0;
2086
2087 req.bRequestType = 0;
2088 req.bRequest = USB_REQ_SET_CONFIGURATION;
2089 req.wValue = config;
2090 req.wIndex = 0;
2091 req.wLength = 0;
2092
2093 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2094 udc->driver->setup(&udc->gadget, &req);
2095 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2096 }
2097
2098 /**
2099 * pxa27x_change_interface - Handle SET_INTERF usb request notification
2100 * @udc: udc device
2101 * @iface: interface number
2102 * @alt: alternate setting number
2103 *
2104 * Post the request to upper level.
2105 * Don't use any pxa specific harware configuration capabilities
2106 */
pxa27x_change_interface(struct pxa_udc * udc,int iface,int alt)2107 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt)
2108 {
2109 struct usb_ctrlrequest req;
2110
2111 dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt);
2112
2113 udc->last_interface = iface;
2114 udc->last_alternate = alt;
2115
2116 req.bRequestType = USB_RECIP_INTERFACE;
2117 req.bRequest = USB_REQ_SET_INTERFACE;
2118 req.wValue = alt;
2119 req.wIndex = iface;
2120 req.wLength = 0;
2121
2122 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2123 udc->driver->setup(&udc->gadget, &req);
2124 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2125 }
2126
2127 /*
2128 * irq_handle_data - Handle data transfer
2129 * @irq: irq IRQ number
2130 * @udc: dev pxa_udc device structure
2131 *
2132 * Called from irq handler, transferts data to or from endpoint to queue
2133 */
irq_handle_data(int irq,struct pxa_udc * udc)2134 static void irq_handle_data(int irq, struct pxa_udc *udc)
2135 {
2136 int i;
2137 struct pxa_ep *ep;
2138 u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK;
2139 u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK;
2140
2141 if (udcisr0 & UDCISR_INT_MASK) {
2142 udc->pxa_ep[0].stats.irqs++;
2143 udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK));
2144 handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR),
2145 !!(udcisr0 & UDCICR_PKTCOMPL));
2146 }
2147
2148 udcisr0 >>= 2;
2149 for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) {
2150 if (!(udcisr0 & UDCISR_INT_MASK))
2151 continue;
2152
2153 udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK));
2154
2155 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2156 if (i < ARRAY_SIZE(udc->pxa_ep)) {
2157 ep = &udc->pxa_ep[i];
2158 ep->stats.irqs++;
2159 handle_ep(ep);
2160 }
2161 }
2162
2163 for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) {
2164 udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK));
2165 if (!(udcisr1 & UDCISR_INT_MASK))
2166 continue;
2167
2168 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2169 if (i < ARRAY_SIZE(udc->pxa_ep)) {
2170 ep = &udc->pxa_ep[i];
2171 ep->stats.irqs++;
2172 handle_ep(ep);
2173 }
2174 }
2175
2176 }
2177
2178 /**
2179 * irq_udc_suspend - Handle IRQ "UDC Suspend"
2180 * @udc: udc device
2181 */
irq_udc_suspend(struct pxa_udc * udc)2182 static void irq_udc_suspend(struct pxa_udc *udc)
2183 {
2184 udc_writel(udc, UDCISR1, UDCISR1_IRSU);
2185 udc->stats.irqs_suspend++;
2186
2187 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2188 && udc->driver && udc->driver->suspend)
2189 udc->driver->suspend(&udc->gadget);
2190 ep0_idle(udc);
2191 }
2192
2193 /**
2194 * irq_udc_resume - Handle IRQ "UDC Resume"
2195 * @udc: udc device
2196 */
irq_udc_resume(struct pxa_udc * udc)2197 static void irq_udc_resume(struct pxa_udc *udc)
2198 {
2199 udc_writel(udc, UDCISR1, UDCISR1_IRRU);
2200 udc->stats.irqs_resume++;
2201
2202 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2203 && udc->driver && udc->driver->resume)
2204 udc->driver->resume(&udc->gadget);
2205 }
2206
2207 /**
2208 * irq_udc_reconfig - Handle IRQ "UDC Change Configuration"
2209 * @udc: udc device
2210 */
irq_udc_reconfig(struct pxa_udc * udc)2211 static void irq_udc_reconfig(struct pxa_udc *udc)
2212 {
2213 unsigned config, interface, alternate, config_change;
2214 u32 udccr = udc_readl(udc, UDCCR);
2215
2216 udc_writel(udc, UDCISR1, UDCISR1_IRCC);
2217 udc->stats.irqs_reconfig++;
2218
2219 config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S;
2220 config_change = (config != udc->config);
2221 pxa27x_change_configuration(udc, config);
2222
2223 interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S;
2224 alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S;
2225 pxa27x_change_interface(udc, interface, alternate);
2226
2227 if (config_change)
2228 update_pxa_ep_matches(udc);
2229 udc_set_mask_UDCCR(udc, UDCCR_SMAC);
2230 }
2231
2232 /**
2233 * irq_udc_reset - Handle IRQ "UDC Reset"
2234 * @udc: udc device
2235 */
irq_udc_reset(struct pxa_udc * udc)2236 static void irq_udc_reset(struct pxa_udc *udc)
2237 {
2238 u32 udccr = udc_readl(udc, UDCCR);
2239 struct pxa_ep *ep = &udc->pxa_ep[0];
2240
2241 dev_info(udc->dev, "USB reset\n");
2242 udc_writel(udc, UDCISR1, UDCISR1_IRRS);
2243 udc->stats.irqs_reset++;
2244
2245 if ((udccr & UDCCR_UDA) == 0) {
2246 dev_dbg(udc->dev, "USB reset start\n");
2247 stop_activity(udc);
2248 }
2249 udc->gadget.speed = USB_SPEED_FULL;
2250 memset(&udc->stats, 0, sizeof udc->stats);
2251
2252 nuke(ep, -EPROTO);
2253 ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC);
2254 ep0_idle(udc);
2255 }
2256
2257 /**
2258 * pxa_udc_irq - Main irq handler
2259 * @irq: irq number
2260 * @_dev: udc device
2261 *
2262 * Handles all udc interrupts
2263 */
pxa_udc_irq(int irq,void * _dev)2264 static irqreturn_t pxa_udc_irq(int irq, void *_dev)
2265 {
2266 struct pxa_udc *udc = _dev;
2267 u32 udcisr0 = udc_readl(udc, UDCISR0);
2268 u32 udcisr1 = udc_readl(udc, UDCISR1);
2269 u32 udccr = udc_readl(udc, UDCCR);
2270 u32 udcisr1_spec;
2271
2272 dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, "
2273 "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr);
2274
2275 udcisr1_spec = udcisr1 & 0xf8000000;
2276 if (unlikely(udcisr1_spec & UDCISR1_IRSU))
2277 irq_udc_suspend(udc);
2278 if (unlikely(udcisr1_spec & UDCISR1_IRRU))
2279 irq_udc_resume(udc);
2280 if (unlikely(udcisr1_spec & UDCISR1_IRCC))
2281 irq_udc_reconfig(udc);
2282 if (unlikely(udcisr1_spec & UDCISR1_IRRS))
2283 irq_udc_reset(udc);
2284
2285 if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK))
2286 irq_handle_data(irq, udc);
2287
2288 return IRQ_HANDLED;
2289 }
2290
2291 static struct pxa_udc memory = {
2292 .gadget = {
2293 .ops = &pxa_udc_ops,
2294 .ep0 = &memory.udc_usb_ep[0].usb_ep,
2295 .name = driver_name,
2296 .dev = {
2297 .init_name = "gadget",
2298 },
2299 },
2300
2301 .udc_usb_ep = {
2302 USB_EP_CTRL,
2303 USB_EP_OUT_BULK(1),
2304 USB_EP_IN_BULK(2),
2305 USB_EP_IN_ISO(3),
2306 USB_EP_OUT_ISO(4),
2307 USB_EP_IN_INT(5),
2308 },
2309
2310 .pxa_ep = {
2311 PXA_EP_CTRL,
2312 /* Endpoints for gadget zero */
2313 PXA_EP_OUT_BULK(1, 1, 3, 0, 0),
2314 PXA_EP_IN_BULK(2, 2, 3, 0, 0),
2315 /* Endpoints for ether gadget, file storage gadget */
2316 PXA_EP_OUT_BULK(3, 1, 1, 0, 0),
2317 PXA_EP_IN_BULK(4, 2, 1, 0, 0),
2318 PXA_EP_IN_ISO(5, 3, 1, 0, 0),
2319 PXA_EP_OUT_ISO(6, 4, 1, 0, 0),
2320 PXA_EP_IN_INT(7, 5, 1, 0, 0),
2321 /* Endpoints for RNDIS, serial */
2322 PXA_EP_OUT_BULK(8, 1, 2, 0, 0),
2323 PXA_EP_IN_BULK(9, 2, 2, 0, 0),
2324 PXA_EP_IN_INT(10, 5, 2, 0, 0),
2325 /*
2326 * All the following endpoints are only for completion. They
2327 * won't never work, as multiple interfaces are really broken on
2328 * the pxa.
2329 */
2330 PXA_EP_OUT_BULK(11, 1, 2, 1, 0),
2331 PXA_EP_IN_BULK(12, 2, 2, 1, 0),
2332 /* Endpoint for CDC Ether */
2333 PXA_EP_OUT_BULK(13, 1, 1, 1, 1),
2334 PXA_EP_IN_BULK(14, 2, 1, 1, 1),
2335 }
2336 };
2337
2338 #if defined(CONFIG_OF)
2339 static const struct of_device_id udc_pxa_dt_ids[] = {
2340 { .compatible = "marvell,pxa270-udc" },
2341 {}
2342 };
2343 MODULE_DEVICE_TABLE(of, udc_pxa_dt_ids);
2344 #endif
2345
2346 /**
2347 * pxa_udc_probe - probes the udc device
2348 * @pdev: platform device
2349 *
2350 * Perform basic init : allocates udc clock, creates sysfs files, requests
2351 * irq.
2352 */
pxa_udc_probe(struct platform_device * pdev)2353 static int pxa_udc_probe(struct platform_device *pdev)
2354 {
2355 struct pxa_udc *udc = &memory;
2356 int retval = 0, gpio;
2357 struct pxa2xx_udc_mach_info *mach = dev_get_platdata(&pdev->dev);
2358 unsigned long gpio_flags;
2359
2360 if (mach) {
2361 gpio_flags = mach->gpio_pullup_inverted ? GPIOF_ACTIVE_LOW : 0;
2362 gpio = mach->gpio_pullup;
2363 if (gpio_is_valid(gpio)) {
2364 retval = devm_gpio_request_one(&pdev->dev, gpio,
2365 gpio_flags,
2366 "USB D+ pullup");
2367 if (retval)
2368 return retval;
2369 udc->gpiod = gpio_to_desc(mach->gpio_pullup);
2370 }
2371 udc->udc_command = mach->udc_command;
2372 } else {
2373 udc->gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_ASIS);
2374 }
2375
2376 udc->regs = devm_platform_ioremap_resource(pdev, 0);
2377 if (IS_ERR(udc->regs))
2378 return PTR_ERR(udc->regs);
2379 udc->irq = platform_get_irq(pdev, 0);
2380 if (udc->irq < 0)
2381 return udc->irq;
2382
2383 udc->dev = &pdev->dev;
2384 if (of_have_populated_dt()) {
2385 udc->transceiver =
2386 devm_usb_get_phy_by_phandle(udc->dev, "phys", 0);
2387 if (IS_ERR(udc->transceiver))
2388 return PTR_ERR(udc->transceiver);
2389 } else {
2390 udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
2391 }
2392
2393 if (IS_ERR(udc->gpiod)) {
2394 dev_err(&pdev->dev, "Couldn't find or request D+ gpio : %ld\n",
2395 PTR_ERR(udc->gpiod));
2396 return PTR_ERR(udc->gpiod);
2397 }
2398 if (udc->gpiod)
2399 gpiod_direction_output(udc->gpiod, 0);
2400
2401 udc->clk = devm_clk_get(&pdev->dev, NULL);
2402 if (IS_ERR(udc->clk))
2403 return PTR_ERR(udc->clk);
2404
2405 retval = clk_prepare(udc->clk);
2406 if (retval)
2407 return retval;
2408
2409 udc->vbus_sensed = 0;
2410
2411 the_controller = udc;
2412 platform_set_drvdata(pdev, udc);
2413 udc_init_data(udc);
2414
2415 /* irq setup after old hardware state is cleaned up */
2416 retval = devm_request_irq(&pdev->dev, udc->irq, pxa_udc_irq,
2417 IRQF_SHARED, driver_name, udc);
2418 if (retval != 0) {
2419 dev_err(udc->dev, "%s: can't get irq %i, err %d\n",
2420 driver_name, udc->irq, retval);
2421 goto err;
2422 }
2423
2424 if (!IS_ERR_OR_NULL(udc->transceiver))
2425 usb_register_notifier(udc->transceiver, &pxa27x_udc_phy);
2426 retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2427 if (retval)
2428 goto err_add_gadget;
2429
2430 pxa_init_debugfs(udc);
2431 if (should_enable_udc(udc))
2432 udc_enable(udc);
2433 return 0;
2434
2435 err_add_gadget:
2436 if (!IS_ERR_OR_NULL(udc->transceiver))
2437 usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy);
2438 err:
2439 clk_unprepare(udc->clk);
2440 return retval;
2441 }
2442
2443 /**
2444 * pxa_udc_remove - removes the udc device driver
2445 * @_dev: platform device
2446 */
pxa_udc_remove(struct platform_device * _dev)2447 static void pxa_udc_remove(struct platform_device *_dev)
2448 {
2449 struct pxa_udc *udc = platform_get_drvdata(_dev);
2450
2451 usb_del_gadget_udc(&udc->gadget);
2452 pxa_cleanup_debugfs(udc);
2453
2454 if (!IS_ERR_OR_NULL(udc->transceiver)) {
2455 usb_unregister_notifier(udc->transceiver, &pxa27x_udc_phy);
2456 usb_put_phy(udc->transceiver);
2457 }
2458
2459 udc->transceiver = NULL;
2460 the_controller = NULL;
2461 clk_unprepare(udc->clk);
2462 }
2463
pxa_udc_shutdown(struct platform_device * _dev)2464 static void pxa_udc_shutdown(struct platform_device *_dev)
2465 {
2466 struct pxa_udc *udc = platform_get_drvdata(_dev);
2467
2468 if (udc_readl(udc, UDCCR) & UDCCR_UDE)
2469 udc_disable(udc);
2470 }
2471
2472 #ifdef CONFIG_PM
2473 /**
2474 * pxa_udc_suspend - Suspend udc device
2475 * @_dev: platform device
2476 * @state: suspend state
2477 *
2478 * Suspends udc : saves configuration registers (UDCCR*), then disables the udc
2479 * device.
2480 */
pxa_udc_suspend(struct platform_device * _dev,pm_message_t state)2481 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state)
2482 {
2483 struct pxa_udc *udc = platform_get_drvdata(_dev);
2484 struct pxa_ep *ep;
2485
2486 ep = &udc->pxa_ep[0];
2487 udc->udccsr0 = udc_ep_readl(ep, UDCCSR);
2488
2489 udc_disable(udc);
2490 udc->pullup_resume = udc->pullup_on;
2491 dplus_pullup(udc, 0);
2492
2493 if (udc->driver)
2494 udc->driver->disconnect(&udc->gadget);
2495
2496 return 0;
2497 }
2498
2499 /**
2500 * pxa_udc_resume - Resume udc device
2501 * @_dev: platform device
2502 *
2503 * Resumes udc : restores configuration registers (UDCCR*), then enables the udc
2504 * device.
2505 */
pxa_udc_resume(struct platform_device * _dev)2506 static int pxa_udc_resume(struct platform_device *_dev)
2507 {
2508 struct pxa_udc *udc = platform_get_drvdata(_dev);
2509 struct pxa_ep *ep;
2510
2511 ep = &udc->pxa_ep[0];
2512 udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME));
2513
2514 dplus_pullup(udc, udc->pullup_resume);
2515 if (should_enable_udc(udc))
2516 udc_enable(udc);
2517 /*
2518 * We do not handle OTG yet.
2519 *
2520 * OTGPH bit is set when sleep mode is entered.
2521 * it indicates that OTG pad is retaining its state.
2522 * Upon exit from sleep mode and before clearing OTGPH,
2523 * Software must configure the USB OTG pad, UDC, and UHC
2524 * to the state they were in before entering sleep mode.
2525 */
2526 pxa27x_clear_otgph();
2527
2528 return 0;
2529 }
2530 #endif
2531
2532 /* work with hotplug and coldplug */
2533 MODULE_ALIAS("platform:pxa27x-udc");
2534
2535 static struct platform_driver udc_driver = {
2536 .driver = {
2537 .name = "pxa27x-udc",
2538 .of_match_table = of_match_ptr(udc_pxa_dt_ids),
2539 },
2540 .probe = pxa_udc_probe,
2541 .remove_new = pxa_udc_remove,
2542 .shutdown = pxa_udc_shutdown,
2543 #ifdef CONFIG_PM
2544 .suspend = pxa_udc_suspend,
2545 .resume = pxa_udc_resume
2546 #endif
2547 };
2548
2549 module_platform_driver(udc_driver);
2550
2551 MODULE_DESCRIPTION(DRIVER_DESC);
2552 MODULE_AUTHOR("Robert Jarzmik");
2553 MODULE_LICENSE("GPL");
2554