1 /* 2 * Handles the Intel 27x USB Device Controller (UDC) 3 * 4 * Inspired by original driver by Frank Becker, David Brownell, and others. 5 * Copyright (C) 2008 Robert Jarzmik 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 */ 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/errno.h> 16 #include <linux/err.h> 17 #include <linux/platform_device.h> 18 #include <linux/delay.h> 19 #include <linux/list.h> 20 #include <linux/interrupt.h> 21 #include <linux/proc_fs.h> 22 #include <linux/clk.h> 23 #include <linux/irq.h> 24 #include <linux/gpio.h> 25 #include <linux/gpio/consumer.h> 26 #include <linux/slab.h> 27 #include <linux/prefetch.h> 28 #include <linux/byteorder/generic.h> 29 #include <linux/platform_data/pxa2xx_udc.h> 30 #include <linux/of_device.h> 31 #include <linux/of_gpio.h> 32 33 #include <linux/usb.h> 34 #include <linux/usb/ch9.h> 35 #include <linux/usb/gadget.h> 36 37 #include "pxa27x_udc.h" 38 39 /* 40 * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x 41 * series processors. 42 * 43 * Such controller drivers work with a gadget driver. The gadget driver 44 * returns descriptors, implements configuration and data protocols used 45 * by the host to interact with this device, and allocates endpoints to 46 * the different protocol interfaces. The controller driver virtualizes 47 * usb hardware so that the gadget drivers will be more portable. 48 * 49 * This UDC hardware wants to implement a bit too much USB protocol. The 50 * biggest issues are: that the endpoints have to be set up before the 51 * controller can be enabled (minor, and not uncommon); and each endpoint 52 * can only have one configuration, interface and alternative interface 53 * number (major, and very unusual). Once set up, these cannot be changed 54 * without a controller reset. 55 * 56 * The workaround is to setup all combinations necessary for the gadgets which 57 * will work with this driver. This is done in pxa_udc structure, statically. 58 * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep. 59 * (You could modify this if needed. Some drivers have a "fifo_mode" module 60 * parameter to facilitate such changes.) 61 * 62 * The combinations have been tested with these gadgets : 63 * - zero gadget 64 * - file storage gadget 65 * - ether gadget 66 * 67 * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is 68 * made of UDC's double buffering either. USB "On-The-Go" is not implemented. 69 * 70 * All the requests are handled the same way : 71 * - the drivers tries to handle the request directly to the IO 72 * - if the IO fifo is not big enough, the remaining is send/received in 73 * interrupt handling. 74 */ 75 76 #define DRIVER_VERSION "2008-04-18" 77 #define DRIVER_DESC "PXA 27x USB Device Controller driver" 78 79 static const char driver_name[] = "pxa27x_udc"; 80 static struct pxa_udc *the_controller; 81 82 static void handle_ep(struct pxa_ep *ep); 83 84 /* 85 * Debug filesystem 86 */ 87 #ifdef CONFIG_USB_GADGET_DEBUG_FS 88 89 #include <linux/debugfs.h> 90 #include <linux/uaccess.h> 91 #include <linux/seq_file.h> 92 93 static int state_dbg_show(struct seq_file *s, void *p) 94 { 95 struct pxa_udc *udc = s->private; 96 int pos = 0, ret; 97 u32 tmp; 98 99 ret = -ENODEV; 100 if (!udc->driver) 101 goto out; 102 103 /* basic device status */ 104 pos += seq_printf(s, DRIVER_DESC "\n" 105 "%s version: %s\nGadget driver: %s\n", 106 driver_name, DRIVER_VERSION, 107 udc->driver ? udc->driver->driver.name : "(none)"); 108 109 tmp = udc_readl(udc, UDCCR); 110 pos += seq_printf(s, 111 "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), " 112 "con=%d,inter=%d,altinter=%d\n", tmp, 113 (tmp & UDCCR_OEN) ? " oen":"", 114 (tmp & UDCCR_AALTHNP) ? " aalthnp":"", 115 (tmp & UDCCR_AHNP) ? " rem" : "", 116 (tmp & UDCCR_BHNP) ? " rstir" : "", 117 (tmp & UDCCR_DWRE) ? " dwre" : "", 118 (tmp & UDCCR_SMAC) ? " smac" : "", 119 (tmp & UDCCR_EMCE) ? " emce" : "", 120 (tmp & UDCCR_UDR) ? " udr" : "", 121 (tmp & UDCCR_UDA) ? " uda" : "", 122 (tmp & UDCCR_UDE) ? " ude" : "", 123 (tmp & UDCCR_ACN) >> UDCCR_ACN_S, 124 (tmp & UDCCR_AIN) >> UDCCR_AIN_S, 125 (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S); 126 /* registers for device and ep0 */ 127 pos += seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n", 128 udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1)); 129 pos += seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n", 130 udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1)); 131 pos += seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR)); 132 pos += seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, " 133 "reconfig=%lu\n", 134 udc->stats.irqs_reset, udc->stats.irqs_suspend, 135 udc->stats.irqs_resume, udc->stats.irqs_reconfig); 136 137 ret = 0; 138 out: 139 return ret; 140 } 141 142 static int queues_dbg_show(struct seq_file *s, void *p) 143 { 144 struct pxa_udc *udc = s->private; 145 struct pxa_ep *ep; 146 struct pxa27x_request *req; 147 int pos = 0, i, maxpkt, ret; 148 149 ret = -ENODEV; 150 if (!udc->driver) 151 goto out; 152 153 /* dump endpoint queues */ 154 for (i = 0; i < NR_PXA_ENDPOINTS; i++) { 155 ep = &udc->pxa_ep[i]; 156 maxpkt = ep->fifo_size; 157 pos += seq_printf(s, "%-12s max_pkt=%d %s\n", 158 EPNAME(ep), maxpkt, "pio"); 159 160 if (list_empty(&ep->queue)) { 161 pos += seq_printf(s, "\t(nothing queued)\n"); 162 continue; 163 } 164 165 list_for_each_entry(req, &ep->queue, queue) { 166 pos += seq_printf(s, "\treq %p len %d/%d buf %p\n", 167 &req->req, req->req.actual, 168 req->req.length, req->req.buf); 169 } 170 } 171 172 ret = 0; 173 out: 174 return ret; 175 } 176 177 static int eps_dbg_show(struct seq_file *s, void *p) 178 { 179 struct pxa_udc *udc = s->private; 180 struct pxa_ep *ep; 181 int pos = 0, i, ret; 182 u32 tmp; 183 184 ret = -ENODEV; 185 if (!udc->driver) 186 goto out; 187 188 ep = &udc->pxa_ep[0]; 189 tmp = udc_ep_readl(ep, UDCCSR); 190 pos += seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n", tmp, 191 (tmp & UDCCSR0_SA) ? " sa" : "", 192 (tmp & UDCCSR0_RNE) ? " rne" : "", 193 (tmp & UDCCSR0_FST) ? " fst" : "", 194 (tmp & UDCCSR0_SST) ? " sst" : "", 195 (tmp & UDCCSR0_DME) ? " dme" : "", 196 (tmp & UDCCSR0_IPR) ? " ipr" : "", 197 (tmp & UDCCSR0_OPC) ? " opc" : ""); 198 for (i = 0; i < NR_PXA_ENDPOINTS; i++) { 199 ep = &udc->pxa_ep[i]; 200 tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR); 201 pos += seq_printf(s, "%-12s: " 202 "IN %lu(%lu reqs), OUT %lu(%lu reqs), " 203 "irqs=%lu, udccr=0x%08x, udccsr=0x%03x, " 204 "udcbcr=%d\n", 205 EPNAME(ep), 206 ep->stats.in_bytes, ep->stats.in_ops, 207 ep->stats.out_bytes, ep->stats.out_ops, 208 ep->stats.irqs, 209 tmp, udc_ep_readl(ep, UDCCSR), 210 udc_ep_readl(ep, UDCBCR)); 211 } 212 213 ret = 0; 214 out: 215 return ret; 216 } 217 218 static int eps_dbg_open(struct inode *inode, struct file *file) 219 { 220 return single_open(file, eps_dbg_show, inode->i_private); 221 } 222 223 static int queues_dbg_open(struct inode *inode, struct file *file) 224 { 225 return single_open(file, queues_dbg_show, inode->i_private); 226 } 227 228 static int state_dbg_open(struct inode *inode, struct file *file) 229 { 230 return single_open(file, state_dbg_show, inode->i_private); 231 } 232 233 static const struct file_operations state_dbg_fops = { 234 .owner = THIS_MODULE, 235 .open = state_dbg_open, 236 .llseek = seq_lseek, 237 .read = seq_read, 238 .release = single_release, 239 }; 240 241 static const struct file_operations queues_dbg_fops = { 242 .owner = THIS_MODULE, 243 .open = queues_dbg_open, 244 .llseek = seq_lseek, 245 .read = seq_read, 246 .release = single_release, 247 }; 248 249 static const struct file_operations eps_dbg_fops = { 250 .owner = THIS_MODULE, 251 .open = eps_dbg_open, 252 .llseek = seq_lseek, 253 .read = seq_read, 254 .release = single_release, 255 }; 256 257 static void pxa_init_debugfs(struct pxa_udc *udc) 258 { 259 struct dentry *root, *state, *queues, *eps; 260 261 root = debugfs_create_dir(udc->gadget.name, NULL); 262 if (IS_ERR(root) || !root) 263 goto err_root; 264 265 state = debugfs_create_file("udcstate", 0400, root, udc, 266 &state_dbg_fops); 267 if (!state) 268 goto err_state; 269 queues = debugfs_create_file("queues", 0400, root, udc, 270 &queues_dbg_fops); 271 if (!queues) 272 goto err_queues; 273 eps = debugfs_create_file("epstate", 0400, root, udc, 274 &eps_dbg_fops); 275 if (!eps) 276 goto err_eps; 277 278 udc->debugfs_root = root; 279 udc->debugfs_state = state; 280 udc->debugfs_queues = queues; 281 udc->debugfs_eps = eps; 282 return; 283 err_eps: 284 debugfs_remove(eps); 285 err_queues: 286 debugfs_remove(queues); 287 err_state: 288 debugfs_remove(root); 289 err_root: 290 dev_err(udc->dev, "debugfs is not available\n"); 291 } 292 293 static void pxa_cleanup_debugfs(struct pxa_udc *udc) 294 { 295 debugfs_remove(udc->debugfs_eps); 296 debugfs_remove(udc->debugfs_queues); 297 debugfs_remove(udc->debugfs_state); 298 debugfs_remove(udc->debugfs_root); 299 udc->debugfs_eps = NULL; 300 udc->debugfs_queues = NULL; 301 udc->debugfs_state = NULL; 302 udc->debugfs_root = NULL; 303 } 304 305 #else 306 static inline void pxa_init_debugfs(struct pxa_udc *udc) 307 { 308 } 309 310 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc) 311 { 312 } 313 #endif 314 315 /** 316 * is_match_usb_pxa - check if usb_ep and pxa_ep match 317 * @udc_usb_ep: usb endpoint 318 * @ep: pxa endpoint 319 * @config: configuration required in pxa_ep 320 * @interface: interface required in pxa_ep 321 * @altsetting: altsetting required in pxa_ep 322 * 323 * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise 324 */ 325 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep, 326 int config, int interface, int altsetting) 327 { 328 if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr) 329 return 0; 330 if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in) 331 return 0; 332 if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type) 333 return 0; 334 if ((ep->config != config) || (ep->interface != interface) 335 || (ep->alternate != altsetting)) 336 return 0; 337 return 1; 338 } 339 340 /** 341 * find_pxa_ep - find pxa_ep structure matching udc_usb_ep 342 * @udc: pxa udc 343 * @udc_usb_ep: udc_usb_ep structure 344 * 345 * Match udc_usb_ep and all pxa_ep available, to see if one matches. 346 * This is necessary because of the strong pxa hardware restriction requiring 347 * that once pxa endpoints are initialized, their configuration is freezed, and 348 * no change can be made to their address, direction, or in which configuration, 349 * interface or altsetting they are active ... which differs from more usual 350 * models which have endpoints be roughly just addressable fifos, and leave 351 * configuration events up to gadget drivers (like all control messages). 352 * 353 * Note that there is still a blurred point here : 354 * - we rely on UDCCR register "active interface" and "active altsetting". 355 * This is a nonsense in regard of USB spec, where multiple interfaces are 356 * active at the same time. 357 * - if we knew for sure that the pxa can handle multiple interface at the 358 * same time, assuming Intel's Developer Guide is wrong, this function 359 * should be reviewed, and a cache of couples (iface, altsetting) should 360 * be kept in the pxa_udc structure. In this case this function would match 361 * against the cache of couples instead of the "last altsetting" set up. 362 * 363 * Returns the matched pxa_ep structure or NULL if none found 364 */ 365 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc, 366 struct udc_usb_ep *udc_usb_ep) 367 { 368 int i; 369 struct pxa_ep *ep; 370 int cfg = udc->config; 371 int iface = udc->last_interface; 372 int alt = udc->last_alternate; 373 374 if (udc_usb_ep == &udc->udc_usb_ep[0]) 375 return &udc->pxa_ep[0]; 376 377 for (i = 1; i < NR_PXA_ENDPOINTS; i++) { 378 ep = &udc->pxa_ep[i]; 379 if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt)) 380 return ep; 381 } 382 return NULL; 383 } 384 385 /** 386 * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep 387 * @udc: pxa udc 388 * 389 * Context: in_interrupt() 390 * 391 * Updates all pxa_ep fields in udc_usb_ep structures, if this field was 392 * previously set up (and is not NULL). The update is necessary is a 393 * configuration change or altsetting change was issued by the USB host. 394 */ 395 static void update_pxa_ep_matches(struct pxa_udc *udc) 396 { 397 int i; 398 struct udc_usb_ep *udc_usb_ep; 399 400 for (i = 1; i < NR_USB_ENDPOINTS; i++) { 401 udc_usb_ep = &udc->udc_usb_ep[i]; 402 if (udc_usb_ep->pxa_ep) 403 udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep); 404 } 405 } 406 407 /** 408 * pio_irq_enable - Enables irq generation for one endpoint 409 * @ep: udc endpoint 410 */ 411 static void pio_irq_enable(struct pxa_ep *ep) 412 { 413 struct pxa_udc *udc = ep->dev; 414 int index = EPIDX(ep); 415 u32 udcicr0 = udc_readl(udc, UDCICR0); 416 u32 udcicr1 = udc_readl(udc, UDCICR1); 417 418 if (index < 16) 419 udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2))); 420 else 421 udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2))); 422 } 423 424 /** 425 * pio_irq_disable - Disables irq generation for one endpoint 426 * @ep: udc endpoint 427 */ 428 static void pio_irq_disable(struct pxa_ep *ep) 429 { 430 struct pxa_udc *udc = ep->dev; 431 int index = EPIDX(ep); 432 u32 udcicr0 = udc_readl(udc, UDCICR0); 433 u32 udcicr1 = udc_readl(udc, UDCICR1); 434 435 if (index < 16) 436 udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2))); 437 else 438 udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2))); 439 } 440 441 /** 442 * udc_set_mask_UDCCR - set bits in UDCCR 443 * @udc: udc device 444 * @mask: bits to set in UDCCR 445 * 446 * Sets bits in UDCCR, leaving DME and FST bits as they were. 447 */ 448 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask) 449 { 450 u32 udccr = udc_readl(udc, UDCCR); 451 udc_writel(udc, UDCCR, 452 (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS)); 453 } 454 455 /** 456 * udc_clear_mask_UDCCR - clears bits in UDCCR 457 * @udc: udc device 458 * @mask: bit to clear in UDCCR 459 * 460 * Clears bits in UDCCR, leaving DME and FST bits as they were. 461 */ 462 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask) 463 { 464 u32 udccr = udc_readl(udc, UDCCR); 465 udc_writel(udc, UDCCR, 466 (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS)); 467 } 468 469 /** 470 * ep_write_UDCCSR - set bits in UDCCSR 471 * @udc: udc device 472 * @mask: bits to set in UDCCR 473 * 474 * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*). 475 * 476 * A specific case is applied to ep0 : the ACM bit is always set to 1, for 477 * SET_INTERFACE and SET_CONFIGURATION. 478 */ 479 static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask) 480 { 481 if (is_ep0(ep)) 482 mask |= UDCCSR0_ACM; 483 udc_ep_writel(ep, UDCCSR, mask); 484 } 485 486 /** 487 * ep_count_bytes_remain - get how many bytes in udc endpoint 488 * @ep: udc endpoint 489 * 490 * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP) 491 */ 492 static int ep_count_bytes_remain(struct pxa_ep *ep) 493 { 494 if (ep->dir_in) 495 return -EOPNOTSUPP; 496 return udc_ep_readl(ep, UDCBCR) & 0x3ff; 497 } 498 499 /** 500 * ep_is_empty - checks if ep has byte ready for reading 501 * @ep: udc endpoint 502 * 503 * If endpoint is the control endpoint, checks if there are bytes in the 504 * control endpoint fifo. If endpoint is a data endpoint, checks if bytes 505 * are ready for reading on OUT endpoint. 506 * 507 * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint 508 */ 509 static int ep_is_empty(struct pxa_ep *ep) 510 { 511 int ret; 512 513 if (!is_ep0(ep) && ep->dir_in) 514 return -EOPNOTSUPP; 515 if (is_ep0(ep)) 516 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE); 517 else 518 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE); 519 return ret; 520 } 521 522 /** 523 * ep_is_full - checks if ep has place to write bytes 524 * @ep: udc endpoint 525 * 526 * If endpoint is not the control endpoint and is an IN endpoint, checks if 527 * there is place to write bytes into the endpoint. 528 * 529 * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint 530 */ 531 static int ep_is_full(struct pxa_ep *ep) 532 { 533 if (is_ep0(ep)) 534 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR); 535 if (!ep->dir_in) 536 return -EOPNOTSUPP; 537 return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF)); 538 } 539 540 /** 541 * epout_has_pkt - checks if OUT endpoint fifo has a packet available 542 * @ep: pxa endpoint 543 * 544 * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep. 545 */ 546 static int epout_has_pkt(struct pxa_ep *ep) 547 { 548 if (!is_ep0(ep) && ep->dir_in) 549 return -EOPNOTSUPP; 550 if (is_ep0(ep)) 551 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC); 552 return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC); 553 } 554 555 /** 556 * set_ep0state - Set ep0 automata state 557 * @dev: udc device 558 * @state: state 559 */ 560 static void set_ep0state(struct pxa_udc *udc, int state) 561 { 562 struct pxa_ep *ep = &udc->pxa_ep[0]; 563 char *old_stname = EP0_STNAME(udc); 564 565 udc->ep0state = state; 566 ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname, 567 EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR), 568 udc_ep_readl(ep, UDCBCR)); 569 } 570 571 /** 572 * ep0_idle - Put control endpoint into idle state 573 * @dev: udc device 574 */ 575 static void ep0_idle(struct pxa_udc *dev) 576 { 577 set_ep0state(dev, WAIT_FOR_SETUP); 578 } 579 580 /** 581 * inc_ep_stats_reqs - Update ep stats counts 582 * @ep: physical endpoint 583 * @req: usb request 584 * @is_in: ep direction (USB_DIR_IN or 0) 585 * 586 */ 587 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in) 588 { 589 if (is_in) 590 ep->stats.in_ops++; 591 else 592 ep->stats.out_ops++; 593 } 594 595 /** 596 * inc_ep_stats_bytes - Update ep stats counts 597 * @ep: physical endpoint 598 * @count: bytes transferred on endpoint 599 * @is_in: ep direction (USB_DIR_IN or 0) 600 */ 601 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in) 602 { 603 if (is_in) 604 ep->stats.in_bytes += count; 605 else 606 ep->stats.out_bytes += count; 607 } 608 609 /** 610 * pxa_ep_setup - Sets up an usb physical endpoint 611 * @ep: pxa27x physical endpoint 612 * 613 * Find the physical pxa27x ep, and setup its UDCCR 614 */ 615 static void pxa_ep_setup(struct pxa_ep *ep) 616 { 617 u32 new_udccr; 618 619 new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN) 620 | ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN) 621 | ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN) 622 | ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN) 623 | ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET) 624 | ((ep->dir_in) ? UDCCONR_ED : 0) 625 | ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS) 626 | UDCCONR_EE; 627 628 udc_ep_writel(ep, UDCCR, new_udccr); 629 } 630 631 /** 632 * pxa_eps_setup - Sets up all usb physical endpoints 633 * @dev: udc device 634 * 635 * Setup all pxa physical endpoints, except ep0 636 */ 637 static void pxa_eps_setup(struct pxa_udc *dev) 638 { 639 unsigned int i; 640 641 dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev); 642 643 for (i = 1; i < NR_PXA_ENDPOINTS; i++) 644 pxa_ep_setup(&dev->pxa_ep[i]); 645 } 646 647 /** 648 * pxa_ep_alloc_request - Allocate usb request 649 * @_ep: usb endpoint 650 * @gfp_flags: 651 * 652 * For the pxa27x, these can just wrap kmalloc/kfree. gadget drivers 653 * must still pass correctly initialized endpoints, since other controller 654 * drivers may care about how it's currently set up (dma issues etc). 655 */ 656 static struct usb_request * 657 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags) 658 { 659 struct pxa27x_request *req; 660 661 req = kzalloc(sizeof *req, gfp_flags); 662 if (!req) 663 return NULL; 664 665 INIT_LIST_HEAD(&req->queue); 666 req->in_use = 0; 667 req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 668 669 return &req->req; 670 } 671 672 /** 673 * pxa_ep_free_request - Free usb request 674 * @_ep: usb endpoint 675 * @_req: usb request 676 * 677 * Wrapper around kfree to free _req 678 */ 679 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req) 680 { 681 struct pxa27x_request *req; 682 683 req = container_of(_req, struct pxa27x_request, req); 684 WARN_ON(!list_empty(&req->queue)); 685 kfree(req); 686 } 687 688 /** 689 * ep_add_request - add a request to the endpoint's queue 690 * @ep: usb endpoint 691 * @req: usb request 692 * 693 * Context: ep->lock held 694 * 695 * Queues the request in the endpoint's queue, and enables the interrupts 696 * on the endpoint. 697 */ 698 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req) 699 { 700 if (unlikely(!req)) 701 return; 702 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req, 703 req->req.length, udc_ep_readl(ep, UDCCSR)); 704 705 req->in_use = 1; 706 list_add_tail(&req->queue, &ep->queue); 707 pio_irq_enable(ep); 708 } 709 710 /** 711 * ep_del_request - removes a request from the endpoint's queue 712 * @ep: usb endpoint 713 * @req: usb request 714 * 715 * Context: ep->lock held 716 * 717 * Unqueue the request from the endpoint's queue. If there are no more requests 718 * on the endpoint, and if it's not the control endpoint, interrupts are 719 * disabled on the endpoint. 720 */ 721 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req) 722 { 723 if (unlikely(!req)) 724 return; 725 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req, 726 req->req.length, udc_ep_readl(ep, UDCCSR)); 727 728 list_del_init(&req->queue); 729 req->in_use = 0; 730 if (!is_ep0(ep) && list_empty(&ep->queue)) 731 pio_irq_disable(ep); 732 } 733 734 /** 735 * req_done - Complete an usb request 736 * @ep: pxa physical endpoint 737 * @req: pxa request 738 * @status: usb request status sent to gadget API 739 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 740 * 741 * Context: ep->lock held if flags not NULL, else ep->lock released 742 * 743 * Retire a pxa27x usb request. Endpoint must be locked. 744 */ 745 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status, 746 unsigned long *pflags) 747 { 748 unsigned long flags; 749 750 ep_del_request(ep, req); 751 if (likely(req->req.status == -EINPROGRESS)) 752 req->req.status = status; 753 else 754 status = req->req.status; 755 756 if (status && status != -ESHUTDOWN) 757 ep_dbg(ep, "complete req %p stat %d len %u/%u\n", 758 &req->req, status, 759 req->req.actual, req->req.length); 760 761 if (pflags) 762 spin_unlock_irqrestore(&ep->lock, *pflags); 763 local_irq_save(flags); 764 usb_gadget_giveback_request(&req->udc_usb_ep->usb_ep, &req->req); 765 local_irq_restore(flags); 766 if (pflags) 767 spin_lock_irqsave(&ep->lock, *pflags); 768 } 769 770 /** 771 * ep_end_out_req - Ends endpoint OUT request 772 * @ep: physical endpoint 773 * @req: pxa request 774 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 775 * 776 * Context: ep->lock held or released (see req_done()) 777 * 778 * Ends endpoint OUT request (completes usb request). 779 */ 780 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req, 781 unsigned long *pflags) 782 { 783 inc_ep_stats_reqs(ep, !USB_DIR_IN); 784 req_done(ep, req, 0, pflags); 785 } 786 787 /** 788 * ep0_end_out_req - Ends control endpoint OUT request (ends data stage) 789 * @ep: physical endpoint 790 * @req: pxa request 791 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 792 * 793 * Context: ep->lock held or released (see req_done()) 794 * 795 * Ends control endpoint OUT request (completes usb request), and puts 796 * control endpoint into idle state 797 */ 798 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req, 799 unsigned long *pflags) 800 { 801 set_ep0state(ep->dev, OUT_STATUS_STAGE); 802 ep_end_out_req(ep, req, pflags); 803 ep0_idle(ep->dev); 804 } 805 806 /** 807 * ep_end_in_req - Ends endpoint IN request 808 * @ep: physical endpoint 809 * @req: pxa request 810 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 811 * 812 * Context: ep->lock held or released (see req_done()) 813 * 814 * Ends endpoint IN request (completes usb request). 815 */ 816 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req, 817 unsigned long *pflags) 818 { 819 inc_ep_stats_reqs(ep, USB_DIR_IN); 820 req_done(ep, req, 0, pflags); 821 } 822 823 /** 824 * ep0_end_in_req - Ends control endpoint IN request (ends data stage) 825 * @ep: physical endpoint 826 * @req: pxa request 827 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 828 * 829 * Context: ep->lock held or released (see req_done()) 830 * 831 * Ends control endpoint IN request (completes usb request), and puts 832 * control endpoint into status state 833 */ 834 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req, 835 unsigned long *pflags) 836 { 837 set_ep0state(ep->dev, IN_STATUS_STAGE); 838 ep_end_in_req(ep, req, pflags); 839 } 840 841 /** 842 * nuke - Dequeue all requests 843 * @ep: pxa endpoint 844 * @status: usb request status 845 * 846 * Context: ep->lock released 847 * 848 * Dequeues all requests on an endpoint. As a side effect, interrupts will be 849 * disabled on that endpoint (because no more requests). 850 */ 851 static void nuke(struct pxa_ep *ep, int status) 852 { 853 struct pxa27x_request *req; 854 unsigned long flags; 855 856 spin_lock_irqsave(&ep->lock, flags); 857 while (!list_empty(&ep->queue)) { 858 req = list_entry(ep->queue.next, struct pxa27x_request, queue); 859 req_done(ep, req, status, &flags); 860 } 861 spin_unlock_irqrestore(&ep->lock, flags); 862 } 863 864 /** 865 * read_packet - transfer 1 packet from an OUT endpoint into request 866 * @ep: pxa physical endpoint 867 * @req: usb request 868 * 869 * Takes bytes from OUT endpoint and transfers them info the usb request. 870 * If there is less space in request than bytes received in OUT endpoint, 871 * bytes are left in the OUT endpoint. 872 * 873 * Returns how many bytes were actually transferred 874 */ 875 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req) 876 { 877 u32 *buf; 878 int bytes_ep, bufferspace, count, i; 879 880 bytes_ep = ep_count_bytes_remain(ep); 881 bufferspace = req->req.length - req->req.actual; 882 883 buf = (u32 *)(req->req.buf + req->req.actual); 884 prefetchw(buf); 885 886 if (likely(!ep_is_empty(ep))) 887 count = min(bytes_ep, bufferspace); 888 else /* zlp */ 889 count = 0; 890 891 for (i = count; i > 0; i -= 4) 892 *buf++ = udc_ep_readl(ep, UDCDR); 893 req->req.actual += count; 894 895 ep_write_UDCCSR(ep, UDCCSR_PC); 896 897 return count; 898 } 899 900 /** 901 * write_packet - transfer 1 packet from request into an IN endpoint 902 * @ep: pxa physical endpoint 903 * @req: usb request 904 * @max: max bytes that fit into endpoint 905 * 906 * Takes bytes from usb request, and transfers them into the physical 907 * endpoint. If there are no bytes to transfer, doesn't write anything 908 * to physical endpoint. 909 * 910 * Returns how many bytes were actually transferred. 911 */ 912 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req, 913 unsigned int max) 914 { 915 int length, count, remain, i; 916 u32 *buf; 917 u8 *buf_8; 918 919 buf = (u32 *)(req->req.buf + req->req.actual); 920 prefetch(buf); 921 922 length = min(req->req.length - req->req.actual, max); 923 req->req.actual += length; 924 925 remain = length & 0x3; 926 count = length & ~(0x3); 927 for (i = count; i > 0 ; i -= 4) 928 udc_ep_writel(ep, UDCDR, *buf++); 929 930 buf_8 = (u8 *)buf; 931 for (i = remain; i > 0; i--) 932 udc_ep_writeb(ep, UDCDR, *buf_8++); 933 934 ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain, 935 udc_ep_readl(ep, UDCCSR)); 936 937 return length; 938 } 939 940 /** 941 * read_fifo - Transfer packets from OUT endpoint into usb request 942 * @ep: pxa physical endpoint 943 * @req: usb request 944 * 945 * Context: callable when in_interrupt() 946 * 947 * Unload as many packets as possible from the fifo we use for usb OUT 948 * transfers and put them into the request. Caller should have made sure 949 * there's at least one packet ready. 950 * Doesn't complete the request, that's the caller's job 951 * 952 * Returns 1 if the request completed, 0 otherwise 953 */ 954 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 955 { 956 int count, is_short, completed = 0; 957 958 while (epout_has_pkt(ep)) { 959 count = read_packet(ep, req); 960 inc_ep_stats_bytes(ep, count, !USB_DIR_IN); 961 962 is_short = (count < ep->fifo_size); 963 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n", 964 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "", 965 &req->req, req->req.actual, req->req.length); 966 967 /* completion */ 968 if (is_short || req->req.actual == req->req.length) { 969 completed = 1; 970 break; 971 } 972 /* finished that packet. the next one may be waiting... */ 973 } 974 return completed; 975 } 976 977 /** 978 * write_fifo - transfer packets from usb request into an IN endpoint 979 * @ep: pxa physical endpoint 980 * @req: pxa usb request 981 * 982 * Write to an IN endpoint fifo, as many packets as possible. 983 * irqs will use this to write the rest later. 984 * caller guarantees at least one packet buffer is ready (or a zlp). 985 * Doesn't complete the request, that's the caller's job 986 * 987 * Returns 1 if request fully transferred, 0 if partial transfer 988 */ 989 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 990 { 991 unsigned max; 992 int count, is_short, is_last = 0, completed = 0, totcount = 0; 993 u32 udccsr; 994 995 max = ep->fifo_size; 996 do { 997 is_short = 0; 998 999 udccsr = udc_ep_readl(ep, UDCCSR); 1000 if (udccsr & UDCCSR_PC) { 1001 ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n", 1002 udccsr); 1003 ep_write_UDCCSR(ep, UDCCSR_PC); 1004 } 1005 if (udccsr & UDCCSR_TRN) { 1006 ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n", 1007 udccsr); 1008 ep_write_UDCCSR(ep, UDCCSR_TRN); 1009 } 1010 1011 count = write_packet(ep, req, max); 1012 inc_ep_stats_bytes(ep, count, USB_DIR_IN); 1013 totcount += count; 1014 1015 /* last packet is usually short (or a zlp) */ 1016 if (unlikely(count < max)) { 1017 is_last = 1; 1018 is_short = 1; 1019 } else { 1020 if (likely(req->req.length > req->req.actual) 1021 || req->req.zero) 1022 is_last = 0; 1023 else 1024 is_last = 1; 1025 /* interrupt/iso maxpacket may not fill the fifo */ 1026 is_short = unlikely(max < ep->fifo_size); 1027 } 1028 1029 if (is_short) 1030 ep_write_UDCCSR(ep, UDCCSR_SP); 1031 1032 /* requests complete when all IN data is in the FIFO */ 1033 if (is_last) { 1034 completed = 1; 1035 break; 1036 } 1037 } while (!ep_is_full(ep)); 1038 1039 ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n", 1040 totcount, is_last ? "/L" : "", is_short ? "/S" : "", 1041 req->req.length - req->req.actual, &req->req); 1042 1043 return completed; 1044 } 1045 1046 /** 1047 * read_ep0_fifo - Transfer packets from control endpoint into usb request 1048 * @ep: control endpoint 1049 * @req: pxa usb request 1050 * 1051 * Special ep0 version of the above read_fifo. Reads as many bytes from control 1052 * endpoint as can be read, and stores them into usb request (limited by request 1053 * maximum length). 1054 * 1055 * Returns 0 if usb request only partially filled, 1 if fully filled 1056 */ 1057 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 1058 { 1059 int count, is_short, completed = 0; 1060 1061 while (epout_has_pkt(ep)) { 1062 count = read_packet(ep, req); 1063 ep_write_UDCCSR(ep, UDCCSR0_OPC); 1064 inc_ep_stats_bytes(ep, count, !USB_DIR_IN); 1065 1066 is_short = (count < ep->fifo_size); 1067 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n", 1068 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "", 1069 &req->req, req->req.actual, req->req.length); 1070 1071 if (is_short || req->req.actual >= req->req.length) { 1072 completed = 1; 1073 break; 1074 } 1075 } 1076 1077 return completed; 1078 } 1079 1080 /** 1081 * write_ep0_fifo - Send a request to control endpoint (ep0 in) 1082 * @ep: control endpoint 1083 * @req: request 1084 * 1085 * Context: callable when in_interrupt() 1086 * 1087 * Sends a request (or a part of the request) to the control endpoint (ep0 in). 1088 * If the request doesn't fit, the remaining part will be sent from irq. 1089 * The request is considered fully written only if either : 1090 * - last write transferred all remaining bytes, but fifo was not fully filled 1091 * - last write was a 0 length write 1092 * 1093 * Returns 1 if request fully written, 0 if request only partially sent 1094 */ 1095 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 1096 { 1097 unsigned count; 1098 int is_last, is_short; 1099 1100 count = write_packet(ep, req, EP0_FIFO_SIZE); 1101 inc_ep_stats_bytes(ep, count, USB_DIR_IN); 1102 1103 is_short = (count < EP0_FIFO_SIZE); 1104 is_last = ((count == 0) || (count < EP0_FIFO_SIZE)); 1105 1106 /* Sends either a short packet or a 0 length packet */ 1107 if (unlikely(is_short)) 1108 ep_write_UDCCSR(ep, UDCCSR0_IPR); 1109 1110 ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n", 1111 count, is_short ? "/S" : "", is_last ? "/L" : "", 1112 req->req.length - req->req.actual, 1113 &req->req, udc_ep_readl(ep, UDCCSR)); 1114 1115 return is_last; 1116 } 1117 1118 /** 1119 * pxa_ep_queue - Queue a request into an IN endpoint 1120 * @_ep: usb endpoint 1121 * @_req: usb request 1122 * @gfp_flags: flags 1123 * 1124 * Context: normally called when !in_interrupt, but callable when in_interrupt() 1125 * in the special case of ep0 setup : 1126 * (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue) 1127 * 1128 * Returns 0 if succedeed, error otherwise 1129 */ 1130 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req, 1131 gfp_t gfp_flags) 1132 { 1133 struct udc_usb_ep *udc_usb_ep; 1134 struct pxa_ep *ep; 1135 struct pxa27x_request *req; 1136 struct pxa_udc *dev; 1137 unsigned long flags; 1138 int rc = 0; 1139 int is_first_req; 1140 unsigned length; 1141 int recursion_detected; 1142 1143 req = container_of(_req, struct pxa27x_request, req); 1144 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1145 1146 if (unlikely(!_req || !_req->complete || !_req->buf)) 1147 return -EINVAL; 1148 1149 if (unlikely(!_ep)) 1150 return -EINVAL; 1151 1152 dev = udc_usb_ep->dev; 1153 ep = udc_usb_ep->pxa_ep; 1154 if (unlikely(!ep)) 1155 return -EINVAL; 1156 1157 dev = ep->dev; 1158 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) { 1159 ep_dbg(ep, "bogus device state\n"); 1160 return -ESHUTDOWN; 1161 } 1162 1163 /* iso is always one packet per request, that's the only way 1164 * we can report per-packet status. that also helps with dma. 1165 */ 1166 if (unlikely(EPXFERTYPE_is_ISO(ep) 1167 && req->req.length > ep->fifo_size)) 1168 return -EMSGSIZE; 1169 1170 spin_lock_irqsave(&ep->lock, flags); 1171 recursion_detected = ep->in_handle_ep; 1172 1173 is_first_req = list_empty(&ep->queue); 1174 ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n", 1175 _req, is_first_req ? "yes" : "no", 1176 _req->length, _req->buf); 1177 1178 if (!ep->enabled) { 1179 _req->status = -ESHUTDOWN; 1180 rc = -ESHUTDOWN; 1181 goto out_locked; 1182 } 1183 1184 if (req->in_use) { 1185 ep_err(ep, "refusing to queue req %p (already queued)\n", req); 1186 goto out_locked; 1187 } 1188 1189 length = _req->length; 1190 _req->status = -EINPROGRESS; 1191 _req->actual = 0; 1192 1193 ep_add_request(ep, req); 1194 spin_unlock_irqrestore(&ep->lock, flags); 1195 1196 if (is_ep0(ep)) { 1197 switch (dev->ep0state) { 1198 case WAIT_ACK_SET_CONF_INTERF: 1199 if (length == 0) { 1200 ep_end_in_req(ep, req, NULL); 1201 } else { 1202 ep_err(ep, "got a request of %d bytes while" 1203 "in state WAIT_ACK_SET_CONF_INTERF\n", 1204 length); 1205 ep_del_request(ep, req); 1206 rc = -EL2HLT; 1207 } 1208 ep0_idle(ep->dev); 1209 break; 1210 case IN_DATA_STAGE: 1211 if (!ep_is_full(ep)) 1212 if (write_ep0_fifo(ep, req)) 1213 ep0_end_in_req(ep, req, NULL); 1214 break; 1215 case OUT_DATA_STAGE: 1216 if ((length == 0) || !epout_has_pkt(ep)) 1217 if (read_ep0_fifo(ep, req)) 1218 ep0_end_out_req(ep, req, NULL); 1219 break; 1220 default: 1221 ep_err(ep, "odd state %s to send me a request\n", 1222 EP0_STNAME(ep->dev)); 1223 ep_del_request(ep, req); 1224 rc = -EL2HLT; 1225 break; 1226 } 1227 } else { 1228 if (!recursion_detected) 1229 handle_ep(ep); 1230 } 1231 1232 out: 1233 return rc; 1234 out_locked: 1235 spin_unlock_irqrestore(&ep->lock, flags); 1236 goto out; 1237 } 1238 1239 /** 1240 * pxa_ep_dequeue - Dequeue one request 1241 * @_ep: usb endpoint 1242 * @_req: usb request 1243 * 1244 * Return 0 if no error, -EINVAL or -ECONNRESET otherwise 1245 */ 1246 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) 1247 { 1248 struct pxa_ep *ep; 1249 struct udc_usb_ep *udc_usb_ep; 1250 struct pxa27x_request *req; 1251 unsigned long flags; 1252 int rc = -EINVAL; 1253 1254 if (!_ep) 1255 return rc; 1256 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1257 ep = udc_usb_ep->pxa_ep; 1258 if (!ep || is_ep0(ep)) 1259 return rc; 1260 1261 spin_lock_irqsave(&ep->lock, flags); 1262 1263 /* make sure it's actually queued on this endpoint */ 1264 list_for_each_entry(req, &ep->queue, queue) { 1265 if (&req->req == _req) { 1266 rc = 0; 1267 break; 1268 } 1269 } 1270 1271 spin_unlock_irqrestore(&ep->lock, flags); 1272 if (!rc) 1273 req_done(ep, req, -ECONNRESET, NULL); 1274 return rc; 1275 } 1276 1277 /** 1278 * pxa_ep_set_halt - Halts operations on one endpoint 1279 * @_ep: usb endpoint 1280 * @value: 1281 * 1282 * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise 1283 */ 1284 static int pxa_ep_set_halt(struct usb_ep *_ep, int value) 1285 { 1286 struct pxa_ep *ep; 1287 struct udc_usb_ep *udc_usb_ep; 1288 unsigned long flags; 1289 int rc; 1290 1291 1292 if (!_ep) 1293 return -EINVAL; 1294 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1295 ep = udc_usb_ep->pxa_ep; 1296 if (!ep || is_ep0(ep)) 1297 return -EINVAL; 1298 1299 if (value == 0) { 1300 /* 1301 * This path (reset toggle+halt) is needed to implement 1302 * SET_INTERFACE on normal hardware. but it can't be 1303 * done from software on the PXA UDC, and the hardware 1304 * forgets to do it as part of SET_INTERFACE automagic. 1305 */ 1306 ep_dbg(ep, "only host can clear halt\n"); 1307 return -EROFS; 1308 } 1309 1310 spin_lock_irqsave(&ep->lock, flags); 1311 1312 rc = -EAGAIN; 1313 if (ep->dir_in && (ep_is_full(ep) || !list_empty(&ep->queue))) 1314 goto out; 1315 1316 /* FST, FEF bits are the same for control and non control endpoints */ 1317 rc = 0; 1318 ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF); 1319 if (is_ep0(ep)) 1320 set_ep0state(ep->dev, STALL); 1321 1322 out: 1323 spin_unlock_irqrestore(&ep->lock, flags); 1324 return rc; 1325 } 1326 1327 /** 1328 * pxa_ep_fifo_status - Get how many bytes in physical endpoint 1329 * @_ep: usb endpoint 1330 * 1331 * Returns number of bytes in OUT fifos. Broken for IN fifos. 1332 */ 1333 static int pxa_ep_fifo_status(struct usb_ep *_ep) 1334 { 1335 struct pxa_ep *ep; 1336 struct udc_usb_ep *udc_usb_ep; 1337 1338 if (!_ep) 1339 return -ENODEV; 1340 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1341 ep = udc_usb_ep->pxa_ep; 1342 if (!ep || is_ep0(ep)) 1343 return -ENODEV; 1344 1345 if (ep->dir_in) 1346 return -EOPNOTSUPP; 1347 if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep)) 1348 return 0; 1349 else 1350 return ep_count_bytes_remain(ep) + 1; 1351 } 1352 1353 /** 1354 * pxa_ep_fifo_flush - Flushes one endpoint 1355 * @_ep: usb endpoint 1356 * 1357 * Discards all data in one endpoint(IN or OUT), except control endpoint. 1358 */ 1359 static void pxa_ep_fifo_flush(struct usb_ep *_ep) 1360 { 1361 struct pxa_ep *ep; 1362 struct udc_usb_ep *udc_usb_ep; 1363 unsigned long flags; 1364 1365 if (!_ep) 1366 return; 1367 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1368 ep = udc_usb_ep->pxa_ep; 1369 if (!ep || is_ep0(ep)) 1370 return; 1371 1372 spin_lock_irqsave(&ep->lock, flags); 1373 1374 if (unlikely(!list_empty(&ep->queue))) 1375 ep_dbg(ep, "called while queue list not empty\n"); 1376 ep_dbg(ep, "called\n"); 1377 1378 /* for OUT, just read and discard the FIFO contents. */ 1379 if (!ep->dir_in) { 1380 while (!ep_is_empty(ep)) 1381 udc_ep_readl(ep, UDCDR); 1382 } else { 1383 /* most IN status is the same, but ISO can't stall */ 1384 ep_write_UDCCSR(ep, 1385 UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN 1386 | (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST)); 1387 } 1388 1389 spin_unlock_irqrestore(&ep->lock, flags); 1390 } 1391 1392 /** 1393 * pxa_ep_enable - Enables usb endpoint 1394 * @_ep: usb endpoint 1395 * @desc: usb endpoint descriptor 1396 * 1397 * Nothing much to do here, as ep configuration is done once and for all 1398 * before udc is enabled. After udc enable, no physical endpoint configuration 1399 * can be changed. 1400 * Function makes sanity checks and flushes the endpoint. 1401 */ 1402 static int pxa_ep_enable(struct usb_ep *_ep, 1403 const struct usb_endpoint_descriptor *desc) 1404 { 1405 struct pxa_ep *ep; 1406 struct udc_usb_ep *udc_usb_ep; 1407 struct pxa_udc *udc; 1408 1409 if (!_ep || !desc) 1410 return -EINVAL; 1411 1412 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1413 if (udc_usb_ep->pxa_ep) { 1414 ep = udc_usb_ep->pxa_ep; 1415 ep_warn(ep, "usb_ep %s already enabled, doing nothing\n", 1416 _ep->name); 1417 } else { 1418 ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep); 1419 } 1420 1421 if (!ep || is_ep0(ep)) { 1422 dev_err(udc_usb_ep->dev->dev, 1423 "unable to match pxa_ep for ep %s\n", 1424 _ep->name); 1425 return -EINVAL; 1426 } 1427 1428 if ((desc->bDescriptorType != USB_DT_ENDPOINT) 1429 || (ep->type != usb_endpoint_type(desc))) { 1430 ep_err(ep, "type mismatch\n"); 1431 return -EINVAL; 1432 } 1433 1434 if (ep->fifo_size < usb_endpoint_maxp(desc)) { 1435 ep_err(ep, "bad maxpacket\n"); 1436 return -ERANGE; 1437 } 1438 1439 udc_usb_ep->pxa_ep = ep; 1440 udc = ep->dev; 1441 1442 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 1443 ep_err(ep, "bogus device state\n"); 1444 return -ESHUTDOWN; 1445 } 1446 1447 ep->enabled = 1; 1448 1449 /* flush fifo (mostly for OUT buffers) */ 1450 pxa_ep_fifo_flush(_ep); 1451 1452 ep_dbg(ep, "enabled\n"); 1453 return 0; 1454 } 1455 1456 /** 1457 * pxa_ep_disable - Disable usb endpoint 1458 * @_ep: usb endpoint 1459 * 1460 * Same as for pxa_ep_enable, no physical endpoint configuration can be 1461 * changed. 1462 * Function flushes the endpoint and related requests. 1463 */ 1464 static int pxa_ep_disable(struct usb_ep *_ep) 1465 { 1466 struct pxa_ep *ep; 1467 struct udc_usb_ep *udc_usb_ep; 1468 1469 if (!_ep) 1470 return -EINVAL; 1471 1472 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1473 ep = udc_usb_ep->pxa_ep; 1474 if (!ep || is_ep0(ep) || !list_empty(&ep->queue)) 1475 return -EINVAL; 1476 1477 ep->enabled = 0; 1478 nuke(ep, -ESHUTDOWN); 1479 1480 pxa_ep_fifo_flush(_ep); 1481 udc_usb_ep->pxa_ep = NULL; 1482 1483 ep_dbg(ep, "disabled\n"); 1484 return 0; 1485 } 1486 1487 static struct usb_ep_ops pxa_ep_ops = { 1488 .enable = pxa_ep_enable, 1489 .disable = pxa_ep_disable, 1490 1491 .alloc_request = pxa_ep_alloc_request, 1492 .free_request = pxa_ep_free_request, 1493 1494 .queue = pxa_ep_queue, 1495 .dequeue = pxa_ep_dequeue, 1496 1497 .set_halt = pxa_ep_set_halt, 1498 .fifo_status = pxa_ep_fifo_status, 1499 .fifo_flush = pxa_ep_fifo_flush, 1500 }; 1501 1502 /** 1503 * dplus_pullup - Connect or disconnect pullup resistor to D+ pin 1504 * @udc: udc device 1505 * @on: 0 if disconnect pullup resistor, 1 otherwise 1506 * Context: any 1507 * 1508 * Handle D+ pullup resistor, make the device visible to the usb bus, and 1509 * declare it as a full speed usb device 1510 */ 1511 static void dplus_pullup(struct pxa_udc *udc, int on) 1512 { 1513 if (udc->gpiod) { 1514 gpiod_set_value(udc->gpiod, on); 1515 } else if (udc->udc_command) { 1516 if (on) 1517 udc->udc_command(PXA2XX_UDC_CMD_CONNECT); 1518 else 1519 udc->udc_command(PXA2XX_UDC_CMD_DISCONNECT); 1520 } 1521 udc->pullup_on = on; 1522 } 1523 1524 /** 1525 * pxa_udc_get_frame - Returns usb frame number 1526 * @_gadget: usb gadget 1527 */ 1528 static int pxa_udc_get_frame(struct usb_gadget *_gadget) 1529 { 1530 struct pxa_udc *udc = to_gadget_udc(_gadget); 1531 1532 return (udc_readl(udc, UDCFNR) & 0x7ff); 1533 } 1534 1535 /** 1536 * pxa_udc_wakeup - Force udc device out of suspend 1537 * @_gadget: usb gadget 1538 * 1539 * Returns 0 if successful, error code otherwise 1540 */ 1541 static int pxa_udc_wakeup(struct usb_gadget *_gadget) 1542 { 1543 struct pxa_udc *udc = to_gadget_udc(_gadget); 1544 1545 /* host may not have enabled remote wakeup */ 1546 if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0) 1547 return -EHOSTUNREACH; 1548 udc_set_mask_UDCCR(udc, UDCCR_UDR); 1549 return 0; 1550 } 1551 1552 static void udc_enable(struct pxa_udc *udc); 1553 static void udc_disable(struct pxa_udc *udc); 1554 1555 /** 1556 * should_enable_udc - Tells if UDC should be enabled 1557 * @udc: udc device 1558 * Context: any 1559 * 1560 * The UDC should be enabled if : 1561 1562 * - the pullup resistor is connected 1563 * - and a gadget driver is bound 1564 * - and vbus is sensed (or no vbus sense is available) 1565 * 1566 * Returns 1 if UDC should be enabled, 0 otherwise 1567 */ 1568 static int should_enable_udc(struct pxa_udc *udc) 1569 { 1570 int put_on; 1571 1572 put_on = ((udc->pullup_on) && (udc->driver)); 1573 put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver))); 1574 return put_on; 1575 } 1576 1577 /** 1578 * should_disable_udc - Tells if UDC should be disabled 1579 * @udc: udc device 1580 * Context: any 1581 * 1582 * The UDC should be disabled if : 1583 * - the pullup resistor is not connected 1584 * - or no gadget driver is bound 1585 * - or no vbus is sensed (when vbus sesing is available) 1586 * 1587 * Returns 1 if UDC should be disabled 1588 */ 1589 static int should_disable_udc(struct pxa_udc *udc) 1590 { 1591 int put_off; 1592 1593 put_off = ((!udc->pullup_on) || (!udc->driver)); 1594 put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver))); 1595 return put_off; 1596 } 1597 1598 /** 1599 * pxa_udc_pullup - Offer manual D+ pullup control 1600 * @_gadget: usb gadget using the control 1601 * @is_active: 0 if disconnect, else connect D+ pullup resistor 1602 * Context: !in_interrupt() 1603 * 1604 * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup 1605 */ 1606 static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active) 1607 { 1608 struct pxa_udc *udc = to_gadget_udc(_gadget); 1609 1610 if (!udc->gpiod && !udc->udc_command) 1611 return -EOPNOTSUPP; 1612 1613 dplus_pullup(udc, is_active); 1614 1615 if (should_enable_udc(udc)) 1616 udc_enable(udc); 1617 if (should_disable_udc(udc)) 1618 udc_disable(udc); 1619 return 0; 1620 } 1621 1622 static void udc_enable(struct pxa_udc *udc); 1623 static void udc_disable(struct pxa_udc *udc); 1624 1625 /** 1626 * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc 1627 * @_gadget: usb gadget 1628 * @is_active: 0 if should disable the udc, 1 if should enable 1629 * 1630 * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the 1631 * udc, and deactivates D+ pullup resistor. 1632 * 1633 * Returns 0 1634 */ 1635 static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active) 1636 { 1637 struct pxa_udc *udc = to_gadget_udc(_gadget); 1638 1639 udc->vbus_sensed = is_active; 1640 if (should_enable_udc(udc)) 1641 udc_enable(udc); 1642 if (should_disable_udc(udc)) 1643 udc_disable(udc); 1644 1645 return 0; 1646 } 1647 1648 /** 1649 * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed 1650 * @_gadget: usb gadget 1651 * @mA: current drawn 1652 * 1653 * Context: !in_interrupt() 1654 * 1655 * Called after a configuration was chosen by a USB host, to inform how much 1656 * current can be drawn by the device from VBus line. 1657 * 1658 * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc 1659 */ 1660 static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA) 1661 { 1662 struct pxa_udc *udc; 1663 1664 udc = to_gadget_udc(_gadget); 1665 if (!IS_ERR_OR_NULL(udc->transceiver)) 1666 return usb_phy_set_power(udc->transceiver, mA); 1667 return -EOPNOTSUPP; 1668 } 1669 1670 static int pxa27x_udc_start(struct usb_gadget *g, 1671 struct usb_gadget_driver *driver); 1672 static int pxa27x_udc_stop(struct usb_gadget *g); 1673 1674 static const struct usb_gadget_ops pxa_udc_ops = { 1675 .get_frame = pxa_udc_get_frame, 1676 .wakeup = pxa_udc_wakeup, 1677 .pullup = pxa_udc_pullup, 1678 .vbus_session = pxa_udc_vbus_session, 1679 .vbus_draw = pxa_udc_vbus_draw, 1680 .udc_start = pxa27x_udc_start, 1681 .udc_stop = pxa27x_udc_stop, 1682 }; 1683 1684 /** 1685 * udc_disable - disable udc device controller 1686 * @udc: udc device 1687 * Context: any 1688 * 1689 * Disables the udc device : disables clocks, udc interrupts, control endpoint 1690 * interrupts. 1691 */ 1692 static void udc_disable(struct pxa_udc *udc) 1693 { 1694 if (!udc->enabled) 1695 return; 1696 1697 udc_writel(udc, UDCICR0, 0); 1698 udc_writel(udc, UDCICR1, 0); 1699 1700 udc_clear_mask_UDCCR(udc, UDCCR_UDE); 1701 1702 ep0_idle(udc); 1703 udc->gadget.speed = USB_SPEED_UNKNOWN; 1704 clk_disable(udc->clk); 1705 1706 udc->enabled = 0; 1707 } 1708 1709 /** 1710 * udc_init_data - Initialize udc device data structures 1711 * @dev: udc device 1712 * 1713 * Initializes gadget endpoint list, endpoints locks. No action is taken 1714 * on the hardware. 1715 */ 1716 static void udc_init_data(struct pxa_udc *dev) 1717 { 1718 int i; 1719 struct pxa_ep *ep; 1720 1721 /* device/ep0 records init */ 1722 INIT_LIST_HEAD(&dev->gadget.ep_list); 1723 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list); 1724 dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0]; 1725 ep0_idle(dev); 1726 1727 /* PXA endpoints init */ 1728 for (i = 0; i < NR_PXA_ENDPOINTS; i++) { 1729 ep = &dev->pxa_ep[i]; 1730 1731 ep->enabled = is_ep0(ep); 1732 INIT_LIST_HEAD(&ep->queue); 1733 spin_lock_init(&ep->lock); 1734 } 1735 1736 /* USB endpoints init */ 1737 for (i = 1; i < NR_USB_ENDPOINTS; i++) { 1738 list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list, 1739 &dev->gadget.ep_list); 1740 usb_ep_set_maxpacket_limit(&dev->udc_usb_ep[i].usb_ep, 1741 dev->udc_usb_ep[i].usb_ep.maxpacket); 1742 } 1743 } 1744 1745 /** 1746 * udc_enable - Enables the udc device 1747 * @dev: udc device 1748 * 1749 * Enables the udc device : enables clocks, udc interrupts, control endpoint 1750 * interrupts, sets usb as UDC client and setups endpoints. 1751 */ 1752 static void udc_enable(struct pxa_udc *udc) 1753 { 1754 if (udc->enabled) 1755 return; 1756 1757 clk_enable(udc->clk); 1758 udc_writel(udc, UDCICR0, 0); 1759 udc_writel(udc, UDCICR1, 0); 1760 udc_clear_mask_UDCCR(udc, UDCCR_UDE); 1761 1762 ep0_idle(udc); 1763 udc->gadget.speed = USB_SPEED_FULL; 1764 memset(&udc->stats, 0, sizeof(udc->stats)); 1765 1766 pxa_eps_setup(udc); 1767 udc_set_mask_UDCCR(udc, UDCCR_UDE); 1768 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM); 1769 udelay(2); 1770 if (udc_readl(udc, UDCCR) & UDCCR_EMCE) 1771 dev_err(udc->dev, "Configuration errors, udc disabled\n"); 1772 1773 /* 1774 * Caller must be able to sleep in order to cope with startup transients 1775 */ 1776 msleep(100); 1777 1778 /* enable suspend/resume and reset irqs */ 1779 udc_writel(udc, UDCICR1, 1780 UDCICR1_IECC | UDCICR1_IERU 1781 | UDCICR1_IESU | UDCICR1_IERS); 1782 1783 /* enable ep0 irqs */ 1784 pio_irq_enable(&udc->pxa_ep[0]); 1785 1786 udc->enabled = 1; 1787 } 1788 1789 /** 1790 * pxa27x_start - Register gadget driver 1791 * @driver: gadget driver 1792 * @bind: bind function 1793 * 1794 * When a driver is successfully registered, it will receive control requests 1795 * including set_configuration(), which enables non-control requests. Then 1796 * usb traffic follows until a disconnect is reported. Then a host may connect 1797 * again, or the driver might get unbound. 1798 * 1799 * Note that the udc is not automatically enabled. Check function 1800 * should_enable_udc(). 1801 * 1802 * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise 1803 */ 1804 static int pxa27x_udc_start(struct usb_gadget *g, 1805 struct usb_gadget_driver *driver) 1806 { 1807 struct pxa_udc *udc = to_pxa(g); 1808 int retval; 1809 1810 /* first hook up the driver ... */ 1811 udc->driver = driver; 1812 dplus_pullup(udc, 1); 1813 1814 if (!IS_ERR_OR_NULL(udc->transceiver)) { 1815 retval = otg_set_peripheral(udc->transceiver->otg, 1816 &udc->gadget); 1817 if (retval) { 1818 dev_err(udc->dev, "can't bind to transceiver\n"); 1819 goto fail; 1820 } 1821 } 1822 1823 if (should_enable_udc(udc)) 1824 udc_enable(udc); 1825 return 0; 1826 1827 fail: 1828 udc->driver = NULL; 1829 return retval; 1830 } 1831 1832 /** 1833 * stop_activity - Stops udc endpoints 1834 * @udc: udc device 1835 * @driver: gadget driver 1836 * 1837 * Disables all udc endpoints (even control endpoint), report disconnect to 1838 * the gadget user. 1839 */ 1840 static void stop_activity(struct pxa_udc *udc, struct usb_gadget_driver *driver) 1841 { 1842 int i; 1843 1844 /* don't disconnect drivers more than once */ 1845 if (udc->gadget.speed == USB_SPEED_UNKNOWN) 1846 driver = NULL; 1847 udc->gadget.speed = USB_SPEED_UNKNOWN; 1848 1849 for (i = 0; i < NR_USB_ENDPOINTS; i++) 1850 pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep); 1851 } 1852 1853 /** 1854 * pxa27x_udc_stop - Unregister the gadget driver 1855 * @driver: gadget driver 1856 * 1857 * Returns 0 if no error, -ENODEV, -EINVAL otherwise 1858 */ 1859 static int pxa27x_udc_stop(struct usb_gadget *g) 1860 { 1861 struct pxa_udc *udc = to_pxa(g); 1862 1863 stop_activity(udc, NULL); 1864 udc_disable(udc); 1865 dplus_pullup(udc, 0); 1866 1867 udc->driver = NULL; 1868 1869 if (!IS_ERR_OR_NULL(udc->transceiver)) 1870 return otg_set_peripheral(udc->transceiver->otg, NULL); 1871 return 0; 1872 } 1873 1874 /** 1875 * handle_ep0_ctrl_req - handle control endpoint control request 1876 * @udc: udc device 1877 * @req: control request 1878 */ 1879 static void handle_ep0_ctrl_req(struct pxa_udc *udc, 1880 struct pxa27x_request *req) 1881 { 1882 struct pxa_ep *ep = &udc->pxa_ep[0]; 1883 union { 1884 struct usb_ctrlrequest r; 1885 u32 word[2]; 1886 } u; 1887 int i; 1888 int have_extrabytes = 0; 1889 unsigned long flags; 1890 1891 nuke(ep, -EPROTO); 1892 spin_lock_irqsave(&ep->lock, flags); 1893 1894 /* 1895 * In the PXA320 manual, in the section about Back-to-Back setup 1896 * packets, it describes this situation. The solution is to set OPC to 1897 * get rid of the status packet, and then continue with the setup 1898 * packet. Generalize to pxa27x CPUs. 1899 */ 1900 if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0)) 1901 ep_write_UDCCSR(ep, UDCCSR0_OPC); 1902 1903 /* read SETUP packet */ 1904 for (i = 0; i < 2; i++) { 1905 if (unlikely(ep_is_empty(ep))) 1906 goto stall; 1907 u.word[i] = udc_ep_readl(ep, UDCDR); 1908 } 1909 1910 have_extrabytes = !ep_is_empty(ep); 1911 while (!ep_is_empty(ep)) { 1912 i = udc_ep_readl(ep, UDCDR); 1913 ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i); 1914 } 1915 1916 ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n", 1917 u.r.bRequestType, u.r.bRequest, 1918 le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex), 1919 le16_to_cpu(u.r.wLength)); 1920 if (unlikely(have_extrabytes)) 1921 goto stall; 1922 1923 if (u.r.bRequestType & USB_DIR_IN) 1924 set_ep0state(udc, IN_DATA_STAGE); 1925 else 1926 set_ep0state(udc, OUT_DATA_STAGE); 1927 1928 /* Tell UDC to enter Data Stage */ 1929 ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC); 1930 1931 spin_unlock_irqrestore(&ep->lock, flags); 1932 i = udc->driver->setup(&udc->gadget, &u.r); 1933 spin_lock_irqsave(&ep->lock, flags); 1934 if (i < 0) 1935 goto stall; 1936 out: 1937 spin_unlock_irqrestore(&ep->lock, flags); 1938 return; 1939 stall: 1940 ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n", 1941 udc_ep_readl(ep, UDCCSR), i); 1942 ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF); 1943 set_ep0state(udc, STALL); 1944 goto out; 1945 } 1946 1947 /** 1948 * handle_ep0 - Handle control endpoint data transfers 1949 * @udc: udc device 1950 * @fifo_irq: 1 if triggered by fifo service type irq 1951 * @opc_irq: 1 if triggered by output packet complete type irq 1952 * 1953 * Context : when in_interrupt() or with ep->lock held 1954 * 1955 * Tries to transfer all pending request data into the endpoint and/or 1956 * transfer all pending data in the endpoint into usb requests. 1957 * Handles states of ep0 automata. 1958 * 1959 * PXA27x hardware handles several standard usb control requests without 1960 * driver notification. The requests fully handled by hardware are : 1961 * SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE, 1962 * GET_STATUS 1963 * The requests handled by hardware, but with irq notification are : 1964 * SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE 1965 * The remaining standard requests really handled by handle_ep0 are : 1966 * GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests. 1967 * Requests standardized outside of USB 2.0 chapter 9 are handled more 1968 * uniformly, by gadget drivers. 1969 * 1970 * The control endpoint state machine is _not_ USB spec compliant, it's even 1971 * hardly compliant with Intel PXA270 developers guide. 1972 * The key points which inferred this state machine are : 1973 * - on every setup token, bit UDCCSR0_SA is raised and held until cleared by 1974 * software. 1975 * - on every OUT packet received, UDCCSR0_OPC is raised and held until 1976 * cleared by software. 1977 * - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it 1978 * before reading ep0. 1979 * This is true only for PXA27x. This is not true anymore for PXA3xx family 1980 * (check Back-to-Back setup packet in developers guide). 1981 * - irq can be called on a "packet complete" event (opc_irq=1), while 1982 * UDCCSR0_OPC is not yet raised (delta can be as big as 100ms 1983 * from experimentation). 1984 * - as UDCCSR0_SA can be activated while in irq handling, and clearing 1985 * UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC 1986 * => we never actually read the "status stage" packet of an IN data stage 1987 * => this is not documented in Intel documentation 1988 * - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA 1989 * STAGE. The driver add STATUS STAGE to send last zero length packet in 1990 * OUT_STATUS_STAGE. 1991 * - special attention was needed for IN_STATUS_STAGE. If a packet complete 1992 * event is detected, we terminate the status stage without ackowledging the 1993 * packet (not to risk to loose a potential SETUP packet) 1994 */ 1995 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq) 1996 { 1997 u32 udccsr0; 1998 struct pxa_ep *ep = &udc->pxa_ep[0]; 1999 struct pxa27x_request *req = NULL; 2000 int completed = 0; 2001 2002 if (!list_empty(&ep->queue)) 2003 req = list_entry(ep->queue.next, struct pxa27x_request, queue); 2004 2005 udccsr0 = udc_ep_readl(ep, UDCCSR); 2006 ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n", 2007 EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR), 2008 (fifo_irq << 1 | opc_irq)); 2009 2010 if (udccsr0 & UDCCSR0_SST) { 2011 ep_dbg(ep, "clearing stall status\n"); 2012 nuke(ep, -EPIPE); 2013 ep_write_UDCCSR(ep, UDCCSR0_SST); 2014 ep0_idle(udc); 2015 } 2016 2017 if (udccsr0 & UDCCSR0_SA) { 2018 nuke(ep, 0); 2019 set_ep0state(udc, SETUP_STAGE); 2020 } 2021 2022 switch (udc->ep0state) { 2023 case WAIT_FOR_SETUP: 2024 /* 2025 * Hardware bug : beware, we cannot clear OPC, since we would 2026 * miss a potential OPC irq for a setup packet. 2027 * So, we only do ... nothing, and hope for a next irq with 2028 * UDCCSR0_SA set. 2029 */ 2030 break; 2031 case SETUP_STAGE: 2032 udccsr0 &= UDCCSR0_CTRL_REQ_MASK; 2033 if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK)) 2034 handle_ep0_ctrl_req(udc, req); 2035 break; 2036 case IN_DATA_STAGE: /* GET_DESCRIPTOR */ 2037 if (epout_has_pkt(ep)) 2038 ep_write_UDCCSR(ep, UDCCSR0_OPC); 2039 if (req && !ep_is_full(ep)) 2040 completed = write_ep0_fifo(ep, req); 2041 if (completed) 2042 ep0_end_in_req(ep, req, NULL); 2043 break; 2044 case OUT_DATA_STAGE: /* SET_DESCRIPTOR */ 2045 if (epout_has_pkt(ep) && req) 2046 completed = read_ep0_fifo(ep, req); 2047 if (completed) 2048 ep0_end_out_req(ep, req, NULL); 2049 break; 2050 case STALL: 2051 ep_write_UDCCSR(ep, UDCCSR0_FST); 2052 break; 2053 case IN_STATUS_STAGE: 2054 /* 2055 * Hardware bug : beware, we cannot clear OPC, since we would 2056 * miss a potential PC irq for a setup packet. 2057 * So, we only put the ep0 into WAIT_FOR_SETUP state. 2058 */ 2059 if (opc_irq) 2060 ep0_idle(udc); 2061 break; 2062 case OUT_STATUS_STAGE: 2063 case WAIT_ACK_SET_CONF_INTERF: 2064 ep_warn(ep, "should never get in %s state here!!!\n", 2065 EP0_STNAME(ep->dev)); 2066 ep0_idle(udc); 2067 break; 2068 } 2069 } 2070 2071 /** 2072 * handle_ep - Handle endpoint data tranfers 2073 * @ep: pxa physical endpoint 2074 * 2075 * Tries to transfer all pending request data into the endpoint and/or 2076 * transfer all pending data in the endpoint into usb requests. 2077 * 2078 * Is always called when in_interrupt() and with ep->lock released. 2079 */ 2080 static void handle_ep(struct pxa_ep *ep) 2081 { 2082 struct pxa27x_request *req; 2083 int completed; 2084 u32 udccsr; 2085 int is_in = ep->dir_in; 2086 int loop = 0; 2087 unsigned long flags; 2088 2089 spin_lock_irqsave(&ep->lock, flags); 2090 if (ep->in_handle_ep) 2091 goto recursion_detected; 2092 ep->in_handle_ep = 1; 2093 2094 do { 2095 completed = 0; 2096 udccsr = udc_ep_readl(ep, UDCCSR); 2097 2098 if (likely(!list_empty(&ep->queue))) 2099 req = list_entry(ep->queue.next, 2100 struct pxa27x_request, queue); 2101 else 2102 req = NULL; 2103 2104 ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n", 2105 req, udccsr, loop++); 2106 2107 if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN))) 2108 udc_ep_writel(ep, UDCCSR, 2109 udccsr & (UDCCSR_SST | UDCCSR_TRN)); 2110 if (!req) 2111 break; 2112 2113 if (unlikely(is_in)) { 2114 if (likely(!ep_is_full(ep))) 2115 completed = write_fifo(ep, req); 2116 } else { 2117 if (likely(epout_has_pkt(ep))) 2118 completed = read_fifo(ep, req); 2119 } 2120 2121 if (completed) { 2122 if (is_in) 2123 ep_end_in_req(ep, req, &flags); 2124 else 2125 ep_end_out_req(ep, req, &flags); 2126 } 2127 } while (completed); 2128 2129 ep->in_handle_ep = 0; 2130 recursion_detected: 2131 spin_unlock_irqrestore(&ep->lock, flags); 2132 } 2133 2134 /** 2135 * pxa27x_change_configuration - Handle SET_CONF usb request notification 2136 * @udc: udc device 2137 * @config: usb configuration 2138 * 2139 * Post the request to upper level. 2140 * Don't use any pxa specific harware configuration capabilities 2141 */ 2142 static void pxa27x_change_configuration(struct pxa_udc *udc, int config) 2143 { 2144 struct usb_ctrlrequest req ; 2145 2146 dev_dbg(udc->dev, "config=%d\n", config); 2147 2148 udc->config = config; 2149 udc->last_interface = 0; 2150 udc->last_alternate = 0; 2151 2152 req.bRequestType = 0; 2153 req.bRequest = USB_REQ_SET_CONFIGURATION; 2154 req.wValue = config; 2155 req.wIndex = 0; 2156 req.wLength = 0; 2157 2158 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF); 2159 udc->driver->setup(&udc->gadget, &req); 2160 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN); 2161 } 2162 2163 /** 2164 * pxa27x_change_interface - Handle SET_INTERF usb request notification 2165 * @udc: udc device 2166 * @iface: interface number 2167 * @alt: alternate setting number 2168 * 2169 * Post the request to upper level. 2170 * Don't use any pxa specific harware configuration capabilities 2171 */ 2172 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt) 2173 { 2174 struct usb_ctrlrequest req; 2175 2176 dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt); 2177 2178 udc->last_interface = iface; 2179 udc->last_alternate = alt; 2180 2181 req.bRequestType = USB_RECIP_INTERFACE; 2182 req.bRequest = USB_REQ_SET_INTERFACE; 2183 req.wValue = alt; 2184 req.wIndex = iface; 2185 req.wLength = 0; 2186 2187 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF); 2188 udc->driver->setup(&udc->gadget, &req); 2189 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN); 2190 } 2191 2192 /* 2193 * irq_handle_data - Handle data transfer 2194 * @irq: irq IRQ number 2195 * @udc: dev pxa_udc device structure 2196 * 2197 * Called from irq handler, transferts data to or from endpoint to queue 2198 */ 2199 static void irq_handle_data(int irq, struct pxa_udc *udc) 2200 { 2201 int i; 2202 struct pxa_ep *ep; 2203 u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK; 2204 u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK; 2205 2206 if (udcisr0 & UDCISR_INT_MASK) { 2207 udc->pxa_ep[0].stats.irqs++; 2208 udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK)); 2209 handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR), 2210 !!(udcisr0 & UDCICR_PKTCOMPL)); 2211 } 2212 2213 udcisr0 >>= 2; 2214 for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) { 2215 if (!(udcisr0 & UDCISR_INT_MASK)) 2216 continue; 2217 2218 udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK)); 2219 2220 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep)); 2221 if (i < ARRAY_SIZE(udc->pxa_ep)) { 2222 ep = &udc->pxa_ep[i]; 2223 ep->stats.irqs++; 2224 handle_ep(ep); 2225 } 2226 } 2227 2228 for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) { 2229 udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK)); 2230 if (!(udcisr1 & UDCISR_INT_MASK)) 2231 continue; 2232 2233 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep)); 2234 if (i < ARRAY_SIZE(udc->pxa_ep)) { 2235 ep = &udc->pxa_ep[i]; 2236 ep->stats.irqs++; 2237 handle_ep(ep); 2238 } 2239 } 2240 2241 } 2242 2243 /** 2244 * irq_udc_suspend - Handle IRQ "UDC Suspend" 2245 * @udc: udc device 2246 */ 2247 static void irq_udc_suspend(struct pxa_udc *udc) 2248 { 2249 udc_writel(udc, UDCISR1, UDCISR1_IRSU); 2250 udc->stats.irqs_suspend++; 2251 2252 if (udc->gadget.speed != USB_SPEED_UNKNOWN 2253 && udc->driver && udc->driver->suspend) 2254 udc->driver->suspend(&udc->gadget); 2255 ep0_idle(udc); 2256 } 2257 2258 /** 2259 * irq_udc_resume - Handle IRQ "UDC Resume" 2260 * @udc: udc device 2261 */ 2262 static void irq_udc_resume(struct pxa_udc *udc) 2263 { 2264 udc_writel(udc, UDCISR1, UDCISR1_IRRU); 2265 udc->stats.irqs_resume++; 2266 2267 if (udc->gadget.speed != USB_SPEED_UNKNOWN 2268 && udc->driver && udc->driver->resume) 2269 udc->driver->resume(&udc->gadget); 2270 } 2271 2272 /** 2273 * irq_udc_reconfig - Handle IRQ "UDC Change Configuration" 2274 * @udc: udc device 2275 */ 2276 static void irq_udc_reconfig(struct pxa_udc *udc) 2277 { 2278 unsigned config, interface, alternate, config_change; 2279 u32 udccr = udc_readl(udc, UDCCR); 2280 2281 udc_writel(udc, UDCISR1, UDCISR1_IRCC); 2282 udc->stats.irqs_reconfig++; 2283 2284 config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S; 2285 config_change = (config != udc->config); 2286 pxa27x_change_configuration(udc, config); 2287 2288 interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S; 2289 alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S; 2290 pxa27x_change_interface(udc, interface, alternate); 2291 2292 if (config_change) 2293 update_pxa_ep_matches(udc); 2294 udc_set_mask_UDCCR(udc, UDCCR_SMAC); 2295 } 2296 2297 /** 2298 * irq_udc_reset - Handle IRQ "UDC Reset" 2299 * @udc: udc device 2300 */ 2301 static void irq_udc_reset(struct pxa_udc *udc) 2302 { 2303 u32 udccr = udc_readl(udc, UDCCR); 2304 struct pxa_ep *ep = &udc->pxa_ep[0]; 2305 2306 dev_info(udc->dev, "USB reset\n"); 2307 udc_writel(udc, UDCISR1, UDCISR1_IRRS); 2308 udc->stats.irqs_reset++; 2309 2310 if ((udccr & UDCCR_UDA) == 0) { 2311 dev_dbg(udc->dev, "USB reset start\n"); 2312 stop_activity(udc, udc->driver); 2313 } 2314 udc->gadget.speed = USB_SPEED_FULL; 2315 memset(&udc->stats, 0, sizeof udc->stats); 2316 2317 nuke(ep, -EPROTO); 2318 ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC); 2319 ep0_idle(udc); 2320 } 2321 2322 /** 2323 * pxa_udc_irq - Main irq handler 2324 * @irq: irq number 2325 * @_dev: udc device 2326 * 2327 * Handles all udc interrupts 2328 */ 2329 static irqreturn_t pxa_udc_irq(int irq, void *_dev) 2330 { 2331 struct pxa_udc *udc = _dev; 2332 u32 udcisr0 = udc_readl(udc, UDCISR0); 2333 u32 udcisr1 = udc_readl(udc, UDCISR1); 2334 u32 udccr = udc_readl(udc, UDCCR); 2335 u32 udcisr1_spec; 2336 2337 dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, " 2338 "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr); 2339 2340 udcisr1_spec = udcisr1 & 0xf8000000; 2341 if (unlikely(udcisr1_spec & UDCISR1_IRSU)) 2342 irq_udc_suspend(udc); 2343 if (unlikely(udcisr1_spec & UDCISR1_IRRU)) 2344 irq_udc_resume(udc); 2345 if (unlikely(udcisr1_spec & UDCISR1_IRCC)) 2346 irq_udc_reconfig(udc); 2347 if (unlikely(udcisr1_spec & UDCISR1_IRRS)) 2348 irq_udc_reset(udc); 2349 2350 if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK)) 2351 irq_handle_data(irq, udc); 2352 2353 return IRQ_HANDLED; 2354 } 2355 2356 static struct pxa_udc memory = { 2357 .gadget = { 2358 .ops = &pxa_udc_ops, 2359 .ep0 = &memory.udc_usb_ep[0].usb_ep, 2360 .name = driver_name, 2361 .dev = { 2362 .init_name = "gadget", 2363 }, 2364 }, 2365 2366 .udc_usb_ep = { 2367 USB_EP_CTRL, 2368 USB_EP_OUT_BULK(1), 2369 USB_EP_IN_BULK(2), 2370 USB_EP_IN_ISO(3), 2371 USB_EP_OUT_ISO(4), 2372 USB_EP_IN_INT(5), 2373 }, 2374 2375 .pxa_ep = { 2376 PXA_EP_CTRL, 2377 /* Endpoints for gadget zero */ 2378 PXA_EP_OUT_BULK(1, 1, 3, 0, 0), 2379 PXA_EP_IN_BULK(2, 2, 3, 0, 0), 2380 /* Endpoints for ether gadget, file storage gadget */ 2381 PXA_EP_OUT_BULK(3, 1, 1, 0, 0), 2382 PXA_EP_IN_BULK(4, 2, 1, 0, 0), 2383 PXA_EP_IN_ISO(5, 3, 1, 0, 0), 2384 PXA_EP_OUT_ISO(6, 4, 1, 0, 0), 2385 PXA_EP_IN_INT(7, 5, 1, 0, 0), 2386 /* Endpoints for RNDIS, serial */ 2387 PXA_EP_OUT_BULK(8, 1, 2, 0, 0), 2388 PXA_EP_IN_BULK(9, 2, 2, 0, 0), 2389 PXA_EP_IN_INT(10, 5, 2, 0, 0), 2390 /* 2391 * All the following endpoints are only for completion. They 2392 * won't never work, as multiple interfaces are really broken on 2393 * the pxa. 2394 */ 2395 PXA_EP_OUT_BULK(11, 1, 2, 1, 0), 2396 PXA_EP_IN_BULK(12, 2, 2, 1, 0), 2397 /* Endpoint for CDC Ether */ 2398 PXA_EP_OUT_BULK(13, 1, 1, 1, 1), 2399 PXA_EP_IN_BULK(14, 2, 1, 1, 1), 2400 } 2401 }; 2402 2403 #if defined(CONFIG_OF) 2404 static struct of_device_id udc_pxa_dt_ids[] = { 2405 { .compatible = "marvell,pxa270-udc" }, 2406 {} 2407 }; 2408 MODULE_DEVICE_TABLE(of, udc_pxa_dt_ids); 2409 #endif 2410 2411 /** 2412 * pxa_udc_probe - probes the udc device 2413 * @_dev: platform device 2414 * 2415 * Perform basic init : allocates udc clock, creates sysfs files, requests 2416 * irq. 2417 */ 2418 static int pxa_udc_probe(struct platform_device *pdev) 2419 { 2420 struct resource *regs; 2421 struct pxa_udc *udc = &memory; 2422 int retval = 0, gpio; 2423 struct pxa2xx_udc_mach_info *mach = dev_get_platdata(&pdev->dev); 2424 unsigned long gpio_flags; 2425 2426 if (mach) { 2427 gpio_flags = mach->gpio_pullup_inverted ? GPIOF_ACTIVE_LOW : 0; 2428 gpio = mach->gpio_pullup; 2429 if (gpio_is_valid(gpio)) { 2430 retval = devm_gpio_request_one(&pdev->dev, gpio, 2431 gpio_flags, 2432 "USB D+ pullup"); 2433 if (retval) 2434 return retval; 2435 udc->gpiod = gpio_to_desc(mach->gpio_pullup); 2436 } 2437 udc->udc_command = mach->udc_command; 2438 } else { 2439 udc->gpiod = devm_gpiod_get(&pdev->dev, NULL); 2440 } 2441 2442 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2443 udc->regs = devm_ioremap_resource(&pdev->dev, regs); 2444 if (IS_ERR(udc->regs)) 2445 return PTR_ERR(udc->regs); 2446 udc->irq = platform_get_irq(pdev, 0); 2447 if (udc->irq < 0) 2448 return udc->irq; 2449 2450 udc->dev = &pdev->dev; 2451 udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2); 2452 2453 if (IS_ERR(udc->gpiod)) { 2454 dev_err(&pdev->dev, "Couldn't find or request D+ gpio : %ld\n", 2455 PTR_ERR(udc->gpiod)); 2456 return PTR_ERR(udc->gpiod); 2457 } 2458 if (udc->gpiod) 2459 gpiod_direction_output(udc->gpiod, 0); 2460 2461 udc->clk = devm_clk_get(&pdev->dev, NULL); 2462 if (IS_ERR(udc->clk)) 2463 return PTR_ERR(udc->clk); 2464 2465 retval = clk_prepare(udc->clk); 2466 if (retval) 2467 return retval; 2468 2469 udc->vbus_sensed = 0; 2470 2471 the_controller = udc; 2472 platform_set_drvdata(pdev, udc); 2473 udc_init_data(udc); 2474 2475 /* irq setup after old hardware state is cleaned up */ 2476 retval = devm_request_irq(&pdev->dev, udc->irq, pxa_udc_irq, 2477 IRQF_SHARED, driver_name, udc); 2478 if (retval != 0) { 2479 dev_err(udc->dev, "%s: can't get irq %i, err %d\n", 2480 driver_name, udc->irq, retval); 2481 goto err; 2482 } 2483 2484 retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget); 2485 if (retval) 2486 goto err; 2487 2488 pxa_init_debugfs(udc); 2489 if (should_enable_udc(udc)) 2490 udc_enable(udc); 2491 return 0; 2492 err: 2493 clk_unprepare(udc->clk); 2494 return retval; 2495 } 2496 2497 /** 2498 * pxa_udc_remove - removes the udc device driver 2499 * @_dev: platform device 2500 */ 2501 static int pxa_udc_remove(struct platform_device *_dev) 2502 { 2503 struct pxa_udc *udc = platform_get_drvdata(_dev); 2504 2505 usb_del_gadget_udc(&udc->gadget); 2506 pxa_cleanup_debugfs(udc); 2507 2508 usb_put_phy(udc->transceiver); 2509 2510 udc->transceiver = NULL; 2511 the_controller = NULL; 2512 clk_unprepare(udc->clk); 2513 2514 return 0; 2515 } 2516 2517 static void pxa_udc_shutdown(struct platform_device *_dev) 2518 { 2519 struct pxa_udc *udc = platform_get_drvdata(_dev); 2520 2521 if (udc_readl(udc, UDCCR) & UDCCR_UDE) 2522 udc_disable(udc); 2523 } 2524 2525 #ifdef CONFIG_PXA27x 2526 extern void pxa27x_clear_otgph(void); 2527 #else 2528 #define pxa27x_clear_otgph() do {} while (0) 2529 #endif 2530 2531 #ifdef CONFIG_PM 2532 /** 2533 * pxa_udc_suspend - Suspend udc device 2534 * @_dev: platform device 2535 * @state: suspend state 2536 * 2537 * Suspends udc : saves configuration registers (UDCCR*), then disables the udc 2538 * device. 2539 */ 2540 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state) 2541 { 2542 struct pxa_udc *udc = platform_get_drvdata(_dev); 2543 struct pxa_ep *ep; 2544 2545 ep = &udc->pxa_ep[0]; 2546 udc->udccsr0 = udc_ep_readl(ep, UDCCSR); 2547 2548 udc_disable(udc); 2549 udc->pullup_resume = udc->pullup_on; 2550 dplus_pullup(udc, 0); 2551 2552 return 0; 2553 } 2554 2555 /** 2556 * pxa_udc_resume - Resume udc device 2557 * @_dev: platform device 2558 * 2559 * Resumes udc : restores configuration registers (UDCCR*), then enables the udc 2560 * device. 2561 */ 2562 static int pxa_udc_resume(struct platform_device *_dev) 2563 { 2564 struct pxa_udc *udc = platform_get_drvdata(_dev); 2565 struct pxa_ep *ep; 2566 2567 ep = &udc->pxa_ep[0]; 2568 udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME)); 2569 2570 dplus_pullup(udc, udc->pullup_resume); 2571 if (should_enable_udc(udc)) 2572 udc_enable(udc); 2573 /* 2574 * We do not handle OTG yet. 2575 * 2576 * OTGPH bit is set when sleep mode is entered. 2577 * it indicates that OTG pad is retaining its state. 2578 * Upon exit from sleep mode and before clearing OTGPH, 2579 * Software must configure the USB OTG pad, UDC, and UHC 2580 * to the state they were in before entering sleep mode. 2581 */ 2582 pxa27x_clear_otgph(); 2583 2584 return 0; 2585 } 2586 #endif 2587 2588 /* work with hotplug and coldplug */ 2589 MODULE_ALIAS("platform:pxa27x-udc"); 2590 2591 static struct platform_driver udc_driver = { 2592 .driver = { 2593 .name = "pxa27x-udc", 2594 .of_match_table = of_match_ptr(udc_pxa_dt_ids), 2595 }, 2596 .probe = pxa_udc_probe, 2597 .remove = pxa_udc_remove, 2598 .shutdown = pxa_udc_shutdown, 2599 #ifdef CONFIG_PM 2600 .suspend = pxa_udc_suspend, 2601 .resume = pxa_udc_resume 2602 #endif 2603 }; 2604 2605 module_platform_driver(udc_driver); 2606 2607 MODULE_DESCRIPTION(DRIVER_DESC); 2608 MODULE_AUTHOR("Robert Jarzmik"); 2609 MODULE_LICENSE("GPL"); 2610