1 /* 2 * Handles the Intel 27x USB Device Controller (UDC) 3 * 4 * Inspired by original driver by Frank Becker, David Brownell, and others. 5 * Copyright (C) 2008 Robert Jarzmik 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 */ 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/types.h> 15 #include <linux/errno.h> 16 #include <linux/err.h> 17 #include <linux/platform_device.h> 18 #include <linux/delay.h> 19 #include <linux/list.h> 20 #include <linux/interrupt.h> 21 #include <linux/proc_fs.h> 22 #include <linux/clk.h> 23 #include <linux/irq.h> 24 #include <linux/gpio.h> 25 #include <linux/gpio/consumer.h> 26 #include <linux/slab.h> 27 #include <linux/prefetch.h> 28 #include <linux/byteorder/generic.h> 29 #include <linux/platform_data/pxa2xx_udc.h> 30 #include <linux/of_device.h> 31 #include <linux/of_gpio.h> 32 33 #include <linux/usb.h> 34 #include <linux/usb/ch9.h> 35 #include <linux/usb/gadget.h> 36 37 #include "pxa27x_udc.h" 38 39 /* 40 * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x 41 * series processors. 42 * 43 * Such controller drivers work with a gadget driver. The gadget driver 44 * returns descriptors, implements configuration and data protocols used 45 * by the host to interact with this device, and allocates endpoints to 46 * the different protocol interfaces. The controller driver virtualizes 47 * usb hardware so that the gadget drivers will be more portable. 48 * 49 * This UDC hardware wants to implement a bit too much USB protocol. The 50 * biggest issues are: that the endpoints have to be set up before the 51 * controller can be enabled (minor, and not uncommon); and each endpoint 52 * can only have one configuration, interface and alternative interface 53 * number (major, and very unusual). Once set up, these cannot be changed 54 * without a controller reset. 55 * 56 * The workaround is to setup all combinations necessary for the gadgets which 57 * will work with this driver. This is done in pxa_udc structure, statically. 58 * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep. 59 * (You could modify this if needed. Some drivers have a "fifo_mode" module 60 * parameter to facilitate such changes.) 61 * 62 * The combinations have been tested with these gadgets : 63 * - zero gadget 64 * - file storage gadget 65 * - ether gadget 66 * 67 * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is 68 * made of UDC's double buffering either. USB "On-The-Go" is not implemented. 69 * 70 * All the requests are handled the same way : 71 * - the drivers tries to handle the request directly to the IO 72 * - if the IO fifo is not big enough, the remaining is send/received in 73 * interrupt handling. 74 */ 75 76 #define DRIVER_VERSION "2008-04-18" 77 #define DRIVER_DESC "PXA 27x USB Device Controller driver" 78 79 static const char driver_name[] = "pxa27x_udc"; 80 static struct pxa_udc *the_controller; 81 82 static void handle_ep(struct pxa_ep *ep); 83 84 /* 85 * Debug filesystem 86 */ 87 #ifdef CONFIG_USB_GADGET_DEBUG_FS 88 89 #include <linux/debugfs.h> 90 #include <linux/uaccess.h> 91 #include <linux/seq_file.h> 92 93 static int state_dbg_show(struct seq_file *s, void *p) 94 { 95 struct pxa_udc *udc = s->private; 96 u32 tmp; 97 98 if (!udc->driver) 99 return -ENODEV; 100 101 /* basic device status */ 102 seq_printf(s, DRIVER_DESC "\n" 103 "%s version: %s\n" 104 "Gadget driver: %s\n", 105 driver_name, DRIVER_VERSION, 106 udc->driver ? udc->driver->driver.name : "(none)"); 107 108 tmp = udc_readl(udc, UDCCR); 109 seq_printf(s, 110 "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), con=%d,inter=%d,altinter=%d\n", 111 tmp, 112 (tmp & UDCCR_OEN) ? " oen":"", 113 (tmp & UDCCR_AALTHNP) ? " aalthnp":"", 114 (tmp & UDCCR_AHNP) ? " rem" : "", 115 (tmp & UDCCR_BHNP) ? " rstir" : "", 116 (tmp & UDCCR_DWRE) ? " dwre" : "", 117 (tmp & UDCCR_SMAC) ? " smac" : "", 118 (tmp & UDCCR_EMCE) ? " emce" : "", 119 (tmp & UDCCR_UDR) ? " udr" : "", 120 (tmp & UDCCR_UDA) ? " uda" : "", 121 (tmp & UDCCR_UDE) ? " ude" : "", 122 (tmp & UDCCR_ACN) >> UDCCR_ACN_S, 123 (tmp & UDCCR_AIN) >> UDCCR_AIN_S, 124 (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S); 125 /* registers for device and ep0 */ 126 seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n", 127 udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1)); 128 seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n", 129 udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1)); 130 seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR)); 131 seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, reconfig=%lu\n", 132 udc->stats.irqs_reset, udc->stats.irqs_suspend, 133 udc->stats.irqs_resume, udc->stats.irqs_reconfig); 134 135 return 0; 136 } 137 138 static int queues_dbg_show(struct seq_file *s, void *p) 139 { 140 struct pxa_udc *udc = s->private; 141 struct pxa_ep *ep; 142 struct pxa27x_request *req; 143 int i, maxpkt; 144 145 if (!udc->driver) 146 return -ENODEV; 147 148 /* dump endpoint queues */ 149 for (i = 0; i < NR_PXA_ENDPOINTS; i++) { 150 ep = &udc->pxa_ep[i]; 151 maxpkt = ep->fifo_size; 152 seq_printf(s, "%-12s max_pkt=%d %s\n", 153 EPNAME(ep), maxpkt, "pio"); 154 155 if (list_empty(&ep->queue)) { 156 seq_puts(s, "\t(nothing queued)\n"); 157 continue; 158 } 159 160 list_for_each_entry(req, &ep->queue, queue) { 161 seq_printf(s, "\treq %p len %d/%d buf %p\n", 162 &req->req, req->req.actual, 163 req->req.length, req->req.buf); 164 } 165 } 166 167 return 0; 168 } 169 170 static int eps_dbg_show(struct seq_file *s, void *p) 171 { 172 struct pxa_udc *udc = s->private; 173 struct pxa_ep *ep; 174 int i; 175 u32 tmp; 176 177 if (!udc->driver) 178 return -ENODEV; 179 180 ep = &udc->pxa_ep[0]; 181 tmp = udc_ep_readl(ep, UDCCSR); 182 seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n", 183 tmp, 184 (tmp & UDCCSR0_SA) ? " sa" : "", 185 (tmp & UDCCSR0_RNE) ? " rne" : "", 186 (tmp & UDCCSR0_FST) ? " fst" : "", 187 (tmp & UDCCSR0_SST) ? " sst" : "", 188 (tmp & UDCCSR0_DME) ? " dme" : "", 189 (tmp & UDCCSR0_IPR) ? " ipr" : "", 190 (tmp & UDCCSR0_OPC) ? " opc" : ""); 191 for (i = 0; i < NR_PXA_ENDPOINTS; i++) { 192 ep = &udc->pxa_ep[i]; 193 tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR); 194 seq_printf(s, "%-12s: IN %lu(%lu reqs), OUT %lu(%lu reqs), irqs=%lu, udccr=0x%08x, udccsr=0x%03x, udcbcr=%d\n", 195 EPNAME(ep), 196 ep->stats.in_bytes, ep->stats.in_ops, 197 ep->stats.out_bytes, ep->stats.out_ops, 198 ep->stats.irqs, 199 tmp, udc_ep_readl(ep, UDCCSR), 200 udc_ep_readl(ep, UDCBCR)); 201 } 202 203 return 0; 204 } 205 206 static int eps_dbg_open(struct inode *inode, struct file *file) 207 { 208 return single_open(file, eps_dbg_show, inode->i_private); 209 } 210 211 static int queues_dbg_open(struct inode *inode, struct file *file) 212 { 213 return single_open(file, queues_dbg_show, inode->i_private); 214 } 215 216 static int state_dbg_open(struct inode *inode, struct file *file) 217 { 218 return single_open(file, state_dbg_show, inode->i_private); 219 } 220 221 static const struct file_operations state_dbg_fops = { 222 .owner = THIS_MODULE, 223 .open = state_dbg_open, 224 .llseek = seq_lseek, 225 .read = seq_read, 226 .release = single_release, 227 }; 228 229 static const struct file_operations queues_dbg_fops = { 230 .owner = THIS_MODULE, 231 .open = queues_dbg_open, 232 .llseek = seq_lseek, 233 .read = seq_read, 234 .release = single_release, 235 }; 236 237 static const struct file_operations eps_dbg_fops = { 238 .owner = THIS_MODULE, 239 .open = eps_dbg_open, 240 .llseek = seq_lseek, 241 .read = seq_read, 242 .release = single_release, 243 }; 244 245 static void pxa_init_debugfs(struct pxa_udc *udc) 246 { 247 struct dentry *root, *state, *queues, *eps; 248 249 root = debugfs_create_dir(udc->gadget.name, NULL); 250 if (IS_ERR(root) || !root) 251 goto err_root; 252 253 state = debugfs_create_file("udcstate", 0400, root, udc, 254 &state_dbg_fops); 255 if (!state) 256 goto err_state; 257 queues = debugfs_create_file("queues", 0400, root, udc, 258 &queues_dbg_fops); 259 if (!queues) 260 goto err_queues; 261 eps = debugfs_create_file("epstate", 0400, root, udc, 262 &eps_dbg_fops); 263 if (!eps) 264 goto err_eps; 265 266 udc->debugfs_root = root; 267 udc->debugfs_state = state; 268 udc->debugfs_queues = queues; 269 udc->debugfs_eps = eps; 270 return; 271 err_eps: 272 debugfs_remove(eps); 273 err_queues: 274 debugfs_remove(queues); 275 err_state: 276 debugfs_remove(root); 277 err_root: 278 dev_err(udc->dev, "debugfs is not available\n"); 279 } 280 281 static void pxa_cleanup_debugfs(struct pxa_udc *udc) 282 { 283 debugfs_remove(udc->debugfs_eps); 284 debugfs_remove(udc->debugfs_queues); 285 debugfs_remove(udc->debugfs_state); 286 debugfs_remove(udc->debugfs_root); 287 udc->debugfs_eps = NULL; 288 udc->debugfs_queues = NULL; 289 udc->debugfs_state = NULL; 290 udc->debugfs_root = NULL; 291 } 292 293 #else 294 static inline void pxa_init_debugfs(struct pxa_udc *udc) 295 { 296 } 297 298 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc) 299 { 300 } 301 #endif 302 303 /** 304 * is_match_usb_pxa - check if usb_ep and pxa_ep match 305 * @udc_usb_ep: usb endpoint 306 * @ep: pxa endpoint 307 * @config: configuration required in pxa_ep 308 * @interface: interface required in pxa_ep 309 * @altsetting: altsetting required in pxa_ep 310 * 311 * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise 312 */ 313 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep, 314 int config, int interface, int altsetting) 315 { 316 if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr) 317 return 0; 318 if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in) 319 return 0; 320 if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type) 321 return 0; 322 if ((ep->config != config) || (ep->interface != interface) 323 || (ep->alternate != altsetting)) 324 return 0; 325 return 1; 326 } 327 328 /** 329 * find_pxa_ep - find pxa_ep structure matching udc_usb_ep 330 * @udc: pxa udc 331 * @udc_usb_ep: udc_usb_ep structure 332 * 333 * Match udc_usb_ep and all pxa_ep available, to see if one matches. 334 * This is necessary because of the strong pxa hardware restriction requiring 335 * that once pxa endpoints are initialized, their configuration is freezed, and 336 * no change can be made to their address, direction, or in which configuration, 337 * interface or altsetting they are active ... which differs from more usual 338 * models which have endpoints be roughly just addressable fifos, and leave 339 * configuration events up to gadget drivers (like all control messages). 340 * 341 * Note that there is still a blurred point here : 342 * - we rely on UDCCR register "active interface" and "active altsetting". 343 * This is a nonsense in regard of USB spec, where multiple interfaces are 344 * active at the same time. 345 * - if we knew for sure that the pxa can handle multiple interface at the 346 * same time, assuming Intel's Developer Guide is wrong, this function 347 * should be reviewed, and a cache of couples (iface, altsetting) should 348 * be kept in the pxa_udc structure. In this case this function would match 349 * against the cache of couples instead of the "last altsetting" set up. 350 * 351 * Returns the matched pxa_ep structure or NULL if none found 352 */ 353 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc, 354 struct udc_usb_ep *udc_usb_ep) 355 { 356 int i; 357 struct pxa_ep *ep; 358 int cfg = udc->config; 359 int iface = udc->last_interface; 360 int alt = udc->last_alternate; 361 362 if (udc_usb_ep == &udc->udc_usb_ep[0]) 363 return &udc->pxa_ep[0]; 364 365 for (i = 1; i < NR_PXA_ENDPOINTS; i++) { 366 ep = &udc->pxa_ep[i]; 367 if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt)) 368 return ep; 369 } 370 return NULL; 371 } 372 373 /** 374 * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep 375 * @udc: pxa udc 376 * 377 * Context: in_interrupt() 378 * 379 * Updates all pxa_ep fields in udc_usb_ep structures, if this field was 380 * previously set up (and is not NULL). The update is necessary is a 381 * configuration change or altsetting change was issued by the USB host. 382 */ 383 static void update_pxa_ep_matches(struct pxa_udc *udc) 384 { 385 int i; 386 struct udc_usb_ep *udc_usb_ep; 387 388 for (i = 1; i < NR_USB_ENDPOINTS; i++) { 389 udc_usb_ep = &udc->udc_usb_ep[i]; 390 if (udc_usb_ep->pxa_ep) 391 udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep); 392 } 393 } 394 395 /** 396 * pio_irq_enable - Enables irq generation for one endpoint 397 * @ep: udc endpoint 398 */ 399 static void pio_irq_enable(struct pxa_ep *ep) 400 { 401 struct pxa_udc *udc = ep->dev; 402 int index = EPIDX(ep); 403 u32 udcicr0 = udc_readl(udc, UDCICR0); 404 u32 udcicr1 = udc_readl(udc, UDCICR1); 405 406 if (index < 16) 407 udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2))); 408 else 409 udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2))); 410 } 411 412 /** 413 * pio_irq_disable - Disables irq generation for one endpoint 414 * @ep: udc endpoint 415 */ 416 static void pio_irq_disable(struct pxa_ep *ep) 417 { 418 struct pxa_udc *udc = ep->dev; 419 int index = EPIDX(ep); 420 u32 udcicr0 = udc_readl(udc, UDCICR0); 421 u32 udcicr1 = udc_readl(udc, UDCICR1); 422 423 if (index < 16) 424 udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2))); 425 else 426 udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2))); 427 } 428 429 /** 430 * udc_set_mask_UDCCR - set bits in UDCCR 431 * @udc: udc device 432 * @mask: bits to set in UDCCR 433 * 434 * Sets bits in UDCCR, leaving DME and FST bits as they were. 435 */ 436 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask) 437 { 438 u32 udccr = udc_readl(udc, UDCCR); 439 udc_writel(udc, UDCCR, 440 (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS)); 441 } 442 443 /** 444 * udc_clear_mask_UDCCR - clears bits in UDCCR 445 * @udc: udc device 446 * @mask: bit to clear in UDCCR 447 * 448 * Clears bits in UDCCR, leaving DME and FST bits as they were. 449 */ 450 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask) 451 { 452 u32 udccr = udc_readl(udc, UDCCR); 453 udc_writel(udc, UDCCR, 454 (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS)); 455 } 456 457 /** 458 * ep_write_UDCCSR - set bits in UDCCSR 459 * @udc: udc device 460 * @mask: bits to set in UDCCR 461 * 462 * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*). 463 * 464 * A specific case is applied to ep0 : the ACM bit is always set to 1, for 465 * SET_INTERFACE and SET_CONFIGURATION. 466 */ 467 static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask) 468 { 469 if (is_ep0(ep)) 470 mask |= UDCCSR0_ACM; 471 udc_ep_writel(ep, UDCCSR, mask); 472 } 473 474 /** 475 * ep_count_bytes_remain - get how many bytes in udc endpoint 476 * @ep: udc endpoint 477 * 478 * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP) 479 */ 480 static int ep_count_bytes_remain(struct pxa_ep *ep) 481 { 482 if (ep->dir_in) 483 return -EOPNOTSUPP; 484 return udc_ep_readl(ep, UDCBCR) & 0x3ff; 485 } 486 487 /** 488 * ep_is_empty - checks if ep has byte ready for reading 489 * @ep: udc endpoint 490 * 491 * If endpoint is the control endpoint, checks if there are bytes in the 492 * control endpoint fifo. If endpoint is a data endpoint, checks if bytes 493 * are ready for reading on OUT endpoint. 494 * 495 * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint 496 */ 497 static int ep_is_empty(struct pxa_ep *ep) 498 { 499 int ret; 500 501 if (!is_ep0(ep) && ep->dir_in) 502 return -EOPNOTSUPP; 503 if (is_ep0(ep)) 504 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE); 505 else 506 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE); 507 return ret; 508 } 509 510 /** 511 * ep_is_full - checks if ep has place to write bytes 512 * @ep: udc endpoint 513 * 514 * If endpoint is not the control endpoint and is an IN endpoint, checks if 515 * there is place to write bytes into the endpoint. 516 * 517 * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint 518 */ 519 static int ep_is_full(struct pxa_ep *ep) 520 { 521 if (is_ep0(ep)) 522 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR); 523 if (!ep->dir_in) 524 return -EOPNOTSUPP; 525 return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF)); 526 } 527 528 /** 529 * epout_has_pkt - checks if OUT endpoint fifo has a packet available 530 * @ep: pxa endpoint 531 * 532 * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep. 533 */ 534 static int epout_has_pkt(struct pxa_ep *ep) 535 { 536 if (!is_ep0(ep) && ep->dir_in) 537 return -EOPNOTSUPP; 538 if (is_ep0(ep)) 539 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC); 540 return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC); 541 } 542 543 /** 544 * set_ep0state - Set ep0 automata state 545 * @dev: udc device 546 * @state: state 547 */ 548 static void set_ep0state(struct pxa_udc *udc, int state) 549 { 550 struct pxa_ep *ep = &udc->pxa_ep[0]; 551 char *old_stname = EP0_STNAME(udc); 552 553 udc->ep0state = state; 554 ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname, 555 EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR), 556 udc_ep_readl(ep, UDCBCR)); 557 } 558 559 /** 560 * ep0_idle - Put control endpoint into idle state 561 * @dev: udc device 562 */ 563 static void ep0_idle(struct pxa_udc *dev) 564 { 565 set_ep0state(dev, WAIT_FOR_SETUP); 566 } 567 568 /** 569 * inc_ep_stats_reqs - Update ep stats counts 570 * @ep: physical endpoint 571 * @req: usb request 572 * @is_in: ep direction (USB_DIR_IN or 0) 573 * 574 */ 575 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in) 576 { 577 if (is_in) 578 ep->stats.in_ops++; 579 else 580 ep->stats.out_ops++; 581 } 582 583 /** 584 * inc_ep_stats_bytes - Update ep stats counts 585 * @ep: physical endpoint 586 * @count: bytes transferred on endpoint 587 * @is_in: ep direction (USB_DIR_IN or 0) 588 */ 589 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in) 590 { 591 if (is_in) 592 ep->stats.in_bytes += count; 593 else 594 ep->stats.out_bytes += count; 595 } 596 597 /** 598 * pxa_ep_setup - Sets up an usb physical endpoint 599 * @ep: pxa27x physical endpoint 600 * 601 * Find the physical pxa27x ep, and setup its UDCCR 602 */ 603 static void pxa_ep_setup(struct pxa_ep *ep) 604 { 605 u32 new_udccr; 606 607 new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN) 608 | ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN) 609 | ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN) 610 | ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN) 611 | ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET) 612 | ((ep->dir_in) ? UDCCONR_ED : 0) 613 | ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS) 614 | UDCCONR_EE; 615 616 udc_ep_writel(ep, UDCCR, new_udccr); 617 } 618 619 /** 620 * pxa_eps_setup - Sets up all usb physical endpoints 621 * @dev: udc device 622 * 623 * Setup all pxa physical endpoints, except ep0 624 */ 625 static void pxa_eps_setup(struct pxa_udc *dev) 626 { 627 unsigned int i; 628 629 dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev); 630 631 for (i = 1; i < NR_PXA_ENDPOINTS; i++) 632 pxa_ep_setup(&dev->pxa_ep[i]); 633 } 634 635 /** 636 * pxa_ep_alloc_request - Allocate usb request 637 * @_ep: usb endpoint 638 * @gfp_flags: 639 * 640 * For the pxa27x, these can just wrap kmalloc/kfree. gadget drivers 641 * must still pass correctly initialized endpoints, since other controller 642 * drivers may care about how it's currently set up (dma issues etc). 643 */ 644 static struct usb_request * 645 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags) 646 { 647 struct pxa27x_request *req; 648 649 req = kzalloc(sizeof *req, gfp_flags); 650 if (!req) 651 return NULL; 652 653 INIT_LIST_HEAD(&req->queue); 654 req->in_use = 0; 655 req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 656 657 return &req->req; 658 } 659 660 /** 661 * pxa_ep_free_request - Free usb request 662 * @_ep: usb endpoint 663 * @_req: usb request 664 * 665 * Wrapper around kfree to free _req 666 */ 667 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req) 668 { 669 struct pxa27x_request *req; 670 671 req = container_of(_req, struct pxa27x_request, req); 672 WARN_ON(!list_empty(&req->queue)); 673 kfree(req); 674 } 675 676 /** 677 * ep_add_request - add a request to the endpoint's queue 678 * @ep: usb endpoint 679 * @req: usb request 680 * 681 * Context: ep->lock held 682 * 683 * Queues the request in the endpoint's queue, and enables the interrupts 684 * on the endpoint. 685 */ 686 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req) 687 { 688 if (unlikely(!req)) 689 return; 690 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req, 691 req->req.length, udc_ep_readl(ep, UDCCSR)); 692 693 req->in_use = 1; 694 list_add_tail(&req->queue, &ep->queue); 695 pio_irq_enable(ep); 696 } 697 698 /** 699 * ep_del_request - removes a request from the endpoint's queue 700 * @ep: usb endpoint 701 * @req: usb request 702 * 703 * Context: ep->lock held 704 * 705 * Unqueue the request from the endpoint's queue. If there are no more requests 706 * on the endpoint, and if it's not the control endpoint, interrupts are 707 * disabled on the endpoint. 708 */ 709 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req) 710 { 711 if (unlikely(!req)) 712 return; 713 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req, 714 req->req.length, udc_ep_readl(ep, UDCCSR)); 715 716 list_del_init(&req->queue); 717 req->in_use = 0; 718 if (!is_ep0(ep) && list_empty(&ep->queue)) 719 pio_irq_disable(ep); 720 } 721 722 /** 723 * req_done - Complete an usb request 724 * @ep: pxa physical endpoint 725 * @req: pxa request 726 * @status: usb request status sent to gadget API 727 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 728 * 729 * Context: ep->lock held if flags not NULL, else ep->lock released 730 * 731 * Retire a pxa27x usb request. Endpoint must be locked. 732 */ 733 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status, 734 unsigned long *pflags) 735 { 736 unsigned long flags; 737 738 ep_del_request(ep, req); 739 if (likely(req->req.status == -EINPROGRESS)) 740 req->req.status = status; 741 else 742 status = req->req.status; 743 744 if (status && status != -ESHUTDOWN) 745 ep_dbg(ep, "complete req %p stat %d len %u/%u\n", 746 &req->req, status, 747 req->req.actual, req->req.length); 748 749 if (pflags) 750 spin_unlock_irqrestore(&ep->lock, *pflags); 751 local_irq_save(flags); 752 usb_gadget_giveback_request(&req->udc_usb_ep->usb_ep, &req->req); 753 local_irq_restore(flags); 754 if (pflags) 755 spin_lock_irqsave(&ep->lock, *pflags); 756 } 757 758 /** 759 * ep_end_out_req - Ends endpoint OUT request 760 * @ep: physical endpoint 761 * @req: pxa request 762 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 763 * 764 * Context: ep->lock held or released (see req_done()) 765 * 766 * Ends endpoint OUT request (completes usb request). 767 */ 768 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req, 769 unsigned long *pflags) 770 { 771 inc_ep_stats_reqs(ep, !USB_DIR_IN); 772 req_done(ep, req, 0, pflags); 773 } 774 775 /** 776 * ep0_end_out_req - Ends control endpoint OUT request (ends data stage) 777 * @ep: physical endpoint 778 * @req: pxa request 779 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 780 * 781 * Context: ep->lock held or released (see req_done()) 782 * 783 * Ends control endpoint OUT request (completes usb request), and puts 784 * control endpoint into idle state 785 */ 786 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req, 787 unsigned long *pflags) 788 { 789 set_ep0state(ep->dev, OUT_STATUS_STAGE); 790 ep_end_out_req(ep, req, pflags); 791 ep0_idle(ep->dev); 792 } 793 794 /** 795 * ep_end_in_req - Ends endpoint IN request 796 * @ep: physical endpoint 797 * @req: pxa request 798 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 799 * 800 * Context: ep->lock held or released (see req_done()) 801 * 802 * Ends endpoint IN request (completes usb request). 803 */ 804 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req, 805 unsigned long *pflags) 806 { 807 inc_ep_stats_reqs(ep, USB_DIR_IN); 808 req_done(ep, req, 0, pflags); 809 } 810 811 /** 812 * ep0_end_in_req - Ends control endpoint IN request (ends data stage) 813 * @ep: physical endpoint 814 * @req: pxa request 815 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held 816 * 817 * Context: ep->lock held or released (see req_done()) 818 * 819 * Ends control endpoint IN request (completes usb request), and puts 820 * control endpoint into status state 821 */ 822 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req, 823 unsigned long *pflags) 824 { 825 set_ep0state(ep->dev, IN_STATUS_STAGE); 826 ep_end_in_req(ep, req, pflags); 827 } 828 829 /** 830 * nuke - Dequeue all requests 831 * @ep: pxa endpoint 832 * @status: usb request status 833 * 834 * Context: ep->lock released 835 * 836 * Dequeues all requests on an endpoint. As a side effect, interrupts will be 837 * disabled on that endpoint (because no more requests). 838 */ 839 static void nuke(struct pxa_ep *ep, int status) 840 { 841 struct pxa27x_request *req; 842 unsigned long flags; 843 844 spin_lock_irqsave(&ep->lock, flags); 845 while (!list_empty(&ep->queue)) { 846 req = list_entry(ep->queue.next, struct pxa27x_request, queue); 847 req_done(ep, req, status, &flags); 848 } 849 spin_unlock_irqrestore(&ep->lock, flags); 850 } 851 852 /** 853 * read_packet - transfer 1 packet from an OUT endpoint into request 854 * @ep: pxa physical endpoint 855 * @req: usb request 856 * 857 * Takes bytes from OUT endpoint and transfers them info the usb request. 858 * If there is less space in request than bytes received in OUT endpoint, 859 * bytes are left in the OUT endpoint. 860 * 861 * Returns how many bytes were actually transferred 862 */ 863 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req) 864 { 865 u32 *buf; 866 int bytes_ep, bufferspace, count, i; 867 868 bytes_ep = ep_count_bytes_remain(ep); 869 bufferspace = req->req.length - req->req.actual; 870 871 buf = (u32 *)(req->req.buf + req->req.actual); 872 prefetchw(buf); 873 874 if (likely(!ep_is_empty(ep))) 875 count = min(bytes_ep, bufferspace); 876 else /* zlp */ 877 count = 0; 878 879 for (i = count; i > 0; i -= 4) 880 *buf++ = udc_ep_readl(ep, UDCDR); 881 req->req.actual += count; 882 883 ep_write_UDCCSR(ep, UDCCSR_PC); 884 885 return count; 886 } 887 888 /** 889 * write_packet - transfer 1 packet from request into an IN endpoint 890 * @ep: pxa physical endpoint 891 * @req: usb request 892 * @max: max bytes that fit into endpoint 893 * 894 * Takes bytes from usb request, and transfers them into the physical 895 * endpoint. If there are no bytes to transfer, doesn't write anything 896 * to physical endpoint. 897 * 898 * Returns how many bytes were actually transferred. 899 */ 900 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req, 901 unsigned int max) 902 { 903 int length, count, remain, i; 904 u32 *buf; 905 u8 *buf_8; 906 907 buf = (u32 *)(req->req.buf + req->req.actual); 908 prefetch(buf); 909 910 length = min(req->req.length - req->req.actual, max); 911 req->req.actual += length; 912 913 remain = length & 0x3; 914 count = length & ~(0x3); 915 for (i = count; i > 0 ; i -= 4) 916 udc_ep_writel(ep, UDCDR, *buf++); 917 918 buf_8 = (u8 *)buf; 919 for (i = remain; i > 0; i--) 920 udc_ep_writeb(ep, UDCDR, *buf_8++); 921 922 ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain, 923 udc_ep_readl(ep, UDCCSR)); 924 925 return length; 926 } 927 928 /** 929 * read_fifo - Transfer packets from OUT endpoint into usb request 930 * @ep: pxa physical endpoint 931 * @req: usb request 932 * 933 * Context: callable when in_interrupt() 934 * 935 * Unload as many packets as possible from the fifo we use for usb OUT 936 * transfers and put them into the request. Caller should have made sure 937 * there's at least one packet ready. 938 * Doesn't complete the request, that's the caller's job 939 * 940 * Returns 1 if the request completed, 0 otherwise 941 */ 942 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 943 { 944 int count, is_short, completed = 0; 945 946 while (epout_has_pkt(ep)) { 947 count = read_packet(ep, req); 948 inc_ep_stats_bytes(ep, count, !USB_DIR_IN); 949 950 is_short = (count < ep->fifo_size); 951 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n", 952 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "", 953 &req->req, req->req.actual, req->req.length); 954 955 /* completion */ 956 if (is_short || req->req.actual == req->req.length) { 957 completed = 1; 958 break; 959 } 960 /* finished that packet. the next one may be waiting... */ 961 } 962 return completed; 963 } 964 965 /** 966 * write_fifo - transfer packets from usb request into an IN endpoint 967 * @ep: pxa physical endpoint 968 * @req: pxa usb request 969 * 970 * Write to an IN endpoint fifo, as many packets as possible. 971 * irqs will use this to write the rest later. 972 * caller guarantees at least one packet buffer is ready (or a zlp). 973 * Doesn't complete the request, that's the caller's job 974 * 975 * Returns 1 if request fully transferred, 0 if partial transfer 976 */ 977 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 978 { 979 unsigned max; 980 int count, is_short, is_last = 0, completed = 0, totcount = 0; 981 u32 udccsr; 982 983 max = ep->fifo_size; 984 do { 985 is_short = 0; 986 987 udccsr = udc_ep_readl(ep, UDCCSR); 988 if (udccsr & UDCCSR_PC) { 989 ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n", 990 udccsr); 991 ep_write_UDCCSR(ep, UDCCSR_PC); 992 } 993 if (udccsr & UDCCSR_TRN) { 994 ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n", 995 udccsr); 996 ep_write_UDCCSR(ep, UDCCSR_TRN); 997 } 998 999 count = write_packet(ep, req, max); 1000 inc_ep_stats_bytes(ep, count, USB_DIR_IN); 1001 totcount += count; 1002 1003 /* last packet is usually short (or a zlp) */ 1004 if (unlikely(count < max)) { 1005 is_last = 1; 1006 is_short = 1; 1007 } else { 1008 if (likely(req->req.length > req->req.actual) 1009 || req->req.zero) 1010 is_last = 0; 1011 else 1012 is_last = 1; 1013 /* interrupt/iso maxpacket may not fill the fifo */ 1014 is_short = unlikely(max < ep->fifo_size); 1015 } 1016 1017 if (is_short) 1018 ep_write_UDCCSR(ep, UDCCSR_SP); 1019 1020 /* requests complete when all IN data is in the FIFO */ 1021 if (is_last) { 1022 completed = 1; 1023 break; 1024 } 1025 } while (!ep_is_full(ep)); 1026 1027 ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n", 1028 totcount, is_last ? "/L" : "", is_short ? "/S" : "", 1029 req->req.length - req->req.actual, &req->req); 1030 1031 return completed; 1032 } 1033 1034 /** 1035 * read_ep0_fifo - Transfer packets from control endpoint into usb request 1036 * @ep: control endpoint 1037 * @req: pxa usb request 1038 * 1039 * Special ep0 version of the above read_fifo. Reads as many bytes from control 1040 * endpoint as can be read, and stores them into usb request (limited by request 1041 * maximum length). 1042 * 1043 * Returns 0 if usb request only partially filled, 1 if fully filled 1044 */ 1045 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 1046 { 1047 int count, is_short, completed = 0; 1048 1049 while (epout_has_pkt(ep)) { 1050 count = read_packet(ep, req); 1051 ep_write_UDCCSR(ep, UDCCSR0_OPC); 1052 inc_ep_stats_bytes(ep, count, !USB_DIR_IN); 1053 1054 is_short = (count < ep->fifo_size); 1055 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n", 1056 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "", 1057 &req->req, req->req.actual, req->req.length); 1058 1059 if (is_short || req->req.actual >= req->req.length) { 1060 completed = 1; 1061 break; 1062 } 1063 } 1064 1065 return completed; 1066 } 1067 1068 /** 1069 * write_ep0_fifo - Send a request to control endpoint (ep0 in) 1070 * @ep: control endpoint 1071 * @req: request 1072 * 1073 * Context: callable when in_interrupt() 1074 * 1075 * Sends a request (or a part of the request) to the control endpoint (ep0 in). 1076 * If the request doesn't fit, the remaining part will be sent from irq. 1077 * The request is considered fully written only if either : 1078 * - last write transferred all remaining bytes, but fifo was not fully filled 1079 * - last write was a 0 length write 1080 * 1081 * Returns 1 if request fully written, 0 if request only partially sent 1082 */ 1083 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req) 1084 { 1085 unsigned count; 1086 int is_last, is_short; 1087 1088 count = write_packet(ep, req, EP0_FIFO_SIZE); 1089 inc_ep_stats_bytes(ep, count, USB_DIR_IN); 1090 1091 is_short = (count < EP0_FIFO_SIZE); 1092 is_last = ((count == 0) || (count < EP0_FIFO_SIZE)); 1093 1094 /* Sends either a short packet or a 0 length packet */ 1095 if (unlikely(is_short)) 1096 ep_write_UDCCSR(ep, UDCCSR0_IPR); 1097 1098 ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n", 1099 count, is_short ? "/S" : "", is_last ? "/L" : "", 1100 req->req.length - req->req.actual, 1101 &req->req, udc_ep_readl(ep, UDCCSR)); 1102 1103 return is_last; 1104 } 1105 1106 /** 1107 * pxa_ep_queue - Queue a request into an IN endpoint 1108 * @_ep: usb endpoint 1109 * @_req: usb request 1110 * @gfp_flags: flags 1111 * 1112 * Context: normally called when !in_interrupt, but callable when in_interrupt() 1113 * in the special case of ep0 setup : 1114 * (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue) 1115 * 1116 * Returns 0 if succedeed, error otherwise 1117 */ 1118 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req, 1119 gfp_t gfp_flags) 1120 { 1121 struct udc_usb_ep *udc_usb_ep; 1122 struct pxa_ep *ep; 1123 struct pxa27x_request *req; 1124 struct pxa_udc *dev; 1125 unsigned long flags; 1126 int rc = 0; 1127 int is_first_req; 1128 unsigned length; 1129 int recursion_detected; 1130 1131 req = container_of(_req, struct pxa27x_request, req); 1132 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1133 1134 if (unlikely(!_req || !_req->complete || !_req->buf)) 1135 return -EINVAL; 1136 1137 if (unlikely(!_ep)) 1138 return -EINVAL; 1139 1140 dev = udc_usb_ep->dev; 1141 ep = udc_usb_ep->pxa_ep; 1142 if (unlikely(!ep)) 1143 return -EINVAL; 1144 1145 dev = ep->dev; 1146 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) { 1147 ep_dbg(ep, "bogus device state\n"); 1148 return -ESHUTDOWN; 1149 } 1150 1151 /* iso is always one packet per request, that's the only way 1152 * we can report per-packet status. that also helps with dma. 1153 */ 1154 if (unlikely(EPXFERTYPE_is_ISO(ep) 1155 && req->req.length > ep->fifo_size)) 1156 return -EMSGSIZE; 1157 1158 spin_lock_irqsave(&ep->lock, flags); 1159 recursion_detected = ep->in_handle_ep; 1160 1161 is_first_req = list_empty(&ep->queue); 1162 ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n", 1163 _req, is_first_req ? "yes" : "no", 1164 _req->length, _req->buf); 1165 1166 if (!ep->enabled) { 1167 _req->status = -ESHUTDOWN; 1168 rc = -ESHUTDOWN; 1169 goto out_locked; 1170 } 1171 1172 if (req->in_use) { 1173 ep_err(ep, "refusing to queue req %p (already queued)\n", req); 1174 goto out_locked; 1175 } 1176 1177 length = _req->length; 1178 _req->status = -EINPROGRESS; 1179 _req->actual = 0; 1180 1181 ep_add_request(ep, req); 1182 spin_unlock_irqrestore(&ep->lock, flags); 1183 1184 if (is_ep0(ep)) { 1185 switch (dev->ep0state) { 1186 case WAIT_ACK_SET_CONF_INTERF: 1187 if (length == 0) { 1188 ep_end_in_req(ep, req, NULL); 1189 } else { 1190 ep_err(ep, "got a request of %d bytes while" 1191 "in state WAIT_ACK_SET_CONF_INTERF\n", 1192 length); 1193 ep_del_request(ep, req); 1194 rc = -EL2HLT; 1195 } 1196 ep0_idle(ep->dev); 1197 break; 1198 case IN_DATA_STAGE: 1199 if (!ep_is_full(ep)) 1200 if (write_ep0_fifo(ep, req)) 1201 ep0_end_in_req(ep, req, NULL); 1202 break; 1203 case OUT_DATA_STAGE: 1204 if ((length == 0) || !epout_has_pkt(ep)) 1205 if (read_ep0_fifo(ep, req)) 1206 ep0_end_out_req(ep, req, NULL); 1207 break; 1208 default: 1209 ep_err(ep, "odd state %s to send me a request\n", 1210 EP0_STNAME(ep->dev)); 1211 ep_del_request(ep, req); 1212 rc = -EL2HLT; 1213 break; 1214 } 1215 } else { 1216 if (!recursion_detected) 1217 handle_ep(ep); 1218 } 1219 1220 out: 1221 return rc; 1222 out_locked: 1223 spin_unlock_irqrestore(&ep->lock, flags); 1224 goto out; 1225 } 1226 1227 /** 1228 * pxa_ep_dequeue - Dequeue one request 1229 * @_ep: usb endpoint 1230 * @_req: usb request 1231 * 1232 * Return 0 if no error, -EINVAL or -ECONNRESET otherwise 1233 */ 1234 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) 1235 { 1236 struct pxa_ep *ep; 1237 struct udc_usb_ep *udc_usb_ep; 1238 struct pxa27x_request *req; 1239 unsigned long flags; 1240 int rc = -EINVAL; 1241 1242 if (!_ep) 1243 return rc; 1244 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1245 ep = udc_usb_ep->pxa_ep; 1246 if (!ep || is_ep0(ep)) 1247 return rc; 1248 1249 spin_lock_irqsave(&ep->lock, flags); 1250 1251 /* make sure it's actually queued on this endpoint */ 1252 list_for_each_entry(req, &ep->queue, queue) { 1253 if (&req->req == _req) { 1254 rc = 0; 1255 break; 1256 } 1257 } 1258 1259 spin_unlock_irqrestore(&ep->lock, flags); 1260 if (!rc) 1261 req_done(ep, req, -ECONNRESET, NULL); 1262 return rc; 1263 } 1264 1265 /** 1266 * pxa_ep_set_halt - Halts operations on one endpoint 1267 * @_ep: usb endpoint 1268 * @value: 1269 * 1270 * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise 1271 */ 1272 static int pxa_ep_set_halt(struct usb_ep *_ep, int value) 1273 { 1274 struct pxa_ep *ep; 1275 struct udc_usb_ep *udc_usb_ep; 1276 unsigned long flags; 1277 int rc; 1278 1279 1280 if (!_ep) 1281 return -EINVAL; 1282 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1283 ep = udc_usb_ep->pxa_ep; 1284 if (!ep || is_ep0(ep)) 1285 return -EINVAL; 1286 1287 if (value == 0) { 1288 /* 1289 * This path (reset toggle+halt) is needed to implement 1290 * SET_INTERFACE on normal hardware. but it can't be 1291 * done from software on the PXA UDC, and the hardware 1292 * forgets to do it as part of SET_INTERFACE automagic. 1293 */ 1294 ep_dbg(ep, "only host can clear halt\n"); 1295 return -EROFS; 1296 } 1297 1298 spin_lock_irqsave(&ep->lock, flags); 1299 1300 rc = -EAGAIN; 1301 if (ep->dir_in && (ep_is_full(ep) || !list_empty(&ep->queue))) 1302 goto out; 1303 1304 /* FST, FEF bits are the same for control and non control endpoints */ 1305 rc = 0; 1306 ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF); 1307 if (is_ep0(ep)) 1308 set_ep0state(ep->dev, STALL); 1309 1310 out: 1311 spin_unlock_irqrestore(&ep->lock, flags); 1312 return rc; 1313 } 1314 1315 /** 1316 * pxa_ep_fifo_status - Get how many bytes in physical endpoint 1317 * @_ep: usb endpoint 1318 * 1319 * Returns number of bytes in OUT fifos. Broken for IN fifos. 1320 */ 1321 static int pxa_ep_fifo_status(struct usb_ep *_ep) 1322 { 1323 struct pxa_ep *ep; 1324 struct udc_usb_ep *udc_usb_ep; 1325 1326 if (!_ep) 1327 return -ENODEV; 1328 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1329 ep = udc_usb_ep->pxa_ep; 1330 if (!ep || is_ep0(ep)) 1331 return -ENODEV; 1332 1333 if (ep->dir_in) 1334 return -EOPNOTSUPP; 1335 if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep)) 1336 return 0; 1337 else 1338 return ep_count_bytes_remain(ep) + 1; 1339 } 1340 1341 /** 1342 * pxa_ep_fifo_flush - Flushes one endpoint 1343 * @_ep: usb endpoint 1344 * 1345 * Discards all data in one endpoint(IN or OUT), except control endpoint. 1346 */ 1347 static void pxa_ep_fifo_flush(struct usb_ep *_ep) 1348 { 1349 struct pxa_ep *ep; 1350 struct udc_usb_ep *udc_usb_ep; 1351 unsigned long flags; 1352 1353 if (!_ep) 1354 return; 1355 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1356 ep = udc_usb_ep->pxa_ep; 1357 if (!ep || is_ep0(ep)) 1358 return; 1359 1360 spin_lock_irqsave(&ep->lock, flags); 1361 1362 if (unlikely(!list_empty(&ep->queue))) 1363 ep_dbg(ep, "called while queue list not empty\n"); 1364 ep_dbg(ep, "called\n"); 1365 1366 /* for OUT, just read and discard the FIFO contents. */ 1367 if (!ep->dir_in) { 1368 while (!ep_is_empty(ep)) 1369 udc_ep_readl(ep, UDCDR); 1370 } else { 1371 /* most IN status is the same, but ISO can't stall */ 1372 ep_write_UDCCSR(ep, 1373 UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN 1374 | (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST)); 1375 } 1376 1377 spin_unlock_irqrestore(&ep->lock, flags); 1378 } 1379 1380 /** 1381 * pxa_ep_enable - Enables usb endpoint 1382 * @_ep: usb endpoint 1383 * @desc: usb endpoint descriptor 1384 * 1385 * Nothing much to do here, as ep configuration is done once and for all 1386 * before udc is enabled. After udc enable, no physical endpoint configuration 1387 * can be changed. 1388 * Function makes sanity checks and flushes the endpoint. 1389 */ 1390 static int pxa_ep_enable(struct usb_ep *_ep, 1391 const struct usb_endpoint_descriptor *desc) 1392 { 1393 struct pxa_ep *ep; 1394 struct udc_usb_ep *udc_usb_ep; 1395 struct pxa_udc *udc; 1396 1397 if (!_ep || !desc) 1398 return -EINVAL; 1399 1400 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1401 if (udc_usb_ep->pxa_ep) { 1402 ep = udc_usb_ep->pxa_ep; 1403 ep_warn(ep, "usb_ep %s already enabled, doing nothing\n", 1404 _ep->name); 1405 } else { 1406 ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep); 1407 } 1408 1409 if (!ep || is_ep0(ep)) { 1410 dev_err(udc_usb_ep->dev->dev, 1411 "unable to match pxa_ep for ep %s\n", 1412 _ep->name); 1413 return -EINVAL; 1414 } 1415 1416 if ((desc->bDescriptorType != USB_DT_ENDPOINT) 1417 || (ep->type != usb_endpoint_type(desc))) { 1418 ep_err(ep, "type mismatch\n"); 1419 return -EINVAL; 1420 } 1421 1422 if (ep->fifo_size < usb_endpoint_maxp(desc)) { 1423 ep_err(ep, "bad maxpacket\n"); 1424 return -ERANGE; 1425 } 1426 1427 udc_usb_ep->pxa_ep = ep; 1428 udc = ep->dev; 1429 1430 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { 1431 ep_err(ep, "bogus device state\n"); 1432 return -ESHUTDOWN; 1433 } 1434 1435 ep->enabled = 1; 1436 1437 /* flush fifo (mostly for OUT buffers) */ 1438 pxa_ep_fifo_flush(_ep); 1439 1440 ep_dbg(ep, "enabled\n"); 1441 return 0; 1442 } 1443 1444 /** 1445 * pxa_ep_disable - Disable usb endpoint 1446 * @_ep: usb endpoint 1447 * 1448 * Same as for pxa_ep_enable, no physical endpoint configuration can be 1449 * changed. 1450 * Function flushes the endpoint and related requests. 1451 */ 1452 static int pxa_ep_disable(struct usb_ep *_ep) 1453 { 1454 struct pxa_ep *ep; 1455 struct udc_usb_ep *udc_usb_ep; 1456 1457 if (!_ep) 1458 return -EINVAL; 1459 1460 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep); 1461 ep = udc_usb_ep->pxa_ep; 1462 if (!ep || is_ep0(ep) || !list_empty(&ep->queue)) 1463 return -EINVAL; 1464 1465 ep->enabled = 0; 1466 nuke(ep, -ESHUTDOWN); 1467 1468 pxa_ep_fifo_flush(_ep); 1469 udc_usb_ep->pxa_ep = NULL; 1470 1471 ep_dbg(ep, "disabled\n"); 1472 return 0; 1473 } 1474 1475 static struct usb_ep_ops pxa_ep_ops = { 1476 .enable = pxa_ep_enable, 1477 .disable = pxa_ep_disable, 1478 1479 .alloc_request = pxa_ep_alloc_request, 1480 .free_request = pxa_ep_free_request, 1481 1482 .queue = pxa_ep_queue, 1483 .dequeue = pxa_ep_dequeue, 1484 1485 .set_halt = pxa_ep_set_halt, 1486 .fifo_status = pxa_ep_fifo_status, 1487 .fifo_flush = pxa_ep_fifo_flush, 1488 }; 1489 1490 /** 1491 * dplus_pullup - Connect or disconnect pullup resistor to D+ pin 1492 * @udc: udc device 1493 * @on: 0 if disconnect pullup resistor, 1 otherwise 1494 * Context: any 1495 * 1496 * Handle D+ pullup resistor, make the device visible to the usb bus, and 1497 * declare it as a full speed usb device 1498 */ 1499 static void dplus_pullup(struct pxa_udc *udc, int on) 1500 { 1501 if (udc->gpiod) { 1502 gpiod_set_value(udc->gpiod, on); 1503 } else if (udc->udc_command) { 1504 if (on) 1505 udc->udc_command(PXA2XX_UDC_CMD_CONNECT); 1506 else 1507 udc->udc_command(PXA2XX_UDC_CMD_DISCONNECT); 1508 } 1509 udc->pullup_on = on; 1510 } 1511 1512 /** 1513 * pxa_udc_get_frame - Returns usb frame number 1514 * @_gadget: usb gadget 1515 */ 1516 static int pxa_udc_get_frame(struct usb_gadget *_gadget) 1517 { 1518 struct pxa_udc *udc = to_gadget_udc(_gadget); 1519 1520 return (udc_readl(udc, UDCFNR) & 0x7ff); 1521 } 1522 1523 /** 1524 * pxa_udc_wakeup - Force udc device out of suspend 1525 * @_gadget: usb gadget 1526 * 1527 * Returns 0 if successful, error code otherwise 1528 */ 1529 static int pxa_udc_wakeup(struct usb_gadget *_gadget) 1530 { 1531 struct pxa_udc *udc = to_gadget_udc(_gadget); 1532 1533 /* host may not have enabled remote wakeup */ 1534 if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0) 1535 return -EHOSTUNREACH; 1536 udc_set_mask_UDCCR(udc, UDCCR_UDR); 1537 return 0; 1538 } 1539 1540 static void udc_enable(struct pxa_udc *udc); 1541 static void udc_disable(struct pxa_udc *udc); 1542 1543 /** 1544 * should_enable_udc - Tells if UDC should be enabled 1545 * @udc: udc device 1546 * Context: any 1547 * 1548 * The UDC should be enabled if : 1549 1550 * - the pullup resistor is connected 1551 * - and a gadget driver is bound 1552 * - and vbus is sensed (or no vbus sense is available) 1553 * 1554 * Returns 1 if UDC should be enabled, 0 otherwise 1555 */ 1556 static int should_enable_udc(struct pxa_udc *udc) 1557 { 1558 int put_on; 1559 1560 put_on = ((udc->pullup_on) && (udc->driver)); 1561 put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver))); 1562 return put_on; 1563 } 1564 1565 /** 1566 * should_disable_udc - Tells if UDC should be disabled 1567 * @udc: udc device 1568 * Context: any 1569 * 1570 * The UDC should be disabled if : 1571 * - the pullup resistor is not connected 1572 * - or no gadget driver is bound 1573 * - or no vbus is sensed (when vbus sesing is available) 1574 * 1575 * Returns 1 if UDC should be disabled 1576 */ 1577 static int should_disable_udc(struct pxa_udc *udc) 1578 { 1579 int put_off; 1580 1581 put_off = ((!udc->pullup_on) || (!udc->driver)); 1582 put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver))); 1583 return put_off; 1584 } 1585 1586 /** 1587 * pxa_udc_pullup - Offer manual D+ pullup control 1588 * @_gadget: usb gadget using the control 1589 * @is_active: 0 if disconnect, else connect D+ pullup resistor 1590 * Context: !in_interrupt() 1591 * 1592 * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup 1593 */ 1594 static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active) 1595 { 1596 struct pxa_udc *udc = to_gadget_udc(_gadget); 1597 1598 if (!udc->gpiod && !udc->udc_command) 1599 return -EOPNOTSUPP; 1600 1601 dplus_pullup(udc, is_active); 1602 1603 if (should_enable_udc(udc)) 1604 udc_enable(udc); 1605 if (should_disable_udc(udc)) 1606 udc_disable(udc); 1607 return 0; 1608 } 1609 1610 static void udc_enable(struct pxa_udc *udc); 1611 static void udc_disable(struct pxa_udc *udc); 1612 1613 /** 1614 * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc 1615 * @_gadget: usb gadget 1616 * @is_active: 0 if should disable the udc, 1 if should enable 1617 * 1618 * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the 1619 * udc, and deactivates D+ pullup resistor. 1620 * 1621 * Returns 0 1622 */ 1623 static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active) 1624 { 1625 struct pxa_udc *udc = to_gadget_udc(_gadget); 1626 1627 udc->vbus_sensed = is_active; 1628 if (should_enable_udc(udc)) 1629 udc_enable(udc); 1630 if (should_disable_udc(udc)) 1631 udc_disable(udc); 1632 1633 return 0; 1634 } 1635 1636 /** 1637 * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed 1638 * @_gadget: usb gadget 1639 * @mA: current drawn 1640 * 1641 * Context: !in_interrupt() 1642 * 1643 * Called after a configuration was chosen by a USB host, to inform how much 1644 * current can be drawn by the device from VBus line. 1645 * 1646 * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc 1647 */ 1648 static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA) 1649 { 1650 struct pxa_udc *udc; 1651 1652 udc = to_gadget_udc(_gadget); 1653 if (!IS_ERR_OR_NULL(udc->transceiver)) 1654 return usb_phy_set_power(udc->transceiver, mA); 1655 return -EOPNOTSUPP; 1656 } 1657 1658 static int pxa27x_udc_start(struct usb_gadget *g, 1659 struct usb_gadget_driver *driver); 1660 static int pxa27x_udc_stop(struct usb_gadget *g); 1661 1662 static const struct usb_gadget_ops pxa_udc_ops = { 1663 .get_frame = pxa_udc_get_frame, 1664 .wakeup = pxa_udc_wakeup, 1665 .pullup = pxa_udc_pullup, 1666 .vbus_session = pxa_udc_vbus_session, 1667 .vbus_draw = pxa_udc_vbus_draw, 1668 .udc_start = pxa27x_udc_start, 1669 .udc_stop = pxa27x_udc_stop, 1670 }; 1671 1672 /** 1673 * udc_disable - disable udc device controller 1674 * @udc: udc device 1675 * Context: any 1676 * 1677 * Disables the udc device : disables clocks, udc interrupts, control endpoint 1678 * interrupts. 1679 */ 1680 static void udc_disable(struct pxa_udc *udc) 1681 { 1682 if (!udc->enabled) 1683 return; 1684 1685 udc_writel(udc, UDCICR0, 0); 1686 udc_writel(udc, UDCICR1, 0); 1687 1688 udc_clear_mask_UDCCR(udc, UDCCR_UDE); 1689 1690 ep0_idle(udc); 1691 udc->gadget.speed = USB_SPEED_UNKNOWN; 1692 clk_disable(udc->clk); 1693 1694 udc->enabled = 0; 1695 } 1696 1697 /** 1698 * udc_init_data - Initialize udc device data structures 1699 * @dev: udc device 1700 * 1701 * Initializes gadget endpoint list, endpoints locks. No action is taken 1702 * on the hardware. 1703 */ 1704 static void udc_init_data(struct pxa_udc *dev) 1705 { 1706 int i; 1707 struct pxa_ep *ep; 1708 1709 /* device/ep0 records init */ 1710 INIT_LIST_HEAD(&dev->gadget.ep_list); 1711 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list); 1712 dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0]; 1713 dev->gadget.quirk_altset_not_supp = 1; 1714 ep0_idle(dev); 1715 1716 /* PXA endpoints init */ 1717 for (i = 0; i < NR_PXA_ENDPOINTS; i++) { 1718 ep = &dev->pxa_ep[i]; 1719 1720 ep->enabled = is_ep0(ep); 1721 INIT_LIST_HEAD(&ep->queue); 1722 spin_lock_init(&ep->lock); 1723 } 1724 1725 /* USB endpoints init */ 1726 for (i = 1; i < NR_USB_ENDPOINTS; i++) { 1727 list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list, 1728 &dev->gadget.ep_list); 1729 usb_ep_set_maxpacket_limit(&dev->udc_usb_ep[i].usb_ep, 1730 dev->udc_usb_ep[i].usb_ep.maxpacket); 1731 } 1732 } 1733 1734 /** 1735 * udc_enable - Enables the udc device 1736 * @dev: udc device 1737 * 1738 * Enables the udc device : enables clocks, udc interrupts, control endpoint 1739 * interrupts, sets usb as UDC client and setups endpoints. 1740 */ 1741 static void udc_enable(struct pxa_udc *udc) 1742 { 1743 if (udc->enabled) 1744 return; 1745 1746 clk_enable(udc->clk); 1747 udc_writel(udc, UDCICR0, 0); 1748 udc_writel(udc, UDCICR1, 0); 1749 udc_clear_mask_UDCCR(udc, UDCCR_UDE); 1750 1751 ep0_idle(udc); 1752 udc->gadget.speed = USB_SPEED_FULL; 1753 memset(&udc->stats, 0, sizeof(udc->stats)); 1754 1755 pxa_eps_setup(udc); 1756 udc_set_mask_UDCCR(udc, UDCCR_UDE); 1757 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM); 1758 udelay(2); 1759 if (udc_readl(udc, UDCCR) & UDCCR_EMCE) 1760 dev_err(udc->dev, "Configuration errors, udc disabled\n"); 1761 1762 /* 1763 * Caller must be able to sleep in order to cope with startup transients 1764 */ 1765 msleep(100); 1766 1767 /* enable suspend/resume and reset irqs */ 1768 udc_writel(udc, UDCICR1, 1769 UDCICR1_IECC | UDCICR1_IERU 1770 | UDCICR1_IESU | UDCICR1_IERS); 1771 1772 /* enable ep0 irqs */ 1773 pio_irq_enable(&udc->pxa_ep[0]); 1774 1775 udc->enabled = 1; 1776 } 1777 1778 /** 1779 * pxa27x_start - Register gadget driver 1780 * @driver: gadget driver 1781 * @bind: bind function 1782 * 1783 * When a driver is successfully registered, it will receive control requests 1784 * including set_configuration(), which enables non-control requests. Then 1785 * usb traffic follows until a disconnect is reported. Then a host may connect 1786 * again, or the driver might get unbound. 1787 * 1788 * Note that the udc is not automatically enabled. Check function 1789 * should_enable_udc(). 1790 * 1791 * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise 1792 */ 1793 static int pxa27x_udc_start(struct usb_gadget *g, 1794 struct usb_gadget_driver *driver) 1795 { 1796 struct pxa_udc *udc = to_pxa(g); 1797 int retval; 1798 1799 /* first hook up the driver ... */ 1800 udc->driver = driver; 1801 1802 if (!IS_ERR_OR_NULL(udc->transceiver)) { 1803 retval = otg_set_peripheral(udc->transceiver->otg, 1804 &udc->gadget); 1805 if (retval) { 1806 dev_err(udc->dev, "can't bind to transceiver\n"); 1807 goto fail; 1808 } 1809 } 1810 1811 if (should_enable_udc(udc)) 1812 udc_enable(udc); 1813 return 0; 1814 1815 fail: 1816 udc->driver = NULL; 1817 return retval; 1818 } 1819 1820 /** 1821 * stop_activity - Stops udc endpoints 1822 * @udc: udc device 1823 * @driver: gadget driver 1824 * 1825 * Disables all udc endpoints (even control endpoint), report disconnect to 1826 * the gadget user. 1827 */ 1828 static void stop_activity(struct pxa_udc *udc, struct usb_gadget_driver *driver) 1829 { 1830 int i; 1831 1832 /* don't disconnect drivers more than once */ 1833 if (udc->gadget.speed == USB_SPEED_UNKNOWN) 1834 driver = NULL; 1835 udc->gadget.speed = USB_SPEED_UNKNOWN; 1836 1837 for (i = 0; i < NR_USB_ENDPOINTS; i++) 1838 pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep); 1839 } 1840 1841 /** 1842 * pxa27x_udc_stop - Unregister the gadget driver 1843 * @driver: gadget driver 1844 * 1845 * Returns 0 if no error, -ENODEV, -EINVAL otherwise 1846 */ 1847 static int pxa27x_udc_stop(struct usb_gadget *g) 1848 { 1849 struct pxa_udc *udc = to_pxa(g); 1850 1851 stop_activity(udc, NULL); 1852 udc_disable(udc); 1853 1854 udc->driver = NULL; 1855 1856 if (!IS_ERR_OR_NULL(udc->transceiver)) 1857 return otg_set_peripheral(udc->transceiver->otg, NULL); 1858 return 0; 1859 } 1860 1861 /** 1862 * handle_ep0_ctrl_req - handle control endpoint control request 1863 * @udc: udc device 1864 * @req: control request 1865 */ 1866 static void handle_ep0_ctrl_req(struct pxa_udc *udc, 1867 struct pxa27x_request *req) 1868 { 1869 struct pxa_ep *ep = &udc->pxa_ep[0]; 1870 union { 1871 struct usb_ctrlrequest r; 1872 u32 word[2]; 1873 } u; 1874 int i; 1875 int have_extrabytes = 0; 1876 unsigned long flags; 1877 1878 nuke(ep, -EPROTO); 1879 spin_lock_irqsave(&ep->lock, flags); 1880 1881 /* 1882 * In the PXA320 manual, in the section about Back-to-Back setup 1883 * packets, it describes this situation. The solution is to set OPC to 1884 * get rid of the status packet, and then continue with the setup 1885 * packet. Generalize to pxa27x CPUs. 1886 */ 1887 if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0)) 1888 ep_write_UDCCSR(ep, UDCCSR0_OPC); 1889 1890 /* read SETUP packet */ 1891 for (i = 0; i < 2; i++) { 1892 if (unlikely(ep_is_empty(ep))) 1893 goto stall; 1894 u.word[i] = udc_ep_readl(ep, UDCDR); 1895 } 1896 1897 have_extrabytes = !ep_is_empty(ep); 1898 while (!ep_is_empty(ep)) { 1899 i = udc_ep_readl(ep, UDCDR); 1900 ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i); 1901 } 1902 1903 ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n", 1904 u.r.bRequestType, u.r.bRequest, 1905 le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex), 1906 le16_to_cpu(u.r.wLength)); 1907 if (unlikely(have_extrabytes)) 1908 goto stall; 1909 1910 if (u.r.bRequestType & USB_DIR_IN) 1911 set_ep0state(udc, IN_DATA_STAGE); 1912 else 1913 set_ep0state(udc, OUT_DATA_STAGE); 1914 1915 /* Tell UDC to enter Data Stage */ 1916 ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC); 1917 1918 spin_unlock_irqrestore(&ep->lock, flags); 1919 i = udc->driver->setup(&udc->gadget, &u.r); 1920 spin_lock_irqsave(&ep->lock, flags); 1921 if (i < 0) 1922 goto stall; 1923 out: 1924 spin_unlock_irqrestore(&ep->lock, flags); 1925 return; 1926 stall: 1927 ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n", 1928 udc_ep_readl(ep, UDCCSR), i); 1929 ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF); 1930 set_ep0state(udc, STALL); 1931 goto out; 1932 } 1933 1934 /** 1935 * handle_ep0 - Handle control endpoint data transfers 1936 * @udc: udc device 1937 * @fifo_irq: 1 if triggered by fifo service type irq 1938 * @opc_irq: 1 if triggered by output packet complete type irq 1939 * 1940 * Context : when in_interrupt() or with ep->lock held 1941 * 1942 * Tries to transfer all pending request data into the endpoint and/or 1943 * transfer all pending data in the endpoint into usb requests. 1944 * Handles states of ep0 automata. 1945 * 1946 * PXA27x hardware handles several standard usb control requests without 1947 * driver notification. The requests fully handled by hardware are : 1948 * SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE, 1949 * GET_STATUS 1950 * The requests handled by hardware, but with irq notification are : 1951 * SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE 1952 * The remaining standard requests really handled by handle_ep0 are : 1953 * GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests. 1954 * Requests standardized outside of USB 2.0 chapter 9 are handled more 1955 * uniformly, by gadget drivers. 1956 * 1957 * The control endpoint state machine is _not_ USB spec compliant, it's even 1958 * hardly compliant with Intel PXA270 developers guide. 1959 * The key points which inferred this state machine are : 1960 * - on every setup token, bit UDCCSR0_SA is raised and held until cleared by 1961 * software. 1962 * - on every OUT packet received, UDCCSR0_OPC is raised and held until 1963 * cleared by software. 1964 * - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it 1965 * before reading ep0. 1966 * This is true only for PXA27x. This is not true anymore for PXA3xx family 1967 * (check Back-to-Back setup packet in developers guide). 1968 * - irq can be called on a "packet complete" event (opc_irq=1), while 1969 * UDCCSR0_OPC is not yet raised (delta can be as big as 100ms 1970 * from experimentation). 1971 * - as UDCCSR0_SA can be activated while in irq handling, and clearing 1972 * UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC 1973 * => we never actually read the "status stage" packet of an IN data stage 1974 * => this is not documented in Intel documentation 1975 * - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA 1976 * STAGE. The driver add STATUS STAGE to send last zero length packet in 1977 * OUT_STATUS_STAGE. 1978 * - special attention was needed for IN_STATUS_STAGE. If a packet complete 1979 * event is detected, we terminate the status stage without ackowledging the 1980 * packet (not to risk to loose a potential SETUP packet) 1981 */ 1982 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq) 1983 { 1984 u32 udccsr0; 1985 struct pxa_ep *ep = &udc->pxa_ep[0]; 1986 struct pxa27x_request *req = NULL; 1987 int completed = 0; 1988 1989 if (!list_empty(&ep->queue)) 1990 req = list_entry(ep->queue.next, struct pxa27x_request, queue); 1991 1992 udccsr0 = udc_ep_readl(ep, UDCCSR); 1993 ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n", 1994 EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR), 1995 (fifo_irq << 1 | opc_irq)); 1996 1997 if (udccsr0 & UDCCSR0_SST) { 1998 ep_dbg(ep, "clearing stall status\n"); 1999 nuke(ep, -EPIPE); 2000 ep_write_UDCCSR(ep, UDCCSR0_SST); 2001 ep0_idle(udc); 2002 } 2003 2004 if (udccsr0 & UDCCSR0_SA) { 2005 nuke(ep, 0); 2006 set_ep0state(udc, SETUP_STAGE); 2007 } 2008 2009 switch (udc->ep0state) { 2010 case WAIT_FOR_SETUP: 2011 /* 2012 * Hardware bug : beware, we cannot clear OPC, since we would 2013 * miss a potential OPC irq for a setup packet. 2014 * So, we only do ... nothing, and hope for a next irq with 2015 * UDCCSR0_SA set. 2016 */ 2017 break; 2018 case SETUP_STAGE: 2019 udccsr0 &= UDCCSR0_CTRL_REQ_MASK; 2020 if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK)) 2021 handle_ep0_ctrl_req(udc, req); 2022 break; 2023 case IN_DATA_STAGE: /* GET_DESCRIPTOR */ 2024 if (epout_has_pkt(ep)) 2025 ep_write_UDCCSR(ep, UDCCSR0_OPC); 2026 if (req && !ep_is_full(ep)) 2027 completed = write_ep0_fifo(ep, req); 2028 if (completed) 2029 ep0_end_in_req(ep, req, NULL); 2030 break; 2031 case OUT_DATA_STAGE: /* SET_DESCRIPTOR */ 2032 if (epout_has_pkt(ep) && req) 2033 completed = read_ep0_fifo(ep, req); 2034 if (completed) 2035 ep0_end_out_req(ep, req, NULL); 2036 break; 2037 case STALL: 2038 ep_write_UDCCSR(ep, UDCCSR0_FST); 2039 break; 2040 case IN_STATUS_STAGE: 2041 /* 2042 * Hardware bug : beware, we cannot clear OPC, since we would 2043 * miss a potential PC irq for a setup packet. 2044 * So, we only put the ep0 into WAIT_FOR_SETUP state. 2045 */ 2046 if (opc_irq) 2047 ep0_idle(udc); 2048 break; 2049 case OUT_STATUS_STAGE: 2050 case WAIT_ACK_SET_CONF_INTERF: 2051 ep_warn(ep, "should never get in %s state here!!!\n", 2052 EP0_STNAME(ep->dev)); 2053 ep0_idle(udc); 2054 break; 2055 } 2056 } 2057 2058 /** 2059 * handle_ep - Handle endpoint data tranfers 2060 * @ep: pxa physical endpoint 2061 * 2062 * Tries to transfer all pending request data into the endpoint and/or 2063 * transfer all pending data in the endpoint into usb requests. 2064 * 2065 * Is always called when in_interrupt() and with ep->lock released. 2066 */ 2067 static void handle_ep(struct pxa_ep *ep) 2068 { 2069 struct pxa27x_request *req; 2070 int completed; 2071 u32 udccsr; 2072 int is_in = ep->dir_in; 2073 int loop = 0; 2074 unsigned long flags; 2075 2076 spin_lock_irqsave(&ep->lock, flags); 2077 if (ep->in_handle_ep) 2078 goto recursion_detected; 2079 ep->in_handle_ep = 1; 2080 2081 do { 2082 completed = 0; 2083 udccsr = udc_ep_readl(ep, UDCCSR); 2084 2085 if (likely(!list_empty(&ep->queue))) 2086 req = list_entry(ep->queue.next, 2087 struct pxa27x_request, queue); 2088 else 2089 req = NULL; 2090 2091 ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n", 2092 req, udccsr, loop++); 2093 2094 if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN))) 2095 udc_ep_writel(ep, UDCCSR, 2096 udccsr & (UDCCSR_SST | UDCCSR_TRN)); 2097 if (!req) 2098 break; 2099 2100 if (unlikely(is_in)) { 2101 if (likely(!ep_is_full(ep))) 2102 completed = write_fifo(ep, req); 2103 } else { 2104 if (likely(epout_has_pkt(ep))) 2105 completed = read_fifo(ep, req); 2106 } 2107 2108 if (completed) { 2109 if (is_in) 2110 ep_end_in_req(ep, req, &flags); 2111 else 2112 ep_end_out_req(ep, req, &flags); 2113 } 2114 } while (completed); 2115 2116 ep->in_handle_ep = 0; 2117 recursion_detected: 2118 spin_unlock_irqrestore(&ep->lock, flags); 2119 } 2120 2121 /** 2122 * pxa27x_change_configuration - Handle SET_CONF usb request notification 2123 * @udc: udc device 2124 * @config: usb configuration 2125 * 2126 * Post the request to upper level. 2127 * Don't use any pxa specific harware configuration capabilities 2128 */ 2129 static void pxa27x_change_configuration(struct pxa_udc *udc, int config) 2130 { 2131 struct usb_ctrlrequest req ; 2132 2133 dev_dbg(udc->dev, "config=%d\n", config); 2134 2135 udc->config = config; 2136 udc->last_interface = 0; 2137 udc->last_alternate = 0; 2138 2139 req.bRequestType = 0; 2140 req.bRequest = USB_REQ_SET_CONFIGURATION; 2141 req.wValue = config; 2142 req.wIndex = 0; 2143 req.wLength = 0; 2144 2145 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF); 2146 udc->driver->setup(&udc->gadget, &req); 2147 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN); 2148 } 2149 2150 /** 2151 * pxa27x_change_interface - Handle SET_INTERF usb request notification 2152 * @udc: udc device 2153 * @iface: interface number 2154 * @alt: alternate setting number 2155 * 2156 * Post the request to upper level. 2157 * Don't use any pxa specific harware configuration capabilities 2158 */ 2159 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt) 2160 { 2161 struct usb_ctrlrequest req; 2162 2163 dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt); 2164 2165 udc->last_interface = iface; 2166 udc->last_alternate = alt; 2167 2168 req.bRequestType = USB_RECIP_INTERFACE; 2169 req.bRequest = USB_REQ_SET_INTERFACE; 2170 req.wValue = alt; 2171 req.wIndex = iface; 2172 req.wLength = 0; 2173 2174 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF); 2175 udc->driver->setup(&udc->gadget, &req); 2176 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN); 2177 } 2178 2179 /* 2180 * irq_handle_data - Handle data transfer 2181 * @irq: irq IRQ number 2182 * @udc: dev pxa_udc device structure 2183 * 2184 * Called from irq handler, transferts data to or from endpoint to queue 2185 */ 2186 static void irq_handle_data(int irq, struct pxa_udc *udc) 2187 { 2188 int i; 2189 struct pxa_ep *ep; 2190 u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK; 2191 u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK; 2192 2193 if (udcisr0 & UDCISR_INT_MASK) { 2194 udc->pxa_ep[0].stats.irqs++; 2195 udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK)); 2196 handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR), 2197 !!(udcisr0 & UDCICR_PKTCOMPL)); 2198 } 2199 2200 udcisr0 >>= 2; 2201 for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) { 2202 if (!(udcisr0 & UDCISR_INT_MASK)) 2203 continue; 2204 2205 udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK)); 2206 2207 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep)); 2208 if (i < ARRAY_SIZE(udc->pxa_ep)) { 2209 ep = &udc->pxa_ep[i]; 2210 ep->stats.irqs++; 2211 handle_ep(ep); 2212 } 2213 } 2214 2215 for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) { 2216 udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK)); 2217 if (!(udcisr1 & UDCISR_INT_MASK)) 2218 continue; 2219 2220 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep)); 2221 if (i < ARRAY_SIZE(udc->pxa_ep)) { 2222 ep = &udc->pxa_ep[i]; 2223 ep->stats.irqs++; 2224 handle_ep(ep); 2225 } 2226 } 2227 2228 } 2229 2230 /** 2231 * irq_udc_suspend - Handle IRQ "UDC Suspend" 2232 * @udc: udc device 2233 */ 2234 static void irq_udc_suspend(struct pxa_udc *udc) 2235 { 2236 udc_writel(udc, UDCISR1, UDCISR1_IRSU); 2237 udc->stats.irqs_suspend++; 2238 2239 if (udc->gadget.speed != USB_SPEED_UNKNOWN 2240 && udc->driver && udc->driver->suspend) 2241 udc->driver->suspend(&udc->gadget); 2242 ep0_idle(udc); 2243 } 2244 2245 /** 2246 * irq_udc_resume - Handle IRQ "UDC Resume" 2247 * @udc: udc device 2248 */ 2249 static void irq_udc_resume(struct pxa_udc *udc) 2250 { 2251 udc_writel(udc, UDCISR1, UDCISR1_IRRU); 2252 udc->stats.irqs_resume++; 2253 2254 if (udc->gadget.speed != USB_SPEED_UNKNOWN 2255 && udc->driver && udc->driver->resume) 2256 udc->driver->resume(&udc->gadget); 2257 } 2258 2259 /** 2260 * irq_udc_reconfig - Handle IRQ "UDC Change Configuration" 2261 * @udc: udc device 2262 */ 2263 static void irq_udc_reconfig(struct pxa_udc *udc) 2264 { 2265 unsigned config, interface, alternate, config_change; 2266 u32 udccr = udc_readl(udc, UDCCR); 2267 2268 udc_writel(udc, UDCISR1, UDCISR1_IRCC); 2269 udc->stats.irqs_reconfig++; 2270 2271 config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S; 2272 config_change = (config != udc->config); 2273 pxa27x_change_configuration(udc, config); 2274 2275 interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S; 2276 alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S; 2277 pxa27x_change_interface(udc, interface, alternate); 2278 2279 if (config_change) 2280 update_pxa_ep_matches(udc); 2281 udc_set_mask_UDCCR(udc, UDCCR_SMAC); 2282 } 2283 2284 /** 2285 * irq_udc_reset - Handle IRQ "UDC Reset" 2286 * @udc: udc device 2287 */ 2288 static void irq_udc_reset(struct pxa_udc *udc) 2289 { 2290 u32 udccr = udc_readl(udc, UDCCR); 2291 struct pxa_ep *ep = &udc->pxa_ep[0]; 2292 2293 dev_info(udc->dev, "USB reset\n"); 2294 udc_writel(udc, UDCISR1, UDCISR1_IRRS); 2295 udc->stats.irqs_reset++; 2296 2297 if ((udccr & UDCCR_UDA) == 0) { 2298 dev_dbg(udc->dev, "USB reset start\n"); 2299 stop_activity(udc, udc->driver); 2300 } 2301 udc->gadget.speed = USB_SPEED_FULL; 2302 memset(&udc->stats, 0, sizeof udc->stats); 2303 2304 nuke(ep, -EPROTO); 2305 ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC); 2306 ep0_idle(udc); 2307 } 2308 2309 /** 2310 * pxa_udc_irq - Main irq handler 2311 * @irq: irq number 2312 * @_dev: udc device 2313 * 2314 * Handles all udc interrupts 2315 */ 2316 static irqreturn_t pxa_udc_irq(int irq, void *_dev) 2317 { 2318 struct pxa_udc *udc = _dev; 2319 u32 udcisr0 = udc_readl(udc, UDCISR0); 2320 u32 udcisr1 = udc_readl(udc, UDCISR1); 2321 u32 udccr = udc_readl(udc, UDCCR); 2322 u32 udcisr1_spec; 2323 2324 dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, " 2325 "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr); 2326 2327 udcisr1_spec = udcisr1 & 0xf8000000; 2328 if (unlikely(udcisr1_spec & UDCISR1_IRSU)) 2329 irq_udc_suspend(udc); 2330 if (unlikely(udcisr1_spec & UDCISR1_IRRU)) 2331 irq_udc_resume(udc); 2332 if (unlikely(udcisr1_spec & UDCISR1_IRCC)) 2333 irq_udc_reconfig(udc); 2334 if (unlikely(udcisr1_spec & UDCISR1_IRRS)) 2335 irq_udc_reset(udc); 2336 2337 if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK)) 2338 irq_handle_data(irq, udc); 2339 2340 return IRQ_HANDLED; 2341 } 2342 2343 static struct pxa_udc memory = { 2344 .gadget = { 2345 .ops = &pxa_udc_ops, 2346 .ep0 = &memory.udc_usb_ep[0].usb_ep, 2347 .name = driver_name, 2348 .dev = { 2349 .init_name = "gadget", 2350 }, 2351 }, 2352 2353 .udc_usb_ep = { 2354 USB_EP_CTRL, 2355 USB_EP_OUT_BULK(1), 2356 USB_EP_IN_BULK(2), 2357 USB_EP_IN_ISO(3), 2358 USB_EP_OUT_ISO(4), 2359 USB_EP_IN_INT(5), 2360 }, 2361 2362 .pxa_ep = { 2363 PXA_EP_CTRL, 2364 /* Endpoints for gadget zero */ 2365 PXA_EP_OUT_BULK(1, 1, 3, 0, 0), 2366 PXA_EP_IN_BULK(2, 2, 3, 0, 0), 2367 /* Endpoints for ether gadget, file storage gadget */ 2368 PXA_EP_OUT_BULK(3, 1, 1, 0, 0), 2369 PXA_EP_IN_BULK(4, 2, 1, 0, 0), 2370 PXA_EP_IN_ISO(5, 3, 1, 0, 0), 2371 PXA_EP_OUT_ISO(6, 4, 1, 0, 0), 2372 PXA_EP_IN_INT(7, 5, 1, 0, 0), 2373 /* Endpoints for RNDIS, serial */ 2374 PXA_EP_OUT_BULK(8, 1, 2, 0, 0), 2375 PXA_EP_IN_BULK(9, 2, 2, 0, 0), 2376 PXA_EP_IN_INT(10, 5, 2, 0, 0), 2377 /* 2378 * All the following endpoints are only for completion. They 2379 * won't never work, as multiple interfaces are really broken on 2380 * the pxa. 2381 */ 2382 PXA_EP_OUT_BULK(11, 1, 2, 1, 0), 2383 PXA_EP_IN_BULK(12, 2, 2, 1, 0), 2384 /* Endpoint for CDC Ether */ 2385 PXA_EP_OUT_BULK(13, 1, 1, 1, 1), 2386 PXA_EP_IN_BULK(14, 2, 1, 1, 1), 2387 } 2388 }; 2389 2390 #if defined(CONFIG_OF) 2391 static const struct of_device_id udc_pxa_dt_ids[] = { 2392 { .compatible = "marvell,pxa270-udc" }, 2393 {} 2394 }; 2395 MODULE_DEVICE_TABLE(of, udc_pxa_dt_ids); 2396 #endif 2397 2398 /** 2399 * pxa_udc_probe - probes the udc device 2400 * @_dev: platform device 2401 * 2402 * Perform basic init : allocates udc clock, creates sysfs files, requests 2403 * irq. 2404 */ 2405 static int pxa_udc_probe(struct platform_device *pdev) 2406 { 2407 struct resource *regs; 2408 struct pxa_udc *udc = &memory; 2409 int retval = 0, gpio; 2410 struct pxa2xx_udc_mach_info *mach = dev_get_platdata(&pdev->dev); 2411 unsigned long gpio_flags; 2412 2413 if (mach) { 2414 gpio_flags = mach->gpio_pullup_inverted ? GPIOF_ACTIVE_LOW : 0; 2415 gpio = mach->gpio_pullup; 2416 if (gpio_is_valid(gpio)) { 2417 retval = devm_gpio_request_one(&pdev->dev, gpio, 2418 gpio_flags, 2419 "USB D+ pullup"); 2420 if (retval) 2421 return retval; 2422 udc->gpiod = gpio_to_desc(mach->gpio_pullup); 2423 } 2424 udc->udc_command = mach->udc_command; 2425 } else { 2426 udc->gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_ASIS); 2427 } 2428 2429 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2430 udc->regs = devm_ioremap_resource(&pdev->dev, regs); 2431 if (IS_ERR(udc->regs)) 2432 return PTR_ERR(udc->regs); 2433 udc->irq = platform_get_irq(pdev, 0); 2434 if (udc->irq < 0) 2435 return udc->irq; 2436 2437 udc->dev = &pdev->dev; 2438 udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2); 2439 2440 if (IS_ERR(udc->gpiod)) { 2441 dev_err(&pdev->dev, "Couldn't find or request D+ gpio : %ld\n", 2442 PTR_ERR(udc->gpiod)); 2443 return PTR_ERR(udc->gpiod); 2444 } 2445 if (udc->gpiod) 2446 gpiod_direction_output(udc->gpiod, 0); 2447 2448 udc->clk = devm_clk_get(&pdev->dev, NULL); 2449 if (IS_ERR(udc->clk)) 2450 return PTR_ERR(udc->clk); 2451 2452 retval = clk_prepare(udc->clk); 2453 if (retval) 2454 return retval; 2455 2456 udc->vbus_sensed = 0; 2457 2458 the_controller = udc; 2459 platform_set_drvdata(pdev, udc); 2460 udc_init_data(udc); 2461 2462 /* irq setup after old hardware state is cleaned up */ 2463 retval = devm_request_irq(&pdev->dev, udc->irq, pxa_udc_irq, 2464 IRQF_SHARED, driver_name, udc); 2465 if (retval != 0) { 2466 dev_err(udc->dev, "%s: can't get irq %i, err %d\n", 2467 driver_name, udc->irq, retval); 2468 goto err; 2469 } 2470 2471 retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget); 2472 if (retval) 2473 goto err; 2474 2475 pxa_init_debugfs(udc); 2476 if (should_enable_udc(udc)) 2477 udc_enable(udc); 2478 return 0; 2479 err: 2480 clk_unprepare(udc->clk); 2481 return retval; 2482 } 2483 2484 /** 2485 * pxa_udc_remove - removes the udc device driver 2486 * @_dev: platform device 2487 */ 2488 static int pxa_udc_remove(struct platform_device *_dev) 2489 { 2490 struct pxa_udc *udc = platform_get_drvdata(_dev); 2491 2492 usb_del_gadget_udc(&udc->gadget); 2493 pxa_cleanup_debugfs(udc); 2494 2495 usb_put_phy(udc->transceiver); 2496 2497 udc->transceiver = NULL; 2498 the_controller = NULL; 2499 clk_unprepare(udc->clk); 2500 2501 return 0; 2502 } 2503 2504 static void pxa_udc_shutdown(struct platform_device *_dev) 2505 { 2506 struct pxa_udc *udc = platform_get_drvdata(_dev); 2507 2508 if (udc_readl(udc, UDCCR) & UDCCR_UDE) 2509 udc_disable(udc); 2510 } 2511 2512 #ifdef CONFIG_PXA27x 2513 extern void pxa27x_clear_otgph(void); 2514 #else 2515 #define pxa27x_clear_otgph() do {} while (0) 2516 #endif 2517 2518 #ifdef CONFIG_PM 2519 /** 2520 * pxa_udc_suspend - Suspend udc device 2521 * @_dev: platform device 2522 * @state: suspend state 2523 * 2524 * Suspends udc : saves configuration registers (UDCCR*), then disables the udc 2525 * device. 2526 */ 2527 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state) 2528 { 2529 struct pxa_udc *udc = platform_get_drvdata(_dev); 2530 struct pxa_ep *ep; 2531 2532 ep = &udc->pxa_ep[0]; 2533 udc->udccsr0 = udc_ep_readl(ep, UDCCSR); 2534 2535 udc_disable(udc); 2536 udc->pullup_resume = udc->pullup_on; 2537 dplus_pullup(udc, 0); 2538 2539 if (udc->driver) 2540 udc->driver->disconnect(&udc->gadget); 2541 2542 return 0; 2543 } 2544 2545 /** 2546 * pxa_udc_resume - Resume udc device 2547 * @_dev: platform device 2548 * 2549 * Resumes udc : restores configuration registers (UDCCR*), then enables the udc 2550 * device. 2551 */ 2552 static int pxa_udc_resume(struct platform_device *_dev) 2553 { 2554 struct pxa_udc *udc = platform_get_drvdata(_dev); 2555 struct pxa_ep *ep; 2556 2557 ep = &udc->pxa_ep[0]; 2558 udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME)); 2559 2560 dplus_pullup(udc, udc->pullup_resume); 2561 if (should_enable_udc(udc)) 2562 udc_enable(udc); 2563 /* 2564 * We do not handle OTG yet. 2565 * 2566 * OTGPH bit is set when sleep mode is entered. 2567 * it indicates that OTG pad is retaining its state. 2568 * Upon exit from sleep mode and before clearing OTGPH, 2569 * Software must configure the USB OTG pad, UDC, and UHC 2570 * to the state they were in before entering sleep mode. 2571 */ 2572 pxa27x_clear_otgph(); 2573 2574 return 0; 2575 } 2576 #endif 2577 2578 /* work with hotplug and coldplug */ 2579 MODULE_ALIAS("platform:pxa27x-udc"); 2580 2581 static struct platform_driver udc_driver = { 2582 .driver = { 2583 .name = "pxa27x-udc", 2584 .of_match_table = of_match_ptr(udc_pxa_dt_ids), 2585 }, 2586 .probe = pxa_udc_probe, 2587 .remove = pxa_udc_remove, 2588 .shutdown = pxa_udc_shutdown, 2589 #ifdef CONFIG_PM 2590 .suspend = pxa_udc_suspend, 2591 .resume = pxa_udc_resume 2592 #endif 2593 }; 2594 2595 module_platform_driver(udc_driver); 2596 2597 MODULE_DESCRIPTION(DRIVER_DESC); 2598 MODULE_AUTHOR("Robert Jarzmik"); 2599 MODULE_LICENSE("GPL"); 2600