xref: /linux/drivers/usb/dwc2/core.h (revision a8b70ccf10e38775785d9cb12ead916474549f99)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * core.h - DesignWare HS OTG Controller common declarations
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #ifndef __DWC2_CORE_H__
39 #define __DWC2_CORE_H__
40 
41 #include <linux/phy/phy.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/usb/gadget.h>
44 #include <linux/usb/otg.h>
45 #include <linux/usb/phy.h>
46 #include "hw.h"
47 
48 /*
49  * Suggested defines for tracers:
50  * - no_printk:    Disable tracing
51  * - pr_info:      Print this info to the console
52  * - trace_printk: Print this info to trace buffer (good for verbose logging)
53  */
54 
55 #define DWC2_TRACE_SCHEDULER		no_printk
56 #define DWC2_TRACE_SCHEDULER_VB		no_printk
57 
58 /* Detailed scheduler tracing, but won't overwhelm console */
59 #define dwc2_sch_dbg(hsotg, fmt, ...)					\
60 	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
61 			     dev_name(hsotg->dev), ##__VA_ARGS__)
62 
63 /* Verbose scheduler tracing */
64 #define dwc2_sch_vdbg(hsotg, fmt, ...)					\
65 	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
66 				dev_name(hsotg->dev), ##__VA_ARGS__)
67 
68 #ifdef CONFIG_MIPS
69 /*
70  * There are some MIPS machines that can run in either big-endian
71  * or little-endian mode and that use the dwc2 register without
72  * a byteswap in both ways.
73  * Unlike other architectures, MIPS apparently does not require a
74  * barrier before the __raw_writel() to synchronize with DMA but does
75  * require the barrier after the __raw_writel() to serialize a set of
76  * writes. This set of operations was added specifically for MIPS and
77  * should only be used there.
78  */
79 static inline u32 dwc2_readl(const void __iomem *addr)
80 {
81 	u32 value = __raw_readl(addr);
82 
83 	/* In order to preserve endianness __raw_* operation is used. Therefore
84 	 * a barrier is needed to ensure IO access is not re-ordered across
85 	 * reads or writes
86 	 */
87 	mb();
88 	return value;
89 }
90 
91 static inline void dwc2_writel(u32 value, void __iomem *addr)
92 {
93 	__raw_writel(value, addr);
94 
95 	/*
96 	 * In order to preserve endianness __raw_* operation is used. Therefore
97 	 * a barrier is needed to ensure IO access is not re-ordered across
98 	 * reads or writes
99 	 */
100 	mb();
101 #ifdef DWC2_LOG_WRITES
102 	pr_info("INFO:: wrote %08x to %p\n", value, addr);
103 #endif
104 }
105 #else
106 /* Normal architectures just use readl/write */
107 static inline u32 dwc2_readl(const void __iomem *addr)
108 {
109 	return readl(addr);
110 }
111 
112 static inline void dwc2_writel(u32 value, void __iomem *addr)
113 {
114 	writel(value, addr);
115 
116 #ifdef DWC2_LOG_WRITES
117 	pr_info("info:: wrote %08x to %p\n", value, addr);
118 #endif
119 }
120 #endif
121 
122 /* Maximum number of Endpoints/HostChannels */
123 #define MAX_EPS_CHANNELS	16
124 
125 /* dwc2-hsotg declarations */
126 static const char * const dwc2_hsotg_supply_names[] = {
127 	"vusb_d",               /* digital USB supply, 1.2V */
128 	"vusb_a",               /* analog USB supply, 1.1V */
129 };
130 
131 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
132 
133 /*
134  * EP0_MPS_LIMIT
135  *
136  * Unfortunately there seems to be a limit of the amount of data that can
137  * be transferred by IN transactions on EP0. This is either 127 bytes or 3
138  * packets (which practically means 1 packet and 63 bytes of data) when the
139  * MPS is set to 64.
140  *
141  * This means if we are wanting to move >127 bytes of data, we need to
142  * split the transactions up, but just doing one packet at a time does
143  * not work (this may be an implicit DATA0 PID on first packet of the
144  * transaction) and doing 2 packets is outside the controller's limits.
145  *
146  * If we try to lower the MPS size for EP0, then no transfers work properly
147  * for EP0, and the system will fail basic enumeration. As no cause for this
148  * has currently been found, we cannot support any large IN transfers for
149  * EP0.
150  */
151 #define EP0_MPS_LIMIT   64
152 
153 struct dwc2_hsotg;
154 struct dwc2_hsotg_req;
155 
156 /**
157  * struct dwc2_hsotg_ep - driver endpoint definition.
158  * @ep: The gadget layer representation of the endpoint.
159  * @name: The driver generated name for the endpoint.
160  * @queue: Queue of requests for this endpoint.
161  * @parent: Reference back to the parent device structure.
162  * @req: The current request that the endpoint is processing. This is
163  *       used to indicate an request has been loaded onto the endpoint
164  *       and has yet to be completed (maybe due to data move, or simply
165  *       awaiting an ack from the core all the data has been completed).
166  * @debugfs: File entry for debugfs file for this endpoint.
167  * @lock: State lock to protect contents of endpoint.
168  * @dir_in: Set to true if this endpoint is of the IN direction, which
169  *          means that it is sending data to the Host.
170  * @index: The index for the endpoint registers.
171  * @mc: Multi Count - number of transactions per microframe
172  * @interval - Interval for periodic endpoints, in frames or microframes.
173  * @name: The name array passed to the USB core.
174  * @halted: Set if the endpoint has been halted.
175  * @periodic: Set if this is a periodic ep, such as Interrupt
176  * @isochronous: Set if this is a isochronous ep
177  * @send_zlp: Set if we need to send a zero-length packet.
178  * @desc_list_dma: The DMA address of descriptor chain currently in use.
179  * @desc_list: Pointer to descriptor DMA chain head currently in use.
180  * @desc_count: Count of entries within the DMA descriptor chain of EP.
181  * @isoc_chain_num: Number of ISOC chain currently in use - either 0 or 1.
182  * @next_desc: index of next free descriptor in the ISOC chain under SW control.
183  * @total_data: The total number of data bytes done.
184  * @fifo_size: The size of the FIFO (for periodic IN endpoints)
185  * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
186  * @last_load: The offset of data for the last start of request.
187  * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
188  * @target_frame: Targeted frame num to setup next ISOC transfer
189  * @frame_overrun: Indicates SOF number overrun in DSTS
190  *
191  * This is the driver's state for each registered enpoint, allowing it
192  * to keep track of transactions that need doing. Each endpoint has a
193  * lock to protect the state, to try and avoid using an overall lock
194  * for the host controller as much as possible.
195  *
196  * For periodic IN endpoints, we have fifo_size and fifo_load to try
197  * and keep track of the amount of data in the periodic FIFO for each
198  * of these as we don't have a status register that tells us how much
199  * is in each of them. (note, this may actually be useless information
200  * as in shared-fifo mode periodic in acts like a single-frame packet
201  * buffer than a fifo)
202  */
203 struct dwc2_hsotg_ep {
204 	struct usb_ep           ep;
205 	struct list_head        queue;
206 	struct dwc2_hsotg       *parent;
207 	struct dwc2_hsotg_req    *req;
208 	struct dentry           *debugfs;
209 
210 	unsigned long           total_data;
211 	unsigned int            size_loaded;
212 	unsigned int            last_load;
213 	unsigned int            fifo_load;
214 	unsigned short          fifo_size;
215 	unsigned short		fifo_index;
216 
217 	unsigned char           dir_in;
218 	unsigned char           index;
219 	unsigned char           mc;
220 	u16                     interval;
221 
222 	unsigned int            halted:1;
223 	unsigned int            periodic:1;
224 	unsigned int            isochronous:1;
225 	unsigned int            send_zlp:1;
226 	unsigned int            target_frame;
227 #define TARGET_FRAME_INITIAL   0xFFFFFFFF
228 	bool			frame_overrun;
229 
230 	dma_addr_t		desc_list_dma;
231 	struct dwc2_dma_desc	*desc_list;
232 	u8			desc_count;
233 
234 	unsigned char		isoc_chain_num;
235 	unsigned int		next_desc;
236 
237 	char                    name[10];
238 };
239 
240 /**
241  * struct dwc2_hsotg_req - data transfer request
242  * @req: The USB gadget request
243  * @queue: The list of requests for the endpoint this is queued for.
244  * @saved_req_buf: variable to save req.buf when bounce buffers are used.
245  */
246 struct dwc2_hsotg_req {
247 	struct usb_request      req;
248 	struct list_head        queue;
249 	void *saved_req_buf;
250 };
251 
252 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
253 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
254 #define call_gadget(_hs, _entry) \
255 do { \
256 	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
257 		(_hs)->driver && (_hs)->driver->_entry) { \
258 		spin_unlock(&_hs->lock); \
259 		(_hs)->driver->_entry(&(_hs)->gadget); \
260 		spin_lock(&_hs->lock); \
261 	} \
262 } while (0)
263 #else
264 #define call_gadget(_hs, _entry)	do {} while (0)
265 #endif
266 
267 struct dwc2_hsotg;
268 struct dwc2_host_chan;
269 
270 /* Device States */
271 enum dwc2_lx_state {
272 	DWC2_L0,	/* On state */
273 	DWC2_L1,	/* LPM sleep state */
274 	DWC2_L2,	/* USB suspend state */
275 	DWC2_L3,	/* Off state */
276 };
277 
278 /* Gadget ep0 states */
279 enum dwc2_ep0_state {
280 	DWC2_EP0_SETUP,
281 	DWC2_EP0_DATA_IN,
282 	DWC2_EP0_DATA_OUT,
283 	DWC2_EP0_STATUS_IN,
284 	DWC2_EP0_STATUS_OUT,
285 };
286 
287 /**
288  * struct dwc2_core_params - Parameters for configuring the core
289  *
290  * @otg_cap:            Specifies the OTG capabilities.
291  *                       0 - HNP and SRP capable
292  *                       1 - SRP Only capable
293  *                       2 - No HNP/SRP capable (always available)
294  *                      Defaults to best available option (0, 1, then 2)
295  * @host_dma:           Specifies whether to use slave or DMA mode for accessing
296  *                      the data FIFOs. The driver will automatically detect the
297  *                      value for this parameter if none is specified.
298  *                       0 - Slave (always available)
299  *                       1 - DMA (default, if available)
300  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
301  *                      address DMA mode or descriptor DMA mode for accessing
302  *                      the data FIFOs. The driver will automatically detect the
303  *                      value for this if none is specified.
304  *                       0 - Address DMA
305  *                       1 - Descriptor DMA (default, if available)
306  * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
307  *                      address DMA mode or descriptor DMA mode for accessing
308  *                      the data FIFOs in Full Speed mode only. The driver
309  *                      will automatically detect the value for this if none is
310  *                      specified.
311  *                       0 - Address DMA
312  *                       1 - Descriptor DMA in FS (default, if available)
313  * @speed:              Specifies the maximum speed of operation in host and
314  *                      device mode. The actual speed depends on the speed of
315  *                      the attached device and the value of phy_type.
316  *                       0 - High Speed
317  *                           (default when phy_type is UTMI+ or ULPI)
318  *                       1 - Full Speed
319  *                           (default when phy_type is Full Speed)
320  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
321  *                       1 - Allow dynamic FIFO sizing (default, if available)
322  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
323  *                      are enabled for non-periodic IN endpoints in device
324  *                      mode.
325  * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
326  *                      dynamic FIFO sizing is enabled
327  *                       16 to 32768
328  *                      Actual maximum value is autodetected and also
329  *                      the default.
330  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
331  *                      in host mode when dynamic FIFO sizing is enabled
332  *                       16 to 32768
333  *                      Actual maximum value is autodetected and also
334  *                      the default.
335  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
336  *                      host mode when dynamic FIFO sizing is enabled
337  *                       16 to 32768
338  *                      Actual maximum value is autodetected and also
339  *                      the default.
340  * @max_transfer_size:  The maximum transfer size supported, in bytes
341  *                       2047 to 65,535
342  *                      Actual maximum value is autodetected and also
343  *                      the default.
344  * @max_packet_count:   The maximum number of packets in a transfer
345  *                       15 to 511
346  *                      Actual maximum value is autodetected and also
347  *                      the default.
348  * @host_channels:      The number of host channel registers to use
349  *                       1 to 16
350  *                      Actual maximum value is autodetected and also
351  *                      the default.
352  * @phy_type:           Specifies the type of PHY interface to use. By default,
353  *                      the driver will automatically detect the phy_type.
354  *                       0 - Full Speed Phy
355  *                       1 - UTMI+ Phy
356  *                       2 - ULPI Phy
357  *                      Defaults to best available option (2, 1, then 0)
358  * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
359  *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
360  *                      ULPI phy_type, this parameter indicates the data width
361  *                      between the MAC and the ULPI Wrapper.) Also, this
362  *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
363  *                      parameter was set to "8 and 16 bits", meaning that the
364  *                      core has been configured to work at either data path
365  *                      width.
366  *                       8 or 16 (default 16 if available)
367  * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
368  *                      data rate. This parameter is only applicable if phy_type
369  *                      is ULPI.
370  *                       0 - single data rate ULPI interface with 8 bit wide
371  *                           data bus (default)
372  *                       1 - double data rate ULPI interface with 4 bit wide
373  *                           data bus
374  * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
375  *                      external supply to drive the VBus
376  *                       0 - Internal supply (default)
377  *                       1 - External supply
378  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
379  *                      speed PHY. This parameter is only applicable if phy_type
380  *                      is FS.
381  *                       0 - No (default)
382  *                       1 - Yes
383  * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
384  *                       0 - No (default)
385  *                       1 - Yes
386  * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
387  *                      when attached to a Full Speed or Low Speed device in
388  *                      host mode.
389  *                       0 - Don't support low power mode (default)
390  *                       1 - Support low power mode
391  * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
392  *                      when connected to a Low Speed device in host
393  *                      mode. This parameter is applicable only if
394  *                      host_support_fs_ls_low_power is enabled.
395  *                       0 - 48 MHz
396  *                           (default when phy_type is UTMI+ or ULPI)
397  *                       1 - 6 MHz
398  *                           (default when phy_type is Full Speed)
399  * @oc_disable:		Flag to disable overcurrent condition.
400  *			0 - Allow overcurrent condition to get detected
401  *			1 - Disable overcurrent condtion to get detected
402  * @ts_dline:           Enable Term Select Dline pulsing
403  *                       0 - No (default)
404  *                       1 - Yes
405  * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
406  *                       0 - No (default for core < 2.92a)
407  *                       1 - Yes (default for core >= 2.92a)
408  * @ahbcfg:             This field allows the default value of the GAHBCFG
409  *                      register to be overridden
410  *                       -1         - GAHBCFG value will be set to 0x06
411  *                                    (INCR, default)
412  *                       all others - GAHBCFG value will be overridden with
413  *                                    this value
414  *                      Not all bits can be controlled like this, the
415  *                      bits defined by GAHBCFG_CTRL_MASK are controlled
416  *                      by the driver and are ignored in this
417  *                      configuration value.
418  * @uframe_sched:       True to enable the microframe scheduler
419  * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
420  *                      Disable CONIDSTSCHNG controller interrupt in such
421  *                      case.
422  *                      0 - No (default)
423  *                      1 - Yes
424  * @power_down:         Specifies whether the controller support power_down.
425  *			If power_down is enabled, the controller will enter
426  *			power_down in both peripheral and host mode when
427  *			needed.
428  *			0 - No (default)
429  *			1 - Partial power down
430  *			2 - Hibernation
431  * @lpm:		Enable LPM support.
432  *			0 - No
433  *			1 - Yes
434  * @lpm_clock_gating:		Enable core PHY clock gating.
435  *			0 - No
436  *			1 - Yes
437  * @besl:		Enable LPM Errata support.
438  *			0 - No
439  *			1 - Yes
440  * @hird_threshold_en:	HIRD or HIRD Threshold enable.
441  *			0 - No
442  *			1 - Yes
443  * @hird_threshold:	Value of BESL or HIRD Threshold.
444  * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
445  *			register.
446  *			0 - Deactivate the transceiver (default)
447  *			1 - Activate the transceiver
448  * @g_dma:              Enables gadget dma usage (default: autodetect).
449  * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
450  * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
451  *			DWORDS from 16-32768 (default: 2048 if
452  *			possible, otherwise autodetect).
453  * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
454  *			DWORDS from 16-32768 (default: 1024 if
455  *			possible, otherwise autodetect).
456  * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
457  *			mode. Each value corresponds to one EP
458  *			starting from EP1 (max 15 values). Sizes are
459  *			in DWORDS with possible values from from
460  *			16-32768 (default: 256, 256, 256, 256, 768,
461  *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
462  * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
463  *                      while full&low speed device connect. And change speed
464  *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
465  *			0 - No (default)
466  *			1 - Yes
467  *
468  * The following parameters may be specified when starting the module. These
469  * parameters define how the DWC_otg controller should be configured. A
470  * value of -1 (or any other out of range value) for any parameter means
471  * to read the value from hardware (if possible) or use the builtin
472  * default described above.
473  */
474 struct dwc2_core_params {
475 	u8 otg_cap;
476 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
477 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
478 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
479 
480 	u8 phy_type;
481 #define DWC2_PHY_TYPE_PARAM_FS		0
482 #define DWC2_PHY_TYPE_PARAM_UTMI	1
483 #define DWC2_PHY_TYPE_PARAM_ULPI	2
484 
485 	u8 speed;
486 #define DWC2_SPEED_PARAM_HIGH	0
487 #define DWC2_SPEED_PARAM_FULL	1
488 #define DWC2_SPEED_PARAM_LOW	2
489 
490 	u8 phy_utmi_width;
491 	bool phy_ulpi_ddr;
492 	bool phy_ulpi_ext_vbus;
493 	bool enable_dynamic_fifo;
494 	bool en_multiple_tx_fifo;
495 	bool i2c_enable;
496 	bool acg_enable;
497 	bool ulpi_fs_ls;
498 	bool ts_dline;
499 	bool reload_ctl;
500 	bool uframe_sched;
501 	bool external_id_pin_ctl;
502 
503 	int power_down;
504 #define DWC2_POWER_DOWN_PARAM_NONE		0
505 #define DWC2_POWER_DOWN_PARAM_PARTIAL		1
506 #define DWC2_POWER_DOWN_PARAM_HIBERNATION	2
507 
508 	bool lpm;
509 	bool lpm_clock_gating;
510 	bool besl;
511 	bool hird_threshold_en;
512 	u8 hird_threshold;
513 	bool activate_stm_fs_transceiver;
514 	u16 max_packet_count;
515 	u32 max_transfer_size;
516 	u32 ahbcfg;
517 
518 	/* Host parameters */
519 	bool host_dma;
520 	bool dma_desc_enable;
521 	bool dma_desc_fs_enable;
522 	bool host_support_fs_ls_low_power;
523 	bool host_ls_low_power_phy_clk;
524 	bool oc_disable;
525 
526 	u8 host_channels;
527 	u16 host_rx_fifo_size;
528 	u16 host_nperio_tx_fifo_size;
529 	u16 host_perio_tx_fifo_size;
530 
531 	/* Gadget parameters */
532 	bool g_dma;
533 	bool g_dma_desc;
534 	u32 g_rx_fifo_size;
535 	u32 g_np_tx_fifo_size;
536 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
537 
538 	bool change_speed_quirk;
539 };
540 
541 /**
542  * struct dwc2_hw_params - Autodetected parameters.
543  *
544  * These parameters are the various parameters read from hardware
545  * registers during initialization. They typically contain the best
546  * supported or maximum value that can be configured in the
547  * corresponding dwc2_core_params value.
548  *
549  * The values that are not in dwc2_core_params are documented below.
550  *
551  * @op_mode             Mode of Operation
552  *                       0 - HNP- and SRP-Capable OTG (Host & Device)
553  *                       1 - SRP-Capable OTG (Host & Device)
554  *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
555  *                       3 - SRP-Capable Device
556  *                       4 - Non-OTG Device
557  *                       5 - SRP-Capable Host
558  *                       6 - Non-OTG Host
559  * @arch                Architecture
560  *                       0 - Slave only
561  *                       1 - External DMA
562  *                       2 - Internal DMA
563  * @power_optimized     Are power optimizations enabled?
564  * @num_dev_ep          Number of device endpoints available
565  * @num_dev_in_eps      Number of device IN endpoints available
566  * @num_dev_perio_in_ep Number of device periodic IN endpoints
567  *                      available
568  * @dev_token_q_depth   Device Mode IN Token Sequence Learning Queue
569  *                      Depth
570  *                       0 to 30
571  * @host_perio_tx_q_depth
572  *                      Host Mode Periodic Request Queue Depth
573  *                       2, 4 or 8
574  * @nperio_tx_q_depth
575  *                      Non-Periodic Request Queue Depth
576  *                       2, 4 or 8
577  * @hs_phy_type         High-speed PHY interface type
578  *                       0 - High-speed interface not supported
579  *                       1 - UTMI+
580  *                       2 - ULPI
581  *                       3 - UTMI+ and ULPI
582  * @fs_phy_type         Full-speed PHY interface type
583  *                       0 - Full speed interface not supported
584  *                       1 - Dedicated full speed interface
585  *                       2 - FS pins shared with UTMI+ pins
586  *                       3 - FS pins shared with ULPI pins
587  * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
588  * @hibernation		Is hibernation enabled?
589  * @utmi_phy_data_width UTMI+ PHY data width
590  *                       0 - 8 bits
591  *                       1 - 16 bits
592  *                       2 - 8 or 16 bits
593  * @snpsid:             Value from SNPSID register
594  * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
595  * @g_tx_fifo_size[]	Power-on values of TxFIFO sizes
596  */
597 struct dwc2_hw_params {
598 	unsigned op_mode:3;
599 	unsigned arch:2;
600 	unsigned dma_desc_enable:1;
601 	unsigned enable_dynamic_fifo:1;
602 	unsigned en_multiple_tx_fifo:1;
603 	unsigned rx_fifo_size:16;
604 	unsigned host_nperio_tx_fifo_size:16;
605 	unsigned dev_nperio_tx_fifo_size:16;
606 	unsigned host_perio_tx_fifo_size:16;
607 	unsigned nperio_tx_q_depth:3;
608 	unsigned host_perio_tx_q_depth:3;
609 	unsigned dev_token_q_depth:5;
610 	unsigned max_transfer_size:26;
611 	unsigned max_packet_count:11;
612 	unsigned host_channels:5;
613 	unsigned hs_phy_type:2;
614 	unsigned fs_phy_type:2;
615 	unsigned i2c_enable:1;
616 	unsigned acg_enable:1;
617 	unsigned num_dev_ep:4;
618 	unsigned num_dev_in_eps : 4;
619 	unsigned num_dev_perio_in_ep:4;
620 	unsigned total_fifo_size:16;
621 	unsigned power_optimized:1;
622 	unsigned hibernation:1;
623 	unsigned utmi_phy_data_width:2;
624 	unsigned lpm_mode:1;
625 	u32 snpsid;
626 	u32 dev_ep_dirs;
627 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
628 };
629 
630 /* Size of control and EP0 buffers */
631 #define DWC2_CTRL_BUFF_SIZE 8
632 
633 /**
634  * struct dwc2_gregs_backup - Holds global registers state before
635  * entering partial power down
636  * @gotgctl:		Backup of GOTGCTL register
637  * @gintmsk:		Backup of GINTMSK register
638  * @gahbcfg:		Backup of GAHBCFG register
639  * @gusbcfg:		Backup of GUSBCFG register
640  * @grxfsiz:		Backup of GRXFSIZ register
641  * @gnptxfsiz:		Backup of GNPTXFSIZ register
642  * @gi2cctl:		Backup of GI2CCTL register
643  * @glpmcfg:		Backup of GLPMCFG register
644  * @gdfifocfg:		Backup of GDFIFOCFG register
645  * @gpwrdn:		Backup of GPWRDN register
646  */
647 struct dwc2_gregs_backup {
648 	u32 gotgctl;
649 	u32 gintmsk;
650 	u32 gahbcfg;
651 	u32 gusbcfg;
652 	u32 grxfsiz;
653 	u32 gnptxfsiz;
654 	u32 gi2cctl;
655 	u32 glpmcfg;
656 	u32 pcgcctl;
657 	u32 pcgcctl1;
658 	u32 gdfifocfg;
659 	u32 gpwrdn;
660 	bool valid;
661 };
662 
663 /**
664  * struct dwc2_dregs_backup - Holds device registers state before
665  * entering partial power down
666  * @dcfg:		Backup of DCFG register
667  * @dctl:		Backup of DCTL register
668  * @daintmsk:		Backup of DAINTMSK register
669  * @diepmsk:		Backup of DIEPMSK register
670  * @doepmsk:		Backup of DOEPMSK register
671  * @diepctl:		Backup of DIEPCTL register
672  * @dieptsiz:		Backup of DIEPTSIZ register
673  * @diepdma:		Backup of DIEPDMA register
674  * @doepctl:		Backup of DOEPCTL register
675  * @doeptsiz:		Backup of DOEPTSIZ register
676  * @doepdma:		Backup of DOEPDMA register
677  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
678  */
679 struct dwc2_dregs_backup {
680 	u32 dcfg;
681 	u32 dctl;
682 	u32 daintmsk;
683 	u32 diepmsk;
684 	u32 doepmsk;
685 	u32 diepctl[MAX_EPS_CHANNELS];
686 	u32 dieptsiz[MAX_EPS_CHANNELS];
687 	u32 diepdma[MAX_EPS_CHANNELS];
688 	u32 doepctl[MAX_EPS_CHANNELS];
689 	u32 doeptsiz[MAX_EPS_CHANNELS];
690 	u32 doepdma[MAX_EPS_CHANNELS];
691 	u32 dtxfsiz[MAX_EPS_CHANNELS];
692 	bool valid;
693 };
694 
695 /**
696  * struct dwc2_hregs_backup - Holds host registers state before
697  * entering partial power down
698  * @hcfg:		Backup of HCFG register
699  * @haintmsk:		Backup of HAINTMSK register
700  * @hcintmsk:		Backup of HCINTMSK register
701  * @hptr0:		Backup of HPTR0 register
702  * @hfir:		Backup of HFIR register
703  * @hptxfsiz:		Backup of HPTXFSIZ register
704  */
705 struct dwc2_hregs_backup {
706 	u32 hcfg;
707 	u32 haintmsk;
708 	u32 hcintmsk[MAX_EPS_CHANNELS];
709 	u32 hprt0;
710 	u32 hfir;
711 	u32 hptxfsiz;
712 	bool valid;
713 };
714 
715 /*
716  * Constants related to high speed periodic scheduling
717  *
718  * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
719  * reservation point of view it's assumed that the schedule goes right back to
720  * the beginning after the end of the schedule.
721  *
722  * What does that mean for scheduling things with a long interval?  It means
723  * we'll reserve time for them in every possible microframe that they could
724  * ever be scheduled in.  ...but we'll still only actually schedule them as
725  * often as they were requested.
726  *
727  * We keep our schedule in a "bitmap" structure.  This simplifies having
728  * to keep track of and merge intervals: we just let the bitmap code do most
729  * of the heavy lifting.  In a way scheduling is much like memory allocation.
730  *
731  * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
732  * supposed to schedule for periodic transfers).  That's according to spec.
733  *
734  * Note that though we only schedule 80% of each microframe, the bitmap that we
735  * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
736  * space for each uFrame).
737  *
738  * Requirements:
739  * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
740  * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
741  *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
742  *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
743  */
744 #define DWC2_US_PER_UFRAME		125
745 #define DWC2_HS_PERIODIC_US_PER_UFRAME	100
746 
747 #define DWC2_HS_SCHEDULE_UFRAMES	8
748 #define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
749 					 DWC2_HS_PERIODIC_US_PER_UFRAME)
750 
751 /*
752  * Constants related to low speed scheduling
753  *
754  * For high speed we schedule every 1us.  For low speed that's a bit overkill,
755  * so we make up a unit called a "slice" that's worth 25us.  There are 40
756  * slices in a full frame and we can schedule 36 of those (90%) for periodic
757  * transfers.
758  *
759  * Our low speed schedule can be as short as 1 frame or could be longer.  When
760  * we only schedule 1 frame it means that we'll need to reserve a time every
761  * frame even for things that only transfer very rarely, so something that runs
762  * every 2048 frames will get time reserved in every frame.  Our low speed
763  * schedule can be longer and we'll be able to handle more overlap, but that
764  * will come at increased memory cost and increased time to schedule.
765  *
766  * Note: one other advantage of a short low speed schedule is that if we mess
767  * up and miss scheduling we can jump in and use any of the slots that we
768  * happened to reserve.
769  *
770  * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
771  * the schedule.  There will be one schedule per TT.
772  *
773  * Requirements:
774  * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
775  */
776 #define DWC2_US_PER_SLICE	25
777 #define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
778 
779 #define DWC2_ROUND_US_TO_SLICE(us) \
780 				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
781 				 DWC2_US_PER_SLICE)
782 
783 #define DWC2_LS_PERIODIC_US_PER_FRAME \
784 				900
785 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
786 				(DWC2_LS_PERIODIC_US_PER_FRAME / \
787 				 DWC2_US_PER_SLICE)
788 
789 #define DWC2_LS_SCHEDULE_FRAMES	1
790 #define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
791 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
792 
793 /**
794  * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
795  * and periodic schedules
796  *
797  * These are common for both host and peripheral modes:
798  *
799  * @dev:                The struct device pointer
800  * @regs:		Pointer to controller regs
801  * @hw_params:          Parameters that were autodetected from the
802  *                      hardware registers
803  * @core_params:	Parameters that define how the core should be configured
804  * @op_state:           The operational State, during transitions (a_host=>
805  *                      a_peripheral and b_device=>b_host) this may not match
806  *                      the core, but allows the software to determine
807  *                      transitions
808  * @dr_mode:            Requested mode of operation, one of following:
809  *                      - USB_DR_MODE_PERIPHERAL
810  *                      - USB_DR_MODE_HOST
811  *                      - USB_DR_MODE_OTG
812  * @hcd_enabled		Host mode sub-driver initialization indicator.
813  * @gadget_enabled	Peripheral mode sub-driver initialization indicator.
814  * @ll_hw_enabled	Status of low-level hardware resources.
815  * @hibernated:		True if core is hibernated
816  * @phy:                The otg phy transceiver structure for phy control.
817  * @uphy:               The otg phy transceiver structure for old USB phy
818  *                      control.
819  * @plat:               The platform specific configuration data. This can be
820  *                      removed once all SoCs support usb transceiver.
821  * @supplies:           Definition of USB power supplies
822  * @vbus_supply:        Regulator supplying vbus.
823  * @phyif:              PHY interface width
824  * @lock:		Spinlock that protects all the driver data structures
825  * @priv:		Stores a pointer to the struct usb_hcd
826  * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
827  *                      transfer are in process of being queued
828  * @srp_success:        Stores status of SRP request in the case of a FS PHY
829  *                      with an I2C interface
830  * @wq_otg:             Workqueue object used for handling of some interrupts
831  * @wf_otg:             Work object for handling Connector ID Status Change
832  *                      interrupt
833  * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
834  * @lx_state:           Lx state of connected device
835  * @gregs_backup: Backup of global registers during suspend
836  * @dregs_backup: Backup of device registers during suspend
837  * @hregs_backup: Backup of host registers during suspend
838  *
839  * These are for host mode:
840  *
841  * @flags:              Flags for handling root port state changes
842  * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
843  *                      Transfers associated with these QHs are not currently
844  *                      assigned to a host channel.
845  * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
846  *                      Transfers associated with these QHs are currently
847  *                      assigned to a host channel.
848  * @non_periodic_qh_ptr: Pointer to next QH to process in the active
849  *                      non-periodic schedule
850  * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
851  *                      list of QHs for periodic transfers that are _not_
852  *                      scheduled for the next frame. Each QH in the list has an
853  *                      interval counter that determines when it needs to be
854  *                      scheduled for execution. This scheduling mechanism
855  *                      allows only a simple calculation for periodic bandwidth
856  *                      used (i.e. must assume that all periodic transfers may
857  *                      need to execute in the same frame). However, it greatly
858  *                      simplifies scheduling and should be sufficient for the
859  *                      vast majority of OTG hosts, which need to connect to a
860  *                      small number of peripherals at one time. Items move from
861  *                      this list to periodic_sched_ready when the QH interval
862  *                      counter is 0 at SOF.
863  * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
864  *                      the next frame, but have not yet been assigned to host
865  *                      channels. Items move from this list to
866  *                      periodic_sched_assigned as host channels become
867  *                      available during the current frame.
868  * @periodic_sched_assigned: List of periodic QHs to be executed in the next
869  *                      frame that are assigned to host channels. Items move
870  *                      from this list to periodic_sched_queued as the
871  *                      transactions for the QH are queued to the DWC_otg
872  *                      controller.
873  * @periodic_sched_queued: List of periodic QHs that have been queued for
874  *                      execution. Items move from this list to either
875  *                      periodic_sched_inactive or periodic_sched_ready when the
876  *                      channel associated with the transfer is released. If the
877  *                      interval for the QH is 1, the item moves to
878  *                      periodic_sched_ready because it must be rescheduled for
879  *                      the next frame. Otherwise, the item moves to
880  *                      periodic_sched_inactive.
881  * @split_order:        List keeping track of channels doing splits, in order.
882  * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
883  *                      This value is in microseconds per (micro)frame. The
884  *                      assumption is that all periodic transfers may occur in
885  *                      the same (micro)frame.
886  * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
887  *                      host is in high speed mode; low speed schedules are
888  *                      stored elsewhere since we need one per TT.
889  * @frame_number:       Frame number read from the core at SOF. The value ranges
890  *                      from 0 to HFNUM_MAX_FRNUM.
891  * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
892  *                      SOF enable/disable.
893  * @free_hc_list:       Free host channels in the controller. This is a list of
894  *                      struct dwc2_host_chan items.
895  * @periodic_channels:  Number of host channels assigned to periodic transfers.
896  *                      Currently assuming that there is a dedicated host
897  *                      channel for each periodic transaction and at least one
898  *                      host channel is available for non-periodic transactions.
899  * @non_periodic_channels: Number of host channels assigned to non-periodic
900  *                      transfers
901  * @available_host_channels Number of host channels available for the microframe
902  *                      scheduler to use
903  * @hc_ptr_array:       Array of pointers to the host channel descriptors.
904  *                      Allows accessing a host channel descriptor given the
905  *                      host channel number. This is useful in interrupt
906  *                      handlers.
907  * @status_buf:         Buffer used for data received during the status phase of
908  *                      a control transfer.
909  * @status_buf_dma:     DMA address for status_buf
910  * @start_work:         Delayed work for handling host A-cable connection
911  * @reset_work:         Delayed work for handling a port reset
912  * @otg_port:           OTG port number
913  * @frame_list:         Frame list
914  * @frame_list_dma:     Frame list DMA address
915  * @frame_list_sz:      Frame list size
916  * @desc_gen_cache:     Kmem cache for generic descriptors
917  * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
918  *
919  * These are for peripheral mode:
920  *
921  * @driver:             USB gadget driver
922  * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
923  * @num_of_eps:         Number of available EPs (excluding EP0)
924  * @debug_root:         Root directrory for debugfs.
925  * @debug_file:         Main status file for debugfs.
926  * @debug_testmode:     Testmode status file for debugfs.
927  * @debug_fifo:         FIFO status file for debugfs.
928  * @ep0_reply:          Request used for ep0 reply.
929  * @ep0_buff:           Buffer for EP0 reply data, if needed.
930  * @ctrl_buff:          Buffer for EP0 control requests.
931  * @ctrl_req:           Request for EP0 control packets.
932  * @ep0_state:          EP0 control transfers state
933  * @test_mode:          USB test mode requested by the host
934  * @remote_wakeup_allowed: True if device is allowed to wake-up host by
935  *                      remote-wakeup signalling
936  * @setup_desc_dma:	EP0 setup stage desc chain DMA address
937  * @setup_desc:		EP0 setup stage desc chain pointer
938  * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
939  * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
940  * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
941  * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
942  * @eps:                The endpoints being supplied to the gadget framework
943  */
944 struct dwc2_hsotg {
945 	struct device *dev;
946 	void __iomem *regs;
947 	/** Params detected from hardware */
948 	struct dwc2_hw_params hw_params;
949 	/** Params to actually use */
950 	struct dwc2_core_params params;
951 	enum usb_otg_state op_state;
952 	enum usb_dr_mode dr_mode;
953 	unsigned int hcd_enabled:1;
954 	unsigned int gadget_enabled:1;
955 	unsigned int ll_hw_enabled:1;
956 	unsigned int hibernated:1;
957 
958 	struct phy *phy;
959 	struct usb_phy *uphy;
960 	struct dwc2_hsotg_plat *plat;
961 	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
962 	struct regulator *vbus_supply;
963 	u32 phyif;
964 
965 	spinlock_t lock;
966 	void *priv;
967 	int     irq;
968 	struct clk *clk;
969 	struct reset_control *reset;
970 	struct reset_control *reset_ecc;
971 
972 	unsigned int queuing_high_bandwidth:1;
973 	unsigned int srp_success:1;
974 
975 	struct workqueue_struct *wq_otg;
976 	struct work_struct wf_otg;
977 	struct timer_list wkp_timer;
978 	enum dwc2_lx_state lx_state;
979 	struct dwc2_gregs_backup gr_backup;
980 	struct dwc2_dregs_backup dr_backup;
981 	struct dwc2_hregs_backup hr_backup;
982 
983 	struct dentry *debug_root;
984 	struct debugfs_regset32 *regset;
985 
986 	/* DWC OTG HW Release versions */
987 #define DWC2_CORE_REV_2_71a	0x4f54271a
988 #define DWC2_CORE_REV_2_80a	0x4f54280a
989 #define DWC2_CORE_REV_2_90a	0x4f54290a
990 #define DWC2_CORE_REV_2_91a	0x4f54291a
991 #define DWC2_CORE_REV_2_92a	0x4f54292a
992 #define DWC2_CORE_REV_2_94a	0x4f54294a
993 #define DWC2_CORE_REV_3_00a	0x4f54300a
994 #define DWC2_CORE_REV_3_10a	0x4f54310a
995 #define DWC2_FS_IOT_REV_1_00a	0x5531100a
996 #define DWC2_HS_IOT_REV_1_00a	0x5532100a
997 
998 	/* DWC OTG HW Core ID */
999 #define DWC2_OTG_ID		0x4f540000
1000 #define DWC2_FS_IOT_ID		0x55310000
1001 #define DWC2_HS_IOT_ID		0x55320000
1002 
1003 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1004 	union dwc2_hcd_internal_flags {
1005 		u32 d32;
1006 		struct {
1007 			unsigned port_connect_status_change:1;
1008 			unsigned port_connect_status:1;
1009 			unsigned port_reset_change:1;
1010 			unsigned port_enable_change:1;
1011 			unsigned port_suspend_change:1;
1012 			unsigned port_over_current_change:1;
1013 			unsigned port_l1_change:1;
1014 			unsigned reserved:25;
1015 		} b;
1016 	} flags;
1017 
1018 	struct list_head non_periodic_sched_inactive;
1019 	struct list_head non_periodic_sched_waiting;
1020 	struct list_head non_periodic_sched_active;
1021 	struct list_head *non_periodic_qh_ptr;
1022 	struct list_head periodic_sched_inactive;
1023 	struct list_head periodic_sched_ready;
1024 	struct list_head periodic_sched_assigned;
1025 	struct list_head periodic_sched_queued;
1026 	struct list_head split_order;
1027 	u16 periodic_usecs;
1028 	unsigned long hs_periodic_bitmap[
1029 		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
1030 	u16 frame_number;
1031 	u16 periodic_qh_count;
1032 	bool bus_suspended;
1033 	bool new_connection;
1034 
1035 	u16 last_frame_num;
1036 
1037 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1038 #define FRAME_NUM_ARRAY_SIZE 1000
1039 	u16 *frame_num_array;
1040 	u16 *last_frame_num_array;
1041 	int frame_num_idx;
1042 	int dumped_frame_num_array;
1043 #endif
1044 
1045 	struct list_head free_hc_list;
1046 	int periodic_channels;
1047 	int non_periodic_channels;
1048 	int available_host_channels;
1049 	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1050 	u8 *status_buf;
1051 	dma_addr_t status_buf_dma;
1052 #define DWC2_HCD_STATUS_BUF_SIZE 64
1053 
1054 	struct delayed_work start_work;
1055 	struct delayed_work reset_work;
1056 	u8 otg_port;
1057 	u32 *frame_list;
1058 	dma_addr_t frame_list_dma;
1059 	u32 frame_list_sz;
1060 	struct kmem_cache *desc_gen_cache;
1061 	struct kmem_cache *desc_hsisoc_cache;
1062 
1063 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1064 
1065 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1066 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1067 	/* Gadget structures */
1068 	struct usb_gadget_driver *driver;
1069 	int fifo_mem;
1070 	unsigned int dedicated_fifos:1;
1071 	unsigned char num_of_eps;
1072 	u32 fifo_map;
1073 
1074 	struct usb_request *ep0_reply;
1075 	struct usb_request *ctrl_req;
1076 	void *ep0_buff;
1077 	void *ctrl_buff;
1078 	enum dwc2_ep0_state ep0_state;
1079 	u8 test_mode;
1080 
1081 	dma_addr_t setup_desc_dma[2];
1082 	struct dwc2_dma_desc *setup_desc[2];
1083 	dma_addr_t ctrl_in_desc_dma;
1084 	struct dwc2_dma_desc *ctrl_in_desc;
1085 	dma_addr_t ctrl_out_desc_dma;
1086 	struct dwc2_dma_desc *ctrl_out_desc;
1087 
1088 	struct usb_gadget gadget;
1089 	unsigned int enabled:1;
1090 	unsigned int connected:1;
1091 	unsigned int remote_wakeup_allowed:1;
1092 	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1093 	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1094 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1095 };
1096 
1097 /* Reasons for halting a host channel */
1098 enum dwc2_halt_status {
1099 	DWC2_HC_XFER_NO_HALT_STATUS,
1100 	DWC2_HC_XFER_COMPLETE,
1101 	DWC2_HC_XFER_URB_COMPLETE,
1102 	DWC2_HC_XFER_ACK,
1103 	DWC2_HC_XFER_NAK,
1104 	DWC2_HC_XFER_NYET,
1105 	DWC2_HC_XFER_STALL,
1106 	DWC2_HC_XFER_XACT_ERR,
1107 	DWC2_HC_XFER_FRAME_OVERRUN,
1108 	DWC2_HC_XFER_BABBLE_ERR,
1109 	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1110 	DWC2_HC_XFER_AHB_ERR,
1111 	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1112 	DWC2_HC_XFER_URB_DEQUEUE,
1113 };
1114 
1115 /* Core version information */
1116 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1117 {
1118 	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1119 }
1120 
1121 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1122 {
1123 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1124 }
1125 
1126 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1127 {
1128 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1129 }
1130 
1131 /*
1132  * The following functions support initialization of the core driver component
1133  * and the DWC_otg controller
1134  */
1135 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1136 int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1137 int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, bool restore);
1138 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1139 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1140 		int reset, int is_host);
1141 
1142 void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
1143 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1144 
1145 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1146 
1147 /*
1148  * Common core Functions.
1149  * The following functions support managing the DWC_otg controller in either
1150  * device or host mode.
1151  */
1152 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1153 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1154 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1155 
1156 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1157 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1158 
1159 void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1160 			     int is_host);
1161 int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1162 int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1163 
1164 void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1165 
1166 /* This function should be called on every hardware interrupt. */
1167 irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1168 
1169 /* The device ID match table */
1170 extern const struct of_device_id dwc2_of_match_table[];
1171 
1172 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1173 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1174 
1175 /* Common polling functions */
1176 int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1177 			    u32 timeout);
1178 int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1179 			      u32 timeout);
1180 /* Parameters */
1181 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1182 int dwc2_init_params(struct dwc2_hsotg *hsotg);
1183 
1184 /*
1185  * The following functions check the controller's OTG operation mode
1186  * capability (GHWCFG2.OTG_MODE).
1187  *
1188  * These functions can be used before the internal hsotg->hw_params
1189  * are read in and cached so they always read directly from the
1190  * GHWCFG2 register.
1191  */
1192 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1193 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1194 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1195 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1196 
1197 /*
1198  * Returns the mode of operation, host or device
1199  */
1200 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1201 {
1202 	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1203 }
1204 
1205 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1206 {
1207 	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1208 }
1209 
1210 /*
1211  * Dump core registers and SPRAM
1212  */
1213 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1214 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1215 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1216 
1217 /* Gadget defines */
1218 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1219 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1220 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1221 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1222 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1223 int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1224 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1225 				       bool reset);
1226 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1227 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1228 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1229 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1230 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1231 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
1232 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1233 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1234 				 int rem_wakeup, int reset);
1235 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1236 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1237 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1238 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1239 #else
1240 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1241 { return 0; }
1242 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1243 { return 0; }
1244 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1245 { return 0; }
1246 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1247 { return 0; }
1248 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1249 						     bool reset) {}
1250 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1251 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1252 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1253 					   int testmode)
1254 { return 0; }
1255 #define dwc2_is_device_connected(hsotg) (0)
1256 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1257 { return 0; }
1258 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1259 						int remote_wakeup)
1260 { return 0; }
1261 static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1262 { return 0; }
1263 static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1264 					       int rem_wakeup, int reset)
1265 { return 0; }
1266 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1267 { return 0; }
1268 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1269 { return 0; }
1270 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1271 { return 0; }
1272 static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
1273 #endif
1274 
1275 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1276 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1277 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1278 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1279 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1280 void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1281 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1282 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1283 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1284 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1285 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1286 			       int rem_wakeup, int reset);
1287 #else
1288 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1289 { return 0; }
1290 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1291 						   int us)
1292 { return 0; }
1293 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1294 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1295 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1296 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1297 static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1298 { return 0; }
1299 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1300 { return 0; }
1301 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1302 { return 0; }
1303 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1304 { return 0; }
1305 static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1306 { return 0; }
1307 static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1308 					     int rem_wakeup, int reset)
1309 { return 0; }
1310 
1311 #endif
1312 
1313 #endif /* __DWC2_CORE_H__ */
1314