1 /* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */ 2 /* 3 * core.h - DesignWare HS OTG Controller common declarations 4 * 5 * Copyright (C) 2004-2013 Synopsys, Inc. 6 */ 7 8 #ifndef __DWC2_CORE_H__ 9 #define __DWC2_CORE_H__ 10 11 #include <linux/acpi.h> 12 #include <linux/phy/phy.h> 13 #include <linux/regulator/consumer.h> 14 #include <linux/usb/gadget.h> 15 #include <linux/usb/otg.h> 16 #include <linux/usb/phy.h> 17 #include "hw.h" 18 19 /* 20 * Suggested defines for tracers: 21 * - no_printk: Disable tracing 22 * - pr_info: Print this info to the console 23 * - trace_printk: Print this info to trace buffer (good for verbose logging) 24 */ 25 26 #define DWC2_TRACE_SCHEDULER no_printk 27 #define DWC2_TRACE_SCHEDULER_VB no_printk 28 29 /* Detailed scheduler tracing, but won't overwhelm console */ 30 #define dwc2_sch_dbg(hsotg, fmt, ...) \ 31 DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt), \ 32 dev_name(hsotg->dev), ##__VA_ARGS__) 33 34 /* Verbose scheduler tracing */ 35 #define dwc2_sch_vdbg(hsotg, fmt, ...) \ 36 DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \ 37 dev_name(hsotg->dev), ##__VA_ARGS__) 38 39 /* Maximum number of Endpoints/HostChannels */ 40 #define MAX_EPS_CHANNELS 16 41 42 /* dwc2-hsotg declarations */ 43 static const char * const dwc2_hsotg_supply_names[] = { 44 "vusb_d", /* digital USB supply, 1.2V */ 45 "vusb_a", /* analog USB supply, 1.1V */ 46 }; 47 48 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names) 49 50 /* 51 * EP0_MPS_LIMIT 52 * 53 * Unfortunately there seems to be a limit of the amount of data that can 54 * be transferred by IN transactions on EP0. This is either 127 bytes or 3 55 * packets (which practically means 1 packet and 63 bytes of data) when the 56 * MPS is set to 64. 57 * 58 * This means if we are wanting to move >127 bytes of data, we need to 59 * split the transactions up, but just doing one packet at a time does 60 * not work (this may be an implicit DATA0 PID on first packet of the 61 * transaction) and doing 2 packets is outside the controller's limits. 62 * 63 * If we try to lower the MPS size for EP0, then no transfers work properly 64 * for EP0, and the system will fail basic enumeration. As no cause for this 65 * has currently been found, we cannot support any large IN transfers for 66 * EP0. 67 */ 68 #define EP0_MPS_LIMIT 64 69 70 struct dwc2_hsotg; 71 struct dwc2_hsotg_req; 72 73 /** 74 * struct dwc2_hsotg_ep - driver endpoint definition. 75 * @ep: The gadget layer representation of the endpoint. 76 * @name: The driver generated name for the endpoint. 77 * @queue: Queue of requests for this endpoint. 78 * @parent: Reference back to the parent device structure. 79 * @req: The current request that the endpoint is processing. This is 80 * used to indicate an request has been loaded onto the endpoint 81 * and has yet to be completed (maybe due to data move, or simply 82 * awaiting an ack from the core all the data has been completed). 83 * @debugfs: File entry for debugfs file for this endpoint. 84 * @dir_in: Set to true if this endpoint is of the IN direction, which 85 * means that it is sending data to the Host. 86 * @map_dir: Set to the value of dir_in when the DMA buffer is mapped. 87 * @index: The index for the endpoint registers. 88 * @mc: Multi Count - number of transactions per microframe 89 * @interval: Interval for periodic endpoints, in frames or microframes. 90 * @name: The name array passed to the USB core. 91 * @halted: Set if the endpoint has been halted. 92 * @periodic: Set if this is a periodic ep, such as Interrupt 93 * @isochronous: Set if this is a isochronous ep 94 * @send_zlp: Set if we need to send a zero-length packet. 95 * @wedged: Set if ep is wedged. 96 * @desc_list_dma: The DMA address of descriptor chain currently in use. 97 * @desc_list: Pointer to descriptor DMA chain head currently in use. 98 * @desc_count: Count of entries within the DMA descriptor chain of EP. 99 * @next_desc: index of next free descriptor in the ISOC chain under SW control. 100 * @compl_desc: index of next descriptor to be completed by xFerComplete 101 * @total_data: The total number of data bytes done. 102 * @fifo_size: The size of the FIFO (for periodic IN endpoints) 103 * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0. 104 * @fifo_load: The amount of data loaded into the FIFO (periodic IN) 105 * @last_load: The offset of data for the last start of request. 106 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN 107 * @target_frame: Targeted frame num to setup next ISOC transfer 108 * @frame_overrun: Indicates SOF number overrun in DSTS 109 * 110 * This is the driver's state for each registered endpoint, allowing it 111 * to keep track of transactions that need doing. Each endpoint has a 112 * lock to protect the state, to try and avoid using an overall lock 113 * for the host controller as much as possible. 114 * 115 * For periodic IN endpoints, we have fifo_size and fifo_load to try 116 * and keep track of the amount of data in the periodic FIFO for each 117 * of these as we don't have a status register that tells us how much 118 * is in each of them. (note, this may actually be useless information 119 * as in shared-fifo mode periodic in acts like a single-frame packet 120 * buffer than a fifo) 121 */ 122 struct dwc2_hsotg_ep { 123 struct usb_ep ep; 124 struct list_head queue; 125 struct dwc2_hsotg *parent; 126 struct dwc2_hsotg_req *req; 127 struct dentry *debugfs; 128 129 unsigned long total_data; 130 unsigned int size_loaded; 131 unsigned int last_load; 132 unsigned int fifo_load; 133 unsigned short fifo_size; 134 unsigned short fifo_index; 135 136 unsigned char dir_in; 137 unsigned char map_dir; 138 unsigned char index; 139 unsigned char mc; 140 u16 interval; 141 142 unsigned int halted:1; 143 unsigned int periodic:1; 144 unsigned int isochronous:1; 145 unsigned int send_zlp:1; 146 unsigned int wedged:1; 147 unsigned int target_frame; 148 #define TARGET_FRAME_INITIAL 0xFFFFFFFF 149 bool frame_overrun; 150 151 dma_addr_t desc_list_dma; 152 struct dwc2_dma_desc *desc_list; 153 u8 desc_count; 154 155 unsigned int next_desc; 156 unsigned int compl_desc; 157 158 char name[10]; 159 }; 160 161 /** 162 * struct dwc2_hsotg_req - data transfer request 163 * @req: The USB gadget request 164 * @queue: The list of requests for the endpoint this is queued for. 165 * @saved_req_buf: variable to save req.buf when bounce buffers are used. 166 */ 167 struct dwc2_hsotg_req { 168 struct usb_request req; 169 struct list_head queue; 170 void *saved_req_buf; 171 }; 172 173 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \ 174 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 175 #define call_gadget(_hs, _entry) \ 176 do { \ 177 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \ 178 (_hs)->driver && (_hs)->driver->_entry) { \ 179 spin_unlock(&_hs->lock); \ 180 (_hs)->driver->_entry(&(_hs)->gadget); \ 181 spin_lock(&_hs->lock); \ 182 } \ 183 } while (0) 184 #else 185 #define call_gadget(_hs, _entry) do {} while (0) 186 #endif 187 188 struct dwc2_hsotg; 189 struct dwc2_host_chan; 190 191 /* Device States */ 192 enum dwc2_lx_state { 193 DWC2_L0, /* On state */ 194 DWC2_L1, /* LPM sleep state */ 195 DWC2_L2, /* USB suspend state */ 196 DWC2_L3, /* Off state */ 197 }; 198 199 /* Gadget ep0 states */ 200 enum dwc2_ep0_state { 201 DWC2_EP0_SETUP, 202 DWC2_EP0_DATA_IN, 203 DWC2_EP0_DATA_OUT, 204 DWC2_EP0_STATUS_IN, 205 DWC2_EP0_STATUS_OUT, 206 }; 207 208 /** 209 * struct dwc2_core_params - Parameters for configuring the core 210 * 211 * @otg_caps: Specifies the OTG capabilities. OTG caps from the platform parameters, 212 * used to setup the: 213 * - HNP and SRP capable 214 * - SRP Only capable 215 * - No HNP/SRP capable (always available) 216 * Defaults to best available option 217 * - OTG revision number the device is compliant with, in binary-coded 218 * decimal (i.e. 2.0 is 0200H). (see struct usb_otg_caps) 219 * @host_dma: Specifies whether to use slave or DMA mode for accessing 220 * the data FIFOs. The driver will automatically detect the 221 * value for this parameter if none is specified. 222 * 0 - Slave (always available) 223 * 1 - DMA (default, if available) 224 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use 225 * address DMA mode or descriptor DMA mode for accessing 226 * the data FIFOs. The driver will automatically detect the 227 * value for this if none is specified. 228 * 0 - Address DMA 229 * 1 - Descriptor DMA (default, if available) 230 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use 231 * address DMA mode or descriptor DMA mode for accessing 232 * the data FIFOs in Full Speed mode only. The driver 233 * will automatically detect the value for this if none is 234 * specified. 235 * 0 - Address DMA 236 * 1 - Descriptor DMA in FS (default, if available) 237 * @speed: Specifies the maximum speed of operation in host and 238 * device mode. The actual speed depends on the speed of 239 * the attached device and the value of phy_type. 240 * 0 - High Speed 241 * (default when phy_type is UTMI+ or ULPI) 242 * 1 - Full Speed 243 * (default when phy_type is Full Speed) 244 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters 245 * 1 - Allow dynamic FIFO sizing (default, if available) 246 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs 247 * are enabled for non-periodic IN endpoints in device 248 * mode. 249 * @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when 250 * dynamic FIFO sizing is enabled 251 * 16 to 32768 252 * Actual maximum value is autodetected and also 253 * the default. 254 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO 255 * in host mode when dynamic FIFO sizing is enabled 256 * 16 to 32768 257 * Actual maximum value is autodetected and also 258 * the default. 259 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in 260 * host mode when dynamic FIFO sizing is enabled 261 * 16 to 32768 262 * Actual maximum value is autodetected and also 263 * the default. 264 * @max_transfer_size: The maximum transfer size supported, in bytes 265 * 2047 to 65,535 266 * Actual maximum value is autodetected and also 267 * the default. 268 * @max_packet_count: The maximum number of packets in a transfer 269 * 15 to 511 270 * Actual maximum value is autodetected and also 271 * the default. 272 * @host_channels: The number of host channel registers to use 273 * 1 to 16 274 * Actual maximum value is autodetected and also 275 * the default. 276 * @phy_type: Specifies the type of PHY interface to use. By default, 277 * the driver will automatically detect the phy_type. 278 * 0 - Full Speed Phy 279 * 1 - UTMI+ Phy 280 * 2 - ULPI Phy 281 * Defaults to best available option (2, 1, then 0) 282 * @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter 283 * is applicable for a phy_type of UTMI+ or ULPI. (For a 284 * ULPI phy_type, this parameter indicates the data width 285 * between the MAC and the ULPI Wrapper.) Also, this 286 * parameter is applicable only if the OTG_HSPHY_WIDTH cC 287 * parameter was set to "8 and 16 bits", meaning that the 288 * core has been configured to work at either data path 289 * width. 290 * 8 or 16 (default 16 if available) 291 * @eusb2_disc: Specifies whether eUSB2 PHY disconnect support flow 292 * applicable or no. Applicable in device mode of HSOTG 293 * and HS IOT cores v5.00 or higher. 294 * 0 - eUSB2 PHY disconnect support flow not applicable 295 * 1 - eUSB2 PHY disconnect support flow applicable 296 * @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single 297 * data rate. This parameter is only applicable if phy_type 298 * is ULPI. 299 * 0 - single data rate ULPI interface with 8 bit wide 300 * data bus (default) 301 * 1 - double data rate ULPI interface with 4 bit wide 302 * data bus 303 * @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or 304 * external supply to drive the VBus 305 * 0 - Internal supply (default) 306 * 1 - External supply 307 * @i2c_enable: Specifies whether to use the I2Cinterface for a full 308 * speed PHY. This parameter is only applicable if phy_type 309 * is FS. 310 * 0 - No (default) 311 * 1 - Yes 312 * @ipg_isoc_en: Indicates the IPG supports is enabled or disabled. 313 * 0 - Disable (default) 314 * 1 - Enable 315 * @acg_enable: For enabling Active Clock Gating in the controller 316 * 0 - No 317 * 1 - Yes 318 * @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only 319 * 0 - No (default) 320 * 1 - Yes 321 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported 322 * when attached to a Full Speed or Low Speed device in 323 * host mode. 324 * 0 - Don't support low power mode (default) 325 * 1 - Support low power mode 326 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode 327 * when connected to a Low Speed device in host 328 * mode. This parameter is applicable only if 329 * host_support_fs_ls_low_power is enabled. 330 * 0 - 48 MHz 331 * (default when phy_type is UTMI+ or ULPI) 332 * 1 - 6 MHz 333 * (default when phy_type is Full Speed) 334 * @oc_disable: Flag to disable overcurrent condition. 335 * 0 - Allow overcurrent condition to get detected 336 * 1 - Disable overcurrent condtion to get detected 337 * @ts_dline: Enable Term Select Dline pulsing 338 * 0 - No (default) 339 * 1 - Yes 340 * @reload_ctl: Allow dynamic reloading of HFIR register during runtime 341 * 0 - No (default for core < 2.92a) 342 * 1 - Yes (default for core >= 2.92a) 343 * @ahbcfg: This field allows the default value of the GAHBCFG 344 * register to be overridden 345 * -1 - GAHBCFG value will be set to 0x06 346 * (INCR, default) 347 * all others - GAHBCFG value will be overridden with 348 * this value 349 * Not all bits can be controlled like this, the 350 * bits defined by GAHBCFG_CTRL_MASK are controlled 351 * by the driver and are ignored in this 352 * configuration value. 353 * @uframe_sched: True to enable the microframe scheduler 354 * @external_id_pin_ctl: Specifies whether ID pin is handled externally. 355 * Disable CONIDSTSCHNG controller interrupt in such 356 * case. 357 * 0 - No (default) 358 * 1 - Yes 359 * @power_down: Specifies whether the controller support power_down. 360 * If power_down is enabled, the controller will enter 361 * power_down in both peripheral and host mode when 362 * needed. 363 * 0 - No (default) 364 * 1 - Partial power down 365 * 2 - Hibernation 366 * @no_clock_gating: Specifies whether to avoid clock gating feature. 367 * 0 - No (use clock gating) 368 * 1 - Yes (avoid it) 369 * @lpm: Enable LPM support. 370 * 0 - No 371 * 1 - Yes 372 * @lpm_clock_gating: Enable core PHY clock gating. 373 * 0 - No 374 * 1 - Yes 375 * @besl: Enable LPM Errata support. 376 * 0 - No 377 * 1 - Yes 378 * @hird_threshold_en: HIRD or HIRD Threshold enable. 379 * 0 - No 380 * 1 - Yes 381 * @hird_threshold: Value of BESL or HIRD Threshold. 382 * @ref_clk_per: Indicates in terms of pico seconds the period 383 * of ref_clk. 384 * 62500 - 16MHz 385 * 58823 - 17MHz 386 * 52083 - 19.2MHz 387 * 50000 - 20MHz 388 * 41666 - 24MHz 389 * 33333 - 30MHz (default) 390 * 25000 - 40MHz 391 * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which 392 * the controller should generate an interrupt if the 393 * device had been in L1 state until that period. 394 * This is used by SW to initiate Remote WakeUp in the 395 * controller so as to sync to the uF number from the host. 396 * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO 397 * register. 398 * 0 - Deactivate the transceiver (default) 399 * 1 - Activate the transceiver 400 * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level 401 * detection using GGPIO register. 402 * 0 - Deactivate the external level detection (default) 403 * 1 - Activate the external level detection 404 * @activate_ingenic_overcurrent_detection: Activate Ingenic overcurrent 405 * detection. 406 * 0 - Deactivate the overcurrent detection 407 * 1 - Activate the overcurrent detection (default) 408 * @g_dma: Enables gadget dma usage (default: autodetect). 409 * @g_dma_desc: Enables gadget descriptor DMA (default: autodetect). 410 * @g_rx_fifo_size: The periodic rx fifo size for the device, in 411 * DWORDS from 16-32768 (default: 2048 if 412 * possible, otherwise autodetect). 413 * @g_np_tx_fifo_size: The non-periodic tx fifo size for the device in 414 * DWORDS from 16-32768 (default: 1024 if 415 * possible, otherwise autodetect). 416 * @g_tx_fifo_size: An array of TX fifo sizes in dedicated fifo 417 * mode. Each value corresponds to one EP 418 * starting from EP1 (max 15 values). Sizes are 419 * in DWORDS with possible values from 420 * 16-32768 (default: 256, 256, 256, 256, 768, 421 * 768, 768, 768, 0, 0, 0, 0, 0, 0, 0). 422 * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL 423 * while full&low speed device connect. And change speed 424 * back to DWC2_SPEED_PARAM_HIGH while device is gone. 425 * 0 - No (default) 426 * 1 - Yes 427 * @service_interval: Enable service interval based scheduling. 428 * 0 - No 429 * 1 - Yes 430 * 431 * The following parameters may be specified when starting the module. These 432 * parameters define how the DWC_otg controller should be configured. A 433 * value of -1 (or any other out of range value) for any parameter means 434 * to read the value from hardware (if possible) or use the builtin 435 * default described above. 436 */ 437 struct dwc2_core_params { 438 struct usb_otg_caps otg_caps; 439 u8 phy_type; 440 #define DWC2_PHY_TYPE_PARAM_FS 0 441 #define DWC2_PHY_TYPE_PARAM_UTMI 1 442 #define DWC2_PHY_TYPE_PARAM_ULPI 2 443 444 u8 speed; 445 #define DWC2_SPEED_PARAM_HIGH 0 446 #define DWC2_SPEED_PARAM_FULL 1 447 #define DWC2_SPEED_PARAM_LOW 2 448 449 u8 phy_utmi_width; 450 bool eusb2_disc; 451 bool phy_ulpi_ddr; 452 bool phy_ulpi_ext_vbus; 453 bool enable_dynamic_fifo; 454 bool en_multiple_tx_fifo; 455 bool i2c_enable; 456 bool acg_enable; 457 bool ulpi_fs_ls; 458 bool ts_dline; 459 bool reload_ctl; 460 bool uframe_sched; 461 bool external_id_pin_ctl; 462 463 int power_down; 464 #define DWC2_POWER_DOWN_PARAM_NONE 0 465 #define DWC2_POWER_DOWN_PARAM_PARTIAL 1 466 #define DWC2_POWER_DOWN_PARAM_HIBERNATION 2 467 bool no_clock_gating; 468 469 bool lpm; 470 bool lpm_clock_gating; 471 bool besl; 472 bool hird_threshold_en; 473 bool service_interval; 474 u8 hird_threshold; 475 bool activate_stm_fs_transceiver; 476 bool activate_stm_id_vb_detection; 477 bool activate_ingenic_overcurrent_detection; 478 bool ipg_isoc_en; 479 u16 max_packet_count; 480 u32 max_transfer_size; 481 u32 ahbcfg; 482 483 /* GREFCLK parameters */ 484 u32 ref_clk_per; 485 u16 sof_cnt_wkup_alert; 486 487 /* Host parameters */ 488 bool host_dma; 489 bool dma_desc_enable; 490 bool dma_desc_fs_enable; 491 bool host_support_fs_ls_low_power; 492 bool host_ls_low_power_phy_clk; 493 bool oc_disable; 494 495 u8 host_channels; 496 u16 host_rx_fifo_size; 497 u16 host_nperio_tx_fifo_size; 498 u16 host_perio_tx_fifo_size; 499 500 /* Gadget parameters */ 501 bool g_dma; 502 bool g_dma_desc; 503 u32 g_rx_fifo_size; 504 u32 g_np_tx_fifo_size; 505 u32 g_tx_fifo_size[MAX_EPS_CHANNELS]; 506 507 bool change_speed_quirk; 508 }; 509 510 /** 511 * struct dwc2_hw_params - Autodetected parameters. 512 * 513 * These parameters are the various parameters read from hardware 514 * registers during initialization. They typically contain the best 515 * supported or maximum value that can be configured in the 516 * corresponding dwc2_core_params value. 517 * 518 * The values that are not in dwc2_core_params are documented below. 519 * 520 * @op_mode: Mode of Operation 521 * 0 - HNP- and SRP-Capable OTG (Host & Device) 522 * 1 - SRP-Capable OTG (Host & Device) 523 * 2 - Non-HNP and Non-SRP Capable OTG (Host & Device) 524 * 3 - SRP-Capable Device 525 * 4 - Non-OTG Device 526 * 5 - SRP-Capable Host 527 * 6 - Non-OTG Host 528 * @arch: Architecture 529 * 0 - Slave only 530 * 1 - External DMA 531 * 2 - Internal DMA 532 * @ipg_isoc_en: This feature indicates that the controller supports 533 * the worst-case scenario of Rx followed by Rx 534 * Interpacket Gap (IPG) (32 bitTimes) as per the utmi 535 * specification for any token following ISOC OUT token. 536 * 0 - Don't support 537 * 1 - Support 538 * @power_optimized: Are power optimizations enabled? 539 * @num_dev_ep: Number of device endpoints available 540 * @num_dev_in_eps: Number of device IN endpoints available 541 * @num_dev_perio_in_ep: Number of device periodic IN endpoints 542 * available 543 * @dev_token_q_depth: Device Mode IN Token Sequence Learning Queue 544 * Depth 545 * 0 to 30 546 * @host_perio_tx_q_depth: 547 * Host Mode Periodic Request Queue Depth 548 * 2, 4 or 8 549 * @nperio_tx_q_depth: 550 * Non-Periodic Request Queue Depth 551 * 2, 4 or 8 552 * @hs_phy_type: High-speed PHY interface type 553 * 0 - High-speed interface not supported 554 * 1 - UTMI+ 555 * 2 - ULPI 556 * 3 - UTMI+ and ULPI 557 * @fs_phy_type: Full-speed PHY interface type 558 * 0 - Full speed interface not supported 559 * 1 - Dedicated full speed interface 560 * 2 - FS pins shared with UTMI+ pins 561 * 3 - FS pins shared with ULPI pins 562 * @total_fifo_size: Total internal RAM for FIFOs (bytes) 563 * @hibernation: Is hibernation enabled? 564 * @utmi_phy_data_width: UTMI+ PHY data width 565 * 0 - 8 bits 566 * 1 - 16 bits 567 * 2 - 8 or 16 bits 568 * @snpsid: Value from SNPSID register 569 * @dev_ep_dirs: Direction of device endpoints (GHWCFG1) 570 * @g_tx_fifo_size: Power-on values of TxFIFO sizes 571 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use 572 * address DMA mode or descriptor DMA mode for accessing 573 * the data FIFOs. The driver will automatically detect the 574 * value for this if none is specified. 575 * 0 - Address DMA 576 * 1 - Descriptor DMA (default, if available) 577 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters 578 * 1 - Allow dynamic FIFO sizing (default, if available) 579 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs 580 * are enabled for non-periodic IN endpoints in device 581 * mode. 582 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO 583 * in host mode when dynamic FIFO sizing is enabled 584 * 16 to 32768 585 * Actual maximum value is autodetected and also 586 * the default. 587 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in 588 * host mode when dynamic FIFO sizing is enabled 589 * 16 to 32768 590 * Actual maximum value is autodetected and also 591 * the default. 592 * @max_transfer_size: The maximum transfer size supported, in bytes 593 * 2047 to 65,535 594 * Actual maximum value is autodetected and also 595 * the default. 596 * @max_packet_count: The maximum number of packets in a transfer 597 * 15 to 511 598 * Actual maximum value is autodetected and also 599 * the default. 600 * @host_channels: The number of host channel registers to use 601 * 1 to 16 602 * Actual maximum value is autodetected and also 603 * the default. 604 * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO 605 * in device mode when dynamic FIFO sizing is enabled 606 * 16 to 32768 607 * Actual maximum value is autodetected and also 608 * the default. 609 * @i2c_enable: Specifies whether to use the I2Cinterface for a full 610 * speed PHY. This parameter is only applicable if phy_type 611 * is FS. 612 * 0 - No (default) 613 * 1 - Yes 614 * @acg_enable: For enabling Active Clock Gating in the controller 615 * 0 - Disable 616 * 1 - Enable 617 * @lpm_mode: For enabling Link Power Management in the controller 618 * 0 - Disable 619 * 1 - Enable 620 * @rx_fifo_size: Number of 4-byte words in the Rx FIFO when dynamic 621 * FIFO sizing is enabled 16 to 32768 622 * Actual maximum value is autodetected and also 623 * the default. 624 * @service_interval_mode: For enabling service interval based scheduling in the 625 * controller. 626 * 0 - Disable 627 * 1 - Enable 628 */ 629 struct dwc2_hw_params { 630 unsigned op_mode:3; 631 unsigned arch:2; 632 unsigned dma_desc_enable:1; 633 unsigned enable_dynamic_fifo:1; 634 unsigned en_multiple_tx_fifo:1; 635 unsigned rx_fifo_size:16; 636 unsigned host_nperio_tx_fifo_size:16; 637 unsigned dev_nperio_tx_fifo_size:16; 638 unsigned host_perio_tx_fifo_size:16; 639 unsigned nperio_tx_q_depth:3; 640 unsigned host_perio_tx_q_depth:3; 641 unsigned dev_token_q_depth:5; 642 unsigned max_transfer_size:26; 643 unsigned max_packet_count:11; 644 unsigned host_channels:5; 645 unsigned hs_phy_type:2; 646 unsigned fs_phy_type:2; 647 unsigned i2c_enable:1; 648 unsigned acg_enable:1; 649 unsigned num_dev_ep:4; 650 unsigned num_dev_in_eps : 4; 651 unsigned num_dev_perio_in_ep:4; 652 unsigned total_fifo_size:16; 653 unsigned power_optimized:1; 654 unsigned hibernation:1; 655 unsigned utmi_phy_data_width:2; 656 unsigned lpm_mode:1; 657 unsigned ipg_isoc_en:1; 658 unsigned service_interval_mode:1; 659 u32 snpsid; 660 u32 dev_ep_dirs; 661 u32 g_tx_fifo_size[MAX_EPS_CHANNELS]; 662 }; 663 664 /* Size of control and EP0 buffers */ 665 #define DWC2_CTRL_BUFF_SIZE 8 666 667 /** 668 * struct dwc2_gregs_backup - Holds global registers state before 669 * entering partial power down 670 * @gotgctl: Backup of GOTGCTL register 671 * @gintmsk: Backup of GINTMSK register 672 * @gahbcfg: Backup of GAHBCFG register 673 * @gusbcfg: Backup of GUSBCFG register 674 * @grxfsiz: Backup of GRXFSIZ register 675 * @gnptxfsiz: Backup of GNPTXFSIZ register 676 * @gi2cctl: Backup of GI2CCTL register 677 * @glpmcfg: Backup of GLPMCFG register 678 * @gdfifocfg: Backup of GDFIFOCFG register 679 * @pcgcctl: Backup of PCGCCTL register 680 * @pcgcctl1: Backup of PCGCCTL1 register 681 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint 682 * @gpwrdn: Backup of GPWRDN register 683 * @valid: True if registers values backuped. 684 */ 685 struct dwc2_gregs_backup { 686 u32 gotgctl; 687 u32 gintmsk; 688 u32 gahbcfg; 689 u32 gusbcfg; 690 u32 grxfsiz; 691 u32 gnptxfsiz; 692 u32 gi2cctl; 693 u32 glpmcfg; 694 u32 pcgcctl; 695 u32 pcgcctl1; 696 u32 gdfifocfg; 697 u32 gpwrdn; 698 bool valid; 699 }; 700 701 /** 702 * struct dwc2_dregs_backup - Holds device registers state before 703 * entering partial power down 704 * @dcfg: Backup of DCFG register 705 * @dctl: Backup of DCTL register 706 * @daintmsk: Backup of DAINTMSK register 707 * @diepmsk: Backup of DIEPMSK register 708 * @doepmsk: Backup of DOEPMSK register 709 * @diepctl: Backup of DIEPCTL register 710 * @dieptsiz: Backup of DIEPTSIZ register 711 * @diepdma: Backup of DIEPDMA register 712 * @doepctl: Backup of DOEPCTL register 713 * @doeptsiz: Backup of DOEPTSIZ register 714 * @doepdma: Backup of DOEPDMA register 715 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint 716 * @valid: True if registers values backuped. 717 */ 718 struct dwc2_dregs_backup { 719 u32 dcfg; 720 u32 dctl; 721 u32 daintmsk; 722 u32 diepmsk; 723 u32 doepmsk; 724 u32 diepctl[MAX_EPS_CHANNELS]; 725 u32 dieptsiz[MAX_EPS_CHANNELS]; 726 u32 diepdma[MAX_EPS_CHANNELS]; 727 u32 doepctl[MAX_EPS_CHANNELS]; 728 u32 doeptsiz[MAX_EPS_CHANNELS]; 729 u32 doepdma[MAX_EPS_CHANNELS]; 730 u32 dtxfsiz[MAX_EPS_CHANNELS]; 731 bool valid; 732 }; 733 734 /** 735 * struct dwc2_hregs_backup - Holds host registers state before 736 * entering partial power down 737 * @hcfg: Backup of HCFG register 738 * @hflbaddr: Backup of HFLBADDR register 739 * @haintmsk: Backup of HAINTMSK register 740 * @hcchar: Backup of HCCHAR register 741 * @hcsplt: Backup of HCSPLT register 742 * @hcintmsk: Backup of HCINTMSK register 743 * @hctsiz: Backup of HCTSIZ register 744 * @hdma: Backup of HCDMA register 745 * @hcdmab: Backup of HCDMAB register 746 * @hprt0: Backup of HPTR0 register 747 * @hfir: Backup of HFIR register 748 * @hptxfsiz: Backup of HPTXFSIZ register 749 * @valid: True if registers values backuped. 750 */ 751 struct dwc2_hregs_backup { 752 u32 hcfg; 753 u32 hflbaddr; 754 u32 haintmsk; 755 u32 hcchar[MAX_EPS_CHANNELS]; 756 u32 hcsplt[MAX_EPS_CHANNELS]; 757 u32 hcintmsk[MAX_EPS_CHANNELS]; 758 u32 hctsiz[MAX_EPS_CHANNELS]; 759 u32 hcidma[MAX_EPS_CHANNELS]; 760 u32 hcidmab[MAX_EPS_CHANNELS]; 761 u32 hprt0; 762 u32 hfir; 763 u32 hptxfsiz; 764 bool valid; 765 }; 766 767 /* 768 * Constants related to high speed periodic scheduling 769 * 770 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a 771 * reservation point of view it's assumed that the schedule goes right back to 772 * the beginning after the end of the schedule. 773 * 774 * What does that mean for scheduling things with a long interval? It means 775 * we'll reserve time for them in every possible microframe that they could 776 * ever be scheduled in. ...but we'll still only actually schedule them as 777 * often as they were requested. 778 * 779 * We keep our schedule in a "bitmap" structure. This simplifies having 780 * to keep track of and merge intervals: we just let the bitmap code do most 781 * of the heavy lifting. In a way scheduling is much like memory allocation. 782 * 783 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're 784 * supposed to schedule for periodic transfers). That's according to spec. 785 * 786 * Note that though we only schedule 80% of each microframe, the bitmap that we 787 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of 788 * space for each uFrame). 789 * 790 * Requirements: 791 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1) 792 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably 793 * could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might 794 * be bugs). The 8 comes from the USB spec: number of microframes per frame. 795 */ 796 #define DWC2_US_PER_UFRAME 125 797 #define DWC2_HS_PERIODIC_US_PER_UFRAME 100 798 799 #define DWC2_HS_SCHEDULE_UFRAMES 8 800 #define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \ 801 DWC2_HS_PERIODIC_US_PER_UFRAME) 802 803 /* 804 * Constants related to low speed scheduling 805 * 806 * For high speed we schedule every 1us. For low speed that's a bit overkill, 807 * so we make up a unit called a "slice" that's worth 25us. There are 40 808 * slices in a full frame and we can schedule 36 of those (90%) for periodic 809 * transfers. 810 * 811 * Our low speed schedule can be as short as 1 frame or could be longer. When 812 * we only schedule 1 frame it means that we'll need to reserve a time every 813 * frame even for things that only transfer very rarely, so something that runs 814 * every 2048 frames will get time reserved in every frame. Our low speed 815 * schedule can be longer and we'll be able to handle more overlap, but that 816 * will come at increased memory cost and increased time to schedule. 817 * 818 * Note: one other advantage of a short low speed schedule is that if we mess 819 * up and miss scheduling we can jump in and use any of the slots that we 820 * happened to reserve. 821 * 822 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for 823 * the schedule. There will be one schedule per TT. 824 * 825 * Requirements: 826 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME. 827 */ 828 #define DWC2_US_PER_SLICE 25 829 #define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE) 830 831 #define DWC2_ROUND_US_TO_SLICE(us) \ 832 (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \ 833 DWC2_US_PER_SLICE) 834 835 #define DWC2_LS_PERIODIC_US_PER_FRAME \ 836 900 837 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \ 838 (DWC2_LS_PERIODIC_US_PER_FRAME / \ 839 DWC2_US_PER_SLICE) 840 841 #define DWC2_LS_SCHEDULE_FRAMES 1 842 #define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \ 843 DWC2_LS_PERIODIC_SLICES_PER_FRAME) 844 845 /** 846 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic 847 * and periodic schedules 848 * 849 * These are common for both host and peripheral modes: 850 * 851 * @dev: The struct device pointer 852 * @regs: Pointer to controller regs 853 * @hw_params: Parameters that were autodetected from the 854 * hardware registers 855 * @params: Parameters that define how the core should be configured 856 * @op_state: The operational State, during transitions (a_host=> 857 * a_peripheral and b_device=>b_host) this may not match 858 * the core, but allows the software to determine 859 * transitions 860 * @dr_mode: Requested mode of operation, one of following: 861 * - USB_DR_MODE_PERIPHERAL 862 * - USB_DR_MODE_HOST 863 * - USB_DR_MODE_OTG 864 * @role_sw: usb_role_switch handle 865 * @role_sw_default_mode: default operation mode of controller while usb role 866 * is USB_ROLE_NONE 867 * @hcd_enabled: Host mode sub-driver initialization indicator. 868 * @gadget_enabled: Peripheral mode sub-driver initialization indicator. 869 * @ll_hw_enabled: Status of low-level hardware resources. 870 * @hibernated: True if core is hibernated 871 * @in_ppd: True if core is partial power down mode. 872 * @bus_suspended: True if bus is suspended 873 * @reset_phy_on_wake: Quirk saying that we should assert PHY reset on a 874 * remote wakeup. 875 * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend. 876 * @need_phy_for_wake: Quirk saying that we should keep the PHY on at 877 * suspend if we need USB to wake us up. 878 * @frame_number: Frame number read from the core. For both device 879 * and host modes. The value ranges are from 0 880 * to HFNUM_MAX_FRNUM. 881 * @phy: The otg phy transceiver structure for phy control. 882 * @uphy: The otg phy transceiver structure for old USB phy 883 * control. 884 * @plat: The platform specific configuration data. This can be 885 * removed once all SoCs support usb transceiver. 886 * @supplies: Definition of USB power supplies 887 * @vbus_supply: Regulator supplying vbus. 888 * @usb33d: Optional 3.3v regulator used on some stm32 devices to 889 * supply ID and VBUS detection hardware. 890 * @lock: Spinlock that protects all the driver data structures 891 * @priv: Stores a pointer to the struct usb_hcd 892 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth 893 * transfer are in process of being queued 894 * @srp_success: Stores status of SRP request in the case of a FS PHY 895 * with an I2C interface 896 * @wq_otg: Workqueue object used for handling of some interrupts 897 * @wf_otg: Work object for handling Connector ID Status Change 898 * interrupt 899 * @wkp_timer: Timer object for handling Wakeup Detected interrupt 900 * @lx_state: Lx state of connected device 901 * @gr_backup: Backup of global registers during suspend 902 * @dr_backup: Backup of device registers during suspend 903 * @hr_backup: Backup of host registers during suspend 904 * @needs_byte_swap: Specifies whether the opposite endianness. 905 * 906 * These are for host mode: 907 * 908 * @flags: Flags for handling root port state changes 909 * @flags.d32: Contain all root port flags 910 * @flags.b: Separate root port flags from each other 911 * @flags.b.port_connect_status_change: True if root port connect status 912 * changed 913 * @flags.b.port_connect_status: True if device connected to root port 914 * @flags.b.port_reset_change: True if root port reset status changed 915 * @flags.b.port_enable_change: True if root port enable status changed 916 * @flags.b.port_suspend_change: True if root port suspend status changed 917 * @flags.b.port_over_current_change: True if root port over current state 918 * changed. 919 * @flags.b.port_l1_change: True if root port l1 status changed 920 * @flags.b.reserved: Reserved bits of root port register 921 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule. 922 * Transfers associated with these QHs are not currently 923 * assigned to a host channel. 924 * @non_periodic_sched_active: Active QHs in the non-periodic schedule. 925 * Transfers associated with these QHs are currently 926 * assigned to a host channel. 927 * @non_periodic_qh_ptr: Pointer to next QH to process in the active 928 * non-periodic schedule 929 * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule. 930 * Transfers associated with these QHs are not currently 931 * assigned to a host channel. 932 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a 933 * list of QHs for periodic transfers that are _not_ 934 * scheduled for the next frame. Each QH in the list has an 935 * interval counter that determines when it needs to be 936 * scheduled for execution. This scheduling mechanism 937 * allows only a simple calculation for periodic bandwidth 938 * used (i.e. must assume that all periodic transfers may 939 * need to execute in the same frame). However, it greatly 940 * simplifies scheduling and should be sufficient for the 941 * vast majority of OTG hosts, which need to connect to a 942 * small number of peripherals at one time. Items move from 943 * this list to periodic_sched_ready when the QH interval 944 * counter is 0 at SOF. 945 * @periodic_sched_ready: List of periodic QHs that are ready for execution in 946 * the next frame, but have not yet been assigned to host 947 * channels. Items move from this list to 948 * periodic_sched_assigned as host channels become 949 * available during the current frame. 950 * @periodic_sched_assigned: List of periodic QHs to be executed in the next 951 * frame that are assigned to host channels. Items move 952 * from this list to periodic_sched_queued as the 953 * transactions for the QH are queued to the DWC_otg 954 * controller. 955 * @periodic_sched_queued: List of periodic QHs that have been queued for 956 * execution. Items move from this list to either 957 * periodic_sched_inactive or periodic_sched_ready when the 958 * channel associated with the transfer is released. If the 959 * interval for the QH is 1, the item moves to 960 * periodic_sched_ready because it must be rescheduled for 961 * the next frame. Otherwise, the item moves to 962 * periodic_sched_inactive. 963 * @split_order: List keeping track of channels doing splits, in order. 964 * @periodic_usecs: Total bandwidth claimed so far for periodic transfers. 965 * This value is in microseconds per (micro)frame. The 966 * assumption is that all periodic transfers may occur in 967 * the same (micro)frame. 968 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the 969 * host is in high speed mode; low speed schedules are 970 * stored elsewhere since we need one per TT. 971 * @periodic_qh_count: Count of periodic QHs, if using several eps. Used for 972 * SOF enable/disable. 973 * @free_hc_list: Free host channels in the controller. This is a list of 974 * struct dwc2_host_chan items. 975 * @periodic_channels: Number of host channels assigned to periodic transfers. 976 * Currently assuming that there is a dedicated host 977 * channel for each periodic transaction and at least one 978 * host channel is available for non-periodic transactions. 979 * @non_periodic_channels: Number of host channels assigned to non-periodic 980 * transfers 981 * @available_host_channels: Number of host channels available for the 982 * microframe scheduler to use 983 * @hc_ptr_array: Array of pointers to the host channel descriptors. 984 * Allows accessing a host channel descriptor given the 985 * host channel number. This is useful in interrupt 986 * handlers. 987 * @status_buf: Buffer used for data received during the status phase of 988 * a control transfer. 989 * @status_buf_dma: DMA address for status_buf 990 * @start_work: Delayed work for handling host A-cable connection 991 * @reset_work: Delayed work for handling a port reset 992 * @phy_reset_work: Work structure for doing a PHY reset 993 * @otg_port: OTG port number 994 * @frame_list: Frame list 995 * @frame_list_dma: Frame list DMA address 996 * @frame_list_sz: Frame list size 997 * @desc_gen_cache: Kmem cache for generic descriptors 998 * @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors 999 * @unaligned_cache: Kmem cache for DMA mode to handle non-aligned buf 1000 * 1001 * These are for peripheral mode: 1002 * 1003 * @driver: USB gadget driver 1004 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos. 1005 * @num_of_eps: Number of available EPs (excluding EP0) 1006 * @debug_root: Root directrory for debugfs. 1007 * @ep0_reply: Request used for ep0 reply. 1008 * @ep0_buff: Buffer for EP0 reply data, if needed. 1009 * @ctrl_buff: Buffer for EP0 control requests. 1010 * @ctrl_req: Request for EP0 control packets. 1011 * @ep0_state: EP0 control transfers state 1012 * @delayed_status: true when gadget driver asks for delayed status 1013 * @test_mode: USB test mode requested by the host 1014 * @remote_wakeup_allowed: True if device is allowed to wake-up host by 1015 * remote-wakeup signalling 1016 * @setup_desc_dma: EP0 setup stage desc chain DMA address 1017 * @setup_desc: EP0 setup stage desc chain pointer 1018 * @ctrl_in_desc_dma: EP0 IN data phase desc chain DMA address 1019 * @ctrl_in_desc: EP0 IN data phase desc chain pointer 1020 * @ctrl_out_desc_dma: EP0 OUT data phase desc chain DMA address 1021 * @ctrl_out_desc: EP0 OUT data phase desc chain pointer 1022 * @irq: Interrupt request line number 1023 * @clk: Pointer to otg clock 1024 * @utmi_clk: Pointer to utmi_clk clock 1025 * @reset: Pointer to dwc2 reset controller 1026 * @reset_ecc: Pointer to dwc2 optional reset controller in Stratix10. 1027 * @regset: A pointer to a struct debugfs_regset32, which contains 1028 * a pointer to an array of register definitions, the 1029 * array size and the base address where the register bank 1030 * is to be found. 1031 * @last_frame_num: Number of last frame. Range from 0 to 32768 1032 * @frame_num_array: Used only if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is 1033 * defined, for missed SOFs tracking. Array holds that 1034 * frame numbers, which not equal to last_frame_num +1 1035 * @last_frame_num_array: Used only if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is 1036 * defined, for missed SOFs tracking. 1037 * If current_frame_number != last_frame_num+1 1038 * then last_frame_num added to this array 1039 * @frame_num_idx: Actual size of frame_num_array and last_frame_num_array 1040 * @dumped_frame_num_array: 1 - if missed SOFs frame numbers dumbed 1041 * 0 - if missed SOFs frame numbers not dumbed 1042 * @fifo_mem: Total internal RAM for FIFOs (bytes) 1043 * @fifo_map: Each bit intend for concrete fifo. If that bit is set, 1044 * then that fifo is used 1045 * @gadget: Represents a usb gadget device 1046 * @connected: Used in slave mode. True if device connected with host 1047 * @eps_in: The IN endpoints being supplied to the gadget framework 1048 * @eps_out: The OUT endpoints being supplied to the gadget framework 1049 * @new_connection: Used in host mode. True if there are new connected 1050 * device 1051 * @enabled: Indicates the enabling state of controller 1052 * 1053 */ 1054 struct dwc2_hsotg { 1055 struct device *dev; 1056 void __iomem *regs; 1057 /** Params detected from hardware */ 1058 struct dwc2_hw_params hw_params; 1059 /** Params to actually use */ 1060 struct dwc2_core_params params; 1061 enum usb_otg_state op_state; 1062 enum usb_dr_mode dr_mode; 1063 struct usb_role_switch *role_sw; 1064 enum usb_dr_mode role_sw_default_mode; 1065 unsigned int hcd_enabled:1; 1066 unsigned int gadget_enabled:1; 1067 unsigned int ll_hw_enabled:1; 1068 unsigned int hibernated:1; 1069 unsigned int in_ppd:1; 1070 bool bus_suspended; 1071 unsigned int reset_phy_on_wake:1; 1072 unsigned int need_phy_for_wake:1; 1073 unsigned int phy_off_for_suspend:1; 1074 u16 frame_number; 1075 1076 struct phy *phy; 1077 struct usb_phy *uphy; 1078 struct dwc2_hsotg_plat *plat; 1079 struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES]; 1080 struct regulator *vbus_supply; 1081 struct regulator *usb33d; 1082 1083 spinlock_t lock; 1084 void *priv; 1085 int irq; 1086 struct clk *clk; 1087 struct clk *utmi_clk; 1088 struct reset_control *reset; 1089 struct reset_control *reset_ecc; 1090 1091 unsigned int queuing_high_bandwidth:1; 1092 unsigned int srp_success:1; 1093 1094 struct workqueue_struct *wq_otg; 1095 struct work_struct wf_otg; 1096 struct timer_list wkp_timer; 1097 enum dwc2_lx_state lx_state; 1098 struct dwc2_gregs_backup gr_backup; 1099 struct dwc2_dregs_backup dr_backup; 1100 struct dwc2_hregs_backup hr_backup; 1101 1102 struct dentry *debug_root; 1103 struct debugfs_regset32 *regset; 1104 bool needs_byte_swap; 1105 1106 /* DWC OTG HW Release versions */ 1107 #define DWC2_CORE_REV_4_30a 0x4f54430a 1108 #define DWC2_CORE_REV_2_71a 0x4f54271a 1109 #define DWC2_CORE_REV_2_72a 0x4f54272a 1110 #define DWC2_CORE_REV_2_80a 0x4f54280a 1111 #define DWC2_CORE_REV_2_90a 0x4f54290a 1112 #define DWC2_CORE_REV_2_91a 0x4f54291a 1113 #define DWC2_CORE_REV_2_92a 0x4f54292a 1114 #define DWC2_CORE_REV_2_94a 0x4f54294a 1115 #define DWC2_CORE_REV_3_00a 0x4f54300a 1116 #define DWC2_CORE_REV_3_10a 0x4f54310a 1117 #define DWC2_CORE_REV_4_00a 0x4f54400a 1118 #define DWC2_CORE_REV_4_20a 0x4f54420a 1119 #define DWC2_CORE_REV_5_00a 0x4f54500a 1120 #define DWC2_FS_IOT_REV_1_00a 0x5531100a 1121 #define DWC2_HS_IOT_REV_1_00a 0x5532100a 1122 #define DWC2_HS_IOT_REV_5_00a 0x5532500a 1123 #define DWC2_CORE_REV_MASK 0x0000ffff 1124 1125 /* DWC OTG HW Core ID */ 1126 #define DWC2_OTG_ID 0x4f540000 1127 #define DWC2_FS_IOT_ID 0x55310000 1128 #define DWC2_HS_IOT_ID 0x55320000 1129 1130 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 1131 union dwc2_hcd_internal_flags { 1132 u32 d32; 1133 struct { 1134 unsigned port_connect_status_change:1; 1135 unsigned port_connect_status:1; 1136 unsigned port_reset_change:1; 1137 unsigned port_enable_change:1; 1138 unsigned port_suspend_change:1; 1139 unsigned port_over_current_change:1; 1140 unsigned port_l1_change:1; 1141 unsigned reserved:25; 1142 } b; 1143 } flags; 1144 1145 struct list_head non_periodic_sched_inactive; 1146 struct list_head non_periodic_sched_waiting; 1147 struct list_head non_periodic_sched_active; 1148 struct list_head *non_periodic_qh_ptr; 1149 struct list_head periodic_sched_inactive; 1150 struct list_head periodic_sched_ready; 1151 struct list_head periodic_sched_assigned; 1152 struct list_head periodic_sched_queued; 1153 struct list_head split_order; 1154 u16 periodic_usecs; 1155 DECLARE_BITMAP(hs_periodic_bitmap, DWC2_HS_SCHEDULE_US); 1156 u16 periodic_qh_count; 1157 bool new_connection; 1158 1159 u16 last_frame_num; 1160 1161 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS 1162 #define FRAME_NUM_ARRAY_SIZE 1000 1163 u16 *frame_num_array; 1164 u16 *last_frame_num_array; 1165 int frame_num_idx; 1166 int dumped_frame_num_array; 1167 #endif 1168 1169 struct list_head free_hc_list; 1170 int periodic_channels; 1171 int non_periodic_channels; 1172 int available_host_channels; 1173 struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS]; 1174 u8 *status_buf; 1175 dma_addr_t status_buf_dma; 1176 #define DWC2_HCD_STATUS_BUF_SIZE 64 1177 1178 struct delayed_work start_work; 1179 struct delayed_work reset_work; 1180 struct work_struct phy_reset_work; 1181 u8 otg_port; 1182 u32 *frame_list; 1183 dma_addr_t frame_list_dma; 1184 u32 frame_list_sz; 1185 struct kmem_cache *desc_gen_cache; 1186 struct kmem_cache *desc_hsisoc_cache; 1187 struct kmem_cache *unaligned_cache; 1188 #define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024 1189 1190 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */ 1191 1192 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \ 1193 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 1194 /* Gadget structures */ 1195 struct usb_gadget_driver *driver; 1196 int fifo_mem; 1197 unsigned int dedicated_fifos:1; 1198 unsigned char num_of_eps; 1199 u32 fifo_map; 1200 1201 struct usb_request *ep0_reply; 1202 struct usb_request *ctrl_req; 1203 void *ep0_buff; 1204 void *ctrl_buff; 1205 enum dwc2_ep0_state ep0_state; 1206 unsigned delayed_status : 1; 1207 u8 test_mode; 1208 1209 dma_addr_t setup_desc_dma[2]; 1210 struct dwc2_dma_desc *setup_desc[2]; 1211 dma_addr_t ctrl_in_desc_dma; 1212 struct dwc2_dma_desc *ctrl_in_desc; 1213 dma_addr_t ctrl_out_desc_dma; 1214 struct dwc2_dma_desc *ctrl_out_desc; 1215 1216 struct usb_gadget gadget; 1217 unsigned int enabled:1; 1218 unsigned int connected:1; 1219 unsigned int remote_wakeup_allowed:1; 1220 struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS]; 1221 struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS]; 1222 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */ 1223 }; 1224 1225 /* Normal architectures just use readl/write */ 1226 static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset) 1227 { 1228 u32 val; 1229 1230 val = readl(hsotg->regs + offset); 1231 if (hsotg->needs_byte_swap) 1232 return swab32(val); 1233 else 1234 return val; 1235 } 1236 1237 static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset) 1238 { 1239 if (hsotg->needs_byte_swap) 1240 writel(swab32(value), hsotg->regs + offset); 1241 else 1242 writel(value, hsotg->regs + offset); 1243 1244 #ifdef DWC2_LOG_WRITES 1245 pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset); 1246 #endif 1247 } 1248 1249 static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset, 1250 void *buffer, unsigned int count) 1251 { 1252 if (count) { 1253 u32 *buf = buffer; 1254 1255 do { 1256 u32 x = dwc2_readl(hsotg, offset); 1257 *buf++ = x; 1258 } while (--count); 1259 } 1260 } 1261 1262 static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset, 1263 const void *buffer, unsigned int count) 1264 { 1265 if (count) { 1266 const u32 *buf = buffer; 1267 1268 do { 1269 dwc2_writel(hsotg, *buf++, offset); 1270 } while (--count); 1271 } 1272 } 1273 1274 /* Reasons for halting a host channel */ 1275 enum dwc2_halt_status { 1276 DWC2_HC_XFER_NO_HALT_STATUS, 1277 DWC2_HC_XFER_COMPLETE, 1278 DWC2_HC_XFER_URB_COMPLETE, 1279 DWC2_HC_XFER_ACK, 1280 DWC2_HC_XFER_NAK, 1281 DWC2_HC_XFER_NYET, 1282 DWC2_HC_XFER_STALL, 1283 DWC2_HC_XFER_XACT_ERR, 1284 DWC2_HC_XFER_FRAME_OVERRUN, 1285 DWC2_HC_XFER_BABBLE_ERR, 1286 DWC2_HC_XFER_DATA_TOGGLE_ERR, 1287 DWC2_HC_XFER_AHB_ERR, 1288 DWC2_HC_XFER_PERIODIC_INCOMPLETE, 1289 DWC2_HC_XFER_URB_DEQUEUE, 1290 }; 1291 1292 /* Core version information */ 1293 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg) 1294 { 1295 return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000; 1296 } 1297 1298 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg) 1299 { 1300 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000; 1301 } 1302 1303 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg) 1304 { 1305 return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000; 1306 } 1307 1308 /* 1309 * The following functions support initialization of the core driver component 1310 * and the DWC_otg controller 1311 */ 1312 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait); 1313 int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg); 1314 int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup, 1315 bool restore); 1316 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host); 1317 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup, 1318 int reset, int is_host); 1319 void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg); 1320 int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy); 1321 1322 void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host); 1323 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg); 1324 1325 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg); 1326 1327 int dwc2_check_core_version(struct dwc2_hsotg *hsotg); 1328 1329 /* 1330 * Common core Functions. 1331 * The following functions support managing the DWC_otg controller in either 1332 * device or host mode. 1333 */ 1334 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes); 1335 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num); 1336 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg); 1337 1338 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd); 1339 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd); 1340 1341 void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup, 1342 int is_host); 1343 int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg); 1344 int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg); 1345 1346 void dwc2_enable_acg(struct dwc2_hsotg *hsotg); 1347 void dwc2_wakeup_from_lpm_l1(struct dwc2_hsotg *hsotg, bool remotewakeup); 1348 1349 /* This function should be called on every hardware interrupt. */ 1350 irqreturn_t dwc2_handle_common_intr(int irq, void *dev); 1351 1352 /* The device ID match table */ 1353 extern const struct of_device_id dwc2_of_match_table[]; 1354 extern const struct acpi_device_id dwc2_acpi_match[]; 1355 extern const struct pci_device_id dwc2_pci_ids[]; 1356 1357 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg); 1358 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg); 1359 1360 /* Common polling functions */ 1361 int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit, 1362 u32 timeout); 1363 int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit, 1364 u32 timeout); 1365 /* Parameters */ 1366 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg); 1367 int dwc2_init_params(struct dwc2_hsotg *hsotg); 1368 1369 /* 1370 * The following functions check the controller's OTG operation mode 1371 * capability (GHWCFG2.OTG_MODE). 1372 * 1373 * These functions can be used before the internal hsotg->hw_params 1374 * are read in and cached so they always read directly from the 1375 * GHWCFG2 register. 1376 */ 1377 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg); 1378 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg); 1379 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg); 1380 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg); 1381 1382 /* 1383 * Returns the mode of operation, host or device 1384 */ 1385 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg) 1386 { 1387 return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0; 1388 } 1389 1390 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg) 1391 { 1392 return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0; 1393 } 1394 1395 int dwc2_drd_init(struct dwc2_hsotg *hsotg); 1396 void dwc2_drd_suspend(struct dwc2_hsotg *hsotg); 1397 void dwc2_drd_resume(struct dwc2_hsotg *hsotg); 1398 void dwc2_drd_exit(struct dwc2_hsotg *hsotg); 1399 1400 /* 1401 * Dump core registers and SPRAM 1402 */ 1403 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg); 1404 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg); 1405 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg); 1406 1407 /* Gadget defines */ 1408 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \ 1409 IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 1410 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg); 1411 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2); 1412 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2); 1413 int dwc2_gadget_init(struct dwc2_hsotg *hsotg); 1414 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2, 1415 bool reset); 1416 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg); 1417 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg); 1418 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2); 1419 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode); 1420 #define dwc2_is_device_connected(hsotg) (hsotg->connected) 1421 #define dwc2_is_device_enabled(hsotg) (hsotg->enabled) 1422 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg); 1423 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup); 1424 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg); 1425 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 1426 int rem_wakeup, int reset); 1427 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg); 1428 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg, 1429 bool restore); 1430 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg); 1431 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, 1432 int rem_wakeup); 1433 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg); 1434 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg); 1435 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg); 1436 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg); 1437 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg); 1438 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) 1439 { hsotg->fifo_map = 0; } 1440 #else 1441 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2) 1442 { return 0; } 1443 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2) 1444 { return 0; } 1445 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2) 1446 { return 0; } 1447 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 1448 { return 0; } 1449 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2, 1450 bool reset) {} 1451 static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {} 1452 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {} 1453 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {} 1454 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, 1455 int testmode) 1456 { return 0; } 1457 #define dwc2_is_device_connected(hsotg) (0) 1458 #define dwc2_is_device_enabled(hsotg) (0) 1459 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 1460 { return 0; } 1461 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, 1462 int remote_wakeup) 1463 { return 0; } 1464 static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) 1465 { return 0; } 1466 static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, 1467 int rem_wakeup, int reset) 1468 { return 0; } 1469 static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg) 1470 { return 0; } 1471 static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg, 1472 bool restore) 1473 { return 0; } 1474 static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {} 1475 static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, 1476 int rem_wakeup) {} 1477 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 1478 { return 0; } 1479 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 1480 { return 0; } 1481 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 1482 { return 0; } 1483 static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {} 1484 static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {} 1485 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {} 1486 #endif 1487 1488 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE) 1489 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg); 1490 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us); 1491 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg); 1492 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force); 1493 void dwc2_hcd_start(struct dwc2_hsotg *hsotg); 1494 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup); 1495 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex); 1496 int dwc2_port_resume(struct dwc2_hsotg *hsotg); 1497 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg); 1498 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg); 1499 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg); 1500 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, 1501 int rem_wakeup, int reset); 1502 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg); 1503 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg, 1504 int rem_wakeup, bool restore); 1505 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg); 1506 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup); 1507 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2); 1508 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) 1509 { schedule_work(&hsotg->phy_reset_work); } 1510 #else 1511 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg) 1512 { return 0; } 1513 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, 1514 int us) 1515 { return 0; } 1516 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {} 1517 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {} 1518 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {} 1519 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {} 1520 static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup) 1521 { return 0; } 1522 static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex) 1523 { return 0; } 1524 static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg) 1525 { return 0; } 1526 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg) 1527 { return 0; } 1528 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg) 1529 { return 0; } 1530 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg) 1531 { return 0; } 1532 static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg) 1533 { return 0; } 1534 static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, 1535 int rem_wakeup, int reset) 1536 { return 0; } 1537 static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg) 1538 { return 0; } 1539 static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg, 1540 int rem_wakeup, bool restore) 1541 { return 0; } 1542 static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {} 1543 static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, 1544 int rem_wakeup) {} 1545 static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2) 1546 { return false; } 1547 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {} 1548 1549 #endif 1550 1551 #endif /* __DWC2_CORE_H__ */ 1552