xref: /linux/drivers/usb/dwc2/core.h (revision 8fc4e4aa2bfca8d32e8bc2a01526ea2da450e6cb)
1 /* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
2 /*
3  * core.h - DesignWare HS OTG Controller common declarations
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #ifndef __DWC2_CORE_H__
39 #define __DWC2_CORE_H__
40 
41 #include <linux/acpi.h>
42 #include <linux/phy/phy.h>
43 #include <linux/regulator/consumer.h>
44 #include <linux/usb/gadget.h>
45 #include <linux/usb/otg.h>
46 #include <linux/usb/phy.h>
47 #include "hw.h"
48 
49 /*
50  * Suggested defines for tracers:
51  * - no_printk:    Disable tracing
52  * - pr_info:      Print this info to the console
53  * - trace_printk: Print this info to trace buffer (good for verbose logging)
54  */
55 
56 #define DWC2_TRACE_SCHEDULER		no_printk
57 #define DWC2_TRACE_SCHEDULER_VB		no_printk
58 
59 /* Detailed scheduler tracing, but won't overwhelm console */
60 #define dwc2_sch_dbg(hsotg, fmt, ...)					\
61 	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
62 			     dev_name(hsotg->dev), ##__VA_ARGS__)
63 
64 /* Verbose scheduler tracing */
65 #define dwc2_sch_vdbg(hsotg, fmt, ...)					\
66 	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
67 				dev_name(hsotg->dev), ##__VA_ARGS__)
68 
69 /* Maximum number of Endpoints/HostChannels */
70 #define MAX_EPS_CHANNELS	16
71 
72 /* dwc2-hsotg declarations */
73 static const char * const dwc2_hsotg_supply_names[] = {
74 	"vusb_d",               /* digital USB supply, 1.2V */
75 	"vusb_a",               /* analog USB supply, 1.1V */
76 };
77 
78 #define DWC2_NUM_SUPPLIES ARRAY_SIZE(dwc2_hsotg_supply_names)
79 
80 /*
81  * EP0_MPS_LIMIT
82  *
83  * Unfortunately there seems to be a limit of the amount of data that can
84  * be transferred by IN transactions on EP0. This is either 127 bytes or 3
85  * packets (which practically means 1 packet and 63 bytes of data) when the
86  * MPS is set to 64.
87  *
88  * This means if we are wanting to move >127 bytes of data, we need to
89  * split the transactions up, but just doing one packet at a time does
90  * not work (this may be an implicit DATA0 PID on first packet of the
91  * transaction) and doing 2 packets is outside the controller's limits.
92  *
93  * If we try to lower the MPS size for EP0, then no transfers work properly
94  * for EP0, and the system will fail basic enumeration. As no cause for this
95  * has currently been found, we cannot support any large IN transfers for
96  * EP0.
97  */
98 #define EP0_MPS_LIMIT   64
99 
100 struct dwc2_hsotg;
101 struct dwc2_hsotg_req;
102 
103 /**
104  * struct dwc2_hsotg_ep - driver endpoint definition.
105  * @ep: The gadget layer representation of the endpoint.
106  * @name: The driver generated name for the endpoint.
107  * @queue: Queue of requests for this endpoint.
108  * @parent: Reference back to the parent device structure.
109  * @req: The current request that the endpoint is processing. This is
110  *       used to indicate an request has been loaded onto the endpoint
111  *       and has yet to be completed (maybe due to data move, or simply
112  *       awaiting an ack from the core all the data has been completed).
113  * @debugfs: File entry for debugfs file for this endpoint.
114  * @dir_in: Set to true if this endpoint is of the IN direction, which
115  *          means that it is sending data to the Host.
116  * @map_dir: Set to the value of dir_in when the DMA buffer is mapped.
117  * @index: The index for the endpoint registers.
118  * @mc: Multi Count - number of transactions per microframe
119  * @interval: Interval for periodic endpoints, in frames or microframes.
120  * @name: The name array passed to the USB core.
121  * @halted: Set if the endpoint has been halted.
122  * @periodic: Set if this is a periodic ep, such as Interrupt
123  * @isochronous: Set if this is a isochronous ep
124  * @send_zlp: Set if we need to send a zero-length packet.
125  * @desc_list_dma: The DMA address of descriptor chain currently in use.
126  * @desc_list: Pointer to descriptor DMA chain head currently in use.
127  * @desc_count: Count of entries within the DMA descriptor chain of EP.
128  * @next_desc: index of next free descriptor in the ISOC chain under SW control.
129  * @compl_desc: index of next descriptor to be completed by xFerComplete
130  * @total_data: The total number of data bytes done.
131  * @fifo_size: The size of the FIFO (for periodic IN endpoints)
132  * @fifo_index: For Dedicated FIFO operation, only FIFO0 can be used for EP0.
133  * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
134  * @last_load: The offset of data for the last start of request.
135  * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
136  * @target_frame: Targeted frame num to setup next ISOC transfer
137  * @frame_overrun: Indicates SOF number overrun in DSTS
138  *
139  * This is the driver's state for each registered endpoint, allowing it
140  * to keep track of transactions that need doing. Each endpoint has a
141  * lock to protect the state, to try and avoid using an overall lock
142  * for the host controller as much as possible.
143  *
144  * For periodic IN endpoints, we have fifo_size and fifo_load to try
145  * and keep track of the amount of data in the periodic FIFO for each
146  * of these as we don't have a status register that tells us how much
147  * is in each of them. (note, this may actually be useless information
148  * as in shared-fifo mode periodic in acts like a single-frame packet
149  * buffer than a fifo)
150  */
151 struct dwc2_hsotg_ep {
152 	struct usb_ep           ep;
153 	struct list_head        queue;
154 	struct dwc2_hsotg       *parent;
155 	struct dwc2_hsotg_req    *req;
156 	struct dentry           *debugfs;
157 
158 	unsigned long           total_data;
159 	unsigned int            size_loaded;
160 	unsigned int            last_load;
161 	unsigned int            fifo_load;
162 	unsigned short          fifo_size;
163 	unsigned short		fifo_index;
164 
165 	unsigned char           dir_in;
166 	unsigned char           map_dir;
167 	unsigned char           index;
168 	unsigned char           mc;
169 	u16                     interval;
170 
171 	unsigned int            halted:1;
172 	unsigned int            periodic:1;
173 	unsigned int            isochronous:1;
174 	unsigned int            send_zlp:1;
175 	unsigned int            target_frame;
176 #define TARGET_FRAME_INITIAL   0xFFFFFFFF
177 	bool			frame_overrun;
178 
179 	dma_addr_t		desc_list_dma;
180 	struct dwc2_dma_desc	*desc_list;
181 	u8			desc_count;
182 
183 	unsigned int		next_desc;
184 	unsigned int		compl_desc;
185 
186 	char                    name[10];
187 };
188 
189 /**
190  * struct dwc2_hsotg_req - data transfer request
191  * @req: The USB gadget request
192  * @queue: The list of requests for the endpoint this is queued for.
193  * @saved_req_buf: variable to save req.buf when bounce buffers are used.
194  */
195 struct dwc2_hsotg_req {
196 	struct usb_request      req;
197 	struct list_head        queue;
198 	void *saved_req_buf;
199 };
200 
201 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
202 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
203 #define call_gadget(_hs, _entry) \
204 do { \
205 	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
206 		(_hs)->driver && (_hs)->driver->_entry) { \
207 		spin_unlock(&_hs->lock); \
208 		(_hs)->driver->_entry(&(_hs)->gadget); \
209 		spin_lock(&_hs->lock); \
210 	} \
211 } while (0)
212 #else
213 #define call_gadget(_hs, _entry)	do {} while (0)
214 #endif
215 
216 struct dwc2_hsotg;
217 struct dwc2_host_chan;
218 
219 /* Device States */
220 enum dwc2_lx_state {
221 	DWC2_L0,	/* On state */
222 	DWC2_L1,	/* LPM sleep state */
223 	DWC2_L2,	/* USB suspend state */
224 	DWC2_L3,	/* Off state */
225 };
226 
227 /* Gadget ep0 states */
228 enum dwc2_ep0_state {
229 	DWC2_EP0_SETUP,
230 	DWC2_EP0_DATA_IN,
231 	DWC2_EP0_DATA_OUT,
232 	DWC2_EP0_STATUS_IN,
233 	DWC2_EP0_STATUS_OUT,
234 };
235 
236 /**
237  * struct dwc2_core_params - Parameters for configuring the core
238  *
239  * @otg_cap:            Specifies the OTG capabilities.
240  *                       0 - HNP and SRP capable
241  *                       1 - SRP Only capable
242  *                       2 - No HNP/SRP capable (always available)
243  *                      Defaults to best available option (0, 1, then 2)
244  * @host_dma:           Specifies whether to use slave or DMA mode for accessing
245  *                      the data FIFOs. The driver will automatically detect the
246  *                      value for this parameter if none is specified.
247  *                       0 - Slave (always available)
248  *                       1 - DMA (default, if available)
249  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
250  *                      address DMA mode or descriptor DMA mode for accessing
251  *                      the data FIFOs. The driver will automatically detect the
252  *                      value for this if none is specified.
253  *                       0 - Address DMA
254  *                       1 - Descriptor DMA (default, if available)
255  * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
256  *                      address DMA mode or descriptor DMA mode for accessing
257  *                      the data FIFOs in Full Speed mode only. The driver
258  *                      will automatically detect the value for this if none is
259  *                      specified.
260  *                       0 - Address DMA
261  *                       1 - Descriptor DMA in FS (default, if available)
262  * @speed:              Specifies the maximum speed of operation in host and
263  *                      device mode. The actual speed depends on the speed of
264  *                      the attached device and the value of phy_type.
265  *                       0 - High Speed
266  *                           (default when phy_type is UTMI+ or ULPI)
267  *                       1 - Full Speed
268  *                           (default when phy_type is Full Speed)
269  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
270  *                       1 - Allow dynamic FIFO sizing (default, if available)
271  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
272  *                      are enabled for non-periodic IN endpoints in device
273  *                      mode.
274  * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
275  *                      dynamic FIFO sizing is enabled
276  *                       16 to 32768
277  *                      Actual maximum value is autodetected and also
278  *                      the default.
279  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
280  *                      in host mode when dynamic FIFO sizing is enabled
281  *                       16 to 32768
282  *                      Actual maximum value is autodetected and also
283  *                      the default.
284  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
285  *                      host mode when dynamic FIFO sizing is enabled
286  *                       16 to 32768
287  *                      Actual maximum value is autodetected and also
288  *                      the default.
289  * @max_transfer_size:  The maximum transfer size supported, in bytes
290  *                       2047 to 65,535
291  *                      Actual maximum value is autodetected and also
292  *                      the default.
293  * @max_packet_count:   The maximum number of packets in a transfer
294  *                       15 to 511
295  *                      Actual maximum value is autodetected and also
296  *                      the default.
297  * @host_channels:      The number of host channel registers to use
298  *                       1 to 16
299  *                      Actual maximum value is autodetected and also
300  *                      the default.
301  * @phy_type:           Specifies the type of PHY interface to use. By default,
302  *                      the driver will automatically detect the phy_type.
303  *                       0 - Full Speed Phy
304  *                       1 - UTMI+ Phy
305  *                       2 - ULPI Phy
306  *                      Defaults to best available option (2, 1, then 0)
307  * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
308  *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
309  *                      ULPI phy_type, this parameter indicates the data width
310  *                      between the MAC and the ULPI Wrapper.) Also, this
311  *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
312  *                      parameter was set to "8 and 16 bits", meaning that the
313  *                      core has been configured to work at either data path
314  *                      width.
315  *                       8 or 16 (default 16 if available)
316  * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
317  *                      data rate. This parameter is only applicable if phy_type
318  *                      is ULPI.
319  *                       0 - single data rate ULPI interface with 8 bit wide
320  *                           data bus (default)
321  *                       1 - double data rate ULPI interface with 4 bit wide
322  *                           data bus
323  * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
324  *                      external supply to drive the VBus
325  *                       0 - Internal supply (default)
326  *                       1 - External supply
327  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
328  *                      speed PHY. This parameter is only applicable if phy_type
329  *                      is FS.
330  *                       0 - No (default)
331  *                       1 - Yes
332  * @ipg_isoc_en:        Indicates the IPG supports is enabled or disabled.
333  *                       0 - Disable (default)
334  *                       1 - Enable
335  * @acg_enable:		For enabling Active Clock Gating in the controller
336  *                       0 - No
337  *                       1 - Yes
338  * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
339  *                       0 - No (default)
340  *                       1 - Yes
341  * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
342  *                      when attached to a Full Speed or Low Speed device in
343  *                      host mode.
344  *                       0 - Don't support low power mode (default)
345  *                       1 - Support low power mode
346  * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
347  *                      when connected to a Low Speed device in host
348  *                      mode. This parameter is applicable only if
349  *                      host_support_fs_ls_low_power is enabled.
350  *                       0 - 48 MHz
351  *                           (default when phy_type is UTMI+ or ULPI)
352  *                       1 - 6 MHz
353  *                           (default when phy_type is Full Speed)
354  * @oc_disable:		Flag to disable overcurrent condition.
355  *			0 - Allow overcurrent condition to get detected
356  *			1 - Disable overcurrent condtion to get detected
357  * @ts_dline:           Enable Term Select Dline pulsing
358  *                       0 - No (default)
359  *                       1 - Yes
360  * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
361  *                       0 - No (default for core < 2.92a)
362  *                       1 - Yes (default for core >= 2.92a)
363  * @ahbcfg:             This field allows the default value of the GAHBCFG
364  *                      register to be overridden
365  *                       -1         - GAHBCFG value will be set to 0x06
366  *                                    (INCR, default)
367  *                       all others - GAHBCFG value will be overridden with
368  *                                    this value
369  *                      Not all bits can be controlled like this, the
370  *                      bits defined by GAHBCFG_CTRL_MASK are controlled
371  *                      by the driver and are ignored in this
372  *                      configuration value.
373  * @uframe_sched:       True to enable the microframe scheduler
374  * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
375  *                      Disable CONIDSTSCHNG controller interrupt in such
376  *                      case.
377  *                      0 - No (default)
378  *                      1 - Yes
379  * @power_down:         Specifies whether the controller support power_down.
380  *			If power_down is enabled, the controller will enter
381  *			power_down in both peripheral and host mode when
382  *			needed.
383  *			0 - No (default)
384  *			1 - Partial power down
385  *			2 - Hibernation
386  * @lpm:		Enable LPM support.
387  *			0 - No
388  *			1 - Yes
389  * @lpm_clock_gating:		Enable core PHY clock gating.
390  *			0 - No
391  *			1 - Yes
392  * @besl:		Enable LPM Errata support.
393  *			0 - No
394  *			1 - Yes
395  * @hird_threshold_en:	HIRD or HIRD Threshold enable.
396  *			0 - No
397  *			1 - Yes
398  * @hird_threshold:	Value of BESL or HIRD Threshold.
399  * @ref_clk_per:        Indicates in terms of pico seconds the period
400  *                      of ref_clk.
401  *			62500 - 16MHz
402  *                      58823 - 17MHz
403  *                      52083 - 19.2MHz
404  *			50000 - 20MHz
405  *			41666 - 24MHz
406  *			33333 - 30MHz (default)
407  *			25000 - 40MHz
408  * @sof_cnt_wkup_alert: Indicates in term of number of SOF's after which
409  *                      the controller should generate an interrupt if the
410  *                      device had been in L1 state until that period.
411  *                      This is used by SW to initiate Remote WakeUp in the
412  *                      controller so as to sync to the uF number from the host.
413  * @activate_stm_fs_transceiver: Activate internal transceiver using GGPIO
414  *			register.
415  *			0 - Deactivate the transceiver (default)
416  *			1 - Activate the transceiver
417  * @activate_stm_id_vb_detection: Activate external ID pin and Vbus level
418  *			detection using GGPIO register.
419  *			0 - Deactivate the external level detection (default)
420  *			1 - Activate the external level detection
421  * @g_dma:              Enables gadget dma usage (default: autodetect).
422  * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
423  * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
424  *			DWORDS from 16-32768 (default: 2048 if
425  *			possible, otherwise autodetect).
426  * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
427  *			DWORDS from 16-32768 (default: 1024 if
428  *			possible, otherwise autodetect).
429  * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
430  *			mode. Each value corresponds to one EP
431  *			starting from EP1 (max 15 values). Sizes are
432  *			in DWORDS with possible values from
433  *			16-32768 (default: 256, 256, 256, 256, 768,
434  *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
435  * @change_speed_quirk: Change speed configuration to DWC2_SPEED_PARAM_FULL
436  *                      while full&low speed device connect. And change speed
437  *                      back to DWC2_SPEED_PARAM_HIGH while device is gone.
438  *			0 - No (default)
439  *			1 - Yes
440  * @service_interval:   Enable service interval based scheduling.
441  *                      0 - No
442  *                      1 - Yes
443  *
444  * The following parameters may be specified when starting the module. These
445  * parameters define how the DWC_otg controller should be configured. A
446  * value of -1 (or any other out of range value) for any parameter means
447  * to read the value from hardware (if possible) or use the builtin
448  * default described above.
449  */
450 struct dwc2_core_params {
451 	u8 otg_cap;
452 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
453 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
454 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
455 
456 	u8 phy_type;
457 #define DWC2_PHY_TYPE_PARAM_FS		0
458 #define DWC2_PHY_TYPE_PARAM_UTMI	1
459 #define DWC2_PHY_TYPE_PARAM_ULPI	2
460 
461 	u8 speed;
462 #define DWC2_SPEED_PARAM_HIGH	0
463 #define DWC2_SPEED_PARAM_FULL	1
464 #define DWC2_SPEED_PARAM_LOW	2
465 
466 	u8 phy_utmi_width;
467 	bool phy_ulpi_ddr;
468 	bool phy_ulpi_ext_vbus;
469 	bool enable_dynamic_fifo;
470 	bool en_multiple_tx_fifo;
471 	bool i2c_enable;
472 	bool acg_enable;
473 	bool ulpi_fs_ls;
474 	bool ts_dline;
475 	bool reload_ctl;
476 	bool uframe_sched;
477 	bool external_id_pin_ctl;
478 
479 	int power_down;
480 #define DWC2_POWER_DOWN_PARAM_NONE		0
481 #define DWC2_POWER_DOWN_PARAM_PARTIAL		1
482 #define DWC2_POWER_DOWN_PARAM_HIBERNATION	2
483 
484 	bool lpm;
485 	bool lpm_clock_gating;
486 	bool besl;
487 	bool hird_threshold_en;
488 	bool service_interval;
489 	u8 hird_threshold;
490 	bool activate_stm_fs_transceiver;
491 	bool activate_stm_id_vb_detection;
492 	bool ipg_isoc_en;
493 	u16 max_packet_count;
494 	u32 max_transfer_size;
495 	u32 ahbcfg;
496 
497 	/* GREFCLK parameters */
498 	u32 ref_clk_per;
499 	u16 sof_cnt_wkup_alert;
500 
501 	/* Host parameters */
502 	bool host_dma;
503 	bool dma_desc_enable;
504 	bool dma_desc_fs_enable;
505 	bool host_support_fs_ls_low_power;
506 	bool host_ls_low_power_phy_clk;
507 	bool oc_disable;
508 
509 	u8 host_channels;
510 	u16 host_rx_fifo_size;
511 	u16 host_nperio_tx_fifo_size;
512 	u16 host_perio_tx_fifo_size;
513 
514 	/* Gadget parameters */
515 	bool g_dma;
516 	bool g_dma_desc;
517 	u32 g_rx_fifo_size;
518 	u32 g_np_tx_fifo_size;
519 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
520 
521 	bool change_speed_quirk;
522 };
523 
524 /**
525  * struct dwc2_hw_params - Autodetected parameters.
526  *
527  * These parameters are the various parameters read from hardware
528  * registers during initialization. They typically contain the best
529  * supported or maximum value that can be configured in the
530  * corresponding dwc2_core_params value.
531  *
532  * The values that are not in dwc2_core_params are documented below.
533  *
534  * @op_mode:             Mode of Operation
535  *                       0 - HNP- and SRP-Capable OTG (Host & Device)
536  *                       1 - SRP-Capable OTG (Host & Device)
537  *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
538  *                       3 - SRP-Capable Device
539  *                       4 - Non-OTG Device
540  *                       5 - SRP-Capable Host
541  *                       6 - Non-OTG Host
542  * @arch:                Architecture
543  *                       0 - Slave only
544  *                       1 - External DMA
545  *                       2 - Internal DMA
546  * @ipg_isoc_en:        This feature indicates that the controller supports
547  *                      the worst-case scenario of Rx followed by Rx
548  *                      Interpacket Gap (IPG) (32 bitTimes) as per the utmi
549  *                      specification for any token following ISOC OUT token.
550  *                       0 - Don't support
551  *                       1 - Support
552  * @power_optimized:    Are power optimizations enabled?
553  * @num_dev_ep:         Number of device endpoints available
554  * @num_dev_in_eps:     Number of device IN endpoints available
555  * @num_dev_perio_in_ep: Number of device periodic IN endpoints
556  *                       available
557  * @dev_token_q_depth:  Device Mode IN Token Sequence Learning Queue
558  *                      Depth
559  *                       0 to 30
560  * @host_perio_tx_q_depth:
561  *                      Host Mode Periodic Request Queue Depth
562  *                       2, 4 or 8
563  * @nperio_tx_q_depth:
564  *                      Non-Periodic Request Queue Depth
565  *                       2, 4 or 8
566  * @hs_phy_type:         High-speed PHY interface type
567  *                       0 - High-speed interface not supported
568  *                       1 - UTMI+
569  *                       2 - ULPI
570  *                       3 - UTMI+ and ULPI
571  * @fs_phy_type:         Full-speed PHY interface type
572  *                       0 - Full speed interface not supported
573  *                       1 - Dedicated full speed interface
574  *                       2 - FS pins shared with UTMI+ pins
575  *                       3 - FS pins shared with ULPI pins
576  * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
577  * @hibernation:	Is hibernation enabled?
578  * @utmi_phy_data_width: UTMI+ PHY data width
579  *                       0 - 8 bits
580  *                       1 - 16 bits
581  *                       2 - 8 or 16 bits
582  * @snpsid:             Value from SNPSID register
583  * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
584  * @g_tx_fifo_size:	Power-on values of TxFIFO sizes
585  * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
586  *                      address DMA mode or descriptor DMA mode for accessing
587  *                      the data FIFOs. The driver will automatically detect the
588  *                      value for this if none is specified.
589  *                       0 - Address DMA
590  *                       1 - Descriptor DMA (default, if available)
591  * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
592  *                       1 - Allow dynamic FIFO sizing (default, if available)
593  * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
594  *                      are enabled for non-periodic IN endpoints in device
595  *                      mode.
596  * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
597  *                      in host mode when dynamic FIFO sizing is enabled
598  *                       16 to 32768
599  *                      Actual maximum value is autodetected and also
600  *                      the default.
601  * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
602  *                      host mode when dynamic FIFO sizing is enabled
603  *                       16 to 32768
604  *                      Actual maximum value is autodetected and also
605  *                      the default.
606  * @max_transfer_size:  The maximum transfer size supported, in bytes
607  *                       2047 to 65,535
608  *                      Actual maximum value is autodetected and also
609  *                      the default.
610  * @max_packet_count:   The maximum number of packets in a transfer
611  *                       15 to 511
612  *                      Actual maximum value is autodetected and also
613  *                      the default.
614  * @host_channels:      The number of host channel registers to use
615  *                       1 to 16
616  *                      Actual maximum value is autodetected and also
617  *                      the default.
618  * @dev_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
619  *			     in device mode when dynamic FIFO sizing is enabled
620  *			     16 to 32768
621  *			     Actual maximum value is autodetected and also
622  *			     the default.
623  * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
624  *                      speed PHY. This parameter is only applicable if phy_type
625  *                      is FS.
626  *                       0 - No (default)
627  *                       1 - Yes
628  * @acg_enable:		For enabling Active Clock Gating in the controller
629  *                       0 - Disable
630  *                       1 - Enable
631  * @lpm_mode:		For enabling Link Power Management in the controller
632  *                       0 - Disable
633  *                       1 - Enable
634  * @rx_fifo_size:	Number of 4-byte words in the  Rx FIFO when dynamic
635  *			FIFO sizing is enabled 16 to 32768
636  *			Actual maximum value is autodetected and also
637  *			the default.
638  * @service_interval_mode: For enabling service interval based scheduling in the
639  *                         controller.
640  *                           0 - Disable
641  *                           1 - Enable
642  */
643 struct dwc2_hw_params {
644 	unsigned op_mode:3;
645 	unsigned arch:2;
646 	unsigned dma_desc_enable:1;
647 	unsigned enable_dynamic_fifo:1;
648 	unsigned en_multiple_tx_fifo:1;
649 	unsigned rx_fifo_size:16;
650 	unsigned host_nperio_tx_fifo_size:16;
651 	unsigned dev_nperio_tx_fifo_size:16;
652 	unsigned host_perio_tx_fifo_size:16;
653 	unsigned nperio_tx_q_depth:3;
654 	unsigned host_perio_tx_q_depth:3;
655 	unsigned dev_token_q_depth:5;
656 	unsigned max_transfer_size:26;
657 	unsigned max_packet_count:11;
658 	unsigned host_channels:5;
659 	unsigned hs_phy_type:2;
660 	unsigned fs_phy_type:2;
661 	unsigned i2c_enable:1;
662 	unsigned acg_enable:1;
663 	unsigned num_dev_ep:4;
664 	unsigned num_dev_in_eps : 4;
665 	unsigned num_dev_perio_in_ep:4;
666 	unsigned total_fifo_size:16;
667 	unsigned power_optimized:1;
668 	unsigned hibernation:1;
669 	unsigned utmi_phy_data_width:2;
670 	unsigned lpm_mode:1;
671 	unsigned ipg_isoc_en:1;
672 	unsigned service_interval_mode:1;
673 	u32 snpsid;
674 	u32 dev_ep_dirs;
675 	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
676 };
677 
678 /* Size of control and EP0 buffers */
679 #define DWC2_CTRL_BUFF_SIZE 8
680 
681 /**
682  * struct dwc2_gregs_backup - Holds global registers state before
683  * entering partial power down
684  * @gotgctl:		Backup of GOTGCTL register
685  * @gintmsk:		Backup of GINTMSK register
686  * @gahbcfg:		Backup of GAHBCFG register
687  * @gusbcfg:		Backup of GUSBCFG register
688  * @grxfsiz:		Backup of GRXFSIZ register
689  * @gnptxfsiz:		Backup of GNPTXFSIZ register
690  * @gi2cctl:		Backup of GI2CCTL register
691  * @glpmcfg:		Backup of GLPMCFG register
692  * @gdfifocfg:		Backup of GDFIFOCFG register
693  * @pcgcctl:		Backup of PCGCCTL register
694  * @pcgcctl1:		Backup of PCGCCTL1 register
695  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
696  * @gpwrdn:		Backup of GPWRDN register
697  * @valid:		True if registers values backuped.
698  */
699 struct dwc2_gregs_backup {
700 	u32 gotgctl;
701 	u32 gintmsk;
702 	u32 gahbcfg;
703 	u32 gusbcfg;
704 	u32 grxfsiz;
705 	u32 gnptxfsiz;
706 	u32 gi2cctl;
707 	u32 glpmcfg;
708 	u32 pcgcctl;
709 	u32 pcgcctl1;
710 	u32 gdfifocfg;
711 	u32 gpwrdn;
712 	bool valid;
713 };
714 
715 /**
716  * struct dwc2_dregs_backup - Holds device registers state before
717  * entering partial power down
718  * @dcfg:		Backup of DCFG register
719  * @dctl:		Backup of DCTL register
720  * @daintmsk:		Backup of DAINTMSK register
721  * @diepmsk:		Backup of DIEPMSK register
722  * @doepmsk:		Backup of DOEPMSK register
723  * @diepctl:		Backup of DIEPCTL register
724  * @dieptsiz:		Backup of DIEPTSIZ register
725  * @diepdma:		Backup of DIEPDMA register
726  * @doepctl:		Backup of DOEPCTL register
727  * @doeptsiz:		Backup of DOEPTSIZ register
728  * @doepdma:		Backup of DOEPDMA register
729  * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
730  * @valid:      True if registers values backuped.
731  */
732 struct dwc2_dregs_backup {
733 	u32 dcfg;
734 	u32 dctl;
735 	u32 daintmsk;
736 	u32 diepmsk;
737 	u32 doepmsk;
738 	u32 diepctl[MAX_EPS_CHANNELS];
739 	u32 dieptsiz[MAX_EPS_CHANNELS];
740 	u32 diepdma[MAX_EPS_CHANNELS];
741 	u32 doepctl[MAX_EPS_CHANNELS];
742 	u32 doeptsiz[MAX_EPS_CHANNELS];
743 	u32 doepdma[MAX_EPS_CHANNELS];
744 	u32 dtxfsiz[MAX_EPS_CHANNELS];
745 	bool valid;
746 };
747 
748 /**
749  * struct dwc2_hregs_backup - Holds host registers state before
750  * entering partial power down
751  * @hcfg:		Backup of HCFG register
752  * @haintmsk:		Backup of HAINTMSK register
753  * @hcintmsk:		Backup of HCINTMSK register
754  * @hprt0:		Backup of HPTR0 register
755  * @hfir:		Backup of HFIR register
756  * @hptxfsiz:		Backup of HPTXFSIZ register
757  * @valid:      True if registers values backuped.
758  */
759 struct dwc2_hregs_backup {
760 	u32 hcfg;
761 	u32 haintmsk;
762 	u32 hcintmsk[MAX_EPS_CHANNELS];
763 	u32 hprt0;
764 	u32 hfir;
765 	u32 hptxfsiz;
766 	bool valid;
767 };
768 
769 /*
770  * Constants related to high speed periodic scheduling
771  *
772  * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
773  * reservation point of view it's assumed that the schedule goes right back to
774  * the beginning after the end of the schedule.
775  *
776  * What does that mean for scheduling things with a long interval?  It means
777  * we'll reserve time for them in every possible microframe that they could
778  * ever be scheduled in.  ...but we'll still only actually schedule them as
779  * often as they were requested.
780  *
781  * We keep our schedule in a "bitmap" structure.  This simplifies having
782  * to keep track of and merge intervals: we just let the bitmap code do most
783  * of the heavy lifting.  In a way scheduling is much like memory allocation.
784  *
785  * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
786  * supposed to schedule for periodic transfers).  That's according to spec.
787  *
788  * Note that though we only schedule 80% of each microframe, the bitmap that we
789  * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
790  * space for each uFrame).
791  *
792  * Requirements:
793  * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
794  * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
795  *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
796  *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
797  */
798 #define DWC2_US_PER_UFRAME		125
799 #define DWC2_HS_PERIODIC_US_PER_UFRAME	100
800 
801 #define DWC2_HS_SCHEDULE_UFRAMES	8
802 #define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
803 					 DWC2_HS_PERIODIC_US_PER_UFRAME)
804 
805 /*
806  * Constants related to low speed scheduling
807  *
808  * For high speed we schedule every 1us.  For low speed that's a bit overkill,
809  * so we make up a unit called a "slice" that's worth 25us.  There are 40
810  * slices in a full frame and we can schedule 36 of those (90%) for periodic
811  * transfers.
812  *
813  * Our low speed schedule can be as short as 1 frame or could be longer.  When
814  * we only schedule 1 frame it means that we'll need to reserve a time every
815  * frame even for things that only transfer very rarely, so something that runs
816  * every 2048 frames will get time reserved in every frame.  Our low speed
817  * schedule can be longer and we'll be able to handle more overlap, but that
818  * will come at increased memory cost and increased time to schedule.
819  *
820  * Note: one other advantage of a short low speed schedule is that if we mess
821  * up and miss scheduling we can jump in and use any of the slots that we
822  * happened to reserve.
823  *
824  * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
825  * the schedule.  There will be one schedule per TT.
826  *
827  * Requirements:
828  * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
829  */
830 #define DWC2_US_PER_SLICE	25
831 #define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
832 
833 #define DWC2_ROUND_US_TO_SLICE(us) \
834 				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
835 				 DWC2_US_PER_SLICE)
836 
837 #define DWC2_LS_PERIODIC_US_PER_FRAME \
838 				900
839 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
840 				(DWC2_LS_PERIODIC_US_PER_FRAME / \
841 				 DWC2_US_PER_SLICE)
842 
843 #define DWC2_LS_SCHEDULE_FRAMES	1
844 #define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
845 				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
846 
847 /**
848  * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
849  * and periodic schedules
850  *
851  * These are common for both host and peripheral modes:
852  *
853  * @dev:                The struct device pointer
854  * @regs:		Pointer to controller regs
855  * @hw_params:          Parameters that were autodetected from the
856  *                      hardware registers
857  * @params:	Parameters that define how the core should be configured
858  * @op_state:           The operational State, during transitions (a_host=>
859  *                      a_peripheral and b_device=>b_host) this may not match
860  *                      the core, but allows the software to determine
861  *                      transitions
862  * @dr_mode:            Requested mode of operation, one of following:
863  *                      - USB_DR_MODE_PERIPHERAL
864  *                      - USB_DR_MODE_HOST
865  *                      - USB_DR_MODE_OTG
866  * @role_sw:		usb_role_switch handle
867  * @hcd_enabled:	Host mode sub-driver initialization indicator.
868  * @gadget_enabled:	Peripheral mode sub-driver initialization indicator.
869  * @ll_hw_enabled:	Status of low-level hardware resources.
870  * @hibernated:		True if core is hibernated
871  * @in_ppd:		True if core is partial power down mode.
872  * @bus_suspended:	True if bus is suspended
873  * @reset_phy_on_wake:	Quirk saying that we should assert PHY reset on a
874  *			remote wakeup.
875  * @phy_off_for_suspend: Status of whether we turned the PHY off at suspend.
876  * @need_phy_for_wake:	Quirk saying that we should keep the PHY on at
877  *			suspend if we need USB to wake us up.
878  * @frame_number:       Frame number read from the core. For both device
879  *			and host modes. The value ranges are from 0
880  *			to HFNUM_MAX_FRNUM.
881  * @phy:                The otg phy transceiver structure for phy control.
882  * @uphy:               The otg phy transceiver structure for old USB phy
883  *                      control.
884  * @plat:               The platform specific configuration data. This can be
885  *                      removed once all SoCs support usb transceiver.
886  * @supplies:           Definition of USB power supplies
887  * @vbus_supply:        Regulator supplying vbus.
888  * @usb33d:		Optional 3.3v regulator used on some stm32 devices to
889  *			supply ID and VBUS detection hardware.
890  * @lock:		Spinlock that protects all the driver data structures
891  * @priv:		Stores a pointer to the struct usb_hcd
892  * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
893  *                      transfer are in process of being queued
894  * @srp_success:        Stores status of SRP request in the case of a FS PHY
895  *                      with an I2C interface
896  * @wq_otg:             Workqueue object used for handling of some interrupts
897  * @wf_otg:             Work object for handling Connector ID Status Change
898  *                      interrupt
899  * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
900  * @lx_state:           Lx state of connected device
901  * @gr_backup: Backup of global registers during suspend
902  * @dr_backup: Backup of device registers during suspend
903  * @hr_backup: Backup of host registers during suspend
904  * @needs_byte_swap:		Specifies whether the opposite endianness.
905  *
906  * These are for host mode:
907  *
908  * @flags:              Flags for handling root port state changes
909  * @flags.d32:          Contain all root port flags
910  * @flags.b:            Separate root port flags from each other
911  * @flags.b.port_connect_status_change: True if root port connect status
912  *                      changed
913  * @flags.b.port_connect_status: True if device connected to root port
914  * @flags.b.port_reset_change: True if root port reset status changed
915  * @flags.b.port_enable_change: True if root port enable status changed
916  * @flags.b.port_suspend_change: True if root port suspend status changed
917  * @flags.b.port_over_current_change: True if root port over current state
918  *                       changed.
919  * @flags.b.port_l1_change: True if root port l1 status changed
920  * @flags.b.reserved:   Reserved bits of root port register
921  * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
922  *                      Transfers associated with these QHs are not currently
923  *                      assigned to a host channel.
924  * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
925  *                      Transfers associated with these QHs are currently
926  *                      assigned to a host channel.
927  * @non_periodic_qh_ptr: Pointer to next QH to process in the active
928  *                      non-periodic schedule
929  * @non_periodic_sched_waiting: Waiting QHs in the non-periodic schedule.
930  *                      Transfers associated with these QHs are not currently
931  *                      assigned to a host channel.
932  * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
933  *                      list of QHs for periodic transfers that are _not_
934  *                      scheduled for the next frame. Each QH in the list has an
935  *                      interval counter that determines when it needs to be
936  *                      scheduled for execution. This scheduling mechanism
937  *                      allows only a simple calculation for periodic bandwidth
938  *                      used (i.e. must assume that all periodic transfers may
939  *                      need to execute in the same frame). However, it greatly
940  *                      simplifies scheduling and should be sufficient for the
941  *                      vast majority of OTG hosts, which need to connect to a
942  *                      small number of peripherals at one time. Items move from
943  *                      this list to periodic_sched_ready when the QH interval
944  *                      counter is 0 at SOF.
945  * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
946  *                      the next frame, but have not yet been assigned to host
947  *                      channels. Items move from this list to
948  *                      periodic_sched_assigned as host channels become
949  *                      available during the current frame.
950  * @periodic_sched_assigned: List of periodic QHs to be executed in the next
951  *                      frame that are assigned to host channels. Items move
952  *                      from this list to periodic_sched_queued as the
953  *                      transactions for the QH are queued to the DWC_otg
954  *                      controller.
955  * @periodic_sched_queued: List of periodic QHs that have been queued for
956  *                      execution. Items move from this list to either
957  *                      periodic_sched_inactive or periodic_sched_ready when the
958  *                      channel associated with the transfer is released. If the
959  *                      interval for the QH is 1, the item moves to
960  *                      periodic_sched_ready because it must be rescheduled for
961  *                      the next frame. Otherwise, the item moves to
962  *                      periodic_sched_inactive.
963  * @split_order:        List keeping track of channels doing splits, in order.
964  * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
965  *                      This value is in microseconds per (micro)frame. The
966  *                      assumption is that all periodic transfers may occur in
967  *                      the same (micro)frame.
968  * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
969  *                      host is in high speed mode; low speed schedules are
970  *                      stored elsewhere since we need one per TT.
971  * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
972  *                      SOF enable/disable.
973  * @free_hc_list:       Free host channels in the controller. This is a list of
974  *                      struct dwc2_host_chan items.
975  * @periodic_channels:  Number of host channels assigned to periodic transfers.
976  *                      Currently assuming that there is a dedicated host
977  *                      channel for each periodic transaction and at least one
978  *                      host channel is available for non-periodic transactions.
979  * @non_periodic_channels: Number of host channels assigned to non-periodic
980  *                      transfers
981  * @available_host_channels: Number of host channels available for the
982  *			     microframe scheduler to use
983  * @hc_ptr_array:       Array of pointers to the host channel descriptors.
984  *                      Allows accessing a host channel descriptor given the
985  *                      host channel number. This is useful in interrupt
986  *                      handlers.
987  * @status_buf:         Buffer used for data received during the status phase of
988  *                      a control transfer.
989  * @status_buf_dma:     DMA address for status_buf
990  * @start_work:         Delayed work for handling host A-cable connection
991  * @reset_work:         Delayed work for handling a port reset
992  * @phy_reset_work:     Work structure for doing a PHY reset
993  * @otg_port:           OTG port number
994  * @frame_list:         Frame list
995  * @frame_list_dma:     Frame list DMA address
996  * @frame_list_sz:      Frame list size
997  * @desc_gen_cache:     Kmem cache for generic descriptors
998  * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
999  * @unaligned_cache:    Kmem cache for DMA mode to handle non-aligned buf
1000  *
1001  * These are for peripheral mode:
1002  *
1003  * @driver:             USB gadget driver
1004  * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
1005  * @num_of_eps:         Number of available EPs (excluding EP0)
1006  * @debug_root:         Root directrory for debugfs.
1007  * @ep0_reply:          Request used for ep0 reply.
1008  * @ep0_buff:           Buffer for EP0 reply data, if needed.
1009  * @ctrl_buff:          Buffer for EP0 control requests.
1010  * @ctrl_req:           Request for EP0 control packets.
1011  * @ep0_state:          EP0 control transfers state
1012  * @delayed_status:		true when gadget driver asks for delayed status
1013  * @test_mode:          USB test mode requested by the host
1014  * @remote_wakeup_allowed: True if device is allowed to wake-up host by
1015  *                      remote-wakeup signalling
1016  * @setup_desc_dma:	EP0 setup stage desc chain DMA address
1017  * @setup_desc:		EP0 setup stage desc chain pointer
1018  * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
1019  * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
1020  * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
1021  * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
1022  * @irq:		Interrupt request line number
1023  * @clk:		Pointer to otg clock
1024  * @reset:		Pointer to dwc2 reset controller
1025  * @reset_ecc:          Pointer to dwc2 optional reset controller in Stratix10.
1026  * @regset:		A pointer to a struct debugfs_regset32, which contains
1027  *			a pointer to an array of register definitions, the
1028  *			array size and the base address where the register bank
1029  *			is to be found.
1030  * @last_frame_num:	Number of last frame. Range from 0 to  32768
1031  * @frame_num_array:    Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1032  *			defined, for missed SOFs tracking. Array holds that
1033  *			frame numbers, which not equal to last_frame_num +1
1034  * @last_frame_num_array:   Used only  if CONFIG_USB_DWC2_TRACK_MISSED_SOFS is
1035  *			    defined, for missed SOFs tracking.
1036  *			    If current_frame_number != last_frame_num+1
1037  *			    then last_frame_num added to this array
1038  * @frame_num_idx:	Actual size of frame_num_array and last_frame_num_array
1039  * @dumped_frame_num_array:	1 - if missed SOFs frame numbers dumbed
1040  *				0 - if missed SOFs frame numbers not dumbed
1041  * @fifo_mem:			Total internal RAM for FIFOs (bytes)
1042  * @fifo_map:		Each bit intend for concrete fifo. If that bit is set,
1043  *			then that fifo is used
1044  * @gadget:		Represents a usb gadget device
1045  * @connected:		Used in slave mode. True if device connected with host
1046  * @eps_in:		The IN endpoints being supplied to the gadget framework
1047  * @eps_out:		The OUT endpoints being supplied to the gadget framework
1048  * @new_connection:	Used in host mode. True if there are new connected
1049  *			device
1050  * @enabled:		Indicates the enabling state of controller
1051  *
1052  */
1053 struct dwc2_hsotg {
1054 	struct device *dev;
1055 	void __iomem *regs;
1056 	/** Params detected from hardware */
1057 	struct dwc2_hw_params hw_params;
1058 	/** Params to actually use */
1059 	struct dwc2_core_params params;
1060 	enum usb_otg_state op_state;
1061 	enum usb_dr_mode dr_mode;
1062 	struct usb_role_switch *role_sw;
1063 	unsigned int hcd_enabled:1;
1064 	unsigned int gadget_enabled:1;
1065 	unsigned int ll_hw_enabled:1;
1066 	unsigned int hibernated:1;
1067 	unsigned int in_ppd:1;
1068 	bool bus_suspended;
1069 	unsigned int reset_phy_on_wake:1;
1070 	unsigned int need_phy_for_wake:1;
1071 	unsigned int phy_off_for_suspend:1;
1072 	u16 frame_number;
1073 
1074 	struct phy *phy;
1075 	struct usb_phy *uphy;
1076 	struct dwc2_hsotg_plat *plat;
1077 	struct regulator_bulk_data supplies[DWC2_NUM_SUPPLIES];
1078 	struct regulator *vbus_supply;
1079 	struct regulator *usb33d;
1080 
1081 	spinlock_t lock;
1082 	void *priv;
1083 	int     irq;
1084 	struct clk *clk;
1085 	struct reset_control *reset;
1086 	struct reset_control *reset_ecc;
1087 
1088 	unsigned int queuing_high_bandwidth:1;
1089 	unsigned int srp_success:1;
1090 
1091 	struct workqueue_struct *wq_otg;
1092 	struct work_struct wf_otg;
1093 	struct timer_list wkp_timer;
1094 	enum dwc2_lx_state lx_state;
1095 	struct dwc2_gregs_backup gr_backup;
1096 	struct dwc2_dregs_backup dr_backup;
1097 	struct dwc2_hregs_backup hr_backup;
1098 
1099 	struct dentry *debug_root;
1100 	struct debugfs_regset32 *regset;
1101 	bool needs_byte_swap;
1102 
1103 	/* DWC OTG HW Release versions */
1104 #define DWC2_CORE_REV_2_71a	0x4f54271a
1105 #define DWC2_CORE_REV_2_72a     0x4f54272a
1106 #define DWC2_CORE_REV_2_80a	0x4f54280a
1107 #define DWC2_CORE_REV_2_90a	0x4f54290a
1108 #define DWC2_CORE_REV_2_91a	0x4f54291a
1109 #define DWC2_CORE_REV_2_92a	0x4f54292a
1110 #define DWC2_CORE_REV_2_94a	0x4f54294a
1111 #define DWC2_CORE_REV_3_00a	0x4f54300a
1112 #define DWC2_CORE_REV_3_10a	0x4f54310a
1113 #define DWC2_CORE_REV_4_00a	0x4f54400a
1114 #define DWC2_CORE_REV_4_20a	0x4f54420a
1115 #define DWC2_FS_IOT_REV_1_00a	0x5531100a
1116 #define DWC2_HS_IOT_REV_1_00a	0x5532100a
1117 #define DWC2_CORE_REV_MASK	0x0000ffff
1118 
1119 	/* DWC OTG HW Core ID */
1120 #define DWC2_OTG_ID		0x4f540000
1121 #define DWC2_FS_IOT_ID		0x55310000
1122 #define DWC2_HS_IOT_ID		0x55320000
1123 
1124 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1125 	union dwc2_hcd_internal_flags {
1126 		u32 d32;
1127 		struct {
1128 			unsigned port_connect_status_change:1;
1129 			unsigned port_connect_status:1;
1130 			unsigned port_reset_change:1;
1131 			unsigned port_enable_change:1;
1132 			unsigned port_suspend_change:1;
1133 			unsigned port_over_current_change:1;
1134 			unsigned port_l1_change:1;
1135 			unsigned reserved:25;
1136 		} b;
1137 	} flags;
1138 
1139 	struct list_head non_periodic_sched_inactive;
1140 	struct list_head non_periodic_sched_waiting;
1141 	struct list_head non_periodic_sched_active;
1142 	struct list_head *non_periodic_qh_ptr;
1143 	struct list_head periodic_sched_inactive;
1144 	struct list_head periodic_sched_ready;
1145 	struct list_head periodic_sched_assigned;
1146 	struct list_head periodic_sched_queued;
1147 	struct list_head split_order;
1148 	u16 periodic_usecs;
1149 	unsigned long hs_periodic_bitmap[
1150 		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
1151 	u16 periodic_qh_count;
1152 	bool new_connection;
1153 
1154 	u16 last_frame_num;
1155 
1156 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
1157 #define FRAME_NUM_ARRAY_SIZE 1000
1158 	u16 *frame_num_array;
1159 	u16 *last_frame_num_array;
1160 	int frame_num_idx;
1161 	int dumped_frame_num_array;
1162 #endif
1163 
1164 	struct list_head free_hc_list;
1165 	int periodic_channels;
1166 	int non_periodic_channels;
1167 	int available_host_channels;
1168 	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1169 	u8 *status_buf;
1170 	dma_addr_t status_buf_dma;
1171 #define DWC2_HCD_STATUS_BUF_SIZE 64
1172 
1173 	struct delayed_work start_work;
1174 	struct delayed_work reset_work;
1175 	struct work_struct phy_reset_work;
1176 	u8 otg_port;
1177 	u32 *frame_list;
1178 	dma_addr_t frame_list_dma;
1179 	u32 frame_list_sz;
1180 	struct kmem_cache *desc_gen_cache;
1181 	struct kmem_cache *desc_hsisoc_cache;
1182 	struct kmem_cache *unaligned_cache;
1183 #define DWC2_KMEM_UNALIGNED_BUF_SIZE 1024
1184 
1185 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1186 
1187 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1188 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1189 	/* Gadget structures */
1190 	struct usb_gadget_driver *driver;
1191 	int fifo_mem;
1192 	unsigned int dedicated_fifos:1;
1193 	unsigned char num_of_eps;
1194 	u32 fifo_map;
1195 
1196 	struct usb_request *ep0_reply;
1197 	struct usb_request *ctrl_req;
1198 	void *ep0_buff;
1199 	void *ctrl_buff;
1200 	enum dwc2_ep0_state ep0_state;
1201 	unsigned delayed_status : 1;
1202 	u8 test_mode;
1203 
1204 	dma_addr_t setup_desc_dma[2];
1205 	struct dwc2_dma_desc *setup_desc[2];
1206 	dma_addr_t ctrl_in_desc_dma;
1207 	struct dwc2_dma_desc *ctrl_in_desc;
1208 	dma_addr_t ctrl_out_desc_dma;
1209 	struct dwc2_dma_desc *ctrl_out_desc;
1210 
1211 	struct usb_gadget gadget;
1212 	unsigned int enabled:1;
1213 	unsigned int connected:1;
1214 	unsigned int remote_wakeup_allowed:1;
1215 	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1216 	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
1217 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1218 };
1219 
1220 /* Normal architectures just use readl/write */
1221 static inline u32 dwc2_readl(struct dwc2_hsotg *hsotg, u32 offset)
1222 {
1223 	u32 val;
1224 
1225 	val = readl(hsotg->regs + offset);
1226 	if (hsotg->needs_byte_swap)
1227 		return swab32(val);
1228 	else
1229 		return val;
1230 }
1231 
1232 static inline void dwc2_writel(struct dwc2_hsotg *hsotg, u32 value, u32 offset)
1233 {
1234 	if (hsotg->needs_byte_swap)
1235 		writel(swab32(value), hsotg->regs + offset);
1236 	else
1237 		writel(value, hsotg->regs + offset);
1238 
1239 #ifdef DWC2_LOG_WRITES
1240 	pr_info("info:: wrote %08x to %p\n", value, hsotg->regs + offset);
1241 #endif
1242 }
1243 
1244 static inline void dwc2_readl_rep(struct dwc2_hsotg *hsotg, u32 offset,
1245 				  void *buffer, unsigned int count)
1246 {
1247 	if (count) {
1248 		u32 *buf = buffer;
1249 
1250 		do {
1251 			u32 x = dwc2_readl(hsotg, offset);
1252 			*buf++ = x;
1253 		} while (--count);
1254 	}
1255 }
1256 
1257 static inline void dwc2_writel_rep(struct dwc2_hsotg *hsotg, u32 offset,
1258 				   const void *buffer, unsigned int count)
1259 {
1260 	if (count) {
1261 		const u32 *buf = buffer;
1262 
1263 		do {
1264 			dwc2_writel(hsotg, *buf++, offset);
1265 		} while (--count);
1266 	}
1267 }
1268 
1269 /* Reasons for halting a host channel */
1270 enum dwc2_halt_status {
1271 	DWC2_HC_XFER_NO_HALT_STATUS,
1272 	DWC2_HC_XFER_COMPLETE,
1273 	DWC2_HC_XFER_URB_COMPLETE,
1274 	DWC2_HC_XFER_ACK,
1275 	DWC2_HC_XFER_NAK,
1276 	DWC2_HC_XFER_NYET,
1277 	DWC2_HC_XFER_STALL,
1278 	DWC2_HC_XFER_XACT_ERR,
1279 	DWC2_HC_XFER_FRAME_OVERRUN,
1280 	DWC2_HC_XFER_BABBLE_ERR,
1281 	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1282 	DWC2_HC_XFER_AHB_ERR,
1283 	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1284 	DWC2_HC_XFER_URB_DEQUEUE,
1285 };
1286 
1287 /* Core version information */
1288 static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1289 {
1290 	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1291 }
1292 
1293 static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1294 {
1295 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1296 }
1297 
1298 static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1299 {
1300 	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1301 }
1302 
1303 /*
1304  * The following functions support initialization of the core driver component
1305  * and the DWC_otg controller
1306  */
1307 int dwc2_core_reset(struct dwc2_hsotg *hsotg, bool skip_wait);
1308 int dwc2_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1309 int dwc2_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup,
1310 				 bool restore);
1311 int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg, int is_host);
1312 int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
1313 		int reset, int is_host);
1314 void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg);
1315 int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy);
1316 
1317 void dwc2_force_mode(struct dwc2_hsotg *hsotg, bool host);
1318 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1319 
1320 bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1321 
1322 int dwc2_check_core_version(struct dwc2_hsotg *hsotg);
1323 
1324 /*
1325  * Common core Functions.
1326  * The following functions support managing the DWC_otg controller in either
1327  * device or host mode.
1328  */
1329 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1330 void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1331 void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1332 
1333 void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1334 void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1335 
1336 void dwc2_hib_restore_common(struct dwc2_hsotg *hsotg, int rem_wakeup,
1337 			     int is_host);
1338 int dwc2_backup_global_registers(struct dwc2_hsotg *hsotg);
1339 int dwc2_restore_global_registers(struct dwc2_hsotg *hsotg);
1340 
1341 void dwc2_enable_acg(struct dwc2_hsotg *hsotg);
1342 
1343 /* This function should be called on every hardware interrupt. */
1344 irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1345 
1346 /* The device ID match table */
1347 extern const struct of_device_id dwc2_of_match_table[];
1348 extern const struct acpi_device_id dwc2_acpi_match[];
1349 
1350 int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1351 int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1352 
1353 /* Common polling functions */
1354 int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1355 			    u32 timeout);
1356 int dwc2_hsotg_wait_bit_clear(struct dwc2_hsotg *hs_otg, u32 reg, u32 bit,
1357 			      u32 timeout);
1358 /* Parameters */
1359 int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1360 int dwc2_init_params(struct dwc2_hsotg *hsotg);
1361 
1362 /*
1363  * The following functions check the controller's OTG operation mode
1364  * capability (GHWCFG2.OTG_MODE).
1365  *
1366  * These functions can be used before the internal hsotg->hw_params
1367  * are read in and cached so they always read directly from the
1368  * GHWCFG2 register.
1369  */
1370 unsigned int dwc2_op_mode(struct dwc2_hsotg *hsotg);
1371 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1372 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1373 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1374 
1375 /*
1376  * Returns the mode of operation, host or device
1377  */
1378 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1379 {
1380 	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1381 }
1382 
1383 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1384 {
1385 	return (dwc2_readl(hsotg, GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1386 }
1387 
1388 int dwc2_drd_init(struct dwc2_hsotg *hsotg);
1389 void dwc2_drd_suspend(struct dwc2_hsotg *hsotg);
1390 void dwc2_drd_resume(struct dwc2_hsotg *hsotg);
1391 void dwc2_drd_exit(struct dwc2_hsotg *hsotg);
1392 
1393 /*
1394  * Dump core registers and SPRAM
1395  */
1396 void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1397 void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1398 void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1399 
1400 /* Gadget defines */
1401 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || \
1402 	IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1403 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1404 int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1405 int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1406 int dwc2_gadget_init(struct dwc2_hsotg *hsotg);
1407 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1408 				       bool reset);
1409 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg);
1410 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1411 void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1412 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1413 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1414 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1415 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup);
1416 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg);
1417 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1418 				 int rem_wakeup, int reset);
1419 int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1420 int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1421 					bool restore);
1422 void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg);
1423 void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1424 				   int rem_wakeup);
1425 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg);
1426 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg);
1427 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg);
1428 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg);
1429 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg);
1430 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg)
1431 { hsotg->fifo_map = 0; }
1432 #else
1433 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1434 { return 0; }
1435 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1436 { return 0; }
1437 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1438 { return 0; }
1439 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
1440 { return 0; }
1441 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1442 						     bool reset) {}
1443 static inline void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) {}
1444 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1445 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1446 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1447 					   int testmode)
1448 { return 0; }
1449 #define dwc2_is_device_connected(hsotg) (0)
1450 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1451 { return 0; }
1452 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg,
1453 						int remote_wakeup)
1454 { return 0; }
1455 static inline int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
1456 { return 0; }
1457 static inline int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
1458 					       int rem_wakeup, int reset)
1459 { return 0; }
1460 static inline int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1461 { return 0; }
1462 static inline int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1463 						      bool restore)
1464 { return 0; }
1465 static inline void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1466 static inline void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg,
1467 						 int rem_wakeup) {}
1468 static inline int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
1469 { return 0; }
1470 static inline int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
1471 { return 0; }
1472 static inline int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
1473 { return 0; }
1474 static inline void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) {}
1475 static inline void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) {}
1476 static inline void dwc2_clear_fifo_map(struct dwc2_hsotg *hsotg) {}
1477 #endif
1478 
1479 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1480 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1481 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1482 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1483 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1484 void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1485 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup);
1486 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex);
1487 int dwc2_port_resume(struct dwc2_hsotg *hsotg);
1488 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1489 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1490 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg);
1491 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1492 			       int rem_wakeup, int reset);
1493 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg);
1494 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1495 				      int rem_wakeup, bool restore);
1496 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg);
1497 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup);
1498 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2);
1499 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg)
1500 { schedule_work(&hsotg->phy_reset_work); }
1501 #else
1502 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1503 { return 0; }
1504 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1505 						   int us)
1506 { return 0; }
1507 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1508 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1509 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1510 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1511 static inline int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
1512 { return 0; }
1513 static inline int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
1514 { return 0; }
1515 static inline int dwc2_port_resume(struct dwc2_hsotg *hsotg)
1516 { return 0; }
1517 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
1518 { return 0; }
1519 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1520 { return 0; }
1521 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1522 { return 0; }
1523 static inline int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
1524 { return 0; }
1525 static inline int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg,
1526 					     int rem_wakeup, int reset)
1527 { return 0; }
1528 static inline int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
1529 { return 0; }
1530 static inline int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
1531 						    int rem_wakeup, bool restore)
1532 { return 0; }
1533 static inline void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) {}
1534 static inline void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg,
1535 					       int rem_wakeup) {}
1536 static inline bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
1537 { return false; }
1538 static inline void dwc2_host_schedule_phy_reset(struct dwc2_hsotg *hsotg) {}
1539 
1540 #endif
1541 
1542 #endif /* __DWC2_CORE_H__ */
1543