1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/spi.h> 35 #include <linux/spi/spi-mem.h> 36 #include <uapi/linux/sched/types.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 121 char *buf, size_t offset) 122 { 123 u64 val = 0; 124 int i; 125 126 for_each_possible_cpu(i) { 127 const struct spi_statistics *pcpu_stats; 128 u64_stats_t *field; 129 unsigned int start; 130 u64 inc; 131 132 pcpu_stats = per_cpu_ptr(stat, i); 133 field = (void *)pcpu_stats + offset; 134 do { 135 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 136 inc = u64_stats_read(field); 137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 138 val += inc; 139 } 140 return sysfs_emit(buf, "%llu\n", val); 141 } 142 143 #define SPI_STATISTICS_ATTRS(field, file) \ 144 static ssize_t spi_controller_##field##_show(struct device *dev, \ 145 struct device_attribute *attr, \ 146 char *buf) \ 147 { \ 148 struct spi_controller *ctlr = container_of(dev, \ 149 struct spi_controller, dev); \ 150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 151 } \ 152 static struct device_attribute dev_attr_spi_controller_##field = { \ 153 .attr = { .name = file, .mode = 0444 }, \ 154 .show = spi_controller_##field##_show, \ 155 }; \ 156 static ssize_t spi_device_##field##_show(struct device *dev, \ 157 struct device_attribute *attr, \ 158 char *buf) \ 159 { \ 160 struct spi_device *spi = to_spi_device(dev); \ 161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 162 } \ 163 static struct device_attribute dev_attr_spi_device_##field = { \ 164 .attr = { .name = file, .mode = 0444 }, \ 165 .show = spi_device_##field##_show, \ 166 } 167 168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 170 char *buf) \ 171 { \ 172 return spi_emit_pcpu_stats(stat, buf, \ 173 offsetof(struct spi_statistics, field)); \ 174 } \ 175 SPI_STATISTICS_ATTRS(name, file) 176 177 #define SPI_STATISTICS_SHOW(field) \ 178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 179 field) 180 181 SPI_STATISTICS_SHOW(messages); 182 SPI_STATISTICS_SHOW(transfers); 183 SPI_STATISTICS_SHOW(errors); 184 SPI_STATISTICS_SHOW(timedout); 185 186 SPI_STATISTICS_SHOW(spi_sync); 187 SPI_STATISTICS_SHOW(spi_sync_immediate); 188 SPI_STATISTICS_SHOW(spi_async); 189 190 SPI_STATISTICS_SHOW(bytes); 191 SPI_STATISTICS_SHOW(bytes_rx); 192 SPI_STATISTICS_SHOW(bytes_tx); 193 194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 196 "transfer_bytes_histo_" number, \ 197 transfer_bytes_histo[index]) 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 215 216 SPI_STATISTICS_SHOW(transfers_split_maxsize); 217 218 static struct attribute *spi_dev_attrs[] = { 219 &dev_attr_modalias.attr, 220 &dev_attr_driver_override.attr, 221 NULL, 222 }; 223 224 static const struct attribute_group spi_dev_group = { 225 .attrs = spi_dev_attrs, 226 }; 227 228 static struct attribute *spi_device_statistics_attrs[] = { 229 &dev_attr_spi_device_messages.attr, 230 &dev_attr_spi_device_transfers.attr, 231 &dev_attr_spi_device_errors.attr, 232 &dev_attr_spi_device_timedout.attr, 233 &dev_attr_spi_device_spi_sync.attr, 234 &dev_attr_spi_device_spi_sync_immediate.attr, 235 &dev_attr_spi_device_spi_async.attr, 236 &dev_attr_spi_device_bytes.attr, 237 &dev_attr_spi_device_bytes_rx.attr, 238 &dev_attr_spi_device_bytes_tx.attr, 239 &dev_attr_spi_device_transfer_bytes_histo0.attr, 240 &dev_attr_spi_device_transfer_bytes_histo1.attr, 241 &dev_attr_spi_device_transfer_bytes_histo2.attr, 242 &dev_attr_spi_device_transfer_bytes_histo3.attr, 243 &dev_attr_spi_device_transfer_bytes_histo4.attr, 244 &dev_attr_spi_device_transfer_bytes_histo5.attr, 245 &dev_attr_spi_device_transfer_bytes_histo6.attr, 246 &dev_attr_spi_device_transfer_bytes_histo7.attr, 247 &dev_attr_spi_device_transfer_bytes_histo8.attr, 248 &dev_attr_spi_device_transfer_bytes_histo9.attr, 249 &dev_attr_spi_device_transfer_bytes_histo10.attr, 250 &dev_attr_spi_device_transfer_bytes_histo11.attr, 251 &dev_attr_spi_device_transfer_bytes_histo12.attr, 252 &dev_attr_spi_device_transfer_bytes_histo13.attr, 253 &dev_attr_spi_device_transfer_bytes_histo14.attr, 254 &dev_attr_spi_device_transfer_bytes_histo15.attr, 255 &dev_attr_spi_device_transfer_bytes_histo16.attr, 256 &dev_attr_spi_device_transfers_split_maxsize.attr, 257 NULL, 258 }; 259 260 static const struct attribute_group spi_device_statistics_group = { 261 .name = "statistics", 262 .attrs = spi_device_statistics_attrs, 263 }; 264 265 static const struct attribute_group *spi_dev_groups[] = { 266 &spi_dev_group, 267 &spi_device_statistics_group, 268 NULL, 269 }; 270 271 static struct attribute *spi_controller_statistics_attrs[] = { 272 &dev_attr_spi_controller_messages.attr, 273 &dev_attr_spi_controller_transfers.attr, 274 &dev_attr_spi_controller_errors.attr, 275 &dev_attr_spi_controller_timedout.attr, 276 &dev_attr_spi_controller_spi_sync.attr, 277 &dev_attr_spi_controller_spi_sync_immediate.attr, 278 &dev_attr_spi_controller_spi_async.attr, 279 &dev_attr_spi_controller_bytes.attr, 280 &dev_attr_spi_controller_bytes_rx.attr, 281 &dev_attr_spi_controller_bytes_tx.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 299 &dev_attr_spi_controller_transfers_split_maxsize.attr, 300 NULL, 301 }; 302 303 static const struct attribute_group spi_controller_statistics_group = { 304 .name = "statistics", 305 .attrs = spi_controller_statistics_attrs, 306 }; 307 308 static const struct attribute_group *spi_master_groups[] = { 309 &spi_controller_statistics_group, 310 NULL, 311 }; 312 313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 314 struct spi_transfer *xfer, 315 struct spi_message *msg) 316 { 317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 318 struct spi_statistics *stats; 319 320 if (l2len < 0) 321 l2len = 0; 322 323 get_cpu(); 324 stats = this_cpu_ptr(pcpu_stats); 325 u64_stats_update_begin(&stats->syncp); 326 327 u64_stats_inc(&stats->transfers); 328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 329 330 u64_stats_add(&stats->bytes, xfer->len); 331 if (spi_valid_txbuf(msg, xfer)) 332 u64_stats_add(&stats->bytes_tx, xfer->len); 333 if (spi_valid_rxbuf(msg, xfer)) 334 u64_stats_add(&stats->bytes_rx, xfer->len); 335 336 u64_stats_update_end(&stats->syncp); 337 put_cpu(); 338 } 339 340 /* 341 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 342 * and the sysfs version makes coldplug work too. 343 */ 344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 345 { 346 while (id->name[0]) { 347 if (!strcmp(name, id->name)) 348 return id; 349 id++; 350 } 351 return NULL; 352 } 353 354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 355 { 356 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 357 358 return spi_match_id(sdrv->id_table, sdev->modalias); 359 } 360 EXPORT_SYMBOL_GPL(spi_get_device_id); 361 362 const void *spi_get_device_match_data(const struct spi_device *sdev) 363 { 364 const void *match; 365 366 match = device_get_match_data(&sdev->dev); 367 if (match) 368 return match; 369 370 return (const void *)spi_get_device_id(sdev)->driver_data; 371 } 372 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 373 374 static int spi_match_device(struct device *dev, const struct device_driver *drv) 375 { 376 const struct spi_device *spi = to_spi_device(dev); 377 const struct spi_driver *sdrv = to_spi_driver(drv); 378 379 /* Check override first, and if set, only use the named driver */ 380 if (spi->driver_override) 381 return strcmp(spi->driver_override, drv->name) == 0; 382 383 /* Attempt an OF style match */ 384 if (of_driver_match_device(dev, drv)) 385 return 1; 386 387 /* Then try ACPI */ 388 if (acpi_driver_match_device(dev, drv)) 389 return 1; 390 391 if (sdrv->id_table) 392 return !!spi_match_id(sdrv->id_table, spi->modalias); 393 394 return strcmp(spi->modalias, drv->name) == 0; 395 } 396 397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 398 { 399 const struct spi_device *spi = to_spi_device(dev); 400 int rc; 401 402 rc = acpi_device_uevent_modalias(dev, env); 403 if (rc != -ENODEV) 404 return rc; 405 406 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 407 } 408 409 static int spi_probe(struct device *dev) 410 { 411 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 412 struct spi_device *spi = to_spi_device(dev); 413 int ret; 414 415 ret = of_clk_set_defaults(dev->of_node, false); 416 if (ret) 417 return ret; 418 419 if (dev->of_node) { 420 spi->irq = of_irq_get(dev->of_node, 0); 421 if (spi->irq == -EPROBE_DEFER) 422 return dev_err_probe(dev, -EPROBE_DEFER, "Failed to get irq\n"); 423 if (spi->irq < 0) 424 spi->irq = 0; 425 } 426 427 ret = dev_pm_domain_attach(dev, true); 428 if (ret) 429 return ret; 430 431 if (sdrv->probe) { 432 ret = sdrv->probe(spi); 433 if (ret) 434 dev_pm_domain_detach(dev, true); 435 } 436 437 return ret; 438 } 439 440 static void spi_remove(struct device *dev) 441 { 442 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 443 444 if (sdrv->remove) 445 sdrv->remove(to_spi_device(dev)); 446 447 dev_pm_domain_detach(dev, true); 448 } 449 450 static void spi_shutdown(struct device *dev) 451 { 452 if (dev->driver) { 453 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 454 455 if (sdrv->shutdown) 456 sdrv->shutdown(to_spi_device(dev)); 457 } 458 } 459 460 const struct bus_type spi_bus_type = { 461 .name = "spi", 462 .dev_groups = spi_dev_groups, 463 .match = spi_match_device, 464 .uevent = spi_uevent, 465 .probe = spi_probe, 466 .remove = spi_remove, 467 .shutdown = spi_shutdown, 468 }; 469 EXPORT_SYMBOL_GPL(spi_bus_type); 470 471 /** 472 * __spi_register_driver - register a SPI driver 473 * @owner: owner module of the driver to register 474 * @sdrv: the driver to register 475 * Context: can sleep 476 * 477 * Return: zero on success, else a negative error code. 478 */ 479 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 480 { 481 sdrv->driver.owner = owner; 482 sdrv->driver.bus = &spi_bus_type; 483 484 /* 485 * For Really Good Reasons we use spi: modaliases not of: 486 * modaliases for DT so module autoloading won't work if we 487 * don't have a spi_device_id as well as a compatible string. 488 */ 489 if (sdrv->driver.of_match_table) { 490 const struct of_device_id *of_id; 491 492 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 493 of_id++) { 494 const char *of_name; 495 496 /* Strip off any vendor prefix */ 497 of_name = strnchr(of_id->compatible, 498 sizeof(of_id->compatible), ','); 499 if (of_name) 500 of_name++; 501 else 502 of_name = of_id->compatible; 503 504 if (sdrv->id_table) { 505 const struct spi_device_id *spi_id; 506 507 spi_id = spi_match_id(sdrv->id_table, of_name); 508 if (spi_id) 509 continue; 510 } else { 511 if (strcmp(sdrv->driver.name, of_name) == 0) 512 continue; 513 } 514 515 pr_warn("SPI driver %s has no spi_device_id for %s\n", 516 sdrv->driver.name, of_id->compatible); 517 } 518 } 519 520 return driver_register(&sdrv->driver); 521 } 522 EXPORT_SYMBOL_GPL(__spi_register_driver); 523 524 /*-------------------------------------------------------------------------*/ 525 526 /* 527 * SPI devices should normally not be created by SPI device drivers; that 528 * would make them board-specific. Similarly with SPI controller drivers. 529 * Device registration normally goes into like arch/.../mach.../board-YYY.c 530 * with other readonly (flashable) information about mainboard devices. 531 */ 532 533 struct boardinfo { 534 struct list_head list; 535 struct spi_board_info board_info; 536 }; 537 538 static LIST_HEAD(board_list); 539 static LIST_HEAD(spi_controller_list); 540 541 /* 542 * Used to protect add/del operation for board_info list and 543 * spi_controller list, and their matching process also used 544 * to protect object of type struct idr. 545 */ 546 static DEFINE_MUTEX(board_lock); 547 548 /** 549 * spi_alloc_device - Allocate a new SPI device 550 * @ctlr: Controller to which device is connected 551 * Context: can sleep 552 * 553 * Allows a driver to allocate and initialize a spi_device without 554 * registering it immediately. This allows a driver to directly 555 * fill the spi_device with device parameters before calling 556 * spi_add_device() on it. 557 * 558 * Caller is responsible to call spi_add_device() on the returned 559 * spi_device structure to add it to the SPI controller. If the caller 560 * needs to discard the spi_device without adding it, then it should 561 * call spi_dev_put() on it. 562 * 563 * Return: a pointer to the new device, or NULL. 564 */ 565 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 566 { 567 struct spi_device *spi; 568 569 if (!spi_controller_get(ctlr)) 570 return NULL; 571 572 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 573 if (!spi) { 574 spi_controller_put(ctlr); 575 return NULL; 576 } 577 578 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 579 if (!spi->pcpu_statistics) { 580 kfree(spi); 581 spi_controller_put(ctlr); 582 return NULL; 583 } 584 585 spi->controller = ctlr; 586 spi->dev.parent = &ctlr->dev; 587 spi->dev.bus = &spi_bus_type; 588 spi->dev.release = spidev_release; 589 spi->mode = ctlr->buswidth_override_bits; 590 591 device_initialize(&spi->dev); 592 return spi; 593 } 594 EXPORT_SYMBOL_GPL(spi_alloc_device); 595 596 static void spi_dev_set_name(struct spi_device *spi) 597 { 598 struct device *dev = &spi->dev; 599 struct fwnode_handle *fwnode = dev_fwnode(dev); 600 601 if (is_acpi_device_node(fwnode)) { 602 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode))); 603 return; 604 } 605 606 if (is_software_node(fwnode)) { 607 dev_set_name(dev, "spi-%pfwP", fwnode); 608 return; 609 } 610 611 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 612 spi_get_chipselect(spi, 0)); 613 } 614 615 /* 616 * Zero(0) is a valid physical CS value and can be located at any 617 * logical CS in the spi->chip_select[]. If all the physical CS 618 * are initialized to 0 then It would be difficult to differentiate 619 * between a valid physical CS 0 & an unused logical CS whose physical 620 * CS can be 0. As a solution to this issue initialize all the CS to -1. 621 * Now all the unused logical CS will have -1 physical CS value & can be 622 * ignored while performing physical CS validity checks. 623 */ 624 #define SPI_INVALID_CS ((s8)-1) 625 626 static inline bool is_valid_cs(s8 chip_select) 627 { 628 return chip_select != SPI_INVALID_CS; 629 } 630 631 static inline int spi_dev_check_cs(struct device *dev, 632 struct spi_device *spi, u8 idx, 633 struct spi_device *new_spi, u8 new_idx) 634 { 635 u8 cs, cs_new; 636 u8 idx_new; 637 638 cs = spi_get_chipselect(spi, idx); 639 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) { 640 cs_new = spi_get_chipselect(new_spi, idx_new); 641 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) { 642 dev_err(dev, "chipselect %u already in use\n", cs_new); 643 return -EBUSY; 644 } 645 } 646 return 0; 647 } 648 649 static int spi_dev_check(struct device *dev, void *data) 650 { 651 struct spi_device *spi = to_spi_device(dev); 652 struct spi_device *new_spi = data; 653 int status, idx; 654 655 if (spi->controller == new_spi->controller) { 656 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 657 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0); 658 if (status) 659 return status; 660 } 661 } 662 return 0; 663 } 664 665 static void spi_cleanup(struct spi_device *spi) 666 { 667 if (spi->controller->cleanup) 668 spi->controller->cleanup(spi); 669 } 670 671 static int __spi_add_device(struct spi_device *spi) 672 { 673 struct spi_controller *ctlr = spi->controller; 674 struct device *dev = ctlr->dev.parent; 675 int status, idx; 676 u8 cs; 677 678 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 679 /* Chipselects are numbered 0..max; validate. */ 680 cs = spi_get_chipselect(spi, idx); 681 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) { 682 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx), 683 ctlr->num_chipselect); 684 return -EINVAL; 685 } 686 } 687 688 /* 689 * Make sure that multiple logical CS doesn't map to the same physical CS. 690 * For example, spi->chip_select[0] != spi->chip_select[1] and so on. 691 */ 692 if (!spi_controller_is_target(ctlr)) { 693 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 694 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1); 695 if (status) 696 return status; 697 } 698 } 699 700 /* Set the bus ID string */ 701 spi_dev_set_name(spi); 702 703 /* 704 * We need to make sure there's no other device with this 705 * chipselect **BEFORE** we call setup(), else we'll trash 706 * its configuration. 707 */ 708 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 709 if (status) 710 return status; 711 712 /* Controller may unregister concurrently */ 713 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 714 !device_is_registered(&ctlr->dev)) { 715 return -ENODEV; 716 } 717 718 if (ctlr->cs_gpiods) { 719 u8 cs; 720 721 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 722 cs = spi_get_chipselect(spi, idx); 723 if (is_valid_cs(cs)) 724 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]); 725 } 726 } 727 728 /* 729 * Drivers may modify this initial i/o setup, but will 730 * normally rely on the device being setup. Devices 731 * using SPI_CS_HIGH can't coexist well otherwise... 732 */ 733 status = spi_setup(spi); 734 if (status < 0) { 735 dev_err(dev, "can't setup %s, status %d\n", 736 dev_name(&spi->dev), status); 737 return status; 738 } 739 740 /* Device may be bound to an active driver when this returns */ 741 status = device_add(&spi->dev); 742 if (status < 0) { 743 dev_err(dev, "can't add %s, status %d\n", 744 dev_name(&spi->dev), status); 745 spi_cleanup(spi); 746 } else { 747 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 748 } 749 750 return status; 751 } 752 753 /** 754 * spi_add_device - Add spi_device allocated with spi_alloc_device 755 * @spi: spi_device to register 756 * 757 * Companion function to spi_alloc_device. Devices allocated with 758 * spi_alloc_device can be added onto the SPI bus with this function. 759 * 760 * Return: 0 on success; negative errno on failure 761 */ 762 int spi_add_device(struct spi_device *spi) 763 { 764 struct spi_controller *ctlr = spi->controller; 765 int status; 766 767 /* Set the bus ID string */ 768 spi_dev_set_name(spi); 769 770 mutex_lock(&ctlr->add_lock); 771 status = __spi_add_device(spi); 772 mutex_unlock(&ctlr->add_lock); 773 return status; 774 } 775 EXPORT_SYMBOL_GPL(spi_add_device); 776 777 static void spi_set_all_cs_unused(struct spi_device *spi) 778 { 779 u8 idx; 780 781 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 782 spi_set_chipselect(spi, idx, SPI_INVALID_CS); 783 } 784 785 /** 786 * spi_new_device - instantiate one new SPI device 787 * @ctlr: Controller to which device is connected 788 * @chip: Describes the SPI device 789 * Context: can sleep 790 * 791 * On typical mainboards, this is purely internal; and it's not needed 792 * after board init creates the hard-wired devices. Some development 793 * platforms may not be able to use spi_register_board_info though, and 794 * this is exported so that for example a USB or parport based adapter 795 * driver could add devices (which it would learn about out-of-band). 796 * 797 * Return: the new device, or NULL. 798 */ 799 struct spi_device *spi_new_device(struct spi_controller *ctlr, 800 struct spi_board_info *chip) 801 { 802 struct spi_device *proxy; 803 int status; 804 805 /* 806 * NOTE: caller did any chip->bus_num checks necessary. 807 * 808 * Also, unless we change the return value convention to use 809 * error-or-pointer (not NULL-or-pointer), troubleshootability 810 * suggests syslogged diagnostics are best here (ugh). 811 */ 812 813 proxy = spi_alloc_device(ctlr); 814 if (!proxy) 815 return NULL; 816 817 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 818 819 /* Use provided chip-select for proxy device */ 820 spi_set_all_cs_unused(proxy); 821 spi_set_chipselect(proxy, 0, chip->chip_select); 822 823 proxy->max_speed_hz = chip->max_speed_hz; 824 proxy->mode = chip->mode; 825 proxy->irq = chip->irq; 826 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 827 proxy->dev.platform_data = (void *) chip->platform_data; 828 proxy->controller_data = chip->controller_data; 829 proxy->controller_state = NULL; 830 /* 831 * By default spi->chip_select[0] will hold the physical CS number, 832 * so set bit 0 in spi->cs_index_mask. 833 */ 834 proxy->cs_index_mask = BIT(0); 835 836 if (chip->swnode) { 837 status = device_add_software_node(&proxy->dev, chip->swnode); 838 if (status) { 839 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 840 chip->modalias, status); 841 goto err_dev_put; 842 } 843 } 844 845 status = spi_add_device(proxy); 846 if (status < 0) 847 goto err_dev_put; 848 849 return proxy; 850 851 err_dev_put: 852 device_remove_software_node(&proxy->dev); 853 spi_dev_put(proxy); 854 return NULL; 855 } 856 EXPORT_SYMBOL_GPL(spi_new_device); 857 858 /** 859 * spi_unregister_device - unregister a single SPI device 860 * @spi: spi_device to unregister 861 * 862 * Start making the passed SPI device vanish. Normally this would be handled 863 * by spi_unregister_controller(). 864 */ 865 void spi_unregister_device(struct spi_device *spi) 866 { 867 if (!spi) 868 return; 869 870 if (spi->dev.of_node) { 871 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 872 of_node_put(spi->dev.of_node); 873 } 874 if (ACPI_COMPANION(&spi->dev)) 875 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 876 device_remove_software_node(&spi->dev); 877 device_del(&spi->dev); 878 spi_cleanup(spi); 879 put_device(&spi->dev); 880 } 881 EXPORT_SYMBOL_GPL(spi_unregister_device); 882 883 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 884 struct spi_board_info *bi) 885 { 886 struct spi_device *dev; 887 888 if (ctlr->bus_num != bi->bus_num) 889 return; 890 891 dev = spi_new_device(ctlr, bi); 892 if (!dev) 893 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 894 bi->modalias); 895 } 896 897 /** 898 * spi_register_board_info - register SPI devices for a given board 899 * @info: array of chip descriptors 900 * @n: how many descriptors are provided 901 * Context: can sleep 902 * 903 * Board-specific early init code calls this (probably during arch_initcall) 904 * with segments of the SPI device table. Any device nodes are created later, 905 * after the relevant parent SPI controller (bus_num) is defined. We keep 906 * this table of devices forever, so that reloading a controller driver will 907 * not make Linux forget about these hard-wired devices. 908 * 909 * Other code can also call this, e.g. a particular add-on board might provide 910 * SPI devices through its expansion connector, so code initializing that board 911 * would naturally declare its SPI devices. 912 * 913 * The board info passed can safely be __initdata ... but be careful of 914 * any embedded pointers (platform_data, etc), they're copied as-is. 915 * 916 * Return: zero on success, else a negative error code. 917 */ 918 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 919 { 920 struct boardinfo *bi; 921 int i; 922 923 if (!n) 924 return 0; 925 926 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 927 if (!bi) 928 return -ENOMEM; 929 930 for (i = 0; i < n; i++, bi++, info++) { 931 struct spi_controller *ctlr; 932 933 memcpy(&bi->board_info, info, sizeof(*info)); 934 935 mutex_lock(&board_lock); 936 list_add_tail(&bi->list, &board_list); 937 list_for_each_entry(ctlr, &spi_controller_list, list) 938 spi_match_controller_to_boardinfo(ctlr, 939 &bi->board_info); 940 mutex_unlock(&board_lock); 941 } 942 943 return 0; 944 } 945 946 /*-------------------------------------------------------------------------*/ 947 948 /* Core methods for SPI resource management */ 949 950 /** 951 * spi_res_alloc - allocate a spi resource that is life-cycle managed 952 * during the processing of a spi_message while using 953 * spi_transfer_one 954 * @spi: the SPI device for which we allocate memory 955 * @release: the release code to execute for this resource 956 * @size: size to alloc and return 957 * @gfp: GFP allocation flags 958 * 959 * Return: the pointer to the allocated data 960 * 961 * This may get enhanced in the future to allocate from a memory pool 962 * of the @spi_device or @spi_controller to avoid repeated allocations. 963 */ 964 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 965 size_t size, gfp_t gfp) 966 { 967 struct spi_res *sres; 968 969 sres = kzalloc(sizeof(*sres) + size, gfp); 970 if (!sres) 971 return NULL; 972 973 INIT_LIST_HEAD(&sres->entry); 974 sres->release = release; 975 976 return sres->data; 977 } 978 979 /** 980 * spi_res_free - free an SPI resource 981 * @res: pointer to the custom data of a resource 982 */ 983 static void spi_res_free(void *res) 984 { 985 struct spi_res *sres = container_of(res, struct spi_res, data); 986 987 WARN_ON(!list_empty(&sres->entry)); 988 kfree(sres); 989 } 990 991 /** 992 * spi_res_add - add a spi_res to the spi_message 993 * @message: the SPI message 994 * @res: the spi_resource 995 */ 996 static void spi_res_add(struct spi_message *message, void *res) 997 { 998 struct spi_res *sres = container_of(res, struct spi_res, data); 999 1000 WARN_ON(!list_empty(&sres->entry)); 1001 list_add_tail(&sres->entry, &message->resources); 1002 } 1003 1004 /** 1005 * spi_res_release - release all SPI resources for this message 1006 * @ctlr: the @spi_controller 1007 * @message: the @spi_message 1008 */ 1009 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 1010 { 1011 struct spi_res *res, *tmp; 1012 1013 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 1014 if (res->release) 1015 res->release(ctlr, message, res->data); 1016 1017 list_del(&res->entry); 1018 1019 kfree(res); 1020 } 1021 } 1022 1023 /*-------------------------------------------------------------------------*/ 1024 #define spi_for_each_valid_cs(spi, idx) \ 1025 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) \ 1026 if (!(spi->cs_index_mask & BIT(idx))) {} else 1027 1028 static inline bool spi_is_last_cs(struct spi_device *spi) 1029 { 1030 u8 idx; 1031 bool last = false; 1032 1033 spi_for_each_valid_cs(spi, idx) { 1034 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx)) 1035 last = true; 1036 } 1037 return last; 1038 } 1039 1040 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate) 1041 { 1042 /* 1043 * Historically ACPI has no means of the GPIO polarity and 1044 * thus the SPISerialBus() resource defines it on the per-chip 1045 * basis. In order to avoid a chain of negations, the GPIO 1046 * polarity is considered being Active High. Even for the cases 1047 * when _DSD() is involved (in the updated versions of ACPI) 1048 * the GPIO CS polarity must be defined Active High to avoid 1049 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 1050 * into account. 1051 */ 1052 if (has_acpi_companion(&spi->dev)) 1053 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable); 1054 else 1055 /* Polarity handled by GPIO library */ 1056 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate); 1057 1058 if (activate) 1059 spi_delay_exec(&spi->cs_setup, NULL); 1060 else 1061 spi_delay_exec(&spi->cs_inactive, NULL); 1062 } 1063 1064 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 1065 { 1066 bool activate = enable; 1067 u8 idx; 1068 1069 /* 1070 * Avoid calling into the driver (or doing delays) if the chip select 1071 * isn't actually changing from the last time this was called. 1072 */ 1073 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1074 spi_is_last_cs(spi)) || 1075 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1076 !spi_is_last_cs(spi))) && 1077 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 1078 return; 1079 1080 trace_spi_set_cs(spi, activate); 1081 1082 spi->controller->last_cs_index_mask = spi->cs_index_mask; 1083 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 1084 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS; 1085 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 1086 1087 if (spi->mode & SPI_CS_HIGH) 1088 enable = !enable; 1089 1090 /* 1091 * Handle chip select delays for GPIO based CS or controllers without 1092 * programmable chip select timing. 1093 */ 1094 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate) 1095 spi_delay_exec(&spi->cs_hold, NULL); 1096 1097 if (spi_is_csgpiod(spi)) { 1098 if (!(spi->mode & SPI_NO_CS)) { 1099 spi_for_each_valid_cs(spi, idx) { 1100 if (spi_get_csgpiod(spi, idx)) 1101 spi_toggle_csgpiod(spi, idx, enable, activate); 1102 } 1103 } 1104 /* Some SPI masters need both GPIO CS & slave_select */ 1105 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 1106 spi->controller->set_cs) 1107 spi->controller->set_cs(spi, !enable); 1108 } else if (spi->controller->set_cs) { 1109 spi->controller->set_cs(spi, !enable); 1110 } 1111 1112 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) { 1113 if (activate) 1114 spi_delay_exec(&spi->cs_setup, NULL); 1115 else 1116 spi_delay_exec(&spi->cs_inactive, NULL); 1117 } 1118 } 1119 1120 #ifdef CONFIG_HAS_DMA 1121 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1122 struct sg_table *sgt, void *buf, size_t len, 1123 enum dma_data_direction dir, unsigned long attrs) 1124 { 1125 const bool vmalloced_buf = is_vmalloc_addr(buf); 1126 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1127 #ifdef CONFIG_HIGHMEM 1128 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1129 (unsigned long)buf < (PKMAP_BASE + 1130 (LAST_PKMAP * PAGE_SIZE))); 1131 #else 1132 const bool kmap_buf = false; 1133 #endif 1134 int desc_len; 1135 int sgs; 1136 struct page *vm_page; 1137 struct scatterlist *sg; 1138 void *sg_buf; 1139 size_t min; 1140 int i, ret; 1141 1142 if (vmalloced_buf || kmap_buf) { 1143 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1144 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1145 } else if (virt_addr_valid(buf)) { 1146 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1147 sgs = DIV_ROUND_UP(len, desc_len); 1148 } else { 1149 return -EINVAL; 1150 } 1151 1152 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1153 if (ret != 0) 1154 return ret; 1155 1156 sg = &sgt->sgl[0]; 1157 for (i = 0; i < sgs; i++) { 1158 1159 if (vmalloced_buf || kmap_buf) { 1160 /* 1161 * Next scatterlist entry size is the minimum between 1162 * the desc_len and the remaining buffer length that 1163 * fits in a page. 1164 */ 1165 min = min_t(size_t, desc_len, 1166 min_t(size_t, len, 1167 PAGE_SIZE - offset_in_page(buf))); 1168 if (vmalloced_buf) 1169 vm_page = vmalloc_to_page(buf); 1170 else 1171 vm_page = kmap_to_page(buf); 1172 if (!vm_page) { 1173 sg_free_table(sgt); 1174 return -ENOMEM; 1175 } 1176 sg_set_page(sg, vm_page, 1177 min, offset_in_page(buf)); 1178 } else { 1179 min = min_t(size_t, len, desc_len); 1180 sg_buf = buf; 1181 sg_set_buf(sg, sg_buf, min); 1182 } 1183 1184 buf += min; 1185 len -= min; 1186 sg = sg_next(sg); 1187 } 1188 1189 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1190 if (ret < 0) { 1191 sg_free_table(sgt); 1192 return ret; 1193 } 1194 1195 return 0; 1196 } 1197 1198 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1199 struct sg_table *sgt, void *buf, size_t len, 1200 enum dma_data_direction dir) 1201 { 1202 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1203 } 1204 1205 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1206 struct device *dev, struct sg_table *sgt, 1207 enum dma_data_direction dir, 1208 unsigned long attrs) 1209 { 1210 dma_unmap_sgtable(dev, sgt, dir, attrs); 1211 sg_free_table(sgt); 1212 sgt->orig_nents = 0; 1213 sgt->nents = 0; 1214 } 1215 1216 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1217 struct sg_table *sgt, enum dma_data_direction dir) 1218 { 1219 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1220 } 1221 1222 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1223 { 1224 struct device *tx_dev, *rx_dev; 1225 struct spi_transfer *xfer; 1226 int ret; 1227 1228 if (!ctlr->can_dma) 1229 return 0; 1230 1231 if (ctlr->dma_tx) 1232 tx_dev = ctlr->dma_tx->device->dev; 1233 else if (ctlr->dma_map_dev) 1234 tx_dev = ctlr->dma_map_dev; 1235 else 1236 tx_dev = ctlr->dev.parent; 1237 1238 if (ctlr->dma_rx) 1239 rx_dev = ctlr->dma_rx->device->dev; 1240 else if (ctlr->dma_map_dev) 1241 rx_dev = ctlr->dma_map_dev; 1242 else 1243 rx_dev = ctlr->dev.parent; 1244 1245 ret = -ENOMSG; 1246 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1247 /* The sync is done before each transfer. */ 1248 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1249 1250 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1251 continue; 1252 1253 if (xfer->tx_buf != NULL) { 1254 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1255 (void *)xfer->tx_buf, 1256 xfer->len, DMA_TO_DEVICE, 1257 attrs); 1258 if (ret != 0) 1259 return ret; 1260 1261 xfer->tx_sg_mapped = true; 1262 } 1263 1264 if (xfer->rx_buf != NULL) { 1265 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1266 xfer->rx_buf, xfer->len, 1267 DMA_FROM_DEVICE, attrs); 1268 if (ret != 0) { 1269 spi_unmap_buf_attrs(ctlr, tx_dev, 1270 &xfer->tx_sg, DMA_TO_DEVICE, 1271 attrs); 1272 1273 return ret; 1274 } 1275 1276 xfer->rx_sg_mapped = true; 1277 } 1278 } 1279 /* No transfer has been mapped, bail out with success */ 1280 if (ret) 1281 return 0; 1282 1283 ctlr->cur_rx_dma_dev = rx_dev; 1284 ctlr->cur_tx_dma_dev = tx_dev; 1285 1286 return 0; 1287 } 1288 1289 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1290 { 1291 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1292 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1293 struct spi_transfer *xfer; 1294 1295 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1296 /* The sync has already been done after each transfer. */ 1297 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1298 1299 if (xfer->rx_sg_mapped) 1300 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1301 DMA_FROM_DEVICE, attrs); 1302 xfer->rx_sg_mapped = false; 1303 1304 if (xfer->tx_sg_mapped) 1305 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1306 DMA_TO_DEVICE, attrs); 1307 xfer->tx_sg_mapped = false; 1308 } 1309 1310 return 0; 1311 } 1312 1313 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1314 struct spi_transfer *xfer) 1315 { 1316 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1317 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1318 1319 if (xfer->tx_sg_mapped) 1320 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1321 if (xfer->rx_sg_mapped) 1322 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1323 } 1324 1325 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1326 struct spi_transfer *xfer) 1327 { 1328 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1329 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1330 1331 if (xfer->rx_sg_mapped) 1332 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1333 if (xfer->tx_sg_mapped) 1334 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1335 } 1336 #else /* !CONFIG_HAS_DMA */ 1337 static inline int __spi_map_msg(struct spi_controller *ctlr, 1338 struct spi_message *msg) 1339 { 1340 return 0; 1341 } 1342 1343 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1344 struct spi_message *msg) 1345 { 1346 return 0; 1347 } 1348 1349 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1350 struct spi_transfer *xfer) 1351 { 1352 } 1353 1354 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1355 struct spi_transfer *xfer) 1356 { 1357 } 1358 #endif /* !CONFIG_HAS_DMA */ 1359 1360 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1361 struct spi_message *msg) 1362 { 1363 struct spi_transfer *xfer; 1364 1365 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1366 /* 1367 * Restore the original value of tx_buf or rx_buf if they are 1368 * NULL. 1369 */ 1370 if (xfer->tx_buf == ctlr->dummy_tx) 1371 xfer->tx_buf = NULL; 1372 if (xfer->rx_buf == ctlr->dummy_rx) 1373 xfer->rx_buf = NULL; 1374 } 1375 1376 return __spi_unmap_msg(ctlr, msg); 1377 } 1378 1379 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1380 { 1381 struct spi_transfer *xfer; 1382 void *tmp; 1383 unsigned int max_tx, max_rx; 1384 1385 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1386 && !(msg->spi->mode & SPI_3WIRE)) { 1387 max_tx = 0; 1388 max_rx = 0; 1389 1390 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1391 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1392 !xfer->tx_buf) 1393 max_tx = max(xfer->len, max_tx); 1394 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1395 !xfer->rx_buf) 1396 max_rx = max(xfer->len, max_rx); 1397 } 1398 1399 if (max_tx) { 1400 tmp = krealloc(ctlr->dummy_tx, max_tx, 1401 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1402 if (!tmp) 1403 return -ENOMEM; 1404 ctlr->dummy_tx = tmp; 1405 } 1406 1407 if (max_rx) { 1408 tmp = krealloc(ctlr->dummy_rx, max_rx, 1409 GFP_KERNEL | GFP_DMA); 1410 if (!tmp) 1411 return -ENOMEM; 1412 ctlr->dummy_rx = tmp; 1413 } 1414 1415 if (max_tx || max_rx) { 1416 list_for_each_entry(xfer, &msg->transfers, 1417 transfer_list) { 1418 if (!xfer->len) 1419 continue; 1420 if (!xfer->tx_buf) 1421 xfer->tx_buf = ctlr->dummy_tx; 1422 if (!xfer->rx_buf) 1423 xfer->rx_buf = ctlr->dummy_rx; 1424 } 1425 } 1426 } 1427 1428 return __spi_map_msg(ctlr, msg); 1429 } 1430 1431 static int spi_transfer_wait(struct spi_controller *ctlr, 1432 struct spi_message *msg, 1433 struct spi_transfer *xfer) 1434 { 1435 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1436 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1437 u32 speed_hz = xfer->speed_hz; 1438 unsigned long long ms; 1439 1440 if (spi_controller_is_target(ctlr)) { 1441 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1442 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1443 return -EINTR; 1444 } 1445 } else { 1446 if (!speed_hz) 1447 speed_hz = 100000; 1448 1449 /* 1450 * For each byte we wait for 8 cycles of the SPI clock. 1451 * Since speed is defined in Hz and we want milliseconds, 1452 * use respective multiplier, but before the division, 1453 * otherwise we may get 0 for short transfers. 1454 */ 1455 ms = 8LL * MSEC_PER_SEC * xfer->len; 1456 do_div(ms, speed_hz); 1457 1458 /* 1459 * Increase it twice and add 200 ms tolerance, use 1460 * predefined maximum in case of overflow. 1461 */ 1462 ms += ms + 200; 1463 if (ms > UINT_MAX) 1464 ms = UINT_MAX; 1465 1466 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1467 msecs_to_jiffies(ms)); 1468 1469 if (ms == 0) { 1470 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1471 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1472 dev_err(&msg->spi->dev, 1473 "SPI transfer timed out\n"); 1474 return -ETIMEDOUT; 1475 } 1476 1477 if (xfer->error & SPI_TRANS_FAIL_IO) 1478 return -EIO; 1479 } 1480 1481 return 0; 1482 } 1483 1484 static void _spi_transfer_delay_ns(u32 ns) 1485 { 1486 if (!ns) 1487 return; 1488 if (ns <= NSEC_PER_USEC) { 1489 ndelay(ns); 1490 } else { 1491 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1492 1493 if (us <= 10) 1494 udelay(us); 1495 else 1496 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1497 } 1498 } 1499 1500 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1501 { 1502 u32 delay = _delay->value; 1503 u32 unit = _delay->unit; 1504 u32 hz; 1505 1506 if (!delay) 1507 return 0; 1508 1509 switch (unit) { 1510 case SPI_DELAY_UNIT_USECS: 1511 delay *= NSEC_PER_USEC; 1512 break; 1513 case SPI_DELAY_UNIT_NSECS: 1514 /* Nothing to do here */ 1515 break; 1516 case SPI_DELAY_UNIT_SCK: 1517 /* Clock cycles need to be obtained from spi_transfer */ 1518 if (!xfer) 1519 return -EINVAL; 1520 /* 1521 * If there is unknown effective speed, approximate it 1522 * by underestimating with half of the requested Hz. 1523 */ 1524 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1525 if (!hz) 1526 return -EINVAL; 1527 1528 /* Convert delay to nanoseconds */ 1529 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1530 break; 1531 default: 1532 return -EINVAL; 1533 } 1534 1535 return delay; 1536 } 1537 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1538 1539 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1540 { 1541 int delay; 1542 1543 might_sleep(); 1544 1545 if (!_delay) 1546 return -EINVAL; 1547 1548 delay = spi_delay_to_ns(_delay, xfer); 1549 if (delay < 0) 1550 return delay; 1551 1552 _spi_transfer_delay_ns(delay); 1553 1554 return 0; 1555 } 1556 EXPORT_SYMBOL_GPL(spi_delay_exec); 1557 1558 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1559 struct spi_transfer *xfer) 1560 { 1561 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1562 u32 delay = xfer->cs_change_delay.value; 1563 u32 unit = xfer->cs_change_delay.unit; 1564 int ret; 1565 1566 /* Return early on "fast" mode - for everything but USECS */ 1567 if (!delay) { 1568 if (unit == SPI_DELAY_UNIT_USECS) 1569 _spi_transfer_delay_ns(default_delay_ns); 1570 return; 1571 } 1572 1573 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1574 if (ret) { 1575 dev_err_once(&msg->spi->dev, 1576 "Use of unsupported delay unit %i, using default of %luus\n", 1577 unit, default_delay_ns / NSEC_PER_USEC); 1578 _spi_transfer_delay_ns(default_delay_ns); 1579 } 1580 } 1581 1582 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1583 struct spi_transfer *xfer) 1584 { 1585 _spi_transfer_cs_change_delay(msg, xfer); 1586 } 1587 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1588 1589 /* 1590 * spi_transfer_one_message - Default implementation of transfer_one_message() 1591 * 1592 * This is a standard implementation of transfer_one_message() for 1593 * drivers which implement a transfer_one() operation. It provides 1594 * standard handling of delays and chip select management. 1595 */ 1596 static int spi_transfer_one_message(struct spi_controller *ctlr, 1597 struct spi_message *msg) 1598 { 1599 struct spi_transfer *xfer; 1600 bool keep_cs = false; 1601 int ret = 0; 1602 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1603 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1604 1605 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1606 spi_set_cs(msg->spi, !xfer->cs_off, false); 1607 1608 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1609 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1610 1611 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1612 trace_spi_transfer_start(msg, xfer); 1613 1614 spi_statistics_add_transfer_stats(statm, xfer, msg); 1615 spi_statistics_add_transfer_stats(stats, xfer, msg); 1616 1617 if (!ctlr->ptp_sts_supported) { 1618 xfer->ptp_sts_word_pre = 0; 1619 ptp_read_system_prets(xfer->ptp_sts); 1620 } 1621 1622 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1623 reinit_completion(&ctlr->xfer_completion); 1624 1625 fallback_pio: 1626 spi_dma_sync_for_device(ctlr, xfer); 1627 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1628 if (ret < 0) { 1629 spi_dma_sync_for_cpu(ctlr, xfer); 1630 1631 if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) && 1632 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1633 __spi_unmap_msg(ctlr, msg); 1634 ctlr->fallback = true; 1635 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1636 goto fallback_pio; 1637 } 1638 1639 SPI_STATISTICS_INCREMENT_FIELD(statm, 1640 errors); 1641 SPI_STATISTICS_INCREMENT_FIELD(stats, 1642 errors); 1643 dev_err(&msg->spi->dev, 1644 "SPI transfer failed: %d\n", ret); 1645 goto out; 1646 } 1647 1648 if (ret > 0) { 1649 ret = spi_transfer_wait(ctlr, msg, xfer); 1650 if (ret < 0) 1651 msg->status = ret; 1652 } 1653 1654 spi_dma_sync_for_cpu(ctlr, xfer); 1655 } else { 1656 if (xfer->len) 1657 dev_err(&msg->spi->dev, 1658 "Bufferless transfer has length %u\n", 1659 xfer->len); 1660 } 1661 1662 if (!ctlr->ptp_sts_supported) { 1663 ptp_read_system_postts(xfer->ptp_sts); 1664 xfer->ptp_sts_word_post = xfer->len; 1665 } 1666 1667 trace_spi_transfer_stop(msg, xfer); 1668 1669 if (msg->status != -EINPROGRESS) 1670 goto out; 1671 1672 spi_transfer_delay_exec(xfer); 1673 1674 if (xfer->cs_change) { 1675 if (list_is_last(&xfer->transfer_list, 1676 &msg->transfers)) { 1677 keep_cs = true; 1678 } else { 1679 if (!xfer->cs_off) 1680 spi_set_cs(msg->spi, false, false); 1681 _spi_transfer_cs_change_delay(msg, xfer); 1682 if (!list_next_entry(xfer, transfer_list)->cs_off) 1683 spi_set_cs(msg->spi, true, false); 1684 } 1685 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1686 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1687 spi_set_cs(msg->spi, xfer->cs_off, false); 1688 } 1689 1690 msg->actual_length += xfer->len; 1691 } 1692 1693 out: 1694 if (ret != 0 || !keep_cs) 1695 spi_set_cs(msg->spi, false, false); 1696 1697 if (msg->status == -EINPROGRESS) 1698 msg->status = ret; 1699 1700 if (msg->status && ctlr->handle_err) 1701 ctlr->handle_err(ctlr, msg); 1702 1703 spi_finalize_current_message(ctlr); 1704 1705 return ret; 1706 } 1707 1708 /** 1709 * spi_finalize_current_transfer - report completion of a transfer 1710 * @ctlr: the controller reporting completion 1711 * 1712 * Called by SPI drivers using the core transfer_one_message() 1713 * implementation to notify it that the current interrupt driven 1714 * transfer has finished and the next one may be scheduled. 1715 */ 1716 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1717 { 1718 complete(&ctlr->xfer_completion); 1719 } 1720 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1721 1722 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1723 { 1724 if (ctlr->auto_runtime_pm) { 1725 pm_runtime_mark_last_busy(ctlr->dev.parent); 1726 pm_runtime_put_autosuspend(ctlr->dev.parent); 1727 } 1728 } 1729 1730 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1731 struct spi_message *msg, bool was_busy) 1732 { 1733 struct spi_transfer *xfer; 1734 int ret; 1735 1736 if (!was_busy && ctlr->auto_runtime_pm) { 1737 ret = pm_runtime_get_sync(ctlr->dev.parent); 1738 if (ret < 0) { 1739 pm_runtime_put_noidle(ctlr->dev.parent); 1740 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1741 ret); 1742 1743 msg->status = ret; 1744 spi_finalize_current_message(ctlr); 1745 1746 return ret; 1747 } 1748 } 1749 1750 if (!was_busy) 1751 trace_spi_controller_busy(ctlr); 1752 1753 if (!was_busy && ctlr->prepare_transfer_hardware) { 1754 ret = ctlr->prepare_transfer_hardware(ctlr); 1755 if (ret) { 1756 dev_err(&ctlr->dev, 1757 "failed to prepare transfer hardware: %d\n", 1758 ret); 1759 1760 if (ctlr->auto_runtime_pm) 1761 pm_runtime_put(ctlr->dev.parent); 1762 1763 msg->status = ret; 1764 spi_finalize_current_message(ctlr); 1765 1766 return ret; 1767 } 1768 } 1769 1770 trace_spi_message_start(msg); 1771 1772 if (ctlr->prepare_message) { 1773 ret = ctlr->prepare_message(ctlr, msg); 1774 if (ret) { 1775 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1776 ret); 1777 msg->status = ret; 1778 spi_finalize_current_message(ctlr); 1779 return ret; 1780 } 1781 msg->prepared = true; 1782 } 1783 1784 ret = spi_map_msg(ctlr, msg); 1785 if (ret) { 1786 msg->status = ret; 1787 spi_finalize_current_message(ctlr); 1788 return ret; 1789 } 1790 1791 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1792 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1793 xfer->ptp_sts_word_pre = 0; 1794 ptp_read_system_prets(xfer->ptp_sts); 1795 } 1796 } 1797 1798 /* 1799 * Drivers implementation of transfer_one_message() must arrange for 1800 * spi_finalize_current_message() to get called. Most drivers will do 1801 * this in the calling context, but some don't. For those cases, a 1802 * completion is used to guarantee that this function does not return 1803 * until spi_finalize_current_message() is done accessing 1804 * ctlr->cur_msg. 1805 * Use of the following two flags enable to opportunistically skip the 1806 * use of the completion since its use involves expensive spin locks. 1807 * In case of a race with the context that calls 1808 * spi_finalize_current_message() the completion will always be used, 1809 * due to strict ordering of these flags using barriers. 1810 */ 1811 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1812 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1813 reinit_completion(&ctlr->cur_msg_completion); 1814 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1815 1816 ret = ctlr->transfer_one_message(ctlr, msg); 1817 if (ret) { 1818 dev_err(&ctlr->dev, 1819 "failed to transfer one message from queue\n"); 1820 return ret; 1821 } 1822 1823 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1824 smp_mb(); /* See spi_finalize_current_message()... */ 1825 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1826 wait_for_completion(&ctlr->cur_msg_completion); 1827 1828 return 0; 1829 } 1830 1831 /** 1832 * __spi_pump_messages - function which processes SPI message queue 1833 * @ctlr: controller to process queue for 1834 * @in_kthread: true if we are in the context of the message pump thread 1835 * 1836 * This function checks if there is any SPI message in the queue that 1837 * needs processing and if so call out to the driver to initialize hardware 1838 * and transfer each message. 1839 * 1840 * Note that it is called both from the kthread itself and also from 1841 * inside spi_sync(); the queue extraction handling at the top of the 1842 * function should deal with this safely. 1843 */ 1844 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1845 { 1846 struct spi_message *msg; 1847 bool was_busy = false; 1848 unsigned long flags; 1849 int ret; 1850 1851 /* Take the I/O mutex */ 1852 mutex_lock(&ctlr->io_mutex); 1853 1854 /* Lock queue */ 1855 spin_lock_irqsave(&ctlr->queue_lock, flags); 1856 1857 /* Make sure we are not already running a message */ 1858 if (ctlr->cur_msg) 1859 goto out_unlock; 1860 1861 /* Check if the queue is idle */ 1862 if (list_empty(&ctlr->queue) || !ctlr->running) { 1863 if (!ctlr->busy) 1864 goto out_unlock; 1865 1866 /* Defer any non-atomic teardown to the thread */ 1867 if (!in_kthread) { 1868 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1869 !ctlr->unprepare_transfer_hardware) { 1870 spi_idle_runtime_pm(ctlr); 1871 ctlr->busy = false; 1872 ctlr->queue_empty = true; 1873 trace_spi_controller_idle(ctlr); 1874 } else { 1875 kthread_queue_work(ctlr->kworker, 1876 &ctlr->pump_messages); 1877 } 1878 goto out_unlock; 1879 } 1880 1881 ctlr->busy = false; 1882 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1883 1884 kfree(ctlr->dummy_rx); 1885 ctlr->dummy_rx = NULL; 1886 kfree(ctlr->dummy_tx); 1887 ctlr->dummy_tx = NULL; 1888 if (ctlr->unprepare_transfer_hardware && 1889 ctlr->unprepare_transfer_hardware(ctlr)) 1890 dev_err(&ctlr->dev, 1891 "failed to unprepare transfer hardware\n"); 1892 spi_idle_runtime_pm(ctlr); 1893 trace_spi_controller_idle(ctlr); 1894 1895 spin_lock_irqsave(&ctlr->queue_lock, flags); 1896 ctlr->queue_empty = true; 1897 goto out_unlock; 1898 } 1899 1900 /* Extract head of queue */ 1901 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1902 ctlr->cur_msg = msg; 1903 1904 list_del_init(&msg->queue); 1905 if (ctlr->busy) 1906 was_busy = true; 1907 else 1908 ctlr->busy = true; 1909 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1910 1911 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1912 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1913 1914 ctlr->cur_msg = NULL; 1915 ctlr->fallback = false; 1916 1917 mutex_unlock(&ctlr->io_mutex); 1918 1919 /* Prod the scheduler in case transfer_one() was busy waiting */ 1920 if (!ret) 1921 cond_resched(); 1922 return; 1923 1924 out_unlock: 1925 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1926 mutex_unlock(&ctlr->io_mutex); 1927 } 1928 1929 /** 1930 * spi_pump_messages - kthread work function which processes spi message queue 1931 * @work: pointer to kthread work struct contained in the controller struct 1932 */ 1933 static void spi_pump_messages(struct kthread_work *work) 1934 { 1935 struct spi_controller *ctlr = 1936 container_of(work, struct spi_controller, pump_messages); 1937 1938 __spi_pump_messages(ctlr, true); 1939 } 1940 1941 /** 1942 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1943 * @ctlr: Pointer to the spi_controller structure of the driver 1944 * @xfer: Pointer to the transfer being timestamped 1945 * @progress: How many words (not bytes) have been transferred so far 1946 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1947 * transfer, for less jitter in time measurement. Only compatible 1948 * with PIO drivers. If true, must follow up with 1949 * spi_take_timestamp_post or otherwise system will crash. 1950 * WARNING: for fully predictable results, the CPU frequency must 1951 * also be under control (governor). 1952 * 1953 * This is a helper for drivers to collect the beginning of the TX timestamp 1954 * for the requested byte from the SPI transfer. The frequency with which this 1955 * function must be called (once per word, once for the whole transfer, once 1956 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1957 * greater than or equal to the requested byte at the time of the call. The 1958 * timestamp is only taken once, at the first such call. It is assumed that 1959 * the driver advances its @tx buffer pointer monotonically. 1960 */ 1961 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1962 struct spi_transfer *xfer, 1963 size_t progress, bool irqs_off) 1964 { 1965 if (!xfer->ptp_sts) 1966 return; 1967 1968 if (xfer->timestamped) 1969 return; 1970 1971 if (progress > xfer->ptp_sts_word_pre) 1972 return; 1973 1974 /* Capture the resolution of the timestamp */ 1975 xfer->ptp_sts_word_pre = progress; 1976 1977 if (irqs_off) { 1978 local_irq_save(ctlr->irq_flags); 1979 preempt_disable(); 1980 } 1981 1982 ptp_read_system_prets(xfer->ptp_sts); 1983 } 1984 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1985 1986 /** 1987 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1988 * @ctlr: Pointer to the spi_controller structure of the driver 1989 * @xfer: Pointer to the transfer being timestamped 1990 * @progress: How many words (not bytes) have been transferred so far 1991 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1992 * 1993 * This is a helper for drivers to collect the end of the TX timestamp for 1994 * the requested byte from the SPI transfer. Can be called with an arbitrary 1995 * frequency: only the first call where @tx exceeds or is equal to the 1996 * requested word will be timestamped. 1997 */ 1998 void spi_take_timestamp_post(struct spi_controller *ctlr, 1999 struct spi_transfer *xfer, 2000 size_t progress, bool irqs_off) 2001 { 2002 if (!xfer->ptp_sts) 2003 return; 2004 2005 if (xfer->timestamped) 2006 return; 2007 2008 if (progress < xfer->ptp_sts_word_post) 2009 return; 2010 2011 ptp_read_system_postts(xfer->ptp_sts); 2012 2013 if (irqs_off) { 2014 local_irq_restore(ctlr->irq_flags); 2015 preempt_enable(); 2016 } 2017 2018 /* Capture the resolution of the timestamp */ 2019 xfer->ptp_sts_word_post = progress; 2020 2021 xfer->timestamped = 1; 2022 } 2023 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 2024 2025 /** 2026 * spi_set_thread_rt - set the controller to pump at realtime priority 2027 * @ctlr: controller to boost priority of 2028 * 2029 * This can be called because the controller requested realtime priority 2030 * (by setting the ->rt value before calling spi_register_controller()) or 2031 * because a device on the bus said that its transfers needed realtime 2032 * priority. 2033 * 2034 * NOTE: at the moment if any device on a bus says it needs realtime then 2035 * the thread will be at realtime priority for all transfers on that 2036 * controller. If this eventually becomes a problem we may see if we can 2037 * find a way to boost the priority only temporarily during relevant 2038 * transfers. 2039 */ 2040 static void spi_set_thread_rt(struct spi_controller *ctlr) 2041 { 2042 dev_info(&ctlr->dev, 2043 "will run message pump with realtime priority\n"); 2044 sched_set_fifo(ctlr->kworker->task); 2045 } 2046 2047 static int spi_init_queue(struct spi_controller *ctlr) 2048 { 2049 ctlr->running = false; 2050 ctlr->busy = false; 2051 ctlr->queue_empty = true; 2052 2053 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 2054 if (IS_ERR(ctlr->kworker)) { 2055 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 2056 return PTR_ERR(ctlr->kworker); 2057 } 2058 2059 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 2060 2061 /* 2062 * Controller config will indicate if this controller should run the 2063 * message pump with high (realtime) priority to reduce the transfer 2064 * latency on the bus by minimising the delay between a transfer 2065 * request and the scheduling of the message pump thread. Without this 2066 * setting the message pump thread will remain at default priority. 2067 */ 2068 if (ctlr->rt) 2069 spi_set_thread_rt(ctlr); 2070 2071 return 0; 2072 } 2073 2074 /** 2075 * spi_get_next_queued_message() - called by driver to check for queued 2076 * messages 2077 * @ctlr: the controller to check for queued messages 2078 * 2079 * If there are more messages in the queue, the next message is returned from 2080 * this call. 2081 * 2082 * Return: the next message in the queue, else NULL if the queue is empty. 2083 */ 2084 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 2085 { 2086 struct spi_message *next; 2087 unsigned long flags; 2088 2089 /* Get a pointer to the next message, if any */ 2090 spin_lock_irqsave(&ctlr->queue_lock, flags); 2091 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2092 queue); 2093 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2094 2095 return next; 2096 } 2097 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2098 2099 /* 2100 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message() 2101 * and spi_maybe_unoptimize_message() 2102 * @msg: the message to unoptimize 2103 * 2104 * Peripheral drivers should use spi_unoptimize_message() and callers inside 2105 * core should use spi_maybe_unoptimize_message() rather than calling this 2106 * function directly. 2107 * 2108 * It is not valid to call this on a message that is not currently optimized. 2109 */ 2110 static void __spi_unoptimize_message(struct spi_message *msg) 2111 { 2112 struct spi_controller *ctlr = msg->spi->controller; 2113 2114 if (ctlr->unoptimize_message) 2115 ctlr->unoptimize_message(msg); 2116 2117 spi_res_release(ctlr, msg); 2118 2119 msg->optimized = false; 2120 msg->opt_state = NULL; 2121 } 2122 2123 /* 2124 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral 2125 * @msg: the message to unoptimize 2126 * 2127 * This function is used to unoptimize a message if and only if it was 2128 * optimized by the core (via spi_maybe_optimize_message()). 2129 */ 2130 static void spi_maybe_unoptimize_message(struct spi_message *msg) 2131 { 2132 if (!msg->pre_optimized && msg->optimized && 2133 !msg->spi->controller->defer_optimize_message) 2134 __spi_unoptimize_message(msg); 2135 } 2136 2137 /** 2138 * spi_finalize_current_message() - the current message is complete 2139 * @ctlr: the controller to return the message to 2140 * 2141 * Called by the driver to notify the core that the message in the front of the 2142 * queue is complete and can be removed from the queue. 2143 */ 2144 void spi_finalize_current_message(struct spi_controller *ctlr) 2145 { 2146 struct spi_transfer *xfer; 2147 struct spi_message *mesg; 2148 int ret; 2149 2150 mesg = ctlr->cur_msg; 2151 2152 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2153 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2154 ptp_read_system_postts(xfer->ptp_sts); 2155 xfer->ptp_sts_word_post = xfer->len; 2156 } 2157 } 2158 2159 if (unlikely(ctlr->ptp_sts_supported)) 2160 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2161 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2162 2163 spi_unmap_msg(ctlr, mesg); 2164 2165 if (mesg->prepared && ctlr->unprepare_message) { 2166 ret = ctlr->unprepare_message(ctlr, mesg); 2167 if (ret) { 2168 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2169 ret); 2170 } 2171 } 2172 2173 mesg->prepared = false; 2174 2175 spi_maybe_unoptimize_message(mesg); 2176 2177 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2178 smp_mb(); /* See __spi_pump_transfer_message()... */ 2179 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2180 complete(&ctlr->cur_msg_completion); 2181 2182 trace_spi_message_done(mesg); 2183 2184 mesg->state = NULL; 2185 if (mesg->complete) 2186 mesg->complete(mesg->context); 2187 } 2188 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2189 2190 static int spi_start_queue(struct spi_controller *ctlr) 2191 { 2192 unsigned long flags; 2193 2194 spin_lock_irqsave(&ctlr->queue_lock, flags); 2195 2196 if (ctlr->running || ctlr->busy) { 2197 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2198 return -EBUSY; 2199 } 2200 2201 ctlr->running = true; 2202 ctlr->cur_msg = NULL; 2203 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2204 2205 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2206 2207 return 0; 2208 } 2209 2210 static int spi_stop_queue(struct spi_controller *ctlr) 2211 { 2212 unsigned int limit = 500; 2213 unsigned long flags; 2214 2215 /* 2216 * This is a bit lame, but is optimized for the common execution path. 2217 * A wait_queue on the ctlr->busy could be used, but then the common 2218 * execution path (pump_messages) would be required to call wake_up or 2219 * friends on every SPI message. Do this instead. 2220 */ 2221 do { 2222 spin_lock_irqsave(&ctlr->queue_lock, flags); 2223 if (list_empty(&ctlr->queue) && !ctlr->busy) { 2224 ctlr->running = false; 2225 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2226 return 0; 2227 } 2228 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2229 usleep_range(10000, 11000); 2230 } while (--limit); 2231 2232 return -EBUSY; 2233 } 2234 2235 static int spi_destroy_queue(struct spi_controller *ctlr) 2236 { 2237 int ret; 2238 2239 ret = spi_stop_queue(ctlr); 2240 2241 /* 2242 * kthread_flush_worker will block until all work is done. 2243 * If the reason that stop_queue timed out is that the work will never 2244 * finish, then it does no good to call flush/stop thread, so 2245 * return anyway. 2246 */ 2247 if (ret) { 2248 dev_err(&ctlr->dev, "problem destroying queue\n"); 2249 return ret; 2250 } 2251 2252 kthread_destroy_worker(ctlr->kworker); 2253 2254 return 0; 2255 } 2256 2257 static int __spi_queued_transfer(struct spi_device *spi, 2258 struct spi_message *msg, 2259 bool need_pump) 2260 { 2261 struct spi_controller *ctlr = spi->controller; 2262 unsigned long flags; 2263 2264 spin_lock_irqsave(&ctlr->queue_lock, flags); 2265 2266 if (!ctlr->running) { 2267 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2268 return -ESHUTDOWN; 2269 } 2270 msg->actual_length = 0; 2271 msg->status = -EINPROGRESS; 2272 2273 list_add_tail(&msg->queue, &ctlr->queue); 2274 ctlr->queue_empty = false; 2275 if (!ctlr->busy && need_pump) 2276 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2277 2278 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2279 return 0; 2280 } 2281 2282 /** 2283 * spi_queued_transfer - transfer function for queued transfers 2284 * @spi: SPI device which is requesting transfer 2285 * @msg: SPI message which is to handled is queued to driver queue 2286 * 2287 * Return: zero on success, else a negative error code. 2288 */ 2289 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2290 { 2291 return __spi_queued_transfer(spi, msg, true); 2292 } 2293 2294 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2295 { 2296 int ret; 2297 2298 ctlr->transfer = spi_queued_transfer; 2299 if (!ctlr->transfer_one_message) 2300 ctlr->transfer_one_message = spi_transfer_one_message; 2301 2302 /* Initialize and start queue */ 2303 ret = spi_init_queue(ctlr); 2304 if (ret) { 2305 dev_err(&ctlr->dev, "problem initializing queue\n"); 2306 goto err_init_queue; 2307 } 2308 ctlr->queued = true; 2309 ret = spi_start_queue(ctlr); 2310 if (ret) { 2311 dev_err(&ctlr->dev, "problem starting queue\n"); 2312 goto err_start_queue; 2313 } 2314 2315 return 0; 2316 2317 err_start_queue: 2318 spi_destroy_queue(ctlr); 2319 err_init_queue: 2320 return ret; 2321 } 2322 2323 /** 2324 * spi_flush_queue - Send all pending messages in the queue from the callers' 2325 * context 2326 * @ctlr: controller to process queue for 2327 * 2328 * This should be used when one wants to ensure all pending messages have been 2329 * sent before doing something. Is used by the spi-mem code to make sure SPI 2330 * memory operations do not preempt regular SPI transfers that have been queued 2331 * before the spi-mem operation. 2332 */ 2333 void spi_flush_queue(struct spi_controller *ctlr) 2334 { 2335 if (ctlr->transfer == spi_queued_transfer) 2336 __spi_pump_messages(ctlr, false); 2337 } 2338 2339 /*-------------------------------------------------------------------------*/ 2340 2341 #if defined(CONFIG_OF) 2342 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2343 struct spi_delay *delay, const char *prop) 2344 { 2345 u32 value; 2346 2347 if (!of_property_read_u32(nc, prop, &value)) { 2348 if (value > U16_MAX) { 2349 delay->value = DIV_ROUND_UP(value, 1000); 2350 delay->unit = SPI_DELAY_UNIT_USECS; 2351 } else { 2352 delay->value = value; 2353 delay->unit = SPI_DELAY_UNIT_NSECS; 2354 } 2355 } 2356 } 2357 2358 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2359 struct device_node *nc) 2360 { 2361 u32 value, cs[SPI_CS_CNT_MAX]; 2362 int rc, idx; 2363 2364 /* Mode (clock phase/polarity/etc.) */ 2365 if (of_property_read_bool(nc, "spi-cpha")) 2366 spi->mode |= SPI_CPHA; 2367 if (of_property_read_bool(nc, "spi-cpol")) 2368 spi->mode |= SPI_CPOL; 2369 if (of_property_read_bool(nc, "spi-3wire")) 2370 spi->mode |= SPI_3WIRE; 2371 if (of_property_read_bool(nc, "spi-lsb-first")) 2372 spi->mode |= SPI_LSB_FIRST; 2373 if (of_property_read_bool(nc, "spi-cs-high")) 2374 spi->mode |= SPI_CS_HIGH; 2375 2376 /* Device DUAL/QUAD mode */ 2377 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2378 switch (value) { 2379 case 0: 2380 spi->mode |= SPI_NO_TX; 2381 break; 2382 case 1: 2383 break; 2384 case 2: 2385 spi->mode |= SPI_TX_DUAL; 2386 break; 2387 case 4: 2388 spi->mode |= SPI_TX_QUAD; 2389 break; 2390 case 8: 2391 spi->mode |= SPI_TX_OCTAL; 2392 break; 2393 default: 2394 dev_warn(&ctlr->dev, 2395 "spi-tx-bus-width %d not supported\n", 2396 value); 2397 break; 2398 } 2399 } 2400 2401 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2402 switch (value) { 2403 case 0: 2404 spi->mode |= SPI_NO_RX; 2405 break; 2406 case 1: 2407 break; 2408 case 2: 2409 spi->mode |= SPI_RX_DUAL; 2410 break; 2411 case 4: 2412 spi->mode |= SPI_RX_QUAD; 2413 break; 2414 case 8: 2415 spi->mode |= SPI_RX_OCTAL; 2416 break; 2417 default: 2418 dev_warn(&ctlr->dev, 2419 "spi-rx-bus-width %d not supported\n", 2420 value); 2421 break; 2422 } 2423 } 2424 2425 if (spi_controller_is_target(ctlr)) { 2426 if (!of_node_name_eq(nc, "slave")) { 2427 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2428 nc); 2429 return -EINVAL; 2430 } 2431 return 0; 2432 } 2433 2434 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) { 2435 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n"); 2436 return -EINVAL; 2437 } 2438 2439 spi_set_all_cs_unused(spi); 2440 2441 /* Device address */ 2442 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1, 2443 SPI_CS_CNT_MAX); 2444 if (rc < 0) { 2445 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2446 nc, rc); 2447 return rc; 2448 } 2449 if (rc > ctlr->num_chipselect) { 2450 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n", 2451 nc, rc); 2452 return rc; 2453 } 2454 if ((of_property_present(nc, "parallel-memories")) && 2455 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) { 2456 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n"); 2457 return -EINVAL; 2458 } 2459 for (idx = 0; idx < rc; idx++) 2460 spi_set_chipselect(spi, idx, cs[idx]); 2461 2462 /* 2463 * By default spi->chip_select[0] will hold the physical CS number, 2464 * so set bit 0 in spi->cs_index_mask. 2465 */ 2466 spi->cs_index_mask = BIT(0); 2467 2468 /* Device speed */ 2469 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2470 spi->max_speed_hz = value; 2471 2472 /* Device CS delays */ 2473 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2474 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2475 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2476 2477 return 0; 2478 } 2479 2480 static struct spi_device * 2481 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2482 { 2483 struct spi_device *spi; 2484 int rc; 2485 2486 /* Alloc an spi_device */ 2487 spi = spi_alloc_device(ctlr); 2488 if (!spi) { 2489 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2490 rc = -ENOMEM; 2491 goto err_out; 2492 } 2493 2494 /* Select device driver */ 2495 rc = of_alias_from_compatible(nc, spi->modalias, 2496 sizeof(spi->modalias)); 2497 if (rc < 0) { 2498 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2499 goto err_out; 2500 } 2501 2502 rc = of_spi_parse_dt(ctlr, spi, nc); 2503 if (rc) 2504 goto err_out; 2505 2506 /* Store a pointer to the node in the device structure */ 2507 of_node_get(nc); 2508 2509 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2510 2511 /* Register the new device */ 2512 rc = spi_add_device(spi); 2513 if (rc) { 2514 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2515 goto err_of_node_put; 2516 } 2517 2518 return spi; 2519 2520 err_of_node_put: 2521 of_node_put(nc); 2522 err_out: 2523 spi_dev_put(spi); 2524 return ERR_PTR(rc); 2525 } 2526 2527 /** 2528 * of_register_spi_devices() - Register child devices onto the SPI bus 2529 * @ctlr: Pointer to spi_controller device 2530 * 2531 * Registers an spi_device for each child node of controller node which 2532 * represents a valid SPI slave. 2533 */ 2534 static void of_register_spi_devices(struct spi_controller *ctlr) 2535 { 2536 struct spi_device *spi; 2537 struct device_node *nc; 2538 2539 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2540 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2541 continue; 2542 spi = of_register_spi_device(ctlr, nc); 2543 if (IS_ERR(spi)) { 2544 dev_warn(&ctlr->dev, 2545 "Failed to create SPI device for %pOF\n", nc); 2546 of_node_clear_flag(nc, OF_POPULATED); 2547 } 2548 } 2549 } 2550 #else 2551 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2552 #endif 2553 2554 /** 2555 * spi_new_ancillary_device() - Register ancillary SPI device 2556 * @spi: Pointer to the main SPI device registering the ancillary device 2557 * @chip_select: Chip Select of the ancillary device 2558 * 2559 * Register an ancillary SPI device; for example some chips have a chip-select 2560 * for normal device usage and another one for setup/firmware upload. 2561 * 2562 * This may only be called from main SPI device's probe routine. 2563 * 2564 * Return: 0 on success; negative errno on failure 2565 */ 2566 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2567 u8 chip_select) 2568 { 2569 struct spi_controller *ctlr = spi->controller; 2570 struct spi_device *ancillary; 2571 int rc; 2572 2573 /* Alloc an spi_device */ 2574 ancillary = spi_alloc_device(ctlr); 2575 if (!ancillary) { 2576 rc = -ENOMEM; 2577 goto err_out; 2578 } 2579 2580 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2581 2582 /* Use provided chip-select for ancillary device */ 2583 spi_set_all_cs_unused(ancillary); 2584 spi_set_chipselect(ancillary, 0, chip_select); 2585 2586 /* Take over SPI mode/speed from SPI main device */ 2587 ancillary->max_speed_hz = spi->max_speed_hz; 2588 ancillary->mode = spi->mode; 2589 /* 2590 * By default spi->chip_select[0] will hold the physical CS number, 2591 * so set bit 0 in spi->cs_index_mask. 2592 */ 2593 ancillary->cs_index_mask = BIT(0); 2594 2595 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2596 2597 /* Register the new device */ 2598 rc = __spi_add_device(ancillary); 2599 if (rc) { 2600 dev_err(&spi->dev, "failed to register ancillary device\n"); 2601 goto err_out; 2602 } 2603 2604 return ancillary; 2605 2606 err_out: 2607 spi_dev_put(ancillary); 2608 return ERR_PTR(rc); 2609 } 2610 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2611 2612 #ifdef CONFIG_ACPI 2613 struct acpi_spi_lookup { 2614 struct spi_controller *ctlr; 2615 u32 max_speed_hz; 2616 u32 mode; 2617 int irq; 2618 u8 bits_per_word; 2619 u8 chip_select; 2620 int n; 2621 int index; 2622 }; 2623 2624 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2625 { 2626 struct acpi_resource_spi_serialbus *sb; 2627 int *count = data; 2628 2629 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2630 return 1; 2631 2632 sb = &ares->data.spi_serial_bus; 2633 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2634 return 1; 2635 2636 *count = *count + 1; 2637 2638 return 1; 2639 } 2640 2641 /** 2642 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2643 * @adev: ACPI device 2644 * 2645 * Return: the number of SpiSerialBus resources in the ACPI-device's 2646 * resource-list; or a negative error code. 2647 */ 2648 int acpi_spi_count_resources(struct acpi_device *adev) 2649 { 2650 LIST_HEAD(r); 2651 int count = 0; 2652 int ret; 2653 2654 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2655 if (ret < 0) 2656 return ret; 2657 2658 acpi_dev_free_resource_list(&r); 2659 2660 return count; 2661 } 2662 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2663 2664 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2665 struct acpi_spi_lookup *lookup) 2666 { 2667 const union acpi_object *obj; 2668 2669 if (!x86_apple_machine) 2670 return; 2671 2672 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2673 && obj->buffer.length >= 4) 2674 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2675 2676 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2677 && obj->buffer.length == 8) 2678 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2679 2680 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2681 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2682 lookup->mode |= SPI_LSB_FIRST; 2683 2684 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2685 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2686 lookup->mode |= SPI_CPOL; 2687 2688 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2689 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2690 lookup->mode |= SPI_CPHA; 2691 } 2692 2693 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2694 { 2695 struct acpi_spi_lookup *lookup = data; 2696 struct spi_controller *ctlr = lookup->ctlr; 2697 2698 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2699 struct acpi_resource_spi_serialbus *sb; 2700 acpi_handle parent_handle; 2701 acpi_status status; 2702 2703 sb = &ares->data.spi_serial_bus; 2704 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2705 2706 if (lookup->index != -1 && lookup->n++ != lookup->index) 2707 return 1; 2708 2709 status = acpi_get_handle(NULL, 2710 sb->resource_source.string_ptr, 2711 &parent_handle); 2712 2713 if (ACPI_FAILURE(status)) 2714 return -ENODEV; 2715 2716 if (ctlr) { 2717 if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle)) 2718 return -ENODEV; 2719 } else { 2720 struct acpi_device *adev; 2721 2722 adev = acpi_fetch_acpi_dev(parent_handle); 2723 if (!adev) 2724 return -ENODEV; 2725 2726 ctlr = acpi_spi_find_controller_by_adev(adev); 2727 if (!ctlr) 2728 return -EPROBE_DEFER; 2729 2730 lookup->ctlr = ctlr; 2731 } 2732 2733 /* 2734 * ACPI DeviceSelection numbering is handled by the 2735 * host controller driver in Windows and can vary 2736 * from driver to driver. In Linux we always expect 2737 * 0 .. max - 1 so we need to ask the driver to 2738 * translate between the two schemes. 2739 */ 2740 if (ctlr->fw_translate_cs) { 2741 int cs = ctlr->fw_translate_cs(ctlr, 2742 sb->device_selection); 2743 if (cs < 0) 2744 return cs; 2745 lookup->chip_select = cs; 2746 } else { 2747 lookup->chip_select = sb->device_selection; 2748 } 2749 2750 lookup->max_speed_hz = sb->connection_speed; 2751 lookup->bits_per_word = sb->data_bit_length; 2752 2753 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2754 lookup->mode |= SPI_CPHA; 2755 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2756 lookup->mode |= SPI_CPOL; 2757 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2758 lookup->mode |= SPI_CS_HIGH; 2759 } 2760 } else if (lookup->irq < 0) { 2761 struct resource r; 2762 2763 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2764 lookup->irq = r.start; 2765 } 2766 2767 /* Always tell the ACPI core to skip this resource */ 2768 return 1; 2769 } 2770 2771 /** 2772 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2773 * @ctlr: controller to which the spi device belongs 2774 * @adev: ACPI Device for the spi device 2775 * @index: Index of the spi resource inside the ACPI Node 2776 * 2777 * This should be used to allocate a new SPI device from and ACPI Device node. 2778 * The caller is responsible for calling spi_add_device to register the SPI device. 2779 * 2780 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2781 * using the resource. 2782 * If index is set to -1, index is not used. 2783 * Note: If index is -1, ctlr must be set. 2784 * 2785 * Return: a pointer to the new device, or ERR_PTR on error. 2786 */ 2787 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2788 struct acpi_device *adev, 2789 int index) 2790 { 2791 acpi_handle parent_handle = NULL; 2792 struct list_head resource_list; 2793 struct acpi_spi_lookup lookup = {}; 2794 struct spi_device *spi; 2795 int ret; 2796 2797 if (!ctlr && index == -1) 2798 return ERR_PTR(-EINVAL); 2799 2800 lookup.ctlr = ctlr; 2801 lookup.irq = -1; 2802 lookup.index = index; 2803 lookup.n = 0; 2804 2805 INIT_LIST_HEAD(&resource_list); 2806 ret = acpi_dev_get_resources(adev, &resource_list, 2807 acpi_spi_add_resource, &lookup); 2808 acpi_dev_free_resource_list(&resource_list); 2809 2810 if (ret < 0) 2811 /* Found SPI in _CRS but it points to another controller */ 2812 return ERR_PTR(ret); 2813 2814 if (!lookup.max_speed_hz && 2815 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2816 device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) { 2817 /* Apple does not use _CRS but nested devices for SPI slaves */ 2818 acpi_spi_parse_apple_properties(adev, &lookup); 2819 } 2820 2821 if (!lookup.max_speed_hz) 2822 return ERR_PTR(-ENODEV); 2823 2824 spi = spi_alloc_device(lookup.ctlr); 2825 if (!spi) { 2826 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2827 dev_name(&adev->dev)); 2828 return ERR_PTR(-ENOMEM); 2829 } 2830 2831 spi_set_all_cs_unused(spi); 2832 spi_set_chipselect(spi, 0, lookup.chip_select); 2833 2834 ACPI_COMPANION_SET(&spi->dev, adev); 2835 spi->max_speed_hz = lookup.max_speed_hz; 2836 spi->mode |= lookup.mode; 2837 spi->irq = lookup.irq; 2838 spi->bits_per_word = lookup.bits_per_word; 2839 /* 2840 * By default spi->chip_select[0] will hold the physical CS number, 2841 * so set bit 0 in spi->cs_index_mask. 2842 */ 2843 spi->cs_index_mask = BIT(0); 2844 2845 return spi; 2846 } 2847 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2848 2849 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2850 struct acpi_device *adev) 2851 { 2852 struct spi_device *spi; 2853 2854 if (acpi_bus_get_status(adev) || !adev->status.present || 2855 acpi_device_enumerated(adev)) 2856 return AE_OK; 2857 2858 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2859 if (IS_ERR(spi)) { 2860 if (PTR_ERR(spi) == -ENOMEM) 2861 return AE_NO_MEMORY; 2862 else 2863 return AE_OK; 2864 } 2865 2866 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2867 sizeof(spi->modalias)); 2868 2869 if (spi->irq < 0) 2870 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2871 2872 acpi_device_set_enumerated(adev); 2873 2874 adev->power.flags.ignore_parent = true; 2875 if (spi_add_device(spi)) { 2876 adev->power.flags.ignore_parent = false; 2877 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2878 dev_name(&adev->dev)); 2879 spi_dev_put(spi); 2880 } 2881 2882 return AE_OK; 2883 } 2884 2885 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2886 void *data, void **return_value) 2887 { 2888 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2889 struct spi_controller *ctlr = data; 2890 2891 if (!adev) 2892 return AE_OK; 2893 2894 return acpi_register_spi_device(ctlr, adev); 2895 } 2896 2897 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2898 2899 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2900 { 2901 acpi_status status; 2902 acpi_handle handle; 2903 2904 handle = ACPI_HANDLE(ctlr->dev.parent); 2905 if (!handle) 2906 return; 2907 2908 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2909 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2910 acpi_spi_add_device, NULL, ctlr, NULL); 2911 if (ACPI_FAILURE(status)) 2912 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2913 } 2914 #else 2915 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2916 #endif /* CONFIG_ACPI */ 2917 2918 static void spi_controller_release(struct device *dev) 2919 { 2920 struct spi_controller *ctlr; 2921 2922 ctlr = container_of(dev, struct spi_controller, dev); 2923 kfree(ctlr); 2924 } 2925 2926 static const struct class spi_master_class = { 2927 .name = "spi_master", 2928 .dev_release = spi_controller_release, 2929 .dev_groups = spi_master_groups, 2930 }; 2931 2932 #ifdef CONFIG_SPI_SLAVE 2933 /** 2934 * spi_target_abort - abort the ongoing transfer request on an SPI slave 2935 * controller 2936 * @spi: device used for the current transfer 2937 */ 2938 int spi_target_abort(struct spi_device *spi) 2939 { 2940 struct spi_controller *ctlr = spi->controller; 2941 2942 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2943 return ctlr->target_abort(ctlr); 2944 2945 return -ENOTSUPP; 2946 } 2947 EXPORT_SYMBOL_GPL(spi_target_abort); 2948 2949 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2950 char *buf) 2951 { 2952 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2953 dev); 2954 struct device *child; 2955 2956 child = device_find_any_child(&ctlr->dev); 2957 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2958 } 2959 2960 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2961 const char *buf, size_t count) 2962 { 2963 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2964 dev); 2965 struct spi_device *spi; 2966 struct device *child; 2967 char name[32]; 2968 int rc; 2969 2970 rc = sscanf(buf, "%31s", name); 2971 if (rc != 1 || !name[0]) 2972 return -EINVAL; 2973 2974 child = device_find_any_child(&ctlr->dev); 2975 if (child) { 2976 /* Remove registered slave */ 2977 device_unregister(child); 2978 put_device(child); 2979 } 2980 2981 if (strcmp(name, "(null)")) { 2982 /* Register new slave */ 2983 spi = spi_alloc_device(ctlr); 2984 if (!spi) 2985 return -ENOMEM; 2986 2987 strscpy(spi->modalias, name, sizeof(spi->modalias)); 2988 2989 rc = spi_add_device(spi); 2990 if (rc) { 2991 spi_dev_put(spi); 2992 return rc; 2993 } 2994 } 2995 2996 return count; 2997 } 2998 2999 static DEVICE_ATTR_RW(slave); 3000 3001 static struct attribute *spi_slave_attrs[] = { 3002 &dev_attr_slave.attr, 3003 NULL, 3004 }; 3005 3006 static const struct attribute_group spi_slave_group = { 3007 .attrs = spi_slave_attrs, 3008 }; 3009 3010 static const struct attribute_group *spi_slave_groups[] = { 3011 &spi_controller_statistics_group, 3012 &spi_slave_group, 3013 NULL, 3014 }; 3015 3016 static const struct class spi_slave_class = { 3017 .name = "spi_slave", 3018 .dev_release = spi_controller_release, 3019 .dev_groups = spi_slave_groups, 3020 }; 3021 #else 3022 extern struct class spi_slave_class; /* dummy */ 3023 #endif 3024 3025 /** 3026 * __spi_alloc_controller - allocate an SPI master or slave controller 3027 * @dev: the controller, possibly using the platform_bus 3028 * @size: how much zeroed driver-private data to allocate; the pointer to this 3029 * memory is in the driver_data field of the returned device, accessible 3030 * with spi_controller_get_devdata(); the memory is cacheline aligned; 3031 * drivers granting DMA access to portions of their private data need to 3032 * round up @size using ALIGN(size, dma_get_cache_alignment()). 3033 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 3034 * slave (true) controller 3035 * Context: can sleep 3036 * 3037 * This call is used only by SPI controller drivers, which are the 3038 * only ones directly touching chip registers. It's how they allocate 3039 * an spi_controller structure, prior to calling spi_register_controller(). 3040 * 3041 * This must be called from context that can sleep. 3042 * 3043 * The caller is responsible for assigning the bus number and initializing the 3044 * controller's methods before calling spi_register_controller(); and (after 3045 * errors adding the device) calling spi_controller_put() to prevent a memory 3046 * leak. 3047 * 3048 * Return: the SPI controller structure on success, else NULL. 3049 */ 3050 struct spi_controller *__spi_alloc_controller(struct device *dev, 3051 unsigned int size, bool slave) 3052 { 3053 struct spi_controller *ctlr; 3054 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 3055 3056 if (!dev) 3057 return NULL; 3058 3059 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 3060 if (!ctlr) 3061 return NULL; 3062 3063 device_initialize(&ctlr->dev); 3064 INIT_LIST_HEAD(&ctlr->queue); 3065 spin_lock_init(&ctlr->queue_lock); 3066 spin_lock_init(&ctlr->bus_lock_spinlock); 3067 mutex_init(&ctlr->bus_lock_mutex); 3068 mutex_init(&ctlr->io_mutex); 3069 mutex_init(&ctlr->add_lock); 3070 ctlr->bus_num = -1; 3071 ctlr->num_chipselect = 1; 3072 ctlr->slave = slave; 3073 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 3074 ctlr->dev.class = &spi_slave_class; 3075 else 3076 ctlr->dev.class = &spi_master_class; 3077 ctlr->dev.parent = dev; 3078 pm_suspend_ignore_children(&ctlr->dev, true); 3079 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 3080 3081 return ctlr; 3082 } 3083 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 3084 3085 static void devm_spi_release_controller(struct device *dev, void *ctlr) 3086 { 3087 spi_controller_put(*(struct spi_controller **)ctlr); 3088 } 3089 3090 /** 3091 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 3092 * @dev: physical device of SPI controller 3093 * @size: how much zeroed driver-private data to allocate 3094 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 3095 * Context: can sleep 3096 * 3097 * Allocate an SPI controller and automatically release a reference on it 3098 * when @dev is unbound from its driver. Drivers are thus relieved from 3099 * having to call spi_controller_put(). 3100 * 3101 * The arguments to this function are identical to __spi_alloc_controller(). 3102 * 3103 * Return: the SPI controller structure on success, else NULL. 3104 */ 3105 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 3106 unsigned int size, 3107 bool slave) 3108 { 3109 struct spi_controller **ptr, *ctlr; 3110 3111 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 3112 GFP_KERNEL); 3113 if (!ptr) 3114 return NULL; 3115 3116 ctlr = __spi_alloc_controller(dev, size, slave); 3117 if (ctlr) { 3118 ctlr->devm_allocated = true; 3119 *ptr = ctlr; 3120 devres_add(dev, ptr); 3121 } else { 3122 devres_free(ptr); 3123 } 3124 3125 return ctlr; 3126 } 3127 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 3128 3129 /** 3130 * spi_get_gpio_descs() - grab chip select GPIOs for the master 3131 * @ctlr: The SPI master to grab GPIO descriptors for 3132 */ 3133 static int spi_get_gpio_descs(struct spi_controller *ctlr) 3134 { 3135 int nb, i; 3136 struct gpio_desc **cs; 3137 struct device *dev = &ctlr->dev; 3138 unsigned long native_cs_mask = 0; 3139 unsigned int num_cs_gpios = 0; 3140 3141 nb = gpiod_count(dev, "cs"); 3142 if (nb < 0) { 3143 /* No GPIOs at all is fine, else return the error */ 3144 if (nb == -ENOENT) 3145 return 0; 3146 return nb; 3147 } 3148 3149 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3150 3151 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3152 GFP_KERNEL); 3153 if (!cs) 3154 return -ENOMEM; 3155 ctlr->cs_gpiods = cs; 3156 3157 for (i = 0; i < nb; i++) { 3158 /* 3159 * Most chipselects are active low, the inverted 3160 * semantics are handled by special quirks in gpiolib, 3161 * so initializing them GPIOD_OUT_LOW here means 3162 * "unasserted", in most cases this will drive the physical 3163 * line high. 3164 */ 3165 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3166 GPIOD_OUT_LOW); 3167 if (IS_ERR(cs[i])) 3168 return PTR_ERR(cs[i]); 3169 3170 if (cs[i]) { 3171 /* 3172 * If we find a CS GPIO, name it after the device and 3173 * chip select line. 3174 */ 3175 char *gpioname; 3176 3177 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3178 dev_name(dev), i); 3179 if (!gpioname) 3180 return -ENOMEM; 3181 gpiod_set_consumer_name(cs[i], gpioname); 3182 num_cs_gpios++; 3183 continue; 3184 } 3185 3186 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3187 dev_err(dev, "Invalid native chip select %d\n", i); 3188 return -EINVAL; 3189 } 3190 native_cs_mask |= BIT(i); 3191 } 3192 3193 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3194 3195 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3196 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3197 dev_err(dev, "No unused native chip select available\n"); 3198 return -EINVAL; 3199 } 3200 3201 return 0; 3202 } 3203 3204 static int spi_controller_check_ops(struct spi_controller *ctlr) 3205 { 3206 /* 3207 * The controller may implement only the high-level SPI-memory like 3208 * operations if it does not support regular SPI transfers, and this is 3209 * valid use case. 3210 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3211 * one of the ->transfer_xxx() method be implemented. 3212 */ 3213 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3214 if (!ctlr->transfer && !ctlr->transfer_one && 3215 !ctlr->transfer_one_message) { 3216 return -EINVAL; 3217 } 3218 } 3219 3220 return 0; 3221 } 3222 3223 /* Allocate dynamic bus number using Linux idr */ 3224 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3225 { 3226 int id; 3227 3228 mutex_lock(&board_lock); 3229 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL); 3230 mutex_unlock(&board_lock); 3231 if (WARN(id < 0, "couldn't get idr")) 3232 return id == -ENOSPC ? -EBUSY : id; 3233 ctlr->bus_num = id; 3234 return 0; 3235 } 3236 3237 /** 3238 * spi_register_controller - register SPI host or target controller 3239 * @ctlr: initialized controller, originally from spi_alloc_host() or 3240 * spi_alloc_target() 3241 * Context: can sleep 3242 * 3243 * SPI controllers connect to their drivers using some non-SPI bus, 3244 * such as the platform bus. The final stage of probe() in that code 3245 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3246 * 3247 * SPI controllers use board specific (often SOC specific) bus numbers, 3248 * and board-specific addressing for SPI devices combines those numbers 3249 * with chip select numbers. Since SPI does not directly support dynamic 3250 * device identification, boards need configuration tables telling which 3251 * chip is at which address. 3252 * 3253 * This must be called from context that can sleep. It returns zero on 3254 * success, else a negative error code (dropping the controller's refcount). 3255 * After a successful return, the caller is responsible for calling 3256 * spi_unregister_controller(). 3257 * 3258 * Return: zero on success, else a negative error code. 3259 */ 3260 int spi_register_controller(struct spi_controller *ctlr) 3261 { 3262 struct device *dev = ctlr->dev.parent; 3263 struct boardinfo *bi; 3264 int first_dynamic; 3265 int status; 3266 int idx; 3267 3268 if (!dev) 3269 return -ENODEV; 3270 3271 /* 3272 * Make sure all necessary hooks are implemented before registering 3273 * the SPI controller. 3274 */ 3275 status = spi_controller_check_ops(ctlr); 3276 if (status) 3277 return status; 3278 3279 if (ctlr->bus_num < 0) 3280 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3281 if (ctlr->bus_num >= 0) { 3282 /* Devices with a fixed bus num must check-in with the num */ 3283 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3284 if (status) 3285 return status; 3286 } 3287 if (ctlr->bus_num < 0) { 3288 first_dynamic = of_alias_get_highest_id("spi"); 3289 if (first_dynamic < 0) 3290 first_dynamic = 0; 3291 else 3292 first_dynamic++; 3293 3294 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3295 if (status) 3296 return status; 3297 } 3298 ctlr->bus_lock_flag = 0; 3299 init_completion(&ctlr->xfer_completion); 3300 init_completion(&ctlr->cur_msg_completion); 3301 if (!ctlr->max_dma_len) 3302 ctlr->max_dma_len = INT_MAX; 3303 3304 /* 3305 * Register the device, then userspace will see it. 3306 * Registration fails if the bus ID is in use. 3307 */ 3308 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3309 3310 if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) { 3311 status = spi_get_gpio_descs(ctlr); 3312 if (status) 3313 goto free_bus_id; 3314 /* 3315 * A controller using GPIO descriptors always 3316 * supports SPI_CS_HIGH if need be. 3317 */ 3318 ctlr->mode_bits |= SPI_CS_HIGH; 3319 } 3320 3321 /* 3322 * Even if it's just one always-selected device, there must 3323 * be at least one chipselect. 3324 */ 3325 if (!ctlr->num_chipselect) { 3326 status = -EINVAL; 3327 goto free_bus_id; 3328 } 3329 3330 /* Setting last_cs to SPI_INVALID_CS means no chip selected */ 3331 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 3332 ctlr->last_cs[idx] = SPI_INVALID_CS; 3333 3334 status = device_add(&ctlr->dev); 3335 if (status < 0) 3336 goto free_bus_id; 3337 dev_dbg(dev, "registered %s %s\n", 3338 spi_controller_is_target(ctlr) ? "target" : "host", 3339 dev_name(&ctlr->dev)); 3340 3341 /* 3342 * If we're using a queued driver, start the queue. Note that we don't 3343 * need the queueing logic if the driver is only supporting high-level 3344 * memory operations. 3345 */ 3346 if (ctlr->transfer) { 3347 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3348 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3349 status = spi_controller_initialize_queue(ctlr); 3350 if (status) { 3351 device_del(&ctlr->dev); 3352 goto free_bus_id; 3353 } 3354 } 3355 /* Add statistics */ 3356 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3357 if (!ctlr->pcpu_statistics) { 3358 dev_err(dev, "Error allocating per-cpu statistics\n"); 3359 status = -ENOMEM; 3360 goto destroy_queue; 3361 } 3362 3363 mutex_lock(&board_lock); 3364 list_add_tail(&ctlr->list, &spi_controller_list); 3365 list_for_each_entry(bi, &board_list, list) 3366 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3367 mutex_unlock(&board_lock); 3368 3369 /* Register devices from the device tree and ACPI */ 3370 of_register_spi_devices(ctlr); 3371 acpi_register_spi_devices(ctlr); 3372 return status; 3373 3374 destroy_queue: 3375 spi_destroy_queue(ctlr); 3376 free_bus_id: 3377 mutex_lock(&board_lock); 3378 idr_remove(&spi_master_idr, ctlr->bus_num); 3379 mutex_unlock(&board_lock); 3380 return status; 3381 } 3382 EXPORT_SYMBOL_GPL(spi_register_controller); 3383 3384 static void devm_spi_unregister(struct device *dev, void *res) 3385 { 3386 spi_unregister_controller(*(struct spi_controller **)res); 3387 } 3388 3389 /** 3390 * devm_spi_register_controller - register managed SPI host or target 3391 * controller 3392 * @dev: device managing SPI controller 3393 * @ctlr: initialized controller, originally from spi_alloc_host() or 3394 * spi_alloc_target() 3395 * Context: can sleep 3396 * 3397 * Register a SPI device as with spi_register_controller() which will 3398 * automatically be unregistered and freed. 3399 * 3400 * Return: zero on success, else a negative error code. 3401 */ 3402 int devm_spi_register_controller(struct device *dev, 3403 struct spi_controller *ctlr) 3404 { 3405 struct spi_controller **ptr; 3406 int ret; 3407 3408 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3409 if (!ptr) 3410 return -ENOMEM; 3411 3412 ret = spi_register_controller(ctlr); 3413 if (!ret) { 3414 *ptr = ctlr; 3415 devres_add(dev, ptr); 3416 } else { 3417 devres_free(ptr); 3418 } 3419 3420 return ret; 3421 } 3422 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3423 3424 static int __unregister(struct device *dev, void *null) 3425 { 3426 spi_unregister_device(to_spi_device(dev)); 3427 return 0; 3428 } 3429 3430 /** 3431 * spi_unregister_controller - unregister SPI master or slave controller 3432 * @ctlr: the controller being unregistered 3433 * Context: can sleep 3434 * 3435 * This call is used only by SPI controller drivers, which are the 3436 * only ones directly touching chip registers. 3437 * 3438 * This must be called from context that can sleep. 3439 * 3440 * Note that this function also drops a reference to the controller. 3441 */ 3442 void spi_unregister_controller(struct spi_controller *ctlr) 3443 { 3444 struct spi_controller *found; 3445 int id = ctlr->bus_num; 3446 3447 /* Prevent addition of new devices, unregister existing ones */ 3448 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3449 mutex_lock(&ctlr->add_lock); 3450 3451 device_for_each_child(&ctlr->dev, NULL, __unregister); 3452 3453 /* First make sure that this controller was ever added */ 3454 mutex_lock(&board_lock); 3455 found = idr_find(&spi_master_idr, id); 3456 mutex_unlock(&board_lock); 3457 if (ctlr->queued) { 3458 if (spi_destroy_queue(ctlr)) 3459 dev_err(&ctlr->dev, "queue remove failed\n"); 3460 } 3461 mutex_lock(&board_lock); 3462 list_del(&ctlr->list); 3463 mutex_unlock(&board_lock); 3464 3465 device_del(&ctlr->dev); 3466 3467 /* Free bus id */ 3468 mutex_lock(&board_lock); 3469 if (found == ctlr) 3470 idr_remove(&spi_master_idr, id); 3471 mutex_unlock(&board_lock); 3472 3473 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3474 mutex_unlock(&ctlr->add_lock); 3475 3476 /* 3477 * Release the last reference on the controller if its driver 3478 * has not yet been converted to devm_spi_alloc_host/target(). 3479 */ 3480 if (!ctlr->devm_allocated) 3481 put_device(&ctlr->dev); 3482 } 3483 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3484 3485 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3486 { 3487 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3488 } 3489 3490 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3491 { 3492 mutex_lock(&ctlr->bus_lock_mutex); 3493 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3494 mutex_unlock(&ctlr->bus_lock_mutex); 3495 } 3496 3497 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3498 { 3499 mutex_lock(&ctlr->bus_lock_mutex); 3500 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3501 mutex_unlock(&ctlr->bus_lock_mutex); 3502 } 3503 3504 int spi_controller_suspend(struct spi_controller *ctlr) 3505 { 3506 int ret = 0; 3507 3508 /* Basically no-ops for non-queued controllers */ 3509 if (ctlr->queued) { 3510 ret = spi_stop_queue(ctlr); 3511 if (ret) 3512 dev_err(&ctlr->dev, "queue stop failed\n"); 3513 } 3514 3515 __spi_mark_suspended(ctlr); 3516 return ret; 3517 } 3518 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3519 3520 int spi_controller_resume(struct spi_controller *ctlr) 3521 { 3522 int ret = 0; 3523 3524 __spi_mark_resumed(ctlr); 3525 3526 if (ctlr->queued) { 3527 ret = spi_start_queue(ctlr); 3528 if (ret) 3529 dev_err(&ctlr->dev, "queue restart failed\n"); 3530 } 3531 return ret; 3532 } 3533 EXPORT_SYMBOL_GPL(spi_controller_resume); 3534 3535 /*-------------------------------------------------------------------------*/ 3536 3537 /* Core methods for spi_message alterations */ 3538 3539 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3540 struct spi_message *msg, 3541 void *res) 3542 { 3543 struct spi_replaced_transfers *rxfer = res; 3544 size_t i; 3545 3546 /* Call extra callback if requested */ 3547 if (rxfer->release) 3548 rxfer->release(ctlr, msg, res); 3549 3550 /* Insert replaced transfers back into the message */ 3551 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3552 3553 /* Remove the formerly inserted entries */ 3554 for (i = 0; i < rxfer->inserted; i++) 3555 list_del(&rxfer->inserted_transfers[i].transfer_list); 3556 } 3557 3558 /** 3559 * spi_replace_transfers - replace transfers with several transfers 3560 * and register change with spi_message.resources 3561 * @msg: the spi_message we work upon 3562 * @xfer_first: the first spi_transfer we want to replace 3563 * @remove: number of transfers to remove 3564 * @insert: the number of transfers we want to insert instead 3565 * @release: extra release code necessary in some circumstances 3566 * @extradatasize: extra data to allocate (with alignment guarantees 3567 * of struct @spi_transfer) 3568 * @gfp: gfp flags 3569 * 3570 * Returns: pointer to @spi_replaced_transfers, 3571 * PTR_ERR(...) in case of errors. 3572 */ 3573 static struct spi_replaced_transfers *spi_replace_transfers( 3574 struct spi_message *msg, 3575 struct spi_transfer *xfer_first, 3576 size_t remove, 3577 size_t insert, 3578 spi_replaced_release_t release, 3579 size_t extradatasize, 3580 gfp_t gfp) 3581 { 3582 struct spi_replaced_transfers *rxfer; 3583 struct spi_transfer *xfer; 3584 size_t i; 3585 3586 /* Allocate the structure using spi_res */ 3587 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3588 struct_size(rxfer, inserted_transfers, insert) 3589 + extradatasize, 3590 gfp); 3591 if (!rxfer) 3592 return ERR_PTR(-ENOMEM); 3593 3594 /* The release code to invoke before running the generic release */ 3595 rxfer->release = release; 3596 3597 /* Assign extradata */ 3598 if (extradatasize) 3599 rxfer->extradata = 3600 &rxfer->inserted_transfers[insert]; 3601 3602 /* Init the replaced_transfers list */ 3603 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3604 3605 /* 3606 * Assign the list_entry after which we should reinsert 3607 * the @replaced_transfers - it may be spi_message.messages! 3608 */ 3609 rxfer->replaced_after = xfer_first->transfer_list.prev; 3610 3611 /* Remove the requested number of transfers */ 3612 for (i = 0; i < remove; i++) { 3613 /* 3614 * If the entry after replaced_after it is msg->transfers 3615 * then we have been requested to remove more transfers 3616 * than are in the list. 3617 */ 3618 if (rxfer->replaced_after->next == &msg->transfers) { 3619 dev_err(&msg->spi->dev, 3620 "requested to remove more spi_transfers than are available\n"); 3621 /* Insert replaced transfers back into the message */ 3622 list_splice(&rxfer->replaced_transfers, 3623 rxfer->replaced_after); 3624 3625 /* Free the spi_replace_transfer structure... */ 3626 spi_res_free(rxfer); 3627 3628 /* ...and return with an error */ 3629 return ERR_PTR(-EINVAL); 3630 } 3631 3632 /* 3633 * Remove the entry after replaced_after from list of 3634 * transfers and add it to list of replaced_transfers. 3635 */ 3636 list_move_tail(rxfer->replaced_after->next, 3637 &rxfer->replaced_transfers); 3638 } 3639 3640 /* 3641 * Create copy of the given xfer with identical settings 3642 * based on the first transfer to get removed. 3643 */ 3644 for (i = 0; i < insert; i++) { 3645 /* We need to run in reverse order */ 3646 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3647 3648 /* Copy all spi_transfer data */ 3649 memcpy(xfer, xfer_first, sizeof(*xfer)); 3650 3651 /* Add to list */ 3652 list_add(&xfer->transfer_list, rxfer->replaced_after); 3653 3654 /* Clear cs_change and delay for all but the last */ 3655 if (i) { 3656 xfer->cs_change = false; 3657 xfer->delay.value = 0; 3658 } 3659 } 3660 3661 /* Set up inserted... */ 3662 rxfer->inserted = insert; 3663 3664 /* ...and register it with spi_res/spi_message */ 3665 spi_res_add(msg, rxfer); 3666 3667 return rxfer; 3668 } 3669 3670 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3671 struct spi_message *msg, 3672 struct spi_transfer **xferp, 3673 size_t maxsize) 3674 { 3675 struct spi_transfer *xfer = *xferp, *xfers; 3676 struct spi_replaced_transfers *srt; 3677 size_t offset; 3678 size_t count, i; 3679 3680 /* Calculate how many we have to replace */ 3681 count = DIV_ROUND_UP(xfer->len, maxsize); 3682 3683 /* Create replacement */ 3684 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL); 3685 if (IS_ERR(srt)) 3686 return PTR_ERR(srt); 3687 xfers = srt->inserted_transfers; 3688 3689 /* 3690 * Now handle each of those newly inserted spi_transfers. 3691 * Note that the replacements spi_transfers all are preset 3692 * to the same values as *xferp, so tx_buf, rx_buf and len 3693 * are all identical (as well as most others) 3694 * so we just have to fix up len and the pointers. 3695 */ 3696 3697 /* 3698 * The first transfer just needs the length modified, so we 3699 * run it outside the loop. 3700 */ 3701 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3702 3703 /* All the others need rx_buf/tx_buf also set */ 3704 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3705 /* Update rx_buf, tx_buf and DMA */ 3706 if (xfers[i].rx_buf) 3707 xfers[i].rx_buf += offset; 3708 if (xfers[i].tx_buf) 3709 xfers[i].tx_buf += offset; 3710 3711 /* Update length */ 3712 xfers[i].len = min(maxsize, xfers[i].len - offset); 3713 } 3714 3715 /* 3716 * We set up xferp to the last entry we have inserted, 3717 * so that we skip those already split transfers. 3718 */ 3719 *xferp = &xfers[count - 1]; 3720 3721 /* Increment statistics counters */ 3722 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3723 transfers_split_maxsize); 3724 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3725 transfers_split_maxsize); 3726 3727 return 0; 3728 } 3729 3730 /** 3731 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3732 * when an individual transfer exceeds a 3733 * certain size 3734 * @ctlr: the @spi_controller for this transfer 3735 * @msg: the @spi_message to transform 3736 * @maxsize: the maximum when to apply this 3737 * 3738 * This function allocates resources that are automatically freed during the 3739 * spi message unoptimize phase so this function should only be called from 3740 * optimize_message callbacks. 3741 * 3742 * Return: status of transformation 3743 */ 3744 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3745 struct spi_message *msg, 3746 size_t maxsize) 3747 { 3748 struct spi_transfer *xfer; 3749 int ret; 3750 3751 /* 3752 * Iterate over the transfer_list, 3753 * but note that xfer is advanced to the last transfer inserted 3754 * to avoid checking sizes again unnecessarily (also xfer does 3755 * potentially belong to a different list by the time the 3756 * replacement has happened). 3757 */ 3758 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3759 if (xfer->len > maxsize) { 3760 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3761 maxsize); 3762 if (ret) 3763 return ret; 3764 } 3765 } 3766 3767 return 0; 3768 } 3769 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3770 3771 3772 /** 3773 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3774 * when an individual transfer exceeds a 3775 * certain number of SPI words 3776 * @ctlr: the @spi_controller for this transfer 3777 * @msg: the @spi_message to transform 3778 * @maxwords: the number of words to limit each transfer to 3779 * 3780 * This function allocates resources that are automatically freed during the 3781 * spi message unoptimize phase so this function should only be called from 3782 * optimize_message callbacks. 3783 * 3784 * Return: status of transformation 3785 */ 3786 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3787 struct spi_message *msg, 3788 size_t maxwords) 3789 { 3790 struct spi_transfer *xfer; 3791 3792 /* 3793 * Iterate over the transfer_list, 3794 * but note that xfer is advanced to the last transfer inserted 3795 * to avoid checking sizes again unnecessarily (also xfer does 3796 * potentially belong to a different list by the time the 3797 * replacement has happened). 3798 */ 3799 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3800 size_t maxsize; 3801 int ret; 3802 3803 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); 3804 if (xfer->len > maxsize) { 3805 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3806 maxsize); 3807 if (ret) 3808 return ret; 3809 } 3810 } 3811 3812 return 0; 3813 } 3814 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3815 3816 /*-------------------------------------------------------------------------*/ 3817 3818 /* 3819 * Core methods for SPI controller protocol drivers. Some of the 3820 * other core methods are currently defined as inline functions. 3821 */ 3822 3823 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3824 u8 bits_per_word) 3825 { 3826 if (ctlr->bits_per_word_mask) { 3827 /* Only 32 bits fit in the mask */ 3828 if (bits_per_word > 32) 3829 return -EINVAL; 3830 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3831 return -EINVAL; 3832 } 3833 3834 return 0; 3835 } 3836 3837 /** 3838 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3839 * @spi: the device that requires specific CS timing configuration 3840 * 3841 * Return: zero on success, else a negative error code. 3842 */ 3843 static int spi_set_cs_timing(struct spi_device *spi) 3844 { 3845 struct device *parent = spi->controller->dev.parent; 3846 int status = 0; 3847 3848 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3849 if (spi->controller->auto_runtime_pm) { 3850 status = pm_runtime_get_sync(parent); 3851 if (status < 0) { 3852 pm_runtime_put_noidle(parent); 3853 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3854 status); 3855 return status; 3856 } 3857 3858 status = spi->controller->set_cs_timing(spi); 3859 pm_runtime_mark_last_busy(parent); 3860 pm_runtime_put_autosuspend(parent); 3861 } else { 3862 status = spi->controller->set_cs_timing(spi); 3863 } 3864 } 3865 return status; 3866 } 3867 3868 /** 3869 * spi_setup - setup SPI mode and clock rate 3870 * @spi: the device whose settings are being modified 3871 * Context: can sleep, and no requests are queued to the device 3872 * 3873 * SPI protocol drivers may need to update the transfer mode if the 3874 * device doesn't work with its default. They may likewise need 3875 * to update clock rates or word sizes from initial values. This function 3876 * changes those settings, and must be called from a context that can sleep. 3877 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3878 * effect the next time the device is selected and data is transferred to 3879 * or from it. When this function returns, the SPI device is deselected. 3880 * 3881 * Note that this call will fail if the protocol driver specifies an option 3882 * that the underlying controller or its driver does not support. For 3883 * example, not all hardware supports wire transfers using nine bit words, 3884 * LSB-first wire encoding, or active-high chipselects. 3885 * 3886 * Return: zero on success, else a negative error code. 3887 */ 3888 int spi_setup(struct spi_device *spi) 3889 { 3890 unsigned bad_bits, ugly_bits; 3891 int status; 3892 3893 /* 3894 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3895 * are set at the same time. 3896 */ 3897 if ((hweight_long(spi->mode & 3898 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3899 (hweight_long(spi->mode & 3900 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3901 dev_err(&spi->dev, 3902 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3903 return -EINVAL; 3904 } 3905 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3906 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3907 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3908 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3909 return -EINVAL; 3910 /* Check against conflicting MOSI idle configuration */ 3911 if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) { 3912 dev_err(&spi->dev, 3913 "setup: MOSI configured to idle low and high at the same time.\n"); 3914 return -EINVAL; 3915 } 3916 /* 3917 * Help drivers fail *cleanly* when they need options 3918 * that aren't supported with their current controller. 3919 * SPI_CS_WORD has a fallback software implementation, 3920 * so it is ignored here. 3921 */ 3922 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3923 SPI_NO_TX | SPI_NO_RX); 3924 ugly_bits = bad_bits & 3925 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3926 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3927 if (ugly_bits) { 3928 dev_warn(&spi->dev, 3929 "setup: ignoring unsupported mode bits %x\n", 3930 ugly_bits); 3931 spi->mode &= ~ugly_bits; 3932 bad_bits &= ~ugly_bits; 3933 } 3934 if (bad_bits) { 3935 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3936 bad_bits); 3937 return -EINVAL; 3938 } 3939 3940 if (!spi->bits_per_word) { 3941 spi->bits_per_word = 8; 3942 } else { 3943 /* 3944 * Some controllers may not support the default 8 bits-per-word 3945 * so only perform the check when this is explicitly provided. 3946 */ 3947 status = __spi_validate_bits_per_word(spi->controller, 3948 spi->bits_per_word); 3949 if (status) 3950 return status; 3951 } 3952 3953 if (spi->controller->max_speed_hz && 3954 (!spi->max_speed_hz || 3955 spi->max_speed_hz > spi->controller->max_speed_hz)) 3956 spi->max_speed_hz = spi->controller->max_speed_hz; 3957 3958 mutex_lock(&spi->controller->io_mutex); 3959 3960 if (spi->controller->setup) { 3961 status = spi->controller->setup(spi); 3962 if (status) { 3963 mutex_unlock(&spi->controller->io_mutex); 3964 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3965 status); 3966 return status; 3967 } 3968 } 3969 3970 status = spi_set_cs_timing(spi); 3971 if (status) { 3972 mutex_unlock(&spi->controller->io_mutex); 3973 return status; 3974 } 3975 3976 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3977 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3978 if (status < 0) { 3979 mutex_unlock(&spi->controller->io_mutex); 3980 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3981 status); 3982 return status; 3983 } 3984 3985 /* 3986 * We do not want to return positive value from pm_runtime_get, 3987 * there are many instances of devices calling spi_setup() and 3988 * checking for a non-zero return value instead of a negative 3989 * return value. 3990 */ 3991 status = 0; 3992 3993 spi_set_cs(spi, false, true); 3994 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3995 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3996 } else { 3997 spi_set_cs(spi, false, true); 3998 } 3999 4000 mutex_unlock(&spi->controller->io_mutex); 4001 4002 if (spi->rt && !spi->controller->rt) { 4003 spi->controller->rt = true; 4004 spi_set_thread_rt(spi->controller); 4005 } 4006 4007 trace_spi_setup(spi, status); 4008 4009 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 4010 spi->mode & SPI_MODE_X_MASK, 4011 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 4012 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 4013 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 4014 (spi->mode & SPI_LOOP) ? "loopback, " : "", 4015 spi->bits_per_word, spi->max_speed_hz, 4016 status); 4017 4018 return status; 4019 } 4020 EXPORT_SYMBOL_GPL(spi_setup); 4021 4022 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 4023 struct spi_device *spi) 4024 { 4025 int delay1, delay2; 4026 4027 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 4028 if (delay1 < 0) 4029 return delay1; 4030 4031 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 4032 if (delay2 < 0) 4033 return delay2; 4034 4035 if (delay1 < delay2) 4036 memcpy(&xfer->word_delay, &spi->word_delay, 4037 sizeof(xfer->word_delay)); 4038 4039 return 0; 4040 } 4041 4042 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 4043 { 4044 struct spi_controller *ctlr = spi->controller; 4045 struct spi_transfer *xfer; 4046 int w_size; 4047 4048 if (list_empty(&message->transfers)) 4049 return -EINVAL; 4050 4051 message->spi = spi; 4052 4053 /* 4054 * Half-duplex links include original MicroWire, and ones with 4055 * only one data pin like SPI_3WIRE (switches direction) or where 4056 * either MOSI or MISO is missing. They can also be caused by 4057 * software limitations. 4058 */ 4059 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 4060 (spi->mode & SPI_3WIRE)) { 4061 unsigned flags = ctlr->flags; 4062 4063 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4064 if (xfer->rx_buf && xfer->tx_buf) 4065 return -EINVAL; 4066 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 4067 return -EINVAL; 4068 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 4069 return -EINVAL; 4070 } 4071 } 4072 4073 /* 4074 * Set transfer bits_per_word and max speed as spi device default if 4075 * it is not set for this transfer. 4076 * Set transfer tx_nbits and rx_nbits as single transfer default 4077 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 4078 * Ensure transfer word_delay is at least as long as that required by 4079 * device itself. 4080 */ 4081 message->frame_length = 0; 4082 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4083 xfer->effective_speed_hz = 0; 4084 message->frame_length += xfer->len; 4085 if (!xfer->bits_per_word) 4086 xfer->bits_per_word = spi->bits_per_word; 4087 4088 if (!xfer->speed_hz) 4089 xfer->speed_hz = spi->max_speed_hz; 4090 4091 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 4092 xfer->speed_hz = ctlr->max_speed_hz; 4093 4094 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 4095 return -EINVAL; 4096 4097 /* 4098 * SPI transfer length should be multiple of SPI word size 4099 * where SPI word size should be power-of-two multiple. 4100 */ 4101 if (xfer->bits_per_word <= 8) 4102 w_size = 1; 4103 else if (xfer->bits_per_word <= 16) 4104 w_size = 2; 4105 else 4106 w_size = 4; 4107 4108 /* No partial transfers accepted */ 4109 if (xfer->len % w_size) 4110 return -EINVAL; 4111 4112 if (xfer->speed_hz && ctlr->min_speed_hz && 4113 xfer->speed_hz < ctlr->min_speed_hz) 4114 return -EINVAL; 4115 4116 if (xfer->tx_buf && !xfer->tx_nbits) 4117 xfer->tx_nbits = SPI_NBITS_SINGLE; 4118 if (xfer->rx_buf && !xfer->rx_nbits) 4119 xfer->rx_nbits = SPI_NBITS_SINGLE; 4120 /* 4121 * Check transfer tx/rx_nbits: 4122 * 1. check the value matches one of single, dual and quad 4123 * 2. check tx/rx_nbits match the mode in spi_device 4124 */ 4125 if (xfer->tx_buf) { 4126 if (spi->mode & SPI_NO_TX) 4127 return -EINVAL; 4128 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4129 xfer->tx_nbits != SPI_NBITS_DUAL && 4130 xfer->tx_nbits != SPI_NBITS_QUAD && 4131 xfer->tx_nbits != SPI_NBITS_OCTAL) 4132 return -EINVAL; 4133 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4134 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 4135 return -EINVAL; 4136 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4137 !(spi->mode & SPI_TX_QUAD)) 4138 return -EINVAL; 4139 } 4140 /* Check transfer rx_nbits */ 4141 if (xfer->rx_buf) { 4142 if (spi->mode & SPI_NO_RX) 4143 return -EINVAL; 4144 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4145 xfer->rx_nbits != SPI_NBITS_DUAL && 4146 xfer->rx_nbits != SPI_NBITS_QUAD && 4147 xfer->rx_nbits != SPI_NBITS_OCTAL) 4148 return -EINVAL; 4149 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4150 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 4151 return -EINVAL; 4152 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4153 !(spi->mode & SPI_RX_QUAD)) 4154 return -EINVAL; 4155 } 4156 4157 if (_spi_xfer_word_delay_update(xfer, spi)) 4158 return -EINVAL; 4159 } 4160 4161 message->status = -EINPROGRESS; 4162 4163 return 0; 4164 } 4165 4166 /* 4167 * spi_split_transfers - generic handling of transfer splitting 4168 * @msg: the message to split 4169 * 4170 * Under certain conditions, a SPI controller may not support arbitrary 4171 * transfer sizes or other features required by a peripheral. This function 4172 * will split the transfers in the message into smaller transfers that are 4173 * supported by the controller. 4174 * 4175 * Controllers with special requirements not covered here can also split 4176 * transfers in the optimize_message() callback. 4177 * 4178 * Context: can sleep 4179 * Return: zero on success, else a negative error code 4180 */ 4181 static int spi_split_transfers(struct spi_message *msg) 4182 { 4183 struct spi_controller *ctlr = msg->spi->controller; 4184 struct spi_transfer *xfer; 4185 int ret; 4186 4187 /* 4188 * If an SPI controller does not support toggling the CS line on each 4189 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 4190 * for the CS line, we can emulate the CS-per-word hardware function by 4191 * splitting transfers into one-word transfers and ensuring that 4192 * cs_change is set for each transfer. 4193 */ 4194 if ((msg->spi->mode & SPI_CS_WORD) && 4195 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) { 4196 ret = spi_split_transfers_maxwords(ctlr, msg, 1); 4197 if (ret) 4198 return ret; 4199 4200 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 4201 /* Don't change cs_change on the last entry in the list */ 4202 if (list_is_last(&xfer->transfer_list, &msg->transfers)) 4203 break; 4204 4205 xfer->cs_change = 1; 4206 } 4207 } else { 4208 ret = spi_split_transfers_maxsize(ctlr, msg, 4209 spi_max_transfer_size(msg->spi)); 4210 if (ret) 4211 return ret; 4212 } 4213 4214 return 0; 4215 } 4216 4217 /* 4218 * __spi_optimize_message - shared implementation for spi_optimize_message() 4219 * and spi_maybe_optimize_message() 4220 * @spi: the device that will be used for the message 4221 * @msg: the message to optimize 4222 * 4223 * Peripheral drivers will call spi_optimize_message() and the spi core will 4224 * call spi_maybe_optimize_message() instead of calling this directly. 4225 * 4226 * It is not valid to call this on a message that has already been optimized. 4227 * 4228 * Return: zero on success, else a negative error code 4229 */ 4230 static int __spi_optimize_message(struct spi_device *spi, 4231 struct spi_message *msg) 4232 { 4233 struct spi_controller *ctlr = spi->controller; 4234 int ret; 4235 4236 ret = __spi_validate(spi, msg); 4237 if (ret) 4238 return ret; 4239 4240 ret = spi_split_transfers(msg); 4241 if (ret) 4242 return ret; 4243 4244 if (ctlr->optimize_message) { 4245 ret = ctlr->optimize_message(msg); 4246 if (ret) { 4247 spi_res_release(ctlr, msg); 4248 return ret; 4249 } 4250 } 4251 4252 msg->optimized = true; 4253 4254 return 0; 4255 } 4256 4257 /* 4258 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized 4259 * @spi: the device that will be used for the message 4260 * @msg: the message to optimize 4261 * Return: zero on success, else a negative error code 4262 */ 4263 static int spi_maybe_optimize_message(struct spi_device *spi, 4264 struct spi_message *msg) 4265 { 4266 if (spi->controller->defer_optimize_message) { 4267 msg->spi = spi; 4268 return 0; 4269 } 4270 4271 if (msg->pre_optimized) 4272 return 0; 4273 4274 return __spi_optimize_message(spi, msg); 4275 } 4276 4277 /** 4278 * spi_optimize_message - do any one-time validation and setup for a SPI message 4279 * @spi: the device that will be used for the message 4280 * @msg: the message to optimize 4281 * 4282 * Peripheral drivers that reuse the same message repeatedly may call this to 4283 * perform as much message prep as possible once, rather than repeating it each 4284 * time a message transfer is performed to improve throughput and reduce CPU 4285 * usage. 4286 * 4287 * Once a message has been optimized, it cannot be modified with the exception 4288 * of updating the contents of any xfer->tx_buf (the pointer can't be changed, 4289 * only the data in the memory it points to). 4290 * 4291 * Calls to this function must be balanced with calls to spi_unoptimize_message() 4292 * to avoid leaking resources. 4293 * 4294 * Context: can sleep 4295 * Return: zero on success, else a negative error code 4296 */ 4297 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg) 4298 { 4299 int ret; 4300 4301 /* 4302 * Pre-optimization is not supported and optimization is deferred e.g. 4303 * when using spi-mux. 4304 */ 4305 if (spi->controller->defer_optimize_message) 4306 return 0; 4307 4308 ret = __spi_optimize_message(spi, msg); 4309 if (ret) 4310 return ret; 4311 4312 /* 4313 * This flag indicates that the peripheral driver called spi_optimize_message() 4314 * and therefore we shouldn't unoptimize message automatically when finalizing 4315 * the message but rather wait until spi_unoptimize_message() is called 4316 * by the peripheral driver. 4317 */ 4318 msg->pre_optimized = true; 4319 4320 return 0; 4321 } 4322 EXPORT_SYMBOL_GPL(spi_optimize_message); 4323 4324 /** 4325 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message() 4326 * @msg: the message to unoptimize 4327 * 4328 * Calls to this function must be balanced with calls to spi_optimize_message(). 4329 * 4330 * Context: can sleep 4331 */ 4332 void spi_unoptimize_message(struct spi_message *msg) 4333 { 4334 if (msg->spi->controller->defer_optimize_message) 4335 return; 4336 4337 __spi_unoptimize_message(msg); 4338 msg->pre_optimized = false; 4339 } 4340 EXPORT_SYMBOL_GPL(spi_unoptimize_message); 4341 4342 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4343 { 4344 struct spi_controller *ctlr = spi->controller; 4345 struct spi_transfer *xfer; 4346 4347 /* 4348 * Some controllers do not support doing regular SPI transfers. Return 4349 * ENOTSUPP when this is the case. 4350 */ 4351 if (!ctlr->transfer) 4352 return -ENOTSUPP; 4353 4354 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4355 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4356 4357 trace_spi_message_submit(message); 4358 4359 if (!ctlr->ptp_sts_supported) { 4360 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4361 xfer->ptp_sts_word_pre = 0; 4362 ptp_read_system_prets(xfer->ptp_sts); 4363 } 4364 } 4365 4366 return ctlr->transfer(spi, message); 4367 } 4368 4369 static void devm_spi_unoptimize_message(void *msg) 4370 { 4371 spi_unoptimize_message(msg); 4372 } 4373 4374 /** 4375 * devm_spi_optimize_message - managed version of spi_optimize_message() 4376 * @dev: the device that manages @msg (usually @spi->dev) 4377 * @spi: the device that will be used for the message 4378 * @msg: the message to optimize 4379 * Return: zero on success, else a negative error code 4380 * 4381 * spi_unoptimize_message() will automatically be called when the device is 4382 * removed. 4383 */ 4384 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi, 4385 struct spi_message *msg) 4386 { 4387 int ret; 4388 4389 ret = spi_optimize_message(spi, msg); 4390 if (ret) 4391 return ret; 4392 4393 return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg); 4394 } 4395 EXPORT_SYMBOL_GPL(devm_spi_optimize_message); 4396 4397 /** 4398 * spi_async - asynchronous SPI transfer 4399 * @spi: device with which data will be exchanged 4400 * @message: describes the data transfers, including completion callback 4401 * Context: any (IRQs may be blocked, etc) 4402 * 4403 * This call may be used in_irq and other contexts which can't sleep, 4404 * as well as from task contexts which can sleep. 4405 * 4406 * The completion callback is invoked in a context which can't sleep. 4407 * Before that invocation, the value of message->status is undefined. 4408 * When the callback is issued, message->status holds either zero (to 4409 * indicate complete success) or a negative error code. After that 4410 * callback returns, the driver which issued the transfer request may 4411 * deallocate the associated memory; it's no longer in use by any SPI 4412 * core or controller driver code. 4413 * 4414 * Note that although all messages to a spi_device are handled in 4415 * FIFO order, messages may go to different devices in other orders. 4416 * Some device might be higher priority, or have various "hard" access 4417 * time requirements, for example. 4418 * 4419 * On detection of any fault during the transfer, processing of 4420 * the entire message is aborted, and the device is deselected. 4421 * Until returning from the associated message completion callback, 4422 * no other spi_message queued to that device will be processed. 4423 * (This rule applies equally to all the synchronous transfer calls, 4424 * which are wrappers around this core asynchronous primitive.) 4425 * 4426 * Return: zero on success, else a negative error code. 4427 */ 4428 int spi_async(struct spi_device *spi, struct spi_message *message) 4429 { 4430 struct spi_controller *ctlr = spi->controller; 4431 int ret; 4432 unsigned long flags; 4433 4434 ret = spi_maybe_optimize_message(spi, message); 4435 if (ret) 4436 return ret; 4437 4438 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4439 4440 if (ctlr->bus_lock_flag) 4441 ret = -EBUSY; 4442 else 4443 ret = __spi_async(spi, message); 4444 4445 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4446 4447 return ret; 4448 } 4449 EXPORT_SYMBOL_GPL(spi_async); 4450 4451 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4452 { 4453 bool was_busy; 4454 int ret; 4455 4456 mutex_lock(&ctlr->io_mutex); 4457 4458 was_busy = ctlr->busy; 4459 4460 ctlr->cur_msg = msg; 4461 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4462 if (ret) 4463 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4464 ctlr->cur_msg = NULL; 4465 ctlr->fallback = false; 4466 4467 if (!was_busy) { 4468 kfree(ctlr->dummy_rx); 4469 ctlr->dummy_rx = NULL; 4470 kfree(ctlr->dummy_tx); 4471 ctlr->dummy_tx = NULL; 4472 if (ctlr->unprepare_transfer_hardware && 4473 ctlr->unprepare_transfer_hardware(ctlr)) 4474 dev_err(&ctlr->dev, 4475 "failed to unprepare transfer hardware\n"); 4476 spi_idle_runtime_pm(ctlr); 4477 } 4478 4479 mutex_unlock(&ctlr->io_mutex); 4480 } 4481 4482 /*-------------------------------------------------------------------------*/ 4483 4484 /* 4485 * Utility methods for SPI protocol drivers, layered on 4486 * top of the core. Some other utility methods are defined as 4487 * inline functions. 4488 */ 4489 4490 static void spi_complete(void *arg) 4491 { 4492 complete(arg); 4493 } 4494 4495 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4496 { 4497 DECLARE_COMPLETION_ONSTACK(done); 4498 unsigned long flags; 4499 int status; 4500 struct spi_controller *ctlr = spi->controller; 4501 4502 if (__spi_check_suspended(ctlr)) { 4503 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4504 return -ESHUTDOWN; 4505 } 4506 4507 status = spi_maybe_optimize_message(spi, message); 4508 if (status) 4509 return status; 4510 4511 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4512 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4513 4514 /* 4515 * Checking queue_empty here only guarantees async/sync message 4516 * ordering when coming from the same context. It does not need to 4517 * guard against reentrancy from a different context. The io_mutex 4518 * will catch those cases. 4519 */ 4520 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4521 message->actual_length = 0; 4522 message->status = -EINPROGRESS; 4523 4524 trace_spi_message_submit(message); 4525 4526 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4527 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4528 4529 __spi_transfer_message_noqueue(ctlr, message); 4530 4531 return message->status; 4532 } 4533 4534 /* 4535 * There are messages in the async queue that could have originated 4536 * from the same context, so we need to preserve ordering. 4537 * Therefor we send the message to the async queue and wait until they 4538 * are completed. 4539 */ 4540 message->complete = spi_complete; 4541 message->context = &done; 4542 4543 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4544 status = __spi_async(spi, message); 4545 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4546 4547 if (status == 0) { 4548 wait_for_completion(&done); 4549 status = message->status; 4550 } 4551 message->complete = NULL; 4552 message->context = NULL; 4553 4554 return status; 4555 } 4556 4557 /** 4558 * spi_sync - blocking/synchronous SPI data transfers 4559 * @spi: device with which data will be exchanged 4560 * @message: describes the data transfers 4561 * Context: can sleep 4562 * 4563 * This call may only be used from a context that may sleep. The sleep 4564 * is non-interruptible, and has no timeout. Low-overhead controller 4565 * drivers may DMA directly into and out of the message buffers. 4566 * 4567 * Note that the SPI device's chip select is active during the message, 4568 * and then is normally disabled between messages. Drivers for some 4569 * frequently-used devices may want to minimize costs of selecting a chip, 4570 * by leaving it selected in anticipation that the next message will go 4571 * to the same chip. (That may increase power usage.) 4572 * 4573 * Also, the caller is guaranteeing that the memory associated with the 4574 * message will not be freed before this call returns. 4575 * 4576 * Return: zero on success, else a negative error code. 4577 */ 4578 int spi_sync(struct spi_device *spi, struct spi_message *message) 4579 { 4580 int ret; 4581 4582 mutex_lock(&spi->controller->bus_lock_mutex); 4583 ret = __spi_sync(spi, message); 4584 mutex_unlock(&spi->controller->bus_lock_mutex); 4585 4586 return ret; 4587 } 4588 EXPORT_SYMBOL_GPL(spi_sync); 4589 4590 /** 4591 * spi_sync_locked - version of spi_sync with exclusive bus usage 4592 * @spi: device with which data will be exchanged 4593 * @message: describes the data transfers 4594 * Context: can sleep 4595 * 4596 * This call may only be used from a context that may sleep. The sleep 4597 * is non-interruptible, and has no timeout. Low-overhead controller 4598 * drivers may DMA directly into and out of the message buffers. 4599 * 4600 * This call should be used by drivers that require exclusive access to the 4601 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4602 * be released by a spi_bus_unlock call when the exclusive access is over. 4603 * 4604 * Return: zero on success, else a negative error code. 4605 */ 4606 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4607 { 4608 return __spi_sync(spi, message); 4609 } 4610 EXPORT_SYMBOL_GPL(spi_sync_locked); 4611 4612 /** 4613 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4614 * @ctlr: SPI bus master that should be locked for exclusive bus access 4615 * Context: can sleep 4616 * 4617 * This call may only be used from a context that may sleep. The sleep 4618 * is non-interruptible, and has no timeout. 4619 * 4620 * This call should be used by drivers that require exclusive access to the 4621 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4622 * exclusive access is over. Data transfer must be done by spi_sync_locked 4623 * and spi_async_locked calls when the SPI bus lock is held. 4624 * 4625 * Return: always zero. 4626 */ 4627 int spi_bus_lock(struct spi_controller *ctlr) 4628 { 4629 unsigned long flags; 4630 4631 mutex_lock(&ctlr->bus_lock_mutex); 4632 4633 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4634 ctlr->bus_lock_flag = 1; 4635 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4636 4637 /* Mutex remains locked until spi_bus_unlock() is called */ 4638 4639 return 0; 4640 } 4641 EXPORT_SYMBOL_GPL(spi_bus_lock); 4642 4643 /** 4644 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4645 * @ctlr: SPI bus master that was locked for exclusive bus access 4646 * Context: can sleep 4647 * 4648 * This call may only be used from a context that may sleep. The sleep 4649 * is non-interruptible, and has no timeout. 4650 * 4651 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4652 * call. 4653 * 4654 * Return: always zero. 4655 */ 4656 int spi_bus_unlock(struct spi_controller *ctlr) 4657 { 4658 ctlr->bus_lock_flag = 0; 4659 4660 mutex_unlock(&ctlr->bus_lock_mutex); 4661 4662 return 0; 4663 } 4664 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4665 4666 /* Portable code must never pass more than 32 bytes */ 4667 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4668 4669 static u8 *buf; 4670 4671 /** 4672 * spi_write_then_read - SPI synchronous write followed by read 4673 * @spi: device with which data will be exchanged 4674 * @txbuf: data to be written (need not be DMA-safe) 4675 * @n_tx: size of txbuf, in bytes 4676 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4677 * @n_rx: size of rxbuf, in bytes 4678 * Context: can sleep 4679 * 4680 * This performs a half duplex MicroWire style transaction with the 4681 * device, sending txbuf and then reading rxbuf. The return value 4682 * is zero for success, else a negative errno status code. 4683 * This call may only be used from a context that may sleep. 4684 * 4685 * Parameters to this routine are always copied using a small buffer. 4686 * Performance-sensitive or bulk transfer code should instead use 4687 * spi_{async,sync}() calls with DMA-safe buffers. 4688 * 4689 * Return: zero on success, else a negative error code. 4690 */ 4691 int spi_write_then_read(struct spi_device *spi, 4692 const void *txbuf, unsigned n_tx, 4693 void *rxbuf, unsigned n_rx) 4694 { 4695 static DEFINE_MUTEX(lock); 4696 4697 int status; 4698 struct spi_message message; 4699 struct spi_transfer x[2]; 4700 u8 *local_buf; 4701 4702 /* 4703 * Use preallocated DMA-safe buffer if we can. We can't avoid 4704 * copying here, (as a pure convenience thing), but we can 4705 * keep heap costs out of the hot path unless someone else is 4706 * using the pre-allocated buffer or the transfer is too large. 4707 */ 4708 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4709 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4710 GFP_KERNEL | GFP_DMA); 4711 if (!local_buf) 4712 return -ENOMEM; 4713 } else { 4714 local_buf = buf; 4715 } 4716 4717 spi_message_init(&message); 4718 memset(x, 0, sizeof(x)); 4719 if (n_tx) { 4720 x[0].len = n_tx; 4721 spi_message_add_tail(&x[0], &message); 4722 } 4723 if (n_rx) { 4724 x[1].len = n_rx; 4725 spi_message_add_tail(&x[1], &message); 4726 } 4727 4728 memcpy(local_buf, txbuf, n_tx); 4729 x[0].tx_buf = local_buf; 4730 x[1].rx_buf = local_buf + n_tx; 4731 4732 /* Do the I/O */ 4733 status = spi_sync(spi, &message); 4734 if (status == 0) 4735 memcpy(rxbuf, x[1].rx_buf, n_rx); 4736 4737 if (x[0].tx_buf == buf) 4738 mutex_unlock(&lock); 4739 else 4740 kfree(local_buf); 4741 4742 return status; 4743 } 4744 EXPORT_SYMBOL_GPL(spi_write_then_read); 4745 4746 /*-------------------------------------------------------------------------*/ 4747 4748 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4749 /* Must call put_device() when done with returned spi_device device */ 4750 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4751 { 4752 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4753 4754 return dev ? to_spi_device(dev) : NULL; 4755 } 4756 4757 /* The spi controllers are not using spi_bus, so we find it with another way */ 4758 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4759 { 4760 struct device *dev; 4761 4762 dev = class_find_device_by_of_node(&spi_master_class, node); 4763 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4764 dev = class_find_device_by_of_node(&spi_slave_class, node); 4765 if (!dev) 4766 return NULL; 4767 4768 /* Reference got in class_find_device */ 4769 return container_of(dev, struct spi_controller, dev); 4770 } 4771 4772 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4773 void *arg) 4774 { 4775 struct of_reconfig_data *rd = arg; 4776 struct spi_controller *ctlr; 4777 struct spi_device *spi; 4778 4779 switch (of_reconfig_get_state_change(action, arg)) { 4780 case OF_RECONFIG_CHANGE_ADD: 4781 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4782 if (ctlr == NULL) 4783 return NOTIFY_OK; /* Not for us */ 4784 4785 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4786 put_device(&ctlr->dev); 4787 return NOTIFY_OK; 4788 } 4789 4790 /* 4791 * Clear the flag before adding the device so that fw_devlink 4792 * doesn't skip adding consumers to this device. 4793 */ 4794 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4795 spi = of_register_spi_device(ctlr, rd->dn); 4796 put_device(&ctlr->dev); 4797 4798 if (IS_ERR(spi)) { 4799 pr_err("%s: failed to create for '%pOF'\n", 4800 __func__, rd->dn); 4801 of_node_clear_flag(rd->dn, OF_POPULATED); 4802 return notifier_from_errno(PTR_ERR(spi)); 4803 } 4804 break; 4805 4806 case OF_RECONFIG_CHANGE_REMOVE: 4807 /* Already depopulated? */ 4808 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4809 return NOTIFY_OK; 4810 4811 /* Find our device by node */ 4812 spi = of_find_spi_device_by_node(rd->dn); 4813 if (spi == NULL) 4814 return NOTIFY_OK; /* No? not meant for us */ 4815 4816 /* Unregister takes one ref away */ 4817 spi_unregister_device(spi); 4818 4819 /* And put the reference of the find */ 4820 put_device(&spi->dev); 4821 break; 4822 } 4823 4824 return NOTIFY_OK; 4825 } 4826 4827 static struct notifier_block spi_of_notifier = { 4828 .notifier_call = of_spi_notify, 4829 }; 4830 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4831 extern struct notifier_block spi_of_notifier; 4832 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4833 4834 #if IS_ENABLED(CONFIG_ACPI) 4835 static int spi_acpi_controller_match(struct device *dev, const void *data) 4836 { 4837 return ACPI_COMPANION(dev->parent) == data; 4838 } 4839 4840 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4841 { 4842 struct device *dev; 4843 4844 dev = class_find_device(&spi_master_class, NULL, adev, 4845 spi_acpi_controller_match); 4846 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4847 dev = class_find_device(&spi_slave_class, NULL, adev, 4848 spi_acpi_controller_match); 4849 if (!dev) 4850 return NULL; 4851 4852 return container_of(dev, struct spi_controller, dev); 4853 } 4854 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); 4855 4856 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4857 { 4858 struct device *dev; 4859 4860 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4861 return to_spi_device(dev); 4862 } 4863 4864 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4865 void *arg) 4866 { 4867 struct acpi_device *adev = arg; 4868 struct spi_controller *ctlr; 4869 struct spi_device *spi; 4870 4871 switch (value) { 4872 case ACPI_RECONFIG_DEVICE_ADD: 4873 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4874 if (!ctlr) 4875 break; 4876 4877 acpi_register_spi_device(ctlr, adev); 4878 put_device(&ctlr->dev); 4879 break; 4880 case ACPI_RECONFIG_DEVICE_REMOVE: 4881 if (!acpi_device_enumerated(adev)) 4882 break; 4883 4884 spi = acpi_spi_find_device_by_adev(adev); 4885 if (!spi) 4886 break; 4887 4888 spi_unregister_device(spi); 4889 put_device(&spi->dev); 4890 break; 4891 } 4892 4893 return NOTIFY_OK; 4894 } 4895 4896 static struct notifier_block spi_acpi_notifier = { 4897 .notifier_call = acpi_spi_notify, 4898 }; 4899 #else 4900 extern struct notifier_block spi_acpi_notifier; 4901 #endif 4902 4903 static int __init spi_init(void) 4904 { 4905 int status; 4906 4907 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4908 if (!buf) { 4909 status = -ENOMEM; 4910 goto err0; 4911 } 4912 4913 status = bus_register(&spi_bus_type); 4914 if (status < 0) 4915 goto err1; 4916 4917 status = class_register(&spi_master_class); 4918 if (status < 0) 4919 goto err2; 4920 4921 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4922 status = class_register(&spi_slave_class); 4923 if (status < 0) 4924 goto err3; 4925 } 4926 4927 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4928 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4929 if (IS_ENABLED(CONFIG_ACPI)) 4930 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4931 4932 return 0; 4933 4934 err3: 4935 class_unregister(&spi_master_class); 4936 err2: 4937 bus_unregister(&spi_bus_type); 4938 err1: 4939 kfree(buf); 4940 buf = NULL; 4941 err0: 4942 return status; 4943 } 4944 4945 /* 4946 * A board_info is normally registered in arch_initcall(), 4947 * but even essential drivers wait till later. 4948 * 4949 * REVISIT only boardinfo really needs static linking. The rest (device and 4950 * driver registration) _could_ be dynamically linked (modular) ... Costs 4951 * include needing to have boardinfo data structures be much more public. 4952 */ 4953 postcore_initcall(spi_init); 4954