xref: /linux/drivers/spi/spi.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 
43 #include "internals.h"
44 
45 static DEFINE_IDR(spi_master_idr);
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	spi_controller_put(spi->controller);
52 	kfree(spi->driver_override);
53 	free_percpu(spi->pcpu_statistics);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static ssize_t driver_override_store(struct device *dev,
72 				     struct device_attribute *a,
73 				     const char *buf, size_t count)
74 {
75 	struct spi_device *spi = to_spi_device(dev);
76 	int ret;
77 
78 	ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 	if (ret)
80 		return ret;
81 
82 	return count;
83 }
84 
85 static ssize_t driver_override_show(struct device *dev,
86 				    struct device_attribute *a, char *buf)
87 {
88 	const struct spi_device *spi = to_spi_device(dev);
89 	ssize_t len;
90 
91 	device_lock(dev);
92 	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93 	device_unlock(dev);
94 	return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97 
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 	struct spi_statistics __percpu *pcpu_stats;
101 
102 	if (dev)
103 		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 	else
105 		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106 
107 	if (pcpu_stats) {
108 		int cpu;
109 
110 		for_each_possible_cpu(cpu) {
111 			struct spi_statistics *stat;
112 
113 			stat = per_cpu_ptr(pcpu_stats, cpu);
114 			u64_stats_init(&stat->syncp);
115 		}
116 	}
117 	return pcpu_stats;
118 }
119 
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 				   char *buf, size_t offset)
122 {
123 	u64 val = 0;
124 	int i;
125 
126 	for_each_possible_cpu(i) {
127 		const struct spi_statistics *pcpu_stats;
128 		u64_stats_t *field;
129 		unsigned int start;
130 		u64 inc;
131 
132 		pcpu_stats = per_cpu_ptr(stat, i);
133 		field = (void *)pcpu_stats + offset;
134 		do {
135 			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 			inc = u64_stats_read(field);
137 		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138 		val += inc;
139 	}
140 	return sysfs_emit(buf, "%llu\n", val);
141 }
142 
143 #define SPI_STATISTICS_ATTRS(field, file)				\
144 static ssize_t spi_controller_##field##_show(struct device *dev,	\
145 					     struct device_attribute *attr, \
146 					     char *buf)			\
147 {									\
148 	struct spi_controller *ctlr = container_of(dev,			\
149 					 struct spi_controller, dev);	\
150 	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }									\
152 static struct device_attribute dev_attr_spi_controller_##field = {	\
153 	.attr = { .name = file, .mode = 0444 },				\
154 	.show = spi_controller_##field##_show,				\
155 };									\
156 static ssize_t spi_device_##field##_show(struct device *dev,		\
157 					 struct device_attribute *attr,	\
158 					char *buf)			\
159 {									\
160 	struct spi_device *spi = to_spi_device(dev);			\
161 	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }									\
163 static struct device_attribute dev_attr_spi_device_##field = {		\
164 	.attr = { .name = file, .mode = 0444 },				\
165 	.show = spi_device_##field##_show,				\
166 }
167 
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170 					    char *buf)			\
171 {									\
172 	return spi_emit_pcpu_stats(stat, buf,				\
173 			offsetof(struct spi_statistics, field));	\
174 }									\
175 SPI_STATISTICS_ATTRS(name, file)
176 
177 #define SPI_STATISTICS_SHOW(field)					\
178 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
179 				 field)
180 
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185 
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189 
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193 
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
195 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
196 				 "transfer_bytes_histo_" number,	\
197 				 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215 
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217 
218 static struct attribute *spi_dev_attrs[] = {
219 	&dev_attr_modalias.attr,
220 	&dev_attr_driver_override.attr,
221 	NULL,
222 };
223 
224 static const struct attribute_group spi_dev_group = {
225 	.attrs  = spi_dev_attrs,
226 };
227 
228 static struct attribute *spi_device_statistics_attrs[] = {
229 	&dev_attr_spi_device_messages.attr,
230 	&dev_attr_spi_device_transfers.attr,
231 	&dev_attr_spi_device_errors.attr,
232 	&dev_attr_spi_device_timedout.attr,
233 	&dev_attr_spi_device_spi_sync.attr,
234 	&dev_attr_spi_device_spi_sync_immediate.attr,
235 	&dev_attr_spi_device_spi_async.attr,
236 	&dev_attr_spi_device_bytes.attr,
237 	&dev_attr_spi_device_bytes_rx.attr,
238 	&dev_attr_spi_device_bytes_tx.attr,
239 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
240 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
241 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
242 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
243 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
244 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
245 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
246 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
247 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
248 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
249 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
250 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
251 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
252 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
253 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
254 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
255 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
256 	&dev_attr_spi_device_transfers_split_maxsize.attr,
257 	NULL,
258 };
259 
260 static const struct attribute_group spi_device_statistics_group = {
261 	.name  = "statistics",
262 	.attrs  = spi_device_statistics_attrs,
263 };
264 
265 static const struct attribute_group *spi_dev_groups[] = {
266 	&spi_dev_group,
267 	&spi_device_statistics_group,
268 	NULL,
269 };
270 
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 	&dev_attr_spi_controller_messages.attr,
273 	&dev_attr_spi_controller_transfers.attr,
274 	&dev_attr_spi_controller_errors.attr,
275 	&dev_attr_spi_controller_timedout.attr,
276 	&dev_attr_spi_controller_spi_sync.attr,
277 	&dev_attr_spi_controller_spi_sync_immediate.attr,
278 	&dev_attr_spi_controller_spi_async.attr,
279 	&dev_attr_spi_controller_bytes.attr,
280 	&dev_attr_spi_controller_bytes_rx.attr,
281 	&dev_attr_spi_controller_bytes_tx.attr,
282 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
300 	NULL,
301 };
302 
303 static const struct attribute_group spi_controller_statistics_group = {
304 	.name  = "statistics",
305 	.attrs  = spi_controller_statistics_attrs,
306 };
307 
308 static const struct attribute_group *spi_master_groups[] = {
309 	&spi_controller_statistics_group,
310 	NULL,
311 };
312 
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 					      struct spi_transfer *xfer,
315 					      struct spi_message *msg)
316 {
317 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 	struct spi_statistics *stats;
319 
320 	if (l2len < 0)
321 		l2len = 0;
322 
323 	get_cpu();
324 	stats = this_cpu_ptr(pcpu_stats);
325 	u64_stats_update_begin(&stats->syncp);
326 
327 	u64_stats_inc(&stats->transfers);
328 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329 
330 	u64_stats_add(&stats->bytes, xfer->len);
331 	if (spi_valid_txbuf(msg, xfer))
332 		u64_stats_add(&stats->bytes_tx, xfer->len);
333 	if (spi_valid_rxbuf(msg, xfer))
334 		u64_stats_add(&stats->bytes_rx, xfer->len);
335 
336 	u64_stats_update_end(&stats->syncp);
337 	put_cpu();
338 }
339 
340 /*
341  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
342  * and the sysfs version makes coldplug work too.
343  */
344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
345 {
346 	while (id->name[0]) {
347 		if (!strcmp(name, id->name))
348 			return id;
349 		id++;
350 	}
351 	return NULL;
352 }
353 
354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
355 {
356 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
357 
358 	return spi_match_id(sdrv->id_table, sdev->modalias);
359 }
360 EXPORT_SYMBOL_GPL(spi_get_device_id);
361 
362 const void *spi_get_device_match_data(const struct spi_device *sdev)
363 {
364 	const void *match;
365 
366 	match = device_get_match_data(&sdev->dev);
367 	if (match)
368 		return match;
369 
370 	return (const void *)spi_get_device_id(sdev)->driver_data;
371 }
372 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
373 
374 static int spi_match_device(struct device *dev, const struct device_driver *drv)
375 {
376 	const struct spi_device	*spi = to_spi_device(dev);
377 	const struct spi_driver	*sdrv = to_spi_driver(drv);
378 
379 	/* Check override first, and if set, only use the named driver */
380 	if (spi->driver_override)
381 		return strcmp(spi->driver_override, drv->name) == 0;
382 
383 	/* Attempt an OF style match */
384 	if (of_driver_match_device(dev, drv))
385 		return 1;
386 
387 	/* Then try ACPI */
388 	if (acpi_driver_match_device(dev, drv))
389 		return 1;
390 
391 	if (sdrv->id_table)
392 		return !!spi_match_id(sdrv->id_table, spi->modalias);
393 
394 	return strcmp(spi->modalias, drv->name) == 0;
395 }
396 
397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
398 {
399 	const struct spi_device		*spi = to_spi_device(dev);
400 	int rc;
401 
402 	rc = acpi_device_uevent_modalias(dev, env);
403 	if (rc != -ENODEV)
404 		return rc;
405 
406 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
407 }
408 
409 static int spi_probe(struct device *dev)
410 {
411 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
412 	struct spi_device		*spi = to_spi_device(dev);
413 	int ret;
414 
415 	ret = of_clk_set_defaults(dev->of_node, false);
416 	if (ret)
417 		return ret;
418 
419 	if (dev->of_node) {
420 		spi->irq = of_irq_get(dev->of_node, 0);
421 		if (spi->irq == -EPROBE_DEFER)
422 			return dev_err_probe(dev, -EPROBE_DEFER, "Failed to get irq\n");
423 		if (spi->irq < 0)
424 			spi->irq = 0;
425 	}
426 
427 	ret = dev_pm_domain_attach(dev, true);
428 	if (ret)
429 		return ret;
430 
431 	if (sdrv->probe) {
432 		ret = sdrv->probe(spi);
433 		if (ret)
434 			dev_pm_domain_detach(dev, true);
435 	}
436 
437 	return ret;
438 }
439 
440 static void spi_remove(struct device *dev)
441 {
442 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
443 
444 	if (sdrv->remove)
445 		sdrv->remove(to_spi_device(dev));
446 
447 	dev_pm_domain_detach(dev, true);
448 }
449 
450 static void spi_shutdown(struct device *dev)
451 {
452 	if (dev->driver) {
453 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
454 
455 		if (sdrv->shutdown)
456 			sdrv->shutdown(to_spi_device(dev));
457 	}
458 }
459 
460 const struct bus_type spi_bus_type = {
461 	.name		= "spi",
462 	.dev_groups	= spi_dev_groups,
463 	.match		= spi_match_device,
464 	.uevent		= spi_uevent,
465 	.probe		= spi_probe,
466 	.remove		= spi_remove,
467 	.shutdown	= spi_shutdown,
468 };
469 EXPORT_SYMBOL_GPL(spi_bus_type);
470 
471 /**
472  * __spi_register_driver - register a SPI driver
473  * @owner: owner module of the driver to register
474  * @sdrv: the driver to register
475  * Context: can sleep
476  *
477  * Return: zero on success, else a negative error code.
478  */
479 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
480 {
481 	sdrv->driver.owner = owner;
482 	sdrv->driver.bus = &spi_bus_type;
483 
484 	/*
485 	 * For Really Good Reasons we use spi: modaliases not of:
486 	 * modaliases for DT so module autoloading won't work if we
487 	 * don't have a spi_device_id as well as a compatible string.
488 	 */
489 	if (sdrv->driver.of_match_table) {
490 		const struct of_device_id *of_id;
491 
492 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
493 		     of_id++) {
494 			const char *of_name;
495 
496 			/* Strip off any vendor prefix */
497 			of_name = strnchr(of_id->compatible,
498 					  sizeof(of_id->compatible), ',');
499 			if (of_name)
500 				of_name++;
501 			else
502 				of_name = of_id->compatible;
503 
504 			if (sdrv->id_table) {
505 				const struct spi_device_id *spi_id;
506 
507 				spi_id = spi_match_id(sdrv->id_table, of_name);
508 				if (spi_id)
509 					continue;
510 			} else {
511 				if (strcmp(sdrv->driver.name, of_name) == 0)
512 					continue;
513 			}
514 
515 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
516 				sdrv->driver.name, of_id->compatible);
517 		}
518 	}
519 
520 	return driver_register(&sdrv->driver);
521 }
522 EXPORT_SYMBOL_GPL(__spi_register_driver);
523 
524 /*-------------------------------------------------------------------------*/
525 
526 /*
527  * SPI devices should normally not be created by SPI device drivers; that
528  * would make them board-specific.  Similarly with SPI controller drivers.
529  * Device registration normally goes into like arch/.../mach.../board-YYY.c
530  * with other readonly (flashable) information about mainboard devices.
531  */
532 
533 struct boardinfo {
534 	struct list_head	list;
535 	struct spi_board_info	board_info;
536 };
537 
538 static LIST_HEAD(board_list);
539 static LIST_HEAD(spi_controller_list);
540 
541 /*
542  * Used to protect add/del operation for board_info list and
543  * spi_controller list, and their matching process also used
544  * to protect object of type struct idr.
545  */
546 static DEFINE_MUTEX(board_lock);
547 
548 /**
549  * spi_alloc_device - Allocate a new SPI device
550  * @ctlr: Controller to which device is connected
551  * Context: can sleep
552  *
553  * Allows a driver to allocate and initialize a spi_device without
554  * registering it immediately.  This allows a driver to directly
555  * fill the spi_device with device parameters before calling
556  * spi_add_device() on it.
557  *
558  * Caller is responsible to call spi_add_device() on the returned
559  * spi_device structure to add it to the SPI controller.  If the caller
560  * needs to discard the spi_device without adding it, then it should
561  * call spi_dev_put() on it.
562  *
563  * Return: a pointer to the new device, or NULL.
564  */
565 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
566 {
567 	struct spi_device	*spi;
568 
569 	if (!spi_controller_get(ctlr))
570 		return NULL;
571 
572 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
573 	if (!spi) {
574 		spi_controller_put(ctlr);
575 		return NULL;
576 	}
577 
578 	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
579 	if (!spi->pcpu_statistics) {
580 		kfree(spi);
581 		spi_controller_put(ctlr);
582 		return NULL;
583 	}
584 
585 	spi->controller = ctlr;
586 	spi->dev.parent = &ctlr->dev;
587 	spi->dev.bus = &spi_bus_type;
588 	spi->dev.release = spidev_release;
589 	spi->mode = ctlr->buswidth_override_bits;
590 
591 	device_initialize(&spi->dev);
592 	return spi;
593 }
594 EXPORT_SYMBOL_GPL(spi_alloc_device);
595 
596 static void spi_dev_set_name(struct spi_device *spi)
597 {
598 	struct device *dev = &spi->dev;
599 	struct fwnode_handle *fwnode = dev_fwnode(dev);
600 
601 	if (is_acpi_device_node(fwnode)) {
602 		dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
603 		return;
604 	}
605 
606 	if (is_software_node(fwnode)) {
607 		dev_set_name(dev, "spi-%pfwP", fwnode);
608 		return;
609 	}
610 
611 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
612 		     spi_get_chipselect(spi, 0));
613 }
614 
615 /*
616  * Zero(0) is a valid physical CS value and can be located at any
617  * logical CS in the spi->chip_select[]. If all the physical CS
618  * are initialized to 0 then It would be difficult to differentiate
619  * between a valid physical CS 0 & an unused logical CS whose physical
620  * CS can be 0. As a solution to this issue initialize all the CS to -1.
621  * Now all the unused logical CS will have -1 physical CS value & can be
622  * ignored while performing physical CS validity checks.
623  */
624 #define SPI_INVALID_CS		((s8)-1)
625 
626 static inline bool is_valid_cs(s8 chip_select)
627 {
628 	return chip_select != SPI_INVALID_CS;
629 }
630 
631 static inline int spi_dev_check_cs(struct device *dev,
632 				   struct spi_device *spi, u8 idx,
633 				   struct spi_device *new_spi, u8 new_idx)
634 {
635 	u8 cs, cs_new;
636 	u8 idx_new;
637 
638 	cs = spi_get_chipselect(spi, idx);
639 	for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
640 		cs_new = spi_get_chipselect(new_spi, idx_new);
641 		if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
642 			dev_err(dev, "chipselect %u already in use\n", cs_new);
643 			return -EBUSY;
644 		}
645 	}
646 	return 0;
647 }
648 
649 static int spi_dev_check(struct device *dev, void *data)
650 {
651 	struct spi_device *spi = to_spi_device(dev);
652 	struct spi_device *new_spi = data;
653 	int status, idx;
654 
655 	if (spi->controller == new_spi->controller) {
656 		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
657 			status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
658 			if (status)
659 				return status;
660 		}
661 	}
662 	return 0;
663 }
664 
665 static void spi_cleanup(struct spi_device *spi)
666 {
667 	if (spi->controller->cleanup)
668 		spi->controller->cleanup(spi);
669 }
670 
671 static int __spi_add_device(struct spi_device *spi)
672 {
673 	struct spi_controller *ctlr = spi->controller;
674 	struct device *dev = ctlr->dev.parent;
675 	int status, idx;
676 	u8 cs;
677 
678 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
679 		/* Chipselects are numbered 0..max; validate. */
680 		cs = spi_get_chipselect(spi, idx);
681 		if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
682 			dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
683 				ctlr->num_chipselect);
684 			return -EINVAL;
685 		}
686 	}
687 
688 	/*
689 	 * Make sure that multiple logical CS doesn't map to the same physical CS.
690 	 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
691 	 */
692 	if (!spi_controller_is_target(ctlr)) {
693 		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
694 			status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
695 			if (status)
696 				return status;
697 		}
698 	}
699 
700 	/* Set the bus ID string */
701 	spi_dev_set_name(spi);
702 
703 	/*
704 	 * We need to make sure there's no other device with this
705 	 * chipselect **BEFORE** we call setup(), else we'll trash
706 	 * its configuration.
707 	 */
708 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
709 	if (status)
710 		return status;
711 
712 	/* Controller may unregister concurrently */
713 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
714 	    !device_is_registered(&ctlr->dev)) {
715 		return -ENODEV;
716 	}
717 
718 	if (ctlr->cs_gpiods) {
719 		u8 cs;
720 
721 		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
722 			cs = spi_get_chipselect(spi, idx);
723 			if (is_valid_cs(cs))
724 				spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
725 		}
726 	}
727 
728 	/*
729 	 * Drivers may modify this initial i/o setup, but will
730 	 * normally rely on the device being setup.  Devices
731 	 * using SPI_CS_HIGH can't coexist well otherwise...
732 	 */
733 	status = spi_setup(spi);
734 	if (status < 0) {
735 		dev_err(dev, "can't setup %s, status %d\n",
736 				dev_name(&spi->dev), status);
737 		return status;
738 	}
739 
740 	/* Device may be bound to an active driver when this returns */
741 	status = device_add(&spi->dev);
742 	if (status < 0) {
743 		dev_err(dev, "can't add %s, status %d\n",
744 				dev_name(&spi->dev), status);
745 		spi_cleanup(spi);
746 	} else {
747 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
748 	}
749 
750 	return status;
751 }
752 
753 /**
754  * spi_add_device - Add spi_device allocated with spi_alloc_device
755  * @spi: spi_device to register
756  *
757  * Companion function to spi_alloc_device.  Devices allocated with
758  * spi_alloc_device can be added onto the SPI bus with this function.
759  *
760  * Return: 0 on success; negative errno on failure
761  */
762 int spi_add_device(struct spi_device *spi)
763 {
764 	struct spi_controller *ctlr = spi->controller;
765 	int status;
766 
767 	/* Set the bus ID string */
768 	spi_dev_set_name(spi);
769 
770 	mutex_lock(&ctlr->add_lock);
771 	status = __spi_add_device(spi);
772 	mutex_unlock(&ctlr->add_lock);
773 	return status;
774 }
775 EXPORT_SYMBOL_GPL(spi_add_device);
776 
777 static void spi_set_all_cs_unused(struct spi_device *spi)
778 {
779 	u8 idx;
780 
781 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
782 		spi_set_chipselect(spi, idx, SPI_INVALID_CS);
783 }
784 
785 /**
786  * spi_new_device - instantiate one new SPI device
787  * @ctlr: Controller to which device is connected
788  * @chip: Describes the SPI device
789  * Context: can sleep
790  *
791  * On typical mainboards, this is purely internal; and it's not needed
792  * after board init creates the hard-wired devices.  Some development
793  * platforms may not be able to use spi_register_board_info though, and
794  * this is exported so that for example a USB or parport based adapter
795  * driver could add devices (which it would learn about out-of-band).
796  *
797  * Return: the new device, or NULL.
798  */
799 struct spi_device *spi_new_device(struct spi_controller *ctlr,
800 				  struct spi_board_info *chip)
801 {
802 	struct spi_device	*proxy;
803 	int			status;
804 
805 	/*
806 	 * NOTE:  caller did any chip->bus_num checks necessary.
807 	 *
808 	 * Also, unless we change the return value convention to use
809 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
810 	 * suggests syslogged diagnostics are best here (ugh).
811 	 */
812 
813 	proxy = spi_alloc_device(ctlr);
814 	if (!proxy)
815 		return NULL;
816 
817 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
818 
819 	/* Use provided chip-select for proxy device */
820 	spi_set_all_cs_unused(proxy);
821 	spi_set_chipselect(proxy, 0, chip->chip_select);
822 
823 	proxy->max_speed_hz = chip->max_speed_hz;
824 	proxy->mode = chip->mode;
825 	proxy->irq = chip->irq;
826 	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
827 	proxy->dev.platform_data = (void *) chip->platform_data;
828 	proxy->controller_data = chip->controller_data;
829 	proxy->controller_state = NULL;
830 	/*
831 	 * By default spi->chip_select[0] will hold the physical CS number,
832 	 * so set bit 0 in spi->cs_index_mask.
833 	 */
834 	proxy->cs_index_mask = BIT(0);
835 
836 	if (chip->swnode) {
837 		status = device_add_software_node(&proxy->dev, chip->swnode);
838 		if (status) {
839 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
840 				chip->modalias, status);
841 			goto err_dev_put;
842 		}
843 	}
844 
845 	status = spi_add_device(proxy);
846 	if (status < 0)
847 		goto err_dev_put;
848 
849 	return proxy;
850 
851 err_dev_put:
852 	device_remove_software_node(&proxy->dev);
853 	spi_dev_put(proxy);
854 	return NULL;
855 }
856 EXPORT_SYMBOL_GPL(spi_new_device);
857 
858 /**
859  * spi_unregister_device - unregister a single SPI device
860  * @spi: spi_device to unregister
861  *
862  * Start making the passed SPI device vanish. Normally this would be handled
863  * by spi_unregister_controller().
864  */
865 void spi_unregister_device(struct spi_device *spi)
866 {
867 	if (!spi)
868 		return;
869 
870 	if (spi->dev.of_node) {
871 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
872 		of_node_put(spi->dev.of_node);
873 	}
874 	if (ACPI_COMPANION(&spi->dev))
875 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
876 	device_remove_software_node(&spi->dev);
877 	device_del(&spi->dev);
878 	spi_cleanup(spi);
879 	put_device(&spi->dev);
880 }
881 EXPORT_SYMBOL_GPL(spi_unregister_device);
882 
883 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
884 					      struct spi_board_info *bi)
885 {
886 	struct spi_device *dev;
887 
888 	if (ctlr->bus_num != bi->bus_num)
889 		return;
890 
891 	dev = spi_new_device(ctlr, bi);
892 	if (!dev)
893 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
894 			bi->modalias);
895 }
896 
897 /**
898  * spi_register_board_info - register SPI devices for a given board
899  * @info: array of chip descriptors
900  * @n: how many descriptors are provided
901  * Context: can sleep
902  *
903  * Board-specific early init code calls this (probably during arch_initcall)
904  * with segments of the SPI device table.  Any device nodes are created later,
905  * after the relevant parent SPI controller (bus_num) is defined.  We keep
906  * this table of devices forever, so that reloading a controller driver will
907  * not make Linux forget about these hard-wired devices.
908  *
909  * Other code can also call this, e.g. a particular add-on board might provide
910  * SPI devices through its expansion connector, so code initializing that board
911  * would naturally declare its SPI devices.
912  *
913  * The board info passed can safely be __initdata ... but be careful of
914  * any embedded pointers (platform_data, etc), they're copied as-is.
915  *
916  * Return: zero on success, else a negative error code.
917  */
918 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
919 {
920 	struct boardinfo *bi;
921 	int i;
922 
923 	if (!n)
924 		return 0;
925 
926 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
927 	if (!bi)
928 		return -ENOMEM;
929 
930 	for (i = 0; i < n; i++, bi++, info++) {
931 		struct spi_controller *ctlr;
932 
933 		memcpy(&bi->board_info, info, sizeof(*info));
934 
935 		mutex_lock(&board_lock);
936 		list_add_tail(&bi->list, &board_list);
937 		list_for_each_entry(ctlr, &spi_controller_list, list)
938 			spi_match_controller_to_boardinfo(ctlr,
939 							  &bi->board_info);
940 		mutex_unlock(&board_lock);
941 	}
942 
943 	return 0;
944 }
945 
946 /*-------------------------------------------------------------------------*/
947 
948 /* Core methods for SPI resource management */
949 
950 /**
951  * spi_res_alloc - allocate a spi resource that is life-cycle managed
952  *                 during the processing of a spi_message while using
953  *                 spi_transfer_one
954  * @spi:     the SPI device for which we allocate memory
955  * @release: the release code to execute for this resource
956  * @size:    size to alloc and return
957  * @gfp:     GFP allocation flags
958  *
959  * Return: the pointer to the allocated data
960  *
961  * This may get enhanced in the future to allocate from a memory pool
962  * of the @spi_device or @spi_controller to avoid repeated allocations.
963  */
964 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
965 			   size_t size, gfp_t gfp)
966 {
967 	struct spi_res *sres;
968 
969 	sres = kzalloc(sizeof(*sres) + size, gfp);
970 	if (!sres)
971 		return NULL;
972 
973 	INIT_LIST_HEAD(&sres->entry);
974 	sres->release = release;
975 
976 	return sres->data;
977 }
978 
979 /**
980  * spi_res_free - free an SPI resource
981  * @res: pointer to the custom data of a resource
982  */
983 static void spi_res_free(void *res)
984 {
985 	struct spi_res *sres = container_of(res, struct spi_res, data);
986 
987 	WARN_ON(!list_empty(&sres->entry));
988 	kfree(sres);
989 }
990 
991 /**
992  * spi_res_add - add a spi_res to the spi_message
993  * @message: the SPI message
994  * @res:     the spi_resource
995  */
996 static void spi_res_add(struct spi_message *message, void *res)
997 {
998 	struct spi_res *sres = container_of(res, struct spi_res, data);
999 
1000 	WARN_ON(!list_empty(&sres->entry));
1001 	list_add_tail(&sres->entry, &message->resources);
1002 }
1003 
1004 /**
1005  * spi_res_release - release all SPI resources for this message
1006  * @ctlr:  the @spi_controller
1007  * @message: the @spi_message
1008  */
1009 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1010 {
1011 	struct spi_res *res, *tmp;
1012 
1013 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1014 		if (res->release)
1015 			res->release(ctlr, message, res->data);
1016 
1017 		list_del(&res->entry);
1018 
1019 		kfree(res);
1020 	}
1021 }
1022 
1023 /*-------------------------------------------------------------------------*/
1024 #define spi_for_each_valid_cs(spi, idx)				\
1025 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)		\
1026 		if (!(spi->cs_index_mask & BIT(idx))) {} else
1027 
1028 static inline bool spi_is_last_cs(struct spi_device *spi)
1029 {
1030 	u8 idx;
1031 	bool last = false;
1032 
1033 	spi_for_each_valid_cs(spi, idx) {
1034 		if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1035 			last = true;
1036 	}
1037 	return last;
1038 }
1039 
1040 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1041 {
1042 	/*
1043 	 * Historically ACPI has no means of the GPIO polarity and
1044 	 * thus the SPISerialBus() resource defines it on the per-chip
1045 	 * basis. In order to avoid a chain of negations, the GPIO
1046 	 * polarity is considered being Active High. Even for the cases
1047 	 * when _DSD() is involved (in the updated versions of ACPI)
1048 	 * the GPIO CS polarity must be defined Active High to avoid
1049 	 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1050 	 * into account.
1051 	 */
1052 	if (has_acpi_companion(&spi->dev))
1053 		gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1054 	else
1055 		/* Polarity handled by GPIO library */
1056 		gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1057 
1058 	if (activate)
1059 		spi_delay_exec(&spi->cs_setup, NULL);
1060 	else
1061 		spi_delay_exec(&spi->cs_inactive, NULL);
1062 }
1063 
1064 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1065 {
1066 	bool activate = enable;
1067 	u8 idx;
1068 
1069 	/*
1070 	 * Avoid calling into the driver (or doing delays) if the chip select
1071 	 * isn't actually changing from the last time this was called.
1072 	 */
1073 	if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1074 			spi_is_last_cs(spi)) ||
1075 		       (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1076 			!spi_is_last_cs(spi))) &&
1077 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1078 		return;
1079 
1080 	trace_spi_set_cs(spi, activate);
1081 
1082 	spi->controller->last_cs_index_mask = spi->cs_index_mask;
1083 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1084 		spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1085 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1086 
1087 	if (spi->mode & SPI_CS_HIGH)
1088 		enable = !enable;
1089 
1090 	/*
1091 	 * Handle chip select delays for GPIO based CS or controllers without
1092 	 * programmable chip select timing.
1093 	 */
1094 	if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1095 		spi_delay_exec(&spi->cs_hold, NULL);
1096 
1097 	if (spi_is_csgpiod(spi)) {
1098 		if (!(spi->mode & SPI_NO_CS)) {
1099 			spi_for_each_valid_cs(spi, idx) {
1100 				if (spi_get_csgpiod(spi, idx))
1101 					spi_toggle_csgpiod(spi, idx, enable, activate);
1102 			}
1103 		}
1104 		/* Some SPI masters need both GPIO CS & slave_select */
1105 		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1106 		    spi->controller->set_cs)
1107 			spi->controller->set_cs(spi, !enable);
1108 	} else if (spi->controller->set_cs) {
1109 		spi->controller->set_cs(spi, !enable);
1110 	}
1111 
1112 	if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1113 		if (activate)
1114 			spi_delay_exec(&spi->cs_setup, NULL);
1115 		else
1116 			spi_delay_exec(&spi->cs_inactive, NULL);
1117 	}
1118 }
1119 
1120 #ifdef CONFIG_HAS_DMA
1121 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1122 			     struct sg_table *sgt, void *buf, size_t len,
1123 			     enum dma_data_direction dir, unsigned long attrs)
1124 {
1125 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1126 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1127 #ifdef CONFIG_HIGHMEM
1128 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1129 				(unsigned long)buf < (PKMAP_BASE +
1130 					(LAST_PKMAP * PAGE_SIZE)));
1131 #else
1132 	const bool kmap_buf = false;
1133 #endif
1134 	int desc_len;
1135 	int sgs;
1136 	struct page *vm_page;
1137 	struct scatterlist *sg;
1138 	void *sg_buf;
1139 	size_t min;
1140 	int i, ret;
1141 
1142 	if (vmalloced_buf || kmap_buf) {
1143 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1144 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1145 	} else if (virt_addr_valid(buf)) {
1146 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1147 		sgs = DIV_ROUND_UP(len, desc_len);
1148 	} else {
1149 		return -EINVAL;
1150 	}
1151 
1152 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1153 	if (ret != 0)
1154 		return ret;
1155 
1156 	sg = &sgt->sgl[0];
1157 	for (i = 0; i < sgs; i++) {
1158 
1159 		if (vmalloced_buf || kmap_buf) {
1160 			/*
1161 			 * Next scatterlist entry size is the minimum between
1162 			 * the desc_len and the remaining buffer length that
1163 			 * fits in a page.
1164 			 */
1165 			min = min_t(size_t, desc_len,
1166 				    min_t(size_t, len,
1167 					  PAGE_SIZE - offset_in_page(buf)));
1168 			if (vmalloced_buf)
1169 				vm_page = vmalloc_to_page(buf);
1170 			else
1171 				vm_page = kmap_to_page(buf);
1172 			if (!vm_page) {
1173 				sg_free_table(sgt);
1174 				return -ENOMEM;
1175 			}
1176 			sg_set_page(sg, vm_page,
1177 				    min, offset_in_page(buf));
1178 		} else {
1179 			min = min_t(size_t, len, desc_len);
1180 			sg_buf = buf;
1181 			sg_set_buf(sg, sg_buf, min);
1182 		}
1183 
1184 		buf += min;
1185 		len -= min;
1186 		sg = sg_next(sg);
1187 	}
1188 
1189 	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1190 	if (ret < 0) {
1191 		sg_free_table(sgt);
1192 		return ret;
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1199 		struct sg_table *sgt, void *buf, size_t len,
1200 		enum dma_data_direction dir)
1201 {
1202 	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1203 }
1204 
1205 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1206 				struct device *dev, struct sg_table *sgt,
1207 				enum dma_data_direction dir,
1208 				unsigned long attrs)
1209 {
1210 	dma_unmap_sgtable(dev, sgt, dir, attrs);
1211 	sg_free_table(sgt);
1212 	sgt->orig_nents = 0;
1213 	sgt->nents = 0;
1214 }
1215 
1216 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1217 		   struct sg_table *sgt, enum dma_data_direction dir)
1218 {
1219 	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1220 }
1221 
1222 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1223 {
1224 	struct device *tx_dev, *rx_dev;
1225 	struct spi_transfer *xfer;
1226 	int ret;
1227 
1228 	if (!ctlr->can_dma)
1229 		return 0;
1230 
1231 	if (ctlr->dma_tx)
1232 		tx_dev = ctlr->dma_tx->device->dev;
1233 	else if (ctlr->dma_map_dev)
1234 		tx_dev = ctlr->dma_map_dev;
1235 	else
1236 		tx_dev = ctlr->dev.parent;
1237 
1238 	if (ctlr->dma_rx)
1239 		rx_dev = ctlr->dma_rx->device->dev;
1240 	else if (ctlr->dma_map_dev)
1241 		rx_dev = ctlr->dma_map_dev;
1242 	else
1243 		rx_dev = ctlr->dev.parent;
1244 
1245 	ret = -ENOMSG;
1246 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1247 		/* The sync is done before each transfer. */
1248 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1249 
1250 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1251 			continue;
1252 
1253 		if (xfer->tx_buf != NULL) {
1254 			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1255 						(void *)xfer->tx_buf,
1256 						xfer->len, DMA_TO_DEVICE,
1257 						attrs);
1258 			if (ret != 0)
1259 				return ret;
1260 
1261 			xfer->tx_sg_mapped = true;
1262 		}
1263 
1264 		if (xfer->rx_buf != NULL) {
1265 			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1266 						xfer->rx_buf, xfer->len,
1267 						DMA_FROM_DEVICE, attrs);
1268 			if (ret != 0) {
1269 				spi_unmap_buf_attrs(ctlr, tx_dev,
1270 						&xfer->tx_sg, DMA_TO_DEVICE,
1271 						attrs);
1272 
1273 				return ret;
1274 			}
1275 
1276 			xfer->rx_sg_mapped = true;
1277 		}
1278 	}
1279 	/* No transfer has been mapped, bail out with success */
1280 	if (ret)
1281 		return 0;
1282 
1283 	ctlr->cur_rx_dma_dev = rx_dev;
1284 	ctlr->cur_tx_dma_dev = tx_dev;
1285 
1286 	return 0;
1287 }
1288 
1289 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1290 {
1291 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1292 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1293 	struct spi_transfer *xfer;
1294 
1295 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1296 		/* The sync has already been done after each transfer. */
1297 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1298 
1299 		if (xfer->rx_sg_mapped)
1300 			spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1301 					    DMA_FROM_DEVICE, attrs);
1302 		xfer->rx_sg_mapped = false;
1303 
1304 		if (xfer->tx_sg_mapped)
1305 			spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1306 					    DMA_TO_DEVICE, attrs);
1307 		xfer->tx_sg_mapped = false;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1314 				    struct spi_transfer *xfer)
1315 {
1316 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1317 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1318 
1319 	if (xfer->tx_sg_mapped)
1320 		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1321 	if (xfer->rx_sg_mapped)
1322 		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1323 }
1324 
1325 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1326 				 struct spi_transfer *xfer)
1327 {
1328 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1329 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1330 
1331 	if (xfer->rx_sg_mapped)
1332 		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1333 	if (xfer->tx_sg_mapped)
1334 		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1335 }
1336 #else /* !CONFIG_HAS_DMA */
1337 static inline int __spi_map_msg(struct spi_controller *ctlr,
1338 				struct spi_message *msg)
1339 {
1340 	return 0;
1341 }
1342 
1343 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1344 				  struct spi_message *msg)
1345 {
1346 	return 0;
1347 }
1348 
1349 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1350 				    struct spi_transfer *xfer)
1351 {
1352 }
1353 
1354 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1355 				 struct spi_transfer *xfer)
1356 {
1357 }
1358 #endif /* !CONFIG_HAS_DMA */
1359 
1360 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1361 				struct spi_message *msg)
1362 {
1363 	struct spi_transfer *xfer;
1364 
1365 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1366 		/*
1367 		 * Restore the original value of tx_buf or rx_buf if they are
1368 		 * NULL.
1369 		 */
1370 		if (xfer->tx_buf == ctlr->dummy_tx)
1371 			xfer->tx_buf = NULL;
1372 		if (xfer->rx_buf == ctlr->dummy_rx)
1373 			xfer->rx_buf = NULL;
1374 	}
1375 
1376 	return __spi_unmap_msg(ctlr, msg);
1377 }
1378 
1379 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1380 {
1381 	struct spi_transfer *xfer;
1382 	void *tmp;
1383 	unsigned int max_tx, max_rx;
1384 
1385 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1386 		&& !(msg->spi->mode & SPI_3WIRE)) {
1387 		max_tx = 0;
1388 		max_rx = 0;
1389 
1390 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1391 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1392 			    !xfer->tx_buf)
1393 				max_tx = max(xfer->len, max_tx);
1394 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1395 			    !xfer->rx_buf)
1396 				max_rx = max(xfer->len, max_rx);
1397 		}
1398 
1399 		if (max_tx) {
1400 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1401 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1402 			if (!tmp)
1403 				return -ENOMEM;
1404 			ctlr->dummy_tx = tmp;
1405 		}
1406 
1407 		if (max_rx) {
1408 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1409 				       GFP_KERNEL | GFP_DMA);
1410 			if (!tmp)
1411 				return -ENOMEM;
1412 			ctlr->dummy_rx = tmp;
1413 		}
1414 
1415 		if (max_tx || max_rx) {
1416 			list_for_each_entry(xfer, &msg->transfers,
1417 					    transfer_list) {
1418 				if (!xfer->len)
1419 					continue;
1420 				if (!xfer->tx_buf)
1421 					xfer->tx_buf = ctlr->dummy_tx;
1422 				if (!xfer->rx_buf)
1423 					xfer->rx_buf = ctlr->dummy_rx;
1424 			}
1425 		}
1426 	}
1427 
1428 	return __spi_map_msg(ctlr, msg);
1429 }
1430 
1431 static int spi_transfer_wait(struct spi_controller *ctlr,
1432 			     struct spi_message *msg,
1433 			     struct spi_transfer *xfer)
1434 {
1435 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1436 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1437 	u32 speed_hz = xfer->speed_hz;
1438 	unsigned long long ms;
1439 
1440 	if (spi_controller_is_target(ctlr)) {
1441 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1442 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1443 			return -EINTR;
1444 		}
1445 	} else {
1446 		if (!speed_hz)
1447 			speed_hz = 100000;
1448 
1449 		/*
1450 		 * For each byte we wait for 8 cycles of the SPI clock.
1451 		 * Since speed is defined in Hz and we want milliseconds,
1452 		 * use respective multiplier, but before the division,
1453 		 * otherwise we may get 0 for short transfers.
1454 		 */
1455 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1456 		do_div(ms, speed_hz);
1457 
1458 		/*
1459 		 * Increase it twice and add 200 ms tolerance, use
1460 		 * predefined maximum in case of overflow.
1461 		 */
1462 		ms += ms + 200;
1463 		if (ms > UINT_MAX)
1464 			ms = UINT_MAX;
1465 
1466 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1467 						 msecs_to_jiffies(ms));
1468 
1469 		if (ms == 0) {
1470 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1471 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1472 			dev_err(&msg->spi->dev,
1473 				"SPI transfer timed out\n");
1474 			return -ETIMEDOUT;
1475 		}
1476 
1477 		if (xfer->error & SPI_TRANS_FAIL_IO)
1478 			return -EIO;
1479 	}
1480 
1481 	return 0;
1482 }
1483 
1484 static void _spi_transfer_delay_ns(u32 ns)
1485 {
1486 	if (!ns)
1487 		return;
1488 	if (ns <= NSEC_PER_USEC) {
1489 		ndelay(ns);
1490 	} else {
1491 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1492 
1493 		if (us <= 10)
1494 			udelay(us);
1495 		else
1496 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1497 	}
1498 }
1499 
1500 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1501 {
1502 	u32 delay = _delay->value;
1503 	u32 unit = _delay->unit;
1504 	u32 hz;
1505 
1506 	if (!delay)
1507 		return 0;
1508 
1509 	switch (unit) {
1510 	case SPI_DELAY_UNIT_USECS:
1511 		delay *= NSEC_PER_USEC;
1512 		break;
1513 	case SPI_DELAY_UNIT_NSECS:
1514 		/* Nothing to do here */
1515 		break;
1516 	case SPI_DELAY_UNIT_SCK:
1517 		/* Clock cycles need to be obtained from spi_transfer */
1518 		if (!xfer)
1519 			return -EINVAL;
1520 		/*
1521 		 * If there is unknown effective speed, approximate it
1522 		 * by underestimating with half of the requested Hz.
1523 		 */
1524 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1525 		if (!hz)
1526 			return -EINVAL;
1527 
1528 		/* Convert delay to nanoseconds */
1529 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1530 		break;
1531 	default:
1532 		return -EINVAL;
1533 	}
1534 
1535 	return delay;
1536 }
1537 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1538 
1539 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1540 {
1541 	int delay;
1542 
1543 	might_sleep();
1544 
1545 	if (!_delay)
1546 		return -EINVAL;
1547 
1548 	delay = spi_delay_to_ns(_delay, xfer);
1549 	if (delay < 0)
1550 		return delay;
1551 
1552 	_spi_transfer_delay_ns(delay);
1553 
1554 	return 0;
1555 }
1556 EXPORT_SYMBOL_GPL(spi_delay_exec);
1557 
1558 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1559 					  struct spi_transfer *xfer)
1560 {
1561 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1562 	u32 delay = xfer->cs_change_delay.value;
1563 	u32 unit = xfer->cs_change_delay.unit;
1564 	int ret;
1565 
1566 	/* Return early on "fast" mode - for everything but USECS */
1567 	if (!delay) {
1568 		if (unit == SPI_DELAY_UNIT_USECS)
1569 			_spi_transfer_delay_ns(default_delay_ns);
1570 		return;
1571 	}
1572 
1573 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1574 	if (ret) {
1575 		dev_err_once(&msg->spi->dev,
1576 			     "Use of unsupported delay unit %i, using default of %luus\n",
1577 			     unit, default_delay_ns / NSEC_PER_USEC);
1578 		_spi_transfer_delay_ns(default_delay_ns);
1579 	}
1580 }
1581 
1582 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1583 						  struct spi_transfer *xfer)
1584 {
1585 	_spi_transfer_cs_change_delay(msg, xfer);
1586 }
1587 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1588 
1589 /*
1590  * spi_transfer_one_message - Default implementation of transfer_one_message()
1591  *
1592  * This is a standard implementation of transfer_one_message() for
1593  * drivers which implement a transfer_one() operation.  It provides
1594  * standard handling of delays and chip select management.
1595  */
1596 static int spi_transfer_one_message(struct spi_controller *ctlr,
1597 				    struct spi_message *msg)
1598 {
1599 	struct spi_transfer *xfer;
1600 	bool keep_cs = false;
1601 	int ret = 0;
1602 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1603 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1604 
1605 	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1606 	spi_set_cs(msg->spi, !xfer->cs_off, false);
1607 
1608 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1609 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1610 
1611 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1612 		trace_spi_transfer_start(msg, xfer);
1613 
1614 		spi_statistics_add_transfer_stats(statm, xfer, msg);
1615 		spi_statistics_add_transfer_stats(stats, xfer, msg);
1616 
1617 		if (!ctlr->ptp_sts_supported) {
1618 			xfer->ptp_sts_word_pre = 0;
1619 			ptp_read_system_prets(xfer->ptp_sts);
1620 		}
1621 
1622 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1623 			reinit_completion(&ctlr->xfer_completion);
1624 
1625 fallback_pio:
1626 			spi_dma_sync_for_device(ctlr, xfer);
1627 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1628 			if (ret < 0) {
1629 				spi_dma_sync_for_cpu(ctlr, xfer);
1630 
1631 				if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) &&
1632 				    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1633 					__spi_unmap_msg(ctlr, msg);
1634 					ctlr->fallback = true;
1635 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1636 					goto fallback_pio;
1637 				}
1638 
1639 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1640 							       errors);
1641 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1642 							       errors);
1643 				dev_err(&msg->spi->dev,
1644 					"SPI transfer failed: %d\n", ret);
1645 				goto out;
1646 			}
1647 
1648 			if (ret > 0) {
1649 				ret = spi_transfer_wait(ctlr, msg, xfer);
1650 				if (ret < 0)
1651 					msg->status = ret;
1652 			}
1653 
1654 			spi_dma_sync_for_cpu(ctlr, xfer);
1655 		} else {
1656 			if (xfer->len)
1657 				dev_err(&msg->spi->dev,
1658 					"Bufferless transfer has length %u\n",
1659 					xfer->len);
1660 		}
1661 
1662 		if (!ctlr->ptp_sts_supported) {
1663 			ptp_read_system_postts(xfer->ptp_sts);
1664 			xfer->ptp_sts_word_post = xfer->len;
1665 		}
1666 
1667 		trace_spi_transfer_stop(msg, xfer);
1668 
1669 		if (msg->status != -EINPROGRESS)
1670 			goto out;
1671 
1672 		spi_transfer_delay_exec(xfer);
1673 
1674 		if (xfer->cs_change) {
1675 			if (list_is_last(&xfer->transfer_list,
1676 					 &msg->transfers)) {
1677 				keep_cs = true;
1678 			} else {
1679 				if (!xfer->cs_off)
1680 					spi_set_cs(msg->spi, false, false);
1681 				_spi_transfer_cs_change_delay(msg, xfer);
1682 				if (!list_next_entry(xfer, transfer_list)->cs_off)
1683 					spi_set_cs(msg->spi, true, false);
1684 			}
1685 		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1686 			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1687 			spi_set_cs(msg->spi, xfer->cs_off, false);
1688 		}
1689 
1690 		msg->actual_length += xfer->len;
1691 	}
1692 
1693 out:
1694 	if (ret != 0 || !keep_cs)
1695 		spi_set_cs(msg->spi, false, false);
1696 
1697 	if (msg->status == -EINPROGRESS)
1698 		msg->status = ret;
1699 
1700 	if (msg->status && ctlr->handle_err)
1701 		ctlr->handle_err(ctlr, msg);
1702 
1703 	spi_finalize_current_message(ctlr);
1704 
1705 	return ret;
1706 }
1707 
1708 /**
1709  * spi_finalize_current_transfer - report completion of a transfer
1710  * @ctlr: the controller reporting completion
1711  *
1712  * Called by SPI drivers using the core transfer_one_message()
1713  * implementation to notify it that the current interrupt driven
1714  * transfer has finished and the next one may be scheduled.
1715  */
1716 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1717 {
1718 	complete(&ctlr->xfer_completion);
1719 }
1720 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1721 
1722 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1723 {
1724 	if (ctlr->auto_runtime_pm) {
1725 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1726 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1727 	}
1728 }
1729 
1730 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1731 		struct spi_message *msg, bool was_busy)
1732 {
1733 	struct spi_transfer *xfer;
1734 	int ret;
1735 
1736 	if (!was_busy && ctlr->auto_runtime_pm) {
1737 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1738 		if (ret < 0) {
1739 			pm_runtime_put_noidle(ctlr->dev.parent);
1740 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1741 				ret);
1742 
1743 			msg->status = ret;
1744 			spi_finalize_current_message(ctlr);
1745 
1746 			return ret;
1747 		}
1748 	}
1749 
1750 	if (!was_busy)
1751 		trace_spi_controller_busy(ctlr);
1752 
1753 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1754 		ret = ctlr->prepare_transfer_hardware(ctlr);
1755 		if (ret) {
1756 			dev_err(&ctlr->dev,
1757 				"failed to prepare transfer hardware: %d\n",
1758 				ret);
1759 
1760 			if (ctlr->auto_runtime_pm)
1761 				pm_runtime_put(ctlr->dev.parent);
1762 
1763 			msg->status = ret;
1764 			spi_finalize_current_message(ctlr);
1765 
1766 			return ret;
1767 		}
1768 	}
1769 
1770 	trace_spi_message_start(msg);
1771 
1772 	if (ctlr->prepare_message) {
1773 		ret = ctlr->prepare_message(ctlr, msg);
1774 		if (ret) {
1775 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1776 				ret);
1777 			msg->status = ret;
1778 			spi_finalize_current_message(ctlr);
1779 			return ret;
1780 		}
1781 		msg->prepared = true;
1782 	}
1783 
1784 	ret = spi_map_msg(ctlr, msg);
1785 	if (ret) {
1786 		msg->status = ret;
1787 		spi_finalize_current_message(ctlr);
1788 		return ret;
1789 	}
1790 
1791 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1792 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1793 			xfer->ptp_sts_word_pre = 0;
1794 			ptp_read_system_prets(xfer->ptp_sts);
1795 		}
1796 	}
1797 
1798 	/*
1799 	 * Drivers implementation of transfer_one_message() must arrange for
1800 	 * spi_finalize_current_message() to get called. Most drivers will do
1801 	 * this in the calling context, but some don't. For those cases, a
1802 	 * completion is used to guarantee that this function does not return
1803 	 * until spi_finalize_current_message() is done accessing
1804 	 * ctlr->cur_msg.
1805 	 * Use of the following two flags enable to opportunistically skip the
1806 	 * use of the completion since its use involves expensive spin locks.
1807 	 * In case of a race with the context that calls
1808 	 * spi_finalize_current_message() the completion will always be used,
1809 	 * due to strict ordering of these flags using barriers.
1810 	 */
1811 	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1812 	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1813 	reinit_completion(&ctlr->cur_msg_completion);
1814 	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1815 
1816 	ret = ctlr->transfer_one_message(ctlr, msg);
1817 	if (ret) {
1818 		dev_err(&ctlr->dev,
1819 			"failed to transfer one message from queue\n");
1820 		return ret;
1821 	}
1822 
1823 	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1824 	smp_mb(); /* See spi_finalize_current_message()... */
1825 	if (READ_ONCE(ctlr->cur_msg_incomplete))
1826 		wait_for_completion(&ctlr->cur_msg_completion);
1827 
1828 	return 0;
1829 }
1830 
1831 /**
1832  * __spi_pump_messages - function which processes SPI message queue
1833  * @ctlr: controller to process queue for
1834  * @in_kthread: true if we are in the context of the message pump thread
1835  *
1836  * This function checks if there is any SPI message in the queue that
1837  * needs processing and if so call out to the driver to initialize hardware
1838  * and transfer each message.
1839  *
1840  * Note that it is called both from the kthread itself and also from
1841  * inside spi_sync(); the queue extraction handling at the top of the
1842  * function should deal with this safely.
1843  */
1844 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1845 {
1846 	struct spi_message *msg;
1847 	bool was_busy = false;
1848 	unsigned long flags;
1849 	int ret;
1850 
1851 	/* Take the I/O mutex */
1852 	mutex_lock(&ctlr->io_mutex);
1853 
1854 	/* Lock queue */
1855 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1856 
1857 	/* Make sure we are not already running a message */
1858 	if (ctlr->cur_msg)
1859 		goto out_unlock;
1860 
1861 	/* Check if the queue is idle */
1862 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1863 		if (!ctlr->busy)
1864 			goto out_unlock;
1865 
1866 		/* Defer any non-atomic teardown to the thread */
1867 		if (!in_kthread) {
1868 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1869 			    !ctlr->unprepare_transfer_hardware) {
1870 				spi_idle_runtime_pm(ctlr);
1871 				ctlr->busy = false;
1872 				ctlr->queue_empty = true;
1873 				trace_spi_controller_idle(ctlr);
1874 			} else {
1875 				kthread_queue_work(ctlr->kworker,
1876 						   &ctlr->pump_messages);
1877 			}
1878 			goto out_unlock;
1879 		}
1880 
1881 		ctlr->busy = false;
1882 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1883 
1884 		kfree(ctlr->dummy_rx);
1885 		ctlr->dummy_rx = NULL;
1886 		kfree(ctlr->dummy_tx);
1887 		ctlr->dummy_tx = NULL;
1888 		if (ctlr->unprepare_transfer_hardware &&
1889 		    ctlr->unprepare_transfer_hardware(ctlr))
1890 			dev_err(&ctlr->dev,
1891 				"failed to unprepare transfer hardware\n");
1892 		spi_idle_runtime_pm(ctlr);
1893 		trace_spi_controller_idle(ctlr);
1894 
1895 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1896 		ctlr->queue_empty = true;
1897 		goto out_unlock;
1898 	}
1899 
1900 	/* Extract head of queue */
1901 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1902 	ctlr->cur_msg = msg;
1903 
1904 	list_del_init(&msg->queue);
1905 	if (ctlr->busy)
1906 		was_busy = true;
1907 	else
1908 		ctlr->busy = true;
1909 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1910 
1911 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1912 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1913 
1914 	ctlr->cur_msg = NULL;
1915 	ctlr->fallback = false;
1916 
1917 	mutex_unlock(&ctlr->io_mutex);
1918 
1919 	/* Prod the scheduler in case transfer_one() was busy waiting */
1920 	if (!ret)
1921 		cond_resched();
1922 	return;
1923 
1924 out_unlock:
1925 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1926 	mutex_unlock(&ctlr->io_mutex);
1927 }
1928 
1929 /**
1930  * spi_pump_messages - kthread work function which processes spi message queue
1931  * @work: pointer to kthread work struct contained in the controller struct
1932  */
1933 static void spi_pump_messages(struct kthread_work *work)
1934 {
1935 	struct spi_controller *ctlr =
1936 		container_of(work, struct spi_controller, pump_messages);
1937 
1938 	__spi_pump_messages(ctlr, true);
1939 }
1940 
1941 /**
1942  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1943  * @ctlr: Pointer to the spi_controller structure of the driver
1944  * @xfer: Pointer to the transfer being timestamped
1945  * @progress: How many words (not bytes) have been transferred so far
1946  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1947  *	      transfer, for less jitter in time measurement. Only compatible
1948  *	      with PIO drivers. If true, must follow up with
1949  *	      spi_take_timestamp_post or otherwise system will crash.
1950  *	      WARNING: for fully predictable results, the CPU frequency must
1951  *	      also be under control (governor).
1952  *
1953  * This is a helper for drivers to collect the beginning of the TX timestamp
1954  * for the requested byte from the SPI transfer. The frequency with which this
1955  * function must be called (once per word, once for the whole transfer, once
1956  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1957  * greater than or equal to the requested byte at the time of the call. The
1958  * timestamp is only taken once, at the first such call. It is assumed that
1959  * the driver advances its @tx buffer pointer monotonically.
1960  */
1961 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1962 			    struct spi_transfer *xfer,
1963 			    size_t progress, bool irqs_off)
1964 {
1965 	if (!xfer->ptp_sts)
1966 		return;
1967 
1968 	if (xfer->timestamped)
1969 		return;
1970 
1971 	if (progress > xfer->ptp_sts_word_pre)
1972 		return;
1973 
1974 	/* Capture the resolution of the timestamp */
1975 	xfer->ptp_sts_word_pre = progress;
1976 
1977 	if (irqs_off) {
1978 		local_irq_save(ctlr->irq_flags);
1979 		preempt_disable();
1980 	}
1981 
1982 	ptp_read_system_prets(xfer->ptp_sts);
1983 }
1984 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1985 
1986 /**
1987  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1988  * @ctlr: Pointer to the spi_controller structure of the driver
1989  * @xfer: Pointer to the transfer being timestamped
1990  * @progress: How many words (not bytes) have been transferred so far
1991  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1992  *
1993  * This is a helper for drivers to collect the end of the TX timestamp for
1994  * the requested byte from the SPI transfer. Can be called with an arbitrary
1995  * frequency: only the first call where @tx exceeds or is equal to the
1996  * requested word will be timestamped.
1997  */
1998 void spi_take_timestamp_post(struct spi_controller *ctlr,
1999 			     struct spi_transfer *xfer,
2000 			     size_t progress, bool irqs_off)
2001 {
2002 	if (!xfer->ptp_sts)
2003 		return;
2004 
2005 	if (xfer->timestamped)
2006 		return;
2007 
2008 	if (progress < xfer->ptp_sts_word_post)
2009 		return;
2010 
2011 	ptp_read_system_postts(xfer->ptp_sts);
2012 
2013 	if (irqs_off) {
2014 		local_irq_restore(ctlr->irq_flags);
2015 		preempt_enable();
2016 	}
2017 
2018 	/* Capture the resolution of the timestamp */
2019 	xfer->ptp_sts_word_post = progress;
2020 
2021 	xfer->timestamped = 1;
2022 }
2023 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2024 
2025 /**
2026  * spi_set_thread_rt - set the controller to pump at realtime priority
2027  * @ctlr: controller to boost priority of
2028  *
2029  * This can be called because the controller requested realtime priority
2030  * (by setting the ->rt value before calling spi_register_controller()) or
2031  * because a device on the bus said that its transfers needed realtime
2032  * priority.
2033  *
2034  * NOTE: at the moment if any device on a bus says it needs realtime then
2035  * the thread will be at realtime priority for all transfers on that
2036  * controller.  If this eventually becomes a problem we may see if we can
2037  * find a way to boost the priority only temporarily during relevant
2038  * transfers.
2039  */
2040 static void spi_set_thread_rt(struct spi_controller *ctlr)
2041 {
2042 	dev_info(&ctlr->dev,
2043 		"will run message pump with realtime priority\n");
2044 	sched_set_fifo(ctlr->kworker->task);
2045 }
2046 
2047 static int spi_init_queue(struct spi_controller *ctlr)
2048 {
2049 	ctlr->running = false;
2050 	ctlr->busy = false;
2051 	ctlr->queue_empty = true;
2052 
2053 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2054 	if (IS_ERR(ctlr->kworker)) {
2055 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2056 		return PTR_ERR(ctlr->kworker);
2057 	}
2058 
2059 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2060 
2061 	/*
2062 	 * Controller config will indicate if this controller should run the
2063 	 * message pump with high (realtime) priority to reduce the transfer
2064 	 * latency on the bus by minimising the delay between a transfer
2065 	 * request and the scheduling of the message pump thread. Without this
2066 	 * setting the message pump thread will remain at default priority.
2067 	 */
2068 	if (ctlr->rt)
2069 		spi_set_thread_rt(ctlr);
2070 
2071 	return 0;
2072 }
2073 
2074 /**
2075  * spi_get_next_queued_message() - called by driver to check for queued
2076  * messages
2077  * @ctlr: the controller to check for queued messages
2078  *
2079  * If there are more messages in the queue, the next message is returned from
2080  * this call.
2081  *
2082  * Return: the next message in the queue, else NULL if the queue is empty.
2083  */
2084 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2085 {
2086 	struct spi_message *next;
2087 	unsigned long flags;
2088 
2089 	/* Get a pointer to the next message, if any */
2090 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2091 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2092 					queue);
2093 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2094 
2095 	return next;
2096 }
2097 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2098 
2099 /*
2100  * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2101  *                            and spi_maybe_unoptimize_message()
2102  * @msg: the message to unoptimize
2103  *
2104  * Peripheral drivers should use spi_unoptimize_message() and callers inside
2105  * core should use spi_maybe_unoptimize_message() rather than calling this
2106  * function directly.
2107  *
2108  * It is not valid to call this on a message that is not currently optimized.
2109  */
2110 static void __spi_unoptimize_message(struct spi_message *msg)
2111 {
2112 	struct spi_controller *ctlr = msg->spi->controller;
2113 
2114 	if (ctlr->unoptimize_message)
2115 		ctlr->unoptimize_message(msg);
2116 
2117 	spi_res_release(ctlr, msg);
2118 
2119 	msg->optimized = false;
2120 	msg->opt_state = NULL;
2121 }
2122 
2123 /*
2124  * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2125  * @msg: the message to unoptimize
2126  *
2127  * This function is used to unoptimize a message if and only if it was
2128  * optimized by the core (via spi_maybe_optimize_message()).
2129  */
2130 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2131 {
2132 	if (!msg->pre_optimized && msg->optimized &&
2133 	    !msg->spi->controller->defer_optimize_message)
2134 		__spi_unoptimize_message(msg);
2135 }
2136 
2137 /**
2138  * spi_finalize_current_message() - the current message is complete
2139  * @ctlr: the controller to return the message to
2140  *
2141  * Called by the driver to notify the core that the message in the front of the
2142  * queue is complete and can be removed from the queue.
2143  */
2144 void spi_finalize_current_message(struct spi_controller *ctlr)
2145 {
2146 	struct spi_transfer *xfer;
2147 	struct spi_message *mesg;
2148 	int ret;
2149 
2150 	mesg = ctlr->cur_msg;
2151 
2152 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2153 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2154 			ptp_read_system_postts(xfer->ptp_sts);
2155 			xfer->ptp_sts_word_post = xfer->len;
2156 		}
2157 	}
2158 
2159 	if (unlikely(ctlr->ptp_sts_supported))
2160 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2161 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2162 
2163 	spi_unmap_msg(ctlr, mesg);
2164 
2165 	if (mesg->prepared && ctlr->unprepare_message) {
2166 		ret = ctlr->unprepare_message(ctlr, mesg);
2167 		if (ret) {
2168 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2169 				ret);
2170 		}
2171 	}
2172 
2173 	mesg->prepared = false;
2174 
2175 	spi_maybe_unoptimize_message(mesg);
2176 
2177 	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2178 	smp_mb(); /* See __spi_pump_transfer_message()... */
2179 	if (READ_ONCE(ctlr->cur_msg_need_completion))
2180 		complete(&ctlr->cur_msg_completion);
2181 
2182 	trace_spi_message_done(mesg);
2183 
2184 	mesg->state = NULL;
2185 	if (mesg->complete)
2186 		mesg->complete(mesg->context);
2187 }
2188 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2189 
2190 static int spi_start_queue(struct spi_controller *ctlr)
2191 {
2192 	unsigned long flags;
2193 
2194 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2195 
2196 	if (ctlr->running || ctlr->busy) {
2197 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2198 		return -EBUSY;
2199 	}
2200 
2201 	ctlr->running = true;
2202 	ctlr->cur_msg = NULL;
2203 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2204 
2205 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2206 
2207 	return 0;
2208 }
2209 
2210 static int spi_stop_queue(struct spi_controller *ctlr)
2211 {
2212 	unsigned int limit = 500;
2213 	unsigned long flags;
2214 
2215 	/*
2216 	 * This is a bit lame, but is optimized for the common execution path.
2217 	 * A wait_queue on the ctlr->busy could be used, but then the common
2218 	 * execution path (pump_messages) would be required to call wake_up or
2219 	 * friends on every SPI message. Do this instead.
2220 	 */
2221 	do {
2222 		spin_lock_irqsave(&ctlr->queue_lock, flags);
2223 		if (list_empty(&ctlr->queue) && !ctlr->busy) {
2224 			ctlr->running = false;
2225 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2226 			return 0;
2227 		}
2228 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2229 		usleep_range(10000, 11000);
2230 	} while (--limit);
2231 
2232 	return -EBUSY;
2233 }
2234 
2235 static int spi_destroy_queue(struct spi_controller *ctlr)
2236 {
2237 	int ret;
2238 
2239 	ret = spi_stop_queue(ctlr);
2240 
2241 	/*
2242 	 * kthread_flush_worker will block until all work is done.
2243 	 * If the reason that stop_queue timed out is that the work will never
2244 	 * finish, then it does no good to call flush/stop thread, so
2245 	 * return anyway.
2246 	 */
2247 	if (ret) {
2248 		dev_err(&ctlr->dev, "problem destroying queue\n");
2249 		return ret;
2250 	}
2251 
2252 	kthread_destroy_worker(ctlr->kworker);
2253 
2254 	return 0;
2255 }
2256 
2257 static int __spi_queued_transfer(struct spi_device *spi,
2258 				 struct spi_message *msg,
2259 				 bool need_pump)
2260 {
2261 	struct spi_controller *ctlr = spi->controller;
2262 	unsigned long flags;
2263 
2264 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2265 
2266 	if (!ctlr->running) {
2267 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2268 		return -ESHUTDOWN;
2269 	}
2270 	msg->actual_length = 0;
2271 	msg->status = -EINPROGRESS;
2272 
2273 	list_add_tail(&msg->queue, &ctlr->queue);
2274 	ctlr->queue_empty = false;
2275 	if (!ctlr->busy && need_pump)
2276 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2277 
2278 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2279 	return 0;
2280 }
2281 
2282 /**
2283  * spi_queued_transfer - transfer function for queued transfers
2284  * @spi: SPI device which is requesting transfer
2285  * @msg: SPI message which is to handled is queued to driver queue
2286  *
2287  * Return: zero on success, else a negative error code.
2288  */
2289 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2290 {
2291 	return __spi_queued_transfer(spi, msg, true);
2292 }
2293 
2294 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2295 {
2296 	int ret;
2297 
2298 	ctlr->transfer = spi_queued_transfer;
2299 	if (!ctlr->transfer_one_message)
2300 		ctlr->transfer_one_message = spi_transfer_one_message;
2301 
2302 	/* Initialize and start queue */
2303 	ret = spi_init_queue(ctlr);
2304 	if (ret) {
2305 		dev_err(&ctlr->dev, "problem initializing queue\n");
2306 		goto err_init_queue;
2307 	}
2308 	ctlr->queued = true;
2309 	ret = spi_start_queue(ctlr);
2310 	if (ret) {
2311 		dev_err(&ctlr->dev, "problem starting queue\n");
2312 		goto err_start_queue;
2313 	}
2314 
2315 	return 0;
2316 
2317 err_start_queue:
2318 	spi_destroy_queue(ctlr);
2319 err_init_queue:
2320 	return ret;
2321 }
2322 
2323 /**
2324  * spi_flush_queue - Send all pending messages in the queue from the callers'
2325  *		     context
2326  * @ctlr: controller to process queue for
2327  *
2328  * This should be used when one wants to ensure all pending messages have been
2329  * sent before doing something. Is used by the spi-mem code to make sure SPI
2330  * memory operations do not preempt regular SPI transfers that have been queued
2331  * before the spi-mem operation.
2332  */
2333 void spi_flush_queue(struct spi_controller *ctlr)
2334 {
2335 	if (ctlr->transfer == spi_queued_transfer)
2336 		__spi_pump_messages(ctlr, false);
2337 }
2338 
2339 /*-------------------------------------------------------------------------*/
2340 
2341 #if defined(CONFIG_OF)
2342 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2343 				     struct spi_delay *delay, const char *prop)
2344 {
2345 	u32 value;
2346 
2347 	if (!of_property_read_u32(nc, prop, &value)) {
2348 		if (value > U16_MAX) {
2349 			delay->value = DIV_ROUND_UP(value, 1000);
2350 			delay->unit = SPI_DELAY_UNIT_USECS;
2351 		} else {
2352 			delay->value = value;
2353 			delay->unit = SPI_DELAY_UNIT_NSECS;
2354 		}
2355 	}
2356 }
2357 
2358 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2359 			   struct device_node *nc)
2360 {
2361 	u32 value, cs[SPI_CS_CNT_MAX];
2362 	int rc, idx;
2363 
2364 	/* Mode (clock phase/polarity/etc.) */
2365 	if (of_property_read_bool(nc, "spi-cpha"))
2366 		spi->mode |= SPI_CPHA;
2367 	if (of_property_read_bool(nc, "spi-cpol"))
2368 		spi->mode |= SPI_CPOL;
2369 	if (of_property_read_bool(nc, "spi-3wire"))
2370 		spi->mode |= SPI_3WIRE;
2371 	if (of_property_read_bool(nc, "spi-lsb-first"))
2372 		spi->mode |= SPI_LSB_FIRST;
2373 	if (of_property_read_bool(nc, "spi-cs-high"))
2374 		spi->mode |= SPI_CS_HIGH;
2375 
2376 	/* Device DUAL/QUAD mode */
2377 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2378 		switch (value) {
2379 		case 0:
2380 			spi->mode |= SPI_NO_TX;
2381 			break;
2382 		case 1:
2383 			break;
2384 		case 2:
2385 			spi->mode |= SPI_TX_DUAL;
2386 			break;
2387 		case 4:
2388 			spi->mode |= SPI_TX_QUAD;
2389 			break;
2390 		case 8:
2391 			spi->mode |= SPI_TX_OCTAL;
2392 			break;
2393 		default:
2394 			dev_warn(&ctlr->dev,
2395 				"spi-tx-bus-width %d not supported\n",
2396 				value);
2397 			break;
2398 		}
2399 	}
2400 
2401 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2402 		switch (value) {
2403 		case 0:
2404 			spi->mode |= SPI_NO_RX;
2405 			break;
2406 		case 1:
2407 			break;
2408 		case 2:
2409 			spi->mode |= SPI_RX_DUAL;
2410 			break;
2411 		case 4:
2412 			spi->mode |= SPI_RX_QUAD;
2413 			break;
2414 		case 8:
2415 			spi->mode |= SPI_RX_OCTAL;
2416 			break;
2417 		default:
2418 			dev_warn(&ctlr->dev,
2419 				"spi-rx-bus-width %d not supported\n",
2420 				value);
2421 			break;
2422 		}
2423 	}
2424 
2425 	if (spi_controller_is_target(ctlr)) {
2426 		if (!of_node_name_eq(nc, "slave")) {
2427 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2428 				nc);
2429 			return -EINVAL;
2430 		}
2431 		return 0;
2432 	}
2433 
2434 	if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2435 		dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2436 		return -EINVAL;
2437 	}
2438 
2439 	spi_set_all_cs_unused(spi);
2440 
2441 	/* Device address */
2442 	rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2443 						 SPI_CS_CNT_MAX);
2444 	if (rc < 0) {
2445 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2446 			nc, rc);
2447 		return rc;
2448 	}
2449 	if (rc > ctlr->num_chipselect) {
2450 		dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2451 			nc, rc);
2452 		return rc;
2453 	}
2454 	if ((of_property_present(nc, "parallel-memories")) &&
2455 	    (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2456 		dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2457 		return -EINVAL;
2458 	}
2459 	for (idx = 0; idx < rc; idx++)
2460 		spi_set_chipselect(spi, idx, cs[idx]);
2461 
2462 	/*
2463 	 * By default spi->chip_select[0] will hold the physical CS number,
2464 	 * so set bit 0 in spi->cs_index_mask.
2465 	 */
2466 	spi->cs_index_mask = BIT(0);
2467 
2468 	/* Device speed */
2469 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2470 		spi->max_speed_hz = value;
2471 
2472 	/* Device CS delays */
2473 	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2474 	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2475 	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2476 
2477 	return 0;
2478 }
2479 
2480 static struct spi_device *
2481 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2482 {
2483 	struct spi_device *spi;
2484 	int rc;
2485 
2486 	/* Alloc an spi_device */
2487 	spi = spi_alloc_device(ctlr);
2488 	if (!spi) {
2489 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2490 		rc = -ENOMEM;
2491 		goto err_out;
2492 	}
2493 
2494 	/* Select device driver */
2495 	rc = of_alias_from_compatible(nc, spi->modalias,
2496 				      sizeof(spi->modalias));
2497 	if (rc < 0) {
2498 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2499 		goto err_out;
2500 	}
2501 
2502 	rc = of_spi_parse_dt(ctlr, spi, nc);
2503 	if (rc)
2504 		goto err_out;
2505 
2506 	/* Store a pointer to the node in the device structure */
2507 	of_node_get(nc);
2508 
2509 	device_set_node(&spi->dev, of_fwnode_handle(nc));
2510 
2511 	/* Register the new device */
2512 	rc = spi_add_device(spi);
2513 	if (rc) {
2514 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2515 		goto err_of_node_put;
2516 	}
2517 
2518 	return spi;
2519 
2520 err_of_node_put:
2521 	of_node_put(nc);
2522 err_out:
2523 	spi_dev_put(spi);
2524 	return ERR_PTR(rc);
2525 }
2526 
2527 /**
2528  * of_register_spi_devices() - Register child devices onto the SPI bus
2529  * @ctlr:	Pointer to spi_controller device
2530  *
2531  * Registers an spi_device for each child node of controller node which
2532  * represents a valid SPI slave.
2533  */
2534 static void of_register_spi_devices(struct spi_controller *ctlr)
2535 {
2536 	struct spi_device *spi;
2537 	struct device_node *nc;
2538 
2539 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2540 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2541 			continue;
2542 		spi = of_register_spi_device(ctlr, nc);
2543 		if (IS_ERR(spi)) {
2544 			dev_warn(&ctlr->dev,
2545 				 "Failed to create SPI device for %pOF\n", nc);
2546 			of_node_clear_flag(nc, OF_POPULATED);
2547 		}
2548 	}
2549 }
2550 #else
2551 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2552 #endif
2553 
2554 /**
2555  * spi_new_ancillary_device() - Register ancillary SPI device
2556  * @spi:         Pointer to the main SPI device registering the ancillary device
2557  * @chip_select: Chip Select of the ancillary device
2558  *
2559  * Register an ancillary SPI device; for example some chips have a chip-select
2560  * for normal device usage and another one for setup/firmware upload.
2561  *
2562  * This may only be called from main SPI device's probe routine.
2563  *
2564  * Return: 0 on success; negative errno on failure
2565  */
2566 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2567 					     u8 chip_select)
2568 {
2569 	struct spi_controller *ctlr = spi->controller;
2570 	struct spi_device *ancillary;
2571 	int rc;
2572 
2573 	/* Alloc an spi_device */
2574 	ancillary = spi_alloc_device(ctlr);
2575 	if (!ancillary) {
2576 		rc = -ENOMEM;
2577 		goto err_out;
2578 	}
2579 
2580 	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2581 
2582 	/* Use provided chip-select for ancillary device */
2583 	spi_set_all_cs_unused(ancillary);
2584 	spi_set_chipselect(ancillary, 0, chip_select);
2585 
2586 	/* Take over SPI mode/speed from SPI main device */
2587 	ancillary->max_speed_hz = spi->max_speed_hz;
2588 	ancillary->mode = spi->mode;
2589 	/*
2590 	 * By default spi->chip_select[0] will hold the physical CS number,
2591 	 * so set bit 0 in spi->cs_index_mask.
2592 	 */
2593 	ancillary->cs_index_mask = BIT(0);
2594 
2595 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2596 
2597 	/* Register the new device */
2598 	rc = __spi_add_device(ancillary);
2599 	if (rc) {
2600 		dev_err(&spi->dev, "failed to register ancillary device\n");
2601 		goto err_out;
2602 	}
2603 
2604 	return ancillary;
2605 
2606 err_out:
2607 	spi_dev_put(ancillary);
2608 	return ERR_PTR(rc);
2609 }
2610 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2611 
2612 #ifdef CONFIG_ACPI
2613 struct acpi_spi_lookup {
2614 	struct spi_controller 	*ctlr;
2615 	u32			max_speed_hz;
2616 	u32			mode;
2617 	int			irq;
2618 	u8			bits_per_word;
2619 	u8			chip_select;
2620 	int			n;
2621 	int			index;
2622 };
2623 
2624 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2625 {
2626 	struct acpi_resource_spi_serialbus *sb;
2627 	int *count = data;
2628 
2629 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2630 		return 1;
2631 
2632 	sb = &ares->data.spi_serial_bus;
2633 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2634 		return 1;
2635 
2636 	*count = *count + 1;
2637 
2638 	return 1;
2639 }
2640 
2641 /**
2642  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2643  * @adev:	ACPI device
2644  *
2645  * Return: the number of SpiSerialBus resources in the ACPI-device's
2646  * resource-list; or a negative error code.
2647  */
2648 int acpi_spi_count_resources(struct acpi_device *adev)
2649 {
2650 	LIST_HEAD(r);
2651 	int count = 0;
2652 	int ret;
2653 
2654 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2655 	if (ret < 0)
2656 		return ret;
2657 
2658 	acpi_dev_free_resource_list(&r);
2659 
2660 	return count;
2661 }
2662 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2663 
2664 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2665 					    struct acpi_spi_lookup *lookup)
2666 {
2667 	const union acpi_object *obj;
2668 
2669 	if (!x86_apple_machine)
2670 		return;
2671 
2672 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2673 	    && obj->buffer.length >= 4)
2674 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2675 
2676 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2677 	    && obj->buffer.length == 8)
2678 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2679 
2680 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2681 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2682 		lookup->mode |= SPI_LSB_FIRST;
2683 
2684 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2685 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2686 		lookup->mode |= SPI_CPOL;
2687 
2688 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2689 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2690 		lookup->mode |= SPI_CPHA;
2691 }
2692 
2693 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2694 {
2695 	struct acpi_spi_lookup *lookup = data;
2696 	struct spi_controller *ctlr = lookup->ctlr;
2697 
2698 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2699 		struct acpi_resource_spi_serialbus *sb;
2700 		acpi_handle parent_handle;
2701 		acpi_status status;
2702 
2703 		sb = &ares->data.spi_serial_bus;
2704 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2705 
2706 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2707 				return 1;
2708 
2709 			status = acpi_get_handle(NULL,
2710 						 sb->resource_source.string_ptr,
2711 						 &parent_handle);
2712 
2713 			if (ACPI_FAILURE(status))
2714 				return -ENODEV;
2715 
2716 			if (ctlr) {
2717 				if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle))
2718 					return -ENODEV;
2719 			} else {
2720 				struct acpi_device *adev;
2721 
2722 				adev = acpi_fetch_acpi_dev(parent_handle);
2723 				if (!adev)
2724 					return -ENODEV;
2725 
2726 				ctlr = acpi_spi_find_controller_by_adev(adev);
2727 				if (!ctlr)
2728 					return -EPROBE_DEFER;
2729 
2730 				lookup->ctlr = ctlr;
2731 			}
2732 
2733 			/*
2734 			 * ACPI DeviceSelection numbering is handled by the
2735 			 * host controller driver in Windows and can vary
2736 			 * from driver to driver. In Linux we always expect
2737 			 * 0 .. max - 1 so we need to ask the driver to
2738 			 * translate between the two schemes.
2739 			 */
2740 			if (ctlr->fw_translate_cs) {
2741 				int cs = ctlr->fw_translate_cs(ctlr,
2742 						sb->device_selection);
2743 				if (cs < 0)
2744 					return cs;
2745 				lookup->chip_select = cs;
2746 			} else {
2747 				lookup->chip_select = sb->device_selection;
2748 			}
2749 
2750 			lookup->max_speed_hz = sb->connection_speed;
2751 			lookup->bits_per_word = sb->data_bit_length;
2752 
2753 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2754 				lookup->mode |= SPI_CPHA;
2755 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2756 				lookup->mode |= SPI_CPOL;
2757 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2758 				lookup->mode |= SPI_CS_HIGH;
2759 		}
2760 	} else if (lookup->irq < 0) {
2761 		struct resource r;
2762 
2763 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2764 			lookup->irq = r.start;
2765 	}
2766 
2767 	/* Always tell the ACPI core to skip this resource */
2768 	return 1;
2769 }
2770 
2771 /**
2772  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2773  * @ctlr: controller to which the spi device belongs
2774  * @adev: ACPI Device for the spi device
2775  * @index: Index of the spi resource inside the ACPI Node
2776  *
2777  * This should be used to allocate a new SPI device from and ACPI Device node.
2778  * The caller is responsible for calling spi_add_device to register the SPI device.
2779  *
2780  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2781  * using the resource.
2782  * If index is set to -1, index is not used.
2783  * Note: If index is -1, ctlr must be set.
2784  *
2785  * Return: a pointer to the new device, or ERR_PTR on error.
2786  */
2787 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2788 					 struct acpi_device *adev,
2789 					 int index)
2790 {
2791 	acpi_handle parent_handle = NULL;
2792 	struct list_head resource_list;
2793 	struct acpi_spi_lookup lookup = {};
2794 	struct spi_device *spi;
2795 	int ret;
2796 
2797 	if (!ctlr && index == -1)
2798 		return ERR_PTR(-EINVAL);
2799 
2800 	lookup.ctlr		= ctlr;
2801 	lookup.irq		= -1;
2802 	lookup.index		= index;
2803 	lookup.n		= 0;
2804 
2805 	INIT_LIST_HEAD(&resource_list);
2806 	ret = acpi_dev_get_resources(adev, &resource_list,
2807 				     acpi_spi_add_resource, &lookup);
2808 	acpi_dev_free_resource_list(&resource_list);
2809 
2810 	if (ret < 0)
2811 		/* Found SPI in _CRS but it points to another controller */
2812 		return ERR_PTR(ret);
2813 
2814 	if (!lookup.max_speed_hz &&
2815 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2816 	    device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) {
2817 		/* Apple does not use _CRS but nested devices for SPI slaves */
2818 		acpi_spi_parse_apple_properties(adev, &lookup);
2819 	}
2820 
2821 	if (!lookup.max_speed_hz)
2822 		return ERR_PTR(-ENODEV);
2823 
2824 	spi = spi_alloc_device(lookup.ctlr);
2825 	if (!spi) {
2826 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2827 			dev_name(&adev->dev));
2828 		return ERR_PTR(-ENOMEM);
2829 	}
2830 
2831 	spi_set_all_cs_unused(spi);
2832 	spi_set_chipselect(spi, 0, lookup.chip_select);
2833 
2834 	ACPI_COMPANION_SET(&spi->dev, adev);
2835 	spi->max_speed_hz	= lookup.max_speed_hz;
2836 	spi->mode		|= lookup.mode;
2837 	spi->irq		= lookup.irq;
2838 	spi->bits_per_word	= lookup.bits_per_word;
2839 	/*
2840 	 * By default spi->chip_select[0] will hold the physical CS number,
2841 	 * so set bit 0 in spi->cs_index_mask.
2842 	 */
2843 	spi->cs_index_mask	= BIT(0);
2844 
2845 	return spi;
2846 }
2847 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2848 
2849 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2850 					    struct acpi_device *adev)
2851 {
2852 	struct spi_device *spi;
2853 
2854 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2855 	    acpi_device_enumerated(adev))
2856 		return AE_OK;
2857 
2858 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2859 	if (IS_ERR(spi)) {
2860 		if (PTR_ERR(spi) == -ENOMEM)
2861 			return AE_NO_MEMORY;
2862 		else
2863 			return AE_OK;
2864 	}
2865 
2866 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2867 			  sizeof(spi->modalias));
2868 
2869 	if (spi->irq < 0)
2870 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2871 
2872 	acpi_device_set_enumerated(adev);
2873 
2874 	adev->power.flags.ignore_parent = true;
2875 	if (spi_add_device(spi)) {
2876 		adev->power.flags.ignore_parent = false;
2877 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2878 			dev_name(&adev->dev));
2879 		spi_dev_put(spi);
2880 	}
2881 
2882 	return AE_OK;
2883 }
2884 
2885 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2886 				       void *data, void **return_value)
2887 {
2888 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2889 	struct spi_controller *ctlr = data;
2890 
2891 	if (!adev)
2892 		return AE_OK;
2893 
2894 	return acpi_register_spi_device(ctlr, adev);
2895 }
2896 
2897 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2898 
2899 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2900 {
2901 	acpi_status status;
2902 	acpi_handle handle;
2903 
2904 	handle = ACPI_HANDLE(ctlr->dev.parent);
2905 	if (!handle)
2906 		return;
2907 
2908 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2909 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2910 				     acpi_spi_add_device, NULL, ctlr, NULL);
2911 	if (ACPI_FAILURE(status))
2912 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2913 }
2914 #else
2915 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2916 #endif /* CONFIG_ACPI */
2917 
2918 static void spi_controller_release(struct device *dev)
2919 {
2920 	struct spi_controller *ctlr;
2921 
2922 	ctlr = container_of(dev, struct spi_controller, dev);
2923 	kfree(ctlr);
2924 }
2925 
2926 static const struct class spi_master_class = {
2927 	.name		= "spi_master",
2928 	.dev_release	= spi_controller_release,
2929 	.dev_groups	= spi_master_groups,
2930 };
2931 
2932 #ifdef CONFIG_SPI_SLAVE
2933 /**
2934  * spi_target_abort - abort the ongoing transfer request on an SPI slave
2935  *		     controller
2936  * @spi: device used for the current transfer
2937  */
2938 int spi_target_abort(struct spi_device *spi)
2939 {
2940 	struct spi_controller *ctlr = spi->controller;
2941 
2942 	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2943 		return ctlr->target_abort(ctlr);
2944 
2945 	return -ENOTSUPP;
2946 }
2947 EXPORT_SYMBOL_GPL(spi_target_abort);
2948 
2949 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2950 			  char *buf)
2951 {
2952 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2953 						   dev);
2954 	struct device *child;
2955 
2956 	child = device_find_any_child(&ctlr->dev);
2957 	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2958 }
2959 
2960 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2961 			   const char *buf, size_t count)
2962 {
2963 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2964 						   dev);
2965 	struct spi_device *spi;
2966 	struct device *child;
2967 	char name[32];
2968 	int rc;
2969 
2970 	rc = sscanf(buf, "%31s", name);
2971 	if (rc != 1 || !name[0])
2972 		return -EINVAL;
2973 
2974 	child = device_find_any_child(&ctlr->dev);
2975 	if (child) {
2976 		/* Remove registered slave */
2977 		device_unregister(child);
2978 		put_device(child);
2979 	}
2980 
2981 	if (strcmp(name, "(null)")) {
2982 		/* Register new slave */
2983 		spi = spi_alloc_device(ctlr);
2984 		if (!spi)
2985 			return -ENOMEM;
2986 
2987 		strscpy(spi->modalias, name, sizeof(spi->modalias));
2988 
2989 		rc = spi_add_device(spi);
2990 		if (rc) {
2991 			spi_dev_put(spi);
2992 			return rc;
2993 		}
2994 	}
2995 
2996 	return count;
2997 }
2998 
2999 static DEVICE_ATTR_RW(slave);
3000 
3001 static struct attribute *spi_slave_attrs[] = {
3002 	&dev_attr_slave.attr,
3003 	NULL,
3004 };
3005 
3006 static const struct attribute_group spi_slave_group = {
3007 	.attrs = spi_slave_attrs,
3008 };
3009 
3010 static const struct attribute_group *spi_slave_groups[] = {
3011 	&spi_controller_statistics_group,
3012 	&spi_slave_group,
3013 	NULL,
3014 };
3015 
3016 static const struct class spi_slave_class = {
3017 	.name		= "spi_slave",
3018 	.dev_release	= spi_controller_release,
3019 	.dev_groups	= spi_slave_groups,
3020 };
3021 #else
3022 extern struct class spi_slave_class;	/* dummy */
3023 #endif
3024 
3025 /**
3026  * __spi_alloc_controller - allocate an SPI master or slave controller
3027  * @dev: the controller, possibly using the platform_bus
3028  * @size: how much zeroed driver-private data to allocate; the pointer to this
3029  *	memory is in the driver_data field of the returned device, accessible
3030  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
3031  *	drivers granting DMA access to portions of their private data need to
3032  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
3033  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3034  *	slave (true) controller
3035  * Context: can sleep
3036  *
3037  * This call is used only by SPI controller drivers, which are the
3038  * only ones directly touching chip registers.  It's how they allocate
3039  * an spi_controller structure, prior to calling spi_register_controller().
3040  *
3041  * This must be called from context that can sleep.
3042  *
3043  * The caller is responsible for assigning the bus number and initializing the
3044  * controller's methods before calling spi_register_controller(); and (after
3045  * errors adding the device) calling spi_controller_put() to prevent a memory
3046  * leak.
3047  *
3048  * Return: the SPI controller structure on success, else NULL.
3049  */
3050 struct spi_controller *__spi_alloc_controller(struct device *dev,
3051 					      unsigned int size, bool slave)
3052 {
3053 	struct spi_controller	*ctlr;
3054 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3055 
3056 	if (!dev)
3057 		return NULL;
3058 
3059 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3060 	if (!ctlr)
3061 		return NULL;
3062 
3063 	device_initialize(&ctlr->dev);
3064 	INIT_LIST_HEAD(&ctlr->queue);
3065 	spin_lock_init(&ctlr->queue_lock);
3066 	spin_lock_init(&ctlr->bus_lock_spinlock);
3067 	mutex_init(&ctlr->bus_lock_mutex);
3068 	mutex_init(&ctlr->io_mutex);
3069 	mutex_init(&ctlr->add_lock);
3070 	ctlr->bus_num = -1;
3071 	ctlr->num_chipselect = 1;
3072 	ctlr->slave = slave;
3073 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3074 		ctlr->dev.class = &spi_slave_class;
3075 	else
3076 		ctlr->dev.class = &spi_master_class;
3077 	ctlr->dev.parent = dev;
3078 	pm_suspend_ignore_children(&ctlr->dev, true);
3079 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3080 
3081 	return ctlr;
3082 }
3083 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3084 
3085 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3086 {
3087 	spi_controller_put(*(struct spi_controller **)ctlr);
3088 }
3089 
3090 /**
3091  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3092  * @dev: physical device of SPI controller
3093  * @size: how much zeroed driver-private data to allocate
3094  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3095  * Context: can sleep
3096  *
3097  * Allocate an SPI controller and automatically release a reference on it
3098  * when @dev is unbound from its driver.  Drivers are thus relieved from
3099  * having to call spi_controller_put().
3100  *
3101  * The arguments to this function are identical to __spi_alloc_controller().
3102  *
3103  * Return: the SPI controller structure on success, else NULL.
3104  */
3105 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3106 						   unsigned int size,
3107 						   bool slave)
3108 {
3109 	struct spi_controller **ptr, *ctlr;
3110 
3111 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3112 			   GFP_KERNEL);
3113 	if (!ptr)
3114 		return NULL;
3115 
3116 	ctlr = __spi_alloc_controller(dev, size, slave);
3117 	if (ctlr) {
3118 		ctlr->devm_allocated = true;
3119 		*ptr = ctlr;
3120 		devres_add(dev, ptr);
3121 	} else {
3122 		devres_free(ptr);
3123 	}
3124 
3125 	return ctlr;
3126 }
3127 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3128 
3129 /**
3130  * spi_get_gpio_descs() - grab chip select GPIOs for the master
3131  * @ctlr: The SPI master to grab GPIO descriptors for
3132  */
3133 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3134 {
3135 	int nb, i;
3136 	struct gpio_desc **cs;
3137 	struct device *dev = &ctlr->dev;
3138 	unsigned long native_cs_mask = 0;
3139 	unsigned int num_cs_gpios = 0;
3140 
3141 	nb = gpiod_count(dev, "cs");
3142 	if (nb < 0) {
3143 		/* No GPIOs at all is fine, else return the error */
3144 		if (nb == -ENOENT)
3145 			return 0;
3146 		return nb;
3147 	}
3148 
3149 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3150 
3151 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3152 			  GFP_KERNEL);
3153 	if (!cs)
3154 		return -ENOMEM;
3155 	ctlr->cs_gpiods = cs;
3156 
3157 	for (i = 0; i < nb; i++) {
3158 		/*
3159 		 * Most chipselects are active low, the inverted
3160 		 * semantics are handled by special quirks in gpiolib,
3161 		 * so initializing them GPIOD_OUT_LOW here means
3162 		 * "unasserted", in most cases this will drive the physical
3163 		 * line high.
3164 		 */
3165 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3166 						      GPIOD_OUT_LOW);
3167 		if (IS_ERR(cs[i]))
3168 			return PTR_ERR(cs[i]);
3169 
3170 		if (cs[i]) {
3171 			/*
3172 			 * If we find a CS GPIO, name it after the device and
3173 			 * chip select line.
3174 			 */
3175 			char *gpioname;
3176 
3177 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3178 						  dev_name(dev), i);
3179 			if (!gpioname)
3180 				return -ENOMEM;
3181 			gpiod_set_consumer_name(cs[i], gpioname);
3182 			num_cs_gpios++;
3183 			continue;
3184 		}
3185 
3186 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3187 			dev_err(dev, "Invalid native chip select %d\n", i);
3188 			return -EINVAL;
3189 		}
3190 		native_cs_mask |= BIT(i);
3191 	}
3192 
3193 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3194 
3195 	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3196 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3197 		dev_err(dev, "No unused native chip select available\n");
3198 		return -EINVAL;
3199 	}
3200 
3201 	return 0;
3202 }
3203 
3204 static int spi_controller_check_ops(struct spi_controller *ctlr)
3205 {
3206 	/*
3207 	 * The controller may implement only the high-level SPI-memory like
3208 	 * operations if it does not support regular SPI transfers, and this is
3209 	 * valid use case.
3210 	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3211 	 * one of the ->transfer_xxx() method be implemented.
3212 	 */
3213 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3214 		if (!ctlr->transfer && !ctlr->transfer_one &&
3215 		   !ctlr->transfer_one_message) {
3216 			return -EINVAL;
3217 		}
3218 	}
3219 
3220 	return 0;
3221 }
3222 
3223 /* Allocate dynamic bus number using Linux idr */
3224 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3225 {
3226 	int id;
3227 
3228 	mutex_lock(&board_lock);
3229 	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3230 	mutex_unlock(&board_lock);
3231 	if (WARN(id < 0, "couldn't get idr"))
3232 		return id == -ENOSPC ? -EBUSY : id;
3233 	ctlr->bus_num = id;
3234 	return 0;
3235 }
3236 
3237 /**
3238  * spi_register_controller - register SPI host or target controller
3239  * @ctlr: initialized controller, originally from spi_alloc_host() or
3240  *	spi_alloc_target()
3241  * Context: can sleep
3242  *
3243  * SPI controllers connect to their drivers using some non-SPI bus,
3244  * such as the platform bus.  The final stage of probe() in that code
3245  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3246  *
3247  * SPI controllers use board specific (often SOC specific) bus numbers,
3248  * and board-specific addressing for SPI devices combines those numbers
3249  * with chip select numbers.  Since SPI does not directly support dynamic
3250  * device identification, boards need configuration tables telling which
3251  * chip is at which address.
3252  *
3253  * This must be called from context that can sleep.  It returns zero on
3254  * success, else a negative error code (dropping the controller's refcount).
3255  * After a successful return, the caller is responsible for calling
3256  * spi_unregister_controller().
3257  *
3258  * Return: zero on success, else a negative error code.
3259  */
3260 int spi_register_controller(struct spi_controller *ctlr)
3261 {
3262 	struct device		*dev = ctlr->dev.parent;
3263 	struct boardinfo	*bi;
3264 	int			first_dynamic;
3265 	int			status;
3266 	int			idx;
3267 
3268 	if (!dev)
3269 		return -ENODEV;
3270 
3271 	/*
3272 	 * Make sure all necessary hooks are implemented before registering
3273 	 * the SPI controller.
3274 	 */
3275 	status = spi_controller_check_ops(ctlr);
3276 	if (status)
3277 		return status;
3278 
3279 	if (ctlr->bus_num < 0)
3280 		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3281 	if (ctlr->bus_num >= 0) {
3282 		/* Devices with a fixed bus num must check-in with the num */
3283 		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3284 		if (status)
3285 			return status;
3286 	}
3287 	if (ctlr->bus_num < 0) {
3288 		first_dynamic = of_alias_get_highest_id("spi");
3289 		if (first_dynamic < 0)
3290 			first_dynamic = 0;
3291 		else
3292 			first_dynamic++;
3293 
3294 		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3295 		if (status)
3296 			return status;
3297 	}
3298 	ctlr->bus_lock_flag = 0;
3299 	init_completion(&ctlr->xfer_completion);
3300 	init_completion(&ctlr->cur_msg_completion);
3301 	if (!ctlr->max_dma_len)
3302 		ctlr->max_dma_len = INT_MAX;
3303 
3304 	/*
3305 	 * Register the device, then userspace will see it.
3306 	 * Registration fails if the bus ID is in use.
3307 	 */
3308 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3309 
3310 	if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) {
3311 		status = spi_get_gpio_descs(ctlr);
3312 		if (status)
3313 			goto free_bus_id;
3314 		/*
3315 		 * A controller using GPIO descriptors always
3316 		 * supports SPI_CS_HIGH if need be.
3317 		 */
3318 		ctlr->mode_bits |= SPI_CS_HIGH;
3319 	}
3320 
3321 	/*
3322 	 * Even if it's just one always-selected device, there must
3323 	 * be at least one chipselect.
3324 	 */
3325 	if (!ctlr->num_chipselect) {
3326 		status = -EINVAL;
3327 		goto free_bus_id;
3328 	}
3329 
3330 	/* Setting last_cs to SPI_INVALID_CS means no chip selected */
3331 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3332 		ctlr->last_cs[idx] = SPI_INVALID_CS;
3333 
3334 	status = device_add(&ctlr->dev);
3335 	if (status < 0)
3336 		goto free_bus_id;
3337 	dev_dbg(dev, "registered %s %s\n",
3338 			spi_controller_is_target(ctlr) ? "target" : "host",
3339 			dev_name(&ctlr->dev));
3340 
3341 	/*
3342 	 * If we're using a queued driver, start the queue. Note that we don't
3343 	 * need the queueing logic if the driver is only supporting high-level
3344 	 * memory operations.
3345 	 */
3346 	if (ctlr->transfer) {
3347 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3348 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3349 		status = spi_controller_initialize_queue(ctlr);
3350 		if (status) {
3351 			device_del(&ctlr->dev);
3352 			goto free_bus_id;
3353 		}
3354 	}
3355 	/* Add statistics */
3356 	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3357 	if (!ctlr->pcpu_statistics) {
3358 		dev_err(dev, "Error allocating per-cpu statistics\n");
3359 		status = -ENOMEM;
3360 		goto destroy_queue;
3361 	}
3362 
3363 	mutex_lock(&board_lock);
3364 	list_add_tail(&ctlr->list, &spi_controller_list);
3365 	list_for_each_entry(bi, &board_list, list)
3366 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3367 	mutex_unlock(&board_lock);
3368 
3369 	/* Register devices from the device tree and ACPI */
3370 	of_register_spi_devices(ctlr);
3371 	acpi_register_spi_devices(ctlr);
3372 	return status;
3373 
3374 destroy_queue:
3375 	spi_destroy_queue(ctlr);
3376 free_bus_id:
3377 	mutex_lock(&board_lock);
3378 	idr_remove(&spi_master_idr, ctlr->bus_num);
3379 	mutex_unlock(&board_lock);
3380 	return status;
3381 }
3382 EXPORT_SYMBOL_GPL(spi_register_controller);
3383 
3384 static void devm_spi_unregister(struct device *dev, void *res)
3385 {
3386 	spi_unregister_controller(*(struct spi_controller **)res);
3387 }
3388 
3389 /**
3390  * devm_spi_register_controller - register managed SPI host or target
3391  *	controller
3392  * @dev:    device managing SPI controller
3393  * @ctlr: initialized controller, originally from spi_alloc_host() or
3394  *	spi_alloc_target()
3395  * Context: can sleep
3396  *
3397  * Register a SPI device as with spi_register_controller() which will
3398  * automatically be unregistered and freed.
3399  *
3400  * Return: zero on success, else a negative error code.
3401  */
3402 int devm_spi_register_controller(struct device *dev,
3403 				 struct spi_controller *ctlr)
3404 {
3405 	struct spi_controller **ptr;
3406 	int ret;
3407 
3408 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3409 	if (!ptr)
3410 		return -ENOMEM;
3411 
3412 	ret = spi_register_controller(ctlr);
3413 	if (!ret) {
3414 		*ptr = ctlr;
3415 		devres_add(dev, ptr);
3416 	} else {
3417 		devres_free(ptr);
3418 	}
3419 
3420 	return ret;
3421 }
3422 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3423 
3424 static int __unregister(struct device *dev, void *null)
3425 {
3426 	spi_unregister_device(to_spi_device(dev));
3427 	return 0;
3428 }
3429 
3430 /**
3431  * spi_unregister_controller - unregister SPI master or slave controller
3432  * @ctlr: the controller being unregistered
3433  * Context: can sleep
3434  *
3435  * This call is used only by SPI controller drivers, which are the
3436  * only ones directly touching chip registers.
3437  *
3438  * This must be called from context that can sleep.
3439  *
3440  * Note that this function also drops a reference to the controller.
3441  */
3442 void spi_unregister_controller(struct spi_controller *ctlr)
3443 {
3444 	struct spi_controller *found;
3445 	int id = ctlr->bus_num;
3446 
3447 	/* Prevent addition of new devices, unregister existing ones */
3448 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3449 		mutex_lock(&ctlr->add_lock);
3450 
3451 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3452 
3453 	/* First make sure that this controller was ever added */
3454 	mutex_lock(&board_lock);
3455 	found = idr_find(&spi_master_idr, id);
3456 	mutex_unlock(&board_lock);
3457 	if (ctlr->queued) {
3458 		if (spi_destroy_queue(ctlr))
3459 			dev_err(&ctlr->dev, "queue remove failed\n");
3460 	}
3461 	mutex_lock(&board_lock);
3462 	list_del(&ctlr->list);
3463 	mutex_unlock(&board_lock);
3464 
3465 	device_del(&ctlr->dev);
3466 
3467 	/* Free bus id */
3468 	mutex_lock(&board_lock);
3469 	if (found == ctlr)
3470 		idr_remove(&spi_master_idr, id);
3471 	mutex_unlock(&board_lock);
3472 
3473 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3474 		mutex_unlock(&ctlr->add_lock);
3475 
3476 	/*
3477 	 * Release the last reference on the controller if its driver
3478 	 * has not yet been converted to devm_spi_alloc_host/target().
3479 	 */
3480 	if (!ctlr->devm_allocated)
3481 		put_device(&ctlr->dev);
3482 }
3483 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3484 
3485 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3486 {
3487 	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3488 }
3489 
3490 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3491 {
3492 	mutex_lock(&ctlr->bus_lock_mutex);
3493 	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3494 	mutex_unlock(&ctlr->bus_lock_mutex);
3495 }
3496 
3497 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3498 {
3499 	mutex_lock(&ctlr->bus_lock_mutex);
3500 	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3501 	mutex_unlock(&ctlr->bus_lock_mutex);
3502 }
3503 
3504 int spi_controller_suspend(struct spi_controller *ctlr)
3505 {
3506 	int ret = 0;
3507 
3508 	/* Basically no-ops for non-queued controllers */
3509 	if (ctlr->queued) {
3510 		ret = spi_stop_queue(ctlr);
3511 		if (ret)
3512 			dev_err(&ctlr->dev, "queue stop failed\n");
3513 	}
3514 
3515 	__spi_mark_suspended(ctlr);
3516 	return ret;
3517 }
3518 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3519 
3520 int spi_controller_resume(struct spi_controller *ctlr)
3521 {
3522 	int ret = 0;
3523 
3524 	__spi_mark_resumed(ctlr);
3525 
3526 	if (ctlr->queued) {
3527 		ret = spi_start_queue(ctlr);
3528 		if (ret)
3529 			dev_err(&ctlr->dev, "queue restart failed\n");
3530 	}
3531 	return ret;
3532 }
3533 EXPORT_SYMBOL_GPL(spi_controller_resume);
3534 
3535 /*-------------------------------------------------------------------------*/
3536 
3537 /* Core methods for spi_message alterations */
3538 
3539 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3540 					    struct spi_message *msg,
3541 					    void *res)
3542 {
3543 	struct spi_replaced_transfers *rxfer = res;
3544 	size_t i;
3545 
3546 	/* Call extra callback if requested */
3547 	if (rxfer->release)
3548 		rxfer->release(ctlr, msg, res);
3549 
3550 	/* Insert replaced transfers back into the message */
3551 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3552 
3553 	/* Remove the formerly inserted entries */
3554 	for (i = 0; i < rxfer->inserted; i++)
3555 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3556 }
3557 
3558 /**
3559  * spi_replace_transfers - replace transfers with several transfers
3560  *                         and register change with spi_message.resources
3561  * @msg:           the spi_message we work upon
3562  * @xfer_first:    the first spi_transfer we want to replace
3563  * @remove:        number of transfers to remove
3564  * @insert:        the number of transfers we want to insert instead
3565  * @release:       extra release code necessary in some circumstances
3566  * @extradatasize: extra data to allocate (with alignment guarantees
3567  *                 of struct @spi_transfer)
3568  * @gfp:           gfp flags
3569  *
3570  * Returns: pointer to @spi_replaced_transfers,
3571  *          PTR_ERR(...) in case of errors.
3572  */
3573 static struct spi_replaced_transfers *spi_replace_transfers(
3574 	struct spi_message *msg,
3575 	struct spi_transfer *xfer_first,
3576 	size_t remove,
3577 	size_t insert,
3578 	spi_replaced_release_t release,
3579 	size_t extradatasize,
3580 	gfp_t gfp)
3581 {
3582 	struct spi_replaced_transfers *rxfer;
3583 	struct spi_transfer *xfer;
3584 	size_t i;
3585 
3586 	/* Allocate the structure using spi_res */
3587 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3588 			      struct_size(rxfer, inserted_transfers, insert)
3589 			      + extradatasize,
3590 			      gfp);
3591 	if (!rxfer)
3592 		return ERR_PTR(-ENOMEM);
3593 
3594 	/* The release code to invoke before running the generic release */
3595 	rxfer->release = release;
3596 
3597 	/* Assign extradata */
3598 	if (extradatasize)
3599 		rxfer->extradata =
3600 			&rxfer->inserted_transfers[insert];
3601 
3602 	/* Init the replaced_transfers list */
3603 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3604 
3605 	/*
3606 	 * Assign the list_entry after which we should reinsert
3607 	 * the @replaced_transfers - it may be spi_message.messages!
3608 	 */
3609 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3610 
3611 	/* Remove the requested number of transfers */
3612 	for (i = 0; i < remove; i++) {
3613 		/*
3614 		 * If the entry after replaced_after it is msg->transfers
3615 		 * then we have been requested to remove more transfers
3616 		 * than are in the list.
3617 		 */
3618 		if (rxfer->replaced_after->next == &msg->transfers) {
3619 			dev_err(&msg->spi->dev,
3620 				"requested to remove more spi_transfers than are available\n");
3621 			/* Insert replaced transfers back into the message */
3622 			list_splice(&rxfer->replaced_transfers,
3623 				    rxfer->replaced_after);
3624 
3625 			/* Free the spi_replace_transfer structure... */
3626 			spi_res_free(rxfer);
3627 
3628 			/* ...and return with an error */
3629 			return ERR_PTR(-EINVAL);
3630 		}
3631 
3632 		/*
3633 		 * Remove the entry after replaced_after from list of
3634 		 * transfers and add it to list of replaced_transfers.
3635 		 */
3636 		list_move_tail(rxfer->replaced_after->next,
3637 			       &rxfer->replaced_transfers);
3638 	}
3639 
3640 	/*
3641 	 * Create copy of the given xfer with identical settings
3642 	 * based on the first transfer to get removed.
3643 	 */
3644 	for (i = 0; i < insert; i++) {
3645 		/* We need to run in reverse order */
3646 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3647 
3648 		/* Copy all spi_transfer data */
3649 		memcpy(xfer, xfer_first, sizeof(*xfer));
3650 
3651 		/* Add to list */
3652 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3653 
3654 		/* Clear cs_change and delay for all but the last */
3655 		if (i) {
3656 			xfer->cs_change = false;
3657 			xfer->delay.value = 0;
3658 		}
3659 	}
3660 
3661 	/* Set up inserted... */
3662 	rxfer->inserted = insert;
3663 
3664 	/* ...and register it with spi_res/spi_message */
3665 	spi_res_add(msg, rxfer);
3666 
3667 	return rxfer;
3668 }
3669 
3670 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3671 					struct spi_message *msg,
3672 					struct spi_transfer **xferp,
3673 					size_t maxsize)
3674 {
3675 	struct spi_transfer *xfer = *xferp, *xfers;
3676 	struct spi_replaced_transfers *srt;
3677 	size_t offset;
3678 	size_t count, i;
3679 
3680 	/* Calculate how many we have to replace */
3681 	count = DIV_ROUND_UP(xfer->len, maxsize);
3682 
3683 	/* Create replacement */
3684 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3685 	if (IS_ERR(srt))
3686 		return PTR_ERR(srt);
3687 	xfers = srt->inserted_transfers;
3688 
3689 	/*
3690 	 * Now handle each of those newly inserted spi_transfers.
3691 	 * Note that the replacements spi_transfers all are preset
3692 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3693 	 * are all identical (as well as most others)
3694 	 * so we just have to fix up len and the pointers.
3695 	 */
3696 
3697 	/*
3698 	 * The first transfer just needs the length modified, so we
3699 	 * run it outside the loop.
3700 	 */
3701 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3702 
3703 	/* All the others need rx_buf/tx_buf also set */
3704 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3705 		/* Update rx_buf, tx_buf and DMA */
3706 		if (xfers[i].rx_buf)
3707 			xfers[i].rx_buf += offset;
3708 		if (xfers[i].tx_buf)
3709 			xfers[i].tx_buf += offset;
3710 
3711 		/* Update length */
3712 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3713 	}
3714 
3715 	/*
3716 	 * We set up xferp to the last entry we have inserted,
3717 	 * so that we skip those already split transfers.
3718 	 */
3719 	*xferp = &xfers[count - 1];
3720 
3721 	/* Increment statistics counters */
3722 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3723 				       transfers_split_maxsize);
3724 	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3725 				       transfers_split_maxsize);
3726 
3727 	return 0;
3728 }
3729 
3730 /**
3731  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3732  *                               when an individual transfer exceeds a
3733  *                               certain size
3734  * @ctlr:    the @spi_controller for this transfer
3735  * @msg:   the @spi_message to transform
3736  * @maxsize:  the maximum when to apply this
3737  *
3738  * This function allocates resources that are automatically freed during the
3739  * spi message unoptimize phase so this function should only be called from
3740  * optimize_message callbacks.
3741  *
3742  * Return: status of transformation
3743  */
3744 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3745 				struct spi_message *msg,
3746 				size_t maxsize)
3747 {
3748 	struct spi_transfer *xfer;
3749 	int ret;
3750 
3751 	/*
3752 	 * Iterate over the transfer_list,
3753 	 * but note that xfer is advanced to the last transfer inserted
3754 	 * to avoid checking sizes again unnecessarily (also xfer does
3755 	 * potentially belong to a different list by the time the
3756 	 * replacement has happened).
3757 	 */
3758 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3759 		if (xfer->len > maxsize) {
3760 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3761 							   maxsize);
3762 			if (ret)
3763 				return ret;
3764 		}
3765 	}
3766 
3767 	return 0;
3768 }
3769 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3770 
3771 
3772 /**
3773  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3774  *                                when an individual transfer exceeds a
3775  *                                certain number of SPI words
3776  * @ctlr:     the @spi_controller for this transfer
3777  * @msg:      the @spi_message to transform
3778  * @maxwords: the number of words to limit each transfer to
3779  *
3780  * This function allocates resources that are automatically freed during the
3781  * spi message unoptimize phase so this function should only be called from
3782  * optimize_message callbacks.
3783  *
3784  * Return: status of transformation
3785  */
3786 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3787 				 struct spi_message *msg,
3788 				 size_t maxwords)
3789 {
3790 	struct spi_transfer *xfer;
3791 
3792 	/*
3793 	 * Iterate over the transfer_list,
3794 	 * but note that xfer is advanced to the last transfer inserted
3795 	 * to avoid checking sizes again unnecessarily (also xfer does
3796 	 * potentially belong to a different list by the time the
3797 	 * replacement has happened).
3798 	 */
3799 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3800 		size_t maxsize;
3801 		int ret;
3802 
3803 		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3804 		if (xfer->len > maxsize) {
3805 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3806 							   maxsize);
3807 			if (ret)
3808 				return ret;
3809 		}
3810 	}
3811 
3812 	return 0;
3813 }
3814 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3815 
3816 /*-------------------------------------------------------------------------*/
3817 
3818 /*
3819  * Core methods for SPI controller protocol drivers. Some of the
3820  * other core methods are currently defined as inline functions.
3821  */
3822 
3823 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3824 					u8 bits_per_word)
3825 {
3826 	if (ctlr->bits_per_word_mask) {
3827 		/* Only 32 bits fit in the mask */
3828 		if (bits_per_word > 32)
3829 			return -EINVAL;
3830 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3831 			return -EINVAL;
3832 	}
3833 
3834 	return 0;
3835 }
3836 
3837 /**
3838  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3839  * @spi: the device that requires specific CS timing configuration
3840  *
3841  * Return: zero on success, else a negative error code.
3842  */
3843 static int spi_set_cs_timing(struct spi_device *spi)
3844 {
3845 	struct device *parent = spi->controller->dev.parent;
3846 	int status = 0;
3847 
3848 	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3849 		if (spi->controller->auto_runtime_pm) {
3850 			status = pm_runtime_get_sync(parent);
3851 			if (status < 0) {
3852 				pm_runtime_put_noidle(parent);
3853 				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3854 					status);
3855 				return status;
3856 			}
3857 
3858 			status = spi->controller->set_cs_timing(spi);
3859 			pm_runtime_mark_last_busy(parent);
3860 			pm_runtime_put_autosuspend(parent);
3861 		} else {
3862 			status = spi->controller->set_cs_timing(spi);
3863 		}
3864 	}
3865 	return status;
3866 }
3867 
3868 /**
3869  * spi_setup - setup SPI mode and clock rate
3870  * @spi: the device whose settings are being modified
3871  * Context: can sleep, and no requests are queued to the device
3872  *
3873  * SPI protocol drivers may need to update the transfer mode if the
3874  * device doesn't work with its default.  They may likewise need
3875  * to update clock rates or word sizes from initial values.  This function
3876  * changes those settings, and must be called from a context that can sleep.
3877  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3878  * effect the next time the device is selected and data is transferred to
3879  * or from it.  When this function returns, the SPI device is deselected.
3880  *
3881  * Note that this call will fail if the protocol driver specifies an option
3882  * that the underlying controller or its driver does not support.  For
3883  * example, not all hardware supports wire transfers using nine bit words,
3884  * LSB-first wire encoding, or active-high chipselects.
3885  *
3886  * Return: zero on success, else a negative error code.
3887  */
3888 int spi_setup(struct spi_device *spi)
3889 {
3890 	unsigned	bad_bits, ugly_bits;
3891 	int		status;
3892 
3893 	/*
3894 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3895 	 * are set at the same time.
3896 	 */
3897 	if ((hweight_long(spi->mode &
3898 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3899 	    (hweight_long(spi->mode &
3900 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3901 		dev_err(&spi->dev,
3902 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3903 		return -EINVAL;
3904 	}
3905 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3906 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3907 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3908 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3909 		return -EINVAL;
3910 	/* Check against conflicting MOSI idle configuration */
3911 	if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) {
3912 		dev_err(&spi->dev,
3913 			"setup: MOSI configured to idle low and high at the same time.\n");
3914 		return -EINVAL;
3915 	}
3916 	/*
3917 	 * Help drivers fail *cleanly* when they need options
3918 	 * that aren't supported with their current controller.
3919 	 * SPI_CS_WORD has a fallback software implementation,
3920 	 * so it is ignored here.
3921 	 */
3922 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3923 				 SPI_NO_TX | SPI_NO_RX);
3924 	ugly_bits = bad_bits &
3925 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3926 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3927 	if (ugly_bits) {
3928 		dev_warn(&spi->dev,
3929 			 "setup: ignoring unsupported mode bits %x\n",
3930 			 ugly_bits);
3931 		spi->mode &= ~ugly_bits;
3932 		bad_bits &= ~ugly_bits;
3933 	}
3934 	if (bad_bits) {
3935 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3936 			bad_bits);
3937 		return -EINVAL;
3938 	}
3939 
3940 	if (!spi->bits_per_word) {
3941 		spi->bits_per_word = 8;
3942 	} else {
3943 		/*
3944 		 * Some controllers may not support the default 8 bits-per-word
3945 		 * so only perform the check when this is explicitly provided.
3946 		 */
3947 		status = __spi_validate_bits_per_word(spi->controller,
3948 						      spi->bits_per_word);
3949 		if (status)
3950 			return status;
3951 	}
3952 
3953 	if (spi->controller->max_speed_hz &&
3954 	    (!spi->max_speed_hz ||
3955 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3956 		spi->max_speed_hz = spi->controller->max_speed_hz;
3957 
3958 	mutex_lock(&spi->controller->io_mutex);
3959 
3960 	if (spi->controller->setup) {
3961 		status = spi->controller->setup(spi);
3962 		if (status) {
3963 			mutex_unlock(&spi->controller->io_mutex);
3964 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3965 				status);
3966 			return status;
3967 		}
3968 	}
3969 
3970 	status = spi_set_cs_timing(spi);
3971 	if (status) {
3972 		mutex_unlock(&spi->controller->io_mutex);
3973 		return status;
3974 	}
3975 
3976 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3977 		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3978 		if (status < 0) {
3979 			mutex_unlock(&spi->controller->io_mutex);
3980 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3981 				status);
3982 			return status;
3983 		}
3984 
3985 		/*
3986 		 * We do not want to return positive value from pm_runtime_get,
3987 		 * there are many instances of devices calling spi_setup() and
3988 		 * checking for a non-zero return value instead of a negative
3989 		 * return value.
3990 		 */
3991 		status = 0;
3992 
3993 		spi_set_cs(spi, false, true);
3994 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3995 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3996 	} else {
3997 		spi_set_cs(spi, false, true);
3998 	}
3999 
4000 	mutex_unlock(&spi->controller->io_mutex);
4001 
4002 	if (spi->rt && !spi->controller->rt) {
4003 		spi->controller->rt = true;
4004 		spi_set_thread_rt(spi->controller);
4005 	}
4006 
4007 	trace_spi_setup(spi, status);
4008 
4009 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4010 			spi->mode & SPI_MODE_X_MASK,
4011 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4012 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4013 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
4014 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
4015 			spi->bits_per_word, spi->max_speed_hz,
4016 			status);
4017 
4018 	return status;
4019 }
4020 EXPORT_SYMBOL_GPL(spi_setup);
4021 
4022 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4023 				       struct spi_device *spi)
4024 {
4025 	int delay1, delay2;
4026 
4027 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4028 	if (delay1 < 0)
4029 		return delay1;
4030 
4031 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4032 	if (delay2 < 0)
4033 		return delay2;
4034 
4035 	if (delay1 < delay2)
4036 		memcpy(&xfer->word_delay, &spi->word_delay,
4037 		       sizeof(xfer->word_delay));
4038 
4039 	return 0;
4040 }
4041 
4042 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4043 {
4044 	struct spi_controller *ctlr = spi->controller;
4045 	struct spi_transfer *xfer;
4046 	int w_size;
4047 
4048 	if (list_empty(&message->transfers))
4049 		return -EINVAL;
4050 
4051 	message->spi = spi;
4052 
4053 	/*
4054 	 * Half-duplex links include original MicroWire, and ones with
4055 	 * only one data pin like SPI_3WIRE (switches direction) or where
4056 	 * either MOSI or MISO is missing.  They can also be caused by
4057 	 * software limitations.
4058 	 */
4059 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4060 	    (spi->mode & SPI_3WIRE)) {
4061 		unsigned flags = ctlr->flags;
4062 
4063 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4064 			if (xfer->rx_buf && xfer->tx_buf)
4065 				return -EINVAL;
4066 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4067 				return -EINVAL;
4068 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4069 				return -EINVAL;
4070 		}
4071 	}
4072 
4073 	/*
4074 	 * Set transfer bits_per_word and max speed as spi device default if
4075 	 * it is not set for this transfer.
4076 	 * Set transfer tx_nbits and rx_nbits as single transfer default
4077 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4078 	 * Ensure transfer word_delay is at least as long as that required by
4079 	 * device itself.
4080 	 */
4081 	message->frame_length = 0;
4082 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
4083 		xfer->effective_speed_hz = 0;
4084 		message->frame_length += xfer->len;
4085 		if (!xfer->bits_per_word)
4086 			xfer->bits_per_word = spi->bits_per_word;
4087 
4088 		if (!xfer->speed_hz)
4089 			xfer->speed_hz = spi->max_speed_hz;
4090 
4091 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4092 			xfer->speed_hz = ctlr->max_speed_hz;
4093 
4094 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4095 			return -EINVAL;
4096 
4097 		/*
4098 		 * SPI transfer length should be multiple of SPI word size
4099 		 * where SPI word size should be power-of-two multiple.
4100 		 */
4101 		if (xfer->bits_per_word <= 8)
4102 			w_size = 1;
4103 		else if (xfer->bits_per_word <= 16)
4104 			w_size = 2;
4105 		else
4106 			w_size = 4;
4107 
4108 		/* No partial transfers accepted */
4109 		if (xfer->len % w_size)
4110 			return -EINVAL;
4111 
4112 		if (xfer->speed_hz && ctlr->min_speed_hz &&
4113 		    xfer->speed_hz < ctlr->min_speed_hz)
4114 			return -EINVAL;
4115 
4116 		if (xfer->tx_buf && !xfer->tx_nbits)
4117 			xfer->tx_nbits = SPI_NBITS_SINGLE;
4118 		if (xfer->rx_buf && !xfer->rx_nbits)
4119 			xfer->rx_nbits = SPI_NBITS_SINGLE;
4120 		/*
4121 		 * Check transfer tx/rx_nbits:
4122 		 * 1. check the value matches one of single, dual and quad
4123 		 * 2. check tx/rx_nbits match the mode in spi_device
4124 		 */
4125 		if (xfer->tx_buf) {
4126 			if (spi->mode & SPI_NO_TX)
4127 				return -EINVAL;
4128 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4129 				xfer->tx_nbits != SPI_NBITS_DUAL &&
4130 				xfer->tx_nbits != SPI_NBITS_QUAD &&
4131 				xfer->tx_nbits != SPI_NBITS_OCTAL)
4132 				return -EINVAL;
4133 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4134 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4135 				return -EINVAL;
4136 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4137 				!(spi->mode & SPI_TX_QUAD))
4138 				return -EINVAL;
4139 		}
4140 		/* Check transfer rx_nbits */
4141 		if (xfer->rx_buf) {
4142 			if (spi->mode & SPI_NO_RX)
4143 				return -EINVAL;
4144 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4145 				xfer->rx_nbits != SPI_NBITS_DUAL &&
4146 				xfer->rx_nbits != SPI_NBITS_QUAD &&
4147 				xfer->rx_nbits != SPI_NBITS_OCTAL)
4148 				return -EINVAL;
4149 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4150 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4151 				return -EINVAL;
4152 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4153 				!(spi->mode & SPI_RX_QUAD))
4154 				return -EINVAL;
4155 		}
4156 
4157 		if (_spi_xfer_word_delay_update(xfer, spi))
4158 			return -EINVAL;
4159 	}
4160 
4161 	message->status = -EINPROGRESS;
4162 
4163 	return 0;
4164 }
4165 
4166 /*
4167  * spi_split_transfers - generic handling of transfer splitting
4168  * @msg: the message to split
4169  *
4170  * Under certain conditions, a SPI controller may not support arbitrary
4171  * transfer sizes or other features required by a peripheral. This function
4172  * will split the transfers in the message into smaller transfers that are
4173  * supported by the controller.
4174  *
4175  * Controllers with special requirements not covered here can also split
4176  * transfers in the optimize_message() callback.
4177  *
4178  * Context: can sleep
4179  * Return: zero on success, else a negative error code
4180  */
4181 static int spi_split_transfers(struct spi_message *msg)
4182 {
4183 	struct spi_controller *ctlr = msg->spi->controller;
4184 	struct spi_transfer *xfer;
4185 	int ret;
4186 
4187 	/*
4188 	 * If an SPI controller does not support toggling the CS line on each
4189 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4190 	 * for the CS line, we can emulate the CS-per-word hardware function by
4191 	 * splitting transfers into one-word transfers and ensuring that
4192 	 * cs_change is set for each transfer.
4193 	 */
4194 	if ((msg->spi->mode & SPI_CS_WORD) &&
4195 	    (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4196 		ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4197 		if (ret)
4198 			return ret;
4199 
4200 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4201 			/* Don't change cs_change on the last entry in the list */
4202 			if (list_is_last(&xfer->transfer_list, &msg->transfers))
4203 				break;
4204 
4205 			xfer->cs_change = 1;
4206 		}
4207 	} else {
4208 		ret = spi_split_transfers_maxsize(ctlr, msg,
4209 						  spi_max_transfer_size(msg->spi));
4210 		if (ret)
4211 			return ret;
4212 	}
4213 
4214 	return 0;
4215 }
4216 
4217 /*
4218  * __spi_optimize_message - shared implementation for spi_optimize_message()
4219  *                          and spi_maybe_optimize_message()
4220  * @spi: the device that will be used for the message
4221  * @msg: the message to optimize
4222  *
4223  * Peripheral drivers will call spi_optimize_message() and the spi core will
4224  * call spi_maybe_optimize_message() instead of calling this directly.
4225  *
4226  * It is not valid to call this on a message that has already been optimized.
4227  *
4228  * Return: zero on success, else a negative error code
4229  */
4230 static int __spi_optimize_message(struct spi_device *spi,
4231 				  struct spi_message *msg)
4232 {
4233 	struct spi_controller *ctlr = spi->controller;
4234 	int ret;
4235 
4236 	ret = __spi_validate(spi, msg);
4237 	if (ret)
4238 		return ret;
4239 
4240 	ret = spi_split_transfers(msg);
4241 	if (ret)
4242 		return ret;
4243 
4244 	if (ctlr->optimize_message) {
4245 		ret = ctlr->optimize_message(msg);
4246 		if (ret) {
4247 			spi_res_release(ctlr, msg);
4248 			return ret;
4249 		}
4250 	}
4251 
4252 	msg->optimized = true;
4253 
4254 	return 0;
4255 }
4256 
4257 /*
4258  * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4259  * @spi: the device that will be used for the message
4260  * @msg: the message to optimize
4261  * Return: zero on success, else a negative error code
4262  */
4263 static int spi_maybe_optimize_message(struct spi_device *spi,
4264 				      struct spi_message *msg)
4265 {
4266 	if (spi->controller->defer_optimize_message) {
4267 		msg->spi = spi;
4268 		return 0;
4269 	}
4270 
4271 	if (msg->pre_optimized)
4272 		return 0;
4273 
4274 	return __spi_optimize_message(spi, msg);
4275 }
4276 
4277 /**
4278  * spi_optimize_message - do any one-time validation and setup for a SPI message
4279  * @spi: the device that will be used for the message
4280  * @msg: the message to optimize
4281  *
4282  * Peripheral drivers that reuse the same message repeatedly may call this to
4283  * perform as much message prep as possible once, rather than repeating it each
4284  * time a message transfer is performed to improve throughput and reduce CPU
4285  * usage.
4286  *
4287  * Once a message has been optimized, it cannot be modified with the exception
4288  * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4289  * only the data in the memory it points to).
4290  *
4291  * Calls to this function must be balanced with calls to spi_unoptimize_message()
4292  * to avoid leaking resources.
4293  *
4294  * Context: can sleep
4295  * Return: zero on success, else a negative error code
4296  */
4297 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4298 {
4299 	int ret;
4300 
4301 	/*
4302 	 * Pre-optimization is not supported and optimization is deferred e.g.
4303 	 * when using spi-mux.
4304 	 */
4305 	if (spi->controller->defer_optimize_message)
4306 		return 0;
4307 
4308 	ret = __spi_optimize_message(spi, msg);
4309 	if (ret)
4310 		return ret;
4311 
4312 	/*
4313 	 * This flag indicates that the peripheral driver called spi_optimize_message()
4314 	 * and therefore we shouldn't unoptimize message automatically when finalizing
4315 	 * the message but rather wait until spi_unoptimize_message() is called
4316 	 * by the peripheral driver.
4317 	 */
4318 	msg->pre_optimized = true;
4319 
4320 	return 0;
4321 }
4322 EXPORT_SYMBOL_GPL(spi_optimize_message);
4323 
4324 /**
4325  * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4326  * @msg: the message to unoptimize
4327  *
4328  * Calls to this function must be balanced with calls to spi_optimize_message().
4329  *
4330  * Context: can sleep
4331  */
4332 void spi_unoptimize_message(struct spi_message *msg)
4333 {
4334 	if (msg->spi->controller->defer_optimize_message)
4335 		return;
4336 
4337 	__spi_unoptimize_message(msg);
4338 	msg->pre_optimized = false;
4339 }
4340 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4341 
4342 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4343 {
4344 	struct spi_controller *ctlr = spi->controller;
4345 	struct spi_transfer *xfer;
4346 
4347 	/*
4348 	 * Some controllers do not support doing regular SPI transfers. Return
4349 	 * ENOTSUPP when this is the case.
4350 	 */
4351 	if (!ctlr->transfer)
4352 		return -ENOTSUPP;
4353 
4354 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4355 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4356 
4357 	trace_spi_message_submit(message);
4358 
4359 	if (!ctlr->ptp_sts_supported) {
4360 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4361 			xfer->ptp_sts_word_pre = 0;
4362 			ptp_read_system_prets(xfer->ptp_sts);
4363 		}
4364 	}
4365 
4366 	return ctlr->transfer(spi, message);
4367 }
4368 
4369 static void devm_spi_unoptimize_message(void *msg)
4370 {
4371 	spi_unoptimize_message(msg);
4372 }
4373 
4374 /**
4375  * devm_spi_optimize_message - managed version of spi_optimize_message()
4376  * @dev: the device that manages @msg (usually @spi->dev)
4377  * @spi: the device that will be used for the message
4378  * @msg: the message to optimize
4379  * Return: zero on success, else a negative error code
4380  *
4381  * spi_unoptimize_message() will automatically be called when the device is
4382  * removed.
4383  */
4384 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
4385 			      struct spi_message *msg)
4386 {
4387 	int ret;
4388 
4389 	ret = spi_optimize_message(spi, msg);
4390 	if (ret)
4391 		return ret;
4392 
4393 	return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg);
4394 }
4395 EXPORT_SYMBOL_GPL(devm_spi_optimize_message);
4396 
4397 /**
4398  * spi_async - asynchronous SPI transfer
4399  * @spi: device with which data will be exchanged
4400  * @message: describes the data transfers, including completion callback
4401  * Context: any (IRQs may be blocked, etc)
4402  *
4403  * This call may be used in_irq and other contexts which can't sleep,
4404  * as well as from task contexts which can sleep.
4405  *
4406  * The completion callback is invoked in a context which can't sleep.
4407  * Before that invocation, the value of message->status is undefined.
4408  * When the callback is issued, message->status holds either zero (to
4409  * indicate complete success) or a negative error code.  After that
4410  * callback returns, the driver which issued the transfer request may
4411  * deallocate the associated memory; it's no longer in use by any SPI
4412  * core or controller driver code.
4413  *
4414  * Note that although all messages to a spi_device are handled in
4415  * FIFO order, messages may go to different devices in other orders.
4416  * Some device might be higher priority, or have various "hard" access
4417  * time requirements, for example.
4418  *
4419  * On detection of any fault during the transfer, processing of
4420  * the entire message is aborted, and the device is deselected.
4421  * Until returning from the associated message completion callback,
4422  * no other spi_message queued to that device will be processed.
4423  * (This rule applies equally to all the synchronous transfer calls,
4424  * which are wrappers around this core asynchronous primitive.)
4425  *
4426  * Return: zero on success, else a negative error code.
4427  */
4428 int spi_async(struct spi_device *spi, struct spi_message *message)
4429 {
4430 	struct spi_controller *ctlr = spi->controller;
4431 	int ret;
4432 	unsigned long flags;
4433 
4434 	ret = spi_maybe_optimize_message(spi, message);
4435 	if (ret)
4436 		return ret;
4437 
4438 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4439 
4440 	if (ctlr->bus_lock_flag)
4441 		ret = -EBUSY;
4442 	else
4443 		ret = __spi_async(spi, message);
4444 
4445 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4446 
4447 	return ret;
4448 }
4449 EXPORT_SYMBOL_GPL(spi_async);
4450 
4451 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4452 {
4453 	bool was_busy;
4454 	int ret;
4455 
4456 	mutex_lock(&ctlr->io_mutex);
4457 
4458 	was_busy = ctlr->busy;
4459 
4460 	ctlr->cur_msg = msg;
4461 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4462 	if (ret)
4463 		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4464 	ctlr->cur_msg = NULL;
4465 	ctlr->fallback = false;
4466 
4467 	if (!was_busy) {
4468 		kfree(ctlr->dummy_rx);
4469 		ctlr->dummy_rx = NULL;
4470 		kfree(ctlr->dummy_tx);
4471 		ctlr->dummy_tx = NULL;
4472 		if (ctlr->unprepare_transfer_hardware &&
4473 		    ctlr->unprepare_transfer_hardware(ctlr))
4474 			dev_err(&ctlr->dev,
4475 				"failed to unprepare transfer hardware\n");
4476 		spi_idle_runtime_pm(ctlr);
4477 	}
4478 
4479 	mutex_unlock(&ctlr->io_mutex);
4480 }
4481 
4482 /*-------------------------------------------------------------------------*/
4483 
4484 /*
4485  * Utility methods for SPI protocol drivers, layered on
4486  * top of the core.  Some other utility methods are defined as
4487  * inline functions.
4488  */
4489 
4490 static void spi_complete(void *arg)
4491 {
4492 	complete(arg);
4493 }
4494 
4495 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4496 {
4497 	DECLARE_COMPLETION_ONSTACK(done);
4498 	unsigned long flags;
4499 	int status;
4500 	struct spi_controller *ctlr = spi->controller;
4501 
4502 	if (__spi_check_suspended(ctlr)) {
4503 		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4504 		return -ESHUTDOWN;
4505 	}
4506 
4507 	status = spi_maybe_optimize_message(spi, message);
4508 	if (status)
4509 		return status;
4510 
4511 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4512 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4513 
4514 	/*
4515 	 * Checking queue_empty here only guarantees async/sync message
4516 	 * ordering when coming from the same context. It does not need to
4517 	 * guard against reentrancy from a different context. The io_mutex
4518 	 * will catch those cases.
4519 	 */
4520 	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4521 		message->actual_length = 0;
4522 		message->status = -EINPROGRESS;
4523 
4524 		trace_spi_message_submit(message);
4525 
4526 		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4527 		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4528 
4529 		__spi_transfer_message_noqueue(ctlr, message);
4530 
4531 		return message->status;
4532 	}
4533 
4534 	/*
4535 	 * There are messages in the async queue that could have originated
4536 	 * from the same context, so we need to preserve ordering.
4537 	 * Therefor we send the message to the async queue and wait until they
4538 	 * are completed.
4539 	 */
4540 	message->complete = spi_complete;
4541 	message->context = &done;
4542 
4543 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4544 	status = __spi_async(spi, message);
4545 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4546 
4547 	if (status == 0) {
4548 		wait_for_completion(&done);
4549 		status = message->status;
4550 	}
4551 	message->complete = NULL;
4552 	message->context = NULL;
4553 
4554 	return status;
4555 }
4556 
4557 /**
4558  * spi_sync - blocking/synchronous SPI data transfers
4559  * @spi: device with which data will be exchanged
4560  * @message: describes the data transfers
4561  * Context: can sleep
4562  *
4563  * This call may only be used from a context that may sleep.  The sleep
4564  * is non-interruptible, and has no timeout.  Low-overhead controller
4565  * drivers may DMA directly into and out of the message buffers.
4566  *
4567  * Note that the SPI device's chip select is active during the message,
4568  * and then is normally disabled between messages.  Drivers for some
4569  * frequently-used devices may want to minimize costs of selecting a chip,
4570  * by leaving it selected in anticipation that the next message will go
4571  * to the same chip.  (That may increase power usage.)
4572  *
4573  * Also, the caller is guaranteeing that the memory associated with the
4574  * message will not be freed before this call returns.
4575  *
4576  * Return: zero on success, else a negative error code.
4577  */
4578 int spi_sync(struct spi_device *spi, struct spi_message *message)
4579 {
4580 	int ret;
4581 
4582 	mutex_lock(&spi->controller->bus_lock_mutex);
4583 	ret = __spi_sync(spi, message);
4584 	mutex_unlock(&spi->controller->bus_lock_mutex);
4585 
4586 	return ret;
4587 }
4588 EXPORT_SYMBOL_GPL(spi_sync);
4589 
4590 /**
4591  * spi_sync_locked - version of spi_sync with exclusive bus usage
4592  * @spi: device with which data will be exchanged
4593  * @message: describes the data transfers
4594  * Context: can sleep
4595  *
4596  * This call may only be used from a context that may sleep.  The sleep
4597  * is non-interruptible, and has no timeout.  Low-overhead controller
4598  * drivers may DMA directly into and out of the message buffers.
4599  *
4600  * This call should be used by drivers that require exclusive access to the
4601  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4602  * be released by a spi_bus_unlock call when the exclusive access is over.
4603  *
4604  * Return: zero on success, else a negative error code.
4605  */
4606 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4607 {
4608 	return __spi_sync(spi, message);
4609 }
4610 EXPORT_SYMBOL_GPL(spi_sync_locked);
4611 
4612 /**
4613  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4614  * @ctlr: SPI bus master that should be locked for exclusive bus access
4615  * Context: can sleep
4616  *
4617  * This call may only be used from a context that may sleep.  The sleep
4618  * is non-interruptible, and has no timeout.
4619  *
4620  * This call should be used by drivers that require exclusive access to the
4621  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4622  * exclusive access is over. Data transfer must be done by spi_sync_locked
4623  * and spi_async_locked calls when the SPI bus lock is held.
4624  *
4625  * Return: always zero.
4626  */
4627 int spi_bus_lock(struct spi_controller *ctlr)
4628 {
4629 	unsigned long flags;
4630 
4631 	mutex_lock(&ctlr->bus_lock_mutex);
4632 
4633 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4634 	ctlr->bus_lock_flag = 1;
4635 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4636 
4637 	/* Mutex remains locked until spi_bus_unlock() is called */
4638 
4639 	return 0;
4640 }
4641 EXPORT_SYMBOL_GPL(spi_bus_lock);
4642 
4643 /**
4644  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4645  * @ctlr: SPI bus master that was locked for exclusive bus access
4646  * Context: can sleep
4647  *
4648  * This call may only be used from a context that may sleep.  The sleep
4649  * is non-interruptible, and has no timeout.
4650  *
4651  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4652  * call.
4653  *
4654  * Return: always zero.
4655  */
4656 int spi_bus_unlock(struct spi_controller *ctlr)
4657 {
4658 	ctlr->bus_lock_flag = 0;
4659 
4660 	mutex_unlock(&ctlr->bus_lock_mutex);
4661 
4662 	return 0;
4663 }
4664 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4665 
4666 /* Portable code must never pass more than 32 bytes */
4667 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4668 
4669 static u8	*buf;
4670 
4671 /**
4672  * spi_write_then_read - SPI synchronous write followed by read
4673  * @spi: device with which data will be exchanged
4674  * @txbuf: data to be written (need not be DMA-safe)
4675  * @n_tx: size of txbuf, in bytes
4676  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4677  * @n_rx: size of rxbuf, in bytes
4678  * Context: can sleep
4679  *
4680  * This performs a half duplex MicroWire style transaction with the
4681  * device, sending txbuf and then reading rxbuf.  The return value
4682  * is zero for success, else a negative errno status code.
4683  * This call may only be used from a context that may sleep.
4684  *
4685  * Parameters to this routine are always copied using a small buffer.
4686  * Performance-sensitive or bulk transfer code should instead use
4687  * spi_{async,sync}() calls with DMA-safe buffers.
4688  *
4689  * Return: zero on success, else a negative error code.
4690  */
4691 int spi_write_then_read(struct spi_device *spi,
4692 		const void *txbuf, unsigned n_tx,
4693 		void *rxbuf, unsigned n_rx)
4694 {
4695 	static DEFINE_MUTEX(lock);
4696 
4697 	int			status;
4698 	struct spi_message	message;
4699 	struct spi_transfer	x[2];
4700 	u8			*local_buf;
4701 
4702 	/*
4703 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4704 	 * copying here, (as a pure convenience thing), but we can
4705 	 * keep heap costs out of the hot path unless someone else is
4706 	 * using the pre-allocated buffer or the transfer is too large.
4707 	 */
4708 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4709 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4710 				    GFP_KERNEL | GFP_DMA);
4711 		if (!local_buf)
4712 			return -ENOMEM;
4713 	} else {
4714 		local_buf = buf;
4715 	}
4716 
4717 	spi_message_init(&message);
4718 	memset(x, 0, sizeof(x));
4719 	if (n_tx) {
4720 		x[0].len = n_tx;
4721 		spi_message_add_tail(&x[0], &message);
4722 	}
4723 	if (n_rx) {
4724 		x[1].len = n_rx;
4725 		spi_message_add_tail(&x[1], &message);
4726 	}
4727 
4728 	memcpy(local_buf, txbuf, n_tx);
4729 	x[0].tx_buf = local_buf;
4730 	x[1].rx_buf = local_buf + n_tx;
4731 
4732 	/* Do the I/O */
4733 	status = spi_sync(spi, &message);
4734 	if (status == 0)
4735 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4736 
4737 	if (x[0].tx_buf == buf)
4738 		mutex_unlock(&lock);
4739 	else
4740 		kfree(local_buf);
4741 
4742 	return status;
4743 }
4744 EXPORT_SYMBOL_GPL(spi_write_then_read);
4745 
4746 /*-------------------------------------------------------------------------*/
4747 
4748 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4749 /* Must call put_device() when done with returned spi_device device */
4750 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4751 {
4752 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4753 
4754 	return dev ? to_spi_device(dev) : NULL;
4755 }
4756 
4757 /* The spi controllers are not using spi_bus, so we find it with another way */
4758 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4759 {
4760 	struct device *dev;
4761 
4762 	dev = class_find_device_by_of_node(&spi_master_class, node);
4763 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4764 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4765 	if (!dev)
4766 		return NULL;
4767 
4768 	/* Reference got in class_find_device */
4769 	return container_of(dev, struct spi_controller, dev);
4770 }
4771 
4772 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4773 			 void *arg)
4774 {
4775 	struct of_reconfig_data *rd = arg;
4776 	struct spi_controller *ctlr;
4777 	struct spi_device *spi;
4778 
4779 	switch (of_reconfig_get_state_change(action, arg)) {
4780 	case OF_RECONFIG_CHANGE_ADD:
4781 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4782 		if (ctlr == NULL)
4783 			return NOTIFY_OK;	/* Not for us */
4784 
4785 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4786 			put_device(&ctlr->dev);
4787 			return NOTIFY_OK;
4788 		}
4789 
4790 		/*
4791 		 * Clear the flag before adding the device so that fw_devlink
4792 		 * doesn't skip adding consumers to this device.
4793 		 */
4794 		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4795 		spi = of_register_spi_device(ctlr, rd->dn);
4796 		put_device(&ctlr->dev);
4797 
4798 		if (IS_ERR(spi)) {
4799 			pr_err("%s: failed to create for '%pOF'\n",
4800 					__func__, rd->dn);
4801 			of_node_clear_flag(rd->dn, OF_POPULATED);
4802 			return notifier_from_errno(PTR_ERR(spi));
4803 		}
4804 		break;
4805 
4806 	case OF_RECONFIG_CHANGE_REMOVE:
4807 		/* Already depopulated? */
4808 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4809 			return NOTIFY_OK;
4810 
4811 		/* Find our device by node */
4812 		spi = of_find_spi_device_by_node(rd->dn);
4813 		if (spi == NULL)
4814 			return NOTIFY_OK;	/* No? not meant for us */
4815 
4816 		/* Unregister takes one ref away */
4817 		spi_unregister_device(spi);
4818 
4819 		/* And put the reference of the find */
4820 		put_device(&spi->dev);
4821 		break;
4822 	}
4823 
4824 	return NOTIFY_OK;
4825 }
4826 
4827 static struct notifier_block spi_of_notifier = {
4828 	.notifier_call = of_spi_notify,
4829 };
4830 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4831 extern struct notifier_block spi_of_notifier;
4832 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4833 
4834 #if IS_ENABLED(CONFIG_ACPI)
4835 static int spi_acpi_controller_match(struct device *dev, const void *data)
4836 {
4837 	return ACPI_COMPANION(dev->parent) == data;
4838 }
4839 
4840 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4841 {
4842 	struct device *dev;
4843 
4844 	dev = class_find_device(&spi_master_class, NULL, adev,
4845 				spi_acpi_controller_match);
4846 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4847 		dev = class_find_device(&spi_slave_class, NULL, adev,
4848 					spi_acpi_controller_match);
4849 	if (!dev)
4850 		return NULL;
4851 
4852 	return container_of(dev, struct spi_controller, dev);
4853 }
4854 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4855 
4856 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4857 {
4858 	struct device *dev;
4859 
4860 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4861 	return to_spi_device(dev);
4862 }
4863 
4864 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4865 			   void *arg)
4866 {
4867 	struct acpi_device *adev = arg;
4868 	struct spi_controller *ctlr;
4869 	struct spi_device *spi;
4870 
4871 	switch (value) {
4872 	case ACPI_RECONFIG_DEVICE_ADD:
4873 		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4874 		if (!ctlr)
4875 			break;
4876 
4877 		acpi_register_spi_device(ctlr, adev);
4878 		put_device(&ctlr->dev);
4879 		break;
4880 	case ACPI_RECONFIG_DEVICE_REMOVE:
4881 		if (!acpi_device_enumerated(adev))
4882 			break;
4883 
4884 		spi = acpi_spi_find_device_by_adev(adev);
4885 		if (!spi)
4886 			break;
4887 
4888 		spi_unregister_device(spi);
4889 		put_device(&spi->dev);
4890 		break;
4891 	}
4892 
4893 	return NOTIFY_OK;
4894 }
4895 
4896 static struct notifier_block spi_acpi_notifier = {
4897 	.notifier_call = acpi_spi_notify,
4898 };
4899 #else
4900 extern struct notifier_block spi_acpi_notifier;
4901 #endif
4902 
4903 static int __init spi_init(void)
4904 {
4905 	int	status;
4906 
4907 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4908 	if (!buf) {
4909 		status = -ENOMEM;
4910 		goto err0;
4911 	}
4912 
4913 	status = bus_register(&spi_bus_type);
4914 	if (status < 0)
4915 		goto err1;
4916 
4917 	status = class_register(&spi_master_class);
4918 	if (status < 0)
4919 		goto err2;
4920 
4921 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4922 		status = class_register(&spi_slave_class);
4923 		if (status < 0)
4924 			goto err3;
4925 	}
4926 
4927 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4928 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4929 	if (IS_ENABLED(CONFIG_ACPI))
4930 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4931 
4932 	return 0;
4933 
4934 err3:
4935 	class_unregister(&spi_master_class);
4936 err2:
4937 	bus_unregister(&spi_bus_type);
4938 err1:
4939 	kfree(buf);
4940 	buf = NULL;
4941 err0:
4942 	return status;
4943 }
4944 
4945 /*
4946  * A board_info is normally registered in arch_initcall(),
4947  * but even essential drivers wait till later.
4948  *
4949  * REVISIT only boardinfo really needs static linking. The rest (device and
4950  * driver registration) _could_ be dynamically linked (modular) ... Costs
4951  * include needing to have boardinfo data structures be much more public.
4952  */
4953 postcore_initcall(spi_init);
4954