1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
spidev_release(struct device * dev)47 static void spidev_release(struct device *dev)
48 {
49 struct spi_device *spi = to_spi_device(dev);
50
51 spi_controller_put(spi->controller);
52 kfree(spi->driver_override);
53 free_percpu(spi->pcpu_statistics);
54 kfree(spi);
55 }
56
57 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 const struct spi_device *spi = to_spi_device(dev);
61 int len;
62
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 if (len != -ENODEV)
65 return len;
66
67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
driver_override_store(struct device * dev,struct device_attribute * a,const char * buf,size_t count)71 static ssize_t driver_override_store(struct device *dev,
72 struct device_attribute *a,
73 const char *buf, size_t count)
74 {
75 struct spi_device *spi = to_spi_device(dev);
76 int ret;
77
78 ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 if (ret)
80 return ret;
81
82 return count;
83 }
84
driver_override_show(struct device * dev,struct device_attribute * a,char * buf)85 static ssize_t driver_override_show(struct device *dev,
86 struct device_attribute *a, char *buf)
87 {
88 const struct spi_device *spi = to_spi_device(dev);
89 ssize_t len;
90
91 device_lock(dev);
92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93 device_unlock(dev);
94 return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
spi_alloc_pcpu_stats(struct device * dev)98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 struct spi_statistics __percpu *pcpu_stats;
101
102 if (dev)
103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 else
105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107 if (pcpu_stats) {
108 int cpu;
109
110 for_each_possible_cpu(cpu) {
111 struct spi_statistics *stat;
112
113 stat = per_cpu_ptr(pcpu_stats, cpu);
114 u64_stats_init(&stat->syncp);
115 }
116 }
117 return pcpu_stats;
118 }
119
spi_emit_pcpu_stats(struct spi_statistics __percpu * stat,char * buf,size_t offset)120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 char *buf, size_t offset)
122 {
123 u64 val = 0;
124 int i;
125
126 for_each_possible_cpu(i) {
127 const struct spi_statistics *pcpu_stats;
128 u64_stats_t *field;
129 unsigned int start;
130 u64 inc;
131
132 pcpu_stats = per_cpu_ptr(stat, i);
133 field = (void *)pcpu_stats + offset;
134 do {
135 start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 inc = u64_stats_read(field);
137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138 val += inc;
139 }
140 return sysfs_emit(buf, "%llu\n", val);
141 }
142
143 #define SPI_STATISTICS_ATTRS(field, file) \
144 static ssize_t spi_controller_##field##_show(struct device *dev, \
145 struct device_attribute *attr, \
146 char *buf) \
147 { \
148 struct spi_controller *ctlr = container_of(dev, \
149 struct spi_controller, dev); \
150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 } \
152 static struct device_attribute dev_attr_spi_controller_##field = { \
153 .attr = { .name = file, .mode = 0444 }, \
154 .show = spi_controller_##field##_show, \
155 }; \
156 static ssize_t spi_device_##field##_show(struct device *dev, \
157 struct device_attribute *attr, \
158 char *buf) \
159 { \
160 struct spi_device *spi = to_spi_device(dev); \
161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 } \
163 static struct device_attribute dev_attr_spi_device_##field = { \
164 .attr = { .name = file, .mode = 0444 }, \
165 .show = spi_device_##field##_show, \
166 }
167
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170 char *buf) \
171 { \
172 return spi_emit_pcpu_stats(stat, buf, \
173 offsetof(struct spi_statistics, field)); \
174 } \
175 SPI_STATISTICS_ATTRS(name, file)
176
177 #define SPI_STATISTICS_SHOW(field) \
178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
179 field)
180
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
196 "transfer_bytes_histo_" number, \
197 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218 static struct attribute *spi_dev_attrs[] = {
219 &dev_attr_modalias.attr,
220 &dev_attr_driver_override.attr,
221 NULL,
222 };
223
224 static const struct attribute_group spi_dev_group = {
225 .attrs = spi_dev_attrs,
226 };
227
228 static struct attribute *spi_device_statistics_attrs[] = {
229 &dev_attr_spi_device_messages.attr,
230 &dev_attr_spi_device_transfers.attr,
231 &dev_attr_spi_device_errors.attr,
232 &dev_attr_spi_device_timedout.attr,
233 &dev_attr_spi_device_spi_sync.attr,
234 &dev_attr_spi_device_spi_sync_immediate.attr,
235 &dev_attr_spi_device_spi_async.attr,
236 &dev_attr_spi_device_bytes.attr,
237 &dev_attr_spi_device_bytes_rx.attr,
238 &dev_attr_spi_device_bytes_tx.attr,
239 &dev_attr_spi_device_transfer_bytes_histo0.attr,
240 &dev_attr_spi_device_transfer_bytes_histo1.attr,
241 &dev_attr_spi_device_transfer_bytes_histo2.attr,
242 &dev_attr_spi_device_transfer_bytes_histo3.attr,
243 &dev_attr_spi_device_transfer_bytes_histo4.attr,
244 &dev_attr_spi_device_transfer_bytes_histo5.attr,
245 &dev_attr_spi_device_transfer_bytes_histo6.attr,
246 &dev_attr_spi_device_transfer_bytes_histo7.attr,
247 &dev_attr_spi_device_transfer_bytes_histo8.attr,
248 &dev_attr_spi_device_transfer_bytes_histo9.attr,
249 &dev_attr_spi_device_transfer_bytes_histo10.attr,
250 &dev_attr_spi_device_transfer_bytes_histo11.attr,
251 &dev_attr_spi_device_transfer_bytes_histo12.attr,
252 &dev_attr_spi_device_transfer_bytes_histo13.attr,
253 &dev_attr_spi_device_transfer_bytes_histo14.attr,
254 &dev_attr_spi_device_transfer_bytes_histo15.attr,
255 &dev_attr_spi_device_transfer_bytes_histo16.attr,
256 &dev_attr_spi_device_transfers_split_maxsize.attr,
257 NULL,
258 };
259
260 static const struct attribute_group spi_device_statistics_group = {
261 .name = "statistics",
262 .attrs = spi_device_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_dev_groups[] = {
266 &spi_dev_group,
267 &spi_device_statistics_group,
268 NULL,
269 };
270
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 &dev_attr_spi_controller_messages.attr,
273 &dev_attr_spi_controller_transfers.attr,
274 &dev_attr_spi_controller_errors.attr,
275 &dev_attr_spi_controller_timedout.attr,
276 &dev_attr_spi_controller_spi_sync.attr,
277 &dev_attr_spi_controller_spi_sync_immediate.attr,
278 &dev_attr_spi_controller_spi_async.attr,
279 &dev_attr_spi_controller_bytes.attr,
280 &dev_attr_spi_controller_bytes_rx.attr,
281 &dev_attr_spi_controller_bytes_tx.attr,
282 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 &dev_attr_spi_controller_transfers_split_maxsize.attr,
300 NULL,
301 };
302
303 static const struct attribute_group spi_controller_statistics_group = {
304 .name = "statistics",
305 .attrs = spi_controller_statistics_attrs,
306 };
307
308 static const struct attribute_group *spi_master_groups[] = {
309 &spi_controller_statistics_group,
310 NULL,
311 };
312
spi_statistics_add_transfer_stats(struct spi_statistics __percpu * pcpu_stats,struct spi_transfer * xfer,struct spi_message * msg)313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 struct spi_transfer *xfer,
315 struct spi_message *msg)
316 {
317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 struct spi_statistics *stats;
319
320 if (l2len < 0)
321 l2len = 0;
322
323 get_cpu();
324 stats = this_cpu_ptr(pcpu_stats);
325 u64_stats_update_begin(&stats->syncp);
326
327 u64_stats_inc(&stats->transfers);
328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330 u64_stats_add(&stats->bytes, xfer->len);
331 if (spi_valid_txbuf(msg, xfer))
332 u64_stats_add(&stats->bytes_tx, xfer->len);
333 if (spi_valid_rxbuf(msg, xfer))
334 u64_stats_add(&stats->bytes_rx, xfer->len);
335
336 u64_stats_update_end(&stats->syncp);
337 put_cpu();
338 }
339
340 /*
341 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
342 * and the sysfs version makes coldplug work too.
343 */
spi_match_id(const struct spi_device_id * id,const char * name)344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
345 {
346 while (id->name[0]) {
347 if (!strcmp(name, id->name))
348 return id;
349 id++;
350 }
351 return NULL;
352 }
353
spi_get_device_id(const struct spi_device * sdev)354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
355 {
356 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
357
358 return spi_match_id(sdrv->id_table, sdev->modalias);
359 }
360 EXPORT_SYMBOL_GPL(spi_get_device_id);
361
spi_get_device_match_data(const struct spi_device * sdev)362 const void *spi_get_device_match_data(const struct spi_device *sdev)
363 {
364 const void *match;
365
366 match = device_get_match_data(&sdev->dev);
367 if (match)
368 return match;
369
370 return (const void *)spi_get_device_id(sdev)->driver_data;
371 }
372 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
373
spi_match_device(struct device * dev,const struct device_driver * drv)374 static int spi_match_device(struct device *dev, const struct device_driver *drv)
375 {
376 const struct spi_device *spi = to_spi_device(dev);
377 const struct spi_driver *sdrv = to_spi_driver(drv);
378
379 /* Check override first, and if set, only use the named driver */
380 if (spi->driver_override)
381 return strcmp(spi->driver_override, drv->name) == 0;
382
383 /* Attempt an OF style match */
384 if (of_driver_match_device(dev, drv))
385 return 1;
386
387 /* Then try ACPI */
388 if (acpi_driver_match_device(dev, drv))
389 return 1;
390
391 if (sdrv->id_table)
392 return !!spi_match_id(sdrv->id_table, spi->modalias);
393
394 return strcmp(spi->modalias, drv->name) == 0;
395 }
396
spi_uevent(const struct device * dev,struct kobj_uevent_env * env)397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
398 {
399 const struct spi_device *spi = to_spi_device(dev);
400 int rc;
401
402 rc = acpi_device_uevent_modalias(dev, env);
403 if (rc != -ENODEV)
404 return rc;
405
406 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
407 }
408
spi_probe(struct device * dev)409 static int spi_probe(struct device *dev)
410 {
411 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
412 struct spi_device *spi = to_spi_device(dev);
413 int ret;
414
415 ret = of_clk_set_defaults(dev->of_node, false);
416 if (ret)
417 return ret;
418
419 if (dev->of_node) {
420 spi->irq = of_irq_get(dev->of_node, 0);
421 if (spi->irq == -EPROBE_DEFER)
422 return -EPROBE_DEFER;
423 if (spi->irq < 0)
424 spi->irq = 0;
425 }
426
427 ret = dev_pm_domain_attach(dev, true);
428 if (ret)
429 return ret;
430
431 if (sdrv->probe) {
432 ret = sdrv->probe(spi);
433 if (ret)
434 dev_pm_domain_detach(dev, true);
435 }
436
437 return ret;
438 }
439
spi_remove(struct device * dev)440 static void spi_remove(struct device *dev)
441 {
442 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
443
444 if (sdrv->remove)
445 sdrv->remove(to_spi_device(dev));
446
447 dev_pm_domain_detach(dev, true);
448 }
449
spi_shutdown(struct device * dev)450 static void spi_shutdown(struct device *dev)
451 {
452 if (dev->driver) {
453 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
454
455 if (sdrv->shutdown)
456 sdrv->shutdown(to_spi_device(dev));
457 }
458 }
459
460 const struct bus_type spi_bus_type = {
461 .name = "spi",
462 .dev_groups = spi_dev_groups,
463 .match = spi_match_device,
464 .uevent = spi_uevent,
465 .probe = spi_probe,
466 .remove = spi_remove,
467 .shutdown = spi_shutdown,
468 };
469 EXPORT_SYMBOL_GPL(spi_bus_type);
470
471 /**
472 * __spi_register_driver - register a SPI driver
473 * @owner: owner module of the driver to register
474 * @sdrv: the driver to register
475 * Context: can sleep
476 *
477 * Return: zero on success, else a negative error code.
478 */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)479 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
480 {
481 sdrv->driver.owner = owner;
482 sdrv->driver.bus = &spi_bus_type;
483
484 /*
485 * For Really Good Reasons we use spi: modaliases not of:
486 * modaliases for DT so module autoloading won't work if we
487 * don't have a spi_device_id as well as a compatible string.
488 */
489 if (sdrv->driver.of_match_table) {
490 const struct of_device_id *of_id;
491
492 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
493 of_id++) {
494 const char *of_name;
495
496 /* Strip off any vendor prefix */
497 of_name = strnchr(of_id->compatible,
498 sizeof(of_id->compatible), ',');
499 if (of_name)
500 of_name++;
501 else
502 of_name = of_id->compatible;
503
504 if (sdrv->id_table) {
505 const struct spi_device_id *spi_id;
506
507 spi_id = spi_match_id(sdrv->id_table, of_name);
508 if (spi_id)
509 continue;
510 } else {
511 if (strcmp(sdrv->driver.name, of_name) == 0)
512 continue;
513 }
514
515 pr_warn("SPI driver %s has no spi_device_id for %s\n",
516 sdrv->driver.name, of_id->compatible);
517 }
518 }
519
520 return driver_register(&sdrv->driver);
521 }
522 EXPORT_SYMBOL_GPL(__spi_register_driver);
523
524 /*-------------------------------------------------------------------------*/
525
526 /*
527 * SPI devices should normally not be created by SPI device drivers; that
528 * would make them board-specific. Similarly with SPI controller drivers.
529 * Device registration normally goes into like arch/.../mach.../board-YYY.c
530 * with other readonly (flashable) information about mainboard devices.
531 */
532
533 struct boardinfo {
534 struct list_head list;
535 struct spi_board_info board_info;
536 };
537
538 static LIST_HEAD(board_list);
539 static LIST_HEAD(spi_controller_list);
540
541 /*
542 * Used to protect add/del operation for board_info list and
543 * spi_controller list, and their matching process also used
544 * to protect object of type struct idr.
545 */
546 static DEFINE_MUTEX(board_lock);
547
548 /**
549 * spi_alloc_device - Allocate a new SPI device
550 * @ctlr: Controller to which device is connected
551 * Context: can sleep
552 *
553 * Allows a driver to allocate and initialize a spi_device without
554 * registering it immediately. This allows a driver to directly
555 * fill the spi_device with device parameters before calling
556 * spi_add_device() on it.
557 *
558 * Caller is responsible to call spi_add_device() on the returned
559 * spi_device structure to add it to the SPI controller. If the caller
560 * needs to discard the spi_device without adding it, then it should
561 * call spi_dev_put() on it.
562 *
563 * Return: a pointer to the new device, or NULL.
564 */
spi_alloc_device(struct spi_controller * ctlr)565 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
566 {
567 struct spi_device *spi;
568
569 if (!spi_controller_get(ctlr))
570 return NULL;
571
572 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
573 if (!spi) {
574 spi_controller_put(ctlr);
575 return NULL;
576 }
577
578 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
579 if (!spi->pcpu_statistics) {
580 kfree(spi);
581 spi_controller_put(ctlr);
582 return NULL;
583 }
584
585 spi->controller = ctlr;
586 spi->dev.parent = &ctlr->dev;
587 spi->dev.bus = &spi_bus_type;
588 spi->dev.release = spidev_release;
589 spi->mode = ctlr->buswidth_override_bits;
590
591 device_initialize(&spi->dev);
592 return spi;
593 }
594 EXPORT_SYMBOL_GPL(spi_alloc_device);
595
spi_dev_set_name(struct spi_device * spi)596 static void spi_dev_set_name(struct spi_device *spi)
597 {
598 struct device *dev = &spi->dev;
599 struct fwnode_handle *fwnode = dev_fwnode(dev);
600
601 if (is_acpi_device_node(fwnode)) {
602 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
603 return;
604 }
605
606 if (is_software_node(fwnode)) {
607 dev_set_name(dev, "spi-%pfwP", fwnode);
608 return;
609 }
610
611 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
612 spi_get_chipselect(spi, 0));
613 }
614
615 /*
616 * Zero(0) is a valid physical CS value and can be located at any
617 * logical CS in the spi->chip_select[]. If all the physical CS
618 * are initialized to 0 then It would be difficult to differentiate
619 * between a valid physical CS 0 & an unused logical CS whose physical
620 * CS can be 0. As a solution to this issue initialize all the CS to -1.
621 * Now all the unused logical CS will have -1 physical CS value & can be
622 * ignored while performing physical CS validity checks.
623 */
624 #define SPI_INVALID_CS ((s8)-1)
625
is_valid_cs(s8 chip_select)626 static inline bool is_valid_cs(s8 chip_select)
627 {
628 return chip_select != SPI_INVALID_CS;
629 }
630
spi_dev_check_cs(struct device * dev,struct spi_device * spi,u8 idx,struct spi_device * new_spi,u8 new_idx)631 static inline int spi_dev_check_cs(struct device *dev,
632 struct spi_device *spi, u8 idx,
633 struct spi_device *new_spi, u8 new_idx)
634 {
635 u8 cs, cs_new;
636 u8 idx_new;
637
638 cs = spi_get_chipselect(spi, idx);
639 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
640 cs_new = spi_get_chipselect(new_spi, idx_new);
641 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
642 dev_err(dev, "chipselect %u already in use\n", cs_new);
643 return -EBUSY;
644 }
645 }
646 return 0;
647 }
648
spi_dev_check(struct device * dev,void * data)649 static int spi_dev_check(struct device *dev, void *data)
650 {
651 struct spi_device *spi = to_spi_device(dev);
652 struct spi_device *new_spi = data;
653 int status, idx;
654
655 if (spi->controller == new_spi->controller) {
656 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
657 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
658 if (status)
659 return status;
660 }
661 }
662 return 0;
663 }
664
spi_cleanup(struct spi_device * spi)665 static void spi_cleanup(struct spi_device *spi)
666 {
667 if (spi->controller->cleanup)
668 spi->controller->cleanup(spi);
669 }
670
__spi_add_device(struct spi_device * spi)671 static int __spi_add_device(struct spi_device *spi)
672 {
673 struct spi_controller *ctlr = spi->controller;
674 struct device *dev = ctlr->dev.parent;
675 int status, idx;
676 u8 cs;
677
678 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
679 /* Chipselects are numbered 0..max; validate. */
680 cs = spi_get_chipselect(spi, idx);
681 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
682 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
683 ctlr->num_chipselect);
684 return -EINVAL;
685 }
686 }
687
688 /*
689 * Make sure that multiple logical CS doesn't map to the same physical CS.
690 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
691 */
692 if (!spi_controller_is_target(ctlr)) {
693 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
694 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
695 if (status)
696 return status;
697 }
698 }
699
700 /* Set the bus ID string */
701 spi_dev_set_name(spi);
702
703 /*
704 * We need to make sure there's no other device with this
705 * chipselect **BEFORE** we call setup(), else we'll trash
706 * its configuration.
707 */
708 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
709 if (status)
710 return status;
711
712 /* Controller may unregister concurrently */
713 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
714 !device_is_registered(&ctlr->dev)) {
715 return -ENODEV;
716 }
717
718 if (ctlr->cs_gpiods) {
719 u8 cs;
720
721 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
722 cs = spi_get_chipselect(spi, idx);
723 if (is_valid_cs(cs))
724 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
725 }
726 }
727
728 /*
729 * Drivers may modify this initial i/o setup, but will
730 * normally rely on the device being setup. Devices
731 * using SPI_CS_HIGH can't coexist well otherwise...
732 */
733 status = spi_setup(spi);
734 if (status < 0) {
735 dev_err(dev, "can't setup %s, status %d\n",
736 dev_name(&spi->dev), status);
737 return status;
738 }
739
740 /* Device may be bound to an active driver when this returns */
741 status = device_add(&spi->dev);
742 if (status < 0) {
743 dev_err(dev, "can't add %s, status %d\n",
744 dev_name(&spi->dev), status);
745 spi_cleanup(spi);
746 } else {
747 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
748 }
749
750 return status;
751 }
752
753 /**
754 * spi_add_device - Add spi_device allocated with spi_alloc_device
755 * @spi: spi_device to register
756 *
757 * Companion function to spi_alloc_device. Devices allocated with
758 * spi_alloc_device can be added onto the SPI bus with this function.
759 *
760 * Return: 0 on success; negative errno on failure
761 */
spi_add_device(struct spi_device * spi)762 int spi_add_device(struct spi_device *spi)
763 {
764 struct spi_controller *ctlr = spi->controller;
765 int status;
766
767 /* Set the bus ID string */
768 spi_dev_set_name(spi);
769
770 mutex_lock(&ctlr->add_lock);
771 status = __spi_add_device(spi);
772 mutex_unlock(&ctlr->add_lock);
773 return status;
774 }
775 EXPORT_SYMBOL_GPL(spi_add_device);
776
spi_set_all_cs_unused(struct spi_device * spi)777 static void spi_set_all_cs_unused(struct spi_device *spi)
778 {
779 u8 idx;
780
781 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
782 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
783 }
784
785 /**
786 * spi_new_device - instantiate one new SPI device
787 * @ctlr: Controller to which device is connected
788 * @chip: Describes the SPI device
789 * Context: can sleep
790 *
791 * On typical mainboards, this is purely internal; and it's not needed
792 * after board init creates the hard-wired devices. Some development
793 * platforms may not be able to use spi_register_board_info though, and
794 * this is exported so that for example a USB or parport based adapter
795 * driver could add devices (which it would learn about out-of-band).
796 *
797 * Return: the new device, or NULL.
798 */
spi_new_device(struct spi_controller * ctlr,struct spi_board_info * chip)799 struct spi_device *spi_new_device(struct spi_controller *ctlr,
800 struct spi_board_info *chip)
801 {
802 struct spi_device *proxy;
803 int status;
804
805 /*
806 * NOTE: caller did any chip->bus_num checks necessary.
807 *
808 * Also, unless we change the return value convention to use
809 * error-or-pointer (not NULL-or-pointer), troubleshootability
810 * suggests syslogged diagnostics are best here (ugh).
811 */
812
813 proxy = spi_alloc_device(ctlr);
814 if (!proxy)
815 return NULL;
816
817 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
818
819 /* Use provided chip-select for proxy device */
820 spi_set_all_cs_unused(proxy);
821 spi_set_chipselect(proxy, 0, chip->chip_select);
822
823 proxy->max_speed_hz = chip->max_speed_hz;
824 proxy->mode = chip->mode;
825 proxy->irq = chip->irq;
826 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
827 proxy->dev.platform_data = (void *) chip->platform_data;
828 proxy->controller_data = chip->controller_data;
829 proxy->controller_state = NULL;
830 /*
831 * By default spi->chip_select[0] will hold the physical CS number,
832 * so set bit 0 in spi->cs_index_mask.
833 */
834 proxy->cs_index_mask = BIT(0);
835
836 if (chip->swnode) {
837 status = device_add_software_node(&proxy->dev, chip->swnode);
838 if (status) {
839 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
840 chip->modalias, status);
841 goto err_dev_put;
842 }
843 }
844
845 status = spi_add_device(proxy);
846 if (status < 0)
847 goto err_dev_put;
848
849 return proxy;
850
851 err_dev_put:
852 device_remove_software_node(&proxy->dev);
853 spi_dev_put(proxy);
854 return NULL;
855 }
856 EXPORT_SYMBOL_GPL(spi_new_device);
857
858 /**
859 * spi_unregister_device - unregister a single SPI device
860 * @spi: spi_device to unregister
861 *
862 * Start making the passed SPI device vanish. Normally this would be handled
863 * by spi_unregister_controller().
864 */
spi_unregister_device(struct spi_device * spi)865 void spi_unregister_device(struct spi_device *spi)
866 {
867 if (!spi)
868 return;
869
870 if (spi->dev.of_node) {
871 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
872 of_node_put(spi->dev.of_node);
873 }
874 if (ACPI_COMPANION(&spi->dev))
875 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
876 device_remove_software_node(&spi->dev);
877 device_del(&spi->dev);
878 spi_cleanup(spi);
879 put_device(&spi->dev);
880 }
881 EXPORT_SYMBOL_GPL(spi_unregister_device);
882
spi_match_controller_to_boardinfo(struct spi_controller * ctlr,struct spi_board_info * bi)883 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
884 struct spi_board_info *bi)
885 {
886 struct spi_device *dev;
887
888 if (ctlr->bus_num != bi->bus_num)
889 return;
890
891 dev = spi_new_device(ctlr, bi);
892 if (!dev)
893 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
894 bi->modalias);
895 }
896
897 /**
898 * spi_register_board_info - register SPI devices for a given board
899 * @info: array of chip descriptors
900 * @n: how many descriptors are provided
901 * Context: can sleep
902 *
903 * Board-specific early init code calls this (probably during arch_initcall)
904 * with segments of the SPI device table. Any device nodes are created later,
905 * after the relevant parent SPI controller (bus_num) is defined. We keep
906 * this table of devices forever, so that reloading a controller driver will
907 * not make Linux forget about these hard-wired devices.
908 *
909 * Other code can also call this, e.g. a particular add-on board might provide
910 * SPI devices through its expansion connector, so code initializing that board
911 * would naturally declare its SPI devices.
912 *
913 * The board info passed can safely be __initdata ... but be careful of
914 * any embedded pointers (platform_data, etc), they're copied as-is.
915 *
916 * Return: zero on success, else a negative error code.
917 */
spi_register_board_info(struct spi_board_info const * info,unsigned n)918 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
919 {
920 struct boardinfo *bi;
921 int i;
922
923 if (!n)
924 return 0;
925
926 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
927 if (!bi)
928 return -ENOMEM;
929
930 for (i = 0; i < n; i++, bi++, info++) {
931 struct spi_controller *ctlr;
932
933 memcpy(&bi->board_info, info, sizeof(*info));
934
935 mutex_lock(&board_lock);
936 list_add_tail(&bi->list, &board_list);
937 list_for_each_entry(ctlr, &spi_controller_list, list)
938 spi_match_controller_to_boardinfo(ctlr,
939 &bi->board_info);
940 mutex_unlock(&board_lock);
941 }
942
943 return 0;
944 }
945
946 /*-------------------------------------------------------------------------*/
947
948 /* Core methods for SPI resource management */
949
950 /**
951 * spi_res_alloc - allocate a spi resource that is life-cycle managed
952 * during the processing of a spi_message while using
953 * spi_transfer_one
954 * @spi: the SPI device for which we allocate memory
955 * @release: the release code to execute for this resource
956 * @size: size to alloc and return
957 * @gfp: GFP allocation flags
958 *
959 * Return: the pointer to the allocated data
960 *
961 * This may get enhanced in the future to allocate from a memory pool
962 * of the @spi_device or @spi_controller to avoid repeated allocations.
963 */
spi_res_alloc(struct spi_device * spi,spi_res_release_t release,size_t size,gfp_t gfp)964 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
965 size_t size, gfp_t gfp)
966 {
967 struct spi_res *sres;
968
969 sres = kzalloc(sizeof(*sres) + size, gfp);
970 if (!sres)
971 return NULL;
972
973 INIT_LIST_HEAD(&sres->entry);
974 sres->release = release;
975
976 return sres->data;
977 }
978
979 /**
980 * spi_res_free - free an SPI resource
981 * @res: pointer to the custom data of a resource
982 */
spi_res_free(void * res)983 static void spi_res_free(void *res)
984 {
985 struct spi_res *sres = container_of(res, struct spi_res, data);
986
987 if (!res)
988 return;
989
990 WARN_ON(!list_empty(&sres->entry));
991 kfree(sres);
992 }
993
994 /**
995 * spi_res_add - add a spi_res to the spi_message
996 * @message: the SPI message
997 * @res: the spi_resource
998 */
spi_res_add(struct spi_message * message,void * res)999 static void spi_res_add(struct spi_message *message, void *res)
1000 {
1001 struct spi_res *sres = container_of(res, struct spi_res, data);
1002
1003 WARN_ON(!list_empty(&sres->entry));
1004 list_add_tail(&sres->entry, &message->resources);
1005 }
1006
1007 /**
1008 * spi_res_release - release all SPI resources for this message
1009 * @ctlr: the @spi_controller
1010 * @message: the @spi_message
1011 */
spi_res_release(struct spi_controller * ctlr,struct spi_message * message)1012 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1013 {
1014 struct spi_res *res, *tmp;
1015
1016 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1017 if (res->release)
1018 res->release(ctlr, message, res->data);
1019
1020 list_del(&res->entry);
1021
1022 kfree(res);
1023 }
1024 }
1025
1026 /*-------------------------------------------------------------------------*/
1027 #define spi_for_each_valid_cs(spi, idx) \
1028 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) \
1029 if (!(spi->cs_index_mask & BIT(idx))) {} else
1030
spi_is_last_cs(struct spi_device * spi)1031 static inline bool spi_is_last_cs(struct spi_device *spi)
1032 {
1033 u8 idx;
1034 bool last = false;
1035
1036 spi_for_each_valid_cs(spi, idx) {
1037 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1038 last = true;
1039 }
1040 return last;
1041 }
1042
spi_toggle_csgpiod(struct spi_device * spi,u8 idx,bool enable,bool activate)1043 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1044 {
1045 /*
1046 * Historically ACPI has no means of the GPIO polarity and
1047 * thus the SPISerialBus() resource defines it on the per-chip
1048 * basis. In order to avoid a chain of negations, the GPIO
1049 * polarity is considered being Active High. Even for the cases
1050 * when _DSD() is involved (in the updated versions of ACPI)
1051 * the GPIO CS polarity must be defined Active High to avoid
1052 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1053 * into account.
1054 */
1055 if (has_acpi_companion(&spi->dev))
1056 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1057 else
1058 /* Polarity handled by GPIO library */
1059 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1060
1061 if (activate)
1062 spi_delay_exec(&spi->cs_setup, NULL);
1063 else
1064 spi_delay_exec(&spi->cs_inactive, NULL);
1065 }
1066
spi_set_cs(struct spi_device * spi,bool enable,bool force)1067 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1068 {
1069 bool activate = enable;
1070 u8 idx;
1071
1072 /*
1073 * Avoid calling into the driver (or doing delays) if the chip select
1074 * isn't actually changing from the last time this was called.
1075 */
1076 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1077 spi_is_last_cs(spi)) ||
1078 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1079 !spi_is_last_cs(spi))) &&
1080 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1081 return;
1082
1083 trace_spi_set_cs(spi, activate);
1084
1085 spi->controller->last_cs_index_mask = spi->cs_index_mask;
1086 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1087 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1088 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1089
1090 if (spi->mode & SPI_CS_HIGH)
1091 enable = !enable;
1092
1093 /*
1094 * Handle chip select delays for GPIO based CS or controllers without
1095 * programmable chip select timing.
1096 */
1097 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1098 spi_delay_exec(&spi->cs_hold, NULL);
1099
1100 if (spi_is_csgpiod(spi)) {
1101 if (!(spi->mode & SPI_NO_CS)) {
1102 spi_for_each_valid_cs(spi, idx) {
1103 if (spi_get_csgpiod(spi, idx))
1104 spi_toggle_csgpiod(spi, idx, enable, activate);
1105 }
1106 }
1107 /* Some SPI masters need both GPIO CS & slave_select */
1108 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1109 spi->controller->set_cs)
1110 spi->controller->set_cs(spi, !enable);
1111 } else if (spi->controller->set_cs) {
1112 spi->controller->set_cs(spi, !enable);
1113 }
1114
1115 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1116 if (activate)
1117 spi_delay_exec(&spi->cs_setup, NULL);
1118 else
1119 spi_delay_exec(&spi->cs_inactive, NULL);
1120 }
1121 }
1122
1123 #ifdef CONFIG_HAS_DMA
spi_map_buf_attrs(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir,unsigned long attrs)1124 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1125 struct sg_table *sgt, void *buf, size_t len,
1126 enum dma_data_direction dir, unsigned long attrs)
1127 {
1128 const bool vmalloced_buf = is_vmalloc_addr(buf);
1129 unsigned int max_seg_size = dma_get_max_seg_size(dev);
1130 #ifdef CONFIG_HIGHMEM
1131 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1132 (unsigned long)buf < (PKMAP_BASE +
1133 (LAST_PKMAP * PAGE_SIZE)));
1134 #else
1135 const bool kmap_buf = false;
1136 #endif
1137 int desc_len;
1138 int sgs;
1139 struct page *vm_page;
1140 struct scatterlist *sg;
1141 void *sg_buf;
1142 size_t min;
1143 int i, ret;
1144
1145 if (vmalloced_buf || kmap_buf) {
1146 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1147 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1148 } else if (virt_addr_valid(buf)) {
1149 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1150 sgs = DIV_ROUND_UP(len, desc_len);
1151 } else {
1152 return -EINVAL;
1153 }
1154
1155 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1156 if (ret != 0)
1157 return ret;
1158
1159 sg = &sgt->sgl[0];
1160 for (i = 0; i < sgs; i++) {
1161
1162 if (vmalloced_buf || kmap_buf) {
1163 /*
1164 * Next scatterlist entry size is the minimum between
1165 * the desc_len and the remaining buffer length that
1166 * fits in a page.
1167 */
1168 min = min_t(size_t, desc_len,
1169 min_t(size_t, len,
1170 PAGE_SIZE - offset_in_page(buf)));
1171 if (vmalloced_buf)
1172 vm_page = vmalloc_to_page(buf);
1173 else
1174 vm_page = kmap_to_page(buf);
1175 if (!vm_page) {
1176 sg_free_table(sgt);
1177 return -ENOMEM;
1178 }
1179 sg_set_page(sg, vm_page,
1180 min, offset_in_page(buf));
1181 } else {
1182 min = min_t(size_t, len, desc_len);
1183 sg_buf = buf;
1184 sg_set_buf(sg, sg_buf, min);
1185 }
1186
1187 buf += min;
1188 len -= min;
1189 sg = sg_next(sg);
1190 }
1191
1192 ret = dma_map_sgtable(dev, sgt, dir, attrs);
1193 if (ret < 0) {
1194 sg_free_table(sgt);
1195 return ret;
1196 }
1197
1198 return 0;
1199 }
1200
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)1201 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1202 struct sg_table *sgt, void *buf, size_t len,
1203 enum dma_data_direction dir)
1204 {
1205 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1206 }
1207
spi_unmap_buf_attrs(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)1208 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1209 struct device *dev, struct sg_table *sgt,
1210 enum dma_data_direction dir,
1211 unsigned long attrs)
1212 {
1213 dma_unmap_sgtable(dev, sgt, dir, attrs);
1214 sg_free_table(sgt);
1215 sgt->orig_nents = 0;
1216 sgt->nents = 0;
1217 }
1218
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)1219 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1220 struct sg_table *sgt, enum dma_data_direction dir)
1221 {
1222 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1223 }
1224
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1225 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1226 {
1227 struct device *tx_dev, *rx_dev;
1228 struct spi_transfer *xfer;
1229 int ret;
1230
1231 if (!ctlr->can_dma)
1232 return 0;
1233
1234 if (ctlr->dma_tx)
1235 tx_dev = ctlr->dma_tx->device->dev;
1236 else if (ctlr->dma_map_dev)
1237 tx_dev = ctlr->dma_map_dev;
1238 else
1239 tx_dev = ctlr->dev.parent;
1240
1241 if (ctlr->dma_rx)
1242 rx_dev = ctlr->dma_rx->device->dev;
1243 else if (ctlr->dma_map_dev)
1244 rx_dev = ctlr->dma_map_dev;
1245 else
1246 rx_dev = ctlr->dev.parent;
1247
1248 ret = -ENOMSG;
1249 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1250 /* The sync is done before each transfer. */
1251 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1252
1253 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1254 continue;
1255
1256 if (xfer->tx_buf != NULL) {
1257 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1258 (void *)xfer->tx_buf,
1259 xfer->len, DMA_TO_DEVICE,
1260 attrs);
1261 if (ret != 0)
1262 return ret;
1263
1264 xfer->tx_sg_mapped = true;
1265 }
1266
1267 if (xfer->rx_buf != NULL) {
1268 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1269 xfer->rx_buf, xfer->len,
1270 DMA_FROM_DEVICE, attrs);
1271 if (ret != 0) {
1272 spi_unmap_buf_attrs(ctlr, tx_dev,
1273 &xfer->tx_sg, DMA_TO_DEVICE,
1274 attrs);
1275
1276 return ret;
1277 }
1278
1279 xfer->rx_sg_mapped = true;
1280 }
1281 }
1282 /* No transfer has been mapped, bail out with success */
1283 if (ret)
1284 return 0;
1285
1286 ctlr->cur_rx_dma_dev = rx_dev;
1287 ctlr->cur_tx_dma_dev = tx_dev;
1288
1289 return 0;
1290 }
1291
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1292 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1293 {
1294 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1295 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1296 struct spi_transfer *xfer;
1297
1298 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1299 /* The sync has already been done after each transfer. */
1300 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1301
1302 if (xfer->rx_sg_mapped)
1303 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1304 DMA_FROM_DEVICE, attrs);
1305 xfer->rx_sg_mapped = false;
1306
1307 if (xfer->tx_sg_mapped)
1308 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1309 DMA_TO_DEVICE, attrs);
1310 xfer->tx_sg_mapped = false;
1311 }
1312
1313 return 0;
1314 }
1315
spi_dma_sync_for_device(struct spi_controller * ctlr,struct spi_transfer * xfer)1316 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1317 struct spi_transfer *xfer)
1318 {
1319 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1320 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1321
1322 if (xfer->tx_sg_mapped)
1323 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1324 if (xfer->rx_sg_mapped)
1325 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1326 }
1327
spi_dma_sync_for_cpu(struct spi_controller * ctlr,struct spi_transfer * xfer)1328 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1329 struct spi_transfer *xfer)
1330 {
1331 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1332 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1333
1334 if (xfer->rx_sg_mapped)
1335 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1336 if (xfer->tx_sg_mapped)
1337 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1338 }
1339 #else /* !CONFIG_HAS_DMA */
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1340 static inline int __spi_map_msg(struct spi_controller *ctlr,
1341 struct spi_message *msg)
1342 {
1343 return 0;
1344 }
1345
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1346 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1347 struct spi_message *msg)
1348 {
1349 return 0;
1350 }
1351
spi_dma_sync_for_device(struct spi_controller * ctrl,struct spi_transfer * xfer)1352 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1353 struct spi_transfer *xfer)
1354 {
1355 }
1356
spi_dma_sync_for_cpu(struct spi_controller * ctrl,struct spi_transfer * xfer)1357 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1358 struct spi_transfer *xfer)
1359 {
1360 }
1361 #endif /* !CONFIG_HAS_DMA */
1362
spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1363 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1364 struct spi_message *msg)
1365 {
1366 struct spi_transfer *xfer;
1367
1368 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1369 /*
1370 * Restore the original value of tx_buf or rx_buf if they are
1371 * NULL.
1372 */
1373 if (xfer->tx_buf == ctlr->dummy_tx)
1374 xfer->tx_buf = NULL;
1375 if (xfer->rx_buf == ctlr->dummy_rx)
1376 xfer->rx_buf = NULL;
1377 }
1378
1379 return __spi_unmap_msg(ctlr, msg);
1380 }
1381
spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1382 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1383 {
1384 struct spi_transfer *xfer;
1385 void *tmp;
1386 unsigned int max_tx, max_rx;
1387
1388 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1389 && !(msg->spi->mode & SPI_3WIRE)) {
1390 max_tx = 0;
1391 max_rx = 0;
1392
1393 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1394 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1395 !xfer->tx_buf)
1396 max_tx = max(xfer->len, max_tx);
1397 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1398 !xfer->rx_buf)
1399 max_rx = max(xfer->len, max_rx);
1400 }
1401
1402 if (max_tx) {
1403 tmp = krealloc(ctlr->dummy_tx, max_tx,
1404 GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1405 if (!tmp)
1406 return -ENOMEM;
1407 ctlr->dummy_tx = tmp;
1408 }
1409
1410 if (max_rx) {
1411 tmp = krealloc(ctlr->dummy_rx, max_rx,
1412 GFP_KERNEL | GFP_DMA);
1413 if (!tmp)
1414 return -ENOMEM;
1415 ctlr->dummy_rx = tmp;
1416 }
1417
1418 if (max_tx || max_rx) {
1419 list_for_each_entry(xfer, &msg->transfers,
1420 transfer_list) {
1421 if (!xfer->len)
1422 continue;
1423 if (!xfer->tx_buf)
1424 xfer->tx_buf = ctlr->dummy_tx;
1425 if (!xfer->rx_buf)
1426 xfer->rx_buf = ctlr->dummy_rx;
1427 }
1428 }
1429 }
1430
1431 return __spi_map_msg(ctlr, msg);
1432 }
1433
spi_transfer_wait(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer * xfer)1434 static int spi_transfer_wait(struct spi_controller *ctlr,
1435 struct spi_message *msg,
1436 struct spi_transfer *xfer)
1437 {
1438 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1439 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1440 u32 speed_hz = xfer->speed_hz;
1441 unsigned long long ms;
1442
1443 if (spi_controller_is_target(ctlr)) {
1444 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1445 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1446 return -EINTR;
1447 }
1448 } else {
1449 if (!speed_hz)
1450 speed_hz = 100000;
1451
1452 /*
1453 * For each byte we wait for 8 cycles of the SPI clock.
1454 * Since speed is defined in Hz and we want milliseconds,
1455 * use respective multiplier, but before the division,
1456 * otherwise we may get 0 for short transfers.
1457 */
1458 ms = 8LL * MSEC_PER_SEC * xfer->len;
1459 do_div(ms, speed_hz);
1460
1461 /*
1462 * Increase it twice and add 200 ms tolerance, use
1463 * predefined maximum in case of overflow.
1464 */
1465 ms += ms + 200;
1466 if (ms > UINT_MAX)
1467 ms = UINT_MAX;
1468
1469 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1470 msecs_to_jiffies(ms));
1471
1472 if (ms == 0) {
1473 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1474 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1475 dev_err(&msg->spi->dev,
1476 "SPI transfer timed out\n");
1477 return -ETIMEDOUT;
1478 }
1479
1480 if (xfer->error & SPI_TRANS_FAIL_IO)
1481 return -EIO;
1482 }
1483
1484 return 0;
1485 }
1486
_spi_transfer_delay_ns(u32 ns)1487 static void _spi_transfer_delay_ns(u32 ns)
1488 {
1489 if (!ns)
1490 return;
1491 if (ns <= NSEC_PER_USEC) {
1492 ndelay(ns);
1493 } else {
1494 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1495
1496 if (us <= 10)
1497 udelay(us);
1498 else
1499 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1500 }
1501 }
1502
spi_delay_to_ns(struct spi_delay * _delay,struct spi_transfer * xfer)1503 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1504 {
1505 u32 delay = _delay->value;
1506 u32 unit = _delay->unit;
1507 u32 hz;
1508
1509 if (!delay)
1510 return 0;
1511
1512 switch (unit) {
1513 case SPI_DELAY_UNIT_USECS:
1514 delay *= NSEC_PER_USEC;
1515 break;
1516 case SPI_DELAY_UNIT_NSECS:
1517 /* Nothing to do here */
1518 break;
1519 case SPI_DELAY_UNIT_SCK:
1520 /* Clock cycles need to be obtained from spi_transfer */
1521 if (!xfer)
1522 return -EINVAL;
1523 /*
1524 * If there is unknown effective speed, approximate it
1525 * by underestimating with half of the requested Hz.
1526 */
1527 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1528 if (!hz)
1529 return -EINVAL;
1530
1531 /* Convert delay to nanoseconds */
1532 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1533 break;
1534 default:
1535 return -EINVAL;
1536 }
1537
1538 return delay;
1539 }
1540 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1541
spi_delay_exec(struct spi_delay * _delay,struct spi_transfer * xfer)1542 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1543 {
1544 int delay;
1545
1546 might_sleep();
1547
1548 if (!_delay)
1549 return -EINVAL;
1550
1551 delay = spi_delay_to_ns(_delay, xfer);
1552 if (delay < 0)
1553 return delay;
1554
1555 _spi_transfer_delay_ns(delay);
1556
1557 return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(spi_delay_exec);
1560
_spi_transfer_cs_change_delay(struct spi_message * msg,struct spi_transfer * xfer)1561 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1562 struct spi_transfer *xfer)
1563 {
1564 u32 default_delay_ns = 10 * NSEC_PER_USEC;
1565 u32 delay = xfer->cs_change_delay.value;
1566 u32 unit = xfer->cs_change_delay.unit;
1567 int ret;
1568
1569 /* Return early on "fast" mode - for everything but USECS */
1570 if (!delay) {
1571 if (unit == SPI_DELAY_UNIT_USECS)
1572 _spi_transfer_delay_ns(default_delay_ns);
1573 return;
1574 }
1575
1576 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1577 if (ret) {
1578 dev_err_once(&msg->spi->dev,
1579 "Use of unsupported delay unit %i, using default of %luus\n",
1580 unit, default_delay_ns / NSEC_PER_USEC);
1581 _spi_transfer_delay_ns(default_delay_ns);
1582 }
1583 }
1584
spi_transfer_cs_change_delay_exec(struct spi_message * msg,struct spi_transfer * xfer)1585 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1586 struct spi_transfer *xfer)
1587 {
1588 _spi_transfer_cs_change_delay(msg, xfer);
1589 }
1590 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1591
1592 /*
1593 * spi_transfer_one_message - Default implementation of transfer_one_message()
1594 *
1595 * This is a standard implementation of transfer_one_message() for
1596 * drivers which implement a transfer_one() operation. It provides
1597 * standard handling of delays and chip select management.
1598 */
spi_transfer_one_message(struct spi_controller * ctlr,struct spi_message * msg)1599 static int spi_transfer_one_message(struct spi_controller *ctlr,
1600 struct spi_message *msg)
1601 {
1602 struct spi_transfer *xfer;
1603 bool keep_cs = false;
1604 int ret = 0;
1605 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1606 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1607
1608 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1609 spi_set_cs(msg->spi, !xfer->cs_off, false);
1610
1611 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1612 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1613
1614 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1615 trace_spi_transfer_start(msg, xfer);
1616
1617 spi_statistics_add_transfer_stats(statm, xfer, msg);
1618 spi_statistics_add_transfer_stats(stats, xfer, msg);
1619
1620 if (!ctlr->ptp_sts_supported) {
1621 xfer->ptp_sts_word_pre = 0;
1622 ptp_read_system_prets(xfer->ptp_sts);
1623 }
1624
1625 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1626 reinit_completion(&ctlr->xfer_completion);
1627
1628 fallback_pio:
1629 spi_dma_sync_for_device(ctlr, xfer);
1630 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1631 if (ret < 0) {
1632 spi_dma_sync_for_cpu(ctlr, xfer);
1633
1634 if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) &&
1635 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1636 __spi_unmap_msg(ctlr, msg);
1637 ctlr->fallback = true;
1638 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1639 goto fallback_pio;
1640 }
1641
1642 SPI_STATISTICS_INCREMENT_FIELD(statm,
1643 errors);
1644 SPI_STATISTICS_INCREMENT_FIELD(stats,
1645 errors);
1646 dev_err(&msg->spi->dev,
1647 "SPI transfer failed: %d\n", ret);
1648 goto out;
1649 }
1650
1651 if (ret > 0) {
1652 ret = spi_transfer_wait(ctlr, msg, xfer);
1653 if (ret < 0)
1654 msg->status = ret;
1655 }
1656
1657 spi_dma_sync_for_cpu(ctlr, xfer);
1658 } else {
1659 if (xfer->len)
1660 dev_err(&msg->spi->dev,
1661 "Bufferless transfer has length %u\n",
1662 xfer->len);
1663 }
1664
1665 if (!ctlr->ptp_sts_supported) {
1666 ptp_read_system_postts(xfer->ptp_sts);
1667 xfer->ptp_sts_word_post = xfer->len;
1668 }
1669
1670 trace_spi_transfer_stop(msg, xfer);
1671
1672 if (msg->status != -EINPROGRESS)
1673 goto out;
1674
1675 spi_transfer_delay_exec(xfer);
1676
1677 if (xfer->cs_change) {
1678 if (list_is_last(&xfer->transfer_list,
1679 &msg->transfers)) {
1680 keep_cs = true;
1681 } else {
1682 if (!xfer->cs_off)
1683 spi_set_cs(msg->spi, false, false);
1684 _spi_transfer_cs_change_delay(msg, xfer);
1685 if (!list_next_entry(xfer, transfer_list)->cs_off)
1686 spi_set_cs(msg->spi, true, false);
1687 }
1688 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1689 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1690 spi_set_cs(msg->spi, xfer->cs_off, false);
1691 }
1692
1693 msg->actual_length += xfer->len;
1694 }
1695
1696 out:
1697 if (ret != 0 || !keep_cs)
1698 spi_set_cs(msg->spi, false, false);
1699
1700 if (msg->status == -EINPROGRESS)
1701 msg->status = ret;
1702
1703 if (msg->status && ctlr->handle_err)
1704 ctlr->handle_err(ctlr, msg);
1705
1706 spi_finalize_current_message(ctlr);
1707
1708 return ret;
1709 }
1710
1711 /**
1712 * spi_finalize_current_transfer - report completion of a transfer
1713 * @ctlr: the controller reporting completion
1714 *
1715 * Called by SPI drivers using the core transfer_one_message()
1716 * implementation to notify it that the current interrupt driven
1717 * transfer has finished and the next one may be scheduled.
1718 */
spi_finalize_current_transfer(struct spi_controller * ctlr)1719 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1720 {
1721 complete(&ctlr->xfer_completion);
1722 }
1723 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1724
spi_idle_runtime_pm(struct spi_controller * ctlr)1725 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1726 {
1727 if (ctlr->auto_runtime_pm) {
1728 pm_runtime_mark_last_busy(ctlr->dev.parent);
1729 pm_runtime_put_autosuspend(ctlr->dev.parent);
1730 }
1731 }
1732
__spi_pump_transfer_message(struct spi_controller * ctlr,struct spi_message * msg,bool was_busy)1733 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1734 struct spi_message *msg, bool was_busy)
1735 {
1736 struct spi_transfer *xfer;
1737 int ret;
1738
1739 if (!was_busy && ctlr->auto_runtime_pm) {
1740 ret = pm_runtime_get_sync(ctlr->dev.parent);
1741 if (ret < 0) {
1742 pm_runtime_put_noidle(ctlr->dev.parent);
1743 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1744 ret);
1745
1746 msg->status = ret;
1747 spi_finalize_current_message(ctlr);
1748
1749 return ret;
1750 }
1751 }
1752
1753 if (!was_busy)
1754 trace_spi_controller_busy(ctlr);
1755
1756 if (!was_busy && ctlr->prepare_transfer_hardware) {
1757 ret = ctlr->prepare_transfer_hardware(ctlr);
1758 if (ret) {
1759 dev_err(&ctlr->dev,
1760 "failed to prepare transfer hardware: %d\n",
1761 ret);
1762
1763 if (ctlr->auto_runtime_pm)
1764 pm_runtime_put(ctlr->dev.parent);
1765
1766 msg->status = ret;
1767 spi_finalize_current_message(ctlr);
1768
1769 return ret;
1770 }
1771 }
1772
1773 trace_spi_message_start(msg);
1774
1775 if (ctlr->prepare_message) {
1776 ret = ctlr->prepare_message(ctlr, msg);
1777 if (ret) {
1778 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1779 ret);
1780 msg->status = ret;
1781 spi_finalize_current_message(ctlr);
1782 return ret;
1783 }
1784 msg->prepared = true;
1785 }
1786
1787 ret = spi_map_msg(ctlr, msg);
1788 if (ret) {
1789 msg->status = ret;
1790 spi_finalize_current_message(ctlr);
1791 return ret;
1792 }
1793
1794 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1795 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1796 xfer->ptp_sts_word_pre = 0;
1797 ptp_read_system_prets(xfer->ptp_sts);
1798 }
1799 }
1800
1801 /*
1802 * Drivers implementation of transfer_one_message() must arrange for
1803 * spi_finalize_current_message() to get called. Most drivers will do
1804 * this in the calling context, but some don't. For those cases, a
1805 * completion is used to guarantee that this function does not return
1806 * until spi_finalize_current_message() is done accessing
1807 * ctlr->cur_msg.
1808 * Use of the following two flags enable to opportunistically skip the
1809 * use of the completion since its use involves expensive spin locks.
1810 * In case of a race with the context that calls
1811 * spi_finalize_current_message() the completion will always be used,
1812 * due to strict ordering of these flags using barriers.
1813 */
1814 WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1815 WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1816 reinit_completion(&ctlr->cur_msg_completion);
1817 smp_wmb(); /* Make these available to spi_finalize_current_message() */
1818
1819 ret = ctlr->transfer_one_message(ctlr, msg);
1820 if (ret) {
1821 dev_err(&ctlr->dev,
1822 "failed to transfer one message from queue\n");
1823 return ret;
1824 }
1825
1826 WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1827 smp_mb(); /* See spi_finalize_current_message()... */
1828 if (READ_ONCE(ctlr->cur_msg_incomplete))
1829 wait_for_completion(&ctlr->cur_msg_completion);
1830
1831 return 0;
1832 }
1833
1834 /**
1835 * __spi_pump_messages - function which processes SPI message queue
1836 * @ctlr: controller to process queue for
1837 * @in_kthread: true if we are in the context of the message pump thread
1838 *
1839 * This function checks if there is any SPI message in the queue that
1840 * needs processing and if so call out to the driver to initialize hardware
1841 * and transfer each message.
1842 *
1843 * Note that it is called both from the kthread itself and also from
1844 * inside spi_sync(); the queue extraction handling at the top of the
1845 * function should deal with this safely.
1846 */
__spi_pump_messages(struct spi_controller * ctlr,bool in_kthread)1847 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1848 {
1849 struct spi_message *msg;
1850 bool was_busy = false;
1851 unsigned long flags;
1852 int ret;
1853
1854 /* Take the I/O mutex */
1855 mutex_lock(&ctlr->io_mutex);
1856
1857 /* Lock queue */
1858 spin_lock_irqsave(&ctlr->queue_lock, flags);
1859
1860 /* Make sure we are not already running a message */
1861 if (ctlr->cur_msg)
1862 goto out_unlock;
1863
1864 /* Check if the queue is idle */
1865 if (list_empty(&ctlr->queue) || !ctlr->running) {
1866 if (!ctlr->busy)
1867 goto out_unlock;
1868
1869 /* Defer any non-atomic teardown to the thread */
1870 if (!in_kthread) {
1871 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1872 !ctlr->unprepare_transfer_hardware) {
1873 spi_idle_runtime_pm(ctlr);
1874 ctlr->busy = false;
1875 ctlr->queue_empty = true;
1876 trace_spi_controller_idle(ctlr);
1877 } else {
1878 kthread_queue_work(ctlr->kworker,
1879 &ctlr->pump_messages);
1880 }
1881 goto out_unlock;
1882 }
1883
1884 ctlr->busy = false;
1885 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1886
1887 kfree(ctlr->dummy_rx);
1888 ctlr->dummy_rx = NULL;
1889 kfree(ctlr->dummy_tx);
1890 ctlr->dummy_tx = NULL;
1891 if (ctlr->unprepare_transfer_hardware &&
1892 ctlr->unprepare_transfer_hardware(ctlr))
1893 dev_err(&ctlr->dev,
1894 "failed to unprepare transfer hardware\n");
1895 spi_idle_runtime_pm(ctlr);
1896 trace_spi_controller_idle(ctlr);
1897
1898 spin_lock_irqsave(&ctlr->queue_lock, flags);
1899 ctlr->queue_empty = true;
1900 goto out_unlock;
1901 }
1902
1903 /* Extract head of queue */
1904 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1905 ctlr->cur_msg = msg;
1906
1907 list_del_init(&msg->queue);
1908 if (ctlr->busy)
1909 was_busy = true;
1910 else
1911 ctlr->busy = true;
1912 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1913
1914 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1915 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1916
1917 ctlr->cur_msg = NULL;
1918 ctlr->fallback = false;
1919
1920 mutex_unlock(&ctlr->io_mutex);
1921
1922 /* Prod the scheduler in case transfer_one() was busy waiting */
1923 if (!ret)
1924 cond_resched();
1925 return;
1926
1927 out_unlock:
1928 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1929 mutex_unlock(&ctlr->io_mutex);
1930 }
1931
1932 /**
1933 * spi_pump_messages - kthread work function which processes spi message queue
1934 * @work: pointer to kthread work struct contained in the controller struct
1935 */
spi_pump_messages(struct kthread_work * work)1936 static void spi_pump_messages(struct kthread_work *work)
1937 {
1938 struct spi_controller *ctlr =
1939 container_of(work, struct spi_controller, pump_messages);
1940
1941 __spi_pump_messages(ctlr, true);
1942 }
1943
1944 /**
1945 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1946 * @ctlr: Pointer to the spi_controller structure of the driver
1947 * @xfer: Pointer to the transfer being timestamped
1948 * @progress: How many words (not bytes) have been transferred so far
1949 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1950 * transfer, for less jitter in time measurement. Only compatible
1951 * with PIO drivers. If true, must follow up with
1952 * spi_take_timestamp_post or otherwise system will crash.
1953 * WARNING: for fully predictable results, the CPU frequency must
1954 * also be under control (governor).
1955 *
1956 * This is a helper for drivers to collect the beginning of the TX timestamp
1957 * for the requested byte from the SPI transfer. The frequency with which this
1958 * function must be called (once per word, once for the whole transfer, once
1959 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1960 * greater than or equal to the requested byte at the time of the call. The
1961 * timestamp is only taken once, at the first such call. It is assumed that
1962 * the driver advances its @tx buffer pointer monotonically.
1963 */
spi_take_timestamp_pre(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)1964 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1965 struct spi_transfer *xfer,
1966 size_t progress, bool irqs_off)
1967 {
1968 if (!xfer->ptp_sts)
1969 return;
1970
1971 if (xfer->timestamped)
1972 return;
1973
1974 if (progress > xfer->ptp_sts_word_pre)
1975 return;
1976
1977 /* Capture the resolution of the timestamp */
1978 xfer->ptp_sts_word_pre = progress;
1979
1980 if (irqs_off) {
1981 local_irq_save(ctlr->irq_flags);
1982 preempt_disable();
1983 }
1984
1985 ptp_read_system_prets(xfer->ptp_sts);
1986 }
1987 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1988
1989 /**
1990 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1991 * @ctlr: Pointer to the spi_controller structure of the driver
1992 * @xfer: Pointer to the transfer being timestamped
1993 * @progress: How many words (not bytes) have been transferred so far
1994 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1995 *
1996 * This is a helper for drivers to collect the end of the TX timestamp for
1997 * the requested byte from the SPI transfer. Can be called with an arbitrary
1998 * frequency: only the first call where @tx exceeds or is equal to the
1999 * requested word will be timestamped.
2000 */
spi_take_timestamp_post(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)2001 void spi_take_timestamp_post(struct spi_controller *ctlr,
2002 struct spi_transfer *xfer,
2003 size_t progress, bool irqs_off)
2004 {
2005 if (!xfer->ptp_sts)
2006 return;
2007
2008 if (xfer->timestamped)
2009 return;
2010
2011 if (progress < xfer->ptp_sts_word_post)
2012 return;
2013
2014 ptp_read_system_postts(xfer->ptp_sts);
2015
2016 if (irqs_off) {
2017 local_irq_restore(ctlr->irq_flags);
2018 preempt_enable();
2019 }
2020
2021 /* Capture the resolution of the timestamp */
2022 xfer->ptp_sts_word_post = progress;
2023
2024 xfer->timestamped = 1;
2025 }
2026 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2027
2028 /**
2029 * spi_set_thread_rt - set the controller to pump at realtime priority
2030 * @ctlr: controller to boost priority of
2031 *
2032 * This can be called because the controller requested realtime priority
2033 * (by setting the ->rt value before calling spi_register_controller()) or
2034 * because a device on the bus said that its transfers needed realtime
2035 * priority.
2036 *
2037 * NOTE: at the moment if any device on a bus says it needs realtime then
2038 * the thread will be at realtime priority for all transfers on that
2039 * controller. If this eventually becomes a problem we may see if we can
2040 * find a way to boost the priority only temporarily during relevant
2041 * transfers.
2042 */
spi_set_thread_rt(struct spi_controller * ctlr)2043 static void spi_set_thread_rt(struct spi_controller *ctlr)
2044 {
2045 dev_info(&ctlr->dev,
2046 "will run message pump with realtime priority\n");
2047 sched_set_fifo(ctlr->kworker->task);
2048 }
2049
spi_init_queue(struct spi_controller * ctlr)2050 static int spi_init_queue(struct spi_controller *ctlr)
2051 {
2052 ctlr->running = false;
2053 ctlr->busy = false;
2054 ctlr->queue_empty = true;
2055
2056 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2057 if (IS_ERR(ctlr->kworker)) {
2058 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2059 return PTR_ERR(ctlr->kworker);
2060 }
2061
2062 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2063
2064 /*
2065 * Controller config will indicate if this controller should run the
2066 * message pump with high (realtime) priority to reduce the transfer
2067 * latency on the bus by minimising the delay between a transfer
2068 * request and the scheduling of the message pump thread. Without this
2069 * setting the message pump thread will remain at default priority.
2070 */
2071 if (ctlr->rt)
2072 spi_set_thread_rt(ctlr);
2073
2074 return 0;
2075 }
2076
2077 /**
2078 * spi_get_next_queued_message() - called by driver to check for queued
2079 * messages
2080 * @ctlr: the controller to check for queued messages
2081 *
2082 * If there are more messages in the queue, the next message is returned from
2083 * this call.
2084 *
2085 * Return: the next message in the queue, else NULL if the queue is empty.
2086 */
spi_get_next_queued_message(struct spi_controller * ctlr)2087 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2088 {
2089 struct spi_message *next;
2090 unsigned long flags;
2091
2092 /* Get a pointer to the next message, if any */
2093 spin_lock_irqsave(&ctlr->queue_lock, flags);
2094 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2095 queue);
2096 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2097
2098 return next;
2099 }
2100 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2101
2102 /*
2103 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2104 * and spi_maybe_unoptimize_message()
2105 * @msg: the message to unoptimize
2106 *
2107 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2108 * core should use spi_maybe_unoptimize_message() rather than calling this
2109 * function directly.
2110 *
2111 * It is not valid to call this on a message that is not currently optimized.
2112 */
__spi_unoptimize_message(struct spi_message * msg)2113 static void __spi_unoptimize_message(struct spi_message *msg)
2114 {
2115 struct spi_controller *ctlr = msg->spi->controller;
2116
2117 if (ctlr->unoptimize_message)
2118 ctlr->unoptimize_message(msg);
2119
2120 spi_res_release(ctlr, msg);
2121
2122 msg->optimized = false;
2123 msg->opt_state = NULL;
2124 }
2125
2126 /*
2127 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2128 * @msg: the message to unoptimize
2129 *
2130 * This function is used to unoptimize a message if and only if it was
2131 * optimized by the core (via spi_maybe_optimize_message()).
2132 */
spi_maybe_unoptimize_message(struct spi_message * msg)2133 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2134 {
2135 if (!msg->pre_optimized && msg->optimized &&
2136 !msg->spi->controller->defer_optimize_message)
2137 __spi_unoptimize_message(msg);
2138 }
2139
2140 /**
2141 * spi_finalize_current_message() - the current message is complete
2142 * @ctlr: the controller to return the message to
2143 *
2144 * Called by the driver to notify the core that the message in the front of the
2145 * queue is complete and can be removed from the queue.
2146 */
spi_finalize_current_message(struct spi_controller * ctlr)2147 void spi_finalize_current_message(struct spi_controller *ctlr)
2148 {
2149 struct spi_transfer *xfer;
2150 struct spi_message *mesg;
2151 int ret;
2152
2153 mesg = ctlr->cur_msg;
2154
2155 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2156 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2157 ptp_read_system_postts(xfer->ptp_sts);
2158 xfer->ptp_sts_word_post = xfer->len;
2159 }
2160 }
2161
2162 if (unlikely(ctlr->ptp_sts_supported))
2163 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2164 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2165
2166 spi_unmap_msg(ctlr, mesg);
2167
2168 if (mesg->prepared && ctlr->unprepare_message) {
2169 ret = ctlr->unprepare_message(ctlr, mesg);
2170 if (ret) {
2171 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2172 ret);
2173 }
2174 }
2175
2176 mesg->prepared = false;
2177
2178 spi_maybe_unoptimize_message(mesg);
2179
2180 WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2181 smp_mb(); /* See __spi_pump_transfer_message()... */
2182 if (READ_ONCE(ctlr->cur_msg_need_completion))
2183 complete(&ctlr->cur_msg_completion);
2184
2185 trace_spi_message_done(mesg);
2186
2187 mesg->state = NULL;
2188 if (mesg->complete)
2189 mesg->complete(mesg->context);
2190 }
2191 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2192
spi_start_queue(struct spi_controller * ctlr)2193 static int spi_start_queue(struct spi_controller *ctlr)
2194 {
2195 unsigned long flags;
2196
2197 spin_lock_irqsave(&ctlr->queue_lock, flags);
2198
2199 if (ctlr->running || ctlr->busy) {
2200 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2201 return -EBUSY;
2202 }
2203
2204 ctlr->running = true;
2205 ctlr->cur_msg = NULL;
2206 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2207
2208 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2209
2210 return 0;
2211 }
2212
spi_stop_queue(struct spi_controller * ctlr)2213 static int spi_stop_queue(struct spi_controller *ctlr)
2214 {
2215 unsigned int limit = 500;
2216 unsigned long flags;
2217
2218 /*
2219 * This is a bit lame, but is optimized for the common execution path.
2220 * A wait_queue on the ctlr->busy could be used, but then the common
2221 * execution path (pump_messages) would be required to call wake_up or
2222 * friends on every SPI message. Do this instead.
2223 */
2224 do {
2225 spin_lock_irqsave(&ctlr->queue_lock, flags);
2226 if (list_empty(&ctlr->queue) && !ctlr->busy) {
2227 ctlr->running = false;
2228 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2229 return 0;
2230 }
2231 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2232 usleep_range(10000, 11000);
2233 } while (--limit);
2234
2235 return -EBUSY;
2236 }
2237
spi_destroy_queue(struct spi_controller * ctlr)2238 static int spi_destroy_queue(struct spi_controller *ctlr)
2239 {
2240 int ret;
2241
2242 ret = spi_stop_queue(ctlr);
2243
2244 /*
2245 * kthread_flush_worker will block until all work is done.
2246 * If the reason that stop_queue timed out is that the work will never
2247 * finish, then it does no good to call flush/stop thread, so
2248 * return anyway.
2249 */
2250 if (ret) {
2251 dev_err(&ctlr->dev, "problem destroying queue\n");
2252 return ret;
2253 }
2254
2255 kthread_destroy_worker(ctlr->kworker);
2256
2257 return 0;
2258 }
2259
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)2260 static int __spi_queued_transfer(struct spi_device *spi,
2261 struct spi_message *msg,
2262 bool need_pump)
2263 {
2264 struct spi_controller *ctlr = spi->controller;
2265 unsigned long flags;
2266
2267 spin_lock_irqsave(&ctlr->queue_lock, flags);
2268
2269 if (!ctlr->running) {
2270 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2271 return -ESHUTDOWN;
2272 }
2273 msg->actual_length = 0;
2274 msg->status = -EINPROGRESS;
2275
2276 list_add_tail(&msg->queue, &ctlr->queue);
2277 ctlr->queue_empty = false;
2278 if (!ctlr->busy && need_pump)
2279 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2280
2281 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2282 return 0;
2283 }
2284
2285 /**
2286 * spi_queued_transfer - transfer function for queued transfers
2287 * @spi: SPI device which is requesting transfer
2288 * @msg: SPI message which is to handled is queued to driver queue
2289 *
2290 * Return: zero on success, else a negative error code.
2291 */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)2292 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2293 {
2294 return __spi_queued_transfer(spi, msg, true);
2295 }
2296
spi_controller_initialize_queue(struct spi_controller * ctlr)2297 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2298 {
2299 int ret;
2300
2301 ctlr->transfer = spi_queued_transfer;
2302 if (!ctlr->transfer_one_message)
2303 ctlr->transfer_one_message = spi_transfer_one_message;
2304
2305 /* Initialize and start queue */
2306 ret = spi_init_queue(ctlr);
2307 if (ret) {
2308 dev_err(&ctlr->dev, "problem initializing queue\n");
2309 goto err_init_queue;
2310 }
2311 ctlr->queued = true;
2312 ret = spi_start_queue(ctlr);
2313 if (ret) {
2314 dev_err(&ctlr->dev, "problem starting queue\n");
2315 goto err_start_queue;
2316 }
2317
2318 return 0;
2319
2320 err_start_queue:
2321 spi_destroy_queue(ctlr);
2322 err_init_queue:
2323 return ret;
2324 }
2325
2326 /**
2327 * spi_flush_queue - Send all pending messages in the queue from the callers'
2328 * context
2329 * @ctlr: controller to process queue for
2330 *
2331 * This should be used when one wants to ensure all pending messages have been
2332 * sent before doing something. Is used by the spi-mem code to make sure SPI
2333 * memory operations do not preempt regular SPI transfers that have been queued
2334 * before the spi-mem operation.
2335 */
spi_flush_queue(struct spi_controller * ctlr)2336 void spi_flush_queue(struct spi_controller *ctlr)
2337 {
2338 if (ctlr->transfer == spi_queued_transfer)
2339 __spi_pump_messages(ctlr, false);
2340 }
2341
2342 /*-------------------------------------------------------------------------*/
2343
2344 #if defined(CONFIG_OF)
of_spi_parse_dt_cs_delay(struct device_node * nc,struct spi_delay * delay,const char * prop)2345 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2346 struct spi_delay *delay, const char *prop)
2347 {
2348 u32 value;
2349
2350 if (!of_property_read_u32(nc, prop, &value)) {
2351 if (value > U16_MAX) {
2352 delay->value = DIV_ROUND_UP(value, 1000);
2353 delay->unit = SPI_DELAY_UNIT_USECS;
2354 } else {
2355 delay->value = value;
2356 delay->unit = SPI_DELAY_UNIT_NSECS;
2357 }
2358 }
2359 }
2360
of_spi_parse_dt(struct spi_controller * ctlr,struct spi_device * spi,struct device_node * nc)2361 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2362 struct device_node *nc)
2363 {
2364 u32 value, cs[SPI_CS_CNT_MAX];
2365 int rc, idx;
2366
2367 /* Mode (clock phase/polarity/etc.) */
2368 if (of_property_read_bool(nc, "spi-cpha"))
2369 spi->mode |= SPI_CPHA;
2370 if (of_property_read_bool(nc, "spi-cpol"))
2371 spi->mode |= SPI_CPOL;
2372 if (of_property_read_bool(nc, "spi-3wire"))
2373 spi->mode |= SPI_3WIRE;
2374 if (of_property_read_bool(nc, "spi-lsb-first"))
2375 spi->mode |= SPI_LSB_FIRST;
2376 if (of_property_read_bool(nc, "spi-cs-high"))
2377 spi->mode |= SPI_CS_HIGH;
2378
2379 /* Device DUAL/QUAD mode */
2380 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2381 switch (value) {
2382 case 0:
2383 spi->mode |= SPI_NO_TX;
2384 break;
2385 case 1:
2386 break;
2387 case 2:
2388 spi->mode |= SPI_TX_DUAL;
2389 break;
2390 case 4:
2391 spi->mode |= SPI_TX_QUAD;
2392 break;
2393 case 8:
2394 spi->mode |= SPI_TX_OCTAL;
2395 break;
2396 default:
2397 dev_warn(&ctlr->dev,
2398 "spi-tx-bus-width %d not supported\n",
2399 value);
2400 break;
2401 }
2402 }
2403
2404 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2405 switch (value) {
2406 case 0:
2407 spi->mode |= SPI_NO_RX;
2408 break;
2409 case 1:
2410 break;
2411 case 2:
2412 spi->mode |= SPI_RX_DUAL;
2413 break;
2414 case 4:
2415 spi->mode |= SPI_RX_QUAD;
2416 break;
2417 case 8:
2418 spi->mode |= SPI_RX_OCTAL;
2419 break;
2420 default:
2421 dev_warn(&ctlr->dev,
2422 "spi-rx-bus-width %d not supported\n",
2423 value);
2424 break;
2425 }
2426 }
2427
2428 if (spi_controller_is_target(ctlr)) {
2429 if (!of_node_name_eq(nc, "slave")) {
2430 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2431 nc);
2432 return -EINVAL;
2433 }
2434 return 0;
2435 }
2436
2437 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2438 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2439 return -EINVAL;
2440 }
2441
2442 spi_set_all_cs_unused(spi);
2443
2444 /* Device address */
2445 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2446 SPI_CS_CNT_MAX);
2447 if (rc < 0) {
2448 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2449 nc, rc);
2450 return rc;
2451 }
2452 if (rc > ctlr->num_chipselect) {
2453 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2454 nc, rc);
2455 return rc;
2456 }
2457 if ((of_property_read_bool(nc, "parallel-memories")) &&
2458 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2459 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2460 return -EINVAL;
2461 }
2462 for (idx = 0; idx < rc; idx++)
2463 spi_set_chipselect(spi, idx, cs[idx]);
2464
2465 /*
2466 * By default spi->chip_select[0] will hold the physical CS number,
2467 * so set bit 0 in spi->cs_index_mask.
2468 */
2469 spi->cs_index_mask = BIT(0);
2470
2471 /* Device speed */
2472 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2473 spi->max_speed_hz = value;
2474
2475 /* Device CS delays */
2476 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2477 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2478 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2479
2480 return 0;
2481 }
2482
2483 static struct spi_device *
of_register_spi_device(struct spi_controller * ctlr,struct device_node * nc)2484 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2485 {
2486 struct spi_device *spi;
2487 int rc;
2488
2489 /* Alloc an spi_device */
2490 spi = spi_alloc_device(ctlr);
2491 if (!spi) {
2492 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2493 rc = -ENOMEM;
2494 goto err_out;
2495 }
2496
2497 /* Select device driver */
2498 rc = of_alias_from_compatible(nc, spi->modalias,
2499 sizeof(spi->modalias));
2500 if (rc < 0) {
2501 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2502 goto err_out;
2503 }
2504
2505 rc = of_spi_parse_dt(ctlr, spi, nc);
2506 if (rc)
2507 goto err_out;
2508
2509 /* Store a pointer to the node in the device structure */
2510 of_node_get(nc);
2511
2512 device_set_node(&spi->dev, of_fwnode_handle(nc));
2513
2514 /* Register the new device */
2515 rc = spi_add_device(spi);
2516 if (rc) {
2517 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2518 goto err_of_node_put;
2519 }
2520
2521 return spi;
2522
2523 err_of_node_put:
2524 of_node_put(nc);
2525 err_out:
2526 spi_dev_put(spi);
2527 return ERR_PTR(rc);
2528 }
2529
2530 /**
2531 * of_register_spi_devices() - Register child devices onto the SPI bus
2532 * @ctlr: Pointer to spi_controller device
2533 *
2534 * Registers an spi_device for each child node of controller node which
2535 * represents a valid SPI slave.
2536 */
of_register_spi_devices(struct spi_controller * ctlr)2537 static void of_register_spi_devices(struct spi_controller *ctlr)
2538 {
2539 struct spi_device *spi;
2540 struct device_node *nc;
2541
2542 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2543 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2544 continue;
2545 spi = of_register_spi_device(ctlr, nc);
2546 if (IS_ERR(spi)) {
2547 dev_warn(&ctlr->dev,
2548 "Failed to create SPI device for %pOF\n", nc);
2549 of_node_clear_flag(nc, OF_POPULATED);
2550 }
2551 }
2552 }
2553 #else
of_register_spi_devices(struct spi_controller * ctlr)2554 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2555 #endif
2556
2557 /**
2558 * spi_new_ancillary_device() - Register ancillary SPI device
2559 * @spi: Pointer to the main SPI device registering the ancillary device
2560 * @chip_select: Chip Select of the ancillary device
2561 *
2562 * Register an ancillary SPI device; for example some chips have a chip-select
2563 * for normal device usage and another one for setup/firmware upload.
2564 *
2565 * This may only be called from main SPI device's probe routine.
2566 *
2567 * Return: 0 on success; negative errno on failure
2568 */
spi_new_ancillary_device(struct spi_device * spi,u8 chip_select)2569 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2570 u8 chip_select)
2571 {
2572 struct spi_controller *ctlr = spi->controller;
2573 struct spi_device *ancillary;
2574 int rc;
2575
2576 /* Alloc an spi_device */
2577 ancillary = spi_alloc_device(ctlr);
2578 if (!ancillary) {
2579 rc = -ENOMEM;
2580 goto err_out;
2581 }
2582
2583 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2584
2585 /* Use provided chip-select for ancillary device */
2586 spi_set_all_cs_unused(ancillary);
2587 spi_set_chipselect(ancillary, 0, chip_select);
2588
2589 /* Take over SPI mode/speed from SPI main device */
2590 ancillary->max_speed_hz = spi->max_speed_hz;
2591 ancillary->mode = spi->mode;
2592 /*
2593 * By default spi->chip_select[0] will hold the physical CS number,
2594 * so set bit 0 in spi->cs_index_mask.
2595 */
2596 ancillary->cs_index_mask = BIT(0);
2597
2598 WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2599
2600 /* Register the new device */
2601 rc = __spi_add_device(ancillary);
2602 if (rc) {
2603 dev_err(&spi->dev, "failed to register ancillary device\n");
2604 goto err_out;
2605 }
2606
2607 return ancillary;
2608
2609 err_out:
2610 spi_dev_put(ancillary);
2611 return ERR_PTR(rc);
2612 }
2613 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2614
2615 #ifdef CONFIG_ACPI
2616 struct acpi_spi_lookup {
2617 struct spi_controller *ctlr;
2618 u32 max_speed_hz;
2619 u32 mode;
2620 int irq;
2621 u8 bits_per_word;
2622 u8 chip_select;
2623 int n;
2624 int index;
2625 };
2626
acpi_spi_count(struct acpi_resource * ares,void * data)2627 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2628 {
2629 struct acpi_resource_spi_serialbus *sb;
2630 int *count = data;
2631
2632 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2633 return 1;
2634
2635 sb = &ares->data.spi_serial_bus;
2636 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2637 return 1;
2638
2639 *count = *count + 1;
2640
2641 return 1;
2642 }
2643
2644 /**
2645 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2646 * @adev: ACPI device
2647 *
2648 * Return: the number of SpiSerialBus resources in the ACPI-device's
2649 * resource-list; or a negative error code.
2650 */
acpi_spi_count_resources(struct acpi_device * adev)2651 int acpi_spi_count_resources(struct acpi_device *adev)
2652 {
2653 LIST_HEAD(r);
2654 int count = 0;
2655 int ret;
2656
2657 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2658 if (ret < 0)
2659 return ret;
2660
2661 acpi_dev_free_resource_list(&r);
2662
2663 return count;
2664 }
2665 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2666
acpi_spi_parse_apple_properties(struct acpi_device * dev,struct acpi_spi_lookup * lookup)2667 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2668 struct acpi_spi_lookup *lookup)
2669 {
2670 const union acpi_object *obj;
2671
2672 if (!x86_apple_machine)
2673 return;
2674
2675 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2676 && obj->buffer.length >= 4)
2677 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2678
2679 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2680 && obj->buffer.length == 8)
2681 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2682
2683 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2684 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2685 lookup->mode |= SPI_LSB_FIRST;
2686
2687 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2688 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2689 lookup->mode |= SPI_CPOL;
2690
2691 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2692 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2693 lookup->mode |= SPI_CPHA;
2694 }
2695
acpi_spi_add_resource(struct acpi_resource * ares,void * data)2696 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2697 {
2698 struct acpi_spi_lookup *lookup = data;
2699 struct spi_controller *ctlr = lookup->ctlr;
2700
2701 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2702 struct acpi_resource_spi_serialbus *sb;
2703 acpi_handle parent_handle;
2704 acpi_status status;
2705
2706 sb = &ares->data.spi_serial_bus;
2707 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2708
2709 if (lookup->index != -1 && lookup->n++ != lookup->index)
2710 return 1;
2711
2712 status = acpi_get_handle(NULL,
2713 sb->resource_source.string_ptr,
2714 &parent_handle);
2715
2716 if (ACPI_FAILURE(status))
2717 return -ENODEV;
2718
2719 if (ctlr) {
2720 if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle))
2721 return -ENODEV;
2722 } else {
2723 struct acpi_device *adev;
2724
2725 adev = acpi_fetch_acpi_dev(parent_handle);
2726 if (!adev)
2727 return -ENODEV;
2728
2729 ctlr = acpi_spi_find_controller_by_adev(adev);
2730 if (!ctlr)
2731 return -EPROBE_DEFER;
2732
2733 lookup->ctlr = ctlr;
2734 }
2735
2736 /*
2737 * ACPI DeviceSelection numbering is handled by the
2738 * host controller driver in Windows and can vary
2739 * from driver to driver. In Linux we always expect
2740 * 0 .. max - 1 so we need to ask the driver to
2741 * translate between the two schemes.
2742 */
2743 if (ctlr->fw_translate_cs) {
2744 int cs = ctlr->fw_translate_cs(ctlr,
2745 sb->device_selection);
2746 if (cs < 0)
2747 return cs;
2748 lookup->chip_select = cs;
2749 } else {
2750 lookup->chip_select = sb->device_selection;
2751 }
2752
2753 lookup->max_speed_hz = sb->connection_speed;
2754 lookup->bits_per_word = sb->data_bit_length;
2755
2756 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2757 lookup->mode |= SPI_CPHA;
2758 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2759 lookup->mode |= SPI_CPOL;
2760 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2761 lookup->mode |= SPI_CS_HIGH;
2762 }
2763 } else if (lookup->irq < 0) {
2764 struct resource r;
2765
2766 if (acpi_dev_resource_interrupt(ares, 0, &r))
2767 lookup->irq = r.start;
2768 }
2769
2770 /* Always tell the ACPI core to skip this resource */
2771 return 1;
2772 }
2773
2774 /**
2775 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2776 * @ctlr: controller to which the spi device belongs
2777 * @adev: ACPI Device for the spi device
2778 * @index: Index of the spi resource inside the ACPI Node
2779 *
2780 * This should be used to allocate a new SPI device from and ACPI Device node.
2781 * The caller is responsible for calling spi_add_device to register the SPI device.
2782 *
2783 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2784 * using the resource.
2785 * If index is set to -1, index is not used.
2786 * Note: If index is -1, ctlr must be set.
2787 *
2788 * Return: a pointer to the new device, or ERR_PTR on error.
2789 */
acpi_spi_device_alloc(struct spi_controller * ctlr,struct acpi_device * adev,int index)2790 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2791 struct acpi_device *adev,
2792 int index)
2793 {
2794 acpi_handle parent_handle = NULL;
2795 struct list_head resource_list;
2796 struct acpi_spi_lookup lookup = {};
2797 struct spi_device *spi;
2798 int ret;
2799
2800 if (!ctlr && index == -1)
2801 return ERR_PTR(-EINVAL);
2802
2803 lookup.ctlr = ctlr;
2804 lookup.irq = -1;
2805 lookup.index = index;
2806 lookup.n = 0;
2807
2808 INIT_LIST_HEAD(&resource_list);
2809 ret = acpi_dev_get_resources(adev, &resource_list,
2810 acpi_spi_add_resource, &lookup);
2811 acpi_dev_free_resource_list(&resource_list);
2812
2813 if (ret < 0)
2814 /* Found SPI in _CRS but it points to another controller */
2815 return ERR_PTR(ret);
2816
2817 if (!lookup.max_speed_hz &&
2818 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2819 device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) {
2820 /* Apple does not use _CRS but nested devices for SPI slaves */
2821 acpi_spi_parse_apple_properties(adev, &lookup);
2822 }
2823
2824 if (!lookup.max_speed_hz)
2825 return ERR_PTR(-ENODEV);
2826
2827 spi = spi_alloc_device(lookup.ctlr);
2828 if (!spi) {
2829 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2830 dev_name(&adev->dev));
2831 return ERR_PTR(-ENOMEM);
2832 }
2833
2834 spi_set_all_cs_unused(spi);
2835 spi_set_chipselect(spi, 0, lookup.chip_select);
2836
2837 ACPI_COMPANION_SET(&spi->dev, adev);
2838 spi->max_speed_hz = lookup.max_speed_hz;
2839 spi->mode |= lookup.mode;
2840 spi->irq = lookup.irq;
2841 spi->bits_per_word = lookup.bits_per_word;
2842 /*
2843 * By default spi->chip_select[0] will hold the physical CS number,
2844 * so set bit 0 in spi->cs_index_mask.
2845 */
2846 spi->cs_index_mask = BIT(0);
2847
2848 return spi;
2849 }
2850 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2851
acpi_register_spi_device(struct spi_controller * ctlr,struct acpi_device * adev)2852 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2853 struct acpi_device *adev)
2854 {
2855 struct spi_device *spi;
2856
2857 if (acpi_bus_get_status(adev) || !adev->status.present ||
2858 acpi_device_enumerated(adev))
2859 return AE_OK;
2860
2861 spi = acpi_spi_device_alloc(ctlr, adev, -1);
2862 if (IS_ERR(spi)) {
2863 if (PTR_ERR(spi) == -ENOMEM)
2864 return AE_NO_MEMORY;
2865 else
2866 return AE_OK;
2867 }
2868
2869 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2870 sizeof(spi->modalias));
2871
2872 if (spi->irq < 0)
2873 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2874
2875 acpi_device_set_enumerated(adev);
2876
2877 adev->power.flags.ignore_parent = true;
2878 if (spi_add_device(spi)) {
2879 adev->power.flags.ignore_parent = false;
2880 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2881 dev_name(&adev->dev));
2882 spi_dev_put(spi);
2883 }
2884
2885 return AE_OK;
2886 }
2887
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)2888 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2889 void *data, void **return_value)
2890 {
2891 struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2892 struct spi_controller *ctlr = data;
2893
2894 if (!adev)
2895 return AE_OK;
2896
2897 return acpi_register_spi_device(ctlr, adev);
2898 }
2899
2900 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2901
acpi_register_spi_devices(struct spi_controller * ctlr)2902 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2903 {
2904 acpi_status status;
2905 acpi_handle handle;
2906
2907 handle = ACPI_HANDLE(ctlr->dev.parent);
2908 if (!handle)
2909 return;
2910
2911 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2912 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2913 acpi_spi_add_device, NULL, ctlr, NULL);
2914 if (ACPI_FAILURE(status))
2915 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2916 }
2917 #else
acpi_register_spi_devices(struct spi_controller * ctlr)2918 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2919 #endif /* CONFIG_ACPI */
2920
spi_controller_release(struct device * dev)2921 static void spi_controller_release(struct device *dev)
2922 {
2923 struct spi_controller *ctlr;
2924
2925 ctlr = container_of(dev, struct spi_controller, dev);
2926 kfree(ctlr);
2927 }
2928
2929 static struct class spi_master_class = {
2930 .name = "spi_master",
2931 .dev_release = spi_controller_release,
2932 .dev_groups = spi_master_groups,
2933 };
2934
2935 #ifdef CONFIG_SPI_SLAVE
2936 /**
2937 * spi_target_abort - abort the ongoing transfer request on an SPI slave
2938 * controller
2939 * @spi: device used for the current transfer
2940 */
spi_target_abort(struct spi_device * spi)2941 int spi_target_abort(struct spi_device *spi)
2942 {
2943 struct spi_controller *ctlr = spi->controller;
2944
2945 if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2946 return ctlr->target_abort(ctlr);
2947
2948 return -ENOTSUPP;
2949 }
2950 EXPORT_SYMBOL_GPL(spi_target_abort);
2951
slave_show(struct device * dev,struct device_attribute * attr,char * buf)2952 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2953 char *buf)
2954 {
2955 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2956 dev);
2957 struct device *child;
2958
2959 child = device_find_any_child(&ctlr->dev);
2960 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2961 }
2962
slave_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2963 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2964 const char *buf, size_t count)
2965 {
2966 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2967 dev);
2968 struct spi_device *spi;
2969 struct device *child;
2970 char name[32];
2971 int rc;
2972
2973 rc = sscanf(buf, "%31s", name);
2974 if (rc != 1 || !name[0])
2975 return -EINVAL;
2976
2977 child = device_find_any_child(&ctlr->dev);
2978 if (child) {
2979 /* Remove registered slave */
2980 device_unregister(child);
2981 put_device(child);
2982 }
2983
2984 if (strcmp(name, "(null)")) {
2985 /* Register new slave */
2986 spi = spi_alloc_device(ctlr);
2987 if (!spi)
2988 return -ENOMEM;
2989
2990 strscpy(spi->modalias, name, sizeof(spi->modalias));
2991
2992 rc = spi_add_device(spi);
2993 if (rc) {
2994 spi_dev_put(spi);
2995 return rc;
2996 }
2997 }
2998
2999 return count;
3000 }
3001
3002 static DEVICE_ATTR_RW(slave);
3003
3004 static struct attribute *spi_slave_attrs[] = {
3005 &dev_attr_slave.attr,
3006 NULL,
3007 };
3008
3009 static const struct attribute_group spi_slave_group = {
3010 .attrs = spi_slave_attrs,
3011 };
3012
3013 static const struct attribute_group *spi_slave_groups[] = {
3014 &spi_controller_statistics_group,
3015 &spi_slave_group,
3016 NULL,
3017 };
3018
3019 static struct class spi_slave_class = {
3020 .name = "spi_slave",
3021 .dev_release = spi_controller_release,
3022 .dev_groups = spi_slave_groups,
3023 };
3024 #else
3025 extern struct class spi_slave_class; /* dummy */
3026 #endif
3027
3028 /**
3029 * __spi_alloc_controller - allocate an SPI master or slave controller
3030 * @dev: the controller, possibly using the platform_bus
3031 * @size: how much zeroed driver-private data to allocate; the pointer to this
3032 * memory is in the driver_data field of the returned device, accessible
3033 * with spi_controller_get_devdata(); the memory is cacheline aligned;
3034 * drivers granting DMA access to portions of their private data need to
3035 * round up @size using ALIGN(size, dma_get_cache_alignment()).
3036 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3037 * slave (true) controller
3038 * Context: can sleep
3039 *
3040 * This call is used only by SPI controller drivers, which are the
3041 * only ones directly touching chip registers. It's how they allocate
3042 * an spi_controller structure, prior to calling spi_register_controller().
3043 *
3044 * This must be called from context that can sleep.
3045 *
3046 * The caller is responsible for assigning the bus number and initializing the
3047 * controller's methods before calling spi_register_controller(); and (after
3048 * errors adding the device) calling spi_controller_put() to prevent a memory
3049 * leak.
3050 *
3051 * Return: the SPI controller structure on success, else NULL.
3052 */
__spi_alloc_controller(struct device * dev,unsigned int size,bool slave)3053 struct spi_controller *__spi_alloc_controller(struct device *dev,
3054 unsigned int size, bool slave)
3055 {
3056 struct spi_controller *ctlr;
3057 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3058
3059 if (!dev)
3060 return NULL;
3061
3062 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3063 if (!ctlr)
3064 return NULL;
3065
3066 device_initialize(&ctlr->dev);
3067 INIT_LIST_HEAD(&ctlr->queue);
3068 spin_lock_init(&ctlr->queue_lock);
3069 spin_lock_init(&ctlr->bus_lock_spinlock);
3070 mutex_init(&ctlr->bus_lock_mutex);
3071 mutex_init(&ctlr->io_mutex);
3072 mutex_init(&ctlr->add_lock);
3073 ctlr->bus_num = -1;
3074 ctlr->num_chipselect = 1;
3075 ctlr->slave = slave;
3076 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3077 ctlr->dev.class = &spi_slave_class;
3078 else
3079 ctlr->dev.class = &spi_master_class;
3080 ctlr->dev.parent = dev;
3081 pm_suspend_ignore_children(&ctlr->dev, true);
3082 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3083
3084 return ctlr;
3085 }
3086 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3087
devm_spi_release_controller(struct device * dev,void * ctlr)3088 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3089 {
3090 spi_controller_put(*(struct spi_controller **)ctlr);
3091 }
3092
3093 /**
3094 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3095 * @dev: physical device of SPI controller
3096 * @size: how much zeroed driver-private data to allocate
3097 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3098 * Context: can sleep
3099 *
3100 * Allocate an SPI controller and automatically release a reference on it
3101 * when @dev is unbound from its driver. Drivers are thus relieved from
3102 * having to call spi_controller_put().
3103 *
3104 * The arguments to this function are identical to __spi_alloc_controller().
3105 *
3106 * Return: the SPI controller structure on success, else NULL.
3107 */
__devm_spi_alloc_controller(struct device * dev,unsigned int size,bool slave)3108 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3109 unsigned int size,
3110 bool slave)
3111 {
3112 struct spi_controller **ptr, *ctlr;
3113
3114 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3115 GFP_KERNEL);
3116 if (!ptr)
3117 return NULL;
3118
3119 ctlr = __spi_alloc_controller(dev, size, slave);
3120 if (ctlr) {
3121 ctlr->devm_allocated = true;
3122 *ptr = ctlr;
3123 devres_add(dev, ptr);
3124 } else {
3125 devres_free(ptr);
3126 }
3127
3128 return ctlr;
3129 }
3130 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3131
3132 /**
3133 * spi_get_gpio_descs() - grab chip select GPIOs for the master
3134 * @ctlr: The SPI master to grab GPIO descriptors for
3135 */
spi_get_gpio_descs(struct spi_controller * ctlr)3136 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3137 {
3138 int nb, i;
3139 struct gpio_desc **cs;
3140 struct device *dev = &ctlr->dev;
3141 unsigned long native_cs_mask = 0;
3142 unsigned int num_cs_gpios = 0;
3143
3144 nb = gpiod_count(dev, "cs");
3145 if (nb < 0) {
3146 /* No GPIOs at all is fine, else return the error */
3147 if (nb == -ENOENT)
3148 return 0;
3149 return nb;
3150 }
3151
3152 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3153
3154 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3155 GFP_KERNEL);
3156 if (!cs)
3157 return -ENOMEM;
3158 ctlr->cs_gpiods = cs;
3159
3160 for (i = 0; i < nb; i++) {
3161 /*
3162 * Most chipselects are active low, the inverted
3163 * semantics are handled by special quirks in gpiolib,
3164 * so initializing them GPIOD_OUT_LOW here means
3165 * "unasserted", in most cases this will drive the physical
3166 * line high.
3167 */
3168 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3169 GPIOD_OUT_LOW);
3170 if (IS_ERR(cs[i]))
3171 return PTR_ERR(cs[i]);
3172
3173 if (cs[i]) {
3174 /*
3175 * If we find a CS GPIO, name it after the device and
3176 * chip select line.
3177 */
3178 char *gpioname;
3179
3180 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3181 dev_name(dev), i);
3182 if (!gpioname)
3183 return -ENOMEM;
3184 gpiod_set_consumer_name(cs[i], gpioname);
3185 num_cs_gpios++;
3186 continue;
3187 }
3188
3189 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3190 dev_err(dev, "Invalid native chip select %d\n", i);
3191 return -EINVAL;
3192 }
3193 native_cs_mask |= BIT(i);
3194 }
3195
3196 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3197
3198 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3199 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3200 dev_err(dev, "No unused native chip select available\n");
3201 return -EINVAL;
3202 }
3203
3204 return 0;
3205 }
3206
spi_controller_check_ops(struct spi_controller * ctlr)3207 static int spi_controller_check_ops(struct spi_controller *ctlr)
3208 {
3209 /*
3210 * The controller may implement only the high-level SPI-memory like
3211 * operations if it does not support regular SPI transfers, and this is
3212 * valid use case.
3213 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3214 * one of the ->transfer_xxx() method be implemented.
3215 */
3216 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3217 if (!ctlr->transfer && !ctlr->transfer_one &&
3218 !ctlr->transfer_one_message) {
3219 return -EINVAL;
3220 }
3221 }
3222
3223 return 0;
3224 }
3225
3226 /* Allocate dynamic bus number using Linux idr */
spi_controller_id_alloc(struct spi_controller * ctlr,int start,int end)3227 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3228 {
3229 int id;
3230
3231 mutex_lock(&board_lock);
3232 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3233 mutex_unlock(&board_lock);
3234 if (WARN(id < 0, "couldn't get idr"))
3235 return id == -ENOSPC ? -EBUSY : id;
3236 ctlr->bus_num = id;
3237 return 0;
3238 }
3239
3240 /**
3241 * spi_register_controller - register SPI master or slave controller
3242 * @ctlr: initialized master, originally from spi_alloc_master() or
3243 * spi_alloc_slave()
3244 * Context: can sleep
3245 *
3246 * SPI controllers connect to their drivers using some non-SPI bus,
3247 * such as the platform bus. The final stage of probe() in that code
3248 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3249 *
3250 * SPI controllers use board specific (often SOC specific) bus numbers,
3251 * and board-specific addressing for SPI devices combines those numbers
3252 * with chip select numbers. Since SPI does not directly support dynamic
3253 * device identification, boards need configuration tables telling which
3254 * chip is at which address.
3255 *
3256 * This must be called from context that can sleep. It returns zero on
3257 * success, else a negative error code (dropping the controller's refcount).
3258 * After a successful return, the caller is responsible for calling
3259 * spi_unregister_controller().
3260 *
3261 * Return: zero on success, else a negative error code.
3262 */
spi_register_controller(struct spi_controller * ctlr)3263 int spi_register_controller(struct spi_controller *ctlr)
3264 {
3265 struct device *dev = ctlr->dev.parent;
3266 struct boardinfo *bi;
3267 int first_dynamic;
3268 int status;
3269 int idx;
3270
3271 if (!dev)
3272 return -ENODEV;
3273
3274 /*
3275 * Make sure all necessary hooks are implemented before registering
3276 * the SPI controller.
3277 */
3278 status = spi_controller_check_ops(ctlr);
3279 if (status)
3280 return status;
3281
3282 if (ctlr->bus_num < 0)
3283 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3284 if (ctlr->bus_num >= 0) {
3285 /* Devices with a fixed bus num must check-in with the num */
3286 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3287 if (status)
3288 return status;
3289 }
3290 if (ctlr->bus_num < 0) {
3291 first_dynamic = of_alias_get_highest_id("spi");
3292 if (first_dynamic < 0)
3293 first_dynamic = 0;
3294 else
3295 first_dynamic++;
3296
3297 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3298 if (status)
3299 return status;
3300 }
3301 ctlr->bus_lock_flag = 0;
3302 init_completion(&ctlr->xfer_completion);
3303 init_completion(&ctlr->cur_msg_completion);
3304 if (!ctlr->max_dma_len)
3305 ctlr->max_dma_len = INT_MAX;
3306
3307 /*
3308 * Register the device, then userspace will see it.
3309 * Registration fails if the bus ID is in use.
3310 */
3311 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3312
3313 if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) {
3314 status = spi_get_gpio_descs(ctlr);
3315 if (status)
3316 goto free_bus_id;
3317 /*
3318 * A controller using GPIO descriptors always
3319 * supports SPI_CS_HIGH if need be.
3320 */
3321 ctlr->mode_bits |= SPI_CS_HIGH;
3322 }
3323
3324 /*
3325 * Even if it's just one always-selected device, there must
3326 * be at least one chipselect.
3327 */
3328 if (!ctlr->num_chipselect) {
3329 status = -EINVAL;
3330 goto free_bus_id;
3331 }
3332
3333 /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3334 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3335 ctlr->last_cs[idx] = SPI_INVALID_CS;
3336
3337 status = device_add(&ctlr->dev);
3338 if (status < 0)
3339 goto free_bus_id;
3340 dev_dbg(dev, "registered %s %s\n",
3341 spi_controller_is_target(ctlr) ? "target" : "host",
3342 dev_name(&ctlr->dev));
3343
3344 /*
3345 * If we're using a queued driver, start the queue. Note that we don't
3346 * need the queueing logic if the driver is only supporting high-level
3347 * memory operations.
3348 */
3349 if (ctlr->transfer) {
3350 dev_info(dev, "controller is unqueued, this is deprecated\n");
3351 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3352 status = spi_controller_initialize_queue(ctlr);
3353 if (status) {
3354 device_del(&ctlr->dev);
3355 goto free_bus_id;
3356 }
3357 }
3358 /* Add statistics */
3359 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3360 if (!ctlr->pcpu_statistics) {
3361 dev_err(dev, "Error allocating per-cpu statistics\n");
3362 status = -ENOMEM;
3363 goto destroy_queue;
3364 }
3365
3366 mutex_lock(&board_lock);
3367 list_add_tail(&ctlr->list, &spi_controller_list);
3368 list_for_each_entry(bi, &board_list, list)
3369 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3370 mutex_unlock(&board_lock);
3371
3372 /* Register devices from the device tree and ACPI */
3373 of_register_spi_devices(ctlr);
3374 acpi_register_spi_devices(ctlr);
3375 return status;
3376
3377 destroy_queue:
3378 spi_destroy_queue(ctlr);
3379 free_bus_id:
3380 mutex_lock(&board_lock);
3381 idr_remove(&spi_master_idr, ctlr->bus_num);
3382 mutex_unlock(&board_lock);
3383 return status;
3384 }
3385 EXPORT_SYMBOL_GPL(spi_register_controller);
3386
devm_spi_unregister(struct device * dev,void * res)3387 static void devm_spi_unregister(struct device *dev, void *res)
3388 {
3389 spi_unregister_controller(*(struct spi_controller **)res);
3390 }
3391
3392 /**
3393 * devm_spi_register_controller - register managed SPI master or slave
3394 * controller
3395 * @dev: device managing SPI controller
3396 * @ctlr: initialized controller, originally from spi_alloc_master() or
3397 * spi_alloc_slave()
3398 * Context: can sleep
3399 *
3400 * Register a SPI device as with spi_register_controller() which will
3401 * automatically be unregistered and freed.
3402 *
3403 * Return: zero on success, else a negative error code.
3404 */
devm_spi_register_controller(struct device * dev,struct spi_controller * ctlr)3405 int devm_spi_register_controller(struct device *dev,
3406 struct spi_controller *ctlr)
3407 {
3408 struct spi_controller **ptr;
3409 int ret;
3410
3411 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3412 if (!ptr)
3413 return -ENOMEM;
3414
3415 ret = spi_register_controller(ctlr);
3416 if (!ret) {
3417 *ptr = ctlr;
3418 devres_add(dev, ptr);
3419 } else {
3420 devres_free(ptr);
3421 }
3422
3423 return ret;
3424 }
3425 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3426
__unregister(struct device * dev,void * null)3427 static int __unregister(struct device *dev, void *null)
3428 {
3429 spi_unregister_device(to_spi_device(dev));
3430 return 0;
3431 }
3432
3433 /**
3434 * spi_unregister_controller - unregister SPI master or slave controller
3435 * @ctlr: the controller being unregistered
3436 * Context: can sleep
3437 *
3438 * This call is used only by SPI controller drivers, which are the
3439 * only ones directly touching chip registers.
3440 *
3441 * This must be called from context that can sleep.
3442 *
3443 * Note that this function also drops a reference to the controller.
3444 */
spi_unregister_controller(struct spi_controller * ctlr)3445 void spi_unregister_controller(struct spi_controller *ctlr)
3446 {
3447 struct spi_controller *found;
3448 int id = ctlr->bus_num;
3449
3450 /* Prevent addition of new devices, unregister existing ones */
3451 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3452 mutex_lock(&ctlr->add_lock);
3453
3454 device_for_each_child(&ctlr->dev, NULL, __unregister);
3455
3456 /* First make sure that this controller was ever added */
3457 mutex_lock(&board_lock);
3458 found = idr_find(&spi_master_idr, id);
3459 mutex_unlock(&board_lock);
3460 if (ctlr->queued) {
3461 if (spi_destroy_queue(ctlr))
3462 dev_err(&ctlr->dev, "queue remove failed\n");
3463 }
3464 mutex_lock(&board_lock);
3465 list_del(&ctlr->list);
3466 mutex_unlock(&board_lock);
3467
3468 device_del(&ctlr->dev);
3469
3470 /* Free bus id */
3471 mutex_lock(&board_lock);
3472 if (found == ctlr)
3473 idr_remove(&spi_master_idr, id);
3474 mutex_unlock(&board_lock);
3475
3476 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3477 mutex_unlock(&ctlr->add_lock);
3478
3479 /*
3480 * Release the last reference on the controller if its driver
3481 * has not yet been converted to devm_spi_alloc_master/slave().
3482 */
3483 if (!ctlr->devm_allocated)
3484 put_device(&ctlr->dev);
3485 }
3486 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3487
__spi_check_suspended(const struct spi_controller * ctlr)3488 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3489 {
3490 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3491 }
3492
__spi_mark_suspended(struct spi_controller * ctlr)3493 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3494 {
3495 mutex_lock(&ctlr->bus_lock_mutex);
3496 ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3497 mutex_unlock(&ctlr->bus_lock_mutex);
3498 }
3499
__spi_mark_resumed(struct spi_controller * ctlr)3500 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3501 {
3502 mutex_lock(&ctlr->bus_lock_mutex);
3503 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3504 mutex_unlock(&ctlr->bus_lock_mutex);
3505 }
3506
spi_controller_suspend(struct spi_controller * ctlr)3507 int spi_controller_suspend(struct spi_controller *ctlr)
3508 {
3509 int ret = 0;
3510
3511 /* Basically no-ops for non-queued controllers */
3512 if (ctlr->queued) {
3513 ret = spi_stop_queue(ctlr);
3514 if (ret)
3515 dev_err(&ctlr->dev, "queue stop failed\n");
3516 }
3517
3518 __spi_mark_suspended(ctlr);
3519 return ret;
3520 }
3521 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3522
spi_controller_resume(struct spi_controller * ctlr)3523 int spi_controller_resume(struct spi_controller *ctlr)
3524 {
3525 int ret = 0;
3526
3527 __spi_mark_resumed(ctlr);
3528
3529 if (ctlr->queued) {
3530 ret = spi_start_queue(ctlr);
3531 if (ret)
3532 dev_err(&ctlr->dev, "queue restart failed\n");
3533 }
3534 return ret;
3535 }
3536 EXPORT_SYMBOL_GPL(spi_controller_resume);
3537
3538 /*-------------------------------------------------------------------------*/
3539
3540 /* Core methods for spi_message alterations */
3541
__spi_replace_transfers_release(struct spi_controller * ctlr,struct spi_message * msg,void * res)3542 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3543 struct spi_message *msg,
3544 void *res)
3545 {
3546 struct spi_replaced_transfers *rxfer = res;
3547 size_t i;
3548
3549 /* Call extra callback if requested */
3550 if (rxfer->release)
3551 rxfer->release(ctlr, msg, res);
3552
3553 /* Insert replaced transfers back into the message */
3554 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3555
3556 /* Remove the formerly inserted entries */
3557 for (i = 0; i < rxfer->inserted; i++)
3558 list_del(&rxfer->inserted_transfers[i].transfer_list);
3559 }
3560
3561 /**
3562 * spi_replace_transfers - replace transfers with several transfers
3563 * and register change with spi_message.resources
3564 * @msg: the spi_message we work upon
3565 * @xfer_first: the first spi_transfer we want to replace
3566 * @remove: number of transfers to remove
3567 * @insert: the number of transfers we want to insert instead
3568 * @release: extra release code necessary in some circumstances
3569 * @extradatasize: extra data to allocate (with alignment guarantees
3570 * of struct @spi_transfer)
3571 * @gfp: gfp flags
3572 *
3573 * Returns: pointer to @spi_replaced_transfers,
3574 * PTR_ERR(...) in case of errors.
3575 */
spi_replace_transfers(struct spi_message * msg,struct spi_transfer * xfer_first,size_t remove,size_t insert,spi_replaced_release_t release,size_t extradatasize,gfp_t gfp)3576 static struct spi_replaced_transfers *spi_replace_transfers(
3577 struct spi_message *msg,
3578 struct spi_transfer *xfer_first,
3579 size_t remove,
3580 size_t insert,
3581 spi_replaced_release_t release,
3582 size_t extradatasize,
3583 gfp_t gfp)
3584 {
3585 struct spi_replaced_transfers *rxfer;
3586 struct spi_transfer *xfer;
3587 size_t i;
3588
3589 /* Allocate the structure using spi_res */
3590 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3591 struct_size(rxfer, inserted_transfers, insert)
3592 + extradatasize,
3593 gfp);
3594 if (!rxfer)
3595 return ERR_PTR(-ENOMEM);
3596
3597 /* The release code to invoke before running the generic release */
3598 rxfer->release = release;
3599
3600 /* Assign extradata */
3601 if (extradatasize)
3602 rxfer->extradata =
3603 &rxfer->inserted_transfers[insert];
3604
3605 /* Init the replaced_transfers list */
3606 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3607
3608 /*
3609 * Assign the list_entry after which we should reinsert
3610 * the @replaced_transfers - it may be spi_message.messages!
3611 */
3612 rxfer->replaced_after = xfer_first->transfer_list.prev;
3613
3614 /* Remove the requested number of transfers */
3615 for (i = 0; i < remove; i++) {
3616 /*
3617 * If the entry after replaced_after it is msg->transfers
3618 * then we have been requested to remove more transfers
3619 * than are in the list.
3620 */
3621 if (rxfer->replaced_after->next == &msg->transfers) {
3622 dev_err(&msg->spi->dev,
3623 "requested to remove more spi_transfers than are available\n");
3624 /* Insert replaced transfers back into the message */
3625 list_splice(&rxfer->replaced_transfers,
3626 rxfer->replaced_after);
3627
3628 /* Free the spi_replace_transfer structure... */
3629 spi_res_free(rxfer);
3630
3631 /* ...and return with an error */
3632 return ERR_PTR(-EINVAL);
3633 }
3634
3635 /*
3636 * Remove the entry after replaced_after from list of
3637 * transfers and add it to list of replaced_transfers.
3638 */
3639 list_move_tail(rxfer->replaced_after->next,
3640 &rxfer->replaced_transfers);
3641 }
3642
3643 /*
3644 * Create copy of the given xfer with identical settings
3645 * based on the first transfer to get removed.
3646 */
3647 for (i = 0; i < insert; i++) {
3648 /* We need to run in reverse order */
3649 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3650
3651 /* Copy all spi_transfer data */
3652 memcpy(xfer, xfer_first, sizeof(*xfer));
3653
3654 /* Add to list */
3655 list_add(&xfer->transfer_list, rxfer->replaced_after);
3656
3657 /* Clear cs_change and delay for all but the last */
3658 if (i) {
3659 xfer->cs_change = false;
3660 xfer->delay.value = 0;
3661 }
3662 }
3663
3664 /* Set up inserted... */
3665 rxfer->inserted = insert;
3666
3667 /* ...and register it with spi_res/spi_message */
3668 spi_res_add(msg, rxfer);
3669
3670 return rxfer;
3671 }
3672
__spi_split_transfer_maxsize(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer ** xferp,size_t maxsize)3673 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3674 struct spi_message *msg,
3675 struct spi_transfer **xferp,
3676 size_t maxsize)
3677 {
3678 struct spi_transfer *xfer = *xferp, *xfers;
3679 struct spi_replaced_transfers *srt;
3680 size_t offset;
3681 size_t count, i;
3682
3683 /* Calculate how many we have to replace */
3684 count = DIV_ROUND_UP(xfer->len, maxsize);
3685
3686 /* Create replacement */
3687 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3688 if (IS_ERR(srt))
3689 return PTR_ERR(srt);
3690 xfers = srt->inserted_transfers;
3691
3692 /*
3693 * Now handle each of those newly inserted spi_transfers.
3694 * Note that the replacements spi_transfers all are preset
3695 * to the same values as *xferp, so tx_buf, rx_buf and len
3696 * are all identical (as well as most others)
3697 * so we just have to fix up len and the pointers.
3698 */
3699
3700 /*
3701 * The first transfer just needs the length modified, so we
3702 * run it outside the loop.
3703 */
3704 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3705
3706 /* All the others need rx_buf/tx_buf also set */
3707 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3708 /* Update rx_buf, tx_buf and DMA */
3709 if (xfers[i].rx_buf)
3710 xfers[i].rx_buf += offset;
3711 if (xfers[i].tx_buf)
3712 xfers[i].tx_buf += offset;
3713
3714 /* Update length */
3715 xfers[i].len = min(maxsize, xfers[i].len - offset);
3716 }
3717
3718 /*
3719 * We set up xferp to the last entry we have inserted,
3720 * so that we skip those already split transfers.
3721 */
3722 *xferp = &xfers[count - 1];
3723
3724 /* Increment statistics counters */
3725 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3726 transfers_split_maxsize);
3727 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3728 transfers_split_maxsize);
3729
3730 return 0;
3731 }
3732
3733 /**
3734 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3735 * when an individual transfer exceeds a
3736 * certain size
3737 * @ctlr: the @spi_controller for this transfer
3738 * @msg: the @spi_message to transform
3739 * @maxsize: the maximum when to apply this
3740 *
3741 * This function allocates resources that are automatically freed during the
3742 * spi message unoptimize phase so this function should only be called from
3743 * optimize_message callbacks.
3744 *
3745 * Return: status of transformation
3746 */
spi_split_transfers_maxsize(struct spi_controller * ctlr,struct spi_message * msg,size_t maxsize)3747 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3748 struct spi_message *msg,
3749 size_t maxsize)
3750 {
3751 struct spi_transfer *xfer;
3752 int ret;
3753
3754 /*
3755 * Iterate over the transfer_list,
3756 * but note that xfer is advanced to the last transfer inserted
3757 * to avoid checking sizes again unnecessarily (also xfer does
3758 * potentially belong to a different list by the time the
3759 * replacement has happened).
3760 */
3761 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3762 if (xfer->len > maxsize) {
3763 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3764 maxsize);
3765 if (ret)
3766 return ret;
3767 }
3768 }
3769
3770 return 0;
3771 }
3772 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3773
3774
3775 /**
3776 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3777 * when an individual transfer exceeds a
3778 * certain number of SPI words
3779 * @ctlr: the @spi_controller for this transfer
3780 * @msg: the @spi_message to transform
3781 * @maxwords: the number of words to limit each transfer to
3782 *
3783 * This function allocates resources that are automatically freed during the
3784 * spi message unoptimize phase so this function should only be called from
3785 * optimize_message callbacks.
3786 *
3787 * Return: status of transformation
3788 */
spi_split_transfers_maxwords(struct spi_controller * ctlr,struct spi_message * msg,size_t maxwords)3789 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3790 struct spi_message *msg,
3791 size_t maxwords)
3792 {
3793 struct spi_transfer *xfer;
3794
3795 /*
3796 * Iterate over the transfer_list,
3797 * but note that xfer is advanced to the last transfer inserted
3798 * to avoid checking sizes again unnecessarily (also xfer does
3799 * potentially belong to a different list by the time the
3800 * replacement has happened).
3801 */
3802 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3803 size_t maxsize;
3804 int ret;
3805
3806 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3807 if (xfer->len > maxsize) {
3808 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3809 maxsize);
3810 if (ret)
3811 return ret;
3812 }
3813 }
3814
3815 return 0;
3816 }
3817 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3818
3819 /*-------------------------------------------------------------------------*/
3820
3821 /*
3822 * Core methods for SPI controller protocol drivers. Some of the
3823 * other core methods are currently defined as inline functions.
3824 */
3825
__spi_validate_bits_per_word(struct spi_controller * ctlr,u8 bits_per_word)3826 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3827 u8 bits_per_word)
3828 {
3829 if (ctlr->bits_per_word_mask) {
3830 /* Only 32 bits fit in the mask */
3831 if (bits_per_word > 32)
3832 return -EINVAL;
3833 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3834 return -EINVAL;
3835 }
3836
3837 return 0;
3838 }
3839
3840 /**
3841 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3842 * @spi: the device that requires specific CS timing configuration
3843 *
3844 * Return: zero on success, else a negative error code.
3845 */
spi_set_cs_timing(struct spi_device * spi)3846 static int spi_set_cs_timing(struct spi_device *spi)
3847 {
3848 struct device *parent = spi->controller->dev.parent;
3849 int status = 0;
3850
3851 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3852 if (spi->controller->auto_runtime_pm) {
3853 status = pm_runtime_get_sync(parent);
3854 if (status < 0) {
3855 pm_runtime_put_noidle(parent);
3856 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3857 status);
3858 return status;
3859 }
3860
3861 status = spi->controller->set_cs_timing(spi);
3862 pm_runtime_mark_last_busy(parent);
3863 pm_runtime_put_autosuspend(parent);
3864 } else {
3865 status = spi->controller->set_cs_timing(spi);
3866 }
3867 }
3868 return status;
3869 }
3870
3871 /**
3872 * spi_setup - setup SPI mode and clock rate
3873 * @spi: the device whose settings are being modified
3874 * Context: can sleep, and no requests are queued to the device
3875 *
3876 * SPI protocol drivers may need to update the transfer mode if the
3877 * device doesn't work with its default. They may likewise need
3878 * to update clock rates or word sizes from initial values. This function
3879 * changes those settings, and must be called from a context that can sleep.
3880 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3881 * effect the next time the device is selected and data is transferred to
3882 * or from it. When this function returns, the SPI device is deselected.
3883 *
3884 * Note that this call will fail if the protocol driver specifies an option
3885 * that the underlying controller or its driver does not support. For
3886 * example, not all hardware supports wire transfers using nine bit words,
3887 * LSB-first wire encoding, or active-high chipselects.
3888 *
3889 * Return: zero on success, else a negative error code.
3890 */
spi_setup(struct spi_device * spi)3891 int spi_setup(struct spi_device *spi)
3892 {
3893 unsigned bad_bits, ugly_bits;
3894 int status;
3895
3896 /*
3897 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3898 * are set at the same time.
3899 */
3900 if ((hweight_long(spi->mode &
3901 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3902 (hweight_long(spi->mode &
3903 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3904 dev_err(&spi->dev,
3905 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3906 return -EINVAL;
3907 }
3908 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3909 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3910 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3911 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3912 return -EINVAL;
3913 /* Check against conflicting MOSI idle configuration */
3914 if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) {
3915 dev_err(&spi->dev,
3916 "setup: MOSI configured to idle low and high at the same time.\n");
3917 return -EINVAL;
3918 }
3919 /*
3920 * Help drivers fail *cleanly* when they need options
3921 * that aren't supported with their current controller.
3922 * SPI_CS_WORD has a fallback software implementation,
3923 * so it is ignored here.
3924 */
3925 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3926 SPI_NO_TX | SPI_NO_RX);
3927 ugly_bits = bad_bits &
3928 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3929 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3930 if (ugly_bits) {
3931 dev_warn(&spi->dev,
3932 "setup: ignoring unsupported mode bits %x\n",
3933 ugly_bits);
3934 spi->mode &= ~ugly_bits;
3935 bad_bits &= ~ugly_bits;
3936 }
3937 if (bad_bits) {
3938 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3939 bad_bits);
3940 return -EINVAL;
3941 }
3942
3943 if (!spi->bits_per_word) {
3944 spi->bits_per_word = 8;
3945 } else {
3946 /*
3947 * Some controllers may not support the default 8 bits-per-word
3948 * so only perform the check when this is explicitly provided.
3949 */
3950 status = __spi_validate_bits_per_word(spi->controller,
3951 spi->bits_per_word);
3952 if (status)
3953 return status;
3954 }
3955
3956 if (spi->controller->max_speed_hz &&
3957 (!spi->max_speed_hz ||
3958 spi->max_speed_hz > spi->controller->max_speed_hz))
3959 spi->max_speed_hz = spi->controller->max_speed_hz;
3960
3961 mutex_lock(&spi->controller->io_mutex);
3962
3963 if (spi->controller->setup) {
3964 status = spi->controller->setup(spi);
3965 if (status) {
3966 mutex_unlock(&spi->controller->io_mutex);
3967 dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3968 status);
3969 return status;
3970 }
3971 }
3972
3973 status = spi_set_cs_timing(spi);
3974 if (status) {
3975 mutex_unlock(&spi->controller->io_mutex);
3976 return status;
3977 }
3978
3979 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3980 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3981 if (status < 0) {
3982 mutex_unlock(&spi->controller->io_mutex);
3983 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3984 status);
3985 return status;
3986 }
3987
3988 /*
3989 * We do not want to return positive value from pm_runtime_get,
3990 * there are many instances of devices calling spi_setup() and
3991 * checking for a non-zero return value instead of a negative
3992 * return value.
3993 */
3994 status = 0;
3995
3996 spi_set_cs(spi, false, true);
3997 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3998 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3999 } else {
4000 spi_set_cs(spi, false, true);
4001 }
4002
4003 mutex_unlock(&spi->controller->io_mutex);
4004
4005 if (spi->rt && !spi->controller->rt) {
4006 spi->controller->rt = true;
4007 spi_set_thread_rt(spi->controller);
4008 }
4009
4010 trace_spi_setup(spi, status);
4011
4012 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4013 spi->mode & SPI_MODE_X_MASK,
4014 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4015 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4016 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4017 (spi->mode & SPI_LOOP) ? "loopback, " : "",
4018 spi->bits_per_word, spi->max_speed_hz,
4019 status);
4020
4021 return status;
4022 }
4023 EXPORT_SYMBOL_GPL(spi_setup);
4024
_spi_xfer_word_delay_update(struct spi_transfer * xfer,struct spi_device * spi)4025 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4026 struct spi_device *spi)
4027 {
4028 int delay1, delay2;
4029
4030 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4031 if (delay1 < 0)
4032 return delay1;
4033
4034 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4035 if (delay2 < 0)
4036 return delay2;
4037
4038 if (delay1 < delay2)
4039 memcpy(&xfer->word_delay, &spi->word_delay,
4040 sizeof(xfer->word_delay));
4041
4042 return 0;
4043 }
4044
__spi_validate(struct spi_device * spi,struct spi_message * message)4045 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4046 {
4047 struct spi_controller *ctlr = spi->controller;
4048 struct spi_transfer *xfer;
4049 int w_size;
4050
4051 if (list_empty(&message->transfers))
4052 return -EINVAL;
4053
4054 message->spi = spi;
4055
4056 /*
4057 * Half-duplex links include original MicroWire, and ones with
4058 * only one data pin like SPI_3WIRE (switches direction) or where
4059 * either MOSI or MISO is missing. They can also be caused by
4060 * software limitations.
4061 */
4062 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4063 (spi->mode & SPI_3WIRE)) {
4064 unsigned flags = ctlr->flags;
4065
4066 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4067 if (xfer->rx_buf && xfer->tx_buf)
4068 return -EINVAL;
4069 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4070 return -EINVAL;
4071 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4072 return -EINVAL;
4073 }
4074 }
4075
4076 /*
4077 * Set transfer bits_per_word and max speed as spi device default if
4078 * it is not set for this transfer.
4079 * Set transfer tx_nbits and rx_nbits as single transfer default
4080 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4081 * Ensure transfer word_delay is at least as long as that required by
4082 * device itself.
4083 */
4084 message->frame_length = 0;
4085 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4086 xfer->effective_speed_hz = 0;
4087 message->frame_length += xfer->len;
4088 if (!xfer->bits_per_word)
4089 xfer->bits_per_word = spi->bits_per_word;
4090
4091 if (!xfer->speed_hz)
4092 xfer->speed_hz = spi->max_speed_hz;
4093
4094 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4095 xfer->speed_hz = ctlr->max_speed_hz;
4096
4097 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4098 return -EINVAL;
4099
4100 /*
4101 * SPI transfer length should be multiple of SPI word size
4102 * where SPI word size should be power-of-two multiple.
4103 */
4104 if (xfer->bits_per_word <= 8)
4105 w_size = 1;
4106 else if (xfer->bits_per_word <= 16)
4107 w_size = 2;
4108 else
4109 w_size = 4;
4110
4111 /* No partial transfers accepted */
4112 if (xfer->len % w_size)
4113 return -EINVAL;
4114
4115 if (xfer->speed_hz && ctlr->min_speed_hz &&
4116 xfer->speed_hz < ctlr->min_speed_hz)
4117 return -EINVAL;
4118
4119 if (xfer->tx_buf && !xfer->tx_nbits)
4120 xfer->tx_nbits = SPI_NBITS_SINGLE;
4121 if (xfer->rx_buf && !xfer->rx_nbits)
4122 xfer->rx_nbits = SPI_NBITS_SINGLE;
4123 /*
4124 * Check transfer tx/rx_nbits:
4125 * 1. check the value matches one of single, dual and quad
4126 * 2. check tx/rx_nbits match the mode in spi_device
4127 */
4128 if (xfer->tx_buf) {
4129 if (spi->mode & SPI_NO_TX)
4130 return -EINVAL;
4131 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4132 xfer->tx_nbits != SPI_NBITS_DUAL &&
4133 xfer->tx_nbits != SPI_NBITS_QUAD &&
4134 xfer->tx_nbits != SPI_NBITS_OCTAL)
4135 return -EINVAL;
4136 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4137 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4138 return -EINVAL;
4139 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4140 !(spi->mode & SPI_TX_QUAD))
4141 return -EINVAL;
4142 }
4143 /* Check transfer rx_nbits */
4144 if (xfer->rx_buf) {
4145 if (spi->mode & SPI_NO_RX)
4146 return -EINVAL;
4147 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4148 xfer->rx_nbits != SPI_NBITS_DUAL &&
4149 xfer->rx_nbits != SPI_NBITS_QUAD &&
4150 xfer->rx_nbits != SPI_NBITS_OCTAL)
4151 return -EINVAL;
4152 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4153 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4154 return -EINVAL;
4155 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4156 !(spi->mode & SPI_RX_QUAD))
4157 return -EINVAL;
4158 }
4159
4160 if (_spi_xfer_word_delay_update(xfer, spi))
4161 return -EINVAL;
4162 }
4163
4164 message->status = -EINPROGRESS;
4165
4166 return 0;
4167 }
4168
4169 /*
4170 * spi_split_transfers - generic handling of transfer splitting
4171 * @msg: the message to split
4172 *
4173 * Under certain conditions, a SPI controller may not support arbitrary
4174 * transfer sizes or other features required by a peripheral. This function
4175 * will split the transfers in the message into smaller transfers that are
4176 * supported by the controller.
4177 *
4178 * Controllers with special requirements not covered here can also split
4179 * transfers in the optimize_message() callback.
4180 *
4181 * Context: can sleep
4182 * Return: zero on success, else a negative error code
4183 */
spi_split_transfers(struct spi_message * msg)4184 static int spi_split_transfers(struct spi_message *msg)
4185 {
4186 struct spi_controller *ctlr = msg->spi->controller;
4187 struct spi_transfer *xfer;
4188 int ret;
4189
4190 /*
4191 * If an SPI controller does not support toggling the CS line on each
4192 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4193 * for the CS line, we can emulate the CS-per-word hardware function by
4194 * splitting transfers into one-word transfers and ensuring that
4195 * cs_change is set for each transfer.
4196 */
4197 if ((msg->spi->mode & SPI_CS_WORD) &&
4198 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4199 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4200 if (ret)
4201 return ret;
4202
4203 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4204 /* Don't change cs_change on the last entry in the list */
4205 if (list_is_last(&xfer->transfer_list, &msg->transfers))
4206 break;
4207
4208 xfer->cs_change = 1;
4209 }
4210 } else {
4211 ret = spi_split_transfers_maxsize(ctlr, msg,
4212 spi_max_transfer_size(msg->spi));
4213 if (ret)
4214 return ret;
4215 }
4216
4217 return 0;
4218 }
4219
4220 /*
4221 * __spi_optimize_message - shared implementation for spi_optimize_message()
4222 * and spi_maybe_optimize_message()
4223 * @spi: the device that will be used for the message
4224 * @msg: the message to optimize
4225 *
4226 * Peripheral drivers will call spi_optimize_message() and the spi core will
4227 * call spi_maybe_optimize_message() instead of calling this directly.
4228 *
4229 * It is not valid to call this on a message that has already been optimized.
4230 *
4231 * Return: zero on success, else a negative error code
4232 */
__spi_optimize_message(struct spi_device * spi,struct spi_message * msg)4233 static int __spi_optimize_message(struct spi_device *spi,
4234 struct spi_message *msg)
4235 {
4236 struct spi_controller *ctlr = spi->controller;
4237 int ret;
4238
4239 ret = __spi_validate(spi, msg);
4240 if (ret)
4241 return ret;
4242
4243 ret = spi_split_transfers(msg);
4244 if (ret)
4245 return ret;
4246
4247 if (ctlr->optimize_message) {
4248 ret = ctlr->optimize_message(msg);
4249 if (ret) {
4250 spi_res_release(ctlr, msg);
4251 return ret;
4252 }
4253 }
4254
4255 msg->optimized = true;
4256
4257 return 0;
4258 }
4259
4260 /*
4261 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4262 * @spi: the device that will be used for the message
4263 * @msg: the message to optimize
4264 * Return: zero on success, else a negative error code
4265 */
spi_maybe_optimize_message(struct spi_device * spi,struct spi_message * msg)4266 static int spi_maybe_optimize_message(struct spi_device *spi,
4267 struct spi_message *msg)
4268 {
4269 if (spi->controller->defer_optimize_message) {
4270 msg->spi = spi;
4271 return 0;
4272 }
4273
4274 if (msg->pre_optimized)
4275 return 0;
4276
4277 return __spi_optimize_message(spi, msg);
4278 }
4279
4280 /**
4281 * spi_optimize_message - do any one-time validation and setup for a SPI message
4282 * @spi: the device that will be used for the message
4283 * @msg: the message to optimize
4284 *
4285 * Peripheral drivers that reuse the same message repeatedly may call this to
4286 * perform as much message prep as possible once, rather than repeating it each
4287 * time a message transfer is performed to improve throughput and reduce CPU
4288 * usage.
4289 *
4290 * Once a message has been optimized, it cannot be modified with the exception
4291 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4292 * only the data in the memory it points to).
4293 *
4294 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4295 * to avoid leaking resources.
4296 *
4297 * Context: can sleep
4298 * Return: zero on success, else a negative error code
4299 */
spi_optimize_message(struct spi_device * spi,struct spi_message * msg)4300 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4301 {
4302 int ret;
4303
4304 /*
4305 * Pre-optimization is not supported and optimization is deferred e.g.
4306 * when using spi-mux.
4307 */
4308 if (spi->controller->defer_optimize_message)
4309 return 0;
4310
4311 ret = __spi_optimize_message(spi, msg);
4312 if (ret)
4313 return ret;
4314
4315 /*
4316 * This flag indicates that the peripheral driver called spi_optimize_message()
4317 * and therefore we shouldn't unoptimize message automatically when finalizing
4318 * the message but rather wait until spi_unoptimize_message() is called
4319 * by the peripheral driver.
4320 */
4321 msg->pre_optimized = true;
4322
4323 return 0;
4324 }
4325 EXPORT_SYMBOL_GPL(spi_optimize_message);
4326
4327 /**
4328 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4329 * @msg: the message to unoptimize
4330 *
4331 * Calls to this function must be balanced with calls to spi_optimize_message().
4332 *
4333 * Context: can sleep
4334 */
spi_unoptimize_message(struct spi_message * msg)4335 void spi_unoptimize_message(struct spi_message *msg)
4336 {
4337 if (msg->spi->controller->defer_optimize_message)
4338 return;
4339
4340 __spi_unoptimize_message(msg);
4341 msg->pre_optimized = false;
4342 }
4343 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4344
__spi_async(struct spi_device * spi,struct spi_message * message)4345 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4346 {
4347 struct spi_controller *ctlr = spi->controller;
4348 struct spi_transfer *xfer;
4349
4350 /*
4351 * Some controllers do not support doing regular SPI transfers. Return
4352 * ENOTSUPP when this is the case.
4353 */
4354 if (!ctlr->transfer)
4355 return -ENOTSUPP;
4356
4357 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4358 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4359
4360 trace_spi_message_submit(message);
4361
4362 if (!ctlr->ptp_sts_supported) {
4363 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4364 xfer->ptp_sts_word_pre = 0;
4365 ptp_read_system_prets(xfer->ptp_sts);
4366 }
4367 }
4368
4369 return ctlr->transfer(spi, message);
4370 }
4371
devm_spi_unoptimize_message(void * msg)4372 static void devm_spi_unoptimize_message(void *msg)
4373 {
4374 spi_unoptimize_message(msg);
4375 }
4376
4377 /**
4378 * devm_spi_optimize_message - managed version of spi_optimize_message()
4379 * @dev: the device that manages @msg (usually @spi->dev)
4380 * @spi: the device that will be used for the message
4381 * @msg: the message to optimize
4382 * Return: zero on success, else a negative error code
4383 *
4384 * spi_unoptimize_message() will automatically be called when the device is
4385 * removed.
4386 */
devm_spi_optimize_message(struct device * dev,struct spi_device * spi,struct spi_message * msg)4387 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
4388 struct spi_message *msg)
4389 {
4390 int ret;
4391
4392 ret = spi_optimize_message(spi, msg);
4393 if (ret)
4394 return ret;
4395
4396 return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg);
4397 }
4398 EXPORT_SYMBOL_GPL(devm_spi_optimize_message);
4399
4400 /**
4401 * spi_async - asynchronous SPI transfer
4402 * @spi: device with which data will be exchanged
4403 * @message: describes the data transfers, including completion callback
4404 * Context: any (IRQs may be blocked, etc)
4405 *
4406 * This call may be used in_irq and other contexts which can't sleep,
4407 * as well as from task contexts which can sleep.
4408 *
4409 * The completion callback is invoked in a context which can't sleep.
4410 * Before that invocation, the value of message->status is undefined.
4411 * When the callback is issued, message->status holds either zero (to
4412 * indicate complete success) or a negative error code. After that
4413 * callback returns, the driver which issued the transfer request may
4414 * deallocate the associated memory; it's no longer in use by any SPI
4415 * core or controller driver code.
4416 *
4417 * Note that although all messages to a spi_device are handled in
4418 * FIFO order, messages may go to different devices in other orders.
4419 * Some device might be higher priority, or have various "hard" access
4420 * time requirements, for example.
4421 *
4422 * On detection of any fault during the transfer, processing of
4423 * the entire message is aborted, and the device is deselected.
4424 * Until returning from the associated message completion callback,
4425 * no other spi_message queued to that device will be processed.
4426 * (This rule applies equally to all the synchronous transfer calls,
4427 * which are wrappers around this core asynchronous primitive.)
4428 *
4429 * Return: zero on success, else a negative error code.
4430 */
spi_async(struct spi_device * spi,struct spi_message * message)4431 int spi_async(struct spi_device *spi, struct spi_message *message)
4432 {
4433 struct spi_controller *ctlr = spi->controller;
4434 int ret;
4435 unsigned long flags;
4436
4437 ret = spi_maybe_optimize_message(spi, message);
4438 if (ret)
4439 return ret;
4440
4441 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4442
4443 if (ctlr->bus_lock_flag)
4444 ret = -EBUSY;
4445 else
4446 ret = __spi_async(spi, message);
4447
4448 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4449
4450 return ret;
4451 }
4452 EXPORT_SYMBOL_GPL(spi_async);
4453
__spi_transfer_message_noqueue(struct spi_controller * ctlr,struct spi_message * msg)4454 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4455 {
4456 bool was_busy;
4457 int ret;
4458
4459 mutex_lock(&ctlr->io_mutex);
4460
4461 was_busy = ctlr->busy;
4462
4463 ctlr->cur_msg = msg;
4464 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4465 if (ret)
4466 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4467 ctlr->cur_msg = NULL;
4468 ctlr->fallback = false;
4469
4470 if (!was_busy) {
4471 kfree(ctlr->dummy_rx);
4472 ctlr->dummy_rx = NULL;
4473 kfree(ctlr->dummy_tx);
4474 ctlr->dummy_tx = NULL;
4475 if (ctlr->unprepare_transfer_hardware &&
4476 ctlr->unprepare_transfer_hardware(ctlr))
4477 dev_err(&ctlr->dev,
4478 "failed to unprepare transfer hardware\n");
4479 spi_idle_runtime_pm(ctlr);
4480 }
4481
4482 mutex_unlock(&ctlr->io_mutex);
4483 }
4484
4485 /*-------------------------------------------------------------------------*/
4486
4487 /*
4488 * Utility methods for SPI protocol drivers, layered on
4489 * top of the core. Some other utility methods are defined as
4490 * inline functions.
4491 */
4492
spi_complete(void * arg)4493 static void spi_complete(void *arg)
4494 {
4495 complete(arg);
4496 }
4497
__spi_sync(struct spi_device * spi,struct spi_message * message)4498 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4499 {
4500 DECLARE_COMPLETION_ONSTACK(done);
4501 unsigned long flags;
4502 int status;
4503 struct spi_controller *ctlr = spi->controller;
4504
4505 if (__spi_check_suspended(ctlr)) {
4506 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4507 return -ESHUTDOWN;
4508 }
4509
4510 status = spi_maybe_optimize_message(spi, message);
4511 if (status)
4512 return status;
4513
4514 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4515 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4516
4517 /*
4518 * Checking queue_empty here only guarantees async/sync message
4519 * ordering when coming from the same context. It does not need to
4520 * guard against reentrancy from a different context. The io_mutex
4521 * will catch those cases.
4522 */
4523 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4524 message->actual_length = 0;
4525 message->status = -EINPROGRESS;
4526
4527 trace_spi_message_submit(message);
4528
4529 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4530 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4531
4532 __spi_transfer_message_noqueue(ctlr, message);
4533
4534 return message->status;
4535 }
4536
4537 /*
4538 * There are messages in the async queue that could have originated
4539 * from the same context, so we need to preserve ordering.
4540 * Therefor we send the message to the async queue and wait until they
4541 * are completed.
4542 */
4543 message->complete = spi_complete;
4544 message->context = &done;
4545
4546 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4547 status = __spi_async(spi, message);
4548 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4549
4550 if (status == 0) {
4551 wait_for_completion(&done);
4552 status = message->status;
4553 }
4554 message->complete = NULL;
4555 message->context = NULL;
4556
4557 return status;
4558 }
4559
4560 /**
4561 * spi_sync - blocking/synchronous SPI data transfers
4562 * @spi: device with which data will be exchanged
4563 * @message: describes the data transfers
4564 * Context: can sleep
4565 *
4566 * This call may only be used from a context that may sleep. The sleep
4567 * is non-interruptible, and has no timeout. Low-overhead controller
4568 * drivers may DMA directly into and out of the message buffers.
4569 *
4570 * Note that the SPI device's chip select is active during the message,
4571 * and then is normally disabled between messages. Drivers for some
4572 * frequently-used devices may want to minimize costs of selecting a chip,
4573 * by leaving it selected in anticipation that the next message will go
4574 * to the same chip. (That may increase power usage.)
4575 *
4576 * Also, the caller is guaranteeing that the memory associated with the
4577 * message will not be freed before this call returns.
4578 *
4579 * Return: zero on success, else a negative error code.
4580 */
spi_sync(struct spi_device * spi,struct spi_message * message)4581 int spi_sync(struct spi_device *spi, struct spi_message *message)
4582 {
4583 int ret;
4584
4585 mutex_lock(&spi->controller->bus_lock_mutex);
4586 ret = __spi_sync(spi, message);
4587 mutex_unlock(&spi->controller->bus_lock_mutex);
4588
4589 return ret;
4590 }
4591 EXPORT_SYMBOL_GPL(spi_sync);
4592
4593 /**
4594 * spi_sync_locked - version of spi_sync with exclusive bus usage
4595 * @spi: device with which data will be exchanged
4596 * @message: describes the data transfers
4597 * Context: can sleep
4598 *
4599 * This call may only be used from a context that may sleep. The sleep
4600 * is non-interruptible, and has no timeout. Low-overhead controller
4601 * drivers may DMA directly into and out of the message buffers.
4602 *
4603 * This call should be used by drivers that require exclusive access to the
4604 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4605 * be released by a spi_bus_unlock call when the exclusive access is over.
4606 *
4607 * Return: zero on success, else a negative error code.
4608 */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)4609 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4610 {
4611 return __spi_sync(spi, message);
4612 }
4613 EXPORT_SYMBOL_GPL(spi_sync_locked);
4614
4615 /**
4616 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4617 * @ctlr: SPI bus master that should be locked for exclusive bus access
4618 * Context: can sleep
4619 *
4620 * This call may only be used from a context that may sleep. The sleep
4621 * is non-interruptible, and has no timeout.
4622 *
4623 * This call should be used by drivers that require exclusive access to the
4624 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4625 * exclusive access is over. Data transfer must be done by spi_sync_locked
4626 * and spi_async_locked calls when the SPI bus lock is held.
4627 *
4628 * Return: always zero.
4629 */
spi_bus_lock(struct spi_controller * ctlr)4630 int spi_bus_lock(struct spi_controller *ctlr)
4631 {
4632 unsigned long flags;
4633
4634 mutex_lock(&ctlr->bus_lock_mutex);
4635
4636 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4637 ctlr->bus_lock_flag = 1;
4638 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4639
4640 /* Mutex remains locked until spi_bus_unlock() is called */
4641
4642 return 0;
4643 }
4644 EXPORT_SYMBOL_GPL(spi_bus_lock);
4645
4646 /**
4647 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4648 * @ctlr: SPI bus master that was locked for exclusive bus access
4649 * Context: can sleep
4650 *
4651 * This call may only be used from a context that may sleep. The sleep
4652 * is non-interruptible, and has no timeout.
4653 *
4654 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4655 * call.
4656 *
4657 * Return: always zero.
4658 */
spi_bus_unlock(struct spi_controller * ctlr)4659 int spi_bus_unlock(struct spi_controller *ctlr)
4660 {
4661 ctlr->bus_lock_flag = 0;
4662
4663 mutex_unlock(&ctlr->bus_lock_mutex);
4664
4665 return 0;
4666 }
4667 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4668
4669 /* Portable code must never pass more than 32 bytes */
4670 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
4671
4672 static u8 *buf;
4673
4674 /**
4675 * spi_write_then_read - SPI synchronous write followed by read
4676 * @spi: device with which data will be exchanged
4677 * @txbuf: data to be written (need not be DMA-safe)
4678 * @n_tx: size of txbuf, in bytes
4679 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4680 * @n_rx: size of rxbuf, in bytes
4681 * Context: can sleep
4682 *
4683 * This performs a half duplex MicroWire style transaction with the
4684 * device, sending txbuf and then reading rxbuf. The return value
4685 * is zero for success, else a negative errno status code.
4686 * This call may only be used from a context that may sleep.
4687 *
4688 * Parameters to this routine are always copied using a small buffer.
4689 * Performance-sensitive or bulk transfer code should instead use
4690 * spi_{async,sync}() calls with DMA-safe buffers.
4691 *
4692 * Return: zero on success, else a negative error code.
4693 */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)4694 int spi_write_then_read(struct spi_device *spi,
4695 const void *txbuf, unsigned n_tx,
4696 void *rxbuf, unsigned n_rx)
4697 {
4698 static DEFINE_MUTEX(lock);
4699
4700 int status;
4701 struct spi_message message;
4702 struct spi_transfer x[2];
4703 u8 *local_buf;
4704
4705 /*
4706 * Use preallocated DMA-safe buffer if we can. We can't avoid
4707 * copying here, (as a pure convenience thing), but we can
4708 * keep heap costs out of the hot path unless someone else is
4709 * using the pre-allocated buffer or the transfer is too large.
4710 */
4711 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4712 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4713 GFP_KERNEL | GFP_DMA);
4714 if (!local_buf)
4715 return -ENOMEM;
4716 } else {
4717 local_buf = buf;
4718 }
4719
4720 spi_message_init(&message);
4721 memset(x, 0, sizeof(x));
4722 if (n_tx) {
4723 x[0].len = n_tx;
4724 spi_message_add_tail(&x[0], &message);
4725 }
4726 if (n_rx) {
4727 x[1].len = n_rx;
4728 spi_message_add_tail(&x[1], &message);
4729 }
4730
4731 memcpy(local_buf, txbuf, n_tx);
4732 x[0].tx_buf = local_buf;
4733 x[1].rx_buf = local_buf + n_tx;
4734
4735 /* Do the I/O */
4736 status = spi_sync(spi, &message);
4737 if (status == 0)
4738 memcpy(rxbuf, x[1].rx_buf, n_rx);
4739
4740 if (x[0].tx_buf == buf)
4741 mutex_unlock(&lock);
4742 else
4743 kfree(local_buf);
4744
4745 return status;
4746 }
4747 EXPORT_SYMBOL_GPL(spi_write_then_read);
4748
4749 /*-------------------------------------------------------------------------*/
4750
4751 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4752 /* Must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)4753 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4754 {
4755 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4756
4757 return dev ? to_spi_device(dev) : NULL;
4758 }
4759
4760 /* The spi controllers are not using spi_bus, so we find it with another way */
of_find_spi_controller_by_node(struct device_node * node)4761 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4762 {
4763 struct device *dev;
4764
4765 dev = class_find_device_by_of_node(&spi_master_class, node);
4766 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4767 dev = class_find_device_by_of_node(&spi_slave_class, node);
4768 if (!dev)
4769 return NULL;
4770
4771 /* Reference got in class_find_device */
4772 return container_of(dev, struct spi_controller, dev);
4773 }
4774
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)4775 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4776 void *arg)
4777 {
4778 struct of_reconfig_data *rd = arg;
4779 struct spi_controller *ctlr;
4780 struct spi_device *spi;
4781
4782 switch (of_reconfig_get_state_change(action, arg)) {
4783 case OF_RECONFIG_CHANGE_ADD:
4784 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4785 if (ctlr == NULL)
4786 return NOTIFY_OK; /* Not for us */
4787
4788 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4789 put_device(&ctlr->dev);
4790 return NOTIFY_OK;
4791 }
4792
4793 /*
4794 * Clear the flag before adding the device so that fw_devlink
4795 * doesn't skip adding consumers to this device.
4796 */
4797 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4798 spi = of_register_spi_device(ctlr, rd->dn);
4799 put_device(&ctlr->dev);
4800
4801 if (IS_ERR(spi)) {
4802 pr_err("%s: failed to create for '%pOF'\n",
4803 __func__, rd->dn);
4804 of_node_clear_flag(rd->dn, OF_POPULATED);
4805 return notifier_from_errno(PTR_ERR(spi));
4806 }
4807 break;
4808
4809 case OF_RECONFIG_CHANGE_REMOVE:
4810 /* Already depopulated? */
4811 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4812 return NOTIFY_OK;
4813
4814 /* Find our device by node */
4815 spi = of_find_spi_device_by_node(rd->dn);
4816 if (spi == NULL)
4817 return NOTIFY_OK; /* No? not meant for us */
4818
4819 /* Unregister takes one ref away */
4820 spi_unregister_device(spi);
4821
4822 /* And put the reference of the find */
4823 put_device(&spi->dev);
4824 break;
4825 }
4826
4827 return NOTIFY_OK;
4828 }
4829
4830 static struct notifier_block spi_of_notifier = {
4831 .notifier_call = of_spi_notify,
4832 };
4833 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4834 extern struct notifier_block spi_of_notifier;
4835 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4836
4837 #if IS_ENABLED(CONFIG_ACPI)
spi_acpi_controller_match(struct device * dev,const void * data)4838 static int spi_acpi_controller_match(struct device *dev, const void *data)
4839 {
4840 return ACPI_COMPANION(dev->parent) == data;
4841 }
4842
acpi_spi_find_controller_by_adev(struct acpi_device * adev)4843 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4844 {
4845 struct device *dev;
4846
4847 dev = class_find_device(&spi_master_class, NULL, adev,
4848 spi_acpi_controller_match);
4849 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4850 dev = class_find_device(&spi_slave_class, NULL, adev,
4851 spi_acpi_controller_match);
4852 if (!dev)
4853 return NULL;
4854
4855 return container_of(dev, struct spi_controller, dev);
4856 }
4857 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4858
acpi_spi_find_device_by_adev(struct acpi_device * adev)4859 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4860 {
4861 struct device *dev;
4862
4863 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4864 return to_spi_device(dev);
4865 }
4866
acpi_spi_notify(struct notifier_block * nb,unsigned long value,void * arg)4867 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4868 void *arg)
4869 {
4870 struct acpi_device *adev = arg;
4871 struct spi_controller *ctlr;
4872 struct spi_device *spi;
4873
4874 switch (value) {
4875 case ACPI_RECONFIG_DEVICE_ADD:
4876 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4877 if (!ctlr)
4878 break;
4879
4880 acpi_register_spi_device(ctlr, adev);
4881 put_device(&ctlr->dev);
4882 break;
4883 case ACPI_RECONFIG_DEVICE_REMOVE:
4884 if (!acpi_device_enumerated(adev))
4885 break;
4886
4887 spi = acpi_spi_find_device_by_adev(adev);
4888 if (!spi)
4889 break;
4890
4891 spi_unregister_device(spi);
4892 put_device(&spi->dev);
4893 break;
4894 }
4895
4896 return NOTIFY_OK;
4897 }
4898
4899 static struct notifier_block spi_acpi_notifier = {
4900 .notifier_call = acpi_spi_notify,
4901 };
4902 #else
4903 extern struct notifier_block spi_acpi_notifier;
4904 #endif
4905
spi_init(void)4906 static int __init spi_init(void)
4907 {
4908 int status;
4909
4910 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4911 if (!buf) {
4912 status = -ENOMEM;
4913 goto err0;
4914 }
4915
4916 status = bus_register(&spi_bus_type);
4917 if (status < 0)
4918 goto err1;
4919
4920 status = class_register(&spi_master_class);
4921 if (status < 0)
4922 goto err2;
4923
4924 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4925 status = class_register(&spi_slave_class);
4926 if (status < 0)
4927 goto err3;
4928 }
4929
4930 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4931 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4932 if (IS_ENABLED(CONFIG_ACPI))
4933 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4934
4935 return 0;
4936
4937 err3:
4938 class_unregister(&spi_master_class);
4939 err2:
4940 bus_unregister(&spi_bus_type);
4941 err1:
4942 kfree(buf);
4943 buf = NULL;
4944 err0:
4945 return status;
4946 }
4947
4948 /*
4949 * A board_info is normally registered in arch_initcall(),
4950 * but even essential drivers wait till later.
4951 *
4952 * REVISIT only boardinfo really needs static linking. The rest (device and
4953 * driver registration) _could_ be dynamically linked (modular) ... Costs
4954 * include needing to have boardinfo data structures be much more public.
4955 */
4956 postcore_initcall(spi_init);
4957