xref: /linux/drivers/spi/spi.c (revision f8324e20f8289dffc646d64366332e05eaacab25)
1 /*
2  * spi.c - SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/cache.h>
25 #include <linux/mutex.h>
26 #include <linux/slab.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/spi/spi.h>
29 
30 
31 /* SPI bustype and spi_master class are registered after board init code
32  * provides the SPI device tables, ensuring that both are present by the
33  * time controller driver registration causes spi_devices to "enumerate".
34  */
35 static void spidev_release(struct device *dev)
36 {
37 	struct spi_device	*spi = to_spi_device(dev);
38 
39 	/* spi masters may cleanup for released devices */
40 	if (spi->master->cleanup)
41 		spi->master->cleanup(spi);
42 
43 	spi_master_put(spi->master);
44 	kfree(spi);
45 }
46 
47 static ssize_t
48 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
49 {
50 	const struct spi_device	*spi = to_spi_device(dev);
51 
52 	return sprintf(buf, "%s\n", spi->modalias);
53 }
54 
55 static struct device_attribute spi_dev_attrs[] = {
56 	__ATTR_RO(modalias),
57 	__ATTR_NULL,
58 };
59 
60 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
61  * and the sysfs version makes coldplug work too.
62  */
63 
64 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
65 						const struct spi_device *sdev)
66 {
67 	while (id->name[0]) {
68 		if (!strcmp(sdev->modalias, id->name))
69 			return id;
70 		id++;
71 	}
72 	return NULL;
73 }
74 
75 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
76 {
77 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
78 
79 	return spi_match_id(sdrv->id_table, sdev);
80 }
81 EXPORT_SYMBOL_GPL(spi_get_device_id);
82 
83 static int spi_match_device(struct device *dev, struct device_driver *drv)
84 {
85 	const struct spi_device	*spi = to_spi_device(dev);
86 	const struct spi_driver	*sdrv = to_spi_driver(drv);
87 
88 	if (sdrv->id_table)
89 		return !!spi_match_id(sdrv->id_table, spi);
90 
91 	return strcmp(spi->modalias, drv->name) == 0;
92 }
93 
94 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
95 {
96 	const struct spi_device		*spi = to_spi_device(dev);
97 
98 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
99 	return 0;
100 }
101 
102 #ifdef	CONFIG_PM
103 
104 static int spi_suspend(struct device *dev, pm_message_t message)
105 {
106 	int			value = 0;
107 	struct spi_driver	*drv = to_spi_driver(dev->driver);
108 
109 	/* suspend will stop irqs and dma; no more i/o */
110 	if (drv) {
111 		if (drv->suspend)
112 			value = drv->suspend(to_spi_device(dev), message);
113 		else
114 			dev_dbg(dev, "... can't suspend\n");
115 	}
116 	return value;
117 }
118 
119 static int spi_resume(struct device *dev)
120 {
121 	int			value = 0;
122 	struct spi_driver	*drv = to_spi_driver(dev->driver);
123 
124 	/* resume may restart the i/o queue */
125 	if (drv) {
126 		if (drv->resume)
127 			value = drv->resume(to_spi_device(dev));
128 		else
129 			dev_dbg(dev, "... can't resume\n");
130 	}
131 	return value;
132 }
133 
134 #else
135 #define spi_suspend	NULL
136 #define spi_resume	NULL
137 #endif
138 
139 struct bus_type spi_bus_type = {
140 	.name		= "spi",
141 	.dev_attrs	= spi_dev_attrs,
142 	.match		= spi_match_device,
143 	.uevent		= spi_uevent,
144 	.suspend	= spi_suspend,
145 	.resume		= spi_resume,
146 };
147 EXPORT_SYMBOL_GPL(spi_bus_type);
148 
149 
150 static int spi_drv_probe(struct device *dev)
151 {
152 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
153 
154 	return sdrv->probe(to_spi_device(dev));
155 }
156 
157 static int spi_drv_remove(struct device *dev)
158 {
159 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
160 
161 	return sdrv->remove(to_spi_device(dev));
162 }
163 
164 static void spi_drv_shutdown(struct device *dev)
165 {
166 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
167 
168 	sdrv->shutdown(to_spi_device(dev));
169 }
170 
171 /**
172  * spi_register_driver - register a SPI driver
173  * @sdrv: the driver to register
174  * Context: can sleep
175  */
176 int spi_register_driver(struct spi_driver *sdrv)
177 {
178 	sdrv->driver.bus = &spi_bus_type;
179 	if (sdrv->probe)
180 		sdrv->driver.probe = spi_drv_probe;
181 	if (sdrv->remove)
182 		sdrv->driver.remove = spi_drv_remove;
183 	if (sdrv->shutdown)
184 		sdrv->driver.shutdown = spi_drv_shutdown;
185 	return driver_register(&sdrv->driver);
186 }
187 EXPORT_SYMBOL_GPL(spi_register_driver);
188 
189 /*-------------------------------------------------------------------------*/
190 
191 /* SPI devices should normally not be created by SPI device drivers; that
192  * would make them board-specific.  Similarly with SPI master drivers.
193  * Device registration normally goes into like arch/.../mach.../board-YYY.c
194  * with other readonly (flashable) information about mainboard devices.
195  */
196 
197 struct boardinfo {
198 	struct list_head	list;
199 	unsigned		n_board_info;
200 	struct spi_board_info	board_info[0];
201 };
202 
203 static LIST_HEAD(board_list);
204 static DEFINE_MUTEX(board_lock);
205 
206 /**
207  * spi_alloc_device - Allocate a new SPI device
208  * @master: Controller to which device is connected
209  * Context: can sleep
210  *
211  * Allows a driver to allocate and initialize a spi_device without
212  * registering it immediately.  This allows a driver to directly
213  * fill the spi_device with device parameters before calling
214  * spi_add_device() on it.
215  *
216  * Caller is responsible to call spi_add_device() on the returned
217  * spi_device structure to add it to the SPI master.  If the caller
218  * needs to discard the spi_device without adding it, then it should
219  * call spi_dev_put() on it.
220  *
221  * Returns a pointer to the new device, or NULL.
222  */
223 struct spi_device *spi_alloc_device(struct spi_master *master)
224 {
225 	struct spi_device	*spi;
226 	struct device		*dev = master->dev.parent;
227 
228 	if (!spi_master_get(master))
229 		return NULL;
230 
231 	spi = kzalloc(sizeof *spi, GFP_KERNEL);
232 	if (!spi) {
233 		dev_err(dev, "cannot alloc spi_device\n");
234 		spi_master_put(master);
235 		return NULL;
236 	}
237 
238 	spi->master = master;
239 	spi->dev.parent = dev;
240 	spi->dev.bus = &spi_bus_type;
241 	spi->dev.release = spidev_release;
242 	device_initialize(&spi->dev);
243 	return spi;
244 }
245 EXPORT_SYMBOL_GPL(spi_alloc_device);
246 
247 /**
248  * spi_add_device - Add spi_device allocated with spi_alloc_device
249  * @spi: spi_device to register
250  *
251  * Companion function to spi_alloc_device.  Devices allocated with
252  * spi_alloc_device can be added onto the spi bus with this function.
253  *
254  * Returns 0 on success; negative errno on failure
255  */
256 int spi_add_device(struct spi_device *spi)
257 {
258 	static DEFINE_MUTEX(spi_add_lock);
259 	struct device *dev = spi->master->dev.parent;
260 	struct device *d;
261 	int status;
262 
263 	/* Chipselects are numbered 0..max; validate. */
264 	if (spi->chip_select >= spi->master->num_chipselect) {
265 		dev_err(dev, "cs%d >= max %d\n",
266 			spi->chip_select,
267 			spi->master->num_chipselect);
268 		return -EINVAL;
269 	}
270 
271 	/* Set the bus ID string */
272 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
273 			spi->chip_select);
274 
275 
276 	/* We need to make sure there's no other device with this
277 	 * chipselect **BEFORE** we call setup(), else we'll trash
278 	 * its configuration.  Lock against concurrent add() calls.
279 	 */
280 	mutex_lock(&spi_add_lock);
281 
282 	d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
283 	if (d != NULL) {
284 		dev_err(dev, "chipselect %d already in use\n",
285 				spi->chip_select);
286 		put_device(d);
287 		status = -EBUSY;
288 		goto done;
289 	}
290 
291 	/* Drivers may modify this initial i/o setup, but will
292 	 * normally rely on the device being setup.  Devices
293 	 * using SPI_CS_HIGH can't coexist well otherwise...
294 	 */
295 	status = spi_setup(spi);
296 	if (status < 0) {
297 		dev_err(dev, "can't %s %s, status %d\n",
298 				"setup", dev_name(&spi->dev), status);
299 		goto done;
300 	}
301 
302 	/* Device may be bound to an active driver when this returns */
303 	status = device_add(&spi->dev);
304 	if (status < 0)
305 		dev_err(dev, "can't %s %s, status %d\n",
306 				"add", dev_name(&spi->dev), status);
307 	else
308 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
309 
310 done:
311 	mutex_unlock(&spi_add_lock);
312 	return status;
313 }
314 EXPORT_SYMBOL_GPL(spi_add_device);
315 
316 /**
317  * spi_new_device - instantiate one new SPI device
318  * @master: Controller to which device is connected
319  * @chip: Describes the SPI device
320  * Context: can sleep
321  *
322  * On typical mainboards, this is purely internal; and it's not needed
323  * after board init creates the hard-wired devices.  Some development
324  * platforms may not be able to use spi_register_board_info though, and
325  * this is exported so that for example a USB or parport based adapter
326  * driver could add devices (which it would learn about out-of-band).
327  *
328  * Returns the new device, or NULL.
329  */
330 struct spi_device *spi_new_device(struct spi_master *master,
331 				  struct spi_board_info *chip)
332 {
333 	struct spi_device	*proxy;
334 	int			status;
335 
336 	/* NOTE:  caller did any chip->bus_num checks necessary.
337 	 *
338 	 * Also, unless we change the return value convention to use
339 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
340 	 * suggests syslogged diagnostics are best here (ugh).
341 	 */
342 
343 	proxy = spi_alloc_device(master);
344 	if (!proxy)
345 		return NULL;
346 
347 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
348 
349 	proxy->chip_select = chip->chip_select;
350 	proxy->max_speed_hz = chip->max_speed_hz;
351 	proxy->mode = chip->mode;
352 	proxy->irq = chip->irq;
353 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
354 	proxy->dev.platform_data = (void *) chip->platform_data;
355 	proxy->controller_data = chip->controller_data;
356 	proxy->controller_state = NULL;
357 
358 	status = spi_add_device(proxy);
359 	if (status < 0) {
360 		spi_dev_put(proxy);
361 		return NULL;
362 	}
363 
364 	return proxy;
365 }
366 EXPORT_SYMBOL_GPL(spi_new_device);
367 
368 /**
369  * spi_register_board_info - register SPI devices for a given board
370  * @info: array of chip descriptors
371  * @n: how many descriptors are provided
372  * Context: can sleep
373  *
374  * Board-specific early init code calls this (probably during arch_initcall)
375  * with segments of the SPI device table.  Any device nodes are created later,
376  * after the relevant parent SPI controller (bus_num) is defined.  We keep
377  * this table of devices forever, so that reloading a controller driver will
378  * not make Linux forget about these hard-wired devices.
379  *
380  * Other code can also call this, e.g. a particular add-on board might provide
381  * SPI devices through its expansion connector, so code initializing that board
382  * would naturally declare its SPI devices.
383  *
384  * The board info passed can safely be __initdata ... but be careful of
385  * any embedded pointers (platform_data, etc), they're copied as-is.
386  */
387 int __init
388 spi_register_board_info(struct spi_board_info const *info, unsigned n)
389 {
390 	struct boardinfo	*bi;
391 
392 	bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
393 	if (!bi)
394 		return -ENOMEM;
395 	bi->n_board_info = n;
396 	memcpy(bi->board_info, info, n * sizeof *info);
397 
398 	mutex_lock(&board_lock);
399 	list_add_tail(&bi->list, &board_list);
400 	mutex_unlock(&board_lock);
401 	return 0;
402 }
403 
404 /* FIXME someone should add support for a __setup("spi", ...) that
405  * creates board info from kernel command lines
406  */
407 
408 static void scan_boardinfo(struct spi_master *master)
409 {
410 	struct boardinfo	*bi;
411 
412 	mutex_lock(&board_lock);
413 	list_for_each_entry(bi, &board_list, list) {
414 		struct spi_board_info	*chip = bi->board_info;
415 		unsigned		n;
416 
417 		for (n = bi->n_board_info; n > 0; n--, chip++) {
418 			if (chip->bus_num != master->bus_num)
419 				continue;
420 			/* NOTE: this relies on spi_new_device to
421 			 * issue diagnostics when given bogus inputs
422 			 */
423 			(void) spi_new_device(master, chip);
424 		}
425 	}
426 	mutex_unlock(&board_lock);
427 }
428 
429 /*-------------------------------------------------------------------------*/
430 
431 static void spi_master_release(struct device *dev)
432 {
433 	struct spi_master *master;
434 
435 	master = container_of(dev, struct spi_master, dev);
436 	kfree(master);
437 }
438 
439 static struct class spi_master_class = {
440 	.name		= "spi_master",
441 	.owner		= THIS_MODULE,
442 	.dev_release	= spi_master_release,
443 };
444 
445 
446 /**
447  * spi_alloc_master - allocate SPI master controller
448  * @dev: the controller, possibly using the platform_bus
449  * @size: how much zeroed driver-private data to allocate; the pointer to this
450  *	memory is in the driver_data field of the returned device,
451  *	accessible with spi_master_get_devdata().
452  * Context: can sleep
453  *
454  * This call is used only by SPI master controller drivers, which are the
455  * only ones directly touching chip registers.  It's how they allocate
456  * an spi_master structure, prior to calling spi_register_master().
457  *
458  * This must be called from context that can sleep.  It returns the SPI
459  * master structure on success, else NULL.
460  *
461  * The caller is responsible for assigning the bus number and initializing
462  * the master's methods before calling spi_register_master(); and (after errors
463  * adding the device) calling spi_master_put() to prevent a memory leak.
464  */
465 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
466 {
467 	struct spi_master	*master;
468 
469 	if (!dev)
470 		return NULL;
471 
472 	master = kzalloc(size + sizeof *master, GFP_KERNEL);
473 	if (!master)
474 		return NULL;
475 
476 	device_initialize(&master->dev);
477 	master->dev.class = &spi_master_class;
478 	master->dev.parent = get_device(dev);
479 	spi_master_set_devdata(master, &master[1]);
480 
481 	return master;
482 }
483 EXPORT_SYMBOL_GPL(spi_alloc_master);
484 
485 /**
486  * spi_register_master - register SPI master controller
487  * @master: initialized master, originally from spi_alloc_master()
488  * Context: can sleep
489  *
490  * SPI master controllers connect to their drivers using some non-SPI bus,
491  * such as the platform bus.  The final stage of probe() in that code
492  * includes calling spi_register_master() to hook up to this SPI bus glue.
493  *
494  * SPI controllers use board specific (often SOC specific) bus numbers,
495  * and board-specific addressing for SPI devices combines those numbers
496  * with chip select numbers.  Since SPI does not directly support dynamic
497  * device identification, boards need configuration tables telling which
498  * chip is at which address.
499  *
500  * This must be called from context that can sleep.  It returns zero on
501  * success, else a negative error code (dropping the master's refcount).
502  * After a successful return, the caller is responsible for calling
503  * spi_unregister_master().
504  */
505 int spi_register_master(struct spi_master *master)
506 {
507 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
508 	struct device		*dev = master->dev.parent;
509 	int			status = -ENODEV;
510 	int			dynamic = 0;
511 
512 	if (!dev)
513 		return -ENODEV;
514 
515 	/* even if it's just one always-selected device, there must
516 	 * be at least one chipselect
517 	 */
518 	if (master->num_chipselect == 0)
519 		return -EINVAL;
520 
521 	/* convention:  dynamically assigned bus IDs count down from the max */
522 	if (master->bus_num < 0) {
523 		/* FIXME switch to an IDR based scheme, something like
524 		 * I2C now uses, so we can't run out of "dynamic" IDs
525 		 */
526 		master->bus_num = atomic_dec_return(&dyn_bus_id);
527 		dynamic = 1;
528 	}
529 
530 	/* register the device, then userspace will see it.
531 	 * registration fails if the bus ID is in use.
532 	 */
533 	dev_set_name(&master->dev, "spi%u", master->bus_num);
534 	status = device_add(&master->dev);
535 	if (status < 0)
536 		goto done;
537 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
538 			dynamic ? " (dynamic)" : "");
539 
540 	/* populate children from any spi device tables */
541 	scan_boardinfo(master);
542 	status = 0;
543 done:
544 	return status;
545 }
546 EXPORT_SYMBOL_GPL(spi_register_master);
547 
548 
549 static int __unregister(struct device *dev, void *master_dev)
550 {
551 	/* note: before about 2.6.14-rc1 this would corrupt memory: */
552 	if (dev != master_dev)
553 		spi_unregister_device(to_spi_device(dev));
554 	return 0;
555 }
556 
557 /**
558  * spi_unregister_master - unregister SPI master controller
559  * @master: the master being unregistered
560  * Context: can sleep
561  *
562  * This call is used only by SPI master controller drivers, which are the
563  * only ones directly touching chip registers.
564  *
565  * This must be called from context that can sleep.
566  */
567 void spi_unregister_master(struct spi_master *master)
568 {
569 	int dummy;
570 
571 	dummy = device_for_each_child(master->dev.parent, &master->dev,
572 					__unregister);
573 	device_unregister(&master->dev);
574 }
575 EXPORT_SYMBOL_GPL(spi_unregister_master);
576 
577 static int __spi_master_match(struct device *dev, void *data)
578 {
579 	struct spi_master *m;
580 	u16 *bus_num = data;
581 
582 	m = container_of(dev, struct spi_master, dev);
583 	return m->bus_num == *bus_num;
584 }
585 
586 /**
587  * spi_busnum_to_master - look up master associated with bus_num
588  * @bus_num: the master's bus number
589  * Context: can sleep
590  *
591  * This call may be used with devices that are registered after
592  * arch init time.  It returns a refcounted pointer to the relevant
593  * spi_master (which the caller must release), or NULL if there is
594  * no such master registered.
595  */
596 struct spi_master *spi_busnum_to_master(u16 bus_num)
597 {
598 	struct device		*dev;
599 	struct spi_master	*master = NULL;
600 
601 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
602 				__spi_master_match);
603 	if (dev)
604 		master = container_of(dev, struct spi_master, dev);
605 	/* reference got in class_find_device */
606 	return master;
607 }
608 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
609 
610 
611 /*-------------------------------------------------------------------------*/
612 
613 /* Core methods for SPI master protocol drivers.  Some of the
614  * other core methods are currently defined as inline functions.
615  */
616 
617 /**
618  * spi_setup - setup SPI mode and clock rate
619  * @spi: the device whose settings are being modified
620  * Context: can sleep, and no requests are queued to the device
621  *
622  * SPI protocol drivers may need to update the transfer mode if the
623  * device doesn't work with its default.  They may likewise need
624  * to update clock rates or word sizes from initial values.  This function
625  * changes those settings, and must be called from a context that can sleep.
626  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
627  * effect the next time the device is selected and data is transferred to
628  * or from it.  When this function returns, the spi device is deselected.
629  *
630  * Note that this call will fail if the protocol driver specifies an option
631  * that the underlying controller or its driver does not support.  For
632  * example, not all hardware supports wire transfers using nine bit words,
633  * LSB-first wire encoding, or active-high chipselects.
634  */
635 int spi_setup(struct spi_device *spi)
636 {
637 	unsigned	bad_bits;
638 	int		status;
639 
640 	/* help drivers fail *cleanly* when they need options
641 	 * that aren't supported with their current master
642 	 */
643 	bad_bits = spi->mode & ~spi->master->mode_bits;
644 	if (bad_bits) {
645 		dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
646 			bad_bits);
647 		return -EINVAL;
648 	}
649 
650 	if (!spi->bits_per_word)
651 		spi->bits_per_word = 8;
652 
653 	status = spi->master->setup(spi);
654 
655 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
656 				"%u bits/w, %u Hz max --> %d\n",
657 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
658 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
659 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
660 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
661 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
662 			spi->bits_per_word, spi->max_speed_hz,
663 			status);
664 
665 	return status;
666 }
667 EXPORT_SYMBOL_GPL(spi_setup);
668 
669 /**
670  * spi_async - asynchronous SPI transfer
671  * @spi: device with which data will be exchanged
672  * @message: describes the data transfers, including completion callback
673  * Context: any (irqs may be blocked, etc)
674  *
675  * This call may be used in_irq and other contexts which can't sleep,
676  * as well as from task contexts which can sleep.
677  *
678  * The completion callback is invoked in a context which can't sleep.
679  * Before that invocation, the value of message->status is undefined.
680  * When the callback is issued, message->status holds either zero (to
681  * indicate complete success) or a negative error code.  After that
682  * callback returns, the driver which issued the transfer request may
683  * deallocate the associated memory; it's no longer in use by any SPI
684  * core or controller driver code.
685  *
686  * Note that although all messages to a spi_device are handled in
687  * FIFO order, messages may go to different devices in other orders.
688  * Some device might be higher priority, or have various "hard" access
689  * time requirements, for example.
690  *
691  * On detection of any fault during the transfer, processing of
692  * the entire message is aborted, and the device is deselected.
693  * Until returning from the associated message completion callback,
694  * no other spi_message queued to that device will be processed.
695  * (This rule applies equally to all the synchronous transfer calls,
696  * which are wrappers around this core asynchronous primitive.)
697  */
698 int spi_async(struct spi_device *spi, struct spi_message *message)
699 {
700 	struct spi_master *master = spi->master;
701 
702 	/* Half-duplex links include original MicroWire, and ones with
703 	 * only one data pin like SPI_3WIRE (switches direction) or where
704 	 * either MOSI or MISO is missing.  They can also be caused by
705 	 * software limitations.
706 	 */
707 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
708 			|| (spi->mode & SPI_3WIRE)) {
709 		struct spi_transfer *xfer;
710 		unsigned flags = master->flags;
711 
712 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
713 			if (xfer->rx_buf && xfer->tx_buf)
714 				return -EINVAL;
715 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
716 				return -EINVAL;
717 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
718 				return -EINVAL;
719 		}
720 	}
721 
722 	message->spi = spi;
723 	message->status = -EINPROGRESS;
724 	return master->transfer(spi, message);
725 }
726 EXPORT_SYMBOL_GPL(spi_async);
727 
728 
729 /*-------------------------------------------------------------------------*/
730 
731 /* Utility methods for SPI master protocol drivers, layered on
732  * top of the core.  Some other utility methods are defined as
733  * inline functions.
734  */
735 
736 static void spi_complete(void *arg)
737 {
738 	complete(arg);
739 }
740 
741 /**
742  * spi_sync - blocking/synchronous SPI data transfers
743  * @spi: device with which data will be exchanged
744  * @message: describes the data transfers
745  * Context: can sleep
746  *
747  * This call may only be used from a context that may sleep.  The sleep
748  * is non-interruptible, and has no timeout.  Low-overhead controller
749  * drivers may DMA directly into and out of the message buffers.
750  *
751  * Note that the SPI device's chip select is active during the message,
752  * and then is normally disabled between messages.  Drivers for some
753  * frequently-used devices may want to minimize costs of selecting a chip,
754  * by leaving it selected in anticipation that the next message will go
755  * to the same chip.  (That may increase power usage.)
756  *
757  * Also, the caller is guaranteeing that the memory associated with the
758  * message will not be freed before this call returns.
759  *
760  * It returns zero on success, else a negative error code.
761  */
762 int spi_sync(struct spi_device *spi, struct spi_message *message)
763 {
764 	DECLARE_COMPLETION_ONSTACK(done);
765 	int status;
766 
767 	message->complete = spi_complete;
768 	message->context = &done;
769 	status = spi_async(spi, message);
770 	if (status == 0) {
771 		wait_for_completion(&done);
772 		status = message->status;
773 	}
774 	message->context = NULL;
775 	return status;
776 }
777 EXPORT_SYMBOL_GPL(spi_sync);
778 
779 /* portable code must never pass more than 32 bytes */
780 #define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
781 
782 static u8	*buf;
783 
784 /**
785  * spi_write_then_read - SPI synchronous write followed by read
786  * @spi: device with which data will be exchanged
787  * @txbuf: data to be written (need not be dma-safe)
788  * @n_tx: size of txbuf, in bytes
789  * @rxbuf: buffer into which data will be read (need not be dma-safe)
790  * @n_rx: size of rxbuf, in bytes
791  * Context: can sleep
792  *
793  * This performs a half duplex MicroWire style transaction with the
794  * device, sending txbuf and then reading rxbuf.  The return value
795  * is zero for success, else a negative errno status code.
796  * This call may only be used from a context that may sleep.
797  *
798  * Parameters to this routine are always copied using a small buffer;
799  * portable code should never use this for more than 32 bytes.
800  * Performance-sensitive or bulk transfer code should instead use
801  * spi_{async,sync}() calls with dma-safe buffers.
802  */
803 int spi_write_then_read(struct spi_device *spi,
804 		const u8 *txbuf, unsigned n_tx,
805 		u8 *rxbuf, unsigned n_rx)
806 {
807 	static DEFINE_MUTEX(lock);
808 
809 	int			status;
810 	struct spi_message	message;
811 	struct spi_transfer	x[2];
812 	u8			*local_buf;
813 
814 	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
815 	 * (as a pure convenience thing), but we can keep heap costs
816 	 * out of the hot path ...
817 	 */
818 	if ((n_tx + n_rx) > SPI_BUFSIZ)
819 		return -EINVAL;
820 
821 	spi_message_init(&message);
822 	memset(x, 0, sizeof x);
823 	if (n_tx) {
824 		x[0].len = n_tx;
825 		spi_message_add_tail(&x[0], &message);
826 	}
827 	if (n_rx) {
828 		x[1].len = n_rx;
829 		spi_message_add_tail(&x[1], &message);
830 	}
831 
832 	/* ... unless someone else is using the pre-allocated buffer */
833 	if (!mutex_trylock(&lock)) {
834 		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
835 		if (!local_buf)
836 			return -ENOMEM;
837 	} else
838 		local_buf = buf;
839 
840 	memcpy(local_buf, txbuf, n_tx);
841 	x[0].tx_buf = local_buf;
842 	x[1].rx_buf = local_buf + n_tx;
843 
844 	/* do the i/o */
845 	status = spi_sync(spi, &message);
846 	if (status == 0)
847 		memcpy(rxbuf, x[1].rx_buf, n_rx);
848 
849 	if (x[0].tx_buf == buf)
850 		mutex_unlock(&lock);
851 	else
852 		kfree(local_buf);
853 
854 	return status;
855 }
856 EXPORT_SYMBOL_GPL(spi_write_then_read);
857 
858 /*-------------------------------------------------------------------------*/
859 
860 static int __init spi_init(void)
861 {
862 	int	status;
863 
864 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
865 	if (!buf) {
866 		status = -ENOMEM;
867 		goto err0;
868 	}
869 
870 	status = bus_register(&spi_bus_type);
871 	if (status < 0)
872 		goto err1;
873 
874 	status = class_register(&spi_master_class);
875 	if (status < 0)
876 		goto err2;
877 	return 0;
878 
879 err2:
880 	bus_unregister(&spi_bus_type);
881 err1:
882 	kfree(buf);
883 	buf = NULL;
884 err0:
885 	return status;
886 }
887 
888 /* board_info is normally registered in arch_initcall(),
889  * but even essential drivers wait till later
890  *
891  * REVISIT only boardinfo really needs static linking. the rest (device and
892  * driver registration) _could_ be dynamically linked (modular) ... costs
893  * include needing to have boardinfo data structures be much more public.
894  */
895 postcore_initcall(spi_init);
896 
897