1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/kernel.h> 8 #include <linux/device.h> 9 #include <linux/init.h> 10 #include <linux/cache.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/dmaengine.h> 13 #include <linux/mutex.h> 14 #include <linux/of_device.h> 15 #include <linux/of_irq.h> 16 #include <linux/clk/clk-conf.h> 17 #include <linux/slab.h> 18 #include <linux/mod_devicetable.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/pm_domain.h> 24 #include <linux/property.h> 25 #include <linux/export.h> 26 #include <linux/sched/rt.h> 27 #include <uapi/linux/sched/types.h> 28 #include <linux/delay.h> 29 #include <linux/kthread.h> 30 #include <linux/ioport.h> 31 #include <linux/acpi.h> 32 #include <linux/highmem.h> 33 #include <linux/idr.h> 34 #include <linux/platform_data/x86/apple.h> 35 #include <linux/ptp_clock_kernel.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/spi.h> 39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 41 42 #include "internals.h" 43 44 static DEFINE_IDR(spi_master_idr); 45 46 static void spidev_release(struct device *dev) 47 { 48 struct spi_device *spi = to_spi_device(dev); 49 50 spi_controller_put(spi->controller); 51 kfree(spi->driver_override); 52 kfree(spi); 53 } 54 55 static ssize_t 56 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 57 { 58 const struct spi_device *spi = to_spi_device(dev); 59 int len; 60 61 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 62 if (len != -ENODEV) 63 return len; 64 65 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 66 } 67 static DEVICE_ATTR_RO(modalias); 68 69 static ssize_t driver_override_store(struct device *dev, 70 struct device_attribute *a, 71 const char *buf, size_t count) 72 { 73 struct spi_device *spi = to_spi_device(dev); 74 const char *end = memchr(buf, '\n', count); 75 const size_t len = end ? end - buf : count; 76 const char *driver_override, *old; 77 78 /* We need to keep extra room for a newline when displaying value */ 79 if (len >= (PAGE_SIZE - 1)) 80 return -EINVAL; 81 82 driver_override = kstrndup(buf, len, GFP_KERNEL); 83 if (!driver_override) 84 return -ENOMEM; 85 86 device_lock(dev); 87 old = spi->driver_override; 88 if (len) { 89 spi->driver_override = driver_override; 90 } else { 91 /* Empty string, disable driver override */ 92 spi->driver_override = NULL; 93 kfree(driver_override); 94 } 95 device_unlock(dev); 96 kfree(old); 97 98 return count; 99 } 100 101 static ssize_t driver_override_show(struct device *dev, 102 struct device_attribute *a, char *buf) 103 { 104 const struct spi_device *spi = to_spi_device(dev); 105 ssize_t len; 106 107 device_lock(dev); 108 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : ""); 109 device_unlock(dev); 110 return len; 111 } 112 static DEVICE_ATTR_RW(driver_override); 113 114 #define SPI_STATISTICS_ATTRS(field, file) \ 115 static ssize_t spi_controller_##field##_show(struct device *dev, \ 116 struct device_attribute *attr, \ 117 char *buf) \ 118 { \ 119 struct spi_controller *ctlr = container_of(dev, \ 120 struct spi_controller, dev); \ 121 return spi_statistics_##field##_show(&ctlr->statistics, buf); \ 122 } \ 123 static struct device_attribute dev_attr_spi_controller_##field = { \ 124 .attr = { .name = file, .mode = 0444 }, \ 125 .show = spi_controller_##field##_show, \ 126 }; \ 127 static ssize_t spi_device_##field##_show(struct device *dev, \ 128 struct device_attribute *attr, \ 129 char *buf) \ 130 { \ 131 struct spi_device *spi = to_spi_device(dev); \ 132 return spi_statistics_##field##_show(&spi->statistics, buf); \ 133 } \ 134 static struct device_attribute dev_attr_spi_device_##field = { \ 135 .attr = { .name = file, .mode = 0444 }, \ 136 .show = spi_device_##field##_show, \ 137 } 138 139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \ 140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \ 141 char *buf) \ 142 { \ 143 unsigned long flags; \ 144 ssize_t len; \ 145 spin_lock_irqsave(&stat->lock, flags); \ 146 len = sysfs_emit(buf, format_string "\n", stat->field); \ 147 spin_unlock_irqrestore(&stat->lock, flags); \ 148 return len; \ 149 } \ 150 SPI_STATISTICS_ATTRS(name, file) 151 152 #define SPI_STATISTICS_SHOW(field, format_string) \ 153 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 154 field, format_string) 155 156 SPI_STATISTICS_SHOW(messages, "%lu"); 157 SPI_STATISTICS_SHOW(transfers, "%lu"); 158 SPI_STATISTICS_SHOW(errors, "%lu"); 159 SPI_STATISTICS_SHOW(timedout, "%lu"); 160 161 SPI_STATISTICS_SHOW(spi_sync, "%lu"); 162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu"); 163 SPI_STATISTICS_SHOW(spi_async, "%lu"); 164 165 SPI_STATISTICS_SHOW(bytes, "%llu"); 166 SPI_STATISTICS_SHOW(bytes_rx, "%llu"); 167 SPI_STATISTICS_SHOW(bytes_tx, "%llu"); 168 169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 170 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 171 "transfer_bytes_histo_" number, \ 172 transfer_bytes_histo[index], "%lu") 173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 190 191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu"); 192 193 static struct attribute *spi_dev_attrs[] = { 194 &dev_attr_modalias.attr, 195 &dev_attr_driver_override.attr, 196 NULL, 197 }; 198 199 static const struct attribute_group spi_dev_group = { 200 .attrs = spi_dev_attrs, 201 }; 202 203 static struct attribute *spi_device_statistics_attrs[] = { 204 &dev_attr_spi_device_messages.attr, 205 &dev_attr_spi_device_transfers.attr, 206 &dev_attr_spi_device_errors.attr, 207 &dev_attr_spi_device_timedout.attr, 208 &dev_attr_spi_device_spi_sync.attr, 209 &dev_attr_spi_device_spi_sync_immediate.attr, 210 &dev_attr_spi_device_spi_async.attr, 211 &dev_attr_spi_device_bytes.attr, 212 &dev_attr_spi_device_bytes_rx.attr, 213 &dev_attr_spi_device_bytes_tx.attr, 214 &dev_attr_spi_device_transfer_bytes_histo0.attr, 215 &dev_attr_spi_device_transfer_bytes_histo1.attr, 216 &dev_attr_spi_device_transfer_bytes_histo2.attr, 217 &dev_attr_spi_device_transfer_bytes_histo3.attr, 218 &dev_attr_spi_device_transfer_bytes_histo4.attr, 219 &dev_attr_spi_device_transfer_bytes_histo5.attr, 220 &dev_attr_spi_device_transfer_bytes_histo6.attr, 221 &dev_attr_spi_device_transfer_bytes_histo7.attr, 222 &dev_attr_spi_device_transfer_bytes_histo8.attr, 223 &dev_attr_spi_device_transfer_bytes_histo9.attr, 224 &dev_attr_spi_device_transfer_bytes_histo10.attr, 225 &dev_attr_spi_device_transfer_bytes_histo11.attr, 226 &dev_attr_spi_device_transfer_bytes_histo12.attr, 227 &dev_attr_spi_device_transfer_bytes_histo13.attr, 228 &dev_attr_spi_device_transfer_bytes_histo14.attr, 229 &dev_attr_spi_device_transfer_bytes_histo15.attr, 230 &dev_attr_spi_device_transfer_bytes_histo16.attr, 231 &dev_attr_spi_device_transfers_split_maxsize.attr, 232 NULL, 233 }; 234 235 static const struct attribute_group spi_device_statistics_group = { 236 .name = "statistics", 237 .attrs = spi_device_statistics_attrs, 238 }; 239 240 static const struct attribute_group *spi_dev_groups[] = { 241 &spi_dev_group, 242 &spi_device_statistics_group, 243 NULL, 244 }; 245 246 static struct attribute *spi_controller_statistics_attrs[] = { 247 &dev_attr_spi_controller_messages.attr, 248 &dev_attr_spi_controller_transfers.attr, 249 &dev_attr_spi_controller_errors.attr, 250 &dev_attr_spi_controller_timedout.attr, 251 &dev_attr_spi_controller_spi_sync.attr, 252 &dev_attr_spi_controller_spi_sync_immediate.attr, 253 &dev_attr_spi_controller_spi_async.attr, 254 &dev_attr_spi_controller_bytes.attr, 255 &dev_attr_spi_controller_bytes_rx.attr, 256 &dev_attr_spi_controller_bytes_tx.attr, 257 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 258 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 259 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 260 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 261 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 262 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 263 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 264 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 265 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 266 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 267 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 268 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 269 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 270 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 271 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 272 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 273 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 274 &dev_attr_spi_controller_transfers_split_maxsize.attr, 275 NULL, 276 }; 277 278 static const struct attribute_group spi_controller_statistics_group = { 279 .name = "statistics", 280 .attrs = spi_controller_statistics_attrs, 281 }; 282 283 static const struct attribute_group *spi_master_groups[] = { 284 &spi_controller_statistics_group, 285 NULL, 286 }; 287 288 static void spi_statistics_add_transfer_stats(struct spi_statistics *stats, 289 struct spi_transfer *xfer, 290 struct spi_controller *ctlr) 291 { 292 unsigned long flags; 293 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 294 295 if (l2len < 0) 296 l2len = 0; 297 298 spin_lock_irqsave(&stats->lock, flags); 299 300 stats->transfers++; 301 stats->transfer_bytes_histo[l2len]++; 302 303 stats->bytes += xfer->len; 304 if ((xfer->tx_buf) && 305 (xfer->tx_buf != ctlr->dummy_tx)) 306 stats->bytes_tx += xfer->len; 307 if ((xfer->rx_buf) && 308 (xfer->rx_buf != ctlr->dummy_rx)) 309 stats->bytes_rx += xfer->len; 310 311 spin_unlock_irqrestore(&stats->lock, flags); 312 } 313 314 /* 315 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 316 * and the sysfs version makes coldplug work too. 317 */ 318 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 319 { 320 while (id->name[0]) { 321 if (!strcmp(name, id->name)) 322 return id; 323 id++; 324 } 325 return NULL; 326 } 327 328 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 329 { 330 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 331 332 return spi_match_id(sdrv->id_table, sdev->modalias); 333 } 334 EXPORT_SYMBOL_GPL(spi_get_device_id); 335 336 static int spi_match_device(struct device *dev, struct device_driver *drv) 337 { 338 const struct spi_device *spi = to_spi_device(dev); 339 const struct spi_driver *sdrv = to_spi_driver(drv); 340 341 /* Check override first, and if set, only use the named driver */ 342 if (spi->driver_override) 343 return strcmp(spi->driver_override, drv->name) == 0; 344 345 /* Attempt an OF style match */ 346 if (of_driver_match_device(dev, drv)) 347 return 1; 348 349 /* Then try ACPI */ 350 if (acpi_driver_match_device(dev, drv)) 351 return 1; 352 353 if (sdrv->id_table) 354 return !!spi_match_id(sdrv->id_table, spi->modalias); 355 356 return strcmp(spi->modalias, drv->name) == 0; 357 } 358 359 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 360 { 361 const struct spi_device *spi = to_spi_device(dev); 362 int rc; 363 364 rc = acpi_device_uevent_modalias(dev, env); 365 if (rc != -ENODEV) 366 return rc; 367 368 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 369 } 370 371 static int spi_probe(struct device *dev) 372 { 373 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 374 struct spi_device *spi = to_spi_device(dev); 375 int ret; 376 377 ret = of_clk_set_defaults(dev->of_node, false); 378 if (ret) 379 return ret; 380 381 if (dev->of_node) { 382 spi->irq = of_irq_get(dev->of_node, 0); 383 if (spi->irq == -EPROBE_DEFER) 384 return -EPROBE_DEFER; 385 if (spi->irq < 0) 386 spi->irq = 0; 387 } 388 389 ret = dev_pm_domain_attach(dev, true); 390 if (ret) 391 return ret; 392 393 if (sdrv->probe) { 394 ret = sdrv->probe(spi); 395 if (ret) 396 dev_pm_domain_detach(dev, true); 397 } 398 399 return ret; 400 } 401 402 static void spi_remove(struct device *dev) 403 { 404 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 405 406 if (sdrv->remove) 407 sdrv->remove(to_spi_device(dev)); 408 409 dev_pm_domain_detach(dev, true); 410 } 411 412 static void spi_shutdown(struct device *dev) 413 { 414 if (dev->driver) { 415 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 416 417 if (sdrv->shutdown) 418 sdrv->shutdown(to_spi_device(dev)); 419 } 420 } 421 422 struct bus_type spi_bus_type = { 423 .name = "spi", 424 .dev_groups = spi_dev_groups, 425 .match = spi_match_device, 426 .uevent = spi_uevent, 427 .probe = spi_probe, 428 .remove = spi_remove, 429 .shutdown = spi_shutdown, 430 }; 431 EXPORT_SYMBOL_GPL(spi_bus_type); 432 433 /** 434 * __spi_register_driver - register a SPI driver 435 * @owner: owner module of the driver to register 436 * @sdrv: the driver to register 437 * Context: can sleep 438 * 439 * Return: zero on success, else a negative error code. 440 */ 441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 442 { 443 sdrv->driver.owner = owner; 444 sdrv->driver.bus = &spi_bus_type; 445 446 /* 447 * For Really Good Reasons we use spi: modaliases not of: 448 * modaliases for DT so module autoloading won't work if we 449 * don't have a spi_device_id as well as a compatible string. 450 */ 451 if (sdrv->driver.of_match_table) { 452 const struct of_device_id *of_id; 453 454 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 455 of_id++) { 456 const char *of_name; 457 458 /* Strip off any vendor prefix */ 459 of_name = strnchr(of_id->compatible, 460 sizeof(of_id->compatible), ','); 461 if (of_name) 462 of_name++; 463 else 464 of_name = of_id->compatible; 465 466 if (sdrv->id_table) { 467 const struct spi_device_id *spi_id; 468 469 spi_id = spi_match_id(sdrv->id_table, of_name); 470 if (spi_id) 471 continue; 472 } else { 473 if (strcmp(sdrv->driver.name, of_name) == 0) 474 continue; 475 } 476 477 pr_warn("SPI driver %s has no spi_device_id for %s\n", 478 sdrv->driver.name, of_id->compatible); 479 } 480 } 481 482 return driver_register(&sdrv->driver); 483 } 484 EXPORT_SYMBOL_GPL(__spi_register_driver); 485 486 /*-------------------------------------------------------------------------*/ 487 488 /* 489 * SPI devices should normally not be created by SPI device drivers; that 490 * would make them board-specific. Similarly with SPI controller drivers. 491 * Device registration normally goes into like arch/.../mach.../board-YYY.c 492 * with other readonly (flashable) information about mainboard devices. 493 */ 494 495 struct boardinfo { 496 struct list_head list; 497 struct spi_board_info board_info; 498 }; 499 500 static LIST_HEAD(board_list); 501 static LIST_HEAD(spi_controller_list); 502 503 /* 504 * Used to protect add/del operation for board_info list and 505 * spi_controller list, and their matching process also used 506 * to protect object of type struct idr. 507 */ 508 static DEFINE_MUTEX(board_lock); 509 510 /** 511 * spi_alloc_device - Allocate a new SPI device 512 * @ctlr: Controller to which device is connected 513 * Context: can sleep 514 * 515 * Allows a driver to allocate and initialize a spi_device without 516 * registering it immediately. This allows a driver to directly 517 * fill the spi_device with device parameters before calling 518 * spi_add_device() on it. 519 * 520 * Caller is responsible to call spi_add_device() on the returned 521 * spi_device structure to add it to the SPI controller. If the caller 522 * needs to discard the spi_device without adding it, then it should 523 * call spi_dev_put() on it. 524 * 525 * Return: a pointer to the new device, or NULL. 526 */ 527 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 528 { 529 struct spi_device *spi; 530 531 if (!spi_controller_get(ctlr)) 532 return NULL; 533 534 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 535 if (!spi) { 536 spi_controller_put(ctlr); 537 return NULL; 538 } 539 540 spi->master = spi->controller = ctlr; 541 spi->dev.parent = &ctlr->dev; 542 spi->dev.bus = &spi_bus_type; 543 spi->dev.release = spidev_release; 544 spi->mode = ctlr->buswidth_override_bits; 545 546 spin_lock_init(&spi->statistics.lock); 547 548 device_initialize(&spi->dev); 549 return spi; 550 } 551 EXPORT_SYMBOL_GPL(spi_alloc_device); 552 553 static void spi_dev_set_name(struct spi_device *spi) 554 { 555 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 556 557 if (adev) { 558 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 559 return; 560 } 561 562 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 563 spi->chip_select); 564 } 565 566 static int spi_dev_check(struct device *dev, void *data) 567 { 568 struct spi_device *spi = to_spi_device(dev); 569 struct spi_device *new_spi = data; 570 571 if (spi->controller == new_spi->controller && 572 spi->chip_select == new_spi->chip_select) 573 return -EBUSY; 574 return 0; 575 } 576 577 static void spi_cleanup(struct spi_device *spi) 578 { 579 if (spi->controller->cleanup) 580 spi->controller->cleanup(spi); 581 } 582 583 static int __spi_add_device(struct spi_device *spi) 584 { 585 struct spi_controller *ctlr = spi->controller; 586 struct device *dev = ctlr->dev.parent; 587 int status; 588 589 /* 590 * We need to make sure there's no other device with this 591 * chipselect **BEFORE** we call setup(), else we'll trash 592 * its configuration. 593 */ 594 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 595 if (status) { 596 dev_err(dev, "chipselect %d already in use\n", 597 spi->chip_select); 598 return status; 599 } 600 601 /* Controller may unregister concurrently */ 602 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 603 !device_is_registered(&ctlr->dev)) { 604 return -ENODEV; 605 } 606 607 if (ctlr->cs_gpiods) 608 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select]; 609 610 /* 611 * Drivers may modify this initial i/o setup, but will 612 * normally rely on the device being setup. Devices 613 * using SPI_CS_HIGH can't coexist well otherwise... 614 */ 615 status = spi_setup(spi); 616 if (status < 0) { 617 dev_err(dev, "can't setup %s, status %d\n", 618 dev_name(&spi->dev), status); 619 return status; 620 } 621 622 /* Device may be bound to an active driver when this returns */ 623 status = device_add(&spi->dev); 624 if (status < 0) { 625 dev_err(dev, "can't add %s, status %d\n", 626 dev_name(&spi->dev), status); 627 spi_cleanup(spi); 628 } else { 629 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 630 } 631 632 return status; 633 } 634 635 /** 636 * spi_add_device - Add spi_device allocated with spi_alloc_device 637 * @spi: spi_device to register 638 * 639 * Companion function to spi_alloc_device. Devices allocated with 640 * spi_alloc_device can be added onto the spi bus with this function. 641 * 642 * Return: 0 on success; negative errno on failure 643 */ 644 int spi_add_device(struct spi_device *spi) 645 { 646 struct spi_controller *ctlr = spi->controller; 647 struct device *dev = ctlr->dev.parent; 648 int status; 649 650 /* Chipselects are numbered 0..max; validate. */ 651 if (spi->chip_select >= ctlr->num_chipselect) { 652 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 653 ctlr->num_chipselect); 654 return -EINVAL; 655 } 656 657 /* Set the bus ID string */ 658 spi_dev_set_name(spi); 659 660 mutex_lock(&ctlr->add_lock); 661 status = __spi_add_device(spi); 662 mutex_unlock(&ctlr->add_lock); 663 return status; 664 } 665 EXPORT_SYMBOL_GPL(spi_add_device); 666 667 static int spi_add_device_locked(struct spi_device *spi) 668 { 669 struct spi_controller *ctlr = spi->controller; 670 struct device *dev = ctlr->dev.parent; 671 672 /* Chipselects are numbered 0..max; validate. */ 673 if (spi->chip_select >= ctlr->num_chipselect) { 674 dev_err(dev, "cs%d >= max %d\n", spi->chip_select, 675 ctlr->num_chipselect); 676 return -EINVAL; 677 } 678 679 /* Set the bus ID string */ 680 spi_dev_set_name(spi); 681 682 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 683 return __spi_add_device(spi); 684 } 685 686 /** 687 * spi_new_device - instantiate one new SPI device 688 * @ctlr: Controller to which device is connected 689 * @chip: Describes the SPI device 690 * Context: can sleep 691 * 692 * On typical mainboards, this is purely internal; and it's not needed 693 * after board init creates the hard-wired devices. Some development 694 * platforms may not be able to use spi_register_board_info though, and 695 * this is exported so that for example a USB or parport based adapter 696 * driver could add devices (which it would learn about out-of-band). 697 * 698 * Return: the new device, or NULL. 699 */ 700 struct spi_device *spi_new_device(struct spi_controller *ctlr, 701 struct spi_board_info *chip) 702 { 703 struct spi_device *proxy; 704 int status; 705 706 /* 707 * NOTE: caller did any chip->bus_num checks necessary. 708 * 709 * Also, unless we change the return value convention to use 710 * error-or-pointer (not NULL-or-pointer), troubleshootability 711 * suggests syslogged diagnostics are best here (ugh). 712 */ 713 714 proxy = spi_alloc_device(ctlr); 715 if (!proxy) 716 return NULL; 717 718 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 719 720 proxy->chip_select = chip->chip_select; 721 proxy->max_speed_hz = chip->max_speed_hz; 722 proxy->mode = chip->mode; 723 proxy->irq = chip->irq; 724 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 725 proxy->dev.platform_data = (void *) chip->platform_data; 726 proxy->controller_data = chip->controller_data; 727 proxy->controller_state = NULL; 728 729 if (chip->swnode) { 730 status = device_add_software_node(&proxy->dev, chip->swnode); 731 if (status) { 732 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 733 chip->modalias, status); 734 goto err_dev_put; 735 } 736 } 737 738 status = spi_add_device(proxy); 739 if (status < 0) 740 goto err_dev_put; 741 742 return proxy; 743 744 err_dev_put: 745 device_remove_software_node(&proxy->dev); 746 spi_dev_put(proxy); 747 return NULL; 748 } 749 EXPORT_SYMBOL_GPL(spi_new_device); 750 751 /** 752 * spi_unregister_device - unregister a single SPI device 753 * @spi: spi_device to unregister 754 * 755 * Start making the passed SPI device vanish. Normally this would be handled 756 * by spi_unregister_controller(). 757 */ 758 void spi_unregister_device(struct spi_device *spi) 759 { 760 if (!spi) 761 return; 762 763 if (spi->dev.of_node) { 764 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 765 of_node_put(spi->dev.of_node); 766 } 767 if (ACPI_COMPANION(&spi->dev)) 768 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 769 device_remove_software_node(&spi->dev); 770 device_del(&spi->dev); 771 spi_cleanup(spi); 772 put_device(&spi->dev); 773 } 774 EXPORT_SYMBOL_GPL(spi_unregister_device); 775 776 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 777 struct spi_board_info *bi) 778 { 779 struct spi_device *dev; 780 781 if (ctlr->bus_num != bi->bus_num) 782 return; 783 784 dev = spi_new_device(ctlr, bi); 785 if (!dev) 786 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 787 bi->modalias); 788 } 789 790 /** 791 * spi_register_board_info - register SPI devices for a given board 792 * @info: array of chip descriptors 793 * @n: how many descriptors are provided 794 * Context: can sleep 795 * 796 * Board-specific early init code calls this (probably during arch_initcall) 797 * with segments of the SPI device table. Any device nodes are created later, 798 * after the relevant parent SPI controller (bus_num) is defined. We keep 799 * this table of devices forever, so that reloading a controller driver will 800 * not make Linux forget about these hard-wired devices. 801 * 802 * Other code can also call this, e.g. a particular add-on board might provide 803 * SPI devices through its expansion connector, so code initializing that board 804 * would naturally declare its SPI devices. 805 * 806 * The board info passed can safely be __initdata ... but be careful of 807 * any embedded pointers (platform_data, etc), they're copied as-is. 808 * 809 * Return: zero on success, else a negative error code. 810 */ 811 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 812 { 813 struct boardinfo *bi; 814 int i; 815 816 if (!n) 817 return 0; 818 819 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 820 if (!bi) 821 return -ENOMEM; 822 823 for (i = 0; i < n; i++, bi++, info++) { 824 struct spi_controller *ctlr; 825 826 memcpy(&bi->board_info, info, sizeof(*info)); 827 828 mutex_lock(&board_lock); 829 list_add_tail(&bi->list, &board_list); 830 list_for_each_entry(ctlr, &spi_controller_list, list) 831 spi_match_controller_to_boardinfo(ctlr, 832 &bi->board_info); 833 mutex_unlock(&board_lock); 834 } 835 836 return 0; 837 } 838 839 /*-------------------------------------------------------------------------*/ 840 841 /* Core methods for SPI resource management */ 842 843 /** 844 * spi_res_alloc - allocate a spi resource that is life-cycle managed 845 * during the processing of a spi_message while using 846 * spi_transfer_one 847 * @spi: the spi device for which we allocate memory 848 * @release: the release code to execute for this resource 849 * @size: size to alloc and return 850 * @gfp: GFP allocation flags 851 * 852 * Return: the pointer to the allocated data 853 * 854 * This may get enhanced in the future to allocate from a memory pool 855 * of the @spi_device or @spi_controller to avoid repeated allocations. 856 */ 857 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 858 size_t size, gfp_t gfp) 859 { 860 struct spi_res *sres; 861 862 sres = kzalloc(sizeof(*sres) + size, gfp); 863 if (!sres) 864 return NULL; 865 866 INIT_LIST_HEAD(&sres->entry); 867 sres->release = release; 868 869 return sres->data; 870 } 871 872 /** 873 * spi_res_free - free an spi resource 874 * @res: pointer to the custom data of a resource 875 */ 876 static void spi_res_free(void *res) 877 { 878 struct spi_res *sres = container_of(res, struct spi_res, data); 879 880 if (!res) 881 return; 882 883 WARN_ON(!list_empty(&sres->entry)); 884 kfree(sres); 885 } 886 887 /** 888 * spi_res_add - add a spi_res to the spi_message 889 * @message: the spi message 890 * @res: the spi_resource 891 */ 892 static void spi_res_add(struct spi_message *message, void *res) 893 { 894 struct spi_res *sres = container_of(res, struct spi_res, data); 895 896 WARN_ON(!list_empty(&sres->entry)); 897 list_add_tail(&sres->entry, &message->resources); 898 } 899 900 /** 901 * spi_res_release - release all spi resources for this message 902 * @ctlr: the @spi_controller 903 * @message: the @spi_message 904 */ 905 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 906 { 907 struct spi_res *res, *tmp; 908 909 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 910 if (res->release) 911 res->release(ctlr, message, res->data); 912 913 list_del(&res->entry); 914 915 kfree(res); 916 } 917 } 918 919 /*-------------------------------------------------------------------------*/ 920 921 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 922 { 923 bool activate = enable; 924 925 /* 926 * Avoid calling into the driver (or doing delays) if the chip select 927 * isn't actually changing from the last time this was called. 928 */ 929 if (!force && ((enable && spi->controller->last_cs == spi->chip_select) || 930 (!enable && spi->controller->last_cs != spi->chip_select)) && 931 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 932 return; 933 934 trace_spi_set_cs(spi, activate); 935 936 spi->controller->last_cs = enable ? spi->chip_select : -1; 937 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 938 939 if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) { 940 spi_delay_exec(&spi->cs_hold, NULL); 941 } 942 943 if (spi->mode & SPI_CS_HIGH) 944 enable = !enable; 945 946 if (spi->cs_gpiod) { 947 if (!(spi->mode & SPI_NO_CS)) { 948 /* 949 * Historically ACPI has no means of the GPIO polarity and 950 * thus the SPISerialBus() resource defines it on the per-chip 951 * basis. In order to avoid a chain of negations, the GPIO 952 * polarity is considered being Active High. Even for the cases 953 * when _DSD() is involved (in the updated versions of ACPI) 954 * the GPIO CS polarity must be defined Active High to avoid 955 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 956 * into account. 957 */ 958 if (has_acpi_companion(&spi->dev)) 959 gpiod_set_value_cansleep(spi->cs_gpiod, !enable); 960 else 961 /* Polarity handled by GPIO library */ 962 gpiod_set_value_cansleep(spi->cs_gpiod, activate); 963 } 964 /* Some SPI masters need both GPIO CS & slave_select */ 965 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) && 966 spi->controller->set_cs) 967 spi->controller->set_cs(spi, !enable); 968 } else if (spi->controller->set_cs) { 969 spi->controller->set_cs(spi, !enable); 970 } 971 972 if (spi->cs_gpiod || !spi->controller->set_cs_timing) { 973 if (activate) 974 spi_delay_exec(&spi->cs_setup, NULL); 975 else 976 spi_delay_exec(&spi->cs_inactive, NULL); 977 } 978 } 979 980 #ifdef CONFIG_HAS_DMA 981 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 982 struct sg_table *sgt, void *buf, size_t len, 983 enum dma_data_direction dir) 984 { 985 const bool vmalloced_buf = is_vmalloc_addr(buf); 986 unsigned int max_seg_size = dma_get_max_seg_size(dev); 987 #ifdef CONFIG_HIGHMEM 988 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 989 (unsigned long)buf < (PKMAP_BASE + 990 (LAST_PKMAP * PAGE_SIZE))); 991 #else 992 const bool kmap_buf = false; 993 #endif 994 int desc_len; 995 int sgs; 996 struct page *vm_page; 997 struct scatterlist *sg; 998 void *sg_buf; 999 size_t min; 1000 int i, ret; 1001 1002 if (vmalloced_buf || kmap_buf) { 1003 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1004 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1005 } else if (virt_addr_valid(buf)) { 1006 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1007 sgs = DIV_ROUND_UP(len, desc_len); 1008 } else { 1009 return -EINVAL; 1010 } 1011 1012 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1013 if (ret != 0) 1014 return ret; 1015 1016 sg = &sgt->sgl[0]; 1017 for (i = 0; i < sgs; i++) { 1018 1019 if (vmalloced_buf || kmap_buf) { 1020 /* 1021 * Next scatterlist entry size is the minimum between 1022 * the desc_len and the remaining buffer length that 1023 * fits in a page. 1024 */ 1025 min = min_t(size_t, desc_len, 1026 min_t(size_t, len, 1027 PAGE_SIZE - offset_in_page(buf))); 1028 if (vmalloced_buf) 1029 vm_page = vmalloc_to_page(buf); 1030 else 1031 vm_page = kmap_to_page(buf); 1032 if (!vm_page) { 1033 sg_free_table(sgt); 1034 return -ENOMEM; 1035 } 1036 sg_set_page(sg, vm_page, 1037 min, offset_in_page(buf)); 1038 } else { 1039 min = min_t(size_t, len, desc_len); 1040 sg_buf = buf; 1041 sg_set_buf(sg, sg_buf, min); 1042 } 1043 1044 buf += min; 1045 len -= min; 1046 sg = sg_next(sg); 1047 } 1048 1049 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 1050 if (!ret) 1051 ret = -ENOMEM; 1052 if (ret < 0) { 1053 sg_free_table(sgt); 1054 return ret; 1055 } 1056 1057 sgt->nents = ret; 1058 1059 return 0; 1060 } 1061 1062 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1063 struct sg_table *sgt, enum dma_data_direction dir) 1064 { 1065 if (sgt->orig_nents) { 1066 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 1067 sg_free_table(sgt); 1068 } 1069 } 1070 1071 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1072 { 1073 struct device *tx_dev, *rx_dev; 1074 struct spi_transfer *xfer; 1075 int ret; 1076 1077 if (!ctlr->can_dma) 1078 return 0; 1079 1080 if (ctlr->dma_tx) 1081 tx_dev = ctlr->dma_tx->device->dev; 1082 else if (ctlr->dma_map_dev) 1083 tx_dev = ctlr->dma_map_dev; 1084 else 1085 tx_dev = ctlr->dev.parent; 1086 1087 if (ctlr->dma_rx) 1088 rx_dev = ctlr->dma_rx->device->dev; 1089 else if (ctlr->dma_map_dev) 1090 rx_dev = ctlr->dma_map_dev; 1091 else 1092 rx_dev = ctlr->dev.parent; 1093 1094 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1095 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1096 continue; 1097 1098 if (xfer->tx_buf != NULL) { 1099 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg, 1100 (void *)xfer->tx_buf, xfer->len, 1101 DMA_TO_DEVICE); 1102 if (ret != 0) 1103 return ret; 1104 } 1105 1106 if (xfer->rx_buf != NULL) { 1107 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg, 1108 xfer->rx_buf, xfer->len, 1109 DMA_FROM_DEVICE); 1110 if (ret != 0) { 1111 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, 1112 DMA_TO_DEVICE); 1113 return ret; 1114 } 1115 } 1116 } 1117 1118 ctlr->cur_msg_mapped = true; 1119 1120 return 0; 1121 } 1122 1123 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1124 { 1125 struct spi_transfer *xfer; 1126 struct device *tx_dev, *rx_dev; 1127 1128 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1129 return 0; 1130 1131 if (ctlr->dma_tx) 1132 tx_dev = ctlr->dma_tx->device->dev; 1133 else if (ctlr->dma_map_dev) 1134 tx_dev = ctlr->dma_map_dev; 1135 else 1136 tx_dev = ctlr->dev.parent; 1137 1138 if (ctlr->dma_rx) 1139 rx_dev = ctlr->dma_rx->device->dev; 1140 else if (ctlr->dma_map_dev) 1141 rx_dev = ctlr->dma_map_dev; 1142 else 1143 rx_dev = ctlr->dev.parent; 1144 1145 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1146 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1147 continue; 1148 1149 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1150 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1151 } 1152 1153 ctlr->cur_msg_mapped = false; 1154 1155 return 0; 1156 } 1157 #else /* !CONFIG_HAS_DMA */ 1158 static inline int __spi_map_msg(struct spi_controller *ctlr, 1159 struct spi_message *msg) 1160 { 1161 return 0; 1162 } 1163 1164 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1165 struct spi_message *msg) 1166 { 1167 return 0; 1168 } 1169 #endif /* !CONFIG_HAS_DMA */ 1170 1171 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1172 struct spi_message *msg) 1173 { 1174 struct spi_transfer *xfer; 1175 1176 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1177 /* 1178 * Restore the original value of tx_buf or rx_buf if they are 1179 * NULL. 1180 */ 1181 if (xfer->tx_buf == ctlr->dummy_tx) 1182 xfer->tx_buf = NULL; 1183 if (xfer->rx_buf == ctlr->dummy_rx) 1184 xfer->rx_buf = NULL; 1185 } 1186 1187 return __spi_unmap_msg(ctlr, msg); 1188 } 1189 1190 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1191 { 1192 struct spi_transfer *xfer; 1193 void *tmp; 1194 unsigned int max_tx, max_rx; 1195 1196 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1197 && !(msg->spi->mode & SPI_3WIRE)) { 1198 max_tx = 0; 1199 max_rx = 0; 1200 1201 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1202 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1203 !xfer->tx_buf) 1204 max_tx = max(xfer->len, max_tx); 1205 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1206 !xfer->rx_buf) 1207 max_rx = max(xfer->len, max_rx); 1208 } 1209 1210 if (max_tx) { 1211 tmp = krealloc(ctlr->dummy_tx, max_tx, 1212 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1213 if (!tmp) 1214 return -ENOMEM; 1215 ctlr->dummy_tx = tmp; 1216 } 1217 1218 if (max_rx) { 1219 tmp = krealloc(ctlr->dummy_rx, max_rx, 1220 GFP_KERNEL | GFP_DMA); 1221 if (!tmp) 1222 return -ENOMEM; 1223 ctlr->dummy_rx = tmp; 1224 } 1225 1226 if (max_tx || max_rx) { 1227 list_for_each_entry(xfer, &msg->transfers, 1228 transfer_list) { 1229 if (!xfer->len) 1230 continue; 1231 if (!xfer->tx_buf) 1232 xfer->tx_buf = ctlr->dummy_tx; 1233 if (!xfer->rx_buf) 1234 xfer->rx_buf = ctlr->dummy_rx; 1235 } 1236 } 1237 } 1238 1239 return __spi_map_msg(ctlr, msg); 1240 } 1241 1242 static int spi_transfer_wait(struct spi_controller *ctlr, 1243 struct spi_message *msg, 1244 struct spi_transfer *xfer) 1245 { 1246 struct spi_statistics *statm = &ctlr->statistics; 1247 struct spi_statistics *stats = &msg->spi->statistics; 1248 u32 speed_hz = xfer->speed_hz; 1249 unsigned long long ms; 1250 1251 if (spi_controller_is_slave(ctlr)) { 1252 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1253 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1254 return -EINTR; 1255 } 1256 } else { 1257 if (!speed_hz) 1258 speed_hz = 100000; 1259 1260 /* 1261 * For each byte we wait for 8 cycles of the SPI clock. 1262 * Since speed is defined in Hz and we want milliseconds, 1263 * use respective multiplier, but before the division, 1264 * otherwise we may get 0 for short transfers. 1265 */ 1266 ms = 8LL * MSEC_PER_SEC * xfer->len; 1267 do_div(ms, speed_hz); 1268 1269 /* 1270 * Increase it twice and add 200 ms tolerance, use 1271 * predefined maximum in case of overflow. 1272 */ 1273 ms += ms + 200; 1274 if (ms > UINT_MAX) 1275 ms = UINT_MAX; 1276 1277 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1278 msecs_to_jiffies(ms)); 1279 1280 if (ms == 0) { 1281 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1282 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1283 dev_err(&msg->spi->dev, 1284 "SPI transfer timed out\n"); 1285 return -ETIMEDOUT; 1286 } 1287 } 1288 1289 return 0; 1290 } 1291 1292 static void _spi_transfer_delay_ns(u32 ns) 1293 { 1294 if (!ns) 1295 return; 1296 if (ns <= NSEC_PER_USEC) { 1297 ndelay(ns); 1298 } else { 1299 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1300 1301 if (us <= 10) 1302 udelay(us); 1303 else 1304 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1305 } 1306 } 1307 1308 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1309 { 1310 u32 delay = _delay->value; 1311 u32 unit = _delay->unit; 1312 u32 hz; 1313 1314 if (!delay) 1315 return 0; 1316 1317 switch (unit) { 1318 case SPI_DELAY_UNIT_USECS: 1319 delay *= NSEC_PER_USEC; 1320 break; 1321 case SPI_DELAY_UNIT_NSECS: 1322 /* Nothing to do here */ 1323 break; 1324 case SPI_DELAY_UNIT_SCK: 1325 /* clock cycles need to be obtained from spi_transfer */ 1326 if (!xfer) 1327 return -EINVAL; 1328 /* 1329 * If there is unknown effective speed, approximate it 1330 * by underestimating with half of the requested hz. 1331 */ 1332 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1333 if (!hz) 1334 return -EINVAL; 1335 1336 /* Convert delay to nanoseconds */ 1337 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1338 break; 1339 default: 1340 return -EINVAL; 1341 } 1342 1343 return delay; 1344 } 1345 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1346 1347 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1348 { 1349 int delay; 1350 1351 might_sleep(); 1352 1353 if (!_delay) 1354 return -EINVAL; 1355 1356 delay = spi_delay_to_ns(_delay, xfer); 1357 if (delay < 0) 1358 return delay; 1359 1360 _spi_transfer_delay_ns(delay); 1361 1362 return 0; 1363 } 1364 EXPORT_SYMBOL_GPL(spi_delay_exec); 1365 1366 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1367 struct spi_transfer *xfer) 1368 { 1369 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1370 u32 delay = xfer->cs_change_delay.value; 1371 u32 unit = xfer->cs_change_delay.unit; 1372 int ret; 1373 1374 /* return early on "fast" mode - for everything but USECS */ 1375 if (!delay) { 1376 if (unit == SPI_DELAY_UNIT_USECS) 1377 _spi_transfer_delay_ns(default_delay_ns); 1378 return; 1379 } 1380 1381 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1382 if (ret) { 1383 dev_err_once(&msg->spi->dev, 1384 "Use of unsupported delay unit %i, using default of %luus\n", 1385 unit, default_delay_ns / NSEC_PER_USEC); 1386 _spi_transfer_delay_ns(default_delay_ns); 1387 } 1388 } 1389 1390 /* 1391 * spi_transfer_one_message - Default implementation of transfer_one_message() 1392 * 1393 * This is a standard implementation of transfer_one_message() for 1394 * drivers which implement a transfer_one() operation. It provides 1395 * standard handling of delays and chip select management. 1396 */ 1397 static int spi_transfer_one_message(struct spi_controller *ctlr, 1398 struct spi_message *msg) 1399 { 1400 struct spi_transfer *xfer; 1401 bool keep_cs = false; 1402 int ret = 0; 1403 struct spi_statistics *statm = &ctlr->statistics; 1404 struct spi_statistics *stats = &msg->spi->statistics; 1405 1406 spi_set_cs(msg->spi, true, false); 1407 1408 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1409 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1410 1411 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1412 trace_spi_transfer_start(msg, xfer); 1413 1414 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1415 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1416 1417 if (!ctlr->ptp_sts_supported) { 1418 xfer->ptp_sts_word_pre = 0; 1419 ptp_read_system_prets(xfer->ptp_sts); 1420 } 1421 1422 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1423 reinit_completion(&ctlr->xfer_completion); 1424 1425 fallback_pio: 1426 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1427 if (ret < 0) { 1428 if (ctlr->cur_msg_mapped && 1429 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1430 __spi_unmap_msg(ctlr, msg); 1431 ctlr->fallback = true; 1432 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1433 goto fallback_pio; 1434 } 1435 1436 SPI_STATISTICS_INCREMENT_FIELD(statm, 1437 errors); 1438 SPI_STATISTICS_INCREMENT_FIELD(stats, 1439 errors); 1440 dev_err(&msg->spi->dev, 1441 "SPI transfer failed: %d\n", ret); 1442 goto out; 1443 } 1444 1445 if (ret > 0) { 1446 ret = spi_transfer_wait(ctlr, msg, xfer); 1447 if (ret < 0) 1448 msg->status = ret; 1449 } 1450 } else { 1451 if (xfer->len) 1452 dev_err(&msg->spi->dev, 1453 "Bufferless transfer has length %u\n", 1454 xfer->len); 1455 } 1456 1457 if (!ctlr->ptp_sts_supported) { 1458 ptp_read_system_postts(xfer->ptp_sts); 1459 xfer->ptp_sts_word_post = xfer->len; 1460 } 1461 1462 trace_spi_transfer_stop(msg, xfer); 1463 1464 if (msg->status != -EINPROGRESS) 1465 goto out; 1466 1467 spi_transfer_delay_exec(xfer); 1468 1469 if (xfer->cs_change) { 1470 if (list_is_last(&xfer->transfer_list, 1471 &msg->transfers)) { 1472 keep_cs = true; 1473 } else { 1474 spi_set_cs(msg->spi, false, false); 1475 _spi_transfer_cs_change_delay(msg, xfer); 1476 spi_set_cs(msg->spi, true, false); 1477 } 1478 } 1479 1480 msg->actual_length += xfer->len; 1481 } 1482 1483 out: 1484 if (ret != 0 || !keep_cs) 1485 spi_set_cs(msg->spi, false, false); 1486 1487 if (msg->status == -EINPROGRESS) 1488 msg->status = ret; 1489 1490 if (msg->status && ctlr->handle_err) 1491 ctlr->handle_err(ctlr, msg); 1492 1493 spi_finalize_current_message(ctlr); 1494 1495 return ret; 1496 } 1497 1498 /** 1499 * spi_finalize_current_transfer - report completion of a transfer 1500 * @ctlr: the controller reporting completion 1501 * 1502 * Called by SPI drivers using the core transfer_one_message() 1503 * implementation to notify it that the current interrupt driven 1504 * transfer has finished and the next one may be scheduled. 1505 */ 1506 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1507 { 1508 complete(&ctlr->xfer_completion); 1509 } 1510 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1511 1512 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1513 { 1514 if (ctlr->auto_runtime_pm) { 1515 pm_runtime_mark_last_busy(ctlr->dev.parent); 1516 pm_runtime_put_autosuspend(ctlr->dev.parent); 1517 } 1518 } 1519 1520 /** 1521 * __spi_pump_messages - function which processes spi message queue 1522 * @ctlr: controller to process queue for 1523 * @in_kthread: true if we are in the context of the message pump thread 1524 * 1525 * This function checks if there is any spi message in the queue that 1526 * needs processing and if so call out to the driver to initialize hardware 1527 * and transfer each message. 1528 * 1529 * Note that it is called both from the kthread itself and also from 1530 * inside spi_sync(); the queue extraction handling at the top of the 1531 * function should deal with this safely. 1532 */ 1533 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1534 { 1535 struct spi_transfer *xfer; 1536 struct spi_message *msg; 1537 bool was_busy = false; 1538 unsigned long flags; 1539 int ret; 1540 1541 /* Lock queue */ 1542 spin_lock_irqsave(&ctlr->queue_lock, flags); 1543 1544 /* Make sure we are not already running a message */ 1545 if (ctlr->cur_msg) { 1546 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1547 return; 1548 } 1549 1550 /* If another context is idling the device then defer */ 1551 if (ctlr->idling) { 1552 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1553 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1554 return; 1555 } 1556 1557 /* Check if the queue is idle */ 1558 if (list_empty(&ctlr->queue) || !ctlr->running) { 1559 if (!ctlr->busy) { 1560 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1561 return; 1562 } 1563 1564 /* Defer any non-atomic teardown to the thread */ 1565 if (!in_kthread) { 1566 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1567 !ctlr->unprepare_transfer_hardware) { 1568 spi_idle_runtime_pm(ctlr); 1569 ctlr->busy = false; 1570 trace_spi_controller_idle(ctlr); 1571 } else { 1572 kthread_queue_work(ctlr->kworker, 1573 &ctlr->pump_messages); 1574 } 1575 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1576 return; 1577 } 1578 1579 ctlr->busy = false; 1580 ctlr->idling = true; 1581 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1582 1583 kfree(ctlr->dummy_rx); 1584 ctlr->dummy_rx = NULL; 1585 kfree(ctlr->dummy_tx); 1586 ctlr->dummy_tx = NULL; 1587 if (ctlr->unprepare_transfer_hardware && 1588 ctlr->unprepare_transfer_hardware(ctlr)) 1589 dev_err(&ctlr->dev, 1590 "failed to unprepare transfer hardware\n"); 1591 spi_idle_runtime_pm(ctlr); 1592 trace_spi_controller_idle(ctlr); 1593 1594 spin_lock_irqsave(&ctlr->queue_lock, flags); 1595 ctlr->idling = false; 1596 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1597 return; 1598 } 1599 1600 /* Extract head of queue */ 1601 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1602 ctlr->cur_msg = msg; 1603 1604 list_del_init(&msg->queue); 1605 if (ctlr->busy) 1606 was_busy = true; 1607 else 1608 ctlr->busy = true; 1609 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1610 1611 mutex_lock(&ctlr->io_mutex); 1612 1613 if (!was_busy && ctlr->auto_runtime_pm) { 1614 ret = pm_runtime_get_sync(ctlr->dev.parent); 1615 if (ret < 0) { 1616 pm_runtime_put_noidle(ctlr->dev.parent); 1617 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1618 ret); 1619 mutex_unlock(&ctlr->io_mutex); 1620 return; 1621 } 1622 } 1623 1624 if (!was_busy) 1625 trace_spi_controller_busy(ctlr); 1626 1627 if (!was_busy && ctlr->prepare_transfer_hardware) { 1628 ret = ctlr->prepare_transfer_hardware(ctlr); 1629 if (ret) { 1630 dev_err(&ctlr->dev, 1631 "failed to prepare transfer hardware: %d\n", 1632 ret); 1633 1634 if (ctlr->auto_runtime_pm) 1635 pm_runtime_put(ctlr->dev.parent); 1636 1637 msg->status = ret; 1638 spi_finalize_current_message(ctlr); 1639 1640 mutex_unlock(&ctlr->io_mutex); 1641 return; 1642 } 1643 } 1644 1645 trace_spi_message_start(msg); 1646 1647 if (ctlr->prepare_message) { 1648 ret = ctlr->prepare_message(ctlr, msg); 1649 if (ret) { 1650 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1651 ret); 1652 msg->status = ret; 1653 spi_finalize_current_message(ctlr); 1654 goto out; 1655 } 1656 ctlr->cur_msg_prepared = true; 1657 } 1658 1659 ret = spi_map_msg(ctlr, msg); 1660 if (ret) { 1661 msg->status = ret; 1662 spi_finalize_current_message(ctlr); 1663 goto out; 1664 } 1665 1666 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1667 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1668 xfer->ptp_sts_word_pre = 0; 1669 ptp_read_system_prets(xfer->ptp_sts); 1670 } 1671 } 1672 1673 ret = ctlr->transfer_one_message(ctlr, msg); 1674 if (ret) { 1675 dev_err(&ctlr->dev, 1676 "failed to transfer one message from queue\n"); 1677 goto out; 1678 } 1679 1680 out: 1681 mutex_unlock(&ctlr->io_mutex); 1682 1683 /* Prod the scheduler in case transfer_one() was busy waiting */ 1684 if (!ret) 1685 cond_resched(); 1686 } 1687 1688 /** 1689 * spi_pump_messages - kthread work function which processes spi message queue 1690 * @work: pointer to kthread work struct contained in the controller struct 1691 */ 1692 static void spi_pump_messages(struct kthread_work *work) 1693 { 1694 struct spi_controller *ctlr = 1695 container_of(work, struct spi_controller, pump_messages); 1696 1697 __spi_pump_messages(ctlr, true); 1698 } 1699 1700 /** 1701 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1702 * @ctlr: Pointer to the spi_controller structure of the driver 1703 * @xfer: Pointer to the transfer being timestamped 1704 * @progress: How many words (not bytes) have been transferred so far 1705 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1706 * transfer, for less jitter in time measurement. Only compatible 1707 * with PIO drivers. If true, must follow up with 1708 * spi_take_timestamp_post or otherwise system will crash. 1709 * WARNING: for fully predictable results, the CPU frequency must 1710 * also be under control (governor). 1711 * 1712 * This is a helper for drivers to collect the beginning of the TX timestamp 1713 * for the requested byte from the SPI transfer. The frequency with which this 1714 * function must be called (once per word, once for the whole transfer, once 1715 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1716 * greater than or equal to the requested byte at the time of the call. The 1717 * timestamp is only taken once, at the first such call. It is assumed that 1718 * the driver advances its @tx buffer pointer monotonically. 1719 */ 1720 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1721 struct spi_transfer *xfer, 1722 size_t progress, bool irqs_off) 1723 { 1724 if (!xfer->ptp_sts) 1725 return; 1726 1727 if (xfer->timestamped) 1728 return; 1729 1730 if (progress > xfer->ptp_sts_word_pre) 1731 return; 1732 1733 /* Capture the resolution of the timestamp */ 1734 xfer->ptp_sts_word_pre = progress; 1735 1736 if (irqs_off) { 1737 local_irq_save(ctlr->irq_flags); 1738 preempt_disable(); 1739 } 1740 1741 ptp_read_system_prets(xfer->ptp_sts); 1742 } 1743 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1744 1745 /** 1746 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1747 * @ctlr: Pointer to the spi_controller structure of the driver 1748 * @xfer: Pointer to the transfer being timestamped 1749 * @progress: How many words (not bytes) have been transferred so far 1750 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1751 * 1752 * This is a helper for drivers to collect the end of the TX timestamp for 1753 * the requested byte from the SPI transfer. Can be called with an arbitrary 1754 * frequency: only the first call where @tx exceeds or is equal to the 1755 * requested word will be timestamped. 1756 */ 1757 void spi_take_timestamp_post(struct spi_controller *ctlr, 1758 struct spi_transfer *xfer, 1759 size_t progress, bool irqs_off) 1760 { 1761 if (!xfer->ptp_sts) 1762 return; 1763 1764 if (xfer->timestamped) 1765 return; 1766 1767 if (progress < xfer->ptp_sts_word_post) 1768 return; 1769 1770 ptp_read_system_postts(xfer->ptp_sts); 1771 1772 if (irqs_off) { 1773 local_irq_restore(ctlr->irq_flags); 1774 preempt_enable(); 1775 } 1776 1777 /* Capture the resolution of the timestamp */ 1778 xfer->ptp_sts_word_post = progress; 1779 1780 xfer->timestamped = true; 1781 } 1782 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 1783 1784 /** 1785 * spi_set_thread_rt - set the controller to pump at realtime priority 1786 * @ctlr: controller to boost priority of 1787 * 1788 * This can be called because the controller requested realtime priority 1789 * (by setting the ->rt value before calling spi_register_controller()) or 1790 * because a device on the bus said that its transfers needed realtime 1791 * priority. 1792 * 1793 * NOTE: at the moment if any device on a bus says it needs realtime then 1794 * the thread will be at realtime priority for all transfers on that 1795 * controller. If this eventually becomes a problem we may see if we can 1796 * find a way to boost the priority only temporarily during relevant 1797 * transfers. 1798 */ 1799 static void spi_set_thread_rt(struct spi_controller *ctlr) 1800 { 1801 dev_info(&ctlr->dev, 1802 "will run message pump with realtime priority\n"); 1803 sched_set_fifo(ctlr->kworker->task); 1804 } 1805 1806 static int spi_init_queue(struct spi_controller *ctlr) 1807 { 1808 ctlr->running = false; 1809 ctlr->busy = false; 1810 1811 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 1812 if (IS_ERR(ctlr->kworker)) { 1813 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 1814 return PTR_ERR(ctlr->kworker); 1815 } 1816 1817 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 1818 1819 /* 1820 * Controller config will indicate if this controller should run the 1821 * message pump with high (realtime) priority to reduce the transfer 1822 * latency on the bus by minimising the delay between a transfer 1823 * request and the scheduling of the message pump thread. Without this 1824 * setting the message pump thread will remain at default priority. 1825 */ 1826 if (ctlr->rt) 1827 spi_set_thread_rt(ctlr); 1828 1829 return 0; 1830 } 1831 1832 /** 1833 * spi_get_next_queued_message() - called by driver to check for queued 1834 * messages 1835 * @ctlr: the controller to check for queued messages 1836 * 1837 * If there are more messages in the queue, the next message is returned from 1838 * this call. 1839 * 1840 * Return: the next message in the queue, else NULL if the queue is empty. 1841 */ 1842 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 1843 { 1844 struct spi_message *next; 1845 unsigned long flags; 1846 1847 /* get a pointer to the next message, if any */ 1848 spin_lock_irqsave(&ctlr->queue_lock, flags); 1849 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 1850 queue); 1851 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1852 1853 return next; 1854 } 1855 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1856 1857 /** 1858 * spi_finalize_current_message() - the current message is complete 1859 * @ctlr: the controller to return the message to 1860 * 1861 * Called by the driver to notify the core that the message in the front of the 1862 * queue is complete and can be removed from the queue. 1863 */ 1864 void spi_finalize_current_message(struct spi_controller *ctlr) 1865 { 1866 struct spi_transfer *xfer; 1867 struct spi_message *mesg; 1868 unsigned long flags; 1869 int ret; 1870 1871 spin_lock_irqsave(&ctlr->queue_lock, flags); 1872 mesg = ctlr->cur_msg; 1873 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1874 1875 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1876 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 1877 ptp_read_system_postts(xfer->ptp_sts); 1878 xfer->ptp_sts_word_post = xfer->len; 1879 } 1880 } 1881 1882 if (unlikely(ctlr->ptp_sts_supported)) 1883 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 1884 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 1885 1886 spi_unmap_msg(ctlr, mesg); 1887 1888 /* 1889 * In the prepare_messages callback the SPI bus has the opportunity 1890 * to split a transfer to smaller chunks. 1891 * 1892 * Release the split transfers here since spi_map_msg() is done on 1893 * the split transfers. 1894 */ 1895 spi_res_release(ctlr, mesg); 1896 1897 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) { 1898 ret = ctlr->unprepare_message(ctlr, mesg); 1899 if (ret) { 1900 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 1901 ret); 1902 } 1903 } 1904 1905 spin_lock_irqsave(&ctlr->queue_lock, flags); 1906 ctlr->cur_msg = NULL; 1907 ctlr->cur_msg_prepared = false; 1908 ctlr->fallback = false; 1909 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1910 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1911 1912 trace_spi_message_done(mesg); 1913 1914 mesg->state = NULL; 1915 if (mesg->complete) 1916 mesg->complete(mesg->context); 1917 } 1918 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1919 1920 static int spi_start_queue(struct spi_controller *ctlr) 1921 { 1922 unsigned long flags; 1923 1924 spin_lock_irqsave(&ctlr->queue_lock, flags); 1925 1926 if (ctlr->running || ctlr->busy) { 1927 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1928 return -EBUSY; 1929 } 1930 1931 ctlr->running = true; 1932 ctlr->cur_msg = NULL; 1933 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1934 1935 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1936 1937 return 0; 1938 } 1939 1940 static int spi_stop_queue(struct spi_controller *ctlr) 1941 { 1942 unsigned long flags; 1943 unsigned limit = 500; 1944 int ret = 0; 1945 1946 spin_lock_irqsave(&ctlr->queue_lock, flags); 1947 1948 /* 1949 * This is a bit lame, but is optimized for the common execution path. 1950 * A wait_queue on the ctlr->busy could be used, but then the common 1951 * execution path (pump_messages) would be required to call wake_up or 1952 * friends on every SPI message. Do this instead. 1953 */ 1954 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 1955 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1956 usleep_range(10000, 11000); 1957 spin_lock_irqsave(&ctlr->queue_lock, flags); 1958 } 1959 1960 if (!list_empty(&ctlr->queue) || ctlr->busy) 1961 ret = -EBUSY; 1962 else 1963 ctlr->running = false; 1964 1965 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1966 1967 if (ret) { 1968 dev_warn(&ctlr->dev, "could not stop message queue\n"); 1969 return ret; 1970 } 1971 return ret; 1972 } 1973 1974 static int spi_destroy_queue(struct spi_controller *ctlr) 1975 { 1976 int ret; 1977 1978 ret = spi_stop_queue(ctlr); 1979 1980 /* 1981 * kthread_flush_worker will block until all work is done. 1982 * If the reason that stop_queue timed out is that the work will never 1983 * finish, then it does no good to call flush/stop thread, so 1984 * return anyway. 1985 */ 1986 if (ret) { 1987 dev_err(&ctlr->dev, "problem destroying queue\n"); 1988 return ret; 1989 } 1990 1991 kthread_destroy_worker(ctlr->kworker); 1992 1993 return 0; 1994 } 1995 1996 static int __spi_queued_transfer(struct spi_device *spi, 1997 struct spi_message *msg, 1998 bool need_pump) 1999 { 2000 struct spi_controller *ctlr = spi->controller; 2001 unsigned long flags; 2002 2003 spin_lock_irqsave(&ctlr->queue_lock, flags); 2004 2005 if (!ctlr->running) { 2006 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2007 return -ESHUTDOWN; 2008 } 2009 msg->actual_length = 0; 2010 msg->status = -EINPROGRESS; 2011 2012 list_add_tail(&msg->queue, &ctlr->queue); 2013 if (!ctlr->busy && need_pump) 2014 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2015 2016 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2017 return 0; 2018 } 2019 2020 /** 2021 * spi_queued_transfer - transfer function for queued transfers 2022 * @spi: spi device which is requesting transfer 2023 * @msg: spi message which is to handled is queued to driver queue 2024 * 2025 * Return: zero on success, else a negative error code. 2026 */ 2027 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2028 { 2029 return __spi_queued_transfer(spi, msg, true); 2030 } 2031 2032 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2033 { 2034 int ret; 2035 2036 ctlr->transfer = spi_queued_transfer; 2037 if (!ctlr->transfer_one_message) 2038 ctlr->transfer_one_message = spi_transfer_one_message; 2039 2040 /* Initialize and start queue */ 2041 ret = spi_init_queue(ctlr); 2042 if (ret) { 2043 dev_err(&ctlr->dev, "problem initializing queue\n"); 2044 goto err_init_queue; 2045 } 2046 ctlr->queued = true; 2047 ret = spi_start_queue(ctlr); 2048 if (ret) { 2049 dev_err(&ctlr->dev, "problem starting queue\n"); 2050 goto err_start_queue; 2051 } 2052 2053 return 0; 2054 2055 err_start_queue: 2056 spi_destroy_queue(ctlr); 2057 err_init_queue: 2058 return ret; 2059 } 2060 2061 /** 2062 * spi_flush_queue - Send all pending messages in the queue from the callers' 2063 * context 2064 * @ctlr: controller to process queue for 2065 * 2066 * This should be used when one wants to ensure all pending messages have been 2067 * sent before doing something. Is used by the spi-mem code to make sure SPI 2068 * memory operations do not preempt regular SPI transfers that have been queued 2069 * before the spi-mem operation. 2070 */ 2071 void spi_flush_queue(struct spi_controller *ctlr) 2072 { 2073 if (ctlr->transfer == spi_queued_transfer) 2074 __spi_pump_messages(ctlr, false); 2075 } 2076 2077 /*-------------------------------------------------------------------------*/ 2078 2079 #if defined(CONFIG_OF) 2080 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2081 struct device_node *nc) 2082 { 2083 u32 value; 2084 int rc; 2085 2086 /* Mode (clock phase/polarity/etc.) */ 2087 if (of_property_read_bool(nc, "spi-cpha")) 2088 spi->mode |= SPI_CPHA; 2089 if (of_property_read_bool(nc, "spi-cpol")) 2090 spi->mode |= SPI_CPOL; 2091 if (of_property_read_bool(nc, "spi-3wire")) 2092 spi->mode |= SPI_3WIRE; 2093 if (of_property_read_bool(nc, "spi-lsb-first")) 2094 spi->mode |= SPI_LSB_FIRST; 2095 if (of_property_read_bool(nc, "spi-cs-high")) 2096 spi->mode |= SPI_CS_HIGH; 2097 2098 /* Device DUAL/QUAD mode */ 2099 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2100 switch (value) { 2101 case 0: 2102 spi->mode |= SPI_NO_TX; 2103 break; 2104 case 1: 2105 break; 2106 case 2: 2107 spi->mode |= SPI_TX_DUAL; 2108 break; 2109 case 4: 2110 spi->mode |= SPI_TX_QUAD; 2111 break; 2112 case 8: 2113 spi->mode |= SPI_TX_OCTAL; 2114 break; 2115 default: 2116 dev_warn(&ctlr->dev, 2117 "spi-tx-bus-width %d not supported\n", 2118 value); 2119 break; 2120 } 2121 } 2122 2123 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2124 switch (value) { 2125 case 0: 2126 spi->mode |= SPI_NO_RX; 2127 break; 2128 case 1: 2129 break; 2130 case 2: 2131 spi->mode |= SPI_RX_DUAL; 2132 break; 2133 case 4: 2134 spi->mode |= SPI_RX_QUAD; 2135 break; 2136 case 8: 2137 spi->mode |= SPI_RX_OCTAL; 2138 break; 2139 default: 2140 dev_warn(&ctlr->dev, 2141 "spi-rx-bus-width %d not supported\n", 2142 value); 2143 break; 2144 } 2145 } 2146 2147 if (spi_controller_is_slave(ctlr)) { 2148 if (!of_node_name_eq(nc, "slave")) { 2149 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2150 nc); 2151 return -EINVAL; 2152 } 2153 return 0; 2154 } 2155 2156 /* Device address */ 2157 rc = of_property_read_u32(nc, "reg", &value); 2158 if (rc) { 2159 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2160 nc, rc); 2161 return rc; 2162 } 2163 spi->chip_select = value; 2164 2165 /* Device speed */ 2166 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2167 spi->max_speed_hz = value; 2168 2169 return 0; 2170 } 2171 2172 static struct spi_device * 2173 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2174 { 2175 struct spi_device *spi; 2176 int rc; 2177 2178 /* Alloc an spi_device */ 2179 spi = spi_alloc_device(ctlr); 2180 if (!spi) { 2181 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2182 rc = -ENOMEM; 2183 goto err_out; 2184 } 2185 2186 /* Select device driver */ 2187 rc = of_modalias_node(nc, spi->modalias, 2188 sizeof(spi->modalias)); 2189 if (rc < 0) { 2190 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2191 goto err_out; 2192 } 2193 2194 rc = of_spi_parse_dt(ctlr, spi, nc); 2195 if (rc) 2196 goto err_out; 2197 2198 /* Store a pointer to the node in the device structure */ 2199 of_node_get(nc); 2200 spi->dev.of_node = nc; 2201 spi->dev.fwnode = of_fwnode_handle(nc); 2202 2203 /* Register the new device */ 2204 rc = spi_add_device(spi); 2205 if (rc) { 2206 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2207 goto err_of_node_put; 2208 } 2209 2210 return spi; 2211 2212 err_of_node_put: 2213 of_node_put(nc); 2214 err_out: 2215 spi_dev_put(spi); 2216 return ERR_PTR(rc); 2217 } 2218 2219 /** 2220 * of_register_spi_devices() - Register child devices onto the SPI bus 2221 * @ctlr: Pointer to spi_controller device 2222 * 2223 * Registers an spi_device for each child node of controller node which 2224 * represents a valid SPI slave. 2225 */ 2226 static void of_register_spi_devices(struct spi_controller *ctlr) 2227 { 2228 struct spi_device *spi; 2229 struct device_node *nc; 2230 2231 if (!ctlr->dev.of_node) 2232 return; 2233 2234 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2235 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2236 continue; 2237 spi = of_register_spi_device(ctlr, nc); 2238 if (IS_ERR(spi)) { 2239 dev_warn(&ctlr->dev, 2240 "Failed to create SPI device for %pOF\n", nc); 2241 of_node_clear_flag(nc, OF_POPULATED); 2242 } 2243 } 2244 } 2245 #else 2246 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2247 #endif 2248 2249 /** 2250 * spi_new_ancillary_device() - Register ancillary SPI device 2251 * @spi: Pointer to the main SPI device registering the ancillary device 2252 * @chip_select: Chip Select of the ancillary device 2253 * 2254 * Register an ancillary SPI device; for example some chips have a chip-select 2255 * for normal device usage and another one for setup/firmware upload. 2256 * 2257 * This may only be called from main SPI device's probe routine. 2258 * 2259 * Return: 0 on success; negative errno on failure 2260 */ 2261 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2262 u8 chip_select) 2263 { 2264 struct spi_device *ancillary; 2265 int rc = 0; 2266 2267 /* Alloc an spi_device */ 2268 ancillary = spi_alloc_device(spi->controller); 2269 if (!ancillary) { 2270 rc = -ENOMEM; 2271 goto err_out; 2272 } 2273 2274 strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2275 2276 /* Use provided chip-select for ancillary device */ 2277 ancillary->chip_select = chip_select; 2278 2279 /* Take over SPI mode/speed from SPI main device */ 2280 ancillary->max_speed_hz = spi->max_speed_hz; 2281 ancillary->mode = spi->mode; 2282 2283 /* Register the new device */ 2284 rc = spi_add_device_locked(ancillary); 2285 if (rc) { 2286 dev_err(&spi->dev, "failed to register ancillary device\n"); 2287 goto err_out; 2288 } 2289 2290 return ancillary; 2291 2292 err_out: 2293 spi_dev_put(ancillary); 2294 return ERR_PTR(rc); 2295 } 2296 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2297 2298 #ifdef CONFIG_ACPI 2299 struct acpi_spi_lookup { 2300 struct spi_controller *ctlr; 2301 u32 max_speed_hz; 2302 u32 mode; 2303 int irq; 2304 u8 bits_per_word; 2305 u8 chip_select; 2306 int n; 2307 int index; 2308 }; 2309 2310 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2311 { 2312 struct acpi_resource_spi_serialbus *sb; 2313 int *count = data; 2314 2315 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2316 return 1; 2317 2318 sb = &ares->data.spi_serial_bus; 2319 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2320 return 1; 2321 2322 *count = *count + 1; 2323 2324 return 1; 2325 } 2326 2327 /** 2328 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2329 * @adev: ACPI device 2330 * 2331 * Returns the number of SpiSerialBus resources in the ACPI-device's 2332 * resource-list; or a negative error code. 2333 */ 2334 int acpi_spi_count_resources(struct acpi_device *adev) 2335 { 2336 LIST_HEAD(r); 2337 int count = 0; 2338 int ret; 2339 2340 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2341 if (ret < 0) 2342 return ret; 2343 2344 acpi_dev_free_resource_list(&r); 2345 2346 return count; 2347 } 2348 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2349 2350 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2351 struct acpi_spi_lookup *lookup) 2352 { 2353 const union acpi_object *obj; 2354 2355 if (!x86_apple_machine) 2356 return; 2357 2358 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2359 && obj->buffer.length >= 4) 2360 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2361 2362 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2363 && obj->buffer.length == 8) 2364 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2365 2366 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2367 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2368 lookup->mode |= SPI_LSB_FIRST; 2369 2370 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2371 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2372 lookup->mode |= SPI_CPOL; 2373 2374 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2375 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2376 lookup->mode |= SPI_CPHA; 2377 } 2378 2379 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev); 2380 2381 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2382 { 2383 struct acpi_spi_lookup *lookup = data; 2384 struct spi_controller *ctlr = lookup->ctlr; 2385 2386 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2387 struct acpi_resource_spi_serialbus *sb; 2388 acpi_handle parent_handle; 2389 acpi_status status; 2390 2391 sb = &ares->data.spi_serial_bus; 2392 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2393 2394 if (lookup->index != -1 && lookup->n++ != lookup->index) 2395 return 1; 2396 2397 if (lookup->index == -1 && !ctlr) 2398 return -ENODEV; 2399 2400 status = acpi_get_handle(NULL, 2401 sb->resource_source.string_ptr, 2402 &parent_handle); 2403 2404 if (ACPI_FAILURE(status)) 2405 return -ENODEV; 2406 2407 if (ctlr) { 2408 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2409 return -ENODEV; 2410 } else { 2411 struct acpi_device *adev; 2412 2413 adev = acpi_fetch_acpi_dev(parent_handle); 2414 if (!adev) 2415 return -ENODEV; 2416 2417 ctlr = acpi_spi_find_controller_by_adev(adev); 2418 if (!ctlr) 2419 return -ENODEV; 2420 2421 lookup->ctlr = ctlr; 2422 } 2423 2424 /* 2425 * ACPI DeviceSelection numbering is handled by the 2426 * host controller driver in Windows and can vary 2427 * from driver to driver. In Linux we always expect 2428 * 0 .. max - 1 so we need to ask the driver to 2429 * translate between the two schemes. 2430 */ 2431 if (ctlr->fw_translate_cs) { 2432 int cs = ctlr->fw_translate_cs(ctlr, 2433 sb->device_selection); 2434 if (cs < 0) 2435 return cs; 2436 lookup->chip_select = cs; 2437 } else { 2438 lookup->chip_select = sb->device_selection; 2439 } 2440 2441 lookup->max_speed_hz = sb->connection_speed; 2442 lookup->bits_per_word = sb->data_bit_length; 2443 2444 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2445 lookup->mode |= SPI_CPHA; 2446 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2447 lookup->mode |= SPI_CPOL; 2448 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2449 lookup->mode |= SPI_CS_HIGH; 2450 } 2451 } else if (lookup->irq < 0) { 2452 struct resource r; 2453 2454 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2455 lookup->irq = r.start; 2456 } 2457 2458 /* Always tell the ACPI core to skip this resource */ 2459 return 1; 2460 } 2461 2462 /** 2463 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2464 * @ctlr: controller to which the spi device belongs 2465 * @adev: ACPI Device for the spi device 2466 * @index: Index of the spi resource inside the ACPI Node 2467 * 2468 * This should be used to allocate a new spi device from and ACPI Node. 2469 * The caller is responsible for calling spi_add_device to register the spi device. 2470 * 2471 * If ctlr is set to NULL, the Controller for the spi device will be looked up 2472 * using the resource. 2473 * If index is set to -1, index is not used. 2474 * Note: If index is -1, ctlr must be set. 2475 * 2476 * Return: a pointer to the new device, or ERR_PTR on error. 2477 */ 2478 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2479 struct acpi_device *adev, 2480 int index) 2481 { 2482 acpi_handle parent_handle = NULL; 2483 struct list_head resource_list; 2484 struct acpi_spi_lookup lookup = {}; 2485 struct spi_device *spi; 2486 int ret; 2487 2488 if (!ctlr && index == -1) 2489 return ERR_PTR(-EINVAL); 2490 2491 lookup.ctlr = ctlr; 2492 lookup.irq = -1; 2493 lookup.index = index; 2494 lookup.n = 0; 2495 2496 INIT_LIST_HEAD(&resource_list); 2497 ret = acpi_dev_get_resources(adev, &resource_list, 2498 acpi_spi_add_resource, &lookup); 2499 acpi_dev_free_resource_list(&resource_list); 2500 2501 if (ret < 0) 2502 /* found SPI in _CRS but it points to another controller */ 2503 return ERR_PTR(-ENODEV); 2504 2505 if (!lookup.max_speed_hz && 2506 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2507 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2508 /* Apple does not use _CRS but nested devices for SPI slaves */ 2509 acpi_spi_parse_apple_properties(adev, &lookup); 2510 } 2511 2512 if (!lookup.max_speed_hz) 2513 return ERR_PTR(-ENODEV); 2514 2515 spi = spi_alloc_device(lookup.ctlr); 2516 if (!spi) { 2517 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2518 dev_name(&adev->dev)); 2519 return ERR_PTR(-ENOMEM); 2520 } 2521 2522 ACPI_COMPANION_SET(&spi->dev, adev); 2523 spi->max_speed_hz = lookup.max_speed_hz; 2524 spi->mode |= lookup.mode; 2525 spi->irq = lookup.irq; 2526 spi->bits_per_word = lookup.bits_per_word; 2527 spi->chip_select = lookup.chip_select; 2528 2529 return spi; 2530 } 2531 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2532 2533 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2534 struct acpi_device *adev) 2535 { 2536 struct spi_device *spi; 2537 2538 if (acpi_bus_get_status(adev) || !adev->status.present || 2539 acpi_device_enumerated(adev)) 2540 return AE_OK; 2541 2542 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2543 if (IS_ERR(spi)) { 2544 if (PTR_ERR(spi) == -ENOMEM) 2545 return AE_NO_MEMORY; 2546 else 2547 return AE_OK; 2548 } 2549 2550 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2551 sizeof(spi->modalias)); 2552 2553 if (spi->irq < 0) 2554 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2555 2556 acpi_device_set_enumerated(adev); 2557 2558 adev->power.flags.ignore_parent = true; 2559 if (spi_add_device(spi)) { 2560 adev->power.flags.ignore_parent = false; 2561 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2562 dev_name(&adev->dev)); 2563 spi_dev_put(spi); 2564 } 2565 2566 return AE_OK; 2567 } 2568 2569 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2570 void *data, void **return_value) 2571 { 2572 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2573 struct spi_controller *ctlr = data; 2574 2575 if (!adev) 2576 return AE_OK; 2577 2578 return acpi_register_spi_device(ctlr, adev); 2579 } 2580 2581 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2582 2583 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2584 { 2585 acpi_status status; 2586 acpi_handle handle; 2587 2588 handle = ACPI_HANDLE(ctlr->dev.parent); 2589 if (!handle) 2590 return; 2591 2592 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2593 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2594 acpi_spi_add_device, NULL, ctlr, NULL); 2595 if (ACPI_FAILURE(status)) 2596 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2597 } 2598 #else 2599 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2600 #endif /* CONFIG_ACPI */ 2601 2602 static void spi_controller_release(struct device *dev) 2603 { 2604 struct spi_controller *ctlr; 2605 2606 ctlr = container_of(dev, struct spi_controller, dev); 2607 kfree(ctlr); 2608 } 2609 2610 static struct class spi_master_class = { 2611 .name = "spi_master", 2612 .owner = THIS_MODULE, 2613 .dev_release = spi_controller_release, 2614 .dev_groups = spi_master_groups, 2615 }; 2616 2617 #ifdef CONFIG_SPI_SLAVE 2618 /** 2619 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2620 * controller 2621 * @spi: device used for the current transfer 2622 */ 2623 int spi_slave_abort(struct spi_device *spi) 2624 { 2625 struct spi_controller *ctlr = spi->controller; 2626 2627 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2628 return ctlr->slave_abort(ctlr); 2629 2630 return -ENOTSUPP; 2631 } 2632 EXPORT_SYMBOL_GPL(spi_slave_abort); 2633 2634 static int match_true(struct device *dev, void *data) 2635 { 2636 return 1; 2637 } 2638 2639 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2640 char *buf) 2641 { 2642 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2643 dev); 2644 struct device *child; 2645 2646 child = device_find_child(&ctlr->dev, NULL, match_true); 2647 return sprintf(buf, "%s\n", 2648 child ? to_spi_device(child)->modalias : NULL); 2649 } 2650 2651 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2652 const char *buf, size_t count) 2653 { 2654 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2655 dev); 2656 struct spi_device *spi; 2657 struct device *child; 2658 char name[32]; 2659 int rc; 2660 2661 rc = sscanf(buf, "%31s", name); 2662 if (rc != 1 || !name[0]) 2663 return -EINVAL; 2664 2665 child = device_find_child(&ctlr->dev, NULL, match_true); 2666 if (child) { 2667 /* Remove registered slave */ 2668 device_unregister(child); 2669 put_device(child); 2670 } 2671 2672 if (strcmp(name, "(null)")) { 2673 /* Register new slave */ 2674 spi = spi_alloc_device(ctlr); 2675 if (!spi) 2676 return -ENOMEM; 2677 2678 strlcpy(spi->modalias, name, sizeof(spi->modalias)); 2679 2680 rc = spi_add_device(spi); 2681 if (rc) { 2682 spi_dev_put(spi); 2683 return rc; 2684 } 2685 } 2686 2687 return count; 2688 } 2689 2690 static DEVICE_ATTR_RW(slave); 2691 2692 static struct attribute *spi_slave_attrs[] = { 2693 &dev_attr_slave.attr, 2694 NULL, 2695 }; 2696 2697 static const struct attribute_group spi_slave_group = { 2698 .attrs = spi_slave_attrs, 2699 }; 2700 2701 static const struct attribute_group *spi_slave_groups[] = { 2702 &spi_controller_statistics_group, 2703 &spi_slave_group, 2704 NULL, 2705 }; 2706 2707 static struct class spi_slave_class = { 2708 .name = "spi_slave", 2709 .owner = THIS_MODULE, 2710 .dev_release = spi_controller_release, 2711 .dev_groups = spi_slave_groups, 2712 }; 2713 #else 2714 extern struct class spi_slave_class; /* dummy */ 2715 #endif 2716 2717 /** 2718 * __spi_alloc_controller - allocate an SPI master or slave controller 2719 * @dev: the controller, possibly using the platform_bus 2720 * @size: how much zeroed driver-private data to allocate; the pointer to this 2721 * memory is in the driver_data field of the returned device, accessible 2722 * with spi_controller_get_devdata(); the memory is cacheline aligned; 2723 * drivers granting DMA access to portions of their private data need to 2724 * round up @size using ALIGN(size, dma_get_cache_alignment()). 2725 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 2726 * slave (true) controller 2727 * Context: can sleep 2728 * 2729 * This call is used only by SPI controller drivers, which are the 2730 * only ones directly touching chip registers. It's how they allocate 2731 * an spi_controller structure, prior to calling spi_register_controller(). 2732 * 2733 * This must be called from context that can sleep. 2734 * 2735 * The caller is responsible for assigning the bus number and initializing the 2736 * controller's methods before calling spi_register_controller(); and (after 2737 * errors adding the device) calling spi_controller_put() to prevent a memory 2738 * leak. 2739 * 2740 * Return: the SPI controller structure on success, else NULL. 2741 */ 2742 struct spi_controller *__spi_alloc_controller(struct device *dev, 2743 unsigned int size, bool slave) 2744 { 2745 struct spi_controller *ctlr; 2746 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 2747 2748 if (!dev) 2749 return NULL; 2750 2751 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 2752 if (!ctlr) 2753 return NULL; 2754 2755 device_initialize(&ctlr->dev); 2756 INIT_LIST_HEAD(&ctlr->queue); 2757 spin_lock_init(&ctlr->queue_lock); 2758 spin_lock_init(&ctlr->bus_lock_spinlock); 2759 mutex_init(&ctlr->bus_lock_mutex); 2760 mutex_init(&ctlr->io_mutex); 2761 mutex_init(&ctlr->add_lock); 2762 ctlr->bus_num = -1; 2763 ctlr->num_chipselect = 1; 2764 ctlr->slave = slave; 2765 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 2766 ctlr->dev.class = &spi_slave_class; 2767 else 2768 ctlr->dev.class = &spi_master_class; 2769 ctlr->dev.parent = dev; 2770 pm_suspend_ignore_children(&ctlr->dev, true); 2771 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 2772 2773 return ctlr; 2774 } 2775 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 2776 2777 static void devm_spi_release_controller(struct device *dev, void *ctlr) 2778 { 2779 spi_controller_put(*(struct spi_controller **)ctlr); 2780 } 2781 2782 /** 2783 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 2784 * @dev: physical device of SPI controller 2785 * @size: how much zeroed driver-private data to allocate 2786 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 2787 * Context: can sleep 2788 * 2789 * Allocate an SPI controller and automatically release a reference on it 2790 * when @dev is unbound from its driver. Drivers are thus relieved from 2791 * having to call spi_controller_put(). 2792 * 2793 * The arguments to this function are identical to __spi_alloc_controller(). 2794 * 2795 * Return: the SPI controller structure on success, else NULL. 2796 */ 2797 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 2798 unsigned int size, 2799 bool slave) 2800 { 2801 struct spi_controller **ptr, *ctlr; 2802 2803 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 2804 GFP_KERNEL); 2805 if (!ptr) 2806 return NULL; 2807 2808 ctlr = __spi_alloc_controller(dev, size, slave); 2809 if (ctlr) { 2810 ctlr->devm_allocated = true; 2811 *ptr = ctlr; 2812 devres_add(dev, ptr); 2813 } else { 2814 devres_free(ptr); 2815 } 2816 2817 return ctlr; 2818 } 2819 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 2820 2821 /** 2822 * spi_get_gpio_descs() - grab chip select GPIOs for the master 2823 * @ctlr: The SPI master to grab GPIO descriptors for 2824 */ 2825 static int spi_get_gpio_descs(struct spi_controller *ctlr) 2826 { 2827 int nb, i; 2828 struct gpio_desc **cs; 2829 struct device *dev = &ctlr->dev; 2830 unsigned long native_cs_mask = 0; 2831 unsigned int num_cs_gpios = 0; 2832 2833 nb = gpiod_count(dev, "cs"); 2834 if (nb < 0) { 2835 /* No GPIOs at all is fine, else return the error */ 2836 if (nb == -ENOENT) 2837 return 0; 2838 return nb; 2839 } 2840 2841 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 2842 2843 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 2844 GFP_KERNEL); 2845 if (!cs) 2846 return -ENOMEM; 2847 ctlr->cs_gpiods = cs; 2848 2849 for (i = 0; i < nb; i++) { 2850 /* 2851 * Most chipselects are active low, the inverted 2852 * semantics are handled by special quirks in gpiolib, 2853 * so initializing them GPIOD_OUT_LOW here means 2854 * "unasserted", in most cases this will drive the physical 2855 * line high. 2856 */ 2857 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 2858 GPIOD_OUT_LOW); 2859 if (IS_ERR(cs[i])) 2860 return PTR_ERR(cs[i]); 2861 2862 if (cs[i]) { 2863 /* 2864 * If we find a CS GPIO, name it after the device and 2865 * chip select line. 2866 */ 2867 char *gpioname; 2868 2869 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 2870 dev_name(dev), i); 2871 if (!gpioname) 2872 return -ENOMEM; 2873 gpiod_set_consumer_name(cs[i], gpioname); 2874 num_cs_gpios++; 2875 continue; 2876 } 2877 2878 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 2879 dev_err(dev, "Invalid native chip select %d\n", i); 2880 return -EINVAL; 2881 } 2882 native_cs_mask |= BIT(i); 2883 } 2884 2885 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 2886 2887 if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios && 2888 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 2889 dev_err(dev, "No unused native chip select available\n"); 2890 return -EINVAL; 2891 } 2892 2893 return 0; 2894 } 2895 2896 static int spi_controller_check_ops(struct spi_controller *ctlr) 2897 { 2898 /* 2899 * The controller may implement only the high-level SPI-memory like 2900 * operations if it does not support regular SPI transfers, and this is 2901 * valid use case. 2902 * If ->mem_ops is NULL, we request that at least one of the 2903 * ->transfer_xxx() method be implemented. 2904 */ 2905 if (ctlr->mem_ops) { 2906 if (!ctlr->mem_ops->exec_op) 2907 return -EINVAL; 2908 } else if (!ctlr->transfer && !ctlr->transfer_one && 2909 !ctlr->transfer_one_message) { 2910 return -EINVAL; 2911 } 2912 2913 return 0; 2914 } 2915 2916 /** 2917 * spi_register_controller - register SPI master or slave controller 2918 * @ctlr: initialized master, originally from spi_alloc_master() or 2919 * spi_alloc_slave() 2920 * Context: can sleep 2921 * 2922 * SPI controllers connect to their drivers using some non-SPI bus, 2923 * such as the platform bus. The final stage of probe() in that code 2924 * includes calling spi_register_controller() to hook up to this SPI bus glue. 2925 * 2926 * SPI controllers use board specific (often SOC specific) bus numbers, 2927 * and board-specific addressing for SPI devices combines those numbers 2928 * with chip select numbers. Since SPI does not directly support dynamic 2929 * device identification, boards need configuration tables telling which 2930 * chip is at which address. 2931 * 2932 * This must be called from context that can sleep. It returns zero on 2933 * success, else a negative error code (dropping the controller's refcount). 2934 * After a successful return, the caller is responsible for calling 2935 * spi_unregister_controller(). 2936 * 2937 * Return: zero on success, else a negative error code. 2938 */ 2939 int spi_register_controller(struct spi_controller *ctlr) 2940 { 2941 struct device *dev = ctlr->dev.parent; 2942 struct boardinfo *bi; 2943 int status; 2944 int id, first_dynamic; 2945 2946 if (!dev) 2947 return -ENODEV; 2948 2949 /* 2950 * Make sure all necessary hooks are implemented before registering 2951 * the SPI controller. 2952 */ 2953 status = spi_controller_check_ops(ctlr); 2954 if (status) 2955 return status; 2956 2957 if (ctlr->bus_num >= 0) { 2958 /* devices with a fixed bus num must check-in with the num */ 2959 mutex_lock(&board_lock); 2960 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2961 ctlr->bus_num + 1, GFP_KERNEL); 2962 mutex_unlock(&board_lock); 2963 if (WARN(id < 0, "couldn't get idr")) 2964 return id == -ENOSPC ? -EBUSY : id; 2965 ctlr->bus_num = id; 2966 } else if (ctlr->dev.of_node) { 2967 /* allocate dynamic bus number using Linux idr */ 2968 id = of_alias_get_id(ctlr->dev.of_node, "spi"); 2969 if (id >= 0) { 2970 ctlr->bus_num = id; 2971 mutex_lock(&board_lock); 2972 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num, 2973 ctlr->bus_num + 1, GFP_KERNEL); 2974 mutex_unlock(&board_lock); 2975 if (WARN(id < 0, "couldn't get idr")) 2976 return id == -ENOSPC ? -EBUSY : id; 2977 } 2978 } 2979 if (ctlr->bus_num < 0) { 2980 first_dynamic = of_alias_get_highest_id("spi"); 2981 if (first_dynamic < 0) 2982 first_dynamic = 0; 2983 else 2984 first_dynamic++; 2985 2986 mutex_lock(&board_lock); 2987 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic, 2988 0, GFP_KERNEL); 2989 mutex_unlock(&board_lock); 2990 if (WARN(id < 0, "couldn't get idr")) 2991 return id; 2992 ctlr->bus_num = id; 2993 } 2994 ctlr->bus_lock_flag = 0; 2995 init_completion(&ctlr->xfer_completion); 2996 if (!ctlr->max_dma_len) 2997 ctlr->max_dma_len = INT_MAX; 2998 2999 /* 3000 * Register the device, then userspace will see it. 3001 * Registration fails if the bus ID is in use. 3002 */ 3003 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3004 3005 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3006 status = spi_get_gpio_descs(ctlr); 3007 if (status) 3008 goto free_bus_id; 3009 /* 3010 * A controller using GPIO descriptors always 3011 * supports SPI_CS_HIGH if need be. 3012 */ 3013 ctlr->mode_bits |= SPI_CS_HIGH; 3014 } 3015 3016 /* 3017 * Even if it's just one always-selected device, there must 3018 * be at least one chipselect. 3019 */ 3020 if (!ctlr->num_chipselect) { 3021 status = -EINVAL; 3022 goto free_bus_id; 3023 } 3024 3025 /* setting last_cs to -1 means no chip selected */ 3026 ctlr->last_cs = -1; 3027 3028 status = device_add(&ctlr->dev); 3029 if (status < 0) 3030 goto free_bus_id; 3031 dev_dbg(dev, "registered %s %s\n", 3032 spi_controller_is_slave(ctlr) ? "slave" : "master", 3033 dev_name(&ctlr->dev)); 3034 3035 /* 3036 * If we're using a queued driver, start the queue. Note that we don't 3037 * need the queueing logic if the driver is only supporting high-level 3038 * memory operations. 3039 */ 3040 if (ctlr->transfer) { 3041 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3042 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3043 status = spi_controller_initialize_queue(ctlr); 3044 if (status) { 3045 device_del(&ctlr->dev); 3046 goto free_bus_id; 3047 } 3048 } 3049 /* add statistics */ 3050 spin_lock_init(&ctlr->statistics.lock); 3051 3052 mutex_lock(&board_lock); 3053 list_add_tail(&ctlr->list, &spi_controller_list); 3054 list_for_each_entry(bi, &board_list, list) 3055 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3056 mutex_unlock(&board_lock); 3057 3058 /* Register devices from the device tree and ACPI */ 3059 of_register_spi_devices(ctlr); 3060 acpi_register_spi_devices(ctlr); 3061 return status; 3062 3063 free_bus_id: 3064 mutex_lock(&board_lock); 3065 idr_remove(&spi_master_idr, ctlr->bus_num); 3066 mutex_unlock(&board_lock); 3067 return status; 3068 } 3069 EXPORT_SYMBOL_GPL(spi_register_controller); 3070 3071 static void devm_spi_unregister(void *ctlr) 3072 { 3073 spi_unregister_controller(ctlr); 3074 } 3075 3076 /** 3077 * devm_spi_register_controller - register managed SPI master or slave 3078 * controller 3079 * @dev: device managing SPI controller 3080 * @ctlr: initialized controller, originally from spi_alloc_master() or 3081 * spi_alloc_slave() 3082 * Context: can sleep 3083 * 3084 * Register a SPI device as with spi_register_controller() which will 3085 * automatically be unregistered and freed. 3086 * 3087 * Return: zero on success, else a negative error code. 3088 */ 3089 int devm_spi_register_controller(struct device *dev, 3090 struct spi_controller *ctlr) 3091 { 3092 int ret; 3093 3094 ret = spi_register_controller(ctlr); 3095 if (ret) 3096 return ret; 3097 3098 return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr); 3099 } 3100 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3101 3102 static int __unregister(struct device *dev, void *null) 3103 { 3104 spi_unregister_device(to_spi_device(dev)); 3105 return 0; 3106 } 3107 3108 /** 3109 * spi_unregister_controller - unregister SPI master or slave controller 3110 * @ctlr: the controller being unregistered 3111 * Context: can sleep 3112 * 3113 * This call is used only by SPI controller drivers, which are the 3114 * only ones directly touching chip registers. 3115 * 3116 * This must be called from context that can sleep. 3117 * 3118 * Note that this function also drops a reference to the controller. 3119 */ 3120 void spi_unregister_controller(struct spi_controller *ctlr) 3121 { 3122 struct spi_controller *found; 3123 int id = ctlr->bus_num; 3124 3125 /* Prevent addition of new devices, unregister existing ones */ 3126 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3127 mutex_lock(&ctlr->add_lock); 3128 3129 device_for_each_child(&ctlr->dev, NULL, __unregister); 3130 3131 /* First make sure that this controller was ever added */ 3132 mutex_lock(&board_lock); 3133 found = idr_find(&spi_master_idr, id); 3134 mutex_unlock(&board_lock); 3135 if (ctlr->queued) { 3136 if (spi_destroy_queue(ctlr)) 3137 dev_err(&ctlr->dev, "queue remove failed\n"); 3138 } 3139 mutex_lock(&board_lock); 3140 list_del(&ctlr->list); 3141 mutex_unlock(&board_lock); 3142 3143 device_del(&ctlr->dev); 3144 3145 /* free bus id */ 3146 mutex_lock(&board_lock); 3147 if (found == ctlr) 3148 idr_remove(&spi_master_idr, id); 3149 mutex_unlock(&board_lock); 3150 3151 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3152 mutex_unlock(&ctlr->add_lock); 3153 3154 /* Release the last reference on the controller if its driver 3155 * has not yet been converted to devm_spi_alloc_master/slave(). 3156 */ 3157 if (!ctlr->devm_allocated) 3158 put_device(&ctlr->dev); 3159 } 3160 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3161 3162 int spi_controller_suspend(struct spi_controller *ctlr) 3163 { 3164 int ret; 3165 3166 /* Basically no-ops for non-queued controllers */ 3167 if (!ctlr->queued) 3168 return 0; 3169 3170 ret = spi_stop_queue(ctlr); 3171 if (ret) 3172 dev_err(&ctlr->dev, "queue stop failed\n"); 3173 3174 return ret; 3175 } 3176 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3177 3178 int spi_controller_resume(struct spi_controller *ctlr) 3179 { 3180 int ret; 3181 3182 if (!ctlr->queued) 3183 return 0; 3184 3185 ret = spi_start_queue(ctlr); 3186 if (ret) 3187 dev_err(&ctlr->dev, "queue restart failed\n"); 3188 3189 return ret; 3190 } 3191 EXPORT_SYMBOL_GPL(spi_controller_resume); 3192 3193 /*-------------------------------------------------------------------------*/ 3194 3195 /* Core methods for spi_message alterations */ 3196 3197 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3198 struct spi_message *msg, 3199 void *res) 3200 { 3201 struct spi_replaced_transfers *rxfer = res; 3202 size_t i; 3203 3204 /* call extra callback if requested */ 3205 if (rxfer->release) 3206 rxfer->release(ctlr, msg, res); 3207 3208 /* insert replaced transfers back into the message */ 3209 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3210 3211 /* remove the formerly inserted entries */ 3212 for (i = 0; i < rxfer->inserted; i++) 3213 list_del(&rxfer->inserted_transfers[i].transfer_list); 3214 } 3215 3216 /** 3217 * spi_replace_transfers - replace transfers with several transfers 3218 * and register change with spi_message.resources 3219 * @msg: the spi_message we work upon 3220 * @xfer_first: the first spi_transfer we want to replace 3221 * @remove: number of transfers to remove 3222 * @insert: the number of transfers we want to insert instead 3223 * @release: extra release code necessary in some circumstances 3224 * @extradatasize: extra data to allocate (with alignment guarantees 3225 * of struct @spi_transfer) 3226 * @gfp: gfp flags 3227 * 3228 * Returns: pointer to @spi_replaced_transfers, 3229 * PTR_ERR(...) in case of errors. 3230 */ 3231 static struct spi_replaced_transfers *spi_replace_transfers( 3232 struct spi_message *msg, 3233 struct spi_transfer *xfer_first, 3234 size_t remove, 3235 size_t insert, 3236 spi_replaced_release_t release, 3237 size_t extradatasize, 3238 gfp_t gfp) 3239 { 3240 struct spi_replaced_transfers *rxfer; 3241 struct spi_transfer *xfer; 3242 size_t i; 3243 3244 /* allocate the structure using spi_res */ 3245 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3246 struct_size(rxfer, inserted_transfers, insert) 3247 + extradatasize, 3248 gfp); 3249 if (!rxfer) 3250 return ERR_PTR(-ENOMEM); 3251 3252 /* the release code to invoke before running the generic release */ 3253 rxfer->release = release; 3254 3255 /* assign extradata */ 3256 if (extradatasize) 3257 rxfer->extradata = 3258 &rxfer->inserted_transfers[insert]; 3259 3260 /* init the replaced_transfers list */ 3261 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3262 3263 /* 3264 * Assign the list_entry after which we should reinsert 3265 * the @replaced_transfers - it may be spi_message.messages! 3266 */ 3267 rxfer->replaced_after = xfer_first->transfer_list.prev; 3268 3269 /* remove the requested number of transfers */ 3270 for (i = 0; i < remove; i++) { 3271 /* 3272 * If the entry after replaced_after it is msg->transfers 3273 * then we have been requested to remove more transfers 3274 * than are in the list. 3275 */ 3276 if (rxfer->replaced_after->next == &msg->transfers) { 3277 dev_err(&msg->spi->dev, 3278 "requested to remove more spi_transfers than are available\n"); 3279 /* insert replaced transfers back into the message */ 3280 list_splice(&rxfer->replaced_transfers, 3281 rxfer->replaced_after); 3282 3283 /* free the spi_replace_transfer structure */ 3284 spi_res_free(rxfer); 3285 3286 /* and return with an error */ 3287 return ERR_PTR(-EINVAL); 3288 } 3289 3290 /* 3291 * Remove the entry after replaced_after from list of 3292 * transfers and add it to list of replaced_transfers. 3293 */ 3294 list_move_tail(rxfer->replaced_after->next, 3295 &rxfer->replaced_transfers); 3296 } 3297 3298 /* 3299 * Create copy of the given xfer with identical settings 3300 * based on the first transfer to get removed. 3301 */ 3302 for (i = 0; i < insert; i++) { 3303 /* we need to run in reverse order */ 3304 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3305 3306 /* copy all spi_transfer data */ 3307 memcpy(xfer, xfer_first, sizeof(*xfer)); 3308 3309 /* add to list */ 3310 list_add(&xfer->transfer_list, rxfer->replaced_after); 3311 3312 /* clear cs_change and delay for all but the last */ 3313 if (i) { 3314 xfer->cs_change = false; 3315 xfer->delay.value = 0; 3316 } 3317 } 3318 3319 /* set up inserted */ 3320 rxfer->inserted = insert; 3321 3322 /* and register it with spi_res/spi_message */ 3323 spi_res_add(msg, rxfer); 3324 3325 return rxfer; 3326 } 3327 3328 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3329 struct spi_message *msg, 3330 struct spi_transfer **xferp, 3331 size_t maxsize, 3332 gfp_t gfp) 3333 { 3334 struct spi_transfer *xfer = *xferp, *xfers; 3335 struct spi_replaced_transfers *srt; 3336 size_t offset; 3337 size_t count, i; 3338 3339 /* calculate how many we have to replace */ 3340 count = DIV_ROUND_UP(xfer->len, maxsize); 3341 3342 /* create replacement */ 3343 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp); 3344 if (IS_ERR(srt)) 3345 return PTR_ERR(srt); 3346 xfers = srt->inserted_transfers; 3347 3348 /* 3349 * Now handle each of those newly inserted spi_transfers. 3350 * Note that the replacements spi_transfers all are preset 3351 * to the same values as *xferp, so tx_buf, rx_buf and len 3352 * are all identical (as well as most others) 3353 * so we just have to fix up len and the pointers. 3354 * 3355 * This also includes support for the depreciated 3356 * spi_message.is_dma_mapped interface. 3357 */ 3358 3359 /* 3360 * The first transfer just needs the length modified, so we 3361 * run it outside the loop. 3362 */ 3363 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3364 3365 /* all the others need rx_buf/tx_buf also set */ 3366 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3367 /* update rx_buf, tx_buf and dma */ 3368 if (xfers[i].rx_buf) 3369 xfers[i].rx_buf += offset; 3370 if (xfers[i].rx_dma) 3371 xfers[i].rx_dma += offset; 3372 if (xfers[i].tx_buf) 3373 xfers[i].tx_buf += offset; 3374 if (xfers[i].tx_dma) 3375 xfers[i].tx_dma += offset; 3376 3377 /* update length */ 3378 xfers[i].len = min(maxsize, xfers[i].len - offset); 3379 } 3380 3381 /* 3382 * We set up xferp to the last entry we have inserted, 3383 * so that we skip those already split transfers. 3384 */ 3385 *xferp = &xfers[count - 1]; 3386 3387 /* increment statistics counters */ 3388 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3389 transfers_split_maxsize); 3390 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics, 3391 transfers_split_maxsize); 3392 3393 return 0; 3394 } 3395 3396 /** 3397 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3398 * when an individual transfer exceeds a 3399 * certain size 3400 * @ctlr: the @spi_controller for this transfer 3401 * @msg: the @spi_message to transform 3402 * @maxsize: the maximum when to apply this 3403 * @gfp: GFP allocation flags 3404 * 3405 * Return: status of transformation 3406 */ 3407 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3408 struct spi_message *msg, 3409 size_t maxsize, 3410 gfp_t gfp) 3411 { 3412 struct spi_transfer *xfer; 3413 int ret; 3414 3415 /* 3416 * Iterate over the transfer_list, 3417 * but note that xfer is advanced to the last transfer inserted 3418 * to avoid checking sizes again unnecessarily (also xfer does 3419 * potentially belong to a different list by the time the 3420 * replacement has happened). 3421 */ 3422 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3423 if (xfer->len > maxsize) { 3424 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3425 maxsize, gfp); 3426 if (ret) 3427 return ret; 3428 } 3429 } 3430 3431 return 0; 3432 } 3433 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3434 3435 /*-------------------------------------------------------------------------*/ 3436 3437 /* Core methods for SPI controller protocol drivers. Some of the 3438 * other core methods are currently defined as inline functions. 3439 */ 3440 3441 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3442 u8 bits_per_word) 3443 { 3444 if (ctlr->bits_per_word_mask) { 3445 /* Only 32 bits fit in the mask */ 3446 if (bits_per_word > 32) 3447 return -EINVAL; 3448 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3449 return -EINVAL; 3450 } 3451 3452 return 0; 3453 } 3454 3455 /** 3456 * spi_setup - setup SPI mode and clock rate 3457 * @spi: the device whose settings are being modified 3458 * Context: can sleep, and no requests are queued to the device 3459 * 3460 * SPI protocol drivers may need to update the transfer mode if the 3461 * device doesn't work with its default. They may likewise need 3462 * to update clock rates or word sizes from initial values. This function 3463 * changes those settings, and must be called from a context that can sleep. 3464 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3465 * effect the next time the device is selected and data is transferred to 3466 * or from it. When this function returns, the spi device is deselected. 3467 * 3468 * Note that this call will fail if the protocol driver specifies an option 3469 * that the underlying controller or its driver does not support. For 3470 * example, not all hardware supports wire transfers using nine bit words, 3471 * LSB-first wire encoding, or active-high chipselects. 3472 * 3473 * Return: zero on success, else a negative error code. 3474 */ 3475 int spi_setup(struct spi_device *spi) 3476 { 3477 unsigned bad_bits, ugly_bits; 3478 int status; 3479 3480 /* 3481 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3482 * are set at the same time. 3483 */ 3484 if ((hweight_long(spi->mode & 3485 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3486 (hweight_long(spi->mode & 3487 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3488 dev_err(&spi->dev, 3489 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3490 return -EINVAL; 3491 } 3492 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3493 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3494 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3495 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3496 return -EINVAL; 3497 /* 3498 * Help drivers fail *cleanly* when they need options 3499 * that aren't supported with their current controller. 3500 * SPI_CS_WORD has a fallback software implementation, 3501 * so it is ignored here. 3502 */ 3503 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3504 SPI_NO_TX | SPI_NO_RX); 3505 ugly_bits = bad_bits & 3506 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3507 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3508 if (ugly_bits) { 3509 dev_warn(&spi->dev, 3510 "setup: ignoring unsupported mode bits %x\n", 3511 ugly_bits); 3512 spi->mode &= ~ugly_bits; 3513 bad_bits &= ~ugly_bits; 3514 } 3515 if (bad_bits) { 3516 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3517 bad_bits); 3518 return -EINVAL; 3519 } 3520 3521 if (!spi->bits_per_word) 3522 spi->bits_per_word = 8; 3523 3524 status = __spi_validate_bits_per_word(spi->controller, 3525 spi->bits_per_word); 3526 if (status) 3527 return status; 3528 3529 if (spi->controller->max_speed_hz && 3530 (!spi->max_speed_hz || 3531 spi->max_speed_hz > spi->controller->max_speed_hz)) 3532 spi->max_speed_hz = spi->controller->max_speed_hz; 3533 3534 mutex_lock(&spi->controller->io_mutex); 3535 3536 if (spi->controller->setup) { 3537 status = spi->controller->setup(spi); 3538 if (status) { 3539 mutex_unlock(&spi->controller->io_mutex); 3540 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3541 status); 3542 return status; 3543 } 3544 } 3545 3546 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3547 status = pm_runtime_get_sync(spi->controller->dev.parent); 3548 if (status < 0) { 3549 mutex_unlock(&spi->controller->io_mutex); 3550 pm_runtime_put_noidle(spi->controller->dev.parent); 3551 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3552 status); 3553 return status; 3554 } 3555 3556 /* 3557 * We do not want to return positive value from pm_runtime_get, 3558 * there are many instances of devices calling spi_setup() and 3559 * checking for a non-zero return value instead of a negative 3560 * return value. 3561 */ 3562 status = 0; 3563 3564 spi_set_cs(spi, false, true); 3565 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3566 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3567 } else { 3568 spi_set_cs(spi, false, true); 3569 } 3570 3571 mutex_unlock(&spi->controller->io_mutex); 3572 3573 if (spi->rt && !spi->controller->rt) { 3574 spi->controller->rt = true; 3575 spi_set_thread_rt(spi->controller); 3576 } 3577 3578 trace_spi_setup(spi, status); 3579 3580 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 3581 spi->mode & SPI_MODE_X_MASK, 3582 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 3583 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 3584 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 3585 (spi->mode & SPI_LOOP) ? "loopback, " : "", 3586 spi->bits_per_word, spi->max_speed_hz, 3587 status); 3588 3589 return status; 3590 } 3591 EXPORT_SYMBOL_GPL(spi_setup); 3592 3593 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 3594 struct spi_device *spi) 3595 { 3596 int delay1, delay2; 3597 3598 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 3599 if (delay1 < 0) 3600 return delay1; 3601 3602 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 3603 if (delay2 < 0) 3604 return delay2; 3605 3606 if (delay1 < delay2) 3607 memcpy(&xfer->word_delay, &spi->word_delay, 3608 sizeof(xfer->word_delay)); 3609 3610 return 0; 3611 } 3612 3613 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 3614 { 3615 struct spi_controller *ctlr = spi->controller; 3616 struct spi_transfer *xfer; 3617 int w_size; 3618 3619 if (list_empty(&message->transfers)) 3620 return -EINVAL; 3621 3622 /* 3623 * If an SPI controller does not support toggling the CS line on each 3624 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 3625 * for the CS line, we can emulate the CS-per-word hardware function by 3626 * splitting transfers into one-word transfers and ensuring that 3627 * cs_change is set for each transfer. 3628 */ 3629 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) || 3630 spi->cs_gpiod)) { 3631 size_t maxsize; 3632 int ret; 3633 3634 maxsize = (spi->bits_per_word + 7) / 8; 3635 3636 /* spi_split_transfers_maxsize() requires message->spi */ 3637 message->spi = spi; 3638 3639 ret = spi_split_transfers_maxsize(ctlr, message, maxsize, 3640 GFP_KERNEL); 3641 if (ret) 3642 return ret; 3643 3644 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3645 /* don't change cs_change on the last entry in the list */ 3646 if (list_is_last(&xfer->transfer_list, &message->transfers)) 3647 break; 3648 xfer->cs_change = 1; 3649 } 3650 } 3651 3652 /* 3653 * Half-duplex links include original MicroWire, and ones with 3654 * only one data pin like SPI_3WIRE (switches direction) or where 3655 * either MOSI or MISO is missing. They can also be caused by 3656 * software limitations. 3657 */ 3658 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 3659 (spi->mode & SPI_3WIRE)) { 3660 unsigned flags = ctlr->flags; 3661 3662 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3663 if (xfer->rx_buf && xfer->tx_buf) 3664 return -EINVAL; 3665 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 3666 return -EINVAL; 3667 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 3668 return -EINVAL; 3669 } 3670 } 3671 3672 /* 3673 * Set transfer bits_per_word and max speed as spi device default if 3674 * it is not set for this transfer. 3675 * Set transfer tx_nbits and rx_nbits as single transfer default 3676 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 3677 * Ensure transfer word_delay is at least as long as that required by 3678 * device itself. 3679 */ 3680 message->frame_length = 0; 3681 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3682 xfer->effective_speed_hz = 0; 3683 message->frame_length += xfer->len; 3684 if (!xfer->bits_per_word) 3685 xfer->bits_per_word = spi->bits_per_word; 3686 3687 if (!xfer->speed_hz) 3688 xfer->speed_hz = spi->max_speed_hz; 3689 3690 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 3691 xfer->speed_hz = ctlr->max_speed_hz; 3692 3693 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 3694 return -EINVAL; 3695 3696 /* 3697 * SPI transfer length should be multiple of SPI word size 3698 * where SPI word size should be power-of-two multiple. 3699 */ 3700 if (xfer->bits_per_word <= 8) 3701 w_size = 1; 3702 else if (xfer->bits_per_word <= 16) 3703 w_size = 2; 3704 else 3705 w_size = 4; 3706 3707 /* No partial transfers accepted */ 3708 if (xfer->len % w_size) 3709 return -EINVAL; 3710 3711 if (xfer->speed_hz && ctlr->min_speed_hz && 3712 xfer->speed_hz < ctlr->min_speed_hz) 3713 return -EINVAL; 3714 3715 if (xfer->tx_buf && !xfer->tx_nbits) 3716 xfer->tx_nbits = SPI_NBITS_SINGLE; 3717 if (xfer->rx_buf && !xfer->rx_nbits) 3718 xfer->rx_nbits = SPI_NBITS_SINGLE; 3719 /* 3720 * Check transfer tx/rx_nbits: 3721 * 1. check the value matches one of single, dual and quad 3722 * 2. check tx/rx_nbits match the mode in spi_device 3723 */ 3724 if (xfer->tx_buf) { 3725 if (spi->mode & SPI_NO_TX) 3726 return -EINVAL; 3727 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 3728 xfer->tx_nbits != SPI_NBITS_DUAL && 3729 xfer->tx_nbits != SPI_NBITS_QUAD) 3730 return -EINVAL; 3731 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 3732 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 3733 return -EINVAL; 3734 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 3735 !(spi->mode & SPI_TX_QUAD)) 3736 return -EINVAL; 3737 } 3738 /* check transfer rx_nbits */ 3739 if (xfer->rx_buf) { 3740 if (spi->mode & SPI_NO_RX) 3741 return -EINVAL; 3742 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 3743 xfer->rx_nbits != SPI_NBITS_DUAL && 3744 xfer->rx_nbits != SPI_NBITS_QUAD) 3745 return -EINVAL; 3746 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 3747 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 3748 return -EINVAL; 3749 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 3750 !(spi->mode & SPI_RX_QUAD)) 3751 return -EINVAL; 3752 } 3753 3754 if (_spi_xfer_word_delay_update(xfer, spi)) 3755 return -EINVAL; 3756 } 3757 3758 message->status = -EINPROGRESS; 3759 3760 return 0; 3761 } 3762 3763 static int __spi_async(struct spi_device *spi, struct spi_message *message) 3764 { 3765 struct spi_controller *ctlr = spi->controller; 3766 struct spi_transfer *xfer; 3767 3768 /* 3769 * Some controllers do not support doing regular SPI transfers. Return 3770 * ENOTSUPP when this is the case. 3771 */ 3772 if (!ctlr->transfer) 3773 return -ENOTSUPP; 3774 3775 message->spi = spi; 3776 3777 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async); 3778 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async); 3779 3780 trace_spi_message_submit(message); 3781 3782 if (!ctlr->ptp_sts_supported) { 3783 list_for_each_entry(xfer, &message->transfers, transfer_list) { 3784 xfer->ptp_sts_word_pre = 0; 3785 ptp_read_system_prets(xfer->ptp_sts); 3786 } 3787 } 3788 3789 return ctlr->transfer(spi, message); 3790 } 3791 3792 /** 3793 * spi_async - asynchronous SPI transfer 3794 * @spi: device with which data will be exchanged 3795 * @message: describes the data transfers, including completion callback 3796 * Context: any (irqs may be blocked, etc) 3797 * 3798 * This call may be used in_irq and other contexts which can't sleep, 3799 * as well as from task contexts which can sleep. 3800 * 3801 * The completion callback is invoked in a context which can't sleep. 3802 * Before that invocation, the value of message->status is undefined. 3803 * When the callback is issued, message->status holds either zero (to 3804 * indicate complete success) or a negative error code. After that 3805 * callback returns, the driver which issued the transfer request may 3806 * deallocate the associated memory; it's no longer in use by any SPI 3807 * core or controller driver code. 3808 * 3809 * Note that although all messages to a spi_device are handled in 3810 * FIFO order, messages may go to different devices in other orders. 3811 * Some device might be higher priority, or have various "hard" access 3812 * time requirements, for example. 3813 * 3814 * On detection of any fault during the transfer, processing of 3815 * the entire message is aborted, and the device is deselected. 3816 * Until returning from the associated message completion callback, 3817 * no other spi_message queued to that device will be processed. 3818 * (This rule applies equally to all the synchronous transfer calls, 3819 * which are wrappers around this core asynchronous primitive.) 3820 * 3821 * Return: zero on success, else a negative error code. 3822 */ 3823 int spi_async(struct spi_device *spi, struct spi_message *message) 3824 { 3825 struct spi_controller *ctlr = spi->controller; 3826 int ret; 3827 unsigned long flags; 3828 3829 ret = __spi_validate(spi, message); 3830 if (ret != 0) 3831 return ret; 3832 3833 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3834 3835 if (ctlr->bus_lock_flag) 3836 ret = -EBUSY; 3837 else 3838 ret = __spi_async(spi, message); 3839 3840 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3841 3842 return ret; 3843 } 3844 EXPORT_SYMBOL_GPL(spi_async); 3845 3846 /** 3847 * spi_async_locked - version of spi_async with exclusive bus usage 3848 * @spi: device with which data will be exchanged 3849 * @message: describes the data transfers, including completion callback 3850 * Context: any (irqs may be blocked, etc) 3851 * 3852 * This call may be used in_irq and other contexts which can't sleep, 3853 * as well as from task contexts which can sleep. 3854 * 3855 * The completion callback is invoked in a context which can't sleep. 3856 * Before that invocation, the value of message->status is undefined. 3857 * When the callback is issued, message->status holds either zero (to 3858 * indicate complete success) or a negative error code. After that 3859 * callback returns, the driver which issued the transfer request may 3860 * deallocate the associated memory; it's no longer in use by any SPI 3861 * core or controller driver code. 3862 * 3863 * Note that although all messages to a spi_device are handled in 3864 * FIFO order, messages may go to different devices in other orders. 3865 * Some device might be higher priority, or have various "hard" access 3866 * time requirements, for example. 3867 * 3868 * On detection of any fault during the transfer, processing of 3869 * the entire message is aborted, and the device is deselected. 3870 * Until returning from the associated message completion callback, 3871 * no other spi_message queued to that device will be processed. 3872 * (This rule applies equally to all the synchronous transfer calls, 3873 * which are wrappers around this core asynchronous primitive.) 3874 * 3875 * Return: zero on success, else a negative error code. 3876 */ 3877 static int spi_async_locked(struct spi_device *spi, struct spi_message *message) 3878 { 3879 struct spi_controller *ctlr = spi->controller; 3880 int ret; 3881 unsigned long flags; 3882 3883 ret = __spi_validate(spi, message); 3884 if (ret != 0) 3885 return ret; 3886 3887 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3888 3889 ret = __spi_async(spi, message); 3890 3891 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3892 3893 return ret; 3894 3895 } 3896 3897 /*-------------------------------------------------------------------------*/ 3898 3899 /* 3900 * Utility methods for SPI protocol drivers, layered on 3901 * top of the core. Some other utility methods are defined as 3902 * inline functions. 3903 */ 3904 3905 static void spi_complete(void *arg) 3906 { 3907 complete(arg); 3908 } 3909 3910 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 3911 { 3912 DECLARE_COMPLETION_ONSTACK(done); 3913 int status; 3914 struct spi_controller *ctlr = spi->controller; 3915 unsigned long flags; 3916 3917 status = __spi_validate(spi, message); 3918 if (status != 0) 3919 return status; 3920 3921 message->complete = spi_complete; 3922 message->context = &done; 3923 message->spi = spi; 3924 3925 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync); 3926 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync); 3927 3928 /* 3929 * If we're not using the legacy transfer method then we will 3930 * try to transfer in the calling context so special case. 3931 * This code would be less tricky if we could remove the 3932 * support for driver implemented message queues. 3933 */ 3934 if (ctlr->transfer == spi_queued_transfer) { 3935 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 3936 3937 trace_spi_message_submit(message); 3938 3939 status = __spi_queued_transfer(spi, message, false); 3940 3941 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 3942 } else { 3943 status = spi_async_locked(spi, message); 3944 } 3945 3946 if (status == 0) { 3947 /* Push out the messages in the calling context if we can */ 3948 if (ctlr->transfer == spi_queued_transfer) { 3949 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, 3950 spi_sync_immediate); 3951 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, 3952 spi_sync_immediate); 3953 __spi_pump_messages(ctlr, false); 3954 } 3955 3956 wait_for_completion(&done); 3957 status = message->status; 3958 } 3959 message->context = NULL; 3960 return status; 3961 } 3962 3963 /** 3964 * spi_sync - blocking/synchronous SPI data transfers 3965 * @spi: device with which data will be exchanged 3966 * @message: describes the data transfers 3967 * Context: can sleep 3968 * 3969 * This call may only be used from a context that may sleep. The sleep 3970 * is non-interruptible, and has no timeout. Low-overhead controller 3971 * drivers may DMA directly into and out of the message buffers. 3972 * 3973 * Note that the SPI device's chip select is active during the message, 3974 * and then is normally disabled between messages. Drivers for some 3975 * frequently-used devices may want to minimize costs of selecting a chip, 3976 * by leaving it selected in anticipation that the next message will go 3977 * to the same chip. (That may increase power usage.) 3978 * 3979 * Also, the caller is guaranteeing that the memory associated with the 3980 * message will not be freed before this call returns. 3981 * 3982 * Return: zero on success, else a negative error code. 3983 */ 3984 int spi_sync(struct spi_device *spi, struct spi_message *message) 3985 { 3986 int ret; 3987 3988 mutex_lock(&spi->controller->bus_lock_mutex); 3989 ret = __spi_sync(spi, message); 3990 mutex_unlock(&spi->controller->bus_lock_mutex); 3991 3992 return ret; 3993 } 3994 EXPORT_SYMBOL_GPL(spi_sync); 3995 3996 /** 3997 * spi_sync_locked - version of spi_sync with exclusive bus usage 3998 * @spi: device with which data will be exchanged 3999 * @message: describes the data transfers 4000 * Context: can sleep 4001 * 4002 * This call may only be used from a context that may sleep. The sleep 4003 * is non-interruptible, and has no timeout. Low-overhead controller 4004 * drivers may DMA directly into and out of the message buffers. 4005 * 4006 * This call should be used by drivers that require exclusive access to the 4007 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4008 * be released by a spi_bus_unlock call when the exclusive access is over. 4009 * 4010 * Return: zero on success, else a negative error code. 4011 */ 4012 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4013 { 4014 return __spi_sync(spi, message); 4015 } 4016 EXPORT_SYMBOL_GPL(spi_sync_locked); 4017 4018 /** 4019 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4020 * @ctlr: SPI bus master that should be locked for exclusive bus access 4021 * Context: can sleep 4022 * 4023 * This call may only be used from a context that may sleep. The sleep 4024 * is non-interruptible, and has no timeout. 4025 * 4026 * This call should be used by drivers that require exclusive access to the 4027 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4028 * exclusive access is over. Data transfer must be done by spi_sync_locked 4029 * and spi_async_locked calls when the SPI bus lock is held. 4030 * 4031 * Return: always zero. 4032 */ 4033 int spi_bus_lock(struct spi_controller *ctlr) 4034 { 4035 unsigned long flags; 4036 4037 mutex_lock(&ctlr->bus_lock_mutex); 4038 4039 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4040 ctlr->bus_lock_flag = 1; 4041 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4042 4043 /* mutex remains locked until spi_bus_unlock is called */ 4044 4045 return 0; 4046 } 4047 EXPORT_SYMBOL_GPL(spi_bus_lock); 4048 4049 /** 4050 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4051 * @ctlr: SPI bus master that was locked for exclusive bus access 4052 * Context: can sleep 4053 * 4054 * This call may only be used from a context that may sleep. The sleep 4055 * is non-interruptible, and has no timeout. 4056 * 4057 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4058 * call. 4059 * 4060 * Return: always zero. 4061 */ 4062 int spi_bus_unlock(struct spi_controller *ctlr) 4063 { 4064 ctlr->bus_lock_flag = 0; 4065 4066 mutex_unlock(&ctlr->bus_lock_mutex); 4067 4068 return 0; 4069 } 4070 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4071 4072 /* portable code must never pass more than 32 bytes */ 4073 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4074 4075 static u8 *buf; 4076 4077 /** 4078 * spi_write_then_read - SPI synchronous write followed by read 4079 * @spi: device with which data will be exchanged 4080 * @txbuf: data to be written (need not be dma-safe) 4081 * @n_tx: size of txbuf, in bytes 4082 * @rxbuf: buffer into which data will be read (need not be dma-safe) 4083 * @n_rx: size of rxbuf, in bytes 4084 * Context: can sleep 4085 * 4086 * This performs a half duplex MicroWire style transaction with the 4087 * device, sending txbuf and then reading rxbuf. The return value 4088 * is zero for success, else a negative errno status code. 4089 * This call may only be used from a context that may sleep. 4090 * 4091 * Parameters to this routine are always copied using a small buffer. 4092 * Performance-sensitive or bulk transfer code should instead use 4093 * spi_{async,sync}() calls with dma-safe buffers. 4094 * 4095 * Return: zero on success, else a negative error code. 4096 */ 4097 int spi_write_then_read(struct spi_device *spi, 4098 const void *txbuf, unsigned n_tx, 4099 void *rxbuf, unsigned n_rx) 4100 { 4101 static DEFINE_MUTEX(lock); 4102 4103 int status; 4104 struct spi_message message; 4105 struct spi_transfer x[2]; 4106 u8 *local_buf; 4107 4108 /* 4109 * Use preallocated DMA-safe buffer if we can. We can't avoid 4110 * copying here, (as a pure convenience thing), but we can 4111 * keep heap costs out of the hot path unless someone else is 4112 * using the pre-allocated buffer or the transfer is too large. 4113 */ 4114 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4115 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4116 GFP_KERNEL | GFP_DMA); 4117 if (!local_buf) 4118 return -ENOMEM; 4119 } else { 4120 local_buf = buf; 4121 } 4122 4123 spi_message_init(&message); 4124 memset(x, 0, sizeof(x)); 4125 if (n_tx) { 4126 x[0].len = n_tx; 4127 spi_message_add_tail(&x[0], &message); 4128 } 4129 if (n_rx) { 4130 x[1].len = n_rx; 4131 spi_message_add_tail(&x[1], &message); 4132 } 4133 4134 memcpy(local_buf, txbuf, n_tx); 4135 x[0].tx_buf = local_buf; 4136 x[1].rx_buf = local_buf + n_tx; 4137 4138 /* do the i/o */ 4139 status = spi_sync(spi, &message); 4140 if (status == 0) 4141 memcpy(rxbuf, x[1].rx_buf, n_rx); 4142 4143 if (x[0].tx_buf == buf) 4144 mutex_unlock(&lock); 4145 else 4146 kfree(local_buf); 4147 4148 return status; 4149 } 4150 EXPORT_SYMBOL_GPL(spi_write_then_read); 4151 4152 /*-------------------------------------------------------------------------*/ 4153 4154 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4155 /* must call put_device() when done with returned spi_device device */ 4156 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4157 { 4158 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4159 4160 return dev ? to_spi_device(dev) : NULL; 4161 } 4162 4163 /* the spi controllers are not using spi_bus, so we find it with another way */ 4164 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4165 { 4166 struct device *dev; 4167 4168 dev = class_find_device_by_of_node(&spi_master_class, node); 4169 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4170 dev = class_find_device_by_of_node(&spi_slave_class, node); 4171 if (!dev) 4172 return NULL; 4173 4174 /* reference got in class_find_device */ 4175 return container_of(dev, struct spi_controller, dev); 4176 } 4177 4178 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4179 void *arg) 4180 { 4181 struct of_reconfig_data *rd = arg; 4182 struct spi_controller *ctlr; 4183 struct spi_device *spi; 4184 4185 switch (of_reconfig_get_state_change(action, arg)) { 4186 case OF_RECONFIG_CHANGE_ADD: 4187 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4188 if (ctlr == NULL) 4189 return NOTIFY_OK; /* not for us */ 4190 4191 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4192 put_device(&ctlr->dev); 4193 return NOTIFY_OK; 4194 } 4195 4196 spi = of_register_spi_device(ctlr, rd->dn); 4197 put_device(&ctlr->dev); 4198 4199 if (IS_ERR(spi)) { 4200 pr_err("%s: failed to create for '%pOF'\n", 4201 __func__, rd->dn); 4202 of_node_clear_flag(rd->dn, OF_POPULATED); 4203 return notifier_from_errno(PTR_ERR(spi)); 4204 } 4205 break; 4206 4207 case OF_RECONFIG_CHANGE_REMOVE: 4208 /* already depopulated? */ 4209 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4210 return NOTIFY_OK; 4211 4212 /* find our device by node */ 4213 spi = of_find_spi_device_by_node(rd->dn); 4214 if (spi == NULL) 4215 return NOTIFY_OK; /* no? not meant for us */ 4216 4217 /* unregister takes one ref away */ 4218 spi_unregister_device(spi); 4219 4220 /* and put the reference of the find */ 4221 put_device(&spi->dev); 4222 break; 4223 } 4224 4225 return NOTIFY_OK; 4226 } 4227 4228 static struct notifier_block spi_of_notifier = { 4229 .notifier_call = of_spi_notify, 4230 }; 4231 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4232 extern struct notifier_block spi_of_notifier; 4233 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4234 4235 #if IS_ENABLED(CONFIG_ACPI) 4236 static int spi_acpi_controller_match(struct device *dev, const void *data) 4237 { 4238 return ACPI_COMPANION(dev->parent) == data; 4239 } 4240 4241 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4242 { 4243 struct device *dev; 4244 4245 dev = class_find_device(&spi_master_class, NULL, adev, 4246 spi_acpi_controller_match); 4247 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4248 dev = class_find_device(&spi_slave_class, NULL, adev, 4249 spi_acpi_controller_match); 4250 if (!dev) 4251 return NULL; 4252 4253 return container_of(dev, struct spi_controller, dev); 4254 } 4255 4256 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4257 { 4258 struct device *dev; 4259 4260 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4261 return to_spi_device(dev); 4262 } 4263 4264 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4265 void *arg) 4266 { 4267 struct acpi_device *adev = arg; 4268 struct spi_controller *ctlr; 4269 struct spi_device *spi; 4270 4271 switch (value) { 4272 case ACPI_RECONFIG_DEVICE_ADD: 4273 ctlr = acpi_spi_find_controller_by_adev(adev->parent); 4274 if (!ctlr) 4275 break; 4276 4277 acpi_register_spi_device(ctlr, adev); 4278 put_device(&ctlr->dev); 4279 break; 4280 case ACPI_RECONFIG_DEVICE_REMOVE: 4281 if (!acpi_device_enumerated(adev)) 4282 break; 4283 4284 spi = acpi_spi_find_device_by_adev(adev); 4285 if (!spi) 4286 break; 4287 4288 spi_unregister_device(spi); 4289 put_device(&spi->dev); 4290 break; 4291 } 4292 4293 return NOTIFY_OK; 4294 } 4295 4296 static struct notifier_block spi_acpi_notifier = { 4297 .notifier_call = acpi_spi_notify, 4298 }; 4299 #else 4300 extern struct notifier_block spi_acpi_notifier; 4301 #endif 4302 4303 static int __init spi_init(void) 4304 { 4305 int status; 4306 4307 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4308 if (!buf) { 4309 status = -ENOMEM; 4310 goto err0; 4311 } 4312 4313 status = bus_register(&spi_bus_type); 4314 if (status < 0) 4315 goto err1; 4316 4317 status = class_register(&spi_master_class); 4318 if (status < 0) 4319 goto err2; 4320 4321 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4322 status = class_register(&spi_slave_class); 4323 if (status < 0) 4324 goto err3; 4325 } 4326 4327 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4328 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4329 if (IS_ENABLED(CONFIG_ACPI)) 4330 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4331 4332 return 0; 4333 4334 err3: 4335 class_unregister(&spi_master_class); 4336 err2: 4337 bus_unregister(&spi_bus_type); 4338 err1: 4339 kfree(buf); 4340 buf = NULL; 4341 err0: 4342 return status; 4343 } 4344 4345 /* 4346 * A board_info is normally registered in arch_initcall(), 4347 * but even essential drivers wait till later. 4348 * 4349 * REVISIT only boardinfo really needs static linking. The rest (device and 4350 * driver registration) _could_ be dynamically linked (modular) ... Costs 4351 * include needing to have boardinfo data structures be much more public. 4352 */ 4353 postcore_initcall(spi_init); 4354