1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/offload/types.h> 35 #include <linux/spi/spi.h> 36 #include <linux/spi/spi-mem.h> 37 #include <uapi/linux/sched/types.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/spi.h> 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 42 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 43 44 #include "internals.h" 45 46 static DEFINE_IDR(spi_controller_idr); 47 48 static void spidev_release(struct device *dev) 49 { 50 struct spi_device *spi = to_spi_device(dev); 51 52 spi_controller_put(spi->controller); 53 kfree(spi->driver_override); 54 free_percpu(spi->pcpu_statistics); 55 kfree(spi); 56 } 57 58 static ssize_t 59 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 60 { 61 const struct spi_device *spi = to_spi_device(dev); 62 int len; 63 64 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 65 if (len != -ENODEV) 66 return len; 67 68 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 69 } 70 static DEVICE_ATTR_RO(modalias); 71 72 static ssize_t driver_override_store(struct device *dev, 73 struct device_attribute *a, 74 const char *buf, size_t count) 75 { 76 struct spi_device *spi = to_spi_device(dev); 77 int ret; 78 79 ret = driver_set_override(dev, &spi->driver_override, buf, count); 80 if (ret) 81 return ret; 82 83 return count; 84 } 85 86 static ssize_t driver_override_show(struct device *dev, 87 struct device_attribute *a, char *buf) 88 { 89 const struct spi_device *spi = to_spi_device(dev); 90 ssize_t len; 91 92 device_lock(dev); 93 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 94 device_unlock(dev); 95 return len; 96 } 97 static DEVICE_ATTR_RW(driver_override); 98 99 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 100 { 101 struct spi_statistics __percpu *pcpu_stats; 102 103 if (dev) 104 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 105 else 106 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 107 108 if (pcpu_stats) { 109 int cpu; 110 111 for_each_possible_cpu(cpu) { 112 struct spi_statistics *stat; 113 114 stat = per_cpu_ptr(pcpu_stats, cpu); 115 u64_stats_init(&stat->syncp); 116 } 117 } 118 return pcpu_stats; 119 } 120 121 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 122 char *buf, size_t offset) 123 { 124 u64 val = 0; 125 int i; 126 127 for_each_possible_cpu(i) { 128 const struct spi_statistics *pcpu_stats; 129 u64_stats_t *field; 130 unsigned int start; 131 u64 inc; 132 133 pcpu_stats = per_cpu_ptr(stat, i); 134 field = (void *)pcpu_stats + offset; 135 do { 136 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 137 inc = u64_stats_read(field); 138 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 139 val += inc; 140 } 141 return sysfs_emit(buf, "%llu\n", val); 142 } 143 144 #define SPI_STATISTICS_ATTRS(field, file) \ 145 static ssize_t spi_controller_##field##_show(struct device *dev, \ 146 struct device_attribute *attr, \ 147 char *buf) \ 148 { \ 149 struct spi_controller *ctlr = container_of(dev, \ 150 struct spi_controller, dev); \ 151 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 152 } \ 153 static struct device_attribute dev_attr_spi_controller_##field = { \ 154 .attr = { .name = file, .mode = 0444 }, \ 155 .show = spi_controller_##field##_show, \ 156 }; \ 157 static ssize_t spi_device_##field##_show(struct device *dev, \ 158 struct device_attribute *attr, \ 159 char *buf) \ 160 { \ 161 struct spi_device *spi = to_spi_device(dev); \ 162 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 163 } \ 164 static struct device_attribute dev_attr_spi_device_##field = { \ 165 .attr = { .name = file, .mode = 0444 }, \ 166 .show = spi_device_##field##_show, \ 167 } 168 169 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 170 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 171 char *buf) \ 172 { \ 173 return spi_emit_pcpu_stats(stat, buf, \ 174 offsetof(struct spi_statistics, field)); \ 175 } \ 176 SPI_STATISTICS_ATTRS(name, file) 177 178 #define SPI_STATISTICS_SHOW(field) \ 179 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 180 field) 181 182 SPI_STATISTICS_SHOW(messages); 183 SPI_STATISTICS_SHOW(transfers); 184 SPI_STATISTICS_SHOW(errors); 185 SPI_STATISTICS_SHOW(timedout); 186 187 SPI_STATISTICS_SHOW(spi_sync); 188 SPI_STATISTICS_SHOW(spi_sync_immediate); 189 SPI_STATISTICS_SHOW(spi_async); 190 191 SPI_STATISTICS_SHOW(bytes); 192 SPI_STATISTICS_SHOW(bytes_rx); 193 SPI_STATISTICS_SHOW(bytes_tx); 194 195 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 196 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 197 "transfer_bytes_histo_" number, \ 198 transfer_bytes_histo[index]) 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 215 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 216 217 SPI_STATISTICS_SHOW(transfers_split_maxsize); 218 219 static struct attribute *spi_dev_attrs[] = { 220 &dev_attr_modalias.attr, 221 &dev_attr_driver_override.attr, 222 NULL, 223 }; 224 225 static const struct attribute_group spi_dev_group = { 226 .attrs = spi_dev_attrs, 227 }; 228 229 static struct attribute *spi_device_statistics_attrs[] = { 230 &dev_attr_spi_device_messages.attr, 231 &dev_attr_spi_device_transfers.attr, 232 &dev_attr_spi_device_errors.attr, 233 &dev_attr_spi_device_timedout.attr, 234 &dev_attr_spi_device_spi_sync.attr, 235 &dev_attr_spi_device_spi_sync_immediate.attr, 236 &dev_attr_spi_device_spi_async.attr, 237 &dev_attr_spi_device_bytes.attr, 238 &dev_attr_spi_device_bytes_rx.attr, 239 &dev_attr_spi_device_bytes_tx.attr, 240 &dev_attr_spi_device_transfer_bytes_histo0.attr, 241 &dev_attr_spi_device_transfer_bytes_histo1.attr, 242 &dev_attr_spi_device_transfer_bytes_histo2.attr, 243 &dev_attr_spi_device_transfer_bytes_histo3.attr, 244 &dev_attr_spi_device_transfer_bytes_histo4.attr, 245 &dev_attr_spi_device_transfer_bytes_histo5.attr, 246 &dev_attr_spi_device_transfer_bytes_histo6.attr, 247 &dev_attr_spi_device_transfer_bytes_histo7.attr, 248 &dev_attr_spi_device_transfer_bytes_histo8.attr, 249 &dev_attr_spi_device_transfer_bytes_histo9.attr, 250 &dev_attr_spi_device_transfer_bytes_histo10.attr, 251 &dev_attr_spi_device_transfer_bytes_histo11.attr, 252 &dev_attr_spi_device_transfer_bytes_histo12.attr, 253 &dev_attr_spi_device_transfer_bytes_histo13.attr, 254 &dev_attr_spi_device_transfer_bytes_histo14.attr, 255 &dev_attr_spi_device_transfer_bytes_histo15.attr, 256 &dev_attr_spi_device_transfer_bytes_histo16.attr, 257 &dev_attr_spi_device_transfers_split_maxsize.attr, 258 NULL, 259 }; 260 261 static const struct attribute_group spi_device_statistics_group = { 262 .name = "statistics", 263 .attrs = spi_device_statistics_attrs, 264 }; 265 266 static const struct attribute_group *spi_dev_groups[] = { 267 &spi_dev_group, 268 &spi_device_statistics_group, 269 NULL, 270 }; 271 272 static struct attribute *spi_controller_statistics_attrs[] = { 273 &dev_attr_spi_controller_messages.attr, 274 &dev_attr_spi_controller_transfers.attr, 275 &dev_attr_spi_controller_errors.attr, 276 &dev_attr_spi_controller_timedout.attr, 277 &dev_attr_spi_controller_spi_sync.attr, 278 &dev_attr_spi_controller_spi_sync_immediate.attr, 279 &dev_attr_spi_controller_spi_async.attr, 280 &dev_attr_spi_controller_bytes.attr, 281 &dev_attr_spi_controller_bytes_rx.attr, 282 &dev_attr_spi_controller_bytes_tx.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 299 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 300 &dev_attr_spi_controller_transfers_split_maxsize.attr, 301 NULL, 302 }; 303 304 static const struct attribute_group spi_controller_statistics_group = { 305 .name = "statistics", 306 .attrs = spi_controller_statistics_attrs, 307 }; 308 309 static const struct attribute_group *spi_controller_groups[] = { 310 &spi_controller_statistics_group, 311 NULL, 312 }; 313 314 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 315 struct spi_transfer *xfer, 316 struct spi_message *msg) 317 { 318 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 319 struct spi_statistics *stats; 320 321 if (l2len < 0) 322 l2len = 0; 323 324 get_cpu(); 325 stats = this_cpu_ptr(pcpu_stats); 326 u64_stats_update_begin(&stats->syncp); 327 328 u64_stats_inc(&stats->transfers); 329 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 330 331 u64_stats_add(&stats->bytes, xfer->len); 332 if (spi_valid_txbuf(msg, xfer)) 333 u64_stats_add(&stats->bytes_tx, xfer->len); 334 if (spi_valid_rxbuf(msg, xfer)) 335 u64_stats_add(&stats->bytes_rx, xfer->len); 336 337 u64_stats_update_end(&stats->syncp); 338 put_cpu(); 339 } 340 341 /* 342 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 343 * and the sysfs version makes coldplug work too. 344 */ 345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 346 { 347 while (id->name[0]) { 348 if (!strcmp(name, id->name)) 349 return id; 350 id++; 351 } 352 return NULL; 353 } 354 355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 356 { 357 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 358 359 return spi_match_id(sdrv->id_table, sdev->modalias); 360 } 361 EXPORT_SYMBOL_GPL(spi_get_device_id); 362 363 const void *spi_get_device_match_data(const struct spi_device *sdev) 364 { 365 const void *match; 366 367 match = device_get_match_data(&sdev->dev); 368 if (match) 369 return match; 370 371 return (const void *)spi_get_device_id(sdev)->driver_data; 372 } 373 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 374 375 static int spi_match_device(struct device *dev, const struct device_driver *drv) 376 { 377 const struct spi_device *spi = to_spi_device(dev); 378 const struct spi_driver *sdrv = to_spi_driver(drv); 379 380 /* Check override first, and if set, only use the named driver */ 381 if (spi->driver_override) 382 return strcmp(spi->driver_override, drv->name) == 0; 383 384 /* Attempt an OF style match */ 385 if (of_driver_match_device(dev, drv)) 386 return 1; 387 388 /* Then try ACPI */ 389 if (acpi_driver_match_device(dev, drv)) 390 return 1; 391 392 if (sdrv->id_table) 393 return !!spi_match_id(sdrv->id_table, spi->modalias); 394 395 return strcmp(spi->modalias, drv->name) == 0; 396 } 397 398 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 399 { 400 const struct spi_device *spi = to_spi_device(dev); 401 int rc; 402 403 rc = acpi_device_uevent_modalias(dev, env); 404 if (rc != -ENODEV) 405 return rc; 406 407 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 408 } 409 410 static int spi_probe(struct device *dev) 411 { 412 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 413 struct spi_device *spi = to_spi_device(dev); 414 struct fwnode_handle *fwnode = dev_fwnode(dev); 415 int ret; 416 417 ret = of_clk_set_defaults(dev->of_node, false); 418 if (ret) 419 return ret; 420 421 if (is_of_node(fwnode)) 422 spi->irq = of_irq_get(dev->of_node, 0); 423 else if (is_acpi_device_node(fwnode) && spi->irq < 0) 424 spi->irq = acpi_dev_gpio_irq_get(to_acpi_device_node(fwnode), 0); 425 if (spi->irq == -EPROBE_DEFER) 426 return dev_err_probe(dev, spi->irq, "Failed to get irq\n"); 427 if (spi->irq < 0) 428 spi->irq = 0; 429 430 ret = dev_pm_domain_attach(dev, true); 431 if (ret) 432 return ret; 433 434 if (sdrv->probe) { 435 ret = sdrv->probe(spi); 436 if (ret) 437 dev_pm_domain_detach(dev, true); 438 } 439 440 return ret; 441 } 442 443 static void spi_remove(struct device *dev) 444 { 445 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 446 447 if (sdrv->remove) 448 sdrv->remove(to_spi_device(dev)); 449 450 dev_pm_domain_detach(dev, true); 451 } 452 453 static void spi_shutdown(struct device *dev) 454 { 455 if (dev->driver) { 456 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 457 458 if (sdrv->shutdown) 459 sdrv->shutdown(to_spi_device(dev)); 460 } 461 } 462 463 const struct bus_type spi_bus_type = { 464 .name = "spi", 465 .dev_groups = spi_dev_groups, 466 .match = spi_match_device, 467 .uevent = spi_uevent, 468 .probe = spi_probe, 469 .remove = spi_remove, 470 .shutdown = spi_shutdown, 471 }; 472 EXPORT_SYMBOL_GPL(spi_bus_type); 473 474 /** 475 * __spi_register_driver - register a SPI driver 476 * @owner: owner module of the driver to register 477 * @sdrv: the driver to register 478 * Context: can sleep 479 * 480 * Return: zero on success, else a negative error code. 481 */ 482 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 483 { 484 sdrv->driver.owner = owner; 485 sdrv->driver.bus = &spi_bus_type; 486 487 /* 488 * For Really Good Reasons we use spi: modaliases not of: 489 * modaliases for DT so module autoloading won't work if we 490 * don't have a spi_device_id as well as a compatible string. 491 */ 492 if (sdrv->driver.of_match_table) { 493 const struct of_device_id *of_id; 494 495 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 496 of_id++) { 497 const char *of_name; 498 499 /* Strip off any vendor prefix */ 500 of_name = strnchr(of_id->compatible, 501 sizeof(of_id->compatible), ','); 502 if (of_name) 503 of_name++; 504 else 505 of_name = of_id->compatible; 506 507 if (sdrv->id_table) { 508 const struct spi_device_id *spi_id; 509 510 spi_id = spi_match_id(sdrv->id_table, of_name); 511 if (spi_id) 512 continue; 513 } else { 514 if (strcmp(sdrv->driver.name, of_name) == 0) 515 continue; 516 } 517 518 pr_warn("SPI driver %s has no spi_device_id for %s\n", 519 sdrv->driver.name, of_id->compatible); 520 } 521 } 522 523 return driver_register(&sdrv->driver); 524 } 525 EXPORT_SYMBOL_GPL(__spi_register_driver); 526 527 /*-------------------------------------------------------------------------*/ 528 529 /* 530 * SPI devices should normally not be created by SPI device drivers; that 531 * would make them board-specific. Similarly with SPI controller drivers. 532 * Device registration normally goes into like arch/.../mach.../board-YYY.c 533 * with other readonly (flashable) information about mainboard devices. 534 */ 535 536 struct boardinfo { 537 struct list_head list; 538 struct spi_board_info board_info; 539 }; 540 541 static LIST_HEAD(board_list); 542 static LIST_HEAD(spi_controller_list); 543 544 /* 545 * Used to protect add/del operation for board_info list and 546 * spi_controller list, and their matching process also used 547 * to protect object of type struct idr. 548 */ 549 static DEFINE_MUTEX(board_lock); 550 551 /** 552 * spi_alloc_device - Allocate a new SPI device 553 * @ctlr: Controller to which device is connected 554 * Context: can sleep 555 * 556 * Allows a driver to allocate and initialize a spi_device without 557 * registering it immediately. This allows a driver to directly 558 * fill the spi_device with device parameters before calling 559 * spi_add_device() on it. 560 * 561 * Caller is responsible to call spi_add_device() on the returned 562 * spi_device structure to add it to the SPI controller. If the caller 563 * needs to discard the spi_device without adding it, then it should 564 * call spi_dev_put() on it. 565 * 566 * Return: a pointer to the new device, or NULL. 567 */ 568 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 569 { 570 struct spi_device *spi; 571 572 if (!spi_controller_get(ctlr)) 573 return NULL; 574 575 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 576 if (!spi) { 577 spi_controller_put(ctlr); 578 return NULL; 579 } 580 581 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 582 if (!spi->pcpu_statistics) { 583 kfree(spi); 584 spi_controller_put(ctlr); 585 return NULL; 586 } 587 588 spi->controller = ctlr; 589 spi->dev.parent = &ctlr->dev; 590 spi->dev.bus = &spi_bus_type; 591 spi->dev.release = spidev_release; 592 spi->mode = ctlr->buswidth_override_bits; 593 594 device_initialize(&spi->dev); 595 return spi; 596 } 597 EXPORT_SYMBOL_GPL(spi_alloc_device); 598 599 static void spi_dev_set_name(struct spi_device *spi) 600 { 601 struct device *dev = &spi->dev; 602 struct fwnode_handle *fwnode = dev_fwnode(dev); 603 604 if (is_acpi_device_node(fwnode)) { 605 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode))); 606 return; 607 } 608 609 if (is_software_node(fwnode)) { 610 dev_set_name(dev, "spi-%pfwP", fwnode); 611 return; 612 } 613 614 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 615 spi_get_chipselect(spi, 0)); 616 } 617 618 /* 619 * Zero(0) is a valid physical CS value and can be located at any 620 * logical CS in the spi->chip_select[]. If all the physical CS 621 * are initialized to 0 then It would be difficult to differentiate 622 * between a valid physical CS 0 & an unused logical CS whose physical 623 * CS can be 0. As a solution to this issue initialize all the CS to -1. 624 * Now all the unused logical CS will have -1 physical CS value & can be 625 * ignored while performing physical CS validity checks. 626 */ 627 #define SPI_INVALID_CS ((s8)-1) 628 629 static inline bool is_valid_cs(s8 chip_select) 630 { 631 return chip_select != SPI_INVALID_CS; 632 } 633 634 static inline int spi_dev_check_cs(struct device *dev, 635 struct spi_device *spi, u8 idx, 636 struct spi_device *new_spi, u8 new_idx) 637 { 638 u8 cs, cs_new; 639 u8 idx_new; 640 641 cs = spi_get_chipselect(spi, idx); 642 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) { 643 cs_new = spi_get_chipselect(new_spi, idx_new); 644 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) { 645 dev_err(dev, "chipselect %u already in use\n", cs_new); 646 return -EBUSY; 647 } 648 } 649 return 0; 650 } 651 652 static int spi_dev_check(struct device *dev, void *data) 653 { 654 struct spi_device *spi = to_spi_device(dev); 655 struct spi_device *new_spi = data; 656 int status, idx; 657 658 if (spi->controller == new_spi->controller) { 659 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 660 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0); 661 if (status) 662 return status; 663 } 664 } 665 return 0; 666 } 667 668 static void spi_cleanup(struct spi_device *spi) 669 { 670 if (spi->controller->cleanup) 671 spi->controller->cleanup(spi); 672 } 673 674 static int __spi_add_device(struct spi_device *spi) 675 { 676 struct spi_controller *ctlr = spi->controller; 677 struct device *dev = ctlr->dev.parent; 678 int status, idx; 679 u8 cs; 680 681 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 682 /* Chipselects are numbered 0..max; validate. */ 683 cs = spi_get_chipselect(spi, idx); 684 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) { 685 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx), 686 ctlr->num_chipselect); 687 return -EINVAL; 688 } 689 } 690 691 /* 692 * Make sure that multiple logical CS doesn't map to the same physical CS. 693 * For example, spi->chip_select[0] != spi->chip_select[1] and so on. 694 */ 695 if (!spi_controller_is_target(ctlr)) { 696 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 697 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1); 698 if (status) 699 return status; 700 } 701 } 702 703 /* Set the bus ID string */ 704 spi_dev_set_name(spi); 705 706 /* 707 * We need to make sure there's no other device with this 708 * chipselect **BEFORE** we call setup(), else we'll trash 709 * its configuration. 710 */ 711 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 712 if (status) 713 return status; 714 715 /* Controller may unregister concurrently */ 716 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 717 !device_is_registered(&ctlr->dev)) { 718 return -ENODEV; 719 } 720 721 if (ctlr->cs_gpiods) { 722 u8 cs; 723 724 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 725 cs = spi_get_chipselect(spi, idx); 726 if (is_valid_cs(cs)) 727 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]); 728 } 729 } 730 731 /* 732 * Drivers may modify this initial i/o setup, but will 733 * normally rely on the device being setup. Devices 734 * using SPI_CS_HIGH can't coexist well otherwise... 735 */ 736 status = spi_setup(spi); 737 if (status < 0) { 738 dev_err(dev, "can't setup %s, status %d\n", 739 dev_name(&spi->dev), status); 740 return status; 741 } 742 743 /* Device may be bound to an active driver when this returns */ 744 status = device_add(&spi->dev); 745 if (status < 0) { 746 dev_err(dev, "can't add %s, status %d\n", 747 dev_name(&spi->dev), status); 748 spi_cleanup(spi); 749 } else { 750 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 751 } 752 753 return status; 754 } 755 756 /** 757 * spi_add_device - Add spi_device allocated with spi_alloc_device 758 * @spi: spi_device to register 759 * 760 * Companion function to spi_alloc_device. Devices allocated with 761 * spi_alloc_device can be added onto the SPI bus with this function. 762 * 763 * Return: 0 on success; negative errno on failure 764 */ 765 int spi_add_device(struct spi_device *spi) 766 { 767 struct spi_controller *ctlr = spi->controller; 768 int status; 769 770 /* Set the bus ID string */ 771 spi_dev_set_name(spi); 772 773 mutex_lock(&ctlr->add_lock); 774 status = __spi_add_device(spi); 775 mutex_unlock(&ctlr->add_lock); 776 return status; 777 } 778 EXPORT_SYMBOL_GPL(spi_add_device); 779 780 static void spi_set_all_cs_unused(struct spi_device *spi) 781 { 782 u8 idx; 783 784 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 785 spi_set_chipselect(spi, idx, SPI_INVALID_CS); 786 } 787 788 /** 789 * spi_new_device - instantiate one new SPI device 790 * @ctlr: Controller to which device is connected 791 * @chip: Describes the SPI device 792 * Context: can sleep 793 * 794 * On typical mainboards, this is purely internal; and it's not needed 795 * after board init creates the hard-wired devices. Some development 796 * platforms may not be able to use spi_register_board_info though, and 797 * this is exported so that for example a USB or parport based adapter 798 * driver could add devices (which it would learn about out-of-band). 799 * 800 * Return: the new device, or NULL. 801 */ 802 struct spi_device *spi_new_device(struct spi_controller *ctlr, 803 struct spi_board_info *chip) 804 { 805 struct spi_device *proxy; 806 int status; 807 808 /* 809 * NOTE: caller did any chip->bus_num checks necessary. 810 * 811 * Also, unless we change the return value convention to use 812 * error-or-pointer (not NULL-or-pointer), troubleshootability 813 * suggests syslogged diagnostics are best here (ugh). 814 */ 815 816 proxy = spi_alloc_device(ctlr); 817 if (!proxy) 818 return NULL; 819 820 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 821 822 /* Use provided chip-select for proxy device */ 823 spi_set_all_cs_unused(proxy); 824 spi_set_chipselect(proxy, 0, chip->chip_select); 825 826 proxy->max_speed_hz = chip->max_speed_hz; 827 proxy->mode = chip->mode; 828 proxy->irq = chip->irq; 829 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 830 proxy->dev.platform_data = (void *) chip->platform_data; 831 proxy->controller_data = chip->controller_data; 832 proxy->controller_state = NULL; 833 /* 834 * By default spi->chip_select[0] will hold the physical CS number, 835 * so set bit 0 in spi->cs_index_mask. 836 */ 837 proxy->cs_index_mask = BIT(0); 838 839 if (chip->swnode) { 840 status = device_add_software_node(&proxy->dev, chip->swnode); 841 if (status) { 842 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 843 chip->modalias, status); 844 goto err_dev_put; 845 } 846 } 847 848 status = spi_add_device(proxy); 849 if (status < 0) 850 goto err_dev_put; 851 852 return proxy; 853 854 err_dev_put: 855 device_remove_software_node(&proxy->dev); 856 spi_dev_put(proxy); 857 return NULL; 858 } 859 EXPORT_SYMBOL_GPL(spi_new_device); 860 861 /** 862 * spi_unregister_device - unregister a single SPI device 863 * @spi: spi_device to unregister 864 * 865 * Start making the passed SPI device vanish. Normally this would be handled 866 * by spi_unregister_controller(). 867 */ 868 void spi_unregister_device(struct spi_device *spi) 869 { 870 struct fwnode_handle *fwnode; 871 872 if (!spi) 873 return; 874 875 fwnode = dev_fwnode(&spi->dev); 876 if (is_of_node(fwnode)) { 877 of_node_clear_flag(to_of_node(fwnode), OF_POPULATED); 878 of_node_put(to_of_node(fwnode)); 879 } else if (is_acpi_device_node(fwnode)) { 880 acpi_device_clear_enumerated(to_acpi_device_node(fwnode)); 881 } 882 device_remove_software_node(&spi->dev); 883 device_del(&spi->dev); 884 spi_cleanup(spi); 885 put_device(&spi->dev); 886 } 887 EXPORT_SYMBOL_GPL(spi_unregister_device); 888 889 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 890 struct spi_board_info *bi) 891 { 892 struct spi_device *dev; 893 894 if (ctlr->bus_num != bi->bus_num) 895 return; 896 897 dev = spi_new_device(ctlr, bi); 898 if (!dev) 899 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 900 bi->modalias); 901 } 902 903 /** 904 * spi_register_board_info - register SPI devices for a given board 905 * @info: array of chip descriptors 906 * @n: how many descriptors are provided 907 * Context: can sleep 908 * 909 * Board-specific early init code calls this (probably during arch_initcall) 910 * with segments of the SPI device table. Any device nodes are created later, 911 * after the relevant parent SPI controller (bus_num) is defined. We keep 912 * this table of devices forever, so that reloading a controller driver will 913 * not make Linux forget about these hard-wired devices. 914 * 915 * Other code can also call this, e.g. a particular add-on board might provide 916 * SPI devices through its expansion connector, so code initializing that board 917 * would naturally declare its SPI devices. 918 * 919 * The board info passed can safely be __initdata ... but be careful of 920 * any embedded pointers (platform_data, etc), they're copied as-is. 921 * 922 * Return: zero on success, else a negative error code. 923 */ 924 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 925 { 926 struct boardinfo *bi; 927 int i; 928 929 if (!n) 930 return 0; 931 932 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 933 if (!bi) 934 return -ENOMEM; 935 936 for (i = 0; i < n; i++, bi++, info++) { 937 struct spi_controller *ctlr; 938 939 memcpy(&bi->board_info, info, sizeof(*info)); 940 941 mutex_lock(&board_lock); 942 list_add_tail(&bi->list, &board_list); 943 list_for_each_entry(ctlr, &spi_controller_list, list) 944 spi_match_controller_to_boardinfo(ctlr, 945 &bi->board_info); 946 mutex_unlock(&board_lock); 947 } 948 949 return 0; 950 } 951 952 /*-------------------------------------------------------------------------*/ 953 954 /* Core methods for SPI resource management */ 955 956 /** 957 * spi_res_alloc - allocate a spi resource that is life-cycle managed 958 * during the processing of a spi_message while using 959 * spi_transfer_one 960 * @spi: the SPI device for which we allocate memory 961 * @release: the release code to execute for this resource 962 * @size: size to alloc and return 963 * @gfp: GFP allocation flags 964 * 965 * Return: the pointer to the allocated data 966 * 967 * This may get enhanced in the future to allocate from a memory pool 968 * of the @spi_device or @spi_controller to avoid repeated allocations. 969 */ 970 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 971 size_t size, gfp_t gfp) 972 { 973 struct spi_res *sres; 974 975 sres = kzalloc(sizeof(*sres) + size, gfp); 976 if (!sres) 977 return NULL; 978 979 INIT_LIST_HEAD(&sres->entry); 980 sres->release = release; 981 982 return sres->data; 983 } 984 985 /** 986 * spi_res_free - free an SPI resource 987 * @res: pointer to the custom data of a resource 988 */ 989 static void spi_res_free(void *res) 990 { 991 struct spi_res *sres = container_of(res, struct spi_res, data); 992 993 WARN_ON(!list_empty(&sres->entry)); 994 kfree(sres); 995 } 996 997 /** 998 * spi_res_add - add a spi_res to the spi_message 999 * @message: the SPI message 1000 * @res: the spi_resource 1001 */ 1002 static void spi_res_add(struct spi_message *message, void *res) 1003 { 1004 struct spi_res *sres = container_of(res, struct spi_res, data); 1005 1006 WARN_ON(!list_empty(&sres->entry)); 1007 list_add_tail(&sres->entry, &message->resources); 1008 } 1009 1010 /** 1011 * spi_res_release - release all SPI resources for this message 1012 * @ctlr: the @spi_controller 1013 * @message: the @spi_message 1014 */ 1015 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 1016 { 1017 struct spi_res *res, *tmp; 1018 1019 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 1020 if (res->release) 1021 res->release(ctlr, message, res->data); 1022 1023 list_del(&res->entry); 1024 1025 kfree(res); 1026 } 1027 } 1028 1029 /*-------------------------------------------------------------------------*/ 1030 #define spi_for_each_valid_cs(spi, idx) \ 1031 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) \ 1032 if (!(spi->cs_index_mask & BIT(idx))) {} else 1033 1034 static inline bool spi_is_last_cs(struct spi_device *spi) 1035 { 1036 u8 idx; 1037 bool last = false; 1038 1039 spi_for_each_valid_cs(spi, idx) { 1040 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx)) 1041 last = true; 1042 } 1043 return last; 1044 } 1045 1046 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate) 1047 { 1048 /* 1049 * Historically ACPI has no means of the GPIO polarity and 1050 * thus the SPISerialBus() resource defines it on the per-chip 1051 * basis. In order to avoid a chain of negations, the GPIO 1052 * polarity is considered being Active High. Even for the cases 1053 * when _DSD() is involved (in the updated versions of ACPI) 1054 * the GPIO CS polarity must be defined Active High to avoid 1055 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 1056 * into account. 1057 */ 1058 if (is_acpi_device_node(dev_fwnode(&spi->dev))) 1059 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable); 1060 else 1061 /* Polarity handled by GPIO library */ 1062 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate); 1063 1064 if (activate) 1065 spi_delay_exec(&spi->cs_setup, NULL); 1066 else 1067 spi_delay_exec(&spi->cs_inactive, NULL); 1068 } 1069 1070 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 1071 { 1072 bool activate = enable; 1073 u8 idx; 1074 1075 /* 1076 * Avoid calling into the driver (or doing delays) if the chip select 1077 * isn't actually changing from the last time this was called. 1078 */ 1079 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1080 spi_is_last_cs(spi)) || 1081 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1082 !spi_is_last_cs(spi))) && 1083 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 1084 return; 1085 1086 trace_spi_set_cs(spi, activate); 1087 1088 spi->controller->last_cs_index_mask = spi->cs_index_mask; 1089 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 1090 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS; 1091 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 1092 1093 if (spi->mode & SPI_CS_HIGH) 1094 enable = !enable; 1095 1096 /* 1097 * Handle chip select delays for GPIO based CS or controllers without 1098 * programmable chip select timing. 1099 */ 1100 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate) 1101 spi_delay_exec(&spi->cs_hold, NULL); 1102 1103 if (spi_is_csgpiod(spi)) { 1104 if (!(spi->mode & SPI_NO_CS)) { 1105 spi_for_each_valid_cs(spi, idx) { 1106 if (spi_get_csgpiod(spi, idx)) 1107 spi_toggle_csgpiod(spi, idx, enable, activate); 1108 } 1109 } 1110 /* Some SPI controllers need both GPIO CS & ->set_cs() */ 1111 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 1112 spi->controller->set_cs) 1113 spi->controller->set_cs(spi, !enable); 1114 } else if (spi->controller->set_cs) { 1115 spi->controller->set_cs(spi, !enable); 1116 } 1117 1118 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) { 1119 if (activate) 1120 spi_delay_exec(&spi->cs_setup, NULL); 1121 else 1122 spi_delay_exec(&spi->cs_inactive, NULL); 1123 } 1124 } 1125 1126 #ifdef CONFIG_HAS_DMA 1127 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1128 struct sg_table *sgt, void *buf, size_t len, 1129 enum dma_data_direction dir, unsigned long attrs) 1130 { 1131 const bool vmalloced_buf = is_vmalloc_addr(buf); 1132 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1133 #ifdef CONFIG_HIGHMEM 1134 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1135 (unsigned long)buf < (PKMAP_BASE + 1136 (LAST_PKMAP * PAGE_SIZE))); 1137 #else 1138 const bool kmap_buf = false; 1139 #endif 1140 int desc_len; 1141 int sgs; 1142 struct page *vm_page; 1143 struct scatterlist *sg; 1144 void *sg_buf; 1145 size_t min; 1146 int i, ret; 1147 1148 if (vmalloced_buf || kmap_buf) { 1149 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1150 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1151 } else if (virt_addr_valid(buf)) { 1152 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1153 sgs = DIV_ROUND_UP(len, desc_len); 1154 } else { 1155 return -EINVAL; 1156 } 1157 1158 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1159 if (ret != 0) 1160 return ret; 1161 1162 sg = &sgt->sgl[0]; 1163 for (i = 0; i < sgs; i++) { 1164 1165 if (vmalloced_buf || kmap_buf) { 1166 /* 1167 * Next scatterlist entry size is the minimum between 1168 * the desc_len and the remaining buffer length that 1169 * fits in a page. 1170 */ 1171 min = min_t(size_t, desc_len, 1172 min_t(size_t, len, 1173 PAGE_SIZE - offset_in_page(buf))); 1174 if (vmalloced_buf) 1175 vm_page = vmalloc_to_page(buf); 1176 else 1177 vm_page = kmap_to_page(buf); 1178 if (!vm_page) { 1179 sg_free_table(sgt); 1180 return -ENOMEM; 1181 } 1182 sg_set_page(sg, vm_page, 1183 min, offset_in_page(buf)); 1184 } else { 1185 min = min_t(size_t, len, desc_len); 1186 sg_buf = buf; 1187 sg_set_buf(sg, sg_buf, min); 1188 } 1189 1190 buf += min; 1191 len -= min; 1192 sg = sg_next(sg); 1193 } 1194 1195 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1196 if (ret < 0) { 1197 sg_free_table(sgt); 1198 return ret; 1199 } 1200 1201 return 0; 1202 } 1203 1204 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1205 struct sg_table *sgt, void *buf, size_t len, 1206 enum dma_data_direction dir) 1207 { 1208 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1209 } 1210 1211 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1212 struct device *dev, struct sg_table *sgt, 1213 enum dma_data_direction dir, 1214 unsigned long attrs) 1215 { 1216 dma_unmap_sgtable(dev, sgt, dir, attrs); 1217 sg_free_table(sgt); 1218 sgt->orig_nents = 0; 1219 sgt->nents = 0; 1220 } 1221 1222 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1223 struct sg_table *sgt, enum dma_data_direction dir) 1224 { 1225 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1226 } 1227 1228 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1229 { 1230 struct device *tx_dev, *rx_dev; 1231 struct spi_transfer *xfer; 1232 int ret; 1233 1234 if (!ctlr->can_dma) 1235 return 0; 1236 1237 if (ctlr->dma_tx) 1238 tx_dev = ctlr->dma_tx->device->dev; 1239 else if (ctlr->dma_map_dev) 1240 tx_dev = ctlr->dma_map_dev; 1241 else 1242 tx_dev = ctlr->dev.parent; 1243 1244 if (ctlr->dma_rx) 1245 rx_dev = ctlr->dma_rx->device->dev; 1246 else if (ctlr->dma_map_dev) 1247 rx_dev = ctlr->dma_map_dev; 1248 else 1249 rx_dev = ctlr->dev.parent; 1250 1251 ret = -ENOMSG; 1252 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1253 /* The sync is done before each transfer. */ 1254 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1255 1256 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1257 continue; 1258 1259 if (xfer->tx_buf != NULL) { 1260 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1261 (void *)xfer->tx_buf, 1262 xfer->len, DMA_TO_DEVICE, 1263 attrs); 1264 if (ret != 0) 1265 return ret; 1266 1267 xfer->tx_sg_mapped = true; 1268 } 1269 1270 if (xfer->rx_buf != NULL) { 1271 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1272 xfer->rx_buf, xfer->len, 1273 DMA_FROM_DEVICE, attrs); 1274 if (ret != 0) { 1275 spi_unmap_buf_attrs(ctlr, tx_dev, 1276 &xfer->tx_sg, DMA_TO_DEVICE, 1277 attrs); 1278 1279 return ret; 1280 } 1281 1282 xfer->rx_sg_mapped = true; 1283 } 1284 } 1285 /* No transfer has been mapped, bail out with success */ 1286 if (ret) 1287 return 0; 1288 1289 ctlr->cur_rx_dma_dev = rx_dev; 1290 ctlr->cur_tx_dma_dev = tx_dev; 1291 1292 return 0; 1293 } 1294 1295 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1296 { 1297 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1298 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1299 struct spi_transfer *xfer; 1300 1301 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1302 /* The sync has already been done after each transfer. */ 1303 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1304 1305 if (xfer->rx_sg_mapped) 1306 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1307 DMA_FROM_DEVICE, attrs); 1308 xfer->rx_sg_mapped = false; 1309 1310 if (xfer->tx_sg_mapped) 1311 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1312 DMA_TO_DEVICE, attrs); 1313 xfer->tx_sg_mapped = false; 1314 } 1315 1316 return 0; 1317 } 1318 1319 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1320 struct spi_transfer *xfer) 1321 { 1322 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1323 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1324 1325 if (xfer->tx_sg_mapped) 1326 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1327 if (xfer->rx_sg_mapped) 1328 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1329 } 1330 1331 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1332 struct spi_transfer *xfer) 1333 { 1334 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1335 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1336 1337 if (xfer->rx_sg_mapped) 1338 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1339 if (xfer->tx_sg_mapped) 1340 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1341 } 1342 #else /* !CONFIG_HAS_DMA */ 1343 static inline int __spi_map_msg(struct spi_controller *ctlr, 1344 struct spi_message *msg) 1345 { 1346 return 0; 1347 } 1348 1349 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1350 struct spi_message *msg) 1351 { 1352 return 0; 1353 } 1354 1355 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1356 struct spi_transfer *xfer) 1357 { 1358 } 1359 1360 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1361 struct spi_transfer *xfer) 1362 { 1363 } 1364 #endif /* !CONFIG_HAS_DMA */ 1365 1366 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1367 struct spi_message *msg) 1368 { 1369 struct spi_transfer *xfer; 1370 1371 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1372 /* 1373 * Restore the original value of tx_buf or rx_buf if they are 1374 * NULL. 1375 */ 1376 if (xfer->tx_buf == ctlr->dummy_tx) 1377 xfer->tx_buf = NULL; 1378 if (xfer->rx_buf == ctlr->dummy_rx) 1379 xfer->rx_buf = NULL; 1380 } 1381 1382 return __spi_unmap_msg(ctlr, msg); 1383 } 1384 1385 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1386 { 1387 struct spi_transfer *xfer; 1388 void *tmp; 1389 unsigned int max_tx, max_rx; 1390 1391 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1392 && !(msg->spi->mode & SPI_3WIRE)) { 1393 max_tx = 0; 1394 max_rx = 0; 1395 1396 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1397 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1398 !xfer->tx_buf) 1399 max_tx = max(xfer->len, max_tx); 1400 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1401 !xfer->rx_buf) 1402 max_rx = max(xfer->len, max_rx); 1403 } 1404 1405 if (max_tx) { 1406 tmp = krealloc(ctlr->dummy_tx, max_tx, 1407 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1408 if (!tmp) 1409 return -ENOMEM; 1410 ctlr->dummy_tx = tmp; 1411 } 1412 1413 if (max_rx) { 1414 tmp = krealloc(ctlr->dummy_rx, max_rx, 1415 GFP_KERNEL | GFP_DMA); 1416 if (!tmp) 1417 return -ENOMEM; 1418 ctlr->dummy_rx = tmp; 1419 } 1420 1421 if (max_tx || max_rx) { 1422 list_for_each_entry(xfer, &msg->transfers, 1423 transfer_list) { 1424 if (!xfer->len) 1425 continue; 1426 if (!xfer->tx_buf) 1427 xfer->tx_buf = ctlr->dummy_tx; 1428 if (!xfer->rx_buf) 1429 xfer->rx_buf = ctlr->dummy_rx; 1430 } 1431 } 1432 } 1433 1434 return __spi_map_msg(ctlr, msg); 1435 } 1436 1437 static int spi_transfer_wait(struct spi_controller *ctlr, 1438 struct spi_message *msg, 1439 struct spi_transfer *xfer) 1440 { 1441 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1442 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1443 u32 speed_hz = xfer->speed_hz; 1444 unsigned long long ms; 1445 1446 if (spi_controller_is_target(ctlr)) { 1447 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1448 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1449 return -EINTR; 1450 } 1451 } else { 1452 if (!speed_hz) 1453 speed_hz = 100000; 1454 1455 /* 1456 * For each byte we wait for 8 cycles of the SPI clock. 1457 * Since speed is defined in Hz and we want milliseconds, 1458 * use respective multiplier, but before the division, 1459 * otherwise we may get 0 for short transfers. 1460 */ 1461 ms = 8LL * MSEC_PER_SEC * xfer->len; 1462 do_div(ms, speed_hz); 1463 1464 /* 1465 * Increase it twice and add 200 ms tolerance, use 1466 * predefined maximum in case of overflow. 1467 */ 1468 ms += ms + 200; 1469 if (ms > UINT_MAX) 1470 ms = UINT_MAX; 1471 1472 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1473 msecs_to_jiffies(ms)); 1474 1475 if (ms == 0) { 1476 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1477 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1478 dev_err(&msg->spi->dev, 1479 "SPI transfer timed out\n"); 1480 return -ETIMEDOUT; 1481 } 1482 1483 if (xfer->error & SPI_TRANS_FAIL_IO) 1484 return -EIO; 1485 } 1486 1487 return 0; 1488 } 1489 1490 static void _spi_transfer_delay_ns(u32 ns) 1491 { 1492 if (!ns) 1493 return; 1494 if (ns <= NSEC_PER_USEC) { 1495 ndelay(ns); 1496 } else { 1497 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1498 1499 fsleep(us); 1500 } 1501 } 1502 1503 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1504 { 1505 u32 delay = _delay->value; 1506 u32 unit = _delay->unit; 1507 u32 hz; 1508 1509 if (!delay) 1510 return 0; 1511 1512 switch (unit) { 1513 case SPI_DELAY_UNIT_USECS: 1514 delay *= NSEC_PER_USEC; 1515 break; 1516 case SPI_DELAY_UNIT_NSECS: 1517 /* Nothing to do here */ 1518 break; 1519 case SPI_DELAY_UNIT_SCK: 1520 /* Clock cycles need to be obtained from spi_transfer */ 1521 if (!xfer) 1522 return -EINVAL; 1523 /* 1524 * If there is unknown effective speed, approximate it 1525 * by underestimating with half of the requested Hz. 1526 */ 1527 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1528 if (!hz) 1529 return -EINVAL; 1530 1531 /* Convert delay to nanoseconds */ 1532 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1533 break; 1534 default: 1535 return -EINVAL; 1536 } 1537 1538 return delay; 1539 } 1540 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1541 1542 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1543 { 1544 int delay; 1545 1546 might_sleep(); 1547 1548 if (!_delay) 1549 return -EINVAL; 1550 1551 delay = spi_delay_to_ns(_delay, xfer); 1552 if (delay < 0) 1553 return delay; 1554 1555 _spi_transfer_delay_ns(delay); 1556 1557 return 0; 1558 } 1559 EXPORT_SYMBOL_GPL(spi_delay_exec); 1560 1561 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1562 struct spi_transfer *xfer) 1563 { 1564 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1565 u32 delay = xfer->cs_change_delay.value; 1566 u32 unit = xfer->cs_change_delay.unit; 1567 int ret; 1568 1569 /* Return early on "fast" mode - for everything but USECS */ 1570 if (!delay) { 1571 if (unit == SPI_DELAY_UNIT_USECS) 1572 _spi_transfer_delay_ns(default_delay_ns); 1573 return; 1574 } 1575 1576 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1577 if (ret) { 1578 dev_err_once(&msg->spi->dev, 1579 "Use of unsupported delay unit %i, using default of %luus\n", 1580 unit, default_delay_ns / NSEC_PER_USEC); 1581 _spi_transfer_delay_ns(default_delay_ns); 1582 } 1583 } 1584 1585 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1586 struct spi_transfer *xfer) 1587 { 1588 _spi_transfer_cs_change_delay(msg, xfer); 1589 } 1590 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1591 1592 /* 1593 * spi_transfer_one_message - Default implementation of transfer_one_message() 1594 * 1595 * This is a standard implementation of transfer_one_message() for 1596 * drivers which implement a transfer_one() operation. It provides 1597 * standard handling of delays and chip select management. 1598 */ 1599 static int spi_transfer_one_message(struct spi_controller *ctlr, 1600 struct spi_message *msg) 1601 { 1602 struct spi_transfer *xfer; 1603 bool keep_cs = false; 1604 int ret = 0; 1605 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1606 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1607 1608 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1609 spi_set_cs(msg->spi, !xfer->cs_off, false); 1610 1611 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1612 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1613 1614 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1615 trace_spi_transfer_start(msg, xfer); 1616 1617 spi_statistics_add_transfer_stats(statm, xfer, msg); 1618 spi_statistics_add_transfer_stats(stats, xfer, msg); 1619 1620 if (!ctlr->ptp_sts_supported) { 1621 xfer->ptp_sts_word_pre = 0; 1622 ptp_read_system_prets(xfer->ptp_sts); 1623 } 1624 1625 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1626 reinit_completion(&ctlr->xfer_completion); 1627 1628 fallback_pio: 1629 spi_dma_sync_for_device(ctlr, xfer); 1630 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1631 if (ret < 0) { 1632 spi_dma_sync_for_cpu(ctlr, xfer); 1633 1634 if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) && 1635 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1636 __spi_unmap_msg(ctlr, msg); 1637 ctlr->fallback = true; 1638 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1639 goto fallback_pio; 1640 } 1641 1642 SPI_STATISTICS_INCREMENT_FIELD(statm, 1643 errors); 1644 SPI_STATISTICS_INCREMENT_FIELD(stats, 1645 errors); 1646 dev_err(&msg->spi->dev, 1647 "SPI transfer failed: %d\n", ret); 1648 goto out; 1649 } 1650 1651 if (ret > 0) { 1652 ret = spi_transfer_wait(ctlr, msg, xfer); 1653 if (ret < 0) 1654 msg->status = ret; 1655 } 1656 1657 spi_dma_sync_for_cpu(ctlr, xfer); 1658 } else { 1659 if (xfer->len) 1660 dev_err(&msg->spi->dev, 1661 "Bufferless transfer has length %u\n", 1662 xfer->len); 1663 } 1664 1665 if (!ctlr->ptp_sts_supported) { 1666 ptp_read_system_postts(xfer->ptp_sts); 1667 xfer->ptp_sts_word_post = xfer->len; 1668 } 1669 1670 trace_spi_transfer_stop(msg, xfer); 1671 1672 if (msg->status != -EINPROGRESS) 1673 goto out; 1674 1675 spi_transfer_delay_exec(xfer); 1676 1677 if (xfer->cs_change) { 1678 if (list_is_last(&xfer->transfer_list, 1679 &msg->transfers)) { 1680 keep_cs = true; 1681 } else { 1682 if (!xfer->cs_off) 1683 spi_set_cs(msg->spi, false, false); 1684 _spi_transfer_cs_change_delay(msg, xfer); 1685 if (!list_next_entry(xfer, transfer_list)->cs_off) 1686 spi_set_cs(msg->spi, true, false); 1687 } 1688 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1689 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1690 spi_set_cs(msg->spi, xfer->cs_off, false); 1691 } 1692 1693 msg->actual_length += xfer->len; 1694 } 1695 1696 out: 1697 if (ret != 0 || !keep_cs) 1698 spi_set_cs(msg->spi, false, false); 1699 1700 if (msg->status == -EINPROGRESS) 1701 msg->status = ret; 1702 1703 if (msg->status && ctlr->handle_err) 1704 ctlr->handle_err(ctlr, msg); 1705 1706 spi_finalize_current_message(ctlr); 1707 1708 return ret; 1709 } 1710 1711 /** 1712 * spi_finalize_current_transfer - report completion of a transfer 1713 * @ctlr: the controller reporting completion 1714 * 1715 * Called by SPI drivers using the core transfer_one_message() 1716 * implementation to notify it that the current interrupt driven 1717 * transfer has finished and the next one may be scheduled. 1718 */ 1719 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1720 { 1721 complete(&ctlr->xfer_completion); 1722 } 1723 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1724 1725 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1726 { 1727 if (ctlr->auto_runtime_pm) { 1728 pm_runtime_mark_last_busy(ctlr->dev.parent); 1729 pm_runtime_put_autosuspend(ctlr->dev.parent); 1730 } 1731 } 1732 1733 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1734 struct spi_message *msg, bool was_busy) 1735 { 1736 struct spi_transfer *xfer; 1737 int ret; 1738 1739 if (!was_busy && ctlr->auto_runtime_pm) { 1740 ret = pm_runtime_get_sync(ctlr->dev.parent); 1741 if (ret < 0) { 1742 pm_runtime_put_noidle(ctlr->dev.parent); 1743 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1744 ret); 1745 1746 msg->status = ret; 1747 spi_finalize_current_message(ctlr); 1748 1749 return ret; 1750 } 1751 } 1752 1753 if (!was_busy) 1754 trace_spi_controller_busy(ctlr); 1755 1756 if (!was_busy && ctlr->prepare_transfer_hardware) { 1757 ret = ctlr->prepare_transfer_hardware(ctlr); 1758 if (ret) { 1759 dev_err(&ctlr->dev, 1760 "failed to prepare transfer hardware: %d\n", 1761 ret); 1762 1763 if (ctlr->auto_runtime_pm) 1764 pm_runtime_put(ctlr->dev.parent); 1765 1766 msg->status = ret; 1767 spi_finalize_current_message(ctlr); 1768 1769 return ret; 1770 } 1771 } 1772 1773 trace_spi_message_start(msg); 1774 1775 if (ctlr->prepare_message) { 1776 ret = ctlr->prepare_message(ctlr, msg); 1777 if (ret) { 1778 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1779 ret); 1780 msg->status = ret; 1781 spi_finalize_current_message(ctlr); 1782 return ret; 1783 } 1784 msg->prepared = true; 1785 } 1786 1787 ret = spi_map_msg(ctlr, msg); 1788 if (ret) { 1789 msg->status = ret; 1790 spi_finalize_current_message(ctlr); 1791 return ret; 1792 } 1793 1794 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1795 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1796 xfer->ptp_sts_word_pre = 0; 1797 ptp_read_system_prets(xfer->ptp_sts); 1798 } 1799 } 1800 1801 /* 1802 * Drivers implementation of transfer_one_message() must arrange for 1803 * spi_finalize_current_message() to get called. Most drivers will do 1804 * this in the calling context, but some don't. For those cases, a 1805 * completion is used to guarantee that this function does not return 1806 * until spi_finalize_current_message() is done accessing 1807 * ctlr->cur_msg. 1808 * Use of the following two flags enable to opportunistically skip the 1809 * use of the completion since its use involves expensive spin locks. 1810 * In case of a race with the context that calls 1811 * spi_finalize_current_message() the completion will always be used, 1812 * due to strict ordering of these flags using barriers. 1813 */ 1814 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1815 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1816 reinit_completion(&ctlr->cur_msg_completion); 1817 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1818 1819 ret = ctlr->transfer_one_message(ctlr, msg); 1820 if (ret) { 1821 dev_err(&ctlr->dev, 1822 "failed to transfer one message from queue\n"); 1823 return ret; 1824 } 1825 1826 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1827 smp_mb(); /* See spi_finalize_current_message()... */ 1828 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1829 wait_for_completion(&ctlr->cur_msg_completion); 1830 1831 return 0; 1832 } 1833 1834 /** 1835 * __spi_pump_messages - function which processes SPI message queue 1836 * @ctlr: controller to process queue for 1837 * @in_kthread: true if we are in the context of the message pump thread 1838 * 1839 * This function checks if there is any SPI message in the queue that 1840 * needs processing and if so call out to the driver to initialize hardware 1841 * and transfer each message. 1842 * 1843 * Note that it is called both from the kthread itself and also from 1844 * inside spi_sync(); the queue extraction handling at the top of the 1845 * function should deal with this safely. 1846 */ 1847 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1848 { 1849 struct spi_message *msg; 1850 bool was_busy = false; 1851 unsigned long flags; 1852 int ret; 1853 1854 /* Take the I/O mutex */ 1855 mutex_lock(&ctlr->io_mutex); 1856 1857 /* Lock queue */ 1858 spin_lock_irqsave(&ctlr->queue_lock, flags); 1859 1860 /* Make sure we are not already running a message */ 1861 if (ctlr->cur_msg) 1862 goto out_unlock; 1863 1864 /* Check if the queue is idle */ 1865 if (list_empty(&ctlr->queue) || !ctlr->running) { 1866 if (!ctlr->busy) 1867 goto out_unlock; 1868 1869 /* Defer any non-atomic teardown to the thread */ 1870 if (!in_kthread) { 1871 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1872 !ctlr->unprepare_transfer_hardware) { 1873 spi_idle_runtime_pm(ctlr); 1874 ctlr->busy = false; 1875 ctlr->queue_empty = true; 1876 trace_spi_controller_idle(ctlr); 1877 } else { 1878 kthread_queue_work(ctlr->kworker, 1879 &ctlr->pump_messages); 1880 } 1881 goto out_unlock; 1882 } 1883 1884 ctlr->busy = false; 1885 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1886 1887 kfree(ctlr->dummy_rx); 1888 ctlr->dummy_rx = NULL; 1889 kfree(ctlr->dummy_tx); 1890 ctlr->dummy_tx = NULL; 1891 if (ctlr->unprepare_transfer_hardware && 1892 ctlr->unprepare_transfer_hardware(ctlr)) 1893 dev_err(&ctlr->dev, 1894 "failed to unprepare transfer hardware\n"); 1895 spi_idle_runtime_pm(ctlr); 1896 trace_spi_controller_idle(ctlr); 1897 1898 spin_lock_irqsave(&ctlr->queue_lock, flags); 1899 ctlr->queue_empty = true; 1900 goto out_unlock; 1901 } 1902 1903 /* Extract head of queue */ 1904 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1905 ctlr->cur_msg = msg; 1906 1907 list_del_init(&msg->queue); 1908 if (ctlr->busy) 1909 was_busy = true; 1910 else 1911 ctlr->busy = true; 1912 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1913 1914 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1915 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1916 1917 ctlr->cur_msg = NULL; 1918 ctlr->fallback = false; 1919 1920 mutex_unlock(&ctlr->io_mutex); 1921 1922 /* Prod the scheduler in case transfer_one() was busy waiting */ 1923 if (!ret) 1924 cond_resched(); 1925 return; 1926 1927 out_unlock: 1928 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1929 mutex_unlock(&ctlr->io_mutex); 1930 } 1931 1932 /** 1933 * spi_pump_messages - kthread work function which processes spi message queue 1934 * @work: pointer to kthread work struct contained in the controller struct 1935 */ 1936 static void spi_pump_messages(struct kthread_work *work) 1937 { 1938 struct spi_controller *ctlr = 1939 container_of(work, struct spi_controller, pump_messages); 1940 1941 __spi_pump_messages(ctlr, true); 1942 } 1943 1944 /** 1945 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1946 * @ctlr: Pointer to the spi_controller structure of the driver 1947 * @xfer: Pointer to the transfer being timestamped 1948 * @progress: How many words (not bytes) have been transferred so far 1949 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1950 * transfer, for less jitter in time measurement. Only compatible 1951 * with PIO drivers. If true, must follow up with 1952 * spi_take_timestamp_post or otherwise system will crash. 1953 * WARNING: for fully predictable results, the CPU frequency must 1954 * also be under control (governor). 1955 * 1956 * This is a helper for drivers to collect the beginning of the TX timestamp 1957 * for the requested byte from the SPI transfer. The frequency with which this 1958 * function must be called (once per word, once for the whole transfer, once 1959 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1960 * greater than or equal to the requested byte at the time of the call. The 1961 * timestamp is only taken once, at the first such call. It is assumed that 1962 * the driver advances its @tx buffer pointer monotonically. 1963 */ 1964 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1965 struct spi_transfer *xfer, 1966 size_t progress, bool irqs_off) 1967 { 1968 if (!xfer->ptp_sts) 1969 return; 1970 1971 if (xfer->timestamped) 1972 return; 1973 1974 if (progress > xfer->ptp_sts_word_pre) 1975 return; 1976 1977 /* Capture the resolution of the timestamp */ 1978 xfer->ptp_sts_word_pre = progress; 1979 1980 if (irqs_off) { 1981 local_irq_save(ctlr->irq_flags); 1982 preempt_disable(); 1983 } 1984 1985 ptp_read_system_prets(xfer->ptp_sts); 1986 } 1987 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1988 1989 /** 1990 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1991 * @ctlr: Pointer to the spi_controller structure of the driver 1992 * @xfer: Pointer to the transfer being timestamped 1993 * @progress: How many words (not bytes) have been transferred so far 1994 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1995 * 1996 * This is a helper for drivers to collect the end of the TX timestamp for 1997 * the requested byte from the SPI transfer. Can be called with an arbitrary 1998 * frequency: only the first call where @tx exceeds or is equal to the 1999 * requested word will be timestamped. 2000 */ 2001 void spi_take_timestamp_post(struct spi_controller *ctlr, 2002 struct spi_transfer *xfer, 2003 size_t progress, bool irqs_off) 2004 { 2005 if (!xfer->ptp_sts) 2006 return; 2007 2008 if (xfer->timestamped) 2009 return; 2010 2011 if (progress < xfer->ptp_sts_word_post) 2012 return; 2013 2014 ptp_read_system_postts(xfer->ptp_sts); 2015 2016 if (irqs_off) { 2017 local_irq_restore(ctlr->irq_flags); 2018 preempt_enable(); 2019 } 2020 2021 /* Capture the resolution of the timestamp */ 2022 xfer->ptp_sts_word_post = progress; 2023 2024 xfer->timestamped = 1; 2025 } 2026 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 2027 2028 /** 2029 * spi_set_thread_rt - set the controller to pump at realtime priority 2030 * @ctlr: controller to boost priority of 2031 * 2032 * This can be called because the controller requested realtime priority 2033 * (by setting the ->rt value before calling spi_register_controller()) or 2034 * because a device on the bus said that its transfers needed realtime 2035 * priority. 2036 * 2037 * NOTE: at the moment if any device on a bus says it needs realtime then 2038 * the thread will be at realtime priority for all transfers on that 2039 * controller. If this eventually becomes a problem we may see if we can 2040 * find a way to boost the priority only temporarily during relevant 2041 * transfers. 2042 */ 2043 static void spi_set_thread_rt(struct spi_controller *ctlr) 2044 { 2045 dev_info(&ctlr->dev, 2046 "will run message pump with realtime priority\n"); 2047 sched_set_fifo(ctlr->kworker->task); 2048 } 2049 2050 static int spi_init_queue(struct spi_controller *ctlr) 2051 { 2052 ctlr->running = false; 2053 ctlr->busy = false; 2054 ctlr->queue_empty = true; 2055 2056 ctlr->kworker = kthread_run_worker(0, dev_name(&ctlr->dev)); 2057 if (IS_ERR(ctlr->kworker)) { 2058 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 2059 return PTR_ERR(ctlr->kworker); 2060 } 2061 2062 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 2063 2064 /* 2065 * Controller config will indicate if this controller should run the 2066 * message pump with high (realtime) priority to reduce the transfer 2067 * latency on the bus by minimising the delay between a transfer 2068 * request and the scheduling of the message pump thread. Without this 2069 * setting the message pump thread will remain at default priority. 2070 */ 2071 if (ctlr->rt) 2072 spi_set_thread_rt(ctlr); 2073 2074 return 0; 2075 } 2076 2077 /** 2078 * spi_get_next_queued_message() - called by driver to check for queued 2079 * messages 2080 * @ctlr: the controller to check for queued messages 2081 * 2082 * If there are more messages in the queue, the next message is returned from 2083 * this call. 2084 * 2085 * Return: the next message in the queue, else NULL if the queue is empty. 2086 */ 2087 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 2088 { 2089 struct spi_message *next; 2090 unsigned long flags; 2091 2092 /* Get a pointer to the next message, if any */ 2093 spin_lock_irqsave(&ctlr->queue_lock, flags); 2094 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2095 queue); 2096 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2097 2098 return next; 2099 } 2100 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2101 2102 /* 2103 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message() 2104 * and spi_maybe_unoptimize_message() 2105 * @msg: the message to unoptimize 2106 * 2107 * Peripheral drivers should use spi_unoptimize_message() and callers inside 2108 * core should use spi_maybe_unoptimize_message() rather than calling this 2109 * function directly. 2110 * 2111 * It is not valid to call this on a message that is not currently optimized. 2112 */ 2113 static void __spi_unoptimize_message(struct spi_message *msg) 2114 { 2115 struct spi_controller *ctlr = msg->spi->controller; 2116 2117 if (ctlr->unoptimize_message) 2118 ctlr->unoptimize_message(msg); 2119 2120 spi_res_release(ctlr, msg); 2121 2122 msg->optimized = false; 2123 msg->opt_state = NULL; 2124 } 2125 2126 /* 2127 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral 2128 * @msg: the message to unoptimize 2129 * 2130 * This function is used to unoptimize a message if and only if it was 2131 * optimized by the core (via spi_maybe_optimize_message()). 2132 */ 2133 static void spi_maybe_unoptimize_message(struct spi_message *msg) 2134 { 2135 if (!msg->pre_optimized && msg->optimized && 2136 !msg->spi->controller->defer_optimize_message) 2137 __spi_unoptimize_message(msg); 2138 } 2139 2140 /** 2141 * spi_finalize_current_message() - the current message is complete 2142 * @ctlr: the controller to return the message to 2143 * 2144 * Called by the driver to notify the core that the message in the front of the 2145 * queue is complete and can be removed from the queue. 2146 */ 2147 void spi_finalize_current_message(struct spi_controller *ctlr) 2148 { 2149 struct spi_transfer *xfer; 2150 struct spi_message *mesg; 2151 int ret; 2152 2153 mesg = ctlr->cur_msg; 2154 2155 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2156 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2157 ptp_read_system_postts(xfer->ptp_sts); 2158 xfer->ptp_sts_word_post = xfer->len; 2159 } 2160 } 2161 2162 if (unlikely(ctlr->ptp_sts_supported)) 2163 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2164 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2165 2166 spi_unmap_msg(ctlr, mesg); 2167 2168 if (mesg->prepared && ctlr->unprepare_message) { 2169 ret = ctlr->unprepare_message(ctlr, mesg); 2170 if (ret) { 2171 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2172 ret); 2173 } 2174 } 2175 2176 mesg->prepared = false; 2177 2178 spi_maybe_unoptimize_message(mesg); 2179 2180 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2181 smp_mb(); /* See __spi_pump_transfer_message()... */ 2182 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2183 complete(&ctlr->cur_msg_completion); 2184 2185 trace_spi_message_done(mesg); 2186 2187 mesg->state = NULL; 2188 if (mesg->complete) 2189 mesg->complete(mesg->context); 2190 } 2191 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2192 2193 static int spi_start_queue(struct spi_controller *ctlr) 2194 { 2195 unsigned long flags; 2196 2197 spin_lock_irqsave(&ctlr->queue_lock, flags); 2198 2199 if (ctlr->running || ctlr->busy) { 2200 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2201 return -EBUSY; 2202 } 2203 2204 ctlr->running = true; 2205 ctlr->cur_msg = NULL; 2206 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2207 2208 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2209 2210 return 0; 2211 } 2212 2213 static int spi_stop_queue(struct spi_controller *ctlr) 2214 { 2215 unsigned int limit = 500; 2216 unsigned long flags; 2217 2218 /* 2219 * This is a bit lame, but is optimized for the common execution path. 2220 * A wait_queue on the ctlr->busy could be used, but then the common 2221 * execution path (pump_messages) would be required to call wake_up or 2222 * friends on every SPI message. Do this instead. 2223 */ 2224 do { 2225 spin_lock_irqsave(&ctlr->queue_lock, flags); 2226 if (list_empty(&ctlr->queue) && !ctlr->busy) { 2227 ctlr->running = false; 2228 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2229 return 0; 2230 } 2231 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2232 usleep_range(10000, 11000); 2233 } while (--limit); 2234 2235 return -EBUSY; 2236 } 2237 2238 static int spi_destroy_queue(struct spi_controller *ctlr) 2239 { 2240 int ret; 2241 2242 ret = spi_stop_queue(ctlr); 2243 2244 /* 2245 * kthread_flush_worker will block until all work is done. 2246 * If the reason that stop_queue timed out is that the work will never 2247 * finish, then it does no good to call flush/stop thread, so 2248 * return anyway. 2249 */ 2250 if (ret) { 2251 dev_err(&ctlr->dev, "problem destroying queue\n"); 2252 return ret; 2253 } 2254 2255 kthread_destroy_worker(ctlr->kworker); 2256 2257 return 0; 2258 } 2259 2260 static int __spi_queued_transfer(struct spi_device *spi, 2261 struct spi_message *msg, 2262 bool need_pump) 2263 { 2264 struct spi_controller *ctlr = spi->controller; 2265 unsigned long flags; 2266 2267 spin_lock_irqsave(&ctlr->queue_lock, flags); 2268 2269 if (!ctlr->running) { 2270 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2271 return -ESHUTDOWN; 2272 } 2273 msg->actual_length = 0; 2274 msg->status = -EINPROGRESS; 2275 2276 list_add_tail(&msg->queue, &ctlr->queue); 2277 ctlr->queue_empty = false; 2278 if (!ctlr->busy && need_pump) 2279 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2280 2281 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2282 return 0; 2283 } 2284 2285 /** 2286 * spi_queued_transfer - transfer function for queued transfers 2287 * @spi: SPI device which is requesting transfer 2288 * @msg: SPI message which is to handled is queued to driver queue 2289 * 2290 * Return: zero on success, else a negative error code. 2291 */ 2292 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2293 { 2294 return __spi_queued_transfer(spi, msg, true); 2295 } 2296 2297 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2298 { 2299 int ret; 2300 2301 ctlr->transfer = spi_queued_transfer; 2302 if (!ctlr->transfer_one_message) 2303 ctlr->transfer_one_message = spi_transfer_one_message; 2304 2305 /* Initialize and start queue */ 2306 ret = spi_init_queue(ctlr); 2307 if (ret) { 2308 dev_err(&ctlr->dev, "problem initializing queue\n"); 2309 goto err_init_queue; 2310 } 2311 ctlr->queued = true; 2312 ret = spi_start_queue(ctlr); 2313 if (ret) { 2314 dev_err(&ctlr->dev, "problem starting queue\n"); 2315 goto err_start_queue; 2316 } 2317 2318 return 0; 2319 2320 err_start_queue: 2321 spi_destroy_queue(ctlr); 2322 err_init_queue: 2323 return ret; 2324 } 2325 2326 /** 2327 * spi_flush_queue - Send all pending messages in the queue from the callers' 2328 * context 2329 * @ctlr: controller to process queue for 2330 * 2331 * This should be used when one wants to ensure all pending messages have been 2332 * sent before doing something. Is used by the spi-mem code to make sure SPI 2333 * memory operations do not preempt regular SPI transfers that have been queued 2334 * before the spi-mem operation. 2335 */ 2336 void spi_flush_queue(struct spi_controller *ctlr) 2337 { 2338 if (ctlr->transfer == spi_queued_transfer) 2339 __spi_pump_messages(ctlr, false); 2340 } 2341 2342 /*-------------------------------------------------------------------------*/ 2343 2344 #if defined(CONFIG_OF) 2345 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2346 struct spi_delay *delay, const char *prop) 2347 { 2348 u32 value; 2349 2350 if (!of_property_read_u32(nc, prop, &value)) { 2351 if (value > U16_MAX) { 2352 delay->value = DIV_ROUND_UP(value, 1000); 2353 delay->unit = SPI_DELAY_UNIT_USECS; 2354 } else { 2355 delay->value = value; 2356 delay->unit = SPI_DELAY_UNIT_NSECS; 2357 } 2358 } 2359 } 2360 2361 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2362 struct device_node *nc) 2363 { 2364 u32 value, cs[SPI_CS_CNT_MAX]; 2365 int rc, idx; 2366 2367 /* Mode (clock phase/polarity/etc.) */ 2368 if (of_property_read_bool(nc, "spi-cpha")) 2369 spi->mode |= SPI_CPHA; 2370 if (of_property_read_bool(nc, "spi-cpol")) 2371 spi->mode |= SPI_CPOL; 2372 if (of_property_read_bool(nc, "spi-3wire")) 2373 spi->mode |= SPI_3WIRE; 2374 if (of_property_read_bool(nc, "spi-lsb-first")) 2375 spi->mode |= SPI_LSB_FIRST; 2376 if (of_property_read_bool(nc, "spi-cs-high")) 2377 spi->mode |= SPI_CS_HIGH; 2378 2379 /* Device DUAL/QUAD mode */ 2380 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2381 switch (value) { 2382 case 0: 2383 spi->mode |= SPI_NO_TX; 2384 break; 2385 case 1: 2386 break; 2387 case 2: 2388 spi->mode |= SPI_TX_DUAL; 2389 break; 2390 case 4: 2391 spi->mode |= SPI_TX_QUAD; 2392 break; 2393 case 8: 2394 spi->mode |= SPI_TX_OCTAL; 2395 break; 2396 default: 2397 dev_warn(&ctlr->dev, 2398 "spi-tx-bus-width %d not supported\n", 2399 value); 2400 break; 2401 } 2402 } 2403 2404 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2405 switch (value) { 2406 case 0: 2407 spi->mode |= SPI_NO_RX; 2408 break; 2409 case 1: 2410 break; 2411 case 2: 2412 spi->mode |= SPI_RX_DUAL; 2413 break; 2414 case 4: 2415 spi->mode |= SPI_RX_QUAD; 2416 break; 2417 case 8: 2418 spi->mode |= SPI_RX_OCTAL; 2419 break; 2420 default: 2421 dev_warn(&ctlr->dev, 2422 "spi-rx-bus-width %d not supported\n", 2423 value); 2424 break; 2425 } 2426 } 2427 2428 if (spi_controller_is_target(ctlr)) { 2429 if (!of_node_name_eq(nc, "slave")) { 2430 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2431 nc); 2432 return -EINVAL; 2433 } 2434 return 0; 2435 } 2436 2437 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) { 2438 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n"); 2439 return -EINVAL; 2440 } 2441 2442 spi_set_all_cs_unused(spi); 2443 2444 /* Device address */ 2445 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1, 2446 SPI_CS_CNT_MAX); 2447 if (rc < 0) { 2448 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2449 nc, rc); 2450 return rc; 2451 } 2452 if (rc > ctlr->num_chipselect) { 2453 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n", 2454 nc, rc); 2455 return rc; 2456 } 2457 if ((of_property_present(nc, "parallel-memories")) && 2458 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) { 2459 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n"); 2460 return -EINVAL; 2461 } 2462 for (idx = 0; idx < rc; idx++) 2463 spi_set_chipselect(spi, idx, cs[idx]); 2464 2465 /* 2466 * By default spi->chip_select[0] will hold the physical CS number, 2467 * so set bit 0 in spi->cs_index_mask. 2468 */ 2469 spi->cs_index_mask = BIT(0); 2470 2471 /* Device speed */ 2472 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2473 spi->max_speed_hz = value; 2474 2475 /* Device CS delays */ 2476 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2477 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2478 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2479 2480 return 0; 2481 } 2482 2483 static struct spi_device * 2484 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2485 { 2486 struct spi_device *spi; 2487 int rc; 2488 2489 /* Alloc an spi_device */ 2490 spi = spi_alloc_device(ctlr); 2491 if (!spi) { 2492 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2493 rc = -ENOMEM; 2494 goto err_out; 2495 } 2496 2497 /* Select device driver */ 2498 rc = of_alias_from_compatible(nc, spi->modalias, 2499 sizeof(spi->modalias)); 2500 if (rc < 0) { 2501 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2502 goto err_out; 2503 } 2504 2505 rc = of_spi_parse_dt(ctlr, spi, nc); 2506 if (rc) 2507 goto err_out; 2508 2509 /* Store a pointer to the node in the device structure */ 2510 of_node_get(nc); 2511 2512 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2513 2514 /* Register the new device */ 2515 rc = spi_add_device(spi); 2516 if (rc) { 2517 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2518 goto err_of_node_put; 2519 } 2520 2521 return spi; 2522 2523 err_of_node_put: 2524 of_node_put(nc); 2525 err_out: 2526 spi_dev_put(spi); 2527 return ERR_PTR(rc); 2528 } 2529 2530 /** 2531 * of_register_spi_devices() - Register child devices onto the SPI bus 2532 * @ctlr: Pointer to spi_controller device 2533 * 2534 * Registers an spi_device for each child node of controller node which 2535 * represents a valid SPI target device. 2536 */ 2537 static void of_register_spi_devices(struct spi_controller *ctlr) 2538 { 2539 struct spi_device *spi; 2540 struct device_node *nc; 2541 2542 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2543 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2544 continue; 2545 spi = of_register_spi_device(ctlr, nc); 2546 if (IS_ERR(spi)) { 2547 dev_warn(&ctlr->dev, 2548 "Failed to create SPI device for %pOF\n", nc); 2549 of_node_clear_flag(nc, OF_POPULATED); 2550 } 2551 } 2552 } 2553 #else 2554 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2555 #endif 2556 2557 /** 2558 * spi_new_ancillary_device() - Register ancillary SPI device 2559 * @spi: Pointer to the main SPI device registering the ancillary device 2560 * @chip_select: Chip Select of the ancillary device 2561 * 2562 * Register an ancillary SPI device; for example some chips have a chip-select 2563 * for normal device usage and another one for setup/firmware upload. 2564 * 2565 * This may only be called from main SPI device's probe routine. 2566 * 2567 * Return: 0 on success; negative errno on failure 2568 */ 2569 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2570 u8 chip_select) 2571 { 2572 struct spi_controller *ctlr = spi->controller; 2573 struct spi_device *ancillary; 2574 int rc; 2575 2576 /* Alloc an spi_device */ 2577 ancillary = spi_alloc_device(ctlr); 2578 if (!ancillary) { 2579 rc = -ENOMEM; 2580 goto err_out; 2581 } 2582 2583 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2584 2585 /* Use provided chip-select for ancillary device */ 2586 spi_set_all_cs_unused(ancillary); 2587 spi_set_chipselect(ancillary, 0, chip_select); 2588 2589 /* Take over SPI mode/speed from SPI main device */ 2590 ancillary->max_speed_hz = spi->max_speed_hz; 2591 ancillary->mode = spi->mode; 2592 /* 2593 * By default spi->chip_select[0] will hold the physical CS number, 2594 * so set bit 0 in spi->cs_index_mask. 2595 */ 2596 ancillary->cs_index_mask = BIT(0); 2597 2598 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2599 2600 /* Register the new device */ 2601 rc = __spi_add_device(ancillary); 2602 if (rc) { 2603 dev_err(&spi->dev, "failed to register ancillary device\n"); 2604 goto err_out; 2605 } 2606 2607 return ancillary; 2608 2609 err_out: 2610 spi_dev_put(ancillary); 2611 return ERR_PTR(rc); 2612 } 2613 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2614 2615 #ifdef CONFIG_ACPI 2616 struct acpi_spi_lookup { 2617 struct spi_controller *ctlr; 2618 u32 max_speed_hz; 2619 u32 mode; 2620 int irq; 2621 u8 bits_per_word; 2622 u8 chip_select; 2623 int n; 2624 int index; 2625 }; 2626 2627 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2628 { 2629 struct acpi_resource_spi_serialbus *sb; 2630 int *count = data; 2631 2632 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2633 return 1; 2634 2635 sb = &ares->data.spi_serial_bus; 2636 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2637 return 1; 2638 2639 *count = *count + 1; 2640 2641 return 1; 2642 } 2643 2644 /** 2645 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2646 * @adev: ACPI device 2647 * 2648 * Return: the number of SpiSerialBus resources in the ACPI-device's 2649 * resource-list; or a negative error code. 2650 */ 2651 int acpi_spi_count_resources(struct acpi_device *adev) 2652 { 2653 LIST_HEAD(r); 2654 int count = 0; 2655 int ret; 2656 2657 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2658 if (ret < 0) 2659 return ret; 2660 2661 acpi_dev_free_resource_list(&r); 2662 2663 return count; 2664 } 2665 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2666 2667 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2668 struct acpi_spi_lookup *lookup) 2669 { 2670 const union acpi_object *obj; 2671 2672 if (!x86_apple_machine) 2673 return; 2674 2675 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2676 && obj->buffer.length >= 4) 2677 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2678 2679 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2680 && obj->buffer.length == 8) 2681 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2682 2683 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2684 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2685 lookup->mode |= SPI_LSB_FIRST; 2686 2687 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2688 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2689 lookup->mode |= SPI_CPOL; 2690 2691 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2692 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2693 lookup->mode |= SPI_CPHA; 2694 } 2695 2696 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2697 { 2698 struct acpi_spi_lookup *lookup = data; 2699 struct spi_controller *ctlr = lookup->ctlr; 2700 2701 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2702 struct acpi_resource_spi_serialbus *sb; 2703 acpi_handle parent_handle; 2704 acpi_status status; 2705 2706 sb = &ares->data.spi_serial_bus; 2707 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2708 2709 if (lookup->index != -1 && lookup->n++ != lookup->index) 2710 return 1; 2711 2712 status = acpi_get_handle(NULL, 2713 sb->resource_source.string_ptr, 2714 &parent_handle); 2715 2716 if (ACPI_FAILURE(status)) 2717 return -ENODEV; 2718 2719 if (ctlr) { 2720 if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle)) 2721 return -ENODEV; 2722 } else { 2723 struct acpi_device *adev; 2724 2725 adev = acpi_fetch_acpi_dev(parent_handle); 2726 if (!adev) 2727 return -ENODEV; 2728 2729 ctlr = acpi_spi_find_controller_by_adev(adev); 2730 if (!ctlr) 2731 return -EPROBE_DEFER; 2732 2733 lookup->ctlr = ctlr; 2734 } 2735 2736 /* 2737 * ACPI DeviceSelection numbering is handled by the 2738 * host controller driver in Windows and can vary 2739 * from driver to driver. In Linux we always expect 2740 * 0 .. max - 1 so we need to ask the driver to 2741 * translate between the two schemes. 2742 */ 2743 if (ctlr->fw_translate_cs) { 2744 int cs = ctlr->fw_translate_cs(ctlr, 2745 sb->device_selection); 2746 if (cs < 0) 2747 return cs; 2748 lookup->chip_select = cs; 2749 } else { 2750 lookup->chip_select = sb->device_selection; 2751 } 2752 2753 lookup->max_speed_hz = sb->connection_speed; 2754 lookup->bits_per_word = sb->data_bit_length; 2755 2756 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2757 lookup->mode |= SPI_CPHA; 2758 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2759 lookup->mode |= SPI_CPOL; 2760 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2761 lookup->mode |= SPI_CS_HIGH; 2762 } 2763 } else if (lookup->irq < 0) { 2764 struct resource r; 2765 2766 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2767 lookup->irq = r.start; 2768 } 2769 2770 /* Always tell the ACPI core to skip this resource */ 2771 return 1; 2772 } 2773 2774 /** 2775 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2776 * @ctlr: controller to which the spi device belongs 2777 * @adev: ACPI Device for the spi device 2778 * @index: Index of the spi resource inside the ACPI Node 2779 * 2780 * This should be used to allocate a new SPI device from and ACPI Device node. 2781 * The caller is responsible for calling spi_add_device to register the SPI device. 2782 * 2783 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2784 * using the resource. 2785 * If index is set to -1, index is not used. 2786 * Note: If index is -1, ctlr must be set. 2787 * 2788 * Return: a pointer to the new device, or ERR_PTR on error. 2789 */ 2790 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2791 struct acpi_device *adev, 2792 int index) 2793 { 2794 acpi_handle parent_handle = NULL; 2795 struct list_head resource_list; 2796 struct acpi_spi_lookup lookup = {}; 2797 struct spi_device *spi; 2798 int ret; 2799 2800 if (!ctlr && index == -1) 2801 return ERR_PTR(-EINVAL); 2802 2803 lookup.ctlr = ctlr; 2804 lookup.irq = -1; 2805 lookup.index = index; 2806 lookup.n = 0; 2807 2808 INIT_LIST_HEAD(&resource_list); 2809 ret = acpi_dev_get_resources(adev, &resource_list, 2810 acpi_spi_add_resource, &lookup); 2811 acpi_dev_free_resource_list(&resource_list); 2812 2813 if (ret < 0) 2814 /* Found SPI in _CRS but it points to another controller */ 2815 return ERR_PTR(ret); 2816 2817 if (!lookup.max_speed_hz && 2818 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2819 device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) { 2820 /* Apple does not use _CRS but nested devices for SPI target devices */ 2821 acpi_spi_parse_apple_properties(adev, &lookup); 2822 } 2823 2824 if (!lookup.max_speed_hz) 2825 return ERR_PTR(-ENODEV); 2826 2827 spi = spi_alloc_device(lookup.ctlr); 2828 if (!spi) { 2829 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2830 dev_name(&adev->dev)); 2831 return ERR_PTR(-ENOMEM); 2832 } 2833 2834 spi_set_all_cs_unused(spi); 2835 spi_set_chipselect(spi, 0, lookup.chip_select); 2836 2837 ACPI_COMPANION_SET(&spi->dev, adev); 2838 spi->max_speed_hz = lookup.max_speed_hz; 2839 spi->mode |= lookup.mode; 2840 spi->irq = lookup.irq; 2841 spi->bits_per_word = lookup.bits_per_word; 2842 /* 2843 * By default spi->chip_select[0] will hold the physical CS number, 2844 * so set bit 0 in spi->cs_index_mask. 2845 */ 2846 spi->cs_index_mask = BIT(0); 2847 2848 return spi; 2849 } 2850 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2851 2852 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2853 struct acpi_device *adev) 2854 { 2855 struct spi_device *spi; 2856 2857 if (acpi_bus_get_status(adev) || !adev->status.present || 2858 acpi_device_enumerated(adev)) 2859 return AE_OK; 2860 2861 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2862 if (IS_ERR(spi)) { 2863 if (PTR_ERR(spi) == -ENOMEM) 2864 return AE_NO_MEMORY; 2865 else 2866 return AE_OK; 2867 } 2868 2869 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2870 sizeof(spi->modalias)); 2871 2872 acpi_device_set_enumerated(adev); 2873 2874 adev->power.flags.ignore_parent = true; 2875 if (spi_add_device(spi)) { 2876 adev->power.flags.ignore_parent = false; 2877 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2878 dev_name(&adev->dev)); 2879 spi_dev_put(spi); 2880 } 2881 2882 return AE_OK; 2883 } 2884 2885 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2886 void *data, void **return_value) 2887 { 2888 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2889 struct spi_controller *ctlr = data; 2890 2891 if (!adev) 2892 return AE_OK; 2893 2894 return acpi_register_spi_device(ctlr, adev); 2895 } 2896 2897 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2898 2899 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2900 { 2901 acpi_status status; 2902 acpi_handle handle; 2903 2904 handle = ACPI_HANDLE(ctlr->dev.parent); 2905 if (!handle) 2906 return; 2907 2908 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2909 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2910 acpi_spi_add_device, NULL, ctlr, NULL); 2911 if (ACPI_FAILURE(status)) 2912 dev_warn(&ctlr->dev, "failed to enumerate SPI target devices\n"); 2913 } 2914 #else 2915 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2916 #endif /* CONFIG_ACPI */ 2917 2918 static void spi_controller_release(struct device *dev) 2919 { 2920 struct spi_controller *ctlr; 2921 2922 ctlr = container_of(dev, struct spi_controller, dev); 2923 kfree(ctlr); 2924 } 2925 2926 static const struct class spi_controller_class = { 2927 .name = "spi_master", 2928 .dev_release = spi_controller_release, 2929 .dev_groups = spi_controller_groups, 2930 }; 2931 2932 #ifdef CONFIG_SPI_SLAVE 2933 /** 2934 * spi_target_abort - abort the ongoing transfer request on an SPI target controller 2935 * @spi: device used for the current transfer 2936 */ 2937 int spi_target_abort(struct spi_device *spi) 2938 { 2939 struct spi_controller *ctlr = spi->controller; 2940 2941 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2942 return ctlr->target_abort(ctlr); 2943 2944 return -ENOTSUPP; 2945 } 2946 EXPORT_SYMBOL_GPL(spi_target_abort); 2947 2948 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2949 char *buf) 2950 { 2951 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2952 dev); 2953 struct device *child; 2954 int ret; 2955 2956 child = device_find_any_child(&ctlr->dev); 2957 ret = sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2958 put_device(child); 2959 2960 return ret; 2961 } 2962 2963 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2964 const char *buf, size_t count) 2965 { 2966 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2967 dev); 2968 struct spi_device *spi; 2969 struct device *child; 2970 char name[32]; 2971 int rc; 2972 2973 rc = sscanf(buf, "%31s", name); 2974 if (rc != 1 || !name[0]) 2975 return -EINVAL; 2976 2977 child = device_find_any_child(&ctlr->dev); 2978 if (child) { 2979 /* Remove registered target device */ 2980 device_unregister(child); 2981 put_device(child); 2982 } 2983 2984 if (strcmp(name, "(null)")) { 2985 /* Register new target device */ 2986 spi = spi_alloc_device(ctlr); 2987 if (!spi) 2988 return -ENOMEM; 2989 2990 strscpy(spi->modalias, name, sizeof(spi->modalias)); 2991 2992 rc = spi_add_device(spi); 2993 if (rc) { 2994 spi_dev_put(spi); 2995 return rc; 2996 } 2997 } 2998 2999 return count; 3000 } 3001 3002 static DEVICE_ATTR_RW(slave); 3003 3004 static struct attribute *spi_target_attrs[] = { 3005 &dev_attr_slave.attr, 3006 NULL, 3007 }; 3008 3009 static const struct attribute_group spi_target_group = { 3010 .attrs = spi_target_attrs, 3011 }; 3012 3013 static const struct attribute_group *spi_target_groups[] = { 3014 &spi_controller_statistics_group, 3015 &spi_target_group, 3016 NULL, 3017 }; 3018 3019 static const struct class spi_target_class = { 3020 .name = "spi_slave", 3021 .dev_release = spi_controller_release, 3022 .dev_groups = spi_target_groups, 3023 }; 3024 #else 3025 extern struct class spi_target_class; /* dummy */ 3026 #endif 3027 3028 /** 3029 * __spi_alloc_controller - allocate an SPI host or target controller 3030 * @dev: the controller, possibly using the platform_bus 3031 * @size: how much zeroed driver-private data to allocate; the pointer to this 3032 * memory is in the driver_data field of the returned device, accessible 3033 * with spi_controller_get_devdata(); the memory is cacheline aligned; 3034 * drivers granting DMA access to portions of their private data need to 3035 * round up @size using ALIGN(size, dma_get_cache_alignment()). 3036 * @target: flag indicating whether to allocate an SPI host (false) or SPI target (true) 3037 * controller 3038 * Context: can sleep 3039 * 3040 * This call is used only by SPI controller drivers, which are the 3041 * only ones directly touching chip registers. It's how they allocate 3042 * an spi_controller structure, prior to calling spi_register_controller(). 3043 * 3044 * This must be called from context that can sleep. 3045 * 3046 * The caller is responsible for assigning the bus number and initializing the 3047 * controller's methods before calling spi_register_controller(); and (after 3048 * errors adding the device) calling spi_controller_put() to prevent a memory 3049 * leak. 3050 * 3051 * Return: the SPI controller structure on success, else NULL. 3052 */ 3053 struct spi_controller *__spi_alloc_controller(struct device *dev, 3054 unsigned int size, bool target) 3055 { 3056 struct spi_controller *ctlr; 3057 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 3058 3059 if (!dev) 3060 return NULL; 3061 3062 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 3063 if (!ctlr) 3064 return NULL; 3065 3066 device_initialize(&ctlr->dev); 3067 INIT_LIST_HEAD(&ctlr->queue); 3068 spin_lock_init(&ctlr->queue_lock); 3069 spin_lock_init(&ctlr->bus_lock_spinlock); 3070 mutex_init(&ctlr->bus_lock_mutex); 3071 mutex_init(&ctlr->io_mutex); 3072 mutex_init(&ctlr->add_lock); 3073 ctlr->bus_num = -1; 3074 ctlr->num_chipselect = 1; 3075 ctlr->target = target; 3076 if (IS_ENABLED(CONFIG_SPI_SLAVE) && target) 3077 ctlr->dev.class = &spi_target_class; 3078 else 3079 ctlr->dev.class = &spi_controller_class; 3080 ctlr->dev.parent = dev; 3081 pm_suspend_ignore_children(&ctlr->dev, true); 3082 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 3083 3084 return ctlr; 3085 } 3086 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 3087 3088 static void devm_spi_release_controller(struct device *dev, void *ctlr) 3089 { 3090 spi_controller_put(*(struct spi_controller **)ctlr); 3091 } 3092 3093 /** 3094 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 3095 * @dev: physical device of SPI controller 3096 * @size: how much zeroed driver-private data to allocate 3097 * @target: whether to allocate an SPI host (false) or SPI target (true) controller 3098 * Context: can sleep 3099 * 3100 * Allocate an SPI controller and automatically release a reference on it 3101 * when @dev is unbound from its driver. Drivers are thus relieved from 3102 * having to call spi_controller_put(). 3103 * 3104 * The arguments to this function are identical to __spi_alloc_controller(). 3105 * 3106 * Return: the SPI controller structure on success, else NULL. 3107 */ 3108 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 3109 unsigned int size, 3110 bool target) 3111 { 3112 struct spi_controller **ptr, *ctlr; 3113 3114 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 3115 GFP_KERNEL); 3116 if (!ptr) 3117 return NULL; 3118 3119 ctlr = __spi_alloc_controller(dev, size, target); 3120 if (ctlr) { 3121 ctlr->devm_allocated = true; 3122 *ptr = ctlr; 3123 devres_add(dev, ptr); 3124 } else { 3125 devres_free(ptr); 3126 } 3127 3128 return ctlr; 3129 } 3130 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 3131 3132 /** 3133 * spi_get_gpio_descs() - grab chip select GPIOs for the controller 3134 * @ctlr: The SPI controller to grab GPIO descriptors for 3135 */ 3136 static int spi_get_gpio_descs(struct spi_controller *ctlr) 3137 { 3138 int nb, i; 3139 struct gpio_desc **cs; 3140 struct device *dev = &ctlr->dev; 3141 unsigned long native_cs_mask = 0; 3142 unsigned int num_cs_gpios = 0; 3143 3144 nb = gpiod_count(dev, "cs"); 3145 if (nb < 0) { 3146 /* No GPIOs at all is fine, else return the error */ 3147 if (nb == -ENOENT) 3148 return 0; 3149 return nb; 3150 } 3151 3152 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3153 3154 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3155 GFP_KERNEL); 3156 if (!cs) 3157 return -ENOMEM; 3158 ctlr->cs_gpiods = cs; 3159 3160 for (i = 0; i < nb; i++) { 3161 /* 3162 * Most chipselects are active low, the inverted 3163 * semantics are handled by special quirks in gpiolib, 3164 * so initializing them GPIOD_OUT_LOW here means 3165 * "unasserted", in most cases this will drive the physical 3166 * line high. 3167 */ 3168 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3169 GPIOD_OUT_LOW); 3170 if (IS_ERR(cs[i])) 3171 return PTR_ERR(cs[i]); 3172 3173 if (cs[i]) { 3174 /* 3175 * If we find a CS GPIO, name it after the device and 3176 * chip select line. 3177 */ 3178 char *gpioname; 3179 3180 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3181 dev_name(dev), i); 3182 if (!gpioname) 3183 return -ENOMEM; 3184 gpiod_set_consumer_name(cs[i], gpioname); 3185 num_cs_gpios++; 3186 continue; 3187 } 3188 3189 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3190 dev_err(dev, "Invalid native chip select %d\n", i); 3191 return -EINVAL; 3192 } 3193 native_cs_mask |= BIT(i); 3194 } 3195 3196 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3197 3198 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3199 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3200 dev_err(dev, "No unused native chip select available\n"); 3201 return -EINVAL; 3202 } 3203 3204 return 0; 3205 } 3206 3207 static int spi_controller_check_ops(struct spi_controller *ctlr) 3208 { 3209 /* 3210 * The controller may implement only the high-level SPI-memory like 3211 * operations if it does not support regular SPI transfers, and this is 3212 * valid use case. 3213 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3214 * one of the ->transfer_xxx() method be implemented. 3215 */ 3216 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3217 if (!ctlr->transfer && !ctlr->transfer_one && 3218 !ctlr->transfer_one_message) { 3219 return -EINVAL; 3220 } 3221 } 3222 3223 return 0; 3224 } 3225 3226 /* Allocate dynamic bus number using Linux idr */ 3227 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3228 { 3229 int id; 3230 3231 mutex_lock(&board_lock); 3232 id = idr_alloc(&spi_controller_idr, ctlr, start, end, GFP_KERNEL); 3233 mutex_unlock(&board_lock); 3234 if (WARN(id < 0, "couldn't get idr")) 3235 return id == -ENOSPC ? -EBUSY : id; 3236 ctlr->bus_num = id; 3237 return 0; 3238 } 3239 3240 /** 3241 * spi_register_controller - register SPI host or target controller 3242 * @ctlr: initialized controller, originally from spi_alloc_host() or 3243 * spi_alloc_target() 3244 * Context: can sleep 3245 * 3246 * SPI controllers connect to their drivers using some non-SPI bus, 3247 * such as the platform bus. The final stage of probe() in that code 3248 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3249 * 3250 * SPI controllers use board specific (often SOC specific) bus numbers, 3251 * and board-specific addressing for SPI devices combines those numbers 3252 * with chip select numbers. Since SPI does not directly support dynamic 3253 * device identification, boards need configuration tables telling which 3254 * chip is at which address. 3255 * 3256 * This must be called from context that can sleep. It returns zero on 3257 * success, else a negative error code (dropping the controller's refcount). 3258 * After a successful return, the caller is responsible for calling 3259 * spi_unregister_controller(). 3260 * 3261 * Return: zero on success, else a negative error code. 3262 */ 3263 int spi_register_controller(struct spi_controller *ctlr) 3264 { 3265 struct device *dev = ctlr->dev.parent; 3266 struct boardinfo *bi; 3267 int first_dynamic; 3268 int status; 3269 int idx; 3270 3271 if (!dev) 3272 return -ENODEV; 3273 3274 /* 3275 * Make sure all necessary hooks are implemented before registering 3276 * the SPI controller. 3277 */ 3278 status = spi_controller_check_ops(ctlr); 3279 if (status) 3280 return status; 3281 3282 if (ctlr->bus_num < 0) 3283 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3284 if (ctlr->bus_num >= 0) { 3285 /* Devices with a fixed bus num must check-in with the num */ 3286 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3287 if (status) 3288 return status; 3289 } 3290 if (ctlr->bus_num < 0) { 3291 first_dynamic = of_alias_get_highest_id("spi"); 3292 if (first_dynamic < 0) 3293 first_dynamic = 0; 3294 else 3295 first_dynamic++; 3296 3297 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3298 if (status) 3299 return status; 3300 } 3301 ctlr->bus_lock_flag = 0; 3302 init_completion(&ctlr->xfer_completion); 3303 init_completion(&ctlr->cur_msg_completion); 3304 if (!ctlr->max_dma_len) 3305 ctlr->max_dma_len = INT_MAX; 3306 3307 /* 3308 * Register the device, then userspace will see it. 3309 * Registration fails if the bus ID is in use. 3310 */ 3311 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3312 3313 if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) { 3314 status = spi_get_gpio_descs(ctlr); 3315 if (status) 3316 goto free_bus_id; 3317 /* 3318 * A controller using GPIO descriptors always 3319 * supports SPI_CS_HIGH if need be. 3320 */ 3321 ctlr->mode_bits |= SPI_CS_HIGH; 3322 } 3323 3324 /* 3325 * Even if it's just one always-selected device, there must 3326 * be at least one chipselect. 3327 */ 3328 if (!ctlr->num_chipselect) { 3329 status = -EINVAL; 3330 goto free_bus_id; 3331 } 3332 3333 /* Setting last_cs to SPI_INVALID_CS means no chip selected */ 3334 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 3335 ctlr->last_cs[idx] = SPI_INVALID_CS; 3336 3337 status = device_add(&ctlr->dev); 3338 if (status < 0) 3339 goto free_bus_id; 3340 dev_dbg(dev, "registered %s %s\n", 3341 spi_controller_is_target(ctlr) ? "target" : "host", 3342 dev_name(&ctlr->dev)); 3343 3344 /* 3345 * If we're using a queued driver, start the queue. Note that we don't 3346 * need the queueing logic if the driver is only supporting high-level 3347 * memory operations. 3348 */ 3349 if (ctlr->transfer) { 3350 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3351 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3352 status = spi_controller_initialize_queue(ctlr); 3353 if (status) { 3354 device_del(&ctlr->dev); 3355 goto free_bus_id; 3356 } 3357 } 3358 /* Add statistics */ 3359 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3360 if (!ctlr->pcpu_statistics) { 3361 dev_err(dev, "Error allocating per-cpu statistics\n"); 3362 status = -ENOMEM; 3363 goto destroy_queue; 3364 } 3365 3366 mutex_lock(&board_lock); 3367 list_add_tail(&ctlr->list, &spi_controller_list); 3368 list_for_each_entry(bi, &board_list, list) 3369 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3370 mutex_unlock(&board_lock); 3371 3372 /* Register devices from the device tree and ACPI */ 3373 of_register_spi_devices(ctlr); 3374 acpi_register_spi_devices(ctlr); 3375 return status; 3376 3377 destroy_queue: 3378 spi_destroy_queue(ctlr); 3379 free_bus_id: 3380 mutex_lock(&board_lock); 3381 idr_remove(&spi_controller_idr, ctlr->bus_num); 3382 mutex_unlock(&board_lock); 3383 return status; 3384 } 3385 EXPORT_SYMBOL_GPL(spi_register_controller); 3386 3387 static void devm_spi_unregister(struct device *dev, void *res) 3388 { 3389 spi_unregister_controller(*(struct spi_controller **)res); 3390 } 3391 3392 /** 3393 * devm_spi_register_controller - register managed SPI host or target controller 3394 * @dev: device managing SPI controller 3395 * @ctlr: initialized controller, originally from spi_alloc_host() or 3396 * spi_alloc_target() 3397 * Context: can sleep 3398 * 3399 * Register a SPI device as with spi_register_controller() which will 3400 * automatically be unregistered and freed. 3401 * 3402 * Return: zero on success, else a negative error code. 3403 */ 3404 int devm_spi_register_controller(struct device *dev, 3405 struct spi_controller *ctlr) 3406 { 3407 struct spi_controller **ptr; 3408 int ret; 3409 3410 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3411 if (!ptr) 3412 return -ENOMEM; 3413 3414 ret = spi_register_controller(ctlr); 3415 if (!ret) { 3416 *ptr = ctlr; 3417 devres_add(dev, ptr); 3418 } else { 3419 devres_free(ptr); 3420 } 3421 3422 return ret; 3423 } 3424 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3425 3426 static int __unregister(struct device *dev, void *null) 3427 { 3428 spi_unregister_device(to_spi_device(dev)); 3429 return 0; 3430 } 3431 3432 /** 3433 * spi_unregister_controller - unregister SPI host or target controller 3434 * @ctlr: the controller being unregistered 3435 * Context: can sleep 3436 * 3437 * This call is used only by SPI controller drivers, which are the 3438 * only ones directly touching chip registers. 3439 * 3440 * This must be called from context that can sleep. 3441 * 3442 * Note that this function also drops a reference to the controller. 3443 */ 3444 void spi_unregister_controller(struct spi_controller *ctlr) 3445 { 3446 struct spi_controller *found; 3447 int id = ctlr->bus_num; 3448 3449 /* Prevent addition of new devices, unregister existing ones */ 3450 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3451 mutex_lock(&ctlr->add_lock); 3452 3453 device_for_each_child(&ctlr->dev, NULL, __unregister); 3454 3455 /* First make sure that this controller was ever added */ 3456 mutex_lock(&board_lock); 3457 found = idr_find(&spi_controller_idr, id); 3458 mutex_unlock(&board_lock); 3459 if (ctlr->queued) { 3460 if (spi_destroy_queue(ctlr)) 3461 dev_err(&ctlr->dev, "queue remove failed\n"); 3462 } 3463 mutex_lock(&board_lock); 3464 list_del(&ctlr->list); 3465 mutex_unlock(&board_lock); 3466 3467 device_del(&ctlr->dev); 3468 3469 /* Free bus id */ 3470 mutex_lock(&board_lock); 3471 if (found == ctlr) 3472 idr_remove(&spi_controller_idr, id); 3473 mutex_unlock(&board_lock); 3474 3475 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3476 mutex_unlock(&ctlr->add_lock); 3477 3478 /* 3479 * Release the last reference on the controller if its driver 3480 * has not yet been converted to devm_spi_alloc_host/target(). 3481 */ 3482 if (!ctlr->devm_allocated) 3483 put_device(&ctlr->dev); 3484 } 3485 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3486 3487 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3488 { 3489 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3490 } 3491 3492 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3493 { 3494 mutex_lock(&ctlr->bus_lock_mutex); 3495 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3496 mutex_unlock(&ctlr->bus_lock_mutex); 3497 } 3498 3499 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3500 { 3501 mutex_lock(&ctlr->bus_lock_mutex); 3502 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3503 mutex_unlock(&ctlr->bus_lock_mutex); 3504 } 3505 3506 int spi_controller_suspend(struct spi_controller *ctlr) 3507 { 3508 int ret = 0; 3509 3510 /* Basically no-ops for non-queued controllers */ 3511 if (ctlr->queued) { 3512 ret = spi_stop_queue(ctlr); 3513 if (ret) 3514 dev_err(&ctlr->dev, "queue stop failed\n"); 3515 } 3516 3517 __spi_mark_suspended(ctlr); 3518 return ret; 3519 } 3520 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3521 3522 int spi_controller_resume(struct spi_controller *ctlr) 3523 { 3524 int ret = 0; 3525 3526 __spi_mark_resumed(ctlr); 3527 3528 if (ctlr->queued) { 3529 ret = spi_start_queue(ctlr); 3530 if (ret) 3531 dev_err(&ctlr->dev, "queue restart failed\n"); 3532 } 3533 return ret; 3534 } 3535 EXPORT_SYMBOL_GPL(spi_controller_resume); 3536 3537 /*-------------------------------------------------------------------------*/ 3538 3539 /* Core methods for spi_message alterations */ 3540 3541 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3542 struct spi_message *msg, 3543 void *res) 3544 { 3545 struct spi_replaced_transfers *rxfer = res; 3546 size_t i; 3547 3548 /* Call extra callback if requested */ 3549 if (rxfer->release) 3550 rxfer->release(ctlr, msg, res); 3551 3552 /* Insert replaced transfers back into the message */ 3553 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3554 3555 /* Remove the formerly inserted entries */ 3556 for (i = 0; i < rxfer->inserted; i++) 3557 list_del(&rxfer->inserted_transfers[i].transfer_list); 3558 } 3559 3560 /** 3561 * spi_replace_transfers - replace transfers with several transfers 3562 * and register change with spi_message.resources 3563 * @msg: the spi_message we work upon 3564 * @xfer_first: the first spi_transfer we want to replace 3565 * @remove: number of transfers to remove 3566 * @insert: the number of transfers we want to insert instead 3567 * @release: extra release code necessary in some circumstances 3568 * @extradatasize: extra data to allocate (with alignment guarantees 3569 * of struct @spi_transfer) 3570 * @gfp: gfp flags 3571 * 3572 * Returns: pointer to @spi_replaced_transfers, 3573 * PTR_ERR(...) in case of errors. 3574 */ 3575 static struct spi_replaced_transfers *spi_replace_transfers( 3576 struct spi_message *msg, 3577 struct spi_transfer *xfer_first, 3578 size_t remove, 3579 size_t insert, 3580 spi_replaced_release_t release, 3581 size_t extradatasize, 3582 gfp_t gfp) 3583 { 3584 struct spi_replaced_transfers *rxfer; 3585 struct spi_transfer *xfer; 3586 size_t i; 3587 3588 /* Allocate the structure using spi_res */ 3589 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3590 struct_size(rxfer, inserted_transfers, insert) 3591 + extradatasize, 3592 gfp); 3593 if (!rxfer) 3594 return ERR_PTR(-ENOMEM); 3595 3596 /* The release code to invoke before running the generic release */ 3597 rxfer->release = release; 3598 3599 /* Assign extradata */ 3600 if (extradatasize) 3601 rxfer->extradata = 3602 &rxfer->inserted_transfers[insert]; 3603 3604 /* Init the replaced_transfers list */ 3605 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3606 3607 /* 3608 * Assign the list_entry after which we should reinsert 3609 * the @replaced_transfers - it may be spi_message.messages! 3610 */ 3611 rxfer->replaced_after = xfer_first->transfer_list.prev; 3612 3613 /* Remove the requested number of transfers */ 3614 for (i = 0; i < remove; i++) { 3615 /* 3616 * If the entry after replaced_after it is msg->transfers 3617 * then we have been requested to remove more transfers 3618 * than are in the list. 3619 */ 3620 if (rxfer->replaced_after->next == &msg->transfers) { 3621 dev_err(&msg->spi->dev, 3622 "requested to remove more spi_transfers than are available\n"); 3623 /* Insert replaced transfers back into the message */ 3624 list_splice(&rxfer->replaced_transfers, 3625 rxfer->replaced_after); 3626 3627 /* Free the spi_replace_transfer structure... */ 3628 spi_res_free(rxfer); 3629 3630 /* ...and return with an error */ 3631 return ERR_PTR(-EINVAL); 3632 } 3633 3634 /* 3635 * Remove the entry after replaced_after from list of 3636 * transfers and add it to list of replaced_transfers. 3637 */ 3638 list_move_tail(rxfer->replaced_after->next, 3639 &rxfer->replaced_transfers); 3640 } 3641 3642 /* 3643 * Create copy of the given xfer with identical settings 3644 * based on the first transfer to get removed. 3645 */ 3646 for (i = 0; i < insert; i++) { 3647 /* We need to run in reverse order */ 3648 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3649 3650 /* Copy all spi_transfer data */ 3651 memcpy(xfer, xfer_first, sizeof(*xfer)); 3652 3653 /* Add to list */ 3654 list_add(&xfer->transfer_list, rxfer->replaced_after); 3655 3656 /* Clear cs_change and delay for all but the last */ 3657 if (i) { 3658 xfer->cs_change = false; 3659 xfer->delay.value = 0; 3660 } 3661 } 3662 3663 /* Set up inserted... */ 3664 rxfer->inserted = insert; 3665 3666 /* ...and register it with spi_res/spi_message */ 3667 spi_res_add(msg, rxfer); 3668 3669 return rxfer; 3670 } 3671 3672 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3673 struct spi_message *msg, 3674 struct spi_transfer **xferp, 3675 size_t maxsize) 3676 { 3677 struct spi_transfer *xfer = *xferp, *xfers; 3678 struct spi_replaced_transfers *srt; 3679 size_t offset; 3680 size_t count, i; 3681 3682 /* Calculate how many we have to replace */ 3683 count = DIV_ROUND_UP(xfer->len, maxsize); 3684 3685 /* Create replacement */ 3686 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL); 3687 if (IS_ERR(srt)) 3688 return PTR_ERR(srt); 3689 xfers = srt->inserted_transfers; 3690 3691 /* 3692 * Now handle each of those newly inserted spi_transfers. 3693 * Note that the replacements spi_transfers all are preset 3694 * to the same values as *xferp, so tx_buf, rx_buf and len 3695 * are all identical (as well as most others) 3696 * so we just have to fix up len and the pointers. 3697 */ 3698 3699 /* 3700 * The first transfer just needs the length modified, so we 3701 * run it outside the loop. 3702 */ 3703 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3704 3705 /* All the others need rx_buf/tx_buf also set */ 3706 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3707 /* Update rx_buf, tx_buf and DMA */ 3708 if (xfers[i].rx_buf) 3709 xfers[i].rx_buf += offset; 3710 if (xfers[i].tx_buf) 3711 xfers[i].tx_buf += offset; 3712 3713 /* Update length */ 3714 xfers[i].len = min(maxsize, xfers[i].len - offset); 3715 } 3716 3717 /* 3718 * We set up xferp to the last entry we have inserted, 3719 * so that we skip those already split transfers. 3720 */ 3721 *xferp = &xfers[count - 1]; 3722 3723 /* Increment statistics counters */ 3724 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3725 transfers_split_maxsize); 3726 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3727 transfers_split_maxsize); 3728 3729 return 0; 3730 } 3731 3732 /** 3733 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3734 * when an individual transfer exceeds a 3735 * certain size 3736 * @ctlr: the @spi_controller for this transfer 3737 * @msg: the @spi_message to transform 3738 * @maxsize: the maximum when to apply this 3739 * 3740 * This function allocates resources that are automatically freed during the 3741 * spi message unoptimize phase so this function should only be called from 3742 * optimize_message callbacks. 3743 * 3744 * Return: status of transformation 3745 */ 3746 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3747 struct spi_message *msg, 3748 size_t maxsize) 3749 { 3750 struct spi_transfer *xfer; 3751 int ret; 3752 3753 /* 3754 * Iterate over the transfer_list, 3755 * but note that xfer is advanced to the last transfer inserted 3756 * to avoid checking sizes again unnecessarily (also xfer does 3757 * potentially belong to a different list by the time the 3758 * replacement has happened). 3759 */ 3760 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3761 if (xfer->len > maxsize) { 3762 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3763 maxsize); 3764 if (ret) 3765 return ret; 3766 } 3767 } 3768 3769 return 0; 3770 } 3771 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3772 3773 3774 /** 3775 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3776 * when an individual transfer exceeds a 3777 * certain number of SPI words 3778 * @ctlr: the @spi_controller for this transfer 3779 * @msg: the @spi_message to transform 3780 * @maxwords: the number of words to limit each transfer to 3781 * 3782 * This function allocates resources that are automatically freed during the 3783 * spi message unoptimize phase so this function should only be called from 3784 * optimize_message callbacks. 3785 * 3786 * Return: status of transformation 3787 */ 3788 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3789 struct spi_message *msg, 3790 size_t maxwords) 3791 { 3792 struct spi_transfer *xfer; 3793 3794 /* 3795 * Iterate over the transfer_list, 3796 * but note that xfer is advanced to the last transfer inserted 3797 * to avoid checking sizes again unnecessarily (also xfer does 3798 * potentially belong to a different list by the time the 3799 * replacement has happened). 3800 */ 3801 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3802 size_t maxsize; 3803 int ret; 3804 3805 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); 3806 if (xfer->len > maxsize) { 3807 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3808 maxsize); 3809 if (ret) 3810 return ret; 3811 } 3812 } 3813 3814 return 0; 3815 } 3816 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3817 3818 /*-------------------------------------------------------------------------*/ 3819 3820 /* 3821 * Core methods for SPI controller protocol drivers. Some of the 3822 * other core methods are currently defined as inline functions. 3823 */ 3824 3825 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3826 u8 bits_per_word) 3827 { 3828 if (ctlr->bits_per_word_mask) { 3829 /* Only 32 bits fit in the mask */ 3830 if (bits_per_word > 32) 3831 return -EINVAL; 3832 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3833 return -EINVAL; 3834 } 3835 3836 return 0; 3837 } 3838 3839 /** 3840 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3841 * @spi: the device that requires specific CS timing configuration 3842 * 3843 * Return: zero on success, else a negative error code. 3844 */ 3845 static int spi_set_cs_timing(struct spi_device *spi) 3846 { 3847 struct device *parent = spi->controller->dev.parent; 3848 int status = 0; 3849 3850 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3851 if (spi->controller->auto_runtime_pm) { 3852 status = pm_runtime_get_sync(parent); 3853 if (status < 0) { 3854 pm_runtime_put_noidle(parent); 3855 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3856 status); 3857 return status; 3858 } 3859 3860 status = spi->controller->set_cs_timing(spi); 3861 pm_runtime_mark_last_busy(parent); 3862 pm_runtime_put_autosuspend(parent); 3863 } else { 3864 status = spi->controller->set_cs_timing(spi); 3865 } 3866 } 3867 return status; 3868 } 3869 3870 /** 3871 * spi_setup - setup SPI mode and clock rate 3872 * @spi: the device whose settings are being modified 3873 * Context: can sleep, and no requests are queued to the device 3874 * 3875 * SPI protocol drivers may need to update the transfer mode if the 3876 * device doesn't work with its default. They may likewise need 3877 * to update clock rates or word sizes from initial values. This function 3878 * changes those settings, and must be called from a context that can sleep. 3879 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3880 * effect the next time the device is selected and data is transferred to 3881 * or from it. When this function returns, the SPI device is deselected. 3882 * 3883 * Note that this call will fail if the protocol driver specifies an option 3884 * that the underlying controller or its driver does not support. For 3885 * example, not all hardware supports wire transfers using nine bit words, 3886 * LSB-first wire encoding, or active-high chipselects. 3887 * 3888 * Return: zero on success, else a negative error code. 3889 */ 3890 int spi_setup(struct spi_device *spi) 3891 { 3892 unsigned bad_bits, ugly_bits; 3893 int status; 3894 3895 /* 3896 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3897 * are set at the same time. 3898 */ 3899 if ((hweight_long(spi->mode & 3900 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3901 (hweight_long(spi->mode & 3902 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3903 dev_err(&spi->dev, 3904 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3905 return -EINVAL; 3906 } 3907 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3908 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3909 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3910 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3911 return -EINVAL; 3912 /* Check against conflicting MOSI idle configuration */ 3913 if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) { 3914 dev_err(&spi->dev, 3915 "setup: MOSI configured to idle low and high at the same time.\n"); 3916 return -EINVAL; 3917 } 3918 /* 3919 * Help drivers fail *cleanly* when they need options 3920 * that aren't supported with their current controller. 3921 * SPI_CS_WORD has a fallback software implementation, 3922 * so it is ignored here. 3923 */ 3924 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3925 SPI_NO_TX | SPI_NO_RX); 3926 ugly_bits = bad_bits & 3927 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3928 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3929 if (ugly_bits) { 3930 dev_warn(&spi->dev, 3931 "setup: ignoring unsupported mode bits %x\n", 3932 ugly_bits); 3933 spi->mode &= ~ugly_bits; 3934 bad_bits &= ~ugly_bits; 3935 } 3936 if (bad_bits) { 3937 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3938 bad_bits); 3939 return -EINVAL; 3940 } 3941 3942 if (!spi->bits_per_word) { 3943 spi->bits_per_word = 8; 3944 } else { 3945 /* 3946 * Some controllers may not support the default 8 bits-per-word 3947 * so only perform the check when this is explicitly provided. 3948 */ 3949 status = __spi_validate_bits_per_word(spi->controller, 3950 spi->bits_per_word); 3951 if (status) 3952 return status; 3953 } 3954 3955 if (spi->controller->max_speed_hz && 3956 (!spi->max_speed_hz || 3957 spi->max_speed_hz > spi->controller->max_speed_hz)) 3958 spi->max_speed_hz = spi->controller->max_speed_hz; 3959 3960 mutex_lock(&spi->controller->io_mutex); 3961 3962 if (spi->controller->setup) { 3963 status = spi->controller->setup(spi); 3964 if (status) { 3965 mutex_unlock(&spi->controller->io_mutex); 3966 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3967 status); 3968 return status; 3969 } 3970 } 3971 3972 status = spi_set_cs_timing(spi); 3973 if (status) { 3974 mutex_unlock(&spi->controller->io_mutex); 3975 return status; 3976 } 3977 3978 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3979 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3980 if (status < 0) { 3981 mutex_unlock(&spi->controller->io_mutex); 3982 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3983 status); 3984 return status; 3985 } 3986 3987 /* 3988 * We do not want to return positive value from pm_runtime_get, 3989 * there are many instances of devices calling spi_setup() and 3990 * checking for a non-zero return value instead of a negative 3991 * return value. 3992 */ 3993 status = 0; 3994 3995 spi_set_cs(spi, false, true); 3996 pm_runtime_mark_last_busy(spi->controller->dev.parent); 3997 pm_runtime_put_autosuspend(spi->controller->dev.parent); 3998 } else { 3999 spi_set_cs(spi, false, true); 4000 } 4001 4002 mutex_unlock(&spi->controller->io_mutex); 4003 4004 if (spi->rt && !spi->controller->rt) { 4005 spi->controller->rt = true; 4006 spi_set_thread_rt(spi->controller); 4007 } 4008 4009 trace_spi_setup(spi, status); 4010 4011 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 4012 spi->mode & SPI_MODE_X_MASK, 4013 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 4014 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 4015 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 4016 (spi->mode & SPI_LOOP) ? "loopback, " : "", 4017 spi->bits_per_word, spi->max_speed_hz, 4018 status); 4019 4020 return status; 4021 } 4022 EXPORT_SYMBOL_GPL(spi_setup); 4023 4024 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 4025 struct spi_device *spi) 4026 { 4027 int delay1, delay2; 4028 4029 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 4030 if (delay1 < 0) 4031 return delay1; 4032 4033 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 4034 if (delay2 < 0) 4035 return delay2; 4036 4037 if (delay1 < delay2) 4038 memcpy(&xfer->word_delay, &spi->word_delay, 4039 sizeof(xfer->word_delay)); 4040 4041 return 0; 4042 } 4043 4044 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 4045 { 4046 struct spi_controller *ctlr = spi->controller; 4047 struct spi_transfer *xfer; 4048 int w_size; 4049 4050 if (list_empty(&message->transfers)) 4051 return -EINVAL; 4052 4053 message->spi = spi; 4054 4055 /* 4056 * Half-duplex links include original MicroWire, and ones with 4057 * only one data pin like SPI_3WIRE (switches direction) or where 4058 * either MOSI or MISO is missing. They can also be caused by 4059 * software limitations. 4060 */ 4061 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 4062 (spi->mode & SPI_3WIRE)) { 4063 unsigned flags = ctlr->flags; 4064 4065 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4066 if (xfer->rx_buf && xfer->tx_buf) 4067 return -EINVAL; 4068 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 4069 return -EINVAL; 4070 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 4071 return -EINVAL; 4072 } 4073 } 4074 4075 /* 4076 * Set transfer bits_per_word and max speed as spi device default if 4077 * it is not set for this transfer. 4078 * Set transfer tx_nbits and rx_nbits as single transfer default 4079 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 4080 * Ensure transfer word_delay is at least as long as that required by 4081 * device itself. 4082 */ 4083 message->frame_length = 0; 4084 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4085 xfer->effective_speed_hz = 0; 4086 message->frame_length += xfer->len; 4087 if (!xfer->bits_per_word) 4088 xfer->bits_per_word = spi->bits_per_word; 4089 4090 if (!xfer->speed_hz) 4091 xfer->speed_hz = spi->max_speed_hz; 4092 4093 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 4094 xfer->speed_hz = ctlr->max_speed_hz; 4095 4096 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 4097 return -EINVAL; 4098 4099 /* 4100 * SPI transfer length should be multiple of SPI word size 4101 * where SPI word size should be power-of-two multiple. 4102 */ 4103 if (xfer->bits_per_word <= 8) 4104 w_size = 1; 4105 else if (xfer->bits_per_word <= 16) 4106 w_size = 2; 4107 else 4108 w_size = 4; 4109 4110 /* No partial transfers accepted */ 4111 if (xfer->len % w_size) 4112 return -EINVAL; 4113 4114 if (xfer->speed_hz && ctlr->min_speed_hz && 4115 xfer->speed_hz < ctlr->min_speed_hz) 4116 return -EINVAL; 4117 4118 if (xfer->tx_buf && !xfer->tx_nbits) 4119 xfer->tx_nbits = SPI_NBITS_SINGLE; 4120 if (xfer->rx_buf && !xfer->rx_nbits) 4121 xfer->rx_nbits = SPI_NBITS_SINGLE; 4122 /* 4123 * Check transfer tx/rx_nbits: 4124 * 1. check the value matches one of single, dual and quad 4125 * 2. check tx/rx_nbits match the mode in spi_device 4126 */ 4127 if (xfer->tx_buf) { 4128 if (spi->mode & SPI_NO_TX) 4129 return -EINVAL; 4130 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4131 xfer->tx_nbits != SPI_NBITS_DUAL && 4132 xfer->tx_nbits != SPI_NBITS_QUAD && 4133 xfer->tx_nbits != SPI_NBITS_OCTAL) 4134 return -EINVAL; 4135 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4136 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 4137 return -EINVAL; 4138 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4139 !(spi->mode & SPI_TX_QUAD)) 4140 return -EINVAL; 4141 } 4142 /* Check transfer rx_nbits */ 4143 if (xfer->rx_buf) { 4144 if (spi->mode & SPI_NO_RX) 4145 return -EINVAL; 4146 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4147 xfer->rx_nbits != SPI_NBITS_DUAL && 4148 xfer->rx_nbits != SPI_NBITS_QUAD && 4149 xfer->rx_nbits != SPI_NBITS_OCTAL) 4150 return -EINVAL; 4151 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4152 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 4153 return -EINVAL; 4154 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4155 !(spi->mode & SPI_RX_QUAD)) 4156 return -EINVAL; 4157 } 4158 4159 if (_spi_xfer_word_delay_update(xfer, spi)) 4160 return -EINVAL; 4161 4162 /* Make sure controller supports required offload features. */ 4163 if (xfer->offload_flags) { 4164 if (!message->offload) 4165 return -EINVAL; 4166 4167 if (xfer->offload_flags & ~message->offload->xfer_flags) 4168 return -EINVAL; 4169 } 4170 } 4171 4172 message->status = -EINPROGRESS; 4173 4174 return 0; 4175 } 4176 4177 /* 4178 * spi_split_transfers - generic handling of transfer splitting 4179 * @msg: the message to split 4180 * 4181 * Under certain conditions, a SPI controller may not support arbitrary 4182 * transfer sizes or other features required by a peripheral. This function 4183 * will split the transfers in the message into smaller transfers that are 4184 * supported by the controller. 4185 * 4186 * Controllers with special requirements not covered here can also split 4187 * transfers in the optimize_message() callback. 4188 * 4189 * Context: can sleep 4190 * Return: zero on success, else a negative error code 4191 */ 4192 static int spi_split_transfers(struct spi_message *msg) 4193 { 4194 struct spi_controller *ctlr = msg->spi->controller; 4195 struct spi_transfer *xfer; 4196 int ret; 4197 4198 /* 4199 * If an SPI controller does not support toggling the CS line on each 4200 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 4201 * for the CS line, we can emulate the CS-per-word hardware function by 4202 * splitting transfers into one-word transfers and ensuring that 4203 * cs_change is set for each transfer. 4204 */ 4205 if ((msg->spi->mode & SPI_CS_WORD) && 4206 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) { 4207 ret = spi_split_transfers_maxwords(ctlr, msg, 1); 4208 if (ret) 4209 return ret; 4210 4211 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 4212 /* Don't change cs_change on the last entry in the list */ 4213 if (list_is_last(&xfer->transfer_list, &msg->transfers)) 4214 break; 4215 4216 xfer->cs_change = 1; 4217 } 4218 } else { 4219 ret = spi_split_transfers_maxsize(ctlr, msg, 4220 spi_max_transfer_size(msg->spi)); 4221 if (ret) 4222 return ret; 4223 } 4224 4225 return 0; 4226 } 4227 4228 /* 4229 * __spi_optimize_message - shared implementation for spi_optimize_message() 4230 * and spi_maybe_optimize_message() 4231 * @spi: the device that will be used for the message 4232 * @msg: the message to optimize 4233 * 4234 * Peripheral drivers will call spi_optimize_message() and the spi core will 4235 * call spi_maybe_optimize_message() instead of calling this directly. 4236 * 4237 * It is not valid to call this on a message that has already been optimized. 4238 * 4239 * Return: zero on success, else a negative error code 4240 */ 4241 static int __spi_optimize_message(struct spi_device *spi, 4242 struct spi_message *msg) 4243 { 4244 struct spi_controller *ctlr = spi->controller; 4245 int ret; 4246 4247 ret = __spi_validate(spi, msg); 4248 if (ret) 4249 return ret; 4250 4251 ret = spi_split_transfers(msg); 4252 if (ret) 4253 return ret; 4254 4255 if (ctlr->optimize_message) { 4256 ret = ctlr->optimize_message(msg); 4257 if (ret) { 4258 spi_res_release(ctlr, msg); 4259 return ret; 4260 } 4261 } 4262 4263 msg->optimized = true; 4264 4265 return 0; 4266 } 4267 4268 /* 4269 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized 4270 * @spi: the device that will be used for the message 4271 * @msg: the message to optimize 4272 * Return: zero on success, else a negative error code 4273 */ 4274 static int spi_maybe_optimize_message(struct spi_device *spi, 4275 struct spi_message *msg) 4276 { 4277 if (spi->controller->defer_optimize_message) { 4278 msg->spi = spi; 4279 return 0; 4280 } 4281 4282 if (msg->pre_optimized) 4283 return 0; 4284 4285 return __spi_optimize_message(spi, msg); 4286 } 4287 4288 /** 4289 * spi_optimize_message - do any one-time validation and setup for a SPI message 4290 * @spi: the device that will be used for the message 4291 * @msg: the message to optimize 4292 * 4293 * Peripheral drivers that reuse the same message repeatedly may call this to 4294 * perform as much message prep as possible once, rather than repeating it each 4295 * time a message transfer is performed to improve throughput and reduce CPU 4296 * usage. 4297 * 4298 * Once a message has been optimized, it cannot be modified with the exception 4299 * of updating the contents of any xfer->tx_buf (the pointer can't be changed, 4300 * only the data in the memory it points to). 4301 * 4302 * Calls to this function must be balanced with calls to spi_unoptimize_message() 4303 * to avoid leaking resources. 4304 * 4305 * Context: can sleep 4306 * Return: zero on success, else a negative error code 4307 */ 4308 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg) 4309 { 4310 int ret; 4311 4312 /* 4313 * Pre-optimization is not supported and optimization is deferred e.g. 4314 * when using spi-mux. 4315 */ 4316 if (spi->controller->defer_optimize_message) 4317 return 0; 4318 4319 ret = __spi_optimize_message(spi, msg); 4320 if (ret) 4321 return ret; 4322 4323 /* 4324 * This flag indicates that the peripheral driver called spi_optimize_message() 4325 * and therefore we shouldn't unoptimize message automatically when finalizing 4326 * the message but rather wait until spi_unoptimize_message() is called 4327 * by the peripheral driver. 4328 */ 4329 msg->pre_optimized = true; 4330 4331 return 0; 4332 } 4333 EXPORT_SYMBOL_GPL(spi_optimize_message); 4334 4335 /** 4336 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message() 4337 * @msg: the message to unoptimize 4338 * 4339 * Calls to this function must be balanced with calls to spi_optimize_message(). 4340 * 4341 * Context: can sleep 4342 */ 4343 void spi_unoptimize_message(struct spi_message *msg) 4344 { 4345 if (msg->spi->controller->defer_optimize_message) 4346 return; 4347 4348 __spi_unoptimize_message(msg); 4349 msg->pre_optimized = false; 4350 } 4351 EXPORT_SYMBOL_GPL(spi_unoptimize_message); 4352 4353 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4354 { 4355 struct spi_controller *ctlr = spi->controller; 4356 struct spi_transfer *xfer; 4357 4358 /* 4359 * Some controllers do not support doing regular SPI transfers. Return 4360 * ENOTSUPP when this is the case. 4361 */ 4362 if (!ctlr->transfer) 4363 return -ENOTSUPP; 4364 4365 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4366 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4367 4368 trace_spi_message_submit(message); 4369 4370 if (!ctlr->ptp_sts_supported) { 4371 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4372 xfer->ptp_sts_word_pre = 0; 4373 ptp_read_system_prets(xfer->ptp_sts); 4374 } 4375 } 4376 4377 return ctlr->transfer(spi, message); 4378 } 4379 4380 static void devm_spi_unoptimize_message(void *msg) 4381 { 4382 spi_unoptimize_message(msg); 4383 } 4384 4385 /** 4386 * devm_spi_optimize_message - managed version of spi_optimize_message() 4387 * @dev: the device that manages @msg (usually @spi->dev) 4388 * @spi: the device that will be used for the message 4389 * @msg: the message to optimize 4390 * Return: zero on success, else a negative error code 4391 * 4392 * spi_unoptimize_message() will automatically be called when the device is 4393 * removed. 4394 */ 4395 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi, 4396 struct spi_message *msg) 4397 { 4398 int ret; 4399 4400 ret = spi_optimize_message(spi, msg); 4401 if (ret) 4402 return ret; 4403 4404 return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg); 4405 } 4406 EXPORT_SYMBOL_GPL(devm_spi_optimize_message); 4407 4408 /** 4409 * spi_async - asynchronous SPI transfer 4410 * @spi: device with which data will be exchanged 4411 * @message: describes the data transfers, including completion callback 4412 * Context: any (IRQs may be blocked, etc) 4413 * 4414 * This call may be used in_irq and other contexts which can't sleep, 4415 * as well as from task contexts which can sleep. 4416 * 4417 * The completion callback is invoked in a context which can't sleep. 4418 * Before that invocation, the value of message->status is undefined. 4419 * When the callback is issued, message->status holds either zero (to 4420 * indicate complete success) or a negative error code. After that 4421 * callback returns, the driver which issued the transfer request may 4422 * deallocate the associated memory; it's no longer in use by any SPI 4423 * core or controller driver code. 4424 * 4425 * Note that although all messages to a spi_device are handled in 4426 * FIFO order, messages may go to different devices in other orders. 4427 * Some device might be higher priority, or have various "hard" access 4428 * time requirements, for example. 4429 * 4430 * On detection of any fault during the transfer, processing of 4431 * the entire message is aborted, and the device is deselected. 4432 * Until returning from the associated message completion callback, 4433 * no other spi_message queued to that device will be processed. 4434 * (This rule applies equally to all the synchronous transfer calls, 4435 * which are wrappers around this core asynchronous primitive.) 4436 * 4437 * Return: zero on success, else a negative error code. 4438 */ 4439 int spi_async(struct spi_device *spi, struct spi_message *message) 4440 { 4441 struct spi_controller *ctlr = spi->controller; 4442 int ret; 4443 unsigned long flags; 4444 4445 ret = spi_maybe_optimize_message(spi, message); 4446 if (ret) 4447 return ret; 4448 4449 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4450 4451 if (ctlr->bus_lock_flag) 4452 ret = -EBUSY; 4453 else 4454 ret = __spi_async(spi, message); 4455 4456 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4457 4458 return ret; 4459 } 4460 EXPORT_SYMBOL_GPL(spi_async); 4461 4462 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4463 { 4464 bool was_busy; 4465 int ret; 4466 4467 mutex_lock(&ctlr->io_mutex); 4468 4469 was_busy = ctlr->busy; 4470 4471 ctlr->cur_msg = msg; 4472 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4473 if (ret) 4474 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4475 ctlr->cur_msg = NULL; 4476 ctlr->fallback = false; 4477 4478 if (!was_busy) { 4479 kfree(ctlr->dummy_rx); 4480 ctlr->dummy_rx = NULL; 4481 kfree(ctlr->dummy_tx); 4482 ctlr->dummy_tx = NULL; 4483 if (ctlr->unprepare_transfer_hardware && 4484 ctlr->unprepare_transfer_hardware(ctlr)) 4485 dev_err(&ctlr->dev, 4486 "failed to unprepare transfer hardware\n"); 4487 spi_idle_runtime_pm(ctlr); 4488 } 4489 4490 mutex_unlock(&ctlr->io_mutex); 4491 } 4492 4493 /*-------------------------------------------------------------------------*/ 4494 4495 /* 4496 * Utility methods for SPI protocol drivers, layered on 4497 * top of the core. Some other utility methods are defined as 4498 * inline functions. 4499 */ 4500 4501 static void spi_complete(void *arg) 4502 { 4503 complete(arg); 4504 } 4505 4506 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4507 { 4508 DECLARE_COMPLETION_ONSTACK(done); 4509 unsigned long flags; 4510 int status; 4511 struct spi_controller *ctlr = spi->controller; 4512 4513 if (__spi_check_suspended(ctlr)) { 4514 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4515 return -ESHUTDOWN; 4516 } 4517 4518 status = spi_maybe_optimize_message(spi, message); 4519 if (status) 4520 return status; 4521 4522 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4523 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4524 4525 /* 4526 * Checking queue_empty here only guarantees async/sync message 4527 * ordering when coming from the same context. It does not need to 4528 * guard against reentrancy from a different context. The io_mutex 4529 * will catch those cases. 4530 */ 4531 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4532 message->actual_length = 0; 4533 message->status = -EINPROGRESS; 4534 4535 trace_spi_message_submit(message); 4536 4537 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4538 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4539 4540 __spi_transfer_message_noqueue(ctlr, message); 4541 4542 return message->status; 4543 } 4544 4545 /* 4546 * There are messages in the async queue that could have originated 4547 * from the same context, so we need to preserve ordering. 4548 * Therefor we send the message to the async queue and wait until they 4549 * are completed. 4550 */ 4551 message->complete = spi_complete; 4552 message->context = &done; 4553 4554 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4555 status = __spi_async(spi, message); 4556 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4557 4558 if (status == 0) { 4559 wait_for_completion(&done); 4560 status = message->status; 4561 } 4562 message->complete = NULL; 4563 message->context = NULL; 4564 4565 return status; 4566 } 4567 4568 /** 4569 * spi_sync - blocking/synchronous SPI data transfers 4570 * @spi: device with which data will be exchanged 4571 * @message: describes the data transfers 4572 * Context: can sleep 4573 * 4574 * This call may only be used from a context that may sleep. The sleep 4575 * is non-interruptible, and has no timeout. Low-overhead controller 4576 * drivers may DMA directly into and out of the message buffers. 4577 * 4578 * Note that the SPI device's chip select is active during the message, 4579 * and then is normally disabled between messages. Drivers for some 4580 * frequently-used devices may want to minimize costs of selecting a chip, 4581 * by leaving it selected in anticipation that the next message will go 4582 * to the same chip. (That may increase power usage.) 4583 * 4584 * Also, the caller is guaranteeing that the memory associated with the 4585 * message will not be freed before this call returns. 4586 * 4587 * Return: zero on success, else a negative error code. 4588 */ 4589 int spi_sync(struct spi_device *spi, struct spi_message *message) 4590 { 4591 int ret; 4592 4593 mutex_lock(&spi->controller->bus_lock_mutex); 4594 ret = __spi_sync(spi, message); 4595 mutex_unlock(&spi->controller->bus_lock_mutex); 4596 4597 return ret; 4598 } 4599 EXPORT_SYMBOL_GPL(spi_sync); 4600 4601 /** 4602 * spi_sync_locked - version of spi_sync with exclusive bus usage 4603 * @spi: device with which data will be exchanged 4604 * @message: describes the data transfers 4605 * Context: can sleep 4606 * 4607 * This call may only be used from a context that may sleep. The sleep 4608 * is non-interruptible, and has no timeout. Low-overhead controller 4609 * drivers may DMA directly into and out of the message buffers. 4610 * 4611 * This call should be used by drivers that require exclusive access to the 4612 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4613 * be released by a spi_bus_unlock call when the exclusive access is over. 4614 * 4615 * Return: zero on success, else a negative error code. 4616 */ 4617 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4618 { 4619 return __spi_sync(spi, message); 4620 } 4621 EXPORT_SYMBOL_GPL(spi_sync_locked); 4622 4623 /** 4624 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4625 * @ctlr: SPI bus controller that should be locked for exclusive bus access 4626 * Context: can sleep 4627 * 4628 * This call may only be used from a context that may sleep. The sleep 4629 * is non-interruptible, and has no timeout. 4630 * 4631 * This call should be used by drivers that require exclusive access to the 4632 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4633 * exclusive access is over. Data transfer must be done by spi_sync_locked 4634 * and spi_async_locked calls when the SPI bus lock is held. 4635 * 4636 * Return: always zero. 4637 */ 4638 int spi_bus_lock(struct spi_controller *ctlr) 4639 { 4640 unsigned long flags; 4641 4642 mutex_lock(&ctlr->bus_lock_mutex); 4643 4644 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4645 ctlr->bus_lock_flag = 1; 4646 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4647 4648 /* Mutex remains locked until spi_bus_unlock() is called */ 4649 4650 return 0; 4651 } 4652 EXPORT_SYMBOL_GPL(spi_bus_lock); 4653 4654 /** 4655 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4656 * @ctlr: SPI bus controller that was locked for exclusive bus access 4657 * Context: can sleep 4658 * 4659 * This call may only be used from a context that may sleep. The sleep 4660 * is non-interruptible, and has no timeout. 4661 * 4662 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4663 * call. 4664 * 4665 * Return: always zero. 4666 */ 4667 int spi_bus_unlock(struct spi_controller *ctlr) 4668 { 4669 ctlr->bus_lock_flag = 0; 4670 4671 mutex_unlock(&ctlr->bus_lock_mutex); 4672 4673 return 0; 4674 } 4675 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4676 4677 /* Portable code must never pass more than 32 bytes */ 4678 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4679 4680 static u8 *buf; 4681 4682 /** 4683 * spi_write_then_read - SPI synchronous write followed by read 4684 * @spi: device with which data will be exchanged 4685 * @txbuf: data to be written (need not be DMA-safe) 4686 * @n_tx: size of txbuf, in bytes 4687 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4688 * @n_rx: size of rxbuf, in bytes 4689 * Context: can sleep 4690 * 4691 * This performs a half duplex MicroWire style transaction with the 4692 * device, sending txbuf and then reading rxbuf. The return value 4693 * is zero for success, else a negative errno status code. 4694 * This call may only be used from a context that may sleep. 4695 * 4696 * Parameters to this routine are always copied using a small buffer. 4697 * Performance-sensitive or bulk transfer code should instead use 4698 * spi_{async,sync}() calls with DMA-safe buffers. 4699 * 4700 * Return: zero on success, else a negative error code. 4701 */ 4702 int spi_write_then_read(struct spi_device *spi, 4703 const void *txbuf, unsigned n_tx, 4704 void *rxbuf, unsigned n_rx) 4705 { 4706 static DEFINE_MUTEX(lock); 4707 4708 int status; 4709 struct spi_message message; 4710 struct spi_transfer x[2]; 4711 u8 *local_buf; 4712 4713 /* 4714 * Use preallocated DMA-safe buffer if we can. We can't avoid 4715 * copying here, (as a pure convenience thing), but we can 4716 * keep heap costs out of the hot path unless someone else is 4717 * using the pre-allocated buffer or the transfer is too large. 4718 */ 4719 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4720 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4721 GFP_KERNEL | GFP_DMA); 4722 if (!local_buf) 4723 return -ENOMEM; 4724 } else { 4725 local_buf = buf; 4726 } 4727 4728 spi_message_init(&message); 4729 memset(x, 0, sizeof(x)); 4730 if (n_tx) { 4731 x[0].len = n_tx; 4732 spi_message_add_tail(&x[0], &message); 4733 } 4734 if (n_rx) { 4735 x[1].len = n_rx; 4736 spi_message_add_tail(&x[1], &message); 4737 } 4738 4739 memcpy(local_buf, txbuf, n_tx); 4740 x[0].tx_buf = local_buf; 4741 x[1].rx_buf = local_buf + n_tx; 4742 4743 /* Do the I/O */ 4744 status = spi_sync(spi, &message); 4745 if (status == 0) 4746 memcpy(rxbuf, x[1].rx_buf, n_rx); 4747 4748 if (x[0].tx_buf == buf) 4749 mutex_unlock(&lock); 4750 else 4751 kfree(local_buf); 4752 4753 return status; 4754 } 4755 EXPORT_SYMBOL_GPL(spi_write_then_read); 4756 4757 /*-------------------------------------------------------------------------*/ 4758 4759 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4760 /* Must call put_device() when done with returned spi_device device */ 4761 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4762 { 4763 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4764 4765 return dev ? to_spi_device(dev) : NULL; 4766 } 4767 4768 /* The spi controllers are not using spi_bus, so we find it with another way */ 4769 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4770 { 4771 struct device *dev; 4772 4773 dev = class_find_device_by_of_node(&spi_controller_class, node); 4774 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4775 dev = class_find_device_by_of_node(&spi_target_class, node); 4776 if (!dev) 4777 return NULL; 4778 4779 /* Reference got in class_find_device */ 4780 return container_of(dev, struct spi_controller, dev); 4781 } 4782 4783 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4784 void *arg) 4785 { 4786 struct of_reconfig_data *rd = arg; 4787 struct spi_controller *ctlr; 4788 struct spi_device *spi; 4789 4790 switch (of_reconfig_get_state_change(action, arg)) { 4791 case OF_RECONFIG_CHANGE_ADD: 4792 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4793 if (ctlr == NULL) 4794 return NOTIFY_OK; /* Not for us */ 4795 4796 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4797 put_device(&ctlr->dev); 4798 return NOTIFY_OK; 4799 } 4800 4801 /* 4802 * Clear the flag before adding the device so that fw_devlink 4803 * doesn't skip adding consumers to this device. 4804 */ 4805 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4806 spi = of_register_spi_device(ctlr, rd->dn); 4807 put_device(&ctlr->dev); 4808 4809 if (IS_ERR(spi)) { 4810 pr_err("%s: failed to create for '%pOF'\n", 4811 __func__, rd->dn); 4812 of_node_clear_flag(rd->dn, OF_POPULATED); 4813 return notifier_from_errno(PTR_ERR(spi)); 4814 } 4815 break; 4816 4817 case OF_RECONFIG_CHANGE_REMOVE: 4818 /* Already depopulated? */ 4819 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4820 return NOTIFY_OK; 4821 4822 /* Find our device by node */ 4823 spi = of_find_spi_device_by_node(rd->dn); 4824 if (spi == NULL) 4825 return NOTIFY_OK; /* No? not meant for us */ 4826 4827 /* Unregister takes one ref away */ 4828 spi_unregister_device(spi); 4829 4830 /* And put the reference of the find */ 4831 put_device(&spi->dev); 4832 break; 4833 } 4834 4835 return NOTIFY_OK; 4836 } 4837 4838 static struct notifier_block spi_of_notifier = { 4839 .notifier_call = of_spi_notify, 4840 }; 4841 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4842 extern struct notifier_block spi_of_notifier; 4843 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4844 4845 #if IS_ENABLED(CONFIG_ACPI) 4846 static int spi_acpi_controller_match(struct device *dev, const void *data) 4847 { 4848 return device_match_acpi_dev(dev->parent, data); 4849 } 4850 4851 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4852 { 4853 struct device *dev; 4854 4855 dev = class_find_device(&spi_controller_class, NULL, adev, 4856 spi_acpi_controller_match); 4857 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4858 dev = class_find_device(&spi_target_class, NULL, adev, 4859 spi_acpi_controller_match); 4860 if (!dev) 4861 return NULL; 4862 4863 return container_of(dev, struct spi_controller, dev); 4864 } 4865 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); 4866 4867 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4868 { 4869 struct device *dev; 4870 4871 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4872 return to_spi_device(dev); 4873 } 4874 4875 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4876 void *arg) 4877 { 4878 struct acpi_device *adev = arg; 4879 struct spi_controller *ctlr; 4880 struct spi_device *spi; 4881 4882 switch (value) { 4883 case ACPI_RECONFIG_DEVICE_ADD: 4884 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4885 if (!ctlr) 4886 break; 4887 4888 acpi_register_spi_device(ctlr, adev); 4889 put_device(&ctlr->dev); 4890 break; 4891 case ACPI_RECONFIG_DEVICE_REMOVE: 4892 if (!acpi_device_enumerated(adev)) 4893 break; 4894 4895 spi = acpi_spi_find_device_by_adev(adev); 4896 if (!spi) 4897 break; 4898 4899 spi_unregister_device(spi); 4900 put_device(&spi->dev); 4901 break; 4902 } 4903 4904 return NOTIFY_OK; 4905 } 4906 4907 static struct notifier_block spi_acpi_notifier = { 4908 .notifier_call = acpi_spi_notify, 4909 }; 4910 #else 4911 extern struct notifier_block spi_acpi_notifier; 4912 #endif 4913 4914 static int __init spi_init(void) 4915 { 4916 int status; 4917 4918 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4919 if (!buf) { 4920 status = -ENOMEM; 4921 goto err0; 4922 } 4923 4924 status = bus_register(&spi_bus_type); 4925 if (status < 0) 4926 goto err1; 4927 4928 status = class_register(&spi_controller_class); 4929 if (status < 0) 4930 goto err2; 4931 4932 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4933 status = class_register(&spi_target_class); 4934 if (status < 0) 4935 goto err3; 4936 } 4937 4938 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4939 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4940 if (IS_ENABLED(CONFIG_ACPI)) 4941 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4942 4943 return 0; 4944 4945 err3: 4946 class_unregister(&spi_controller_class); 4947 err2: 4948 bus_unregister(&spi_bus_type); 4949 err1: 4950 kfree(buf); 4951 buf = NULL; 4952 err0: 4953 return status; 4954 } 4955 4956 /* 4957 * A board_info is normally registered in arch_initcall(), 4958 * but even essential drivers wait till later. 4959 * 4960 * REVISIT only boardinfo really needs static linking. The rest (device and 4961 * driver registration) _could_ be dynamically linked (modular) ... Costs 4962 * include needing to have boardinfo data structures be much more public. 4963 */ 4964 postcore_initcall(spi_init); 4965