xref: /linux/drivers/spi/spi.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43 
44 static void spidev_release(struct device *dev)
45 {
46 	struct spi_device	*spi = to_spi_device(dev);
47 
48 	/* spi masters may cleanup for released devices */
49 	if (spi->master->cleanup)
50 		spi->master->cleanup(spi);
51 
52 	spi_master_put(spi->master);
53 	kfree(spi);
54 }
55 
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 	const struct spi_device	*spi = to_spi_device(dev);
60 	int len;
61 
62 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 	if (len != -ENODEV)
64 		return len;
65 
66 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69 
70 #define SPI_STATISTICS_ATTRS(field, file)				\
71 static ssize_t spi_master_##field##_show(struct device *dev,		\
72 					 struct device_attribute *attr,	\
73 					 char *buf)			\
74 {									\
75 	struct spi_master *master = container_of(dev,			\
76 						 struct spi_master, dev); \
77 	return spi_statistics_##field##_show(&master->statistics, buf);	\
78 }									\
79 static struct device_attribute dev_attr_spi_master_##field = {		\
80 	.attr = { .name = file, .mode = S_IRUGO },			\
81 	.show = spi_master_##field##_show,				\
82 };									\
83 static ssize_t spi_device_##field##_show(struct device *dev,		\
84 					 struct device_attribute *attr,	\
85 					char *buf)			\
86 {									\
87 	struct spi_device *spi = container_of(dev,			\
88 					      struct spi_device, dev);	\
89 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
90 }									\
91 static struct device_attribute dev_attr_spi_device_##field = {		\
92 	.attr = { .name = file, .mode = S_IRUGO },			\
93 	.show = spi_device_##field##_show,				\
94 }
95 
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 					    char *buf)			\
99 {									\
100 	unsigned long flags;						\
101 	ssize_t len;							\
102 	spin_lock_irqsave(&stat->lock, flags);				\
103 	len = sprintf(buf, format_string, stat->field);			\
104 	spin_unlock_irqrestore(&stat->lock, flags);			\
105 	return len;							\
106 }									\
107 SPI_STATISTICS_ATTRS(name, file)
108 
109 #define SPI_STATISTICS_SHOW(field, format_string)			\
110 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
111 				 field, format_string)
112 
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117 
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121 
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125 
126 static struct attribute *spi_dev_attrs[] = {
127 	&dev_attr_modalias.attr,
128 	NULL,
129 };
130 
131 static const struct attribute_group spi_dev_group = {
132 	.attrs  = spi_dev_attrs,
133 };
134 
135 static struct attribute *spi_device_statistics_attrs[] = {
136 	&dev_attr_spi_device_messages.attr,
137 	&dev_attr_spi_device_transfers.attr,
138 	&dev_attr_spi_device_errors.attr,
139 	&dev_attr_spi_device_timedout.attr,
140 	&dev_attr_spi_device_spi_sync.attr,
141 	&dev_attr_spi_device_spi_sync_immediate.attr,
142 	&dev_attr_spi_device_spi_async.attr,
143 	&dev_attr_spi_device_bytes.attr,
144 	&dev_attr_spi_device_bytes_rx.attr,
145 	&dev_attr_spi_device_bytes_tx.attr,
146 	NULL,
147 };
148 
149 static const struct attribute_group spi_device_statistics_group = {
150 	.name  = "statistics",
151 	.attrs  = spi_device_statistics_attrs,
152 };
153 
154 static const struct attribute_group *spi_dev_groups[] = {
155 	&spi_dev_group,
156 	&spi_device_statistics_group,
157 	NULL,
158 };
159 
160 static struct attribute *spi_master_statistics_attrs[] = {
161 	&dev_attr_spi_master_messages.attr,
162 	&dev_attr_spi_master_transfers.attr,
163 	&dev_attr_spi_master_errors.attr,
164 	&dev_attr_spi_master_timedout.attr,
165 	&dev_attr_spi_master_spi_sync.attr,
166 	&dev_attr_spi_master_spi_sync_immediate.attr,
167 	&dev_attr_spi_master_spi_async.attr,
168 	&dev_attr_spi_master_bytes.attr,
169 	&dev_attr_spi_master_bytes_rx.attr,
170 	&dev_attr_spi_master_bytes_tx.attr,
171 	NULL,
172 };
173 
174 static const struct attribute_group spi_master_statistics_group = {
175 	.name  = "statistics",
176 	.attrs  = spi_master_statistics_attrs,
177 };
178 
179 static const struct attribute_group *spi_master_groups[] = {
180 	&spi_master_statistics_group,
181 	NULL,
182 };
183 
184 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
185 				       struct spi_transfer *xfer,
186 				       struct spi_master *master)
187 {
188 	unsigned long flags;
189 
190 	spin_lock_irqsave(&stats->lock, flags);
191 
192 	stats->transfers++;
193 
194 	stats->bytes += xfer->len;
195 	if ((xfer->tx_buf) &&
196 	    (xfer->tx_buf != master->dummy_tx))
197 		stats->bytes_tx += xfer->len;
198 	if ((xfer->rx_buf) &&
199 	    (xfer->rx_buf != master->dummy_rx))
200 		stats->bytes_rx += xfer->len;
201 
202 	spin_unlock_irqrestore(&stats->lock, flags);
203 }
204 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
205 
206 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
207  * and the sysfs version makes coldplug work too.
208  */
209 
210 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
211 						const struct spi_device *sdev)
212 {
213 	while (id->name[0]) {
214 		if (!strcmp(sdev->modalias, id->name))
215 			return id;
216 		id++;
217 	}
218 	return NULL;
219 }
220 
221 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
222 {
223 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
224 
225 	return spi_match_id(sdrv->id_table, sdev);
226 }
227 EXPORT_SYMBOL_GPL(spi_get_device_id);
228 
229 static int spi_match_device(struct device *dev, struct device_driver *drv)
230 {
231 	const struct spi_device	*spi = to_spi_device(dev);
232 	const struct spi_driver	*sdrv = to_spi_driver(drv);
233 
234 	/* Attempt an OF style match */
235 	if (of_driver_match_device(dev, drv))
236 		return 1;
237 
238 	/* Then try ACPI */
239 	if (acpi_driver_match_device(dev, drv))
240 		return 1;
241 
242 	if (sdrv->id_table)
243 		return !!spi_match_id(sdrv->id_table, spi);
244 
245 	return strcmp(spi->modalias, drv->name) == 0;
246 }
247 
248 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
249 {
250 	const struct spi_device		*spi = to_spi_device(dev);
251 	int rc;
252 
253 	rc = acpi_device_uevent_modalias(dev, env);
254 	if (rc != -ENODEV)
255 		return rc;
256 
257 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
258 	return 0;
259 }
260 
261 struct bus_type spi_bus_type = {
262 	.name		= "spi",
263 	.dev_groups	= spi_dev_groups,
264 	.match		= spi_match_device,
265 	.uevent		= spi_uevent,
266 };
267 EXPORT_SYMBOL_GPL(spi_bus_type);
268 
269 
270 static int spi_drv_probe(struct device *dev)
271 {
272 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
273 	int ret;
274 
275 	ret = of_clk_set_defaults(dev->of_node, false);
276 	if (ret)
277 		return ret;
278 
279 	ret = dev_pm_domain_attach(dev, true);
280 	if (ret != -EPROBE_DEFER) {
281 		ret = sdrv->probe(to_spi_device(dev));
282 		if (ret)
283 			dev_pm_domain_detach(dev, true);
284 	}
285 
286 	return ret;
287 }
288 
289 static int spi_drv_remove(struct device *dev)
290 {
291 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
292 	int ret;
293 
294 	ret = sdrv->remove(to_spi_device(dev));
295 	dev_pm_domain_detach(dev, true);
296 
297 	return ret;
298 }
299 
300 static void spi_drv_shutdown(struct device *dev)
301 {
302 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
303 
304 	sdrv->shutdown(to_spi_device(dev));
305 }
306 
307 /**
308  * spi_register_driver - register a SPI driver
309  * @sdrv: the driver to register
310  * Context: can sleep
311  */
312 int spi_register_driver(struct spi_driver *sdrv)
313 {
314 	sdrv->driver.bus = &spi_bus_type;
315 	if (sdrv->probe)
316 		sdrv->driver.probe = spi_drv_probe;
317 	if (sdrv->remove)
318 		sdrv->driver.remove = spi_drv_remove;
319 	if (sdrv->shutdown)
320 		sdrv->driver.shutdown = spi_drv_shutdown;
321 	return driver_register(&sdrv->driver);
322 }
323 EXPORT_SYMBOL_GPL(spi_register_driver);
324 
325 /*-------------------------------------------------------------------------*/
326 
327 /* SPI devices should normally not be created by SPI device drivers; that
328  * would make them board-specific.  Similarly with SPI master drivers.
329  * Device registration normally goes into like arch/.../mach.../board-YYY.c
330  * with other readonly (flashable) information about mainboard devices.
331  */
332 
333 struct boardinfo {
334 	struct list_head	list;
335 	struct spi_board_info	board_info;
336 };
337 
338 static LIST_HEAD(board_list);
339 static LIST_HEAD(spi_master_list);
340 
341 /*
342  * Used to protect add/del opertion for board_info list and
343  * spi_master list, and their matching process
344  */
345 static DEFINE_MUTEX(board_lock);
346 
347 /**
348  * spi_alloc_device - Allocate a new SPI device
349  * @master: Controller to which device is connected
350  * Context: can sleep
351  *
352  * Allows a driver to allocate and initialize a spi_device without
353  * registering it immediately.  This allows a driver to directly
354  * fill the spi_device with device parameters before calling
355  * spi_add_device() on it.
356  *
357  * Caller is responsible to call spi_add_device() on the returned
358  * spi_device structure to add it to the SPI master.  If the caller
359  * needs to discard the spi_device without adding it, then it should
360  * call spi_dev_put() on it.
361  *
362  * Returns a pointer to the new device, or NULL.
363  */
364 struct spi_device *spi_alloc_device(struct spi_master *master)
365 {
366 	struct spi_device	*spi;
367 
368 	if (!spi_master_get(master))
369 		return NULL;
370 
371 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
372 	if (!spi) {
373 		spi_master_put(master);
374 		return NULL;
375 	}
376 
377 	spi->master = master;
378 	spi->dev.parent = &master->dev;
379 	spi->dev.bus = &spi_bus_type;
380 	spi->dev.release = spidev_release;
381 	spi->cs_gpio = -ENOENT;
382 
383 	spin_lock_init(&spi->statistics.lock);
384 
385 	device_initialize(&spi->dev);
386 	return spi;
387 }
388 EXPORT_SYMBOL_GPL(spi_alloc_device);
389 
390 static void spi_dev_set_name(struct spi_device *spi)
391 {
392 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
393 
394 	if (adev) {
395 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
396 		return;
397 	}
398 
399 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
400 		     spi->chip_select);
401 }
402 
403 static int spi_dev_check(struct device *dev, void *data)
404 {
405 	struct spi_device *spi = to_spi_device(dev);
406 	struct spi_device *new_spi = data;
407 
408 	if (spi->master == new_spi->master &&
409 	    spi->chip_select == new_spi->chip_select)
410 		return -EBUSY;
411 	return 0;
412 }
413 
414 /**
415  * spi_add_device - Add spi_device allocated with spi_alloc_device
416  * @spi: spi_device to register
417  *
418  * Companion function to spi_alloc_device.  Devices allocated with
419  * spi_alloc_device can be added onto the spi bus with this function.
420  *
421  * Returns 0 on success; negative errno on failure
422  */
423 int spi_add_device(struct spi_device *spi)
424 {
425 	static DEFINE_MUTEX(spi_add_lock);
426 	struct spi_master *master = spi->master;
427 	struct device *dev = master->dev.parent;
428 	int status;
429 
430 	/* Chipselects are numbered 0..max; validate. */
431 	if (spi->chip_select >= master->num_chipselect) {
432 		dev_err(dev, "cs%d >= max %d\n",
433 			spi->chip_select,
434 			master->num_chipselect);
435 		return -EINVAL;
436 	}
437 
438 	/* Set the bus ID string */
439 	spi_dev_set_name(spi);
440 
441 	/* We need to make sure there's no other device with this
442 	 * chipselect **BEFORE** we call setup(), else we'll trash
443 	 * its configuration.  Lock against concurrent add() calls.
444 	 */
445 	mutex_lock(&spi_add_lock);
446 
447 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
448 	if (status) {
449 		dev_err(dev, "chipselect %d already in use\n",
450 				spi->chip_select);
451 		goto done;
452 	}
453 
454 	if (master->cs_gpios)
455 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
456 
457 	/* Drivers may modify this initial i/o setup, but will
458 	 * normally rely on the device being setup.  Devices
459 	 * using SPI_CS_HIGH can't coexist well otherwise...
460 	 */
461 	status = spi_setup(spi);
462 	if (status < 0) {
463 		dev_err(dev, "can't setup %s, status %d\n",
464 				dev_name(&spi->dev), status);
465 		goto done;
466 	}
467 
468 	/* Device may be bound to an active driver when this returns */
469 	status = device_add(&spi->dev);
470 	if (status < 0)
471 		dev_err(dev, "can't add %s, status %d\n",
472 				dev_name(&spi->dev), status);
473 	else
474 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
475 
476 done:
477 	mutex_unlock(&spi_add_lock);
478 	return status;
479 }
480 EXPORT_SYMBOL_GPL(spi_add_device);
481 
482 /**
483  * spi_new_device - instantiate one new SPI device
484  * @master: Controller to which device is connected
485  * @chip: Describes the SPI device
486  * Context: can sleep
487  *
488  * On typical mainboards, this is purely internal; and it's not needed
489  * after board init creates the hard-wired devices.  Some development
490  * platforms may not be able to use spi_register_board_info though, and
491  * this is exported so that for example a USB or parport based adapter
492  * driver could add devices (which it would learn about out-of-band).
493  *
494  * Returns the new device, or NULL.
495  */
496 struct spi_device *spi_new_device(struct spi_master *master,
497 				  struct spi_board_info *chip)
498 {
499 	struct spi_device	*proxy;
500 	int			status;
501 
502 	/* NOTE:  caller did any chip->bus_num checks necessary.
503 	 *
504 	 * Also, unless we change the return value convention to use
505 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
506 	 * suggests syslogged diagnostics are best here (ugh).
507 	 */
508 
509 	proxy = spi_alloc_device(master);
510 	if (!proxy)
511 		return NULL;
512 
513 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
514 
515 	proxy->chip_select = chip->chip_select;
516 	proxy->max_speed_hz = chip->max_speed_hz;
517 	proxy->mode = chip->mode;
518 	proxy->irq = chip->irq;
519 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
520 	proxy->dev.platform_data = (void *) chip->platform_data;
521 	proxy->controller_data = chip->controller_data;
522 	proxy->controller_state = NULL;
523 
524 	status = spi_add_device(proxy);
525 	if (status < 0) {
526 		spi_dev_put(proxy);
527 		return NULL;
528 	}
529 
530 	return proxy;
531 }
532 EXPORT_SYMBOL_GPL(spi_new_device);
533 
534 static void spi_match_master_to_boardinfo(struct spi_master *master,
535 				struct spi_board_info *bi)
536 {
537 	struct spi_device *dev;
538 
539 	if (master->bus_num != bi->bus_num)
540 		return;
541 
542 	dev = spi_new_device(master, bi);
543 	if (!dev)
544 		dev_err(master->dev.parent, "can't create new device for %s\n",
545 			bi->modalias);
546 }
547 
548 /**
549  * spi_register_board_info - register SPI devices for a given board
550  * @info: array of chip descriptors
551  * @n: how many descriptors are provided
552  * Context: can sleep
553  *
554  * Board-specific early init code calls this (probably during arch_initcall)
555  * with segments of the SPI device table.  Any device nodes are created later,
556  * after the relevant parent SPI controller (bus_num) is defined.  We keep
557  * this table of devices forever, so that reloading a controller driver will
558  * not make Linux forget about these hard-wired devices.
559  *
560  * Other code can also call this, e.g. a particular add-on board might provide
561  * SPI devices through its expansion connector, so code initializing that board
562  * would naturally declare its SPI devices.
563  *
564  * The board info passed can safely be __initdata ... but be careful of
565  * any embedded pointers (platform_data, etc), they're copied as-is.
566  */
567 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
568 {
569 	struct boardinfo *bi;
570 	int i;
571 
572 	if (!n)
573 		return -EINVAL;
574 
575 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
576 	if (!bi)
577 		return -ENOMEM;
578 
579 	for (i = 0; i < n; i++, bi++, info++) {
580 		struct spi_master *master;
581 
582 		memcpy(&bi->board_info, info, sizeof(*info));
583 		mutex_lock(&board_lock);
584 		list_add_tail(&bi->list, &board_list);
585 		list_for_each_entry(master, &spi_master_list, list)
586 			spi_match_master_to_boardinfo(master, &bi->board_info);
587 		mutex_unlock(&board_lock);
588 	}
589 
590 	return 0;
591 }
592 
593 /*-------------------------------------------------------------------------*/
594 
595 static void spi_set_cs(struct spi_device *spi, bool enable)
596 {
597 	if (spi->mode & SPI_CS_HIGH)
598 		enable = !enable;
599 
600 	if (spi->cs_gpio >= 0)
601 		gpio_set_value(spi->cs_gpio, !enable);
602 	else if (spi->master->set_cs)
603 		spi->master->set_cs(spi, !enable);
604 }
605 
606 #ifdef CONFIG_HAS_DMA
607 static int spi_map_buf(struct spi_master *master, struct device *dev,
608 		       struct sg_table *sgt, void *buf, size_t len,
609 		       enum dma_data_direction dir)
610 {
611 	const bool vmalloced_buf = is_vmalloc_addr(buf);
612 	int desc_len;
613 	int sgs;
614 	struct page *vm_page;
615 	void *sg_buf;
616 	size_t min;
617 	int i, ret;
618 
619 	if (vmalloced_buf) {
620 		desc_len = PAGE_SIZE;
621 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
622 	} else {
623 		desc_len = master->max_dma_len;
624 		sgs = DIV_ROUND_UP(len, desc_len);
625 	}
626 
627 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
628 	if (ret != 0)
629 		return ret;
630 
631 	for (i = 0; i < sgs; i++) {
632 
633 		if (vmalloced_buf) {
634 			min = min_t(size_t,
635 				    len, desc_len - offset_in_page(buf));
636 			vm_page = vmalloc_to_page(buf);
637 			if (!vm_page) {
638 				sg_free_table(sgt);
639 				return -ENOMEM;
640 			}
641 			sg_set_page(&sgt->sgl[i], vm_page,
642 				    min, offset_in_page(buf));
643 		} else {
644 			min = min_t(size_t, len, desc_len);
645 			sg_buf = buf;
646 			sg_set_buf(&sgt->sgl[i], sg_buf, min);
647 		}
648 
649 
650 		buf += min;
651 		len -= min;
652 	}
653 
654 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
655 	if (!ret)
656 		ret = -ENOMEM;
657 	if (ret < 0) {
658 		sg_free_table(sgt);
659 		return ret;
660 	}
661 
662 	sgt->nents = ret;
663 
664 	return 0;
665 }
666 
667 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
668 			  struct sg_table *sgt, enum dma_data_direction dir)
669 {
670 	if (sgt->orig_nents) {
671 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
672 		sg_free_table(sgt);
673 	}
674 }
675 
676 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
677 {
678 	struct device *tx_dev, *rx_dev;
679 	struct spi_transfer *xfer;
680 	int ret;
681 
682 	if (!master->can_dma)
683 		return 0;
684 
685 	if (master->dma_tx)
686 		tx_dev = master->dma_tx->device->dev;
687 	else
688 		tx_dev = &master->dev;
689 
690 	if (master->dma_rx)
691 		rx_dev = master->dma_rx->device->dev;
692 	else
693 		rx_dev = &master->dev;
694 
695 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
696 		if (!master->can_dma(master, msg->spi, xfer))
697 			continue;
698 
699 		if (xfer->tx_buf != NULL) {
700 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
701 					  (void *)xfer->tx_buf, xfer->len,
702 					  DMA_TO_DEVICE);
703 			if (ret != 0)
704 				return ret;
705 		}
706 
707 		if (xfer->rx_buf != NULL) {
708 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
709 					  xfer->rx_buf, xfer->len,
710 					  DMA_FROM_DEVICE);
711 			if (ret != 0) {
712 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
713 					      DMA_TO_DEVICE);
714 				return ret;
715 			}
716 		}
717 	}
718 
719 	master->cur_msg_mapped = true;
720 
721 	return 0;
722 }
723 
724 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
725 {
726 	struct spi_transfer *xfer;
727 	struct device *tx_dev, *rx_dev;
728 
729 	if (!master->cur_msg_mapped || !master->can_dma)
730 		return 0;
731 
732 	if (master->dma_tx)
733 		tx_dev = master->dma_tx->device->dev;
734 	else
735 		tx_dev = &master->dev;
736 
737 	if (master->dma_rx)
738 		rx_dev = master->dma_rx->device->dev;
739 	else
740 		rx_dev = &master->dev;
741 
742 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
743 		if (!master->can_dma(master, msg->spi, xfer))
744 			continue;
745 
746 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
747 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
748 	}
749 
750 	return 0;
751 }
752 #else /* !CONFIG_HAS_DMA */
753 static inline int __spi_map_msg(struct spi_master *master,
754 				struct spi_message *msg)
755 {
756 	return 0;
757 }
758 
759 static inline int __spi_unmap_msg(struct spi_master *master,
760 				  struct spi_message *msg)
761 {
762 	return 0;
763 }
764 #endif /* !CONFIG_HAS_DMA */
765 
766 static inline int spi_unmap_msg(struct spi_master *master,
767 				struct spi_message *msg)
768 {
769 	struct spi_transfer *xfer;
770 
771 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
772 		/*
773 		 * Restore the original value of tx_buf or rx_buf if they are
774 		 * NULL.
775 		 */
776 		if (xfer->tx_buf == master->dummy_tx)
777 			xfer->tx_buf = NULL;
778 		if (xfer->rx_buf == master->dummy_rx)
779 			xfer->rx_buf = NULL;
780 	}
781 
782 	return __spi_unmap_msg(master, msg);
783 }
784 
785 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
786 {
787 	struct spi_transfer *xfer;
788 	void *tmp;
789 	unsigned int max_tx, max_rx;
790 
791 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
792 		max_tx = 0;
793 		max_rx = 0;
794 
795 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
796 			if ((master->flags & SPI_MASTER_MUST_TX) &&
797 			    !xfer->tx_buf)
798 				max_tx = max(xfer->len, max_tx);
799 			if ((master->flags & SPI_MASTER_MUST_RX) &&
800 			    !xfer->rx_buf)
801 				max_rx = max(xfer->len, max_rx);
802 		}
803 
804 		if (max_tx) {
805 			tmp = krealloc(master->dummy_tx, max_tx,
806 				       GFP_KERNEL | GFP_DMA);
807 			if (!tmp)
808 				return -ENOMEM;
809 			master->dummy_tx = tmp;
810 			memset(tmp, 0, max_tx);
811 		}
812 
813 		if (max_rx) {
814 			tmp = krealloc(master->dummy_rx, max_rx,
815 				       GFP_KERNEL | GFP_DMA);
816 			if (!tmp)
817 				return -ENOMEM;
818 			master->dummy_rx = tmp;
819 		}
820 
821 		if (max_tx || max_rx) {
822 			list_for_each_entry(xfer, &msg->transfers,
823 					    transfer_list) {
824 				if (!xfer->tx_buf)
825 					xfer->tx_buf = master->dummy_tx;
826 				if (!xfer->rx_buf)
827 					xfer->rx_buf = master->dummy_rx;
828 			}
829 		}
830 	}
831 
832 	return __spi_map_msg(master, msg);
833 }
834 
835 /*
836  * spi_transfer_one_message - Default implementation of transfer_one_message()
837  *
838  * This is a standard implementation of transfer_one_message() for
839  * drivers which impelment a transfer_one() operation.  It provides
840  * standard handling of delays and chip select management.
841  */
842 static int spi_transfer_one_message(struct spi_master *master,
843 				    struct spi_message *msg)
844 {
845 	struct spi_transfer *xfer;
846 	bool keep_cs = false;
847 	int ret = 0;
848 	unsigned long ms = 1;
849 	struct spi_statistics *statm = &master->statistics;
850 	struct spi_statistics *stats = &msg->spi->statistics;
851 
852 	spi_set_cs(msg->spi, true);
853 
854 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
855 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
856 
857 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
858 		trace_spi_transfer_start(msg, xfer);
859 
860 		spi_statistics_add_transfer_stats(statm, xfer, master);
861 		spi_statistics_add_transfer_stats(stats, xfer, master);
862 
863 		if (xfer->tx_buf || xfer->rx_buf) {
864 			reinit_completion(&master->xfer_completion);
865 
866 			ret = master->transfer_one(master, msg->spi, xfer);
867 			if (ret < 0) {
868 				SPI_STATISTICS_INCREMENT_FIELD(statm,
869 							       errors);
870 				SPI_STATISTICS_INCREMENT_FIELD(stats,
871 							       errors);
872 				dev_err(&msg->spi->dev,
873 					"SPI transfer failed: %d\n", ret);
874 				goto out;
875 			}
876 
877 			if (ret > 0) {
878 				ret = 0;
879 				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
880 				ms += ms + 100; /* some tolerance */
881 
882 				ms = wait_for_completion_timeout(&master->xfer_completion,
883 								 msecs_to_jiffies(ms));
884 			}
885 
886 			if (ms == 0) {
887 				SPI_STATISTICS_INCREMENT_FIELD(statm,
888 							       timedout);
889 				SPI_STATISTICS_INCREMENT_FIELD(stats,
890 							       timedout);
891 				dev_err(&msg->spi->dev,
892 					"SPI transfer timed out\n");
893 				msg->status = -ETIMEDOUT;
894 			}
895 		} else {
896 			if (xfer->len)
897 				dev_err(&msg->spi->dev,
898 					"Bufferless transfer has length %u\n",
899 					xfer->len);
900 		}
901 
902 		trace_spi_transfer_stop(msg, xfer);
903 
904 		if (msg->status != -EINPROGRESS)
905 			goto out;
906 
907 		if (xfer->delay_usecs)
908 			udelay(xfer->delay_usecs);
909 
910 		if (xfer->cs_change) {
911 			if (list_is_last(&xfer->transfer_list,
912 					 &msg->transfers)) {
913 				keep_cs = true;
914 			} else {
915 				spi_set_cs(msg->spi, false);
916 				udelay(10);
917 				spi_set_cs(msg->spi, true);
918 			}
919 		}
920 
921 		msg->actual_length += xfer->len;
922 	}
923 
924 out:
925 	if (ret != 0 || !keep_cs)
926 		spi_set_cs(msg->spi, false);
927 
928 	if (msg->status == -EINPROGRESS)
929 		msg->status = ret;
930 
931 	if (msg->status && master->handle_err)
932 		master->handle_err(master, msg);
933 
934 	spi_finalize_current_message(master);
935 
936 	return ret;
937 }
938 
939 /**
940  * spi_finalize_current_transfer - report completion of a transfer
941  * @master: the master reporting completion
942  *
943  * Called by SPI drivers using the core transfer_one_message()
944  * implementation to notify it that the current interrupt driven
945  * transfer has finished and the next one may be scheduled.
946  */
947 void spi_finalize_current_transfer(struct spi_master *master)
948 {
949 	complete(&master->xfer_completion);
950 }
951 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
952 
953 /**
954  * __spi_pump_messages - function which processes spi message queue
955  * @master: master to process queue for
956  * @in_kthread: true if we are in the context of the message pump thread
957  *
958  * This function checks if there is any spi message in the queue that
959  * needs processing and if so call out to the driver to initialize hardware
960  * and transfer each message.
961  *
962  * Note that it is called both from the kthread itself and also from
963  * inside spi_sync(); the queue extraction handling at the top of the
964  * function should deal with this safely.
965  */
966 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
967 {
968 	unsigned long flags;
969 	bool was_busy = false;
970 	int ret;
971 
972 	/* Lock queue */
973 	spin_lock_irqsave(&master->queue_lock, flags);
974 
975 	/* Make sure we are not already running a message */
976 	if (master->cur_msg) {
977 		spin_unlock_irqrestore(&master->queue_lock, flags);
978 		return;
979 	}
980 
981 	/* If another context is idling the device then defer */
982 	if (master->idling) {
983 		queue_kthread_work(&master->kworker, &master->pump_messages);
984 		spin_unlock_irqrestore(&master->queue_lock, flags);
985 		return;
986 	}
987 
988 	/* Check if the queue is idle */
989 	if (list_empty(&master->queue) || !master->running) {
990 		if (!master->busy) {
991 			spin_unlock_irqrestore(&master->queue_lock, flags);
992 			return;
993 		}
994 
995 		/* Only do teardown in the thread */
996 		if (!in_kthread) {
997 			queue_kthread_work(&master->kworker,
998 					   &master->pump_messages);
999 			spin_unlock_irqrestore(&master->queue_lock, flags);
1000 			return;
1001 		}
1002 
1003 		master->busy = false;
1004 		master->idling = true;
1005 		spin_unlock_irqrestore(&master->queue_lock, flags);
1006 
1007 		kfree(master->dummy_rx);
1008 		master->dummy_rx = NULL;
1009 		kfree(master->dummy_tx);
1010 		master->dummy_tx = NULL;
1011 		if (master->unprepare_transfer_hardware &&
1012 		    master->unprepare_transfer_hardware(master))
1013 			dev_err(&master->dev,
1014 				"failed to unprepare transfer hardware\n");
1015 		if (master->auto_runtime_pm) {
1016 			pm_runtime_mark_last_busy(master->dev.parent);
1017 			pm_runtime_put_autosuspend(master->dev.parent);
1018 		}
1019 		trace_spi_master_idle(master);
1020 
1021 		spin_lock_irqsave(&master->queue_lock, flags);
1022 		master->idling = false;
1023 		spin_unlock_irqrestore(&master->queue_lock, flags);
1024 		return;
1025 	}
1026 
1027 	/* Extract head of queue */
1028 	master->cur_msg =
1029 		list_first_entry(&master->queue, struct spi_message, queue);
1030 
1031 	list_del_init(&master->cur_msg->queue);
1032 	if (master->busy)
1033 		was_busy = true;
1034 	else
1035 		master->busy = true;
1036 	spin_unlock_irqrestore(&master->queue_lock, flags);
1037 
1038 	if (!was_busy && master->auto_runtime_pm) {
1039 		ret = pm_runtime_get_sync(master->dev.parent);
1040 		if (ret < 0) {
1041 			dev_err(&master->dev, "Failed to power device: %d\n",
1042 				ret);
1043 			return;
1044 		}
1045 	}
1046 
1047 	if (!was_busy)
1048 		trace_spi_master_busy(master);
1049 
1050 	if (!was_busy && master->prepare_transfer_hardware) {
1051 		ret = master->prepare_transfer_hardware(master);
1052 		if (ret) {
1053 			dev_err(&master->dev,
1054 				"failed to prepare transfer hardware\n");
1055 
1056 			if (master->auto_runtime_pm)
1057 				pm_runtime_put(master->dev.parent);
1058 			return;
1059 		}
1060 	}
1061 
1062 	trace_spi_message_start(master->cur_msg);
1063 
1064 	if (master->prepare_message) {
1065 		ret = master->prepare_message(master, master->cur_msg);
1066 		if (ret) {
1067 			dev_err(&master->dev,
1068 				"failed to prepare message: %d\n", ret);
1069 			master->cur_msg->status = ret;
1070 			spi_finalize_current_message(master);
1071 			return;
1072 		}
1073 		master->cur_msg_prepared = true;
1074 	}
1075 
1076 	ret = spi_map_msg(master, master->cur_msg);
1077 	if (ret) {
1078 		master->cur_msg->status = ret;
1079 		spi_finalize_current_message(master);
1080 		return;
1081 	}
1082 
1083 	ret = master->transfer_one_message(master, master->cur_msg);
1084 	if (ret) {
1085 		dev_err(&master->dev,
1086 			"failed to transfer one message from queue\n");
1087 		return;
1088 	}
1089 }
1090 
1091 /**
1092  * spi_pump_messages - kthread work function which processes spi message queue
1093  * @work: pointer to kthread work struct contained in the master struct
1094  */
1095 static void spi_pump_messages(struct kthread_work *work)
1096 {
1097 	struct spi_master *master =
1098 		container_of(work, struct spi_master, pump_messages);
1099 
1100 	__spi_pump_messages(master, true);
1101 }
1102 
1103 static int spi_init_queue(struct spi_master *master)
1104 {
1105 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1106 
1107 	master->running = false;
1108 	master->busy = false;
1109 
1110 	init_kthread_worker(&master->kworker);
1111 	master->kworker_task = kthread_run(kthread_worker_fn,
1112 					   &master->kworker, "%s",
1113 					   dev_name(&master->dev));
1114 	if (IS_ERR(master->kworker_task)) {
1115 		dev_err(&master->dev, "failed to create message pump task\n");
1116 		return PTR_ERR(master->kworker_task);
1117 	}
1118 	init_kthread_work(&master->pump_messages, spi_pump_messages);
1119 
1120 	/*
1121 	 * Master config will indicate if this controller should run the
1122 	 * message pump with high (realtime) priority to reduce the transfer
1123 	 * latency on the bus by minimising the delay between a transfer
1124 	 * request and the scheduling of the message pump thread. Without this
1125 	 * setting the message pump thread will remain at default priority.
1126 	 */
1127 	if (master->rt) {
1128 		dev_info(&master->dev,
1129 			"will run message pump with realtime priority\n");
1130 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1131 	}
1132 
1133 	return 0;
1134 }
1135 
1136 /**
1137  * spi_get_next_queued_message() - called by driver to check for queued
1138  * messages
1139  * @master: the master to check for queued messages
1140  *
1141  * If there are more messages in the queue, the next message is returned from
1142  * this call.
1143  */
1144 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1145 {
1146 	struct spi_message *next;
1147 	unsigned long flags;
1148 
1149 	/* get a pointer to the next message, if any */
1150 	spin_lock_irqsave(&master->queue_lock, flags);
1151 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1152 					queue);
1153 	spin_unlock_irqrestore(&master->queue_lock, flags);
1154 
1155 	return next;
1156 }
1157 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1158 
1159 /**
1160  * spi_finalize_current_message() - the current message is complete
1161  * @master: the master to return the message to
1162  *
1163  * Called by the driver to notify the core that the message in the front of the
1164  * queue is complete and can be removed from the queue.
1165  */
1166 void spi_finalize_current_message(struct spi_master *master)
1167 {
1168 	struct spi_message *mesg;
1169 	unsigned long flags;
1170 	int ret;
1171 
1172 	spin_lock_irqsave(&master->queue_lock, flags);
1173 	mesg = master->cur_msg;
1174 	spin_unlock_irqrestore(&master->queue_lock, flags);
1175 
1176 	spi_unmap_msg(master, mesg);
1177 
1178 	if (master->cur_msg_prepared && master->unprepare_message) {
1179 		ret = master->unprepare_message(master, mesg);
1180 		if (ret) {
1181 			dev_err(&master->dev,
1182 				"failed to unprepare message: %d\n", ret);
1183 		}
1184 	}
1185 
1186 	spin_lock_irqsave(&master->queue_lock, flags);
1187 	master->cur_msg = NULL;
1188 	master->cur_msg_prepared = false;
1189 	queue_kthread_work(&master->kworker, &master->pump_messages);
1190 	spin_unlock_irqrestore(&master->queue_lock, flags);
1191 
1192 	trace_spi_message_done(mesg);
1193 
1194 	mesg->state = NULL;
1195 	if (mesg->complete)
1196 		mesg->complete(mesg->context);
1197 }
1198 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1199 
1200 static int spi_start_queue(struct spi_master *master)
1201 {
1202 	unsigned long flags;
1203 
1204 	spin_lock_irqsave(&master->queue_lock, flags);
1205 
1206 	if (master->running || master->busy) {
1207 		spin_unlock_irqrestore(&master->queue_lock, flags);
1208 		return -EBUSY;
1209 	}
1210 
1211 	master->running = true;
1212 	master->cur_msg = NULL;
1213 	spin_unlock_irqrestore(&master->queue_lock, flags);
1214 
1215 	queue_kthread_work(&master->kworker, &master->pump_messages);
1216 
1217 	return 0;
1218 }
1219 
1220 static int spi_stop_queue(struct spi_master *master)
1221 {
1222 	unsigned long flags;
1223 	unsigned limit = 500;
1224 	int ret = 0;
1225 
1226 	spin_lock_irqsave(&master->queue_lock, flags);
1227 
1228 	/*
1229 	 * This is a bit lame, but is optimized for the common execution path.
1230 	 * A wait_queue on the master->busy could be used, but then the common
1231 	 * execution path (pump_messages) would be required to call wake_up or
1232 	 * friends on every SPI message. Do this instead.
1233 	 */
1234 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1235 		spin_unlock_irqrestore(&master->queue_lock, flags);
1236 		usleep_range(10000, 11000);
1237 		spin_lock_irqsave(&master->queue_lock, flags);
1238 	}
1239 
1240 	if (!list_empty(&master->queue) || master->busy)
1241 		ret = -EBUSY;
1242 	else
1243 		master->running = false;
1244 
1245 	spin_unlock_irqrestore(&master->queue_lock, flags);
1246 
1247 	if (ret) {
1248 		dev_warn(&master->dev,
1249 			 "could not stop message queue\n");
1250 		return ret;
1251 	}
1252 	return ret;
1253 }
1254 
1255 static int spi_destroy_queue(struct spi_master *master)
1256 {
1257 	int ret;
1258 
1259 	ret = spi_stop_queue(master);
1260 
1261 	/*
1262 	 * flush_kthread_worker will block until all work is done.
1263 	 * If the reason that stop_queue timed out is that the work will never
1264 	 * finish, then it does no good to call flush/stop thread, so
1265 	 * return anyway.
1266 	 */
1267 	if (ret) {
1268 		dev_err(&master->dev, "problem destroying queue\n");
1269 		return ret;
1270 	}
1271 
1272 	flush_kthread_worker(&master->kworker);
1273 	kthread_stop(master->kworker_task);
1274 
1275 	return 0;
1276 }
1277 
1278 static int __spi_queued_transfer(struct spi_device *spi,
1279 				 struct spi_message *msg,
1280 				 bool need_pump)
1281 {
1282 	struct spi_master *master = spi->master;
1283 	unsigned long flags;
1284 
1285 	spin_lock_irqsave(&master->queue_lock, flags);
1286 
1287 	if (!master->running) {
1288 		spin_unlock_irqrestore(&master->queue_lock, flags);
1289 		return -ESHUTDOWN;
1290 	}
1291 	msg->actual_length = 0;
1292 	msg->status = -EINPROGRESS;
1293 
1294 	list_add_tail(&msg->queue, &master->queue);
1295 	if (!master->busy && need_pump)
1296 		queue_kthread_work(&master->kworker, &master->pump_messages);
1297 
1298 	spin_unlock_irqrestore(&master->queue_lock, flags);
1299 	return 0;
1300 }
1301 
1302 /**
1303  * spi_queued_transfer - transfer function for queued transfers
1304  * @spi: spi device which is requesting transfer
1305  * @msg: spi message which is to handled is queued to driver queue
1306  */
1307 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1308 {
1309 	return __spi_queued_transfer(spi, msg, true);
1310 }
1311 
1312 static int spi_master_initialize_queue(struct spi_master *master)
1313 {
1314 	int ret;
1315 
1316 	master->transfer = spi_queued_transfer;
1317 	if (!master->transfer_one_message)
1318 		master->transfer_one_message = spi_transfer_one_message;
1319 
1320 	/* Initialize and start queue */
1321 	ret = spi_init_queue(master);
1322 	if (ret) {
1323 		dev_err(&master->dev, "problem initializing queue\n");
1324 		goto err_init_queue;
1325 	}
1326 	master->queued = true;
1327 	ret = spi_start_queue(master);
1328 	if (ret) {
1329 		dev_err(&master->dev, "problem starting queue\n");
1330 		goto err_start_queue;
1331 	}
1332 
1333 	return 0;
1334 
1335 err_start_queue:
1336 	spi_destroy_queue(master);
1337 err_init_queue:
1338 	return ret;
1339 }
1340 
1341 /*-------------------------------------------------------------------------*/
1342 
1343 #if defined(CONFIG_OF)
1344 static struct spi_device *
1345 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1346 {
1347 	struct spi_device *spi;
1348 	int rc;
1349 	u32 value;
1350 
1351 	/* Alloc an spi_device */
1352 	spi = spi_alloc_device(master);
1353 	if (!spi) {
1354 		dev_err(&master->dev, "spi_device alloc error for %s\n",
1355 			nc->full_name);
1356 		rc = -ENOMEM;
1357 		goto err_out;
1358 	}
1359 
1360 	/* Select device driver */
1361 	rc = of_modalias_node(nc, spi->modalias,
1362 				sizeof(spi->modalias));
1363 	if (rc < 0) {
1364 		dev_err(&master->dev, "cannot find modalias for %s\n",
1365 			nc->full_name);
1366 		goto err_out;
1367 	}
1368 
1369 	/* Device address */
1370 	rc = of_property_read_u32(nc, "reg", &value);
1371 	if (rc) {
1372 		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1373 			nc->full_name, rc);
1374 		goto err_out;
1375 	}
1376 	spi->chip_select = value;
1377 
1378 	/* Mode (clock phase/polarity/etc.) */
1379 	if (of_find_property(nc, "spi-cpha", NULL))
1380 		spi->mode |= SPI_CPHA;
1381 	if (of_find_property(nc, "spi-cpol", NULL))
1382 		spi->mode |= SPI_CPOL;
1383 	if (of_find_property(nc, "spi-cs-high", NULL))
1384 		spi->mode |= SPI_CS_HIGH;
1385 	if (of_find_property(nc, "spi-3wire", NULL))
1386 		spi->mode |= SPI_3WIRE;
1387 	if (of_find_property(nc, "spi-lsb-first", NULL))
1388 		spi->mode |= SPI_LSB_FIRST;
1389 
1390 	/* Device DUAL/QUAD mode */
1391 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1392 		switch (value) {
1393 		case 1:
1394 			break;
1395 		case 2:
1396 			spi->mode |= SPI_TX_DUAL;
1397 			break;
1398 		case 4:
1399 			spi->mode |= SPI_TX_QUAD;
1400 			break;
1401 		default:
1402 			dev_warn(&master->dev,
1403 				"spi-tx-bus-width %d not supported\n",
1404 				value);
1405 			break;
1406 		}
1407 	}
1408 
1409 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1410 		switch (value) {
1411 		case 1:
1412 			break;
1413 		case 2:
1414 			spi->mode |= SPI_RX_DUAL;
1415 			break;
1416 		case 4:
1417 			spi->mode |= SPI_RX_QUAD;
1418 			break;
1419 		default:
1420 			dev_warn(&master->dev,
1421 				"spi-rx-bus-width %d not supported\n",
1422 				value);
1423 			break;
1424 		}
1425 	}
1426 
1427 	/* Device speed */
1428 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1429 	if (rc) {
1430 		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1431 			nc->full_name, rc);
1432 		goto err_out;
1433 	}
1434 	spi->max_speed_hz = value;
1435 
1436 	/* IRQ */
1437 	spi->irq = irq_of_parse_and_map(nc, 0);
1438 
1439 	/* Store a pointer to the node in the device structure */
1440 	of_node_get(nc);
1441 	spi->dev.of_node = nc;
1442 
1443 	/* Register the new device */
1444 	rc = spi_add_device(spi);
1445 	if (rc) {
1446 		dev_err(&master->dev, "spi_device register error %s\n",
1447 			nc->full_name);
1448 		goto err_out;
1449 	}
1450 
1451 	return spi;
1452 
1453 err_out:
1454 	spi_dev_put(spi);
1455 	return ERR_PTR(rc);
1456 }
1457 
1458 /**
1459  * of_register_spi_devices() - Register child devices onto the SPI bus
1460  * @master:	Pointer to spi_master device
1461  *
1462  * Registers an spi_device for each child node of master node which has a 'reg'
1463  * property.
1464  */
1465 static void of_register_spi_devices(struct spi_master *master)
1466 {
1467 	struct spi_device *spi;
1468 	struct device_node *nc;
1469 
1470 	if (!master->dev.of_node)
1471 		return;
1472 
1473 	for_each_available_child_of_node(master->dev.of_node, nc) {
1474 		spi = of_register_spi_device(master, nc);
1475 		if (IS_ERR(spi))
1476 			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1477 				nc->full_name);
1478 	}
1479 }
1480 #else
1481 static void of_register_spi_devices(struct spi_master *master) { }
1482 #endif
1483 
1484 #ifdef CONFIG_ACPI
1485 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1486 {
1487 	struct spi_device *spi = data;
1488 
1489 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1490 		struct acpi_resource_spi_serialbus *sb;
1491 
1492 		sb = &ares->data.spi_serial_bus;
1493 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1494 			spi->chip_select = sb->device_selection;
1495 			spi->max_speed_hz = sb->connection_speed;
1496 
1497 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1498 				spi->mode |= SPI_CPHA;
1499 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1500 				spi->mode |= SPI_CPOL;
1501 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1502 				spi->mode |= SPI_CS_HIGH;
1503 		}
1504 	} else if (spi->irq < 0) {
1505 		struct resource r;
1506 
1507 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1508 			spi->irq = r.start;
1509 	}
1510 
1511 	/* Always tell the ACPI core to skip this resource */
1512 	return 1;
1513 }
1514 
1515 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1516 				       void *data, void **return_value)
1517 {
1518 	struct spi_master *master = data;
1519 	struct list_head resource_list;
1520 	struct acpi_device *adev;
1521 	struct spi_device *spi;
1522 	int ret;
1523 
1524 	if (acpi_bus_get_device(handle, &adev))
1525 		return AE_OK;
1526 	if (acpi_bus_get_status(adev) || !adev->status.present)
1527 		return AE_OK;
1528 
1529 	spi = spi_alloc_device(master);
1530 	if (!spi) {
1531 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1532 			dev_name(&adev->dev));
1533 		return AE_NO_MEMORY;
1534 	}
1535 
1536 	ACPI_COMPANION_SET(&spi->dev, adev);
1537 	spi->irq = -1;
1538 
1539 	INIT_LIST_HEAD(&resource_list);
1540 	ret = acpi_dev_get_resources(adev, &resource_list,
1541 				     acpi_spi_add_resource, spi);
1542 	acpi_dev_free_resource_list(&resource_list);
1543 
1544 	if (ret < 0 || !spi->max_speed_hz) {
1545 		spi_dev_put(spi);
1546 		return AE_OK;
1547 	}
1548 
1549 	adev->power.flags.ignore_parent = true;
1550 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1551 	if (spi_add_device(spi)) {
1552 		adev->power.flags.ignore_parent = false;
1553 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1554 			dev_name(&adev->dev));
1555 		spi_dev_put(spi);
1556 	}
1557 
1558 	return AE_OK;
1559 }
1560 
1561 static void acpi_register_spi_devices(struct spi_master *master)
1562 {
1563 	acpi_status status;
1564 	acpi_handle handle;
1565 
1566 	handle = ACPI_HANDLE(master->dev.parent);
1567 	if (!handle)
1568 		return;
1569 
1570 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1571 				     acpi_spi_add_device, NULL,
1572 				     master, NULL);
1573 	if (ACPI_FAILURE(status))
1574 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1575 }
1576 #else
1577 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1578 #endif /* CONFIG_ACPI */
1579 
1580 static void spi_master_release(struct device *dev)
1581 {
1582 	struct spi_master *master;
1583 
1584 	master = container_of(dev, struct spi_master, dev);
1585 	kfree(master);
1586 }
1587 
1588 static struct class spi_master_class = {
1589 	.name		= "spi_master",
1590 	.owner		= THIS_MODULE,
1591 	.dev_release	= spi_master_release,
1592 	.dev_groups	= spi_master_groups,
1593 };
1594 
1595 
1596 /**
1597  * spi_alloc_master - allocate SPI master controller
1598  * @dev: the controller, possibly using the platform_bus
1599  * @size: how much zeroed driver-private data to allocate; the pointer to this
1600  *	memory is in the driver_data field of the returned device,
1601  *	accessible with spi_master_get_devdata().
1602  * Context: can sleep
1603  *
1604  * This call is used only by SPI master controller drivers, which are the
1605  * only ones directly touching chip registers.  It's how they allocate
1606  * an spi_master structure, prior to calling spi_register_master().
1607  *
1608  * This must be called from context that can sleep.  It returns the SPI
1609  * master structure on success, else NULL.
1610  *
1611  * The caller is responsible for assigning the bus number and initializing
1612  * the master's methods before calling spi_register_master(); and (after errors
1613  * adding the device) calling spi_master_put() to prevent a memory leak.
1614  */
1615 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1616 {
1617 	struct spi_master	*master;
1618 
1619 	if (!dev)
1620 		return NULL;
1621 
1622 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1623 	if (!master)
1624 		return NULL;
1625 
1626 	device_initialize(&master->dev);
1627 	master->bus_num = -1;
1628 	master->num_chipselect = 1;
1629 	master->dev.class = &spi_master_class;
1630 	master->dev.parent = get_device(dev);
1631 	spi_master_set_devdata(master, &master[1]);
1632 
1633 	return master;
1634 }
1635 EXPORT_SYMBOL_GPL(spi_alloc_master);
1636 
1637 #ifdef CONFIG_OF
1638 static int of_spi_register_master(struct spi_master *master)
1639 {
1640 	int nb, i, *cs;
1641 	struct device_node *np = master->dev.of_node;
1642 
1643 	if (!np)
1644 		return 0;
1645 
1646 	nb = of_gpio_named_count(np, "cs-gpios");
1647 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1648 
1649 	/* Return error only for an incorrectly formed cs-gpios property */
1650 	if (nb == 0 || nb == -ENOENT)
1651 		return 0;
1652 	else if (nb < 0)
1653 		return nb;
1654 
1655 	cs = devm_kzalloc(&master->dev,
1656 			  sizeof(int) * master->num_chipselect,
1657 			  GFP_KERNEL);
1658 	master->cs_gpios = cs;
1659 
1660 	if (!master->cs_gpios)
1661 		return -ENOMEM;
1662 
1663 	for (i = 0; i < master->num_chipselect; i++)
1664 		cs[i] = -ENOENT;
1665 
1666 	for (i = 0; i < nb; i++)
1667 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1668 
1669 	return 0;
1670 }
1671 #else
1672 static int of_spi_register_master(struct spi_master *master)
1673 {
1674 	return 0;
1675 }
1676 #endif
1677 
1678 /**
1679  * spi_register_master - register SPI master controller
1680  * @master: initialized master, originally from spi_alloc_master()
1681  * Context: can sleep
1682  *
1683  * SPI master controllers connect to their drivers using some non-SPI bus,
1684  * such as the platform bus.  The final stage of probe() in that code
1685  * includes calling spi_register_master() to hook up to this SPI bus glue.
1686  *
1687  * SPI controllers use board specific (often SOC specific) bus numbers,
1688  * and board-specific addressing for SPI devices combines those numbers
1689  * with chip select numbers.  Since SPI does not directly support dynamic
1690  * device identification, boards need configuration tables telling which
1691  * chip is at which address.
1692  *
1693  * This must be called from context that can sleep.  It returns zero on
1694  * success, else a negative error code (dropping the master's refcount).
1695  * After a successful return, the caller is responsible for calling
1696  * spi_unregister_master().
1697  */
1698 int spi_register_master(struct spi_master *master)
1699 {
1700 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1701 	struct device		*dev = master->dev.parent;
1702 	struct boardinfo	*bi;
1703 	int			status = -ENODEV;
1704 	int			dynamic = 0;
1705 
1706 	if (!dev)
1707 		return -ENODEV;
1708 
1709 	status = of_spi_register_master(master);
1710 	if (status)
1711 		return status;
1712 
1713 	/* even if it's just one always-selected device, there must
1714 	 * be at least one chipselect
1715 	 */
1716 	if (master->num_chipselect == 0)
1717 		return -EINVAL;
1718 
1719 	if ((master->bus_num < 0) && master->dev.of_node)
1720 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1721 
1722 	/* convention:  dynamically assigned bus IDs count down from the max */
1723 	if (master->bus_num < 0) {
1724 		/* FIXME switch to an IDR based scheme, something like
1725 		 * I2C now uses, so we can't run out of "dynamic" IDs
1726 		 */
1727 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1728 		dynamic = 1;
1729 	}
1730 
1731 	INIT_LIST_HEAD(&master->queue);
1732 	spin_lock_init(&master->queue_lock);
1733 	spin_lock_init(&master->bus_lock_spinlock);
1734 	mutex_init(&master->bus_lock_mutex);
1735 	master->bus_lock_flag = 0;
1736 	init_completion(&master->xfer_completion);
1737 	if (!master->max_dma_len)
1738 		master->max_dma_len = INT_MAX;
1739 
1740 	/* register the device, then userspace will see it.
1741 	 * registration fails if the bus ID is in use.
1742 	 */
1743 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1744 	status = device_add(&master->dev);
1745 	if (status < 0)
1746 		goto done;
1747 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1748 			dynamic ? " (dynamic)" : "");
1749 
1750 	/* If we're using a queued driver, start the queue */
1751 	if (master->transfer)
1752 		dev_info(dev, "master is unqueued, this is deprecated\n");
1753 	else {
1754 		status = spi_master_initialize_queue(master);
1755 		if (status) {
1756 			device_del(&master->dev);
1757 			goto done;
1758 		}
1759 	}
1760 	/* add statistics */
1761 	spin_lock_init(&master->statistics.lock);
1762 
1763 	mutex_lock(&board_lock);
1764 	list_add_tail(&master->list, &spi_master_list);
1765 	list_for_each_entry(bi, &board_list, list)
1766 		spi_match_master_to_boardinfo(master, &bi->board_info);
1767 	mutex_unlock(&board_lock);
1768 
1769 	/* Register devices from the device tree and ACPI */
1770 	of_register_spi_devices(master);
1771 	acpi_register_spi_devices(master);
1772 done:
1773 	return status;
1774 }
1775 EXPORT_SYMBOL_GPL(spi_register_master);
1776 
1777 static void devm_spi_unregister(struct device *dev, void *res)
1778 {
1779 	spi_unregister_master(*(struct spi_master **)res);
1780 }
1781 
1782 /**
1783  * dev_spi_register_master - register managed SPI master controller
1784  * @dev:    device managing SPI master
1785  * @master: initialized master, originally from spi_alloc_master()
1786  * Context: can sleep
1787  *
1788  * Register a SPI device as with spi_register_master() which will
1789  * automatically be unregister
1790  */
1791 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1792 {
1793 	struct spi_master **ptr;
1794 	int ret;
1795 
1796 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1797 	if (!ptr)
1798 		return -ENOMEM;
1799 
1800 	ret = spi_register_master(master);
1801 	if (!ret) {
1802 		*ptr = master;
1803 		devres_add(dev, ptr);
1804 	} else {
1805 		devres_free(ptr);
1806 	}
1807 
1808 	return ret;
1809 }
1810 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1811 
1812 static int __unregister(struct device *dev, void *null)
1813 {
1814 	spi_unregister_device(to_spi_device(dev));
1815 	return 0;
1816 }
1817 
1818 /**
1819  * spi_unregister_master - unregister SPI master controller
1820  * @master: the master being unregistered
1821  * Context: can sleep
1822  *
1823  * This call is used only by SPI master controller drivers, which are the
1824  * only ones directly touching chip registers.
1825  *
1826  * This must be called from context that can sleep.
1827  */
1828 void spi_unregister_master(struct spi_master *master)
1829 {
1830 	int dummy;
1831 
1832 	if (master->queued) {
1833 		if (spi_destroy_queue(master))
1834 			dev_err(&master->dev, "queue remove failed\n");
1835 	}
1836 
1837 	mutex_lock(&board_lock);
1838 	list_del(&master->list);
1839 	mutex_unlock(&board_lock);
1840 
1841 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1842 	device_unregister(&master->dev);
1843 }
1844 EXPORT_SYMBOL_GPL(spi_unregister_master);
1845 
1846 int spi_master_suspend(struct spi_master *master)
1847 {
1848 	int ret;
1849 
1850 	/* Basically no-ops for non-queued masters */
1851 	if (!master->queued)
1852 		return 0;
1853 
1854 	ret = spi_stop_queue(master);
1855 	if (ret)
1856 		dev_err(&master->dev, "queue stop failed\n");
1857 
1858 	return ret;
1859 }
1860 EXPORT_SYMBOL_GPL(spi_master_suspend);
1861 
1862 int spi_master_resume(struct spi_master *master)
1863 {
1864 	int ret;
1865 
1866 	if (!master->queued)
1867 		return 0;
1868 
1869 	ret = spi_start_queue(master);
1870 	if (ret)
1871 		dev_err(&master->dev, "queue restart failed\n");
1872 
1873 	return ret;
1874 }
1875 EXPORT_SYMBOL_GPL(spi_master_resume);
1876 
1877 static int __spi_master_match(struct device *dev, const void *data)
1878 {
1879 	struct spi_master *m;
1880 	const u16 *bus_num = data;
1881 
1882 	m = container_of(dev, struct spi_master, dev);
1883 	return m->bus_num == *bus_num;
1884 }
1885 
1886 /**
1887  * spi_busnum_to_master - look up master associated with bus_num
1888  * @bus_num: the master's bus number
1889  * Context: can sleep
1890  *
1891  * This call may be used with devices that are registered after
1892  * arch init time.  It returns a refcounted pointer to the relevant
1893  * spi_master (which the caller must release), or NULL if there is
1894  * no such master registered.
1895  */
1896 struct spi_master *spi_busnum_to_master(u16 bus_num)
1897 {
1898 	struct device		*dev;
1899 	struct spi_master	*master = NULL;
1900 
1901 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1902 				__spi_master_match);
1903 	if (dev)
1904 		master = container_of(dev, struct spi_master, dev);
1905 	/* reference got in class_find_device */
1906 	return master;
1907 }
1908 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1909 
1910 
1911 /*-------------------------------------------------------------------------*/
1912 
1913 /* Core methods for SPI master protocol drivers.  Some of the
1914  * other core methods are currently defined as inline functions.
1915  */
1916 
1917 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
1918 {
1919 	if (master->bits_per_word_mask) {
1920 		/* Only 32 bits fit in the mask */
1921 		if (bits_per_word > 32)
1922 			return -EINVAL;
1923 		if (!(master->bits_per_word_mask &
1924 				SPI_BPW_MASK(bits_per_word)))
1925 			return -EINVAL;
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 /**
1932  * spi_setup - setup SPI mode and clock rate
1933  * @spi: the device whose settings are being modified
1934  * Context: can sleep, and no requests are queued to the device
1935  *
1936  * SPI protocol drivers may need to update the transfer mode if the
1937  * device doesn't work with its default.  They may likewise need
1938  * to update clock rates or word sizes from initial values.  This function
1939  * changes those settings, and must be called from a context that can sleep.
1940  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1941  * effect the next time the device is selected and data is transferred to
1942  * or from it.  When this function returns, the spi device is deselected.
1943  *
1944  * Note that this call will fail if the protocol driver specifies an option
1945  * that the underlying controller or its driver does not support.  For
1946  * example, not all hardware supports wire transfers using nine bit words,
1947  * LSB-first wire encoding, or active-high chipselects.
1948  */
1949 int spi_setup(struct spi_device *spi)
1950 {
1951 	unsigned	bad_bits, ugly_bits;
1952 	int		status = 0;
1953 
1954 	/* check mode to prevent that DUAL and QUAD set at the same time
1955 	 */
1956 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1957 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1958 		dev_err(&spi->dev,
1959 		"setup: can not select dual and quad at the same time\n");
1960 		return -EINVAL;
1961 	}
1962 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1963 	 */
1964 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1965 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1966 		return -EINVAL;
1967 	/* help drivers fail *cleanly* when they need options
1968 	 * that aren't supported with their current master
1969 	 */
1970 	bad_bits = spi->mode & ~spi->master->mode_bits;
1971 	ugly_bits = bad_bits &
1972 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1973 	if (ugly_bits) {
1974 		dev_warn(&spi->dev,
1975 			 "setup: ignoring unsupported mode bits %x\n",
1976 			 ugly_bits);
1977 		spi->mode &= ~ugly_bits;
1978 		bad_bits &= ~ugly_bits;
1979 	}
1980 	if (bad_bits) {
1981 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1982 			bad_bits);
1983 		return -EINVAL;
1984 	}
1985 
1986 	if (!spi->bits_per_word)
1987 		spi->bits_per_word = 8;
1988 
1989 	if (__spi_validate_bits_per_word(spi->master, spi->bits_per_word))
1990 		return -EINVAL;
1991 
1992 	if (!spi->max_speed_hz)
1993 		spi->max_speed_hz = spi->master->max_speed_hz;
1994 
1995 	spi_set_cs(spi, false);
1996 
1997 	if (spi->master->setup)
1998 		status = spi->master->setup(spi);
1999 
2000 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2001 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2002 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2003 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2004 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2005 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2006 			spi->bits_per_word, spi->max_speed_hz,
2007 			status);
2008 
2009 	return status;
2010 }
2011 EXPORT_SYMBOL_GPL(spi_setup);
2012 
2013 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2014 {
2015 	struct spi_master *master = spi->master;
2016 	struct spi_transfer *xfer;
2017 	int w_size;
2018 
2019 	if (list_empty(&message->transfers))
2020 		return -EINVAL;
2021 
2022 	/* Half-duplex links include original MicroWire, and ones with
2023 	 * only one data pin like SPI_3WIRE (switches direction) or where
2024 	 * either MOSI or MISO is missing.  They can also be caused by
2025 	 * software limitations.
2026 	 */
2027 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2028 			|| (spi->mode & SPI_3WIRE)) {
2029 		unsigned flags = master->flags;
2030 
2031 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2032 			if (xfer->rx_buf && xfer->tx_buf)
2033 				return -EINVAL;
2034 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2035 				return -EINVAL;
2036 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2037 				return -EINVAL;
2038 		}
2039 	}
2040 
2041 	/**
2042 	 * Set transfer bits_per_word and max speed as spi device default if
2043 	 * it is not set for this transfer.
2044 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2045 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2046 	 */
2047 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2048 		message->frame_length += xfer->len;
2049 		if (!xfer->bits_per_word)
2050 			xfer->bits_per_word = spi->bits_per_word;
2051 
2052 		if (!xfer->speed_hz)
2053 			xfer->speed_hz = spi->max_speed_hz;
2054 		if (!xfer->speed_hz)
2055 			xfer->speed_hz = master->max_speed_hz;
2056 
2057 		if (master->max_speed_hz &&
2058 		    xfer->speed_hz > master->max_speed_hz)
2059 			xfer->speed_hz = master->max_speed_hz;
2060 
2061 		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2062 			return -EINVAL;
2063 
2064 		/*
2065 		 * SPI transfer length should be multiple of SPI word size
2066 		 * where SPI word size should be power-of-two multiple
2067 		 */
2068 		if (xfer->bits_per_word <= 8)
2069 			w_size = 1;
2070 		else if (xfer->bits_per_word <= 16)
2071 			w_size = 2;
2072 		else
2073 			w_size = 4;
2074 
2075 		/* No partial transfers accepted */
2076 		if (xfer->len % w_size)
2077 			return -EINVAL;
2078 
2079 		if (xfer->speed_hz && master->min_speed_hz &&
2080 		    xfer->speed_hz < master->min_speed_hz)
2081 			return -EINVAL;
2082 
2083 		if (xfer->tx_buf && !xfer->tx_nbits)
2084 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2085 		if (xfer->rx_buf && !xfer->rx_nbits)
2086 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2087 		/* check transfer tx/rx_nbits:
2088 		 * 1. check the value matches one of single, dual and quad
2089 		 * 2. check tx/rx_nbits match the mode in spi_device
2090 		 */
2091 		if (xfer->tx_buf) {
2092 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2093 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2094 				xfer->tx_nbits != SPI_NBITS_QUAD)
2095 				return -EINVAL;
2096 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2097 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2098 				return -EINVAL;
2099 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2100 				!(spi->mode & SPI_TX_QUAD))
2101 				return -EINVAL;
2102 		}
2103 		/* check transfer rx_nbits */
2104 		if (xfer->rx_buf) {
2105 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2106 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2107 				xfer->rx_nbits != SPI_NBITS_QUAD)
2108 				return -EINVAL;
2109 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2110 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2111 				return -EINVAL;
2112 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2113 				!(spi->mode & SPI_RX_QUAD))
2114 				return -EINVAL;
2115 		}
2116 	}
2117 
2118 	message->status = -EINPROGRESS;
2119 
2120 	return 0;
2121 }
2122 
2123 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2124 {
2125 	struct spi_master *master = spi->master;
2126 
2127 	message->spi = spi;
2128 
2129 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2130 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2131 
2132 	trace_spi_message_submit(message);
2133 
2134 	return master->transfer(spi, message);
2135 }
2136 
2137 /**
2138  * spi_async - asynchronous SPI transfer
2139  * @spi: device with which data will be exchanged
2140  * @message: describes the data transfers, including completion callback
2141  * Context: any (irqs may be blocked, etc)
2142  *
2143  * This call may be used in_irq and other contexts which can't sleep,
2144  * as well as from task contexts which can sleep.
2145  *
2146  * The completion callback is invoked in a context which can't sleep.
2147  * Before that invocation, the value of message->status is undefined.
2148  * When the callback is issued, message->status holds either zero (to
2149  * indicate complete success) or a negative error code.  After that
2150  * callback returns, the driver which issued the transfer request may
2151  * deallocate the associated memory; it's no longer in use by any SPI
2152  * core or controller driver code.
2153  *
2154  * Note that although all messages to a spi_device are handled in
2155  * FIFO order, messages may go to different devices in other orders.
2156  * Some device might be higher priority, or have various "hard" access
2157  * time requirements, for example.
2158  *
2159  * On detection of any fault during the transfer, processing of
2160  * the entire message is aborted, and the device is deselected.
2161  * Until returning from the associated message completion callback,
2162  * no other spi_message queued to that device will be processed.
2163  * (This rule applies equally to all the synchronous transfer calls,
2164  * which are wrappers around this core asynchronous primitive.)
2165  */
2166 int spi_async(struct spi_device *spi, struct spi_message *message)
2167 {
2168 	struct spi_master *master = spi->master;
2169 	int ret;
2170 	unsigned long flags;
2171 
2172 	ret = __spi_validate(spi, message);
2173 	if (ret != 0)
2174 		return ret;
2175 
2176 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2177 
2178 	if (master->bus_lock_flag)
2179 		ret = -EBUSY;
2180 	else
2181 		ret = __spi_async(spi, message);
2182 
2183 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2184 
2185 	return ret;
2186 }
2187 EXPORT_SYMBOL_GPL(spi_async);
2188 
2189 /**
2190  * spi_async_locked - version of spi_async with exclusive bus usage
2191  * @spi: device with which data will be exchanged
2192  * @message: describes the data transfers, including completion callback
2193  * Context: any (irqs may be blocked, etc)
2194  *
2195  * This call may be used in_irq and other contexts which can't sleep,
2196  * as well as from task contexts which can sleep.
2197  *
2198  * The completion callback is invoked in a context which can't sleep.
2199  * Before that invocation, the value of message->status is undefined.
2200  * When the callback is issued, message->status holds either zero (to
2201  * indicate complete success) or a negative error code.  After that
2202  * callback returns, the driver which issued the transfer request may
2203  * deallocate the associated memory; it's no longer in use by any SPI
2204  * core or controller driver code.
2205  *
2206  * Note that although all messages to a spi_device are handled in
2207  * FIFO order, messages may go to different devices in other orders.
2208  * Some device might be higher priority, or have various "hard" access
2209  * time requirements, for example.
2210  *
2211  * On detection of any fault during the transfer, processing of
2212  * the entire message is aborted, and the device is deselected.
2213  * Until returning from the associated message completion callback,
2214  * no other spi_message queued to that device will be processed.
2215  * (This rule applies equally to all the synchronous transfer calls,
2216  * which are wrappers around this core asynchronous primitive.)
2217  */
2218 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2219 {
2220 	struct spi_master *master = spi->master;
2221 	int ret;
2222 	unsigned long flags;
2223 
2224 	ret = __spi_validate(spi, message);
2225 	if (ret != 0)
2226 		return ret;
2227 
2228 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2229 
2230 	ret = __spi_async(spi, message);
2231 
2232 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2233 
2234 	return ret;
2235 
2236 }
2237 EXPORT_SYMBOL_GPL(spi_async_locked);
2238 
2239 
2240 /*-------------------------------------------------------------------------*/
2241 
2242 /* Utility methods for SPI master protocol drivers, layered on
2243  * top of the core.  Some other utility methods are defined as
2244  * inline functions.
2245  */
2246 
2247 static void spi_complete(void *arg)
2248 {
2249 	complete(arg);
2250 }
2251 
2252 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2253 		      int bus_locked)
2254 {
2255 	DECLARE_COMPLETION_ONSTACK(done);
2256 	int status;
2257 	struct spi_master *master = spi->master;
2258 	unsigned long flags;
2259 
2260 	status = __spi_validate(spi, message);
2261 	if (status != 0)
2262 		return status;
2263 
2264 	message->complete = spi_complete;
2265 	message->context = &done;
2266 	message->spi = spi;
2267 
2268 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2269 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2270 
2271 	if (!bus_locked)
2272 		mutex_lock(&master->bus_lock_mutex);
2273 
2274 	/* If we're not using the legacy transfer method then we will
2275 	 * try to transfer in the calling context so special case.
2276 	 * This code would be less tricky if we could remove the
2277 	 * support for driver implemented message queues.
2278 	 */
2279 	if (master->transfer == spi_queued_transfer) {
2280 		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2281 
2282 		trace_spi_message_submit(message);
2283 
2284 		status = __spi_queued_transfer(spi, message, false);
2285 
2286 		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2287 	} else {
2288 		status = spi_async_locked(spi, message);
2289 	}
2290 
2291 	if (!bus_locked)
2292 		mutex_unlock(&master->bus_lock_mutex);
2293 
2294 	if (status == 0) {
2295 		/* Push out the messages in the calling context if we
2296 		 * can.
2297 		 */
2298 		if (master->transfer == spi_queued_transfer) {
2299 			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2300 						       spi_sync_immediate);
2301 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2302 						       spi_sync_immediate);
2303 			__spi_pump_messages(master, false);
2304 		}
2305 
2306 		wait_for_completion(&done);
2307 		status = message->status;
2308 	}
2309 	message->context = NULL;
2310 	return status;
2311 }
2312 
2313 /**
2314  * spi_sync - blocking/synchronous SPI data transfers
2315  * @spi: device with which data will be exchanged
2316  * @message: describes the data transfers
2317  * Context: can sleep
2318  *
2319  * This call may only be used from a context that may sleep.  The sleep
2320  * is non-interruptible, and has no timeout.  Low-overhead controller
2321  * drivers may DMA directly into and out of the message buffers.
2322  *
2323  * Note that the SPI device's chip select is active during the message,
2324  * and then is normally disabled between messages.  Drivers for some
2325  * frequently-used devices may want to minimize costs of selecting a chip,
2326  * by leaving it selected in anticipation that the next message will go
2327  * to the same chip.  (That may increase power usage.)
2328  *
2329  * Also, the caller is guaranteeing that the memory associated with the
2330  * message will not be freed before this call returns.
2331  *
2332  * It returns zero on success, else a negative error code.
2333  */
2334 int spi_sync(struct spi_device *spi, struct spi_message *message)
2335 {
2336 	return __spi_sync(spi, message, 0);
2337 }
2338 EXPORT_SYMBOL_GPL(spi_sync);
2339 
2340 /**
2341  * spi_sync_locked - version of spi_sync with exclusive bus usage
2342  * @spi: device with which data will be exchanged
2343  * @message: describes the data transfers
2344  * Context: can sleep
2345  *
2346  * This call may only be used from a context that may sleep.  The sleep
2347  * is non-interruptible, and has no timeout.  Low-overhead controller
2348  * drivers may DMA directly into and out of the message buffers.
2349  *
2350  * This call should be used by drivers that require exclusive access to the
2351  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2352  * be released by a spi_bus_unlock call when the exclusive access is over.
2353  *
2354  * It returns zero on success, else a negative error code.
2355  */
2356 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2357 {
2358 	return __spi_sync(spi, message, 1);
2359 }
2360 EXPORT_SYMBOL_GPL(spi_sync_locked);
2361 
2362 /**
2363  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2364  * @master: SPI bus master that should be locked for exclusive bus access
2365  * Context: can sleep
2366  *
2367  * This call may only be used from a context that may sleep.  The sleep
2368  * is non-interruptible, and has no timeout.
2369  *
2370  * This call should be used by drivers that require exclusive access to the
2371  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2372  * exclusive access is over. Data transfer must be done by spi_sync_locked
2373  * and spi_async_locked calls when the SPI bus lock is held.
2374  *
2375  * It returns zero on success, else a negative error code.
2376  */
2377 int spi_bus_lock(struct spi_master *master)
2378 {
2379 	unsigned long flags;
2380 
2381 	mutex_lock(&master->bus_lock_mutex);
2382 
2383 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2384 	master->bus_lock_flag = 1;
2385 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2386 
2387 	/* mutex remains locked until spi_bus_unlock is called */
2388 
2389 	return 0;
2390 }
2391 EXPORT_SYMBOL_GPL(spi_bus_lock);
2392 
2393 /**
2394  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2395  * @master: SPI bus master that was locked for exclusive bus access
2396  * Context: can sleep
2397  *
2398  * This call may only be used from a context that may sleep.  The sleep
2399  * is non-interruptible, and has no timeout.
2400  *
2401  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2402  * call.
2403  *
2404  * It returns zero on success, else a negative error code.
2405  */
2406 int spi_bus_unlock(struct spi_master *master)
2407 {
2408 	master->bus_lock_flag = 0;
2409 
2410 	mutex_unlock(&master->bus_lock_mutex);
2411 
2412 	return 0;
2413 }
2414 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2415 
2416 /* portable code must never pass more than 32 bytes */
2417 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2418 
2419 static u8	*buf;
2420 
2421 /**
2422  * spi_write_then_read - SPI synchronous write followed by read
2423  * @spi: device with which data will be exchanged
2424  * @txbuf: data to be written (need not be dma-safe)
2425  * @n_tx: size of txbuf, in bytes
2426  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2427  * @n_rx: size of rxbuf, in bytes
2428  * Context: can sleep
2429  *
2430  * This performs a half duplex MicroWire style transaction with the
2431  * device, sending txbuf and then reading rxbuf.  The return value
2432  * is zero for success, else a negative errno status code.
2433  * This call may only be used from a context that may sleep.
2434  *
2435  * Parameters to this routine are always copied using a small buffer;
2436  * portable code should never use this for more than 32 bytes.
2437  * Performance-sensitive or bulk transfer code should instead use
2438  * spi_{async,sync}() calls with dma-safe buffers.
2439  */
2440 int spi_write_then_read(struct spi_device *spi,
2441 		const void *txbuf, unsigned n_tx,
2442 		void *rxbuf, unsigned n_rx)
2443 {
2444 	static DEFINE_MUTEX(lock);
2445 
2446 	int			status;
2447 	struct spi_message	message;
2448 	struct spi_transfer	x[2];
2449 	u8			*local_buf;
2450 
2451 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2452 	 * copying here, (as a pure convenience thing), but we can
2453 	 * keep heap costs out of the hot path unless someone else is
2454 	 * using the pre-allocated buffer or the transfer is too large.
2455 	 */
2456 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2457 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2458 				    GFP_KERNEL | GFP_DMA);
2459 		if (!local_buf)
2460 			return -ENOMEM;
2461 	} else {
2462 		local_buf = buf;
2463 	}
2464 
2465 	spi_message_init(&message);
2466 	memset(x, 0, sizeof(x));
2467 	if (n_tx) {
2468 		x[0].len = n_tx;
2469 		spi_message_add_tail(&x[0], &message);
2470 	}
2471 	if (n_rx) {
2472 		x[1].len = n_rx;
2473 		spi_message_add_tail(&x[1], &message);
2474 	}
2475 
2476 	memcpy(local_buf, txbuf, n_tx);
2477 	x[0].tx_buf = local_buf;
2478 	x[1].rx_buf = local_buf + n_tx;
2479 
2480 	/* do the i/o */
2481 	status = spi_sync(spi, &message);
2482 	if (status == 0)
2483 		memcpy(rxbuf, x[1].rx_buf, n_rx);
2484 
2485 	if (x[0].tx_buf == buf)
2486 		mutex_unlock(&lock);
2487 	else
2488 		kfree(local_buf);
2489 
2490 	return status;
2491 }
2492 EXPORT_SYMBOL_GPL(spi_write_then_read);
2493 
2494 /*-------------------------------------------------------------------------*/
2495 
2496 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2497 static int __spi_of_device_match(struct device *dev, void *data)
2498 {
2499 	return dev->of_node == data;
2500 }
2501 
2502 /* must call put_device() when done with returned spi_device device */
2503 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2504 {
2505 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2506 						__spi_of_device_match);
2507 	return dev ? to_spi_device(dev) : NULL;
2508 }
2509 
2510 static int __spi_of_master_match(struct device *dev, const void *data)
2511 {
2512 	return dev->of_node == data;
2513 }
2514 
2515 /* the spi masters are not using spi_bus, so we find it with another way */
2516 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2517 {
2518 	struct device *dev;
2519 
2520 	dev = class_find_device(&spi_master_class, NULL, node,
2521 				__spi_of_master_match);
2522 	if (!dev)
2523 		return NULL;
2524 
2525 	/* reference got in class_find_device */
2526 	return container_of(dev, struct spi_master, dev);
2527 }
2528 
2529 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2530 			 void *arg)
2531 {
2532 	struct of_reconfig_data *rd = arg;
2533 	struct spi_master *master;
2534 	struct spi_device *spi;
2535 
2536 	switch (of_reconfig_get_state_change(action, arg)) {
2537 	case OF_RECONFIG_CHANGE_ADD:
2538 		master = of_find_spi_master_by_node(rd->dn->parent);
2539 		if (master == NULL)
2540 			return NOTIFY_OK;	/* not for us */
2541 
2542 		spi = of_register_spi_device(master, rd->dn);
2543 		put_device(&master->dev);
2544 
2545 		if (IS_ERR(spi)) {
2546 			pr_err("%s: failed to create for '%s'\n",
2547 					__func__, rd->dn->full_name);
2548 			return notifier_from_errno(PTR_ERR(spi));
2549 		}
2550 		break;
2551 
2552 	case OF_RECONFIG_CHANGE_REMOVE:
2553 		/* find our device by node */
2554 		spi = of_find_spi_device_by_node(rd->dn);
2555 		if (spi == NULL)
2556 			return NOTIFY_OK;	/* no? not meant for us */
2557 
2558 		/* unregister takes one ref away */
2559 		spi_unregister_device(spi);
2560 
2561 		/* and put the reference of the find */
2562 		put_device(&spi->dev);
2563 		break;
2564 	}
2565 
2566 	return NOTIFY_OK;
2567 }
2568 
2569 static struct notifier_block spi_of_notifier = {
2570 	.notifier_call = of_spi_notify,
2571 };
2572 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2573 extern struct notifier_block spi_of_notifier;
2574 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2575 
2576 static int __init spi_init(void)
2577 {
2578 	int	status;
2579 
2580 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2581 	if (!buf) {
2582 		status = -ENOMEM;
2583 		goto err0;
2584 	}
2585 
2586 	status = bus_register(&spi_bus_type);
2587 	if (status < 0)
2588 		goto err1;
2589 
2590 	status = class_register(&spi_master_class);
2591 	if (status < 0)
2592 		goto err2;
2593 
2594 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2595 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2596 
2597 	return 0;
2598 
2599 err2:
2600 	bus_unregister(&spi_bus_type);
2601 err1:
2602 	kfree(buf);
2603 	buf = NULL;
2604 err0:
2605 	return status;
2606 }
2607 
2608 /* board_info is normally registered in arch_initcall(),
2609  * but even essential drivers wait till later
2610  *
2611  * REVISIT only boardinfo really needs static linking. the rest (device and
2612  * driver registration) _could_ be dynamically linked (modular) ... costs
2613  * include needing to have boardinfo data structures be much more public.
2614  */
2615 postcore_initcall(spi_init);
2616 
2617