xref: /linux/drivers/spi/spi.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 
43 #include "internals.h"
44 
45 static DEFINE_IDR(spi_master_idr);
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	spi_controller_put(spi->controller);
52 	kfree(spi->driver_override);
53 	free_percpu(spi->pcpu_statistics);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static ssize_t driver_override_store(struct device *dev,
72 				     struct device_attribute *a,
73 				     const char *buf, size_t count)
74 {
75 	struct spi_device *spi = to_spi_device(dev);
76 	int ret;
77 
78 	ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 	if (ret)
80 		return ret;
81 
82 	return count;
83 }
84 
85 static ssize_t driver_override_show(struct device *dev,
86 				    struct device_attribute *a, char *buf)
87 {
88 	const struct spi_device *spi = to_spi_device(dev);
89 	ssize_t len;
90 
91 	device_lock(dev);
92 	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93 	device_unlock(dev);
94 	return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97 
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 	struct spi_statistics __percpu *pcpu_stats;
101 
102 	if (dev)
103 		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 	else
105 		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106 
107 	if (pcpu_stats) {
108 		int cpu;
109 
110 		for_each_possible_cpu(cpu) {
111 			struct spi_statistics *stat;
112 
113 			stat = per_cpu_ptr(pcpu_stats, cpu);
114 			u64_stats_init(&stat->syncp);
115 		}
116 	}
117 	return pcpu_stats;
118 }
119 
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121 				   char *buf, size_t offset)
122 {
123 	u64 val = 0;
124 	int i;
125 
126 	for_each_possible_cpu(i) {
127 		const struct spi_statistics *pcpu_stats;
128 		u64_stats_t *field;
129 		unsigned int start;
130 		u64 inc;
131 
132 		pcpu_stats = per_cpu_ptr(stat, i);
133 		field = (void *)pcpu_stats + offset;
134 		do {
135 			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136 			inc = u64_stats_read(field);
137 		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138 		val += inc;
139 	}
140 	return sysfs_emit(buf, "%llu\n", val);
141 }
142 
143 #define SPI_STATISTICS_ATTRS(field, file)				\
144 static ssize_t spi_controller_##field##_show(struct device *dev,	\
145 					     struct device_attribute *attr, \
146 					     char *buf)			\
147 {									\
148 	struct spi_controller *ctlr = container_of(dev,			\
149 					 struct spi_controller, dev);	\
150 	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }									\
152 static struct device_attribute dev_attr_spi_controller_##field = {	\
153 	.attr = { .name = file, .mode = 0444 },				\
154 	.show = spi_controller_##field##_show,				\
155 };									\
156 static ssize_t spi_device_##field##_show(struct device *dev,		\
157 					 struct device_attribute *attr,	\
158 					char *buf)			\
159 {									\
160 	struct spi_device *spi = to_spi_device(dev);			\
161 	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }									\
163 static struct device_attribute dev_attr_spi_device_##field = {		\
164 	.attr = { .name = file, .mode = 0444 },				\
165 	.show = spi_device_##field##_show,				\
166 }
167 
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170 					    char *buf)			\
171 {									\
172 	return spi_emit_pcpu_stats(stat, buf,				\
173 			offsetof(struct spi_statistics, field));	\
174 }									\
175 SPI_STATISTICS_ATTRS(name, file)
176 
177 #define SPI_STATISTICS_SHOW(field)					\
178 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
179 				 field)
180 
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185 
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189 
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193 
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
195 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
196 				 "transfer_bytes_histo_" number,	\
197 				 transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215 
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217 
218 static struct attribute *spi_dev_attrs[] = {
219 	&dev_attr_modalias.attr,
220 	&dev_attr_driver_override.attr,
221 	NULL,
222 };
223 
224 static const struct attribute_group spi_dev_group = {
225 	.attrs  = spi_dev_attrs,
226 };
227 
228 static struct attribute *spi_device_statistics_attrs[] = {
229 	&dev_attr_spi_device_messages.attr,
230 	&dev_attr_spi_device_transfers.attr,
231 	&dev_attr_spi_device_errors.attr,
232 	&dev_attr_spi_device_timedout.attr,
233 	&dev_attr_spi_device_spi_sync.attr,
234 	&dev_attr_spi_device_spi_sync_immediate.attr,
235 	&dev_attr_spi_device_spi_async.attr,
236 	&dev_attr_spi_device_bytes.attr,
237 	&dev_attr_spi_device_bytes_rx.attr,
238 	&dev_attr_spi_device_bytes_tx.attr,
239 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
240 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
241 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
242 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
243 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
244 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
245 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
246 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
247 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
248 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
249 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
250 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
251 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
252 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
253 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
254 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
255 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
256 	&dev_attr_spi_device_transfers_split_maxsize.attr,
257 	NULL,
258 };
259 
260 static const struct attribute_group spi_device_statistics_group = {
261 	.name  = "statistics",
262 	.attrs  = spi_device_statistics_attrs,
263 };
264 
265 static const struct attribute_group *spi_dev_groups[] = {
266 	&spi_dev_group,
267 	&spi_device_statistics_group,
268 	NULL,
269 };
270 
271 static struct attribute *spi_controller_statistics_attrs[] = {
272 	&dev_attr_spi_controller_messages.attr,
273 	&dev_attr_spi_controller_transfers.attr,
274 	&dev_attr_spi_controller_errors.attr,
275 	&dev_attr_spi_controller_timedout.attr,
276 	&dev_attr_spi_controller_spi_sync.attr,
277 	&dev_attr_spi_controller_spi_sync_immediate.attr,
278 	&dev_attr_spi_controller_spi_async.attr,
279 	&dev_attr_spi_controller_bytes.attr,
280 	&dev_attr_spi_controller_bytes_rx.attr,
281 	&dev_attr_spi_controller_bytes_tx.attr,
282 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
283 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
284 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
285 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
286 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
287 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
288 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
289 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
290 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
291 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
292 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
293 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
294 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
295 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
296 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
297 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
298 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
299 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
300 	NULL,
301 };
302 
303 static const struct attribute_group spi_controller_statistics_group = {
304 	.name  = "statistics",
305 	.attrs  = spi_controller_statistics_attrs,
306 };
307 
308 static const struct attribute_group *spi_master_groups[] = {
309 	&spi_controller_statistics_group,
310 	NULL,
311 };
312 
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314 					      struct spi_transfer *xfer,
315 					      struct spi_controller *ctlr)
316 {
317 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318 	struct spi_statistics *stats;
319 
320 	if (l2len < 0)
321 		l2len = 0;
322 
323 	get_cpu();
324 	stats = this_cpu_ptr(pcpu_stats);
325 	u64_stats_update_begin(&stats->syncp);
326 
327 	u64_stats_inc(&stats->transfers);
328 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329 
330 	u64_stats_add(&stats->bytes, xfer->len);
331 	if ((xfer->tx_buf) &&
332 	    (xfer->tx_buf != ctlr->dummy_tx))
333 		u64_stats_add(&stats->bytes_tx, xfer->len);
334 	if ((xfer->rx_buf) &&
335 	    (xfer->rx_buf != ctlr->dummy_rx))
336 		u64_stats_add(&stats->bytes_rx, xfer->len);
337 
338 	u64_stats_update_end(&stats->syncp);
339 	put_cpu();
340 }
341 
342 /*
343  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344  * and the sysfs version makes coldplug work too.
345  */
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348 	while (id->name[0]) {
349 		if (!strcmp(name, id->name))
350 			return id;
351 		id++;
352 	}
353 	return NULL;
354 }
355 
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359 
360 	return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363 
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366 	const void *match;
367 
368 	match = device_get_match_data(&sdev->dev);
369 	if (match)
370 		return match;
371 
372 	return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375 
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378 	const struct spi_device	*spi = to_spi_device(dev);
379 	const struct spi_driver	*sdrv = to_spi_driver(drv);
380 
381 	/* Check override first, and if set, only use the named driver */
382 	if (spi->driver_override)
383 		return strcmp(spi->driver_override, drv->name) == 0;
384 
385 	/* Attempt an OF style match */
386 	if (of_driver_match_device(dev, drv))
387 		return 1;
388 
389 	/* Then try ACPI */
390 	if (acpi_driver_match_device(dev, drv))
391 		return 1;
392 
393 	if (sdrv->id_table)
394 		return !!spi_match_id(sdrv->id_table, spi->modalias);
395 
396 	return strcmp(spi->modalias, drv->name) == 0;
397 }
398 
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401 	const struct spi_device		*spi = to_spi_device(dev);
402 	int rc;
403 
404 	rc = acpi_device_uevent_modalias(dev, env);
405 	if (rc != -ENODEV)
406 		return rc;
407 
408 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410 
411 static int spi_probe(struct device *dev)
412 {
413 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
414 	struct spi_device		*spi = to_spi_device(dev);
415 	int ret;
416 
417 	ret = of_clk_set_defaults(dev->of_node, false);
418 	if (ret)
419 		return ret;
420 
421 	if (dev->of_node) {
422 		spi->irq = of_irq_get(dev->of_node, 0);
423 		if (spi->irq == -EPROBE_DEFER)
424 			return -EPROBE_DEFER;
425 		if (spi->irq < 0)
426 			spi->irq = 0;
427 	}
428 
429 	ret = dev_pm_domain_attach(dev, true);
430 	if (ret)
431 		return ret;
432 
433 	if (sdrv->probe) {
434 		ret = sdrv->probe(spi);
435 		if (ret)
436 			dev_pm_domain_detach(dev, true);
437 	}
438 
439 	return ret;
440 }
441 
442 static void spi_remove(struct device *dev)
443 {
444 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
445 
446 	if (sdrv->remove)
447 		sdrv->remove(to_spi_device(dev));
448 
449 	dev_pm_domain_detach(dev, true);
450 }
451 
452 static void spi_shutdown(struct device *dev)
453 {
454 	if (dev->driver) {
455 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
456 
457 		if (sdrv->shutdown)
458 			sdrv->shutdown(to_spi_device(dev));
459 	}
460 }
461 
462 const struct bus_type spi_bus_type = {
463 	.name		= "spi",
464 	.dev_groups	= spi_dev_groups,
465 	.match		= spi_match_device,
466 	.uevent		= spi_uevent,
467 	.probe		= spi_probe,
468 	.remove		= spi_remove,
469 	.shutdown	= spi_shutdown,
470 };
471 EXPORT_SYMBOL_GPL(spi_bus_type);
472 
473 /**
474  * __spi_register_driver - register a SPI driver
475  * @owner: owner module of the driver to register
476  * @sdrv: the driver to register
477  * Context: can sleep
478  *
479  * Return: zero on success, else a negative error code.
480  */
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 {
483 	sdrv->driver.owner = owner;
484 	sdrv->driver.bus = &spi_bus_type;
485 
486 	/*
487 	 * For Really Good Reasons we use spi: modaliases not of:
488 	 * modaliases for DT so module autoloading won't work if we
489 	 * don't have a spi_device_id as well as a compatible string.
490 	 */
491 	if (sdrv->driver.of_match_table) {
492 		const struct of_device_id *of_id;
493 
494 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495 		     of_id++) {
496 			const char *of_name;
497 
498 			/* Strip off any vendor prefix */
499 			of_name = strnchr(of_id->compatible,
500 					  sizeof(of_id->compatible), ',');
501 			if (of_name)
502 				of_name++;
503 			else
504 				of_name = of_id->compatible;
505 
506 			if (sdrv->id_table) {
507 				const struct spi_device_id *spi_id;
508 
509 				spi_id = spi_match_id(sdrv->id_table, of_name);
510 				if (spi_id)
511 					continue;
512 			} else {
513 				if (strcmp(sdrv->driver.name, of_name) == 0)
514 					continue;
515 			}
516 
517 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
518 				sdrv->driver.name, of_id->compatible);
519 		}
520 	}
521 
522 	return driver_register(&sdrv->driver);
523 }
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
525 
526 /*-------------------------------------------------------------------------*/
527 
528 /*
529  * SPI devices should normally not be created by SPI device drivers; that
530  * would make them board-specific.  Similarly with SPI controller drivers.
531  * Device registration normally goes into like arch/.../mach.../board-YYY.c
532  * with other readonly (flashable) information about mainboard devices.
533  */
534 
535 struct boardinfo {
536 	struct list_head	list;
537 	struct spi_board_info	board_info;
538 };
539 
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
542 
543 /*
544  * Used to protect add/del operation for board_info list and
545  * spi_controller list, and their matching process also used
546  * to protect object of type struct idr.
547  */
548 static DEFINE_MUTEX(board_lock);
549 
550 /**
551  * spi_alloc_device - Allocate a new SPI device
552  * @ctlr: Controller to which device is connected
553  * Context: can sleep
554  *
555  * Allows a driver to allocate and initialize a spi_device without
556  * registering it immediately.  This allows a driver to directly
557  * fill the spi_device with device parameters before calling
558  * spi_add_device() on it.
559  *
560  * Caller is responsible to call spi_add_device() on the returned
561  * spi_device structure to add it to the SPI controller.  If the caller
562  * needs to discard the spi_device without adding it, then it should
563  * call spi_dev_put() on it.
564  *
565  * Return: a pointer to the new device, or NULL.
566  */
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 {
569 	struct spi_device	*spi;
570 
571 	if (!spi_controller_get(ctlr))
572 		return NULL;
573 
574 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575 	if (!spi) {
576 		spi_controller_put(ctlr);
577 		return NULL;
578 	}
579 
580 	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581 	if (!spi->pcpu_statistics) {
582 		kfree(spi);
583 		spi_controller_put(ctlr);
584 		return NULL;
585 	}
586 
587 	spi->controller = ctlr;
588 	spi->dev.parent = &ctlr->dev;
589 	spi->dev.bus = &spi_bus_type;
590 	spi->dev.release = spidev_release;
591 	spi->mode = ctlr->buswidth_override_bits;
592 
593 	device_initialize(&spi->dev);
594 	return spi;
595 }
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
597 
598 static void spi_dev_set_name(struct spi_device *spi)
599 {
600 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
601 
602 	if (adev) {
603 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
604 		return;
605 	}
606 
607 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608 		     spi_get_chipselect(spi, 0));
609 }
610 
611 /*
612  * Zero(0) is a valid physical CS value and can be located at any
613  * logical CS in the spi->chip_select[]. If all the physical CS
614  * are initialized to 0 then It would be difficult to differentiate
615  * between a valid physical CS 0 & an unused logical CS whose physical
616  * CS can be 0. As a solution to this issue initialize all the CS to -1.
617  * Now all the unused logical CS will have -1 physical CS value & can be
618  * ignored while performing physical CS validity checks.
619  */
620 #define SPI_INVALID_CS		((s8)-1)
621 
622 static inline bool is_valid_cs(s8 chip_select)
623 {
624 	return chip_select != SPI_INVALID_CS;
625 }
626 
627 static inline int spi_dev_check_cs(struct device *dev,
628 				   struct spi_device *spi, u8 idx,
629 				   struct spi_device *new_spi, u8 new_idx)
630 {
631 	u8 cs, cs_new;
632 	u8 idx_new;
633 
634 	cs = spi_get_chipselect(spi, idx);
635 	for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
636 		cs_new = spi_get_chipselect(new_spi, idx_new);
637 		if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
638 			dev_err(dev, "chipselect %u already in use\n", cs_new);
639 			return -EBUSY;
640 		}
641 	}
642 	return 0;
643 }
644 
645 static int spi_dev_check(struct device *dev, void *data)
646 {
647 	struct spi_device *spi = to_spi_device(dev);
648 	struct spi_device *new_spi = data;
649 	int status, idx;
650 
651 	if (spi->controller == new_spi->controller) {
652 		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
653 			status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
654 			if (status)
655 				return status;
656 		}
657 	}
658 	return 0;
659 }
660 
661 static void spi_cleanup(struct spi_device *spi)
662 {
663 	if (spi->controller->cleanup)
664 		spi->controller->cleanup(spi);
665 }
666 
667 static int __spi_add_device(struct spi_device *spi)
668 {
669 	struct spi_controller *ctlr = spi->controller;
670 	struct device *dev = ctlr->dev.parent;
671 	int status, idx;
672 	u8 cs;
673 
674 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
675 		/* Chipselects are numbered 0..max; validate. */
676 		cs = spi_get_chipselect(spi, idx);
677 		if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
678 			dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
679 				ctlr->num_chipselect);
680 			return -EINVAL;
681 		}
682 	}
683 
684 	/*
685 	 * Make sure that multiple logical CS doesn't map to the same physical CS.
686 	 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
687 	 */
688 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
689 		status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
690 		if (status)
691 			return status;
692 	}
693 
694 	/* Set the bus ID string */
695 	spi_dev_set_name(spi);
696 
697 	/*
698 	 * We need to make sure there's no other device with this
699 	 * chipselect **BEFORE** we call setup(), else we'll trash
700 	 * its configuration.
701 	 */
702 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
703 	if (status)
704 		return status;
705 
706 	/* Controller may unregister concurrently */
707 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
708 	    !device_is_registered(&ctlr->dev)) {
709 		return -ENODEV;
710 	}
711 
712 	if (ctlr->cs_gpiods) {
713 		u8 cs;
714 
715 		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
716 			cs = spi_get_chipselect(spi, idx);
717 			if (is_valid_cs(cs))
718 				spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
719 		}
720 	}
721 
722 	/*
723 	 * Drivers may modify this initial i/o setup, but will
724 	 * normally rely on the device being setup.  Devices
725 	 * using SPI_CS_HIGH can't coexist well otherwise...
726 	 */
727 	status = spi_setup(spi);
728 	if (status < 0) {
729 		dev_err(dev, "can't setup %s, status %d\n",
730 				dev_name(&spi->dev), status);
731 		return status;
732 	}
733 
734 	/* Device may be bound to an active driver when this returns */
735 	status = device_add(&spi->dev);
736 	if (status < 0) {
737 		dev_err(dev, "can't add %s, status %d\n",
738 				dev_name(&spi->dev), status);
739 		spi_cleanup(spi);
740 	} else {
741 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
742 	}
743 
744 	return status;
745 }
746 
747 /**
748  * spi_add_device - Add spi_device allocated with spi_alloc_device
749  * @spi: spi_device to register
750  *
751  * Companion function to spi_alloc_device.  Devices allocated with
752  * spi_alloc_device can be added onto the SPI bus with this function.
753  *
754  * Return: 0 on success; negative errno on failure
755  */
756 int spi_add_device(struct spi_device *spi)
757 {
758 	struct spi_controller *ctlr = spi->controller;
759 	int status;
760 
761 	/* Set the bus ID string */
762 	spi_dev_set_name(spi);
763 
764 	mutex_lock(&ctlr->add_lock);
765 	status = __spi_add_device(spi);
766 	mutex_unlock(&ctlr->add_lock);
767 	return status;
768 }
769 EXPORT_SYMBOL_GPL(spi_add_device);
770 
771 static void spi_set_all_cs_unused(struct spi_device *spi)
772 {
773 	u8 idx;
774 
775 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
776 		spi_set_chipselect(spi, idx, SPI_INVALID_CS);
777 }
778 
779 /**
780  * spi_new_device - instantiate one new SPI device
781  * @ctlr: Controller to which device is connected
782  * @chip: Describes the SPI device
783  * Context: can sleep
784  *
785  * On typical mainboards, this is purely internal; and it's not needed
786  * after board init creates the hard-wired devices.  Some development
787  * platforms may not be able to use spi_register_board_info though, and
788  * this is exported so that for example a USB or parport based adapter
789  * driver could add devices (which it would learn about out-of-band).
790  *
791  * Return: the new device, or NULL.
792  */
793 struct spi_device *spi_new_device(struct spi_controller *ctlr,
794 				  struct spi_board_info *chip)
795 {
796 	struct spi_device	*proxy;
797 	int			status;
798 
799 	/*
800 	 * NOTE:  caller did any chip->bus_num checks necessary.
801 	 *
802 	 * Also, unless we change the return value convention to use
803 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
804 	 * suggests syslogged diagnostics are best here (ugh).
805 	 */
806 
807 	proxy = spi_alloc_device(ctlr);
808 	if (!proxy)
809 		return NULL;
810 
811 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
812 
813 	/* Use provided chip-select for proxy device */
814 	spi_set_all_cs_unused(proxy);
815 	spi_set_chipselect(proxy, 0, chip->chip_select);
816 
817 	proxy->max_speed_hz = chip->max_speed_hz;
818 	proxy->mode = chip->mode;
819 	proxy->irq = chip->irq;
820 	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
821 	proxy->dev.platform_data = (void *) chip->platform_data;
822 	proxy->controller_data = chip->controller_data;
823 	proxy->controller_state = NULL;
824 	/*
825 	 * spi->chip_select[i] gives the corresponding physical CS for logical CS i
826 	 * logical CS number is represented by setting the ith bit in spi->cs_index_mask
827 	 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
828 	 * spi->chip_select[0] will give the physical CS.
829 	 * By default spi->chip_select[0] will hold the physical CS number so, set
830 	 * spi->cs_index_mask as 0x01.
831 	 */
832 	proxy->cs_index_mask = 0x01;
833 
834 	if (chip->swnode) {
835 		status = device_add_software_node(&proxy->dev, chip->swnode);
836 		if (status) {
837 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
838 				chip->modalias, status);
839 			goto err_dev_put;
840 		}
841 	}
842 
843 	status = spi_add_device(proxy);
844 	if (status < 0)
845 		goto err_dev_put;
846 
847 	return proxy;
848 
849 err_dev_put:
850 	device_remove_software_node(&proxy->dev);
851 	spi_dev_put(proxy);
852 	return NULL;
853 }
854 EXPORT_SYMBOL_GPL(spi_new_device);
855 
856 /**
857  * spi_unregister_device - unregister a single SPI device
858  * @spi: spi_device to unregister
859  *
860  * Start making the passed SPI device vanish. Normally this would be handled
861  * by spi_unregister_controller().
862  */
863 void spi_unregister_device(struct spi_device *spi)
864 {
865 	if (!spi)
866 		return;
867 
868 	if (spi->dev.of_node) {
869 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
870 		of_node_put(spi->dev.of_node);
871 	}
872 	if (ACPI_COMPANION(&spi->dev))
873 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
874 	device_remove_software_node(&spi->dev);
875 	device_del(&spi->dev);
876 	spi_cleanup(spi);
877 	put_device(&spi->dev);
878 }
879 EXPORT_SYMBOL_GPL(spi_unregister_device);
880 
881 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
882 					      struct spi_board_info *bi)
883 {
884 	struct spi_device *dev;
885 
886 	if (ctlr->bus_num != bi->bus_num)
887 		return;
888 
889 	dev = spi_new_device(ctlr, bi);
890 	if (!dev)
891 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
892 			bi->modalias);
893 }
894 
895 /**
896  * spi_register_board_info - register SPI devices for a given board
897  * @info: array of chip descriptors
898  * @n: how many descriptors are provided
899  * Context: can sleep
900  *
901  * Board-specific early init code calls this (probably during arch_initcall)
902  * with segments of the SPI device table.  Any device nodes are created later,
903  * after the relevant parent SPI controller (bus_num) is defined.  We keep
904  * this table of devices forever, so that reloading a controller driver will
905  * not make Linux forget about these hard-wired devices.
906  *
907  * Other code can also call this, e.g. a particular add-on board might provide
908  * SPI devices through its expansion connector, so code initializing that board
909  * would naturally declare its SPI devices.
910  *
911  * The board info passed can safely be __initdata ... but be careful of
912  * any embedded pointers (platform_data, etc), they're copied as-is.
913  *
914  * Return: zero on success, else a negative error code.
915  */
916 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
917 {
918 	struct boardinfo *bi;
919 	int i;
920 
921 	if (!n)
922 		return 0;
923 
924 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
925 	if (!bi)
926 		return -ENOMEM;
927 
928 	for (i = 0; i < n; i++, bi++, info++) {
929 		struct spi_controller *ctlr;
930 
931 		memcpy(&bi->board_info, info, sizeof(*info));
932 
933 		mutex_lock(&board_lock);
934 		list_add_tail(&bi->list, &board_list);
935 		list_for_each_entry(ctlr, &spi_controller_list, list)
936 			spi_match_controller_to_boardinfo(ctlr,
937 							  &bi->board_info);
938 		mutex_unlock(&board_lock);
939 	}
940 
941 	return 0;
942 }
943 
944 /*-------------------------------------------------------------------------*/
945 
946 /* Core methods for SPI resource management */
947 
948 /**
949  * spi_res_alloc - allocate a spi resource that is life-cycle managed
950  *                 during the processing of a spi_message while using
951  *                 spi_transfer_one
952  * @spi:     the SPI device for which we allocate memory
953  * @release: the release code to execute for this resource
954  * @size:    size to alloc and return
955  * @gfp:     GFP allocation flags
956  *
957  * Return: the pointer to the allocated data
958  *
959  * This may get enhanced in the future to allocate from a memory pool
960  * of the @spi_device or @spi_controller to avoid repeated allocations.
961  */
962 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
963 			   size_t size, gfp_t gfp)
964 {
965 	struct spi_res *sres;
966 
967 	sres = kzalloc(sizeof(*sres) + size, gfp);
968 	if (!sres)
969 		return NULL;
970 
971 	INIT_LIST_HEAD(&sres->entry);
972 	sres->release = release;
973 
974 	return sres->data;
975 }
976 
977 /**
978  * spi_res_free - free an SPI resource
979  * @res: pointer to the custom data of a resource
980  */
981 static void spi_res_free(void *res)
982 {
983 	struct spi_res *sres = container_of(res, struct spi_res, data);
984 
985 	if (!res)
986 		return;
987 
988 	WARN_ON(!list_empty(&sres->entry));
989 	kfree(sres);
990 }
991 
992 /**
993  * spi_res_add - add a spi_res to the spi_message
994  * @message: the SPI message
995  * @res:     the spi_resource
996  */
997 static void spi_res_add(struct spi_message *message, void *res)
998 {
999 	struct spi_res *sres = container_of(res, struct spi_res, data);
1000 
1001 	WARN_ON(!list_empty(&sres->entry));
1002 	list_add_tail(&sres->entry, &message->resources);
1003 }
1004 
1005 /**
1006  * spi_res_release - release all SPI resources for this message
1007  * @ctlr:  the @spi_controller
1008  * @message: the @spi_message
1009  */
1010 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1011 {
1012 	struct spi_res *res, *tmp;
1013 
1014 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1015 		if (res->release)
1016 			res->release(ctlr, message, res->data);
1017 
1018 		list_del(&res->entry);
1019 
1020 		kfree(res);
1021 	}
1022 }
1023 
1024 /*-------------------------------------------------------------------------*/
1025 static inline bool spi_is_last_cs(struct spi_device *spi)
1026 {
1027 	u8 idx;
1028 	bool last = false;
1029 
1030 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1031 		if (spi->cs_index_mask & BIT(idx)) {
1032 			if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1033 				last = true;
1034 		}
1035 	}
1036 	return last;
1037 }
1038 
1039 
1040 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1041 {
1042 	bool activate = enable;
1043 	u8 idx;
1044 
1045 	/*
1046 	 * Avoid calling into the driver (or doing delays) if the chip select
1047 	 * isn't actually changing from the last time this was called.
1048 	 */
1049 	if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1050 			spi_is_last_cs(spi)) ||
1051 		       (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1052 			!spi_is_last_cs(spi))) &&
1053 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1054 		return;
1055 
1056 	trace_spi_set_cs(spi, activate);
1057 
1058 	spi->controller->last_cs_index_mask = spi->cs_index_mask;
1059 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1060 		spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1061 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1062 
1063 	if (spi->mode & SPI_CS_HIGH)
1064 		enable = !enable;
1065 
1066 	if (spi_is_csgpiod(spi)) {
1067 		if (!spi->controller->set_cs_timing && !activate)
1068 			spi_delay_exec(&spi->cs_hold, NULL);
1069 
1070 		if (!(spi->mode & SPI_NO_CS)) {
1071 			/*
1072 			 * Historically ACPI has no means of the GPIO polarity and
1073 			 * thus the SPISerialBus() resource defines it on the per-chip
1074 			 * basis. In order to avoid a chain of negations, the GPIO
1075 			 * polarity is considered being Active High. Even for the cases
1076 			 * when _DSD() is involved (in the updated versions of ACPI)
1077 			 * the GPIO CS polarity must be defined Active High to avoid
1078 			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1079 			 * into account.
1080 			 */
1081 			for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1082 				if ((spi->cs_index_mask & BIT(idx)) && spi_get_csgpiod(spi, idx)) {
1083 					if (has_acpi_companion(&spi->dev))
1084 						gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1085 									 !enable);
1086 					else
1087 						/* Polarity handled by GPIO library */
1088 						gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1089 									 activate);
1090 
1091 					if (activate)
1092 						spi_delay_exec(&spi->cs_setup, NULL);
1093 					else
1094 						spi_delay_exec(&spi->cs_inactive, NULL);
1095 				}
1096 			}
1097 		}
1098 		/* Some SPI masters need both GPIO CS & slave_select */
1099 		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1100 		    spi->controller->set_cs)
1101 			spi->controller->set_cs(spi, !enable);
1102 
1103 		if (!spi->controller->set_cs_timing) {
1104 			if (activate)
1105 				spi_delay_exec(&spi->cs_setup, NULL);
1106 			else
1107 				spi_delay_exec(&spi->cs_inactive, NULL);
1108 		}
1109 	} else if (spi->controller->set_cs) {
1110 		spi->controller->set_cs(spi, !enable);
1111 	}
1112 }
1113 
1114 #ifdef CONFIG_HAS_DMA
1115 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1116 			     struct sg_table *sgt, void *buf, size_t len,
1117 			     enum dma_data_direction dir, unsigned long attrs)
1118 {
1119 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1120 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1121 #ifdef CONFIG_HIGHMEM
1122 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1123 				(unsigned long)buf < (PKMAP_BASE +
1124 					(LAST_PKMAP * PAGE_SIZE)));
1125 #else
1126 	const bool kmap_buf = false;
1127 #endif
1128 	int desc_len;
1129 	int sgs;
1130 	struct page *vm_page;
1131 	struct scatterlist *sg;
1132 	void *sg_buf;
1133 	size_t min;
1134 	int i, ret;
1135 
1136 	if (vmalloced_buf || kmap_buf) {
1137 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1138 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1139 	} else if (virt_addr_valid(buf)) {
1140 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1141 		sgs = DIV_ROUND_UP(len, desc_len);
1142 	} else {
1143 		return -EINVAL;
1144 	}
1145 
1146 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1147 	if (ret != 0)
1148 		return ret;
1149 
1150 	sg = &sgt->sgl[0];
1151 	for (i = 0; i < sgs; i++) {
1152 
1153 		if (vmalloced_buf || kmap_buf) {
1154 			/*
1155 			 * Next scatterlist entry size is the minimum between
1156 			 * the desc_len and the remaining buffer length that
1157 			 * fits in a page.
1158 			 */
1159 			min = min_t(size_t, desc_len,
1160 				    min_t(size_t, len,
1161 					  PAGE_SIZE - offset_in_page(buf)));
1162 			if (vmalloced_buf)
1163 				vm_page = vmalloc_to_page(buf);
1164 			else
1165 				vm_page = kmap_to_page(buf);
1166 			if (!vm_page) {
1167 				sg_free_table(sgt);
1168 				return -ENOMEM;
1169 			}
1170 			sg_set_page(sg, vm_page,
1171 				    min, offset_in_page(buf));
1172 		} else {
1173 			min = min_t(size_t, len, desc_len);
1174 			sg_buf = buf;
1175 			sg_set_buf(sg, sg_buf, min);
1176 		}
1177 
1178 		buf += min;
1179 		len -= min;
1180 		sg = sg_next(sg);
1181 	}
1182 
1183 	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1184 	if (ret < 0) {
1185 		sg_free_table(sgt);
1186 		return ret;
1187 	}
1188 
1189 	return 0;
1190 }
1191 
1192 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1193 		struct sg_table *sgt, void *buf, size_t len,
1194 		enum dma_data_direction dir)
1195 {
1196 	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1197 }
1198 
1199 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1200 				struct device *dev, struct sg_table *sgt,
1201 				enum dma_data_direction dir,
1202 				unsigned long attrs)
1203 {
1204 	if (sgt->orig_nents) {
1205 		dma_unmap_sgtable(dev, sgt, dir, attrs);
1206 		sg_free_table(sgt);
1207 		sgt->orig_nents = 0;
1208 		sgt->nents = 0;
1209 	}
1210 }
1211 
1212 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1213 		   struct sg_table *sgt, enum dma_data_direction dir)
1214 {
1215 	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1216 }
1217 
1218 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1219 {
1220 	struct device *tx_dev, *rx_dev;
1221 	struct spi_transfer *xfer;
1222 	int ret;
1223 
1224 	if (!ctlr->can_dma)
1225 		return 0;
1226 
1227 	if (ctlr->dma_tx)
1228 		tx_dev = ctlr->dma_tx->device->dev;
1229 	else if (ctlr->dma_map_dev)
1230 		tx_dev = ctlr->dma_map_dev;
1231 	else
1232 		tx_dev = ctlr->dev.parent;
1233 
1234 	if (ctlr->dma_rx)
1235 		rx_dev = ctlr->dma_rx->device->dev;
1236 	else if (ctlr->dma_map_dev)
1237 		rx_dev = ctlr->dma_map_dev;
1238 	else
1239 		rx_dev = ctlr->dev.parent;
1240 
1241 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1242 		/* The sync is done before each transfer. */
1243 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1244 
1245 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1246 			continue;
1247 
1248 		if (xfer->tx_buf != NULL) {
1249 			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1250 						(void *)xfer->tx_buf,
1251 						xfer->len, DMA_TO_DEVICE,
1252 						attrs);
1253 			if (ret != 0)
1254 				return ret;
1255 		}
1256 
1257 		if (xfer->rx_buf != NULL) {
1258 			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1259 						xfer->rx_buf, xfer->len,
1260 						DMA_FROM_DEVICE, attrs);
1261 			if (ret != 0) {
1262 				spi_unmap_buf_attrs(ctlr, tx_dev,
1263 						&xfer->tx_sg, DMA_TO_DEVICE,
1264 						attrs);
1265 
1266 				return ret;
1267 			}
1268 		}
1269 	}
1270 
1271 	ctlr->cur_rx_dma_dev = rx_dev;
1272 	ctlr->cur_tx_dma_dev = tx_dev;
1273 	ctlr->cur_msg_mapped = true;
1274 
1275 	return 0;
1276 }
1277 
1278 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1279 {
1280 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1281 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1282 	struct spi_transfer *xfer;
1283 
1284 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1285 		return 0;
1286 
1287 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1288 		/* The sync has already been done after each transfer. */
1289 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1290 
1291 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1292 			continue;
1293 
1294 		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1295 				    DMA_FROM_DEVICE, attrs);
1296 		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1297 				    DMA_TO_DEVICE, attrs);
1298 	}
1299 
1300 	ctlr->cur_msg_mapped = false;
1301 
1302 	return 0;
1303 }
1304 
1305 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1306 				    struct spi_transfer *xfer)
1307 {
1308 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1309 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1310 
1311 	if (!ctlr->cur_msg_mapped)
1312 		return;
1313 
1314 	if (xfer->tx_sg.orig_nents)
1315 		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1316 	if (xfer->rx_sg.orig_nents)
1317 		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1318 }
1319 
1320 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1321 				 struct spi_transfer *xfer)
1322 {
1323 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1324 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1325 
1326 	if (!ctlr->cur_msg_mapped)
1327 		return;
1328 
1329 	if (xfer->rx_sg.orig_nents)
1330 		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1331 	if (xfer->tx_sg.orig_nents)
1332 		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1333 }
1334 #else /* !CONFIG_HAS_DMA */
1335 static inline int __spi_map_msg(struct spi_controller *ctlr,
1336 				struct spi_message *msg)
1337 {
1338 	return 0;
1339 }
1340 
1341 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1342 				  struct spi_message *msg)
1343 {
1344 	return 0;
1345 }
1346 
1347 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1348 				    struct spi_transfer *xfer)
1349 {
1350 }
1351 
1352 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1353 				 struct spi_transfer *xfer)
1354 {
1355 }
1356 #endif /* !CONFIG_HAS_DMA */
1357 
1358 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1359 				struct spi_message *msg)
1360 {
1361 	struct spi_transfer *xfer;
1362 
1363 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1364 		/*
1365 		 * Restore the original value of tx_buf or rx_buf if they are
1366 		 * NULL.
1367 		 */
1368 		if (xfer->tx_buf == ctlr->dummy_tx)
1369 			xfer->tx_buf = NULL;
1370 		if (xfer->rx_buf == ctlr->dummy_rx)
1371 			xfer->rx_buf = NULL;
1372 	}
1373 
1374 	return __spi_unmap_msg(ctlr, msg);
1375 }
1376 
1377 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1378 {
1379 	struct spi_transfer *xfer;
1380 	void *tmp;
1381 	unsigned int max_tx, max_rx;
1382 
1383 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1384 		&& !(msg->spi->mode & SPI_3WIRE)) {
1385 		max_tx = 0;
1386 		max_rx = 0;
1387 
1388 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1389 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1390 			    !xfer->tx_buf)
1391 				max_tx = max(xfer->len, max_tx);
1392 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1393 			    !xfer->rx_buf)
1394 				max_rx = max(xfer->len, max_rx);
1395 		}
1396 
1397 		if (max_tx) {
1398 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1399 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1400 			if (!tmp)
1401 				return -ENOMEM;
1402 			ctlr->dummy_tx = tmp;
1403 		}
1404 
1405 		if (max_rx) {
1406 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1407 				       GFP_KERNEL | GFP_DMA);
1408 			if (!tmp)
1409 				return -ENOMEM;
1410 			ctlr->dummy_rx = tmp;
1411 		}
1412 
1413 		if (max_tx || max_rx) {
1414 			list_for_each_entry(xfer, &msg->transfers,
1415 					    transfer_list) {
1416 				if (!xfer->len)
1417 					continue;
1418 				if (!xfer->tx_buf)
1419 					xfer->tx_buf = ctlr->dummy_tx;
1420 				if (!xfer->rx_buf)
1421 					xfer->rx_buf = ctlr->dummy_rx;
1422 			}
1423 		}
1424 	}
1425 
1426 	return __spi_map_msg(ctlr, msg);
1427 }
1428 
1429 static int spi_transfer_wait(struct spi_controller *ctlr,
1430 			     struct spi_message *msg,
1431 			     struct spi_transfer *xfer)
1432 {
1433 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1434 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1435 	u32 speed_hz = xfer->speed_hz;
1436 	unsigned long long ms;
1437 
1438 	if (spi_controller_is_slave(ctlr)) {
1439 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1440 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1441 			return -EINTR;
1442 		}
1443 	} else {
1444 		if (!speed_hz)
1445 			speed_hz = 100000;
1446 
1447 		/*
1448 		 * For each byte we wait for 8 cycles of the SPI clock.
1449 		 * Since speed is defined in Hz and we want milliseconds,
1450 		 * use respective multiplier, but before the division,
1451 		 * otherwise we may get 0 for short transfers.
1452 		 */
1453 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1454 		do_div(ms, speed_hz);
1455 
1456 		/*
1457 		 * Increase it twice and add 200 ms tolerance, use
1458 		 * predefined maximum in case of overflow.
1459 		 */
1460 		ms += ms + 200;
1461 		if (ms > UINT_MAX)
1462 			ms = UINT_MAX;
1463 
1464 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1465 						 msecs_to_jiffies(ms));
1466 
1467 		if (ms == 0) {
1468 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1469 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1470 			dev_err(&msg->spi->dev,
1471 				"SPI transfer timed out\n");
1472 			return -ETIMEDOUT;
1473 		}
1474 
1475 		if (xfer->error & SPI_TRANS_FAIL_IO)
1476 			return -EIO;
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 static void _spi_transfer_delay_ns(u32 ns)
1483 {
1484 	if (!ns)
1485 		return;
1486 	if (ns <= NSEC_PER_USEC) {
1487 		ndelay(ns);
1488 	} else {
1489 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1490 
1491 		if (us <= 10)
1492 			udelay(us);
1493 		else
1494 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1495 	}
1496 }
1497 
1498 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1499 {
1500 	u32 delay = _delay->value;
1501 	u32 unit = _delay->unit;
1502 	u32 hz;
1503 
1504 	if (!delay)
1505 		return 0;
1506 
1507 	switch (unit) {
1508 	case SPI_DELAY_UNIT_USECS:
1509 		delay *= NSEC_PER_USEC;
1510 		break;
1511 	case SPI_DELAY_UNIT_NSECS:
1512 		/* Nothing to do here */
1513 		break;
1514 	case SPI_DELAY_UNIT_SCK:
1515 		/* Clock cycles need to be obtained from spi_transfer */
1516 		if (!xfer)
1517 			return -EINVAL;
1518 		/*
1519 		 * If there is unknown effective speed, approximate it
1520 		 * by underestimating with half of the requested Hz.
1521 		 */
1522 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1523 		if (!hz)
1524 			return -EINVAL;
1525 
1526 		/* Convert delay to nanoseconds */
1527 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1528 		break;
1529 	default:
1530 		return -EINVAL;
1531 	}
1532 
1533 	return delay;
1534 }
1535 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1536 
1537 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1538 {
1539 	int delay;
1540 
1541 	might_sleep();
1542 
1543 	if (!_delay)
1544 		return -EINVAL;
1545 
1546 	delay = spi_delay_to_ns(_delay, xfer);
1547 	if (delay < 0)
1548 		return delay;
1549 
1550 	_spi_transfer_delay_ns(delay);
1551 
1552 	return 0;
1553 }
1554 EXPORT_SYMBOL_GPL(spi_delay_exec);
1555 
1556 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1557 					  struct spi_transfer *xfer)
1558 {
1559 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1560 	u32 delay = xfer->cs_change_delay.value;
1561 	u32 unit = xfer->cs_change_delay.unit;
1562 	int ret;
1563 
1564 	/* Return early on "fast" mode - for everything but USECS */
1565 	if (!delay) {
1566 		if (unit == SPI_DELAY_UNIT_USECS)
1567 			_spi_transfer_delay_ns(default_delay_ns);
1568 		return;
1569 	}
1570 
1571 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1572 	if (ret) {
1573 		dev_err_once(&msg->spi->dev,
1574 			     "Use of unsupported delay unit %i, using default of %luus\n",
1575 			     unit, default_delay_ns / NSEC_PER_USEC);
1576 		_spi_transfer_delay_ns(default_delay_ns);
1577 	}
1578 }
1579 
1580 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1581 						  struct spi_transfer *xfer)
1582 {
1583 	_spi_transfer_cs_change_delay(msg, xfer);
1584 }
1585 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1586 
1587 /*
1588  * spi_transfer_one_message - Default implementation of transfer_one_message()
1589  *
1590  * This is a standard implementation of transfer_one_message() for
1591  * drivers which implement a transfer_one() operation.  It provides
1592  * standard handling of delays and chip select management.
1593  */
1594 static int spi_transfer_one_message(struct spi_controller *ctlr,
1595 				    struct spi_message *msg)
1596 {
1597 	struct spi_transfer *xfer;
1598 	bool keep_cs = false;
1599 	int ret = 0;
1600 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1601 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1602 
1603 	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1604 	spi_set_cs(msg->spi, !xfer->cs_off, false);
1605 
1606 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1607 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1608 
1609 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1610 		trace_spi_transfer_start(msg, xfer);
1611 
1612 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1613 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1614 
1615 		if (!ctlr->ptp_sts_supported) {
1616 			xfer->ptp_sts_word_pre = 0;
1617 			ptp_read_system_prets(xfer->ptp_sts);
1618 		}
1619 
1620 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1621 			reinit_completion(&ctlr->xfer_completion);
1622 
1623 fallback_pio:
1624 			spi_dma_sync_for_device(ctlr, xfer);
1625 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1626 			if (ret < 0) {
1627 				spi_dma_sync_for_cpu(ctlr, xfer);
1628 
1629 				if (ctlr->cur_msg_mapped &&
1630 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1631 					__spi_unmap_msg(ctlr, msg);
1632 					ctlr->fallback = true;
1633 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1634 					goto fallback_pio;
1635 				}
1636 
1637 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1638 							       errors);
1639 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1640 							       errors);
1641 				dev_err(&msg->spi->dev,
1642 					"SPI transfer failed: %d\n", ret);
1643 				goto out;
1644 			}
1645 
1646 			if (ret > 0) {
1647 				ret = spi_transfer_wait(ctlr, msg, xfer);
1648 				if (ret < 0)
1649 					msg->status = ret;
1650 			}
1651 
1652 			spi_dma_sync_for_cpu(ctlr, xfer);
1653 		} else {
1654 			if (xfer->len)
1655 				dev_err(&msg->spi->dev,
1656 					"Bufferless transfer has length %u\n",
1657 					xfer->len);
1658 		}
1659 
1660 		if (!ctlr->ptp_sts_supported) {
1661 			ptp_read_system_postts(xfer->ptp_sts);
1662 			xfer->ptp_sts_word_post = xfer->len;
1663 		}
1664 
1665 		trace_spi_transfer_stop(msg, xfer);
1666 
1667 		if (msg->status != -EINPROGRESS)
1668 			goto out;
1669 
1670 		spi_transfer_delay_exec(xfer);
1671 
1672 		if (xfer->cs_change) {
1673 			if (list_is_last(&xfer->transfer_list,
1674 					 &msg->transfers)) {
1675 				keep_cs = true;
1676 			} else {
1677 				if (!xfer->cs_off)
1678 					spi_set_cs(msg->spi, false, false);
1679 				_spi_transfer_cs_change_delay(msg, xfer);
1680 				if (!list_next_entry(xfer, transfer_list)->cs_off)
1681 					spi_set_cs(msg->spi, true, false);
1682 			}
1683 		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1684 			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1685 			spi_set_cs(msg->spi, xfer->cs_off, false);
1686 		}
1687 
1688 		msg->actual_length += xfer->len;
1689 	}
1690 
1691 out:
1692 	if (ret != 0 || !keep_cs)
1693 		spi_set_cs(msg->spi, false, false);
1694 
1695 	if (msg->status == -EINPROGRESS)
1696 		msg->status = ret;
1697 
1698 	if (msg->status && ctlr->handle_err)
1699 		ctlr->handle_err(ctlr, msg);
1700 
1701 	spi_finalize_current_message(ctlr);
1702 
1703 	return ret;
1704 }
1705 
1706 /**
1707  * spi_finalize_current_transfer - report completion of a transfer
1708  * @ctlr: the controller reporting completion
1709  *
1710  * Called by SPI drivers using the core transfer_one_message()
1711  * implementation to notify it that the current interrupt driven
1712  * transfer has finished and the next one may be scheduled.
1713  */
1714 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1715 {
1716 	complete(&ctlr->xfer_completion);
1717 }
1718 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1719 
1720 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1721 {
1722 	if (ctlr->auto_runtime_pm) {
1723 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1724 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1725 	}
1726 }
1727 
1728 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1729 		struct spi_message *msg, bool was_busy)
1730 {
1731 	struct spi_transfer *xfer;
1732 	int ret;
1733 
1734 	if (!was_busy && ctlr->auto_runtime_pm) {
1735 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1736 		if (ret < 0) {
1737 			pm_runtime_put_noidle(ctlr->dev.parent);
1738 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1739 				ret);
1740 
1741 			msg->status = ret;
1742 			spi_finalize_current_message(ctlr);
1743 
1744 			return ret;
1745 		}
1746 	}
1747 
1748 	if (!was_busy)
1749 		trace_spi_controller_busy(ctlr);
1750 
1751 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1752 		ret = ctlr->prepare_transfer_hardware(ctlr);
1753 		if (ret) {
1754 			dev_err(&ctlr->dev,
1755 				"failed to prepare transfer hardware: %d\n",
1756 				ret);
1757 
1758 			if (ctlr->auto_runtime_pm)
1759 				pm_runtime_put(ctlr->dev.parent);
1760 
1761 			msg->status = ret;
1762 			spi_finalize_current_message(ctlr);
1763 
1764 			return ret;
1765 		}
1766 	}
1767 
1768 	trace_spi_message_start(msg);
1769 
1770 	if (ctlr->prepare_message) {
1771 		ret = ctlr->prepare_message(ctlr, msg);
1772 		if (ret) {
1773 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1774 				ret);
1775 			msg->status = ret;
1776 			spi_finalize_current_message(ctlr);
1777 			return ret;
1778 		}
1779 		msg->prepared = true;
1780 	}
1781 
1782 	ret = spi_map_msg(ctlr, msg);
1783 	if (ret) {
1784 		msg->status = ret;
1785 		spi_finalize_current_message(ctlr);
1786 		return ret;
1787 	}
1788 
1789 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1790 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1791 			xfer->ptp_sts_word_pre = 0;
1792 			ptp_read_system_prets(xfer->ptp_sts);
1793 		}
1794 	}
1795 
1796 	/*
1797 	 * Drivers implementation of transfer_one_message() must arrange for
1798 	 * spi_finalize_current_message() to get called. Most drivers will do
1799 	 * this in the calling context, but some don't. For those cases, a
1800 	 * completion is used to guarantee that this function does not return
1801 	 * until spi_finalize_current_message() is done accessing
1802 	 * ctlr->cur_msg.
1803 	 * Use of the following two flags enable to opportunistically skip the
1804 	 * use of the completion since its use involves expensive spin locks.
1805 	 * In case of a race with the context that calls
1806 	 * spi_finalize_current_message() the completion will always be used,
1807 	 * due to strict ordering of these flags using barriers.
1808 	 */
1809 	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1810 	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1811 	reinit_completion(&ctlr->cur_msg_completion);
1812 	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1813 
1814 	ret = ctlr->transfer_one_message(ctlr, msg);
1815 	if (ret) {
1816 		dev_err(&ctlr->dev,
1817 			"failed to transfer one message from queue\n");
1818 		return ret;
1819 	}
1820 
1821 	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1822 	smp_mb(); /* See spi_finalize_current_message()... */
1823 	if (READ_ONCE(ctlr->cur_msg_incomplete))
1824 		wait_for_completion(&ctlr->cur_msg_completion);
1825 
1826 	return 0;
1827 }
1828 
1829 /**
1830  * __spi_pump_messages - function which processes SPI message queue
1831  * @ctlr: controller to process queue for
1832  * @in_kthread: true if we are in the context of the message pump thread
1833  *
1834  * This function checks if there is any SPI message in the queue that
1835  * needs processing and if so call out to the driver to initialize hardware
1836  * and transfer each message.
1837  *
1838  * Note that it is called both from the kthread itself and also from
1839  * inside spi_sync(); the queue extraction handling at the top of the
1840  * function should deal with this safely.
1841  */
1842 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1843 {
1844 	struct spi_message *msg;
1845 	bool was_busy = false;
1846 	unsigned long flags;
1847 	int ret;
1848 
1849 	/* Take the I/O mutex */
1850 	mutex_lock(&ctlr->io_mutex);
1851 
1852 	/* Lock queue */
1853 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1854 
1855 	/* Make sure we are not already running a message */
1856 	if (ctlr->cur_msg)
1857 		goto out_unlock;
1858 
1859 	/* Check if the queue is idle */
1860 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1861 		if (!ctlr->busy)
1862 			goto out_unlock;
1863 
1864 		/* Defer any non-atomic teardown to the thread */
1865 		if (!in_kthread) {
1866 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1867 			    !ctlr->unprepare_transfer_hardware) {
1868 				spi_idle_runtime_pm(ctlr);
1869 				ctlr->busy = false;
1870 				ctlr->queue_empty = true;
1871 				trace_spi_controller_idle(ctlr);
1872 			} else {
1873 				kthread_queue_work(ctlr->kworker,
1874 						   &ctlr->pump_messages);
1875 			}
1876 			goto out_unlock;
1877 		}
1878 
1879 		ctlr->busy = false;
1880 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1881 
1882 		kfree(ctlr->dummy_rx);
1883 		ctlr->dummy_rx = NULL;
1884 		kfree(ctlr->dummy_tx);
1885 		ctlr->dummy_tx = NULL;
1886 		if (ctlr->unprepare_transfer_hardware &&
1887 		    ctlr->unprepare_transfer_hardware(ctlr))
1888 			dev_err(&ctlr->dev,
1889 				"failed to unprepare transfer hardware\n");
1890 		spi_idle_runtime_pm(ctlr);
1891 		trace_spi_controller_idle(ctlr);
1892 
1893 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1894 		ctlr->queue_empty = true;
1895 		goto out_unlock;
1896 	}
1897 
1898 	/* Extract head of queue */
1899 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1900 	ctlr->cur_msg = msg;
1901 
1902 	list_del_init(&msg->queue);
1903 	if (ctlr->busy)
1904 		was_busy = true;
1905 	else
1906 		ctlr->busy = true;
1907 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1908 
1909 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1910 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1911 
1912 	ctlr->cur_msg = NULL;
1913 	ctlr->fallback = false;
1914 
1915 	mutex_unlock(&ctlr->io_mutex);
1916 
1917 	/* Prod the scheduler in case transfer_one() was busy waiting */
1918 	if (!ret)
1919 		cond_resched();
1920 	return;
1921 
1922 out_unlock:
1923 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1924 	mutex_unlock(&ctlr->io_mutex);
1925 }
1926 
1927 /**
1928  * spi_pump_messages - kthread work function which processes spi message queue
1929  * @work: pointer to kthread work struct contained in the controller struct
1930  */
1931 static void spi_pump_messages(struct kthread_work *work)
1932 {
1933 	struct spi_controller *ctlr =
1934 		container_of(work, struct spi_controller, pump_messages);
1935 
1936 	__spi_pump_messages(ctlr, true);
1937 }
1938 
1939 /**
1940  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1941  * @ctlr: Pointer to the spi_controller structure of the driver
1942  * @xfer: Pointer to the transfer being timestamped
1943  * @progress: How many words (not bytes) have been transferred so far
1944  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1945  *	      transfer, for less jitter in time measurement. Only compatible
1946  *	      with PIO drivers. If true, must follow up with
1947  *	      spi_take_timestamp_post or otherwise system will crash.
1948  *	      WARNING: for fully predictable results, the CPU frequency must
1949  *	      also be under control (governor).
1950  *
1951  * This is a helper for drivers to collect the beginning of the TX timestamp
1952  * for the requested byte from the SPI transfer. The frequency with which this
1953  * function must be called (once per word, once for the whole transfer, once
1954  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1955  * greater than or equal to the requested byte at the time of the call. The
1956  * timestamp is only taken once, at the first such call. It is assumed that
1957  * the driver advances its @tx buffer pointer monotonically.
1958  */
1959 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1960 			    struct spi_transfer *xfer,
1961 			    size_t progress, bool irqs_off)
1962 {
1963 	if (!xfer->ptp_sts)
1964 		return;
1965 
1966 	if (xfer->timestamped)
1967 		return;
1968 
1969 	if (progress > xfer->ptp_sts_word_pre)
1970 		return;
1971 
1972 	/* Capture the resolution of the timestamp */
1973 	xfer->ptp_sts_word_pre = progress;
1974 
1975 	if (irqs_off) {
1976 		local_irq_save(ctlr->irq_flags);
1977 		preempt_disable();
1978 	}
1979 
1980 	ptp_read_system_prets(xfer->ptp_sts);
1981 }
1982 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1983 
1984 /**
1985  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1986  * @ctlr: Pointer to the spi_controller structure of the driver
1987  * @xfer: Pointer to the transfer being timestamped
1988  * @progress: How many words (not bytes) have been transferred so far
1989  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1990  *
1991  * This is a helper for drivers to collect the end of the TX timestamp for
1992  * the requested byte from the SPI transfer. Can be called with an arbitrary
1993  * frequency: only the first call where @tx exceeds or is equal to the
1994  * requested word will be timestamped.
1995  */
1996 void spi_take_timestamp_post(struct spi_controller *ctlr,
1997 			     struct spi_transfer *xfer,
1998 			     size_t progress, bool irqs_off)
1999 {
2000 	if (!xfer->ptp_sts)
2001 		return;
2002 
2003 	if (xfer->timestamped)
2004 		return;
2005 
2006 	if (progress < xfer->ptp_sts_word_post)
2007 		return;
2008 
2009 	ptp_read_system_postts(xfer->ptp_sts);
2010 
2011 	if (irqs_off) {
2012 		local_irq_restore(ctlr->irq_flags);
2013 		preempt_enable();
2014 	}
2015 
2016 	/* Capture the resolution of the timestamp */
2017 	xfer->ptp_sts_word_post = progress;
2018 
2019 	xfer->timestamped = 1;
2020 }
2021 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2022 
2023 /**
2024  * spi_set_thread_rt - set the controller to pump at realtime priority
2025  * @ctlr: controller to boost priority of
2026  *
2027  * This can be called because the controller requested realtime priority
2028  * (by setting the ->rt value before calling spi_register_controller()) or
2029  * because a device on the bus said that its transfers needed realtime
2030  * priority.
2031  *
2032  * NOTE: at the moment if any device on a bus says it needs realtime then
2033  * the thread will be at realtime priority for all transfers on that
2034  * controller.  If this eventually becomes a problem we may see if we can
2035  * find a way to boost the priority only temporarily during relevant
2036  * transfers.
2037  */
2038 static void spi_set_thread_rt(struct spi_controller *ctlr)
2039 {
2040 	dev_info(&ctlr->dev,
2041 		"will run message pump with realtime priority\n");
2042 	sched_set_fifo(ctlr->kworker->task);
2043 }
2044 
2045 static int spi_init_queue(struct spi_controller *ctlr)
2046 {
2047 	ctlr->running = false;
2048 	ctlr->busy = false;
2049 	ctlr->queue_empty = true;
2050 
2051 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2052 	if (IS_ERR(ctlr->kworker)) {
2053 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2054 		return PTR_ERR(ctlr->kworker);
2055 	}
2056 
2057 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2058 
2059 	/*
2060 	 * Controller config will indicate if this controller should run the
2061 	 * message pump with high (realtime) priority to reduce the transfer
2062 	 * latency on the bus by minimising the delay between a transfer
2063 	 * request and the scheduling of the message pump thread. Without this
2064 	 * setting the message pump thread will remain at default priority.
2065 	 */
2066 	if (ctlr->rt)
2067 		spi_set_thread_rt(ctlr);
2068 
2069 	return 0;
2070 }
2071 
2072 /**
2073  * spi_get_next_queued_message() - called by driver to check for queued
2074  * messages
2075  * @ctlr: the controller to check for queued messages
2076  *
2077  * If there are more messages in the queue, the next message is returned from
2078  * this call.
2079  *
2080  * Return: the next message in the queue, else NULL if the queue is empty.
2081  */
2082 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2083 {
2084 	struct spi_message *next;
2085 	unsigned long flags;
2086 
2087 	/* Get a pointer to the next message, if any */
2088 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2089 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2090 					queue);
2091 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2092 
2093 	return next;
2094 }
2095 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2096 
2097 /*
2098  * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2099  *                            and spi_maybe_unoptimize_message()
2100  * @msg: the message to unoptimize
2101  *
2102  * Peripheral drivers should use spi_unoptimize_message() and callers inside
2103  * core should use spi_maybe_unoptimize_message() rather than calling this
2104  * function directly.
2105  *
2106  * It is not valid to call this on a message that is not currently optimized.
2107  */
2108 static void __spi_unoptimize_message(struct spi_message *msg)
2109 {
2110 	struct spi_controller *ctlr = msg->spi->controller;
2111 
2112 	if (ctlr->unoptimize_message)
2113 		ctlr->unoptimize_message(msg);
2114 
2115 	spi_res_release(ctlr, msg);
2116 
2117 	msg->optimized = false;
2118 	msg->opt_state = NULL;
2119 }
2120 
2121 /*
2122  * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2123  * @msg: the message to unoptimize
2124  *
2125  * This function is used to unoptimize a message if and only if it was
2126  * optimized by the core (via spi_maybe_optimize_message()).
2127  */
2128 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2129 {
2130 	if (!msg->pre_optimized && msg->optimized)
2131 		__spi_unoptimize_message(msg);
2132 }
2133 
2134 /**
2135  * spi_finalize_current_message() - the current message is complete
2136  * @ctlr: the controller to return the message to
2137  *
2138  * Called by the driver to notify the core that the message in the front of the
2139  * queue is complete and can be removed from the queue.
2140  */
2141 void spi_finalize_current_message(struct spi_controller *ctlr)
2142 {
2143 	struct spi_transfer *xfer;
2144 	struct spi_message *mesg;
2145 	int ret;
2146 
2147 	mesg = ctlr->cur_msg;
2148 
2149 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2150 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2151 			ptp_read_system_postts(xfer->ptp_sts);
2152 			xfer->ptp_sts_word_post = xfer->len;
2153 		}
2154 	}
2155 
2156 	if (unlikely(ctlr->ptp_sts_supported))
2157 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2158 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2159 
2160 	spi_unmap_msg(ctlr, mesg);
2161 
2162 	if (mesg->prepared && ctlr->unprepare_message) {
2163 		ret = ctlr->unprepare_message(ctlr, mesg);
2164 		if (ret) {
2165 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2166 				ret);
2167 		}
2168 	}
2169 
2170 	mesg->prepared = false;
2171 
2172 	spi_maybe_unoptimize_message(mesg);
2173 
2174 	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2175 	smp_mb(); /* See __spi_pump_transfer_message()... */
2176 	if (READ_ONCE(ctlr->cur_msg_need_completion))
2177 		complete(&ctlr->cur_msg_completion);
2178 
2179 	trace_spi_message_done(mesg);
2180 
2181 	mesg->state = NULL;
2182 	if (mesg->complete)
2183 		mesg->complete(mesg->context);
2184 }
2185 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2186 
2187 static int spi_start_queue(struct spi_controller *ctlr)
2188 {
2189 	unsigned long flags;
2190 
2191 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2192 
2193 	if (ctlr->running || ctlr->busy) {
2194 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2195 		return -EBUSY;
2196 	}
2197 
2198 	ctlr->running = true;
2199 	ctlr->cur_msg = NULL;
2200 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2201 
2202 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2203 
2204 	return 0;
2205 }
2206 
2207 static int spi_stop_queue(struct spi_controller *ctlr)
2208 {
2209 	unsigned long flags;
2210 	unsigned limit = 500;
2211 	int ret = 0;
2212 
2213 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2214 
2215 	/*
2216 	 * This is a bit lame, but is optimized for the common execution path.
2217 	 * A wait_queue on the ctlr->busy could be used, but then the common
2218 	 * execution path (pump_messages) would be required to call wake_up or
2219 	 * friends on every SPI message. Do this instead.
2220 	 */
2221 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2222 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2223 		usleep_range(10000, 11000);
2224 		spin_lock_irqsave(&ctlr->queue_lock, flags);
2225 	}
2226 
2227 	if (!list_empty(&ctlr->queue) || ctlr->busy)
2228 		ret = -EBUSY;
2229 	else
2230 		ctlr->running = false;
2231 
2232 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2233 
2234 	return ret;
2235 }
2236 
2237 static int spi_destroy_queue(struct spi_controller *ctlr)
2238 {
2239 	int ret;
2240 
2241 	ret = spi_stop_queue(ctlr);
2242 
2243 	/*
2244 	 * kthread_flush_worker will block until all work is done.
2245 	 * If the reason that stop_queue timed out is that the work will never
2246 	 * finish, then it does no good to call flush/stop thread, so
2247 	 * return anyway.
2248 	 */
2249 	if (ret) {
2250 		dev_err(&ctlr->dev, "problem destroying queue\n");
2251 		return ret;
2252 	}
2253 
2254 	kthread_destroy_worker(ctlr->kworker);
2255 
2256 	return 0;
2257 }
2258 
2259 static int __spi_queued_transfer(struct spi_device *spi,
2260 				 struct spi_message *msg,
2261 				 bool need_pump)
2262 {
2263 	struct spi_controller *ctlr = spi->controller;
2264 	unsigned long flags;
2265 
2266 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2267 
2268 	if (!ctlr->running) {
2269 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2270 		return -ESHUTDOWN;
2271 	}
2272 	msg->actual_length = 0;
2273 	msg->status = -EINPROGRESS;
2274 
2275 	list_add_tail(&msg->queue, &ctlr->queue);
2276 	ctlr->queue_empty = false;
2277 	if (!ctlr->busy && need_pump)
2278 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2279 
2280 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2281 	return 0;
2282 }
2283 
2284 /**
2285  * spi_queued_transfer - transfer function for queued transfers
2286  * @spi: SPI device which is requesting transfer
2287  * @msg: SPI message which is to handled is queued to driver queue
2288  *
2289  * Return: zero on success, else a negative error code.
2290  */
2291 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2292 {
2293 	return __spi_queued_transfer(spi, msg, true);
2294 }
2295 
2296 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2297 {
2298 	int ret;
2299 
2300 	ctlr->transfer = spi_queued_transfer;
2301 	if (!ctlr->transfer_one_message)
2302 		ctlr->transfer_one_message = spi_transfer_one_message;
2303 
2304 	/* Initialize and start queue */
2305 	ret = spi_init_queue(ctlr);
2306 	if (ret) {
2307 		dev_err(&ctlr->dev, "problem initializing queue\n");
2308 		goto err_init_queue;
2309 	}
2310 	ctlr->queued = true;
2311 	ret = spi_start_queue(ctlr);
2312 	if (ret) {
2313 		dev_err(&ctlr->dev, "problem starting queue\n");
2314 		goto err_start_queue;
2315 	}
2316 
2317 	return 0;
2318 
2319 err_start_queue:
2320 	spi_destroy_queue(ctlr);
2321 err_init_queue:
2322 	return ret;
2323 }
2324 
2325 /**
2326  * spi_flush_queue - Send all pending messages in the queue from the callers'
2327  *		     context
2328  * @ctlr: controller to process queue for
2329  *
2330  * This should be used when one wants to ensure all pending messages have been
2331  * sent before doing something. Is used by the spi-mem code to make sure SPI
2332  * memory operations do not preempt regular SPI transfers that have been queued
2333  * before the spi-mem operation.
2334  */
2335 void spi_flush_queue(struct spi_controller *ctlr)
2336 {
2337 	if (ctlr->transfer == spi_queued_transfer)
2338 		__spi_pump_messages(ctlr, false);
2339 }
2340 
2341 /*-------------------------------------------------------------------------*/
2342 
2343 #if defined(CONFIG_OF)
2344 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2345 				     struct spi_delay *delay, const char *prop)
2346 {
2347 	u32 value;
2348 
2349 	if (!of_property_read_u32(nc, prop, &value)) {
2350 		if (value > U16_MAX) {
2351 			delay->value = DIV_ROUND_UP(value, 1000);
2352 			delay->unit = SPI_DELAY_UNIT_USECS;
2353 		} else {
2354 			delay->value = value;
2355 			delay->unit = SPI_DELAY_UNIT_NSECS;
2356 		}
2357 	}
2358 }
2359 
2360 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2361 			   struct device_node *nc)
2362 {
2363 	u32 value, cs[SPI_CS_CNT_MAX];
2364 	int rc, idx;
2365 
2366 	/* Mode (clock phase/polarity/etc.) */
2367 	if (of_property_read_bool(nc, "spi-cpha"))
2368 		spi->mode |= SPI_CPHA;
2369 	if (of_property_read_bool(nc, "spi-cpol"))
2370 		spi->mode |= SPI_CPOL;
2371 	if (of_property_read_bool(nc, "spi-3wire"))
2372 		spi->mode |= SPI_3WIRE;
2373 	if (of_property_read_bool(nc, "spi-lsb-first"))
2374 		spi->mode |= SPI_LSB_FIRST;
2375 	if (of_property_read_bool(nc, "spi-cs-high"))
2376 		spi->mode |= SPI_CS_HIGH;
2377 
2378 	/* Device DUAL/QUAD mode */
2379 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2380 		switch (value) {
2381 		case 0:
2382 			spi->mode |= SPI_NO_TX;
2383 			break;
2384 		case 1:
2385 			break;
2386 		case 2:
2387 			spi->mode |= SPI_TX_DUAL;
2388 			break;
2389 		case 4:
2390 			spi->mode |= SPI_TX_QUAD;
2391 			break;
2392 		case 8:
2393 			spi->mode |= SPI_TX_OCTAL;
2394 			break;
2395 		default:
2396 			dev_warn(&ctlr->dev,
2397 				"spi-tx-bus-width %d not supported\n",
2398 				value);
2399 			break;
2400 		}
2401 	}
2402 
2403 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2404 		switch (value) {
2405 		case 0:
2406 			spi->mode |= SPI_NO_RX;
2407 			break;
2408 		case 1:
2409 			break;
2410 		case 2:
2411 			spi->mode |= SPI_RX_DUAL;
2412 			break;
2413 		case 4:
2414 			spi->mode |= SPI_RX_QUAD;
2415 			break;
2416 		case 8:
2417 			spi->mode |= SPI_RX_OCTAL;
2418 			break;
2419 		default:
2420 			dev_warn(&ctlr->dev,
2421 				"spi-rx-bus-width %d not supported\n",
2422 				value);
2423 			break;
2424 		}
2425 	}
2426 
2427 	if (spi_controller_is_slave(ctlr)) {
2428 		if (!of_node_name_eq(nc, "slave")) {
2429 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2430 				nc);
2431 			return -EINVAL;
2432 		}
2433 		return 0;
2434 	}
2435 
2436 	if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2437 		dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2438 		return -EINVAL;
2439 	}
2440 
2441 	spi_set_all_cs_unused(spi);
2442 
2443 	/* Device address */
2444 	rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2445 						 SPI_CS_CNT_MAX);
2446 	if (rc < 0) {
2447 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2448 			nc, rc);
2449 		return rc;
2450 	}
2451 	if (rc > ctlr->num_chipselect) {
2452 		dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2453 			nc, rc);
2454 		return rc;
2455 	}
2456 	if ((of_property_read_bool(nc, "parallel-memories")) &&
2457 	    (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2458 		dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2459 		return -EINVAL;
2460 	}
2461 	for (idx = 0; idx < rc; idx++)
2462 		spi_set_chipselect(spi, idx, cs[idx]);
2463 
2464 	/*
2465 	 * By default spi->chip_select[0] will hold the physical CS number,
2466 	 * so set bit 0 in spi->cs_index_mask.
2467 	 */
2468 	spi->cs_index_mask = BIT(0);
2469 
2470 	/* Device speed */
2471 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2472 		spi->max_speed_hz = value;
2473 
2474 	/* Device CS delays */
2475 	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2476 	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2477 	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2478 
2479 	return 0;
2480 }
2481 
2482 static struct spi_device *
2483 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2484 {
2485 	struct spi_device *spi;
2486 	int rc;
2487 
2488 	/* Alloc an spi_device */
2489 	spi = spi_alloc_device(ctlr);
2490 	if (!spi) {
2491 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2492 		rc = -ENOMEM;
2493 		goto err_out;
2494 	}
2495 
2496 	/* Select device driver */
2497 	rc = of_alias_from_compatible(nc, spi->modalias,
2498 				      sizeof(spi->modalias));
2499 	if (rc < 0) {
2500 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2501 		goto err_out;
2502 	}
2503 
2504 	rc = of_spi_parse_dt(ctlr, spi, nc);
2505 	if (rc)
2506 		goto err_out;
2507 
2508 	/* Store a pointer to the node in the device structure */
2509 	of_node_get(nc);
2510 
2511 	device_set_node(&spi->dev, of_fwnode_handle(nc));
2512 
2513 	/* Register the new device */
2514 	rc = spi_add_device(spi);
2515 	if (rc) {
2516 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2517 		goto err_of_node_put;
2518 	}
2519 
2520 	return spi;
2521 
2522 err_of_node_put:
2523 	of_node_put(nc);
2524 err_out:
2525 	spi_dev_put(spi);
2526 	return ERR_PTR(rc);
2527 }
2528 
2529 /**
2530  * of_register_spi_devices() - Register child devices onto the SPI bus
2531  * @ctlr:	Pointer to spi_controller device
2532  *
2533  * Registers an spi_device for each child node of controller node which
2534  * represents a valid SPI slave.
2535  */
2536 static void of_register_spi_devices(struct spi_controller *ctlr)
2537 {
2538 	struct spi_device *spi;
2539 	struct device_node *nc;
2540 
2541 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2542 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2543 			continue;
2544 		spi = of_register_spi_device(ctlr, nc);
2545 		if (IS_ERR(spi)) {
2546 			dev_warn(&ctlr->dev,
2547 				 "Failed to create SPI device for %pOF\n", nc);
2548 			of_node_clear_flag(nc, OF_POPULATED);
2549 		}
2550 	}
2551 }
2552 #else
2553 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2554 #endif
2555 
2556 /**
2557  * spi_new_ancillary_device() - Register ancillary SPI device
2558  * @spi:         Pointer to the main SPI device registering the ancillary device
2559  * @chip_select: Chip Select of the ancillary device
2560  *
2561  * Register an ancillary SPI device; for example some chips have a chip-select
2562  * for normal device usage and another one for setup/firmware upload.
2563  *
2564  * This may only be called from main SPI device's probe routine.
2565  *
2566  * Return: 0 on success; negative errno on failure
2567  */
2568 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2569 					     u8 chip_select)
2570 {
2571 	struct spi_controller *ctlr = spi->controller;
2572 	struct spi_device *ancillary;
2573 	int rc = 0;
2574 
2575 	/* Alloc an spi_device */
2576 	ancillary = spi_alloc_device(ctlr);
2577 	if (!ancillary) {
2578 		rc = -ENOMEM;
2579 		goto err_out;
2580 	}
2581 
2582 	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2583 
2584 	/* Use provided chip-select for ancillary device */
2585 	spi_set_all_cs_unused(ancillary);
2586 	spi_set_chipselect(ancillary, 0, chip_select);
2587 
2588 	/* Take over SPI mode/speed from SPI main device */
2589 	ancillary->max_speed_hz = spi->max_speed_hz;
2590 	ancillary->mode = spi->mode;
2591 	/*
2592 	 * By default spi->chip_select[0] will hold the physical CS number,
2593 	 * so set bit 0 in spi->cs_index_mask.
2594 	 */
2595 	ancillary->cs_index_mask = BIT(0);
2596 
2597 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2598 
2599 	/* Register the new device */
2600 	rc = __spi_add_device(ancillary);
2601 	if (rc) {
2602 		dev_err(&spi->dev, "failed to register ancillary device\n");
2603 		goto err_out;
2604 	}
2605 
2606 	return ancillary;
2607 
2608 err_out:
2609 	spi_dev_put(ancillary);
2610 	return ERR_PTR(rc);
2611 }
2612 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2613 
2614 #ifdef CONFIG_ACPI
2615 struct acpi_spi_lookup {
2616 	struct spi_controller 	*ctlr;
2617 	u32			max_speed_hz;
2618 	u32			mode;
2619 	int			irq;
2620 	u8			bits_per_word;
2621 	u8			chip_select;
2622 	int			n;
2623 	int			index;
2624 };
2625 
2626 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2627 {
2628 	struct acpi_resource_spi_serialbus *sb;
2629 	int *count = data;
2630 
2631 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2632 		return 1;
2633 
2634 	sb = &ares->data.spi_serial_bus;
2635 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2636 		return 1;
2637 
2638 	*count = *count + 1;
2639 
2640 	return 1;
2641 }
2642 
2643 /**
2644  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2645  * @adev:	ACPI device
2646  *
2647  * Return: the number of SpiSerialBus resources in the ACPI-device's
2648  * resource-list; or a negative error code.
2649  */
2650 int acpi_spi_count_resources(struct acpi_device *adev)
2651 {
2652 	LIST_HEAD(r);
2653 	int count = 0;
2654 	int ret;
2655 
2656 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2657 	if (ret < 0)
2658 		return ret;
2659 
2660 	acpi_dev_free_resource_list(&r);
2661 
2662 	return count;
2663 }
2664 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2665 
2666 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2667 					    struct acpi_spi_lookup *lookup)
2668 {
2669 	const union acpi_object *obj;
2670 
2671 	if (!x86_apple_machine)
2672 		return;
2673 
2674 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2675 	    && obj->buffer.length >= 4)
2676 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2677 
2678 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2679 	    && obj->buffer.length == 8)
2680 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2681 
2682 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2683 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2684 		lookup->mode |= SPI_LSB_FIRST;
2685 
2686 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2687 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2688 		lookup->mode |= SPI_CPOL;
2689 
2690 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2691 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2692 		lookup->mode |= SPI_CPHA;
2693 }
2694 
2695 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2696 {
2697 	struct acpi_spi_lookup *lookup = data;
2698 	struct spi_controller *ctlr = lookup->ctlr;
2699 
2700 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2701 		struct acpi_resource_spi_serialbus *sb;
2702 		acpi_handle parent_handle;
2703 		acpi_status status;
2704 
2705 		sb = &ares->data.spi_serial_bus;
2706 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2707 
2708 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2709 				return 1;
2710 
2711 			status = acpi_get_handle(NULL,
2712 						 sb->resource_source.string_ptr,
2713 						 &parent_handle);
2714 
2715 			if (ACPI_FAILURE(status))
2716 				return -ENODEV;
2717 
2718 			if (ctlr) {
2719 				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2720 					return -ENODEV;
2721 			} else {
2722 				struct acpi_device *adev;
2723 
2724 				adev = acpi_fetch_acpi_dev(parent_handle);
2725 				if (!adev)
2726 					return -ENODEV;
2727 
2728 				ctlr = acpi_spi_find_controller_by_adev(adev);
2729 				if (!ctlr)
2730 					return -EPROBE_DEFER;
2731 
2732 				lookup->ctlr = ctlr;
2733 			}
2734 
2735 			/*
2736 			 * ACPI DeviceSelection numbering is handled by the
2737 			 * host controller driver in Windows and can vary
2738 			 * from driver to driver. In Linux we always expect
2739 			 * 0 .. max - 1 so we need to ask the driver to
2740 			 * translate between the two schemes.
2741 			 */
2742 			if (ctlr->fw_translate_cs) {
2743 				int cs = ctlr->fw_translate_cs(ctlr,
2744 						sb->device_selection);
2745 				if (cs < 0)
2746 					return cs;
2747 				lookup->chip_select = cs;
2748 			} else {
2749 				lookup->chip_select = sb->device_selection;
2750 			}
2751 
2752 			lookup->max_speed_hz = sb->connection_speed;
2753 			lookup->bits_per_word = sb->data_bit_length;
2754 
2755 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2756 				lookup->mode |= SPI_CPHA;
2757 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2758 				lookup->mode |= SPI_CPOL;
2759 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2760 				lookup->mode |= SPI_CS_HIGH;
2761 		}
2762 	} else if (lookup->irq < 0) {
2763 		struct resource r;
2764 
2765 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2766 			lookup->irq = r.start;
2767 	}
2768 
2769 	/* Always tell the ACPI core to skip this resource */
2770 	return 1;
2771 }
2772 
2773 /**
2774  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2775  * @ctlr: controller to which the spi device belongs
2776  * @adev: ACPI Device for the spi device
2777  * @index: Index of the spi resource inside the ACPI Node
2778  *
2779  * This should be used to allocate a new SPI device from and ACPI Device node.
2780  * The caller is responsible for calling spi_add_device to register the SPI device.
2781  *
2782  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2783  * using the resource.
2784  * If index is set to -1, index is not used.
2785  * Note: If index is -1, ctlr must be set.
2786  *
2787  * Return: a pointer to the new device, or ERR_PTR on error.
2788  */
2789 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2790 					 struct acpi_device *adev,
2791 					 int index)
2792 {
2793 	acpi_handle parent_handle = NULL;
2794 	struct list_head resource_list;
2795 	struct acpi_spi_lookup lookup = {};
2796 	struct spi_device *spi;
2797 	int ret;
2798 
2799 	if (!ctlr && index == -1)
2800 		return ERR_PTR(-EINVAL);
2801 
2802 	lookup.ctlr		= ctlr;
2803 	lookup.irq		= -1;
2804 	lookup.index		= index;
2805 	lookup.n		= 0;
2806 
2807 	INIT_LIST_HEAD(&resource_list);
2808 	ret = acpi_dev_get_resources(adev, &resource_list,
2809 				     acpi_spi_add_resource, &lookup);
2810 	acpi_dev_free_resource_list(&resource_list);
2811 
2812 	if (ret < 0)
2813 		/* Found SPI in _CRS but it points to another controller */
2814 		return ERR_PTR(ret);
2815 
2816 	if (!lookup.max_speed_hz &&
2817 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2818 	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2819 		/* Apple does not use _CRS but nested devices for SPI slaves */
2820 		acpi_spi_parse_apple_properties(adev, &lookup);
2821 	}
2822 
2823 	if (!lookup.max_speed_hz)
2824 		return ERR_PTR(-ENODEV);
2825 
2826 	spi = spi_alloc_device(lookup.ctlr);
2827 	if (!spi) {
2828 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2829 			dev_name(&adev->dev));
2830 		return ERR_PTR(-ENOMEM);
2831 	}
2832 
2833 	spi_set_all_cs_unused(spi);
2834 	spi_set_chipselect(spi, 0, lookup.chip_select);
2835 
2836 	ACPI_COMPANION_SET(&spi->dev, adev);
2837 	spi->max_speed_hz	= lookup.max_speed_hz;
2838 	spi->mode		|= lookup.mode;
2839 	spi->irq		= lookup.irq;
2840 	spi->bits_per_word	= lookup.bits_per_word;
2841 	/*
2842 	 * By default spi->chip_select[0] will hold the physical CS number,
2843 	 * so set bit 0 in spi->cs_index_mask.
2844 	 */
2845 	spi->cs_index_mask	= BIT(0);
2846 
2847 	return spi;
2848 }
2849 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2850 
2851 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2852 					    struct acpi_device *adev)
2853 {
2854 	struct spi_device *spi;
2855 
2856 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2857 	    acpi_device_enumerated(adev))
2858 		return AE_OK;
2859 
2860 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2861 	if (IS_ERR(spi)) {
2862 		if (PTR_ERR(spi) == -ENOMEM)
2863 			return AE_NO_MEMORY;
2864 		else
2865 			return AE_OK;
2866 	}
2867 
2868 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2869 			  sizeof(spi->modalias));
2870 
2871 	if (spi->irq < 0)
2872 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2873 
2874 	acpi_device_set_enumerated(adev);
2875 
2876 	adev->power.flags.ignore_parent = true;
2877 	if (spi_add_device(spi)) {
2878 		adev->power.flags.ignore_parent = false;
2879 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2880 			dev_name(&adev->dev));
2881 		spi_dev_put(spi);
2882 	}
2883 
2884 	return AE_OK;
2885 }
2886 
2887 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2888 				       void *data, void **return_value)
2889 {
2890 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2891 	struct spi_controller *ctlr = data;
2892 
2893 	if (!adev)
2894 		return AE_OK;
2895 
2896 	return acpi_register_spi_device(ctlr, adev);
2897 }
2898 
2899 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2900 
2901 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2902 {
2903 	acpi_status status;
2904 	acpi_handle handle;
2905 
2906 	handle = ACPI_HANDLE(ctlr->dev.parent);
2907 	if (!handle)
2908 		return;
2909 
2910 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2911 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2912 				     acpi_spi_add_device, NULL, ctlr, NULL);
2913 	if (ACPI_FAILURE(status))
2914 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2915 }
2916 #else
2917 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2918 #endif /* CONFIG_ACPI */
2919 
2920 static void spi_controller_release(struct device *dev)
2921 {
2922 	struct spi_controller *ctlr;
2923 
2924 	ctlr = container_of(dev, struct spi_controller, dev);
2925 	kfree(ctlr);
2926 }
2927 
2928 static struct class spi_master_class = {
2929 	.name		= "spi_master",
2930 	.dev_release	= spi_controller_release,
2931 	.dev_groups	= spi_master_groups,
2932 };
2933 
2934 #ifdef CONFIG_SPI_SLAVE
2935 /**
2936  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2937  *		     controller
2938  * @spi: device used for the current transfer
2939  */
2940 int spi_slave_abort(struct spi_device *spi)
2941 {
2942 	struct spi_controller *ctlr = spi->controller;
2943 
2944 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2945 		return ctlr->slave_abort(ctlr);
2946 
2947 	return -ENOTSUPP;
2948 }
2949 EXPORT_SYMBOL_GPL(spi_slave_abort);
2950 
2951 int spi_target_abort(struct spi_device *spi)
2952 {
2953 	struct spi_controller *ctlr = spi->controller;
2954 
2955 	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2956 		return ctlr->target_abort(ctlr);
2957 
2958 	return -ENOTSUPP;
2959 }
2960 EXPORT_SYMBOL_GPL(spi_target_abort);
2961 
2962 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2963 			  char *buf)
2964 {
2965 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2966 						   dev);
2967 	struct device *child;
2968 
2969 	child = device_find_any_child(&ctlr->dev);
2970 	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2971 }
2972 
2973 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2974 			   const char *buf, size_t count)
2975 {
2976 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2977 						   dev);
2978 	struct spi_device *spi;
2979 	struct device *child;
2980 	char name[32];
2981 	int rc;
2982 
2983 	rc = sscanf(buf, "%31s", name);
2984 	if (rc != 1 || !name[0])
2985 		return -EINVAL;
2986 
2987 	child = device_find_any_child(&ctlr->dev);
2988 	if (child) {
2989 		/* Remove registered slave */
2990 		device_unregister(child);
2991 		put_device(child);
2992 	}
2993 
2994 	if (strcmp(name, "(null)")) {
2995 		/* Register new slave */
2996 		spi = spi_alloc_device(ctlr);
2997 		if (!spi)
2998 			return -ENOMEM;
2999 
3000 		strscpy(spi->modalias, name, sizeof(spi->modalias));
3001 
3002 		rc = spi_add_device(spi);
3003 		if (rc) {
3004 			spi_dev_put(spi);
3005 			return rc;
3006 		}
3007 	}
3008 
3009 	return count;
3010 }
3011 
3012 static DEVICE_ATTR_RW(slave);
3013 
3014 static struct attribute *spi_slave_attrs[] = {
3015 	&dev_attr_slave.attr,
3016 	NULL,
3017 };
3018 
3019 static const struct attribute_group spi_slave_group = {
3020 	.attrs = spi_slave_attrs,
3021 };
3022 
3023 static const struct attribute_group *spi_slave_groups[] = {
3024 	&spi_controller_statistics_group,
3025 	&spi_slave_group,
3026 	NULL,
3027 };
3028 
3029 static struct class spi_slave_class = {
3030 	.name		= "spi_slave",
3031 	.dev_release	= spi_controller_release,
3032 	.dev_groups	= spi_slave_groups,
3033 };
3034 #else
3035 extern struct class spi_slave_class;	/* dummy */
3036 #endif
3037 
3038 /**
3039  * __spi_alloc_controller - allocate an SPI master or slave controller
3040  * @dev: the controller, possibly using the platform_bus
3041  * @size: how much zeroed driver-private data to allocate; the pointer to this
3042  *	memory is in the driver_data field of the returned device, accessible
3043  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
3044  *	drivers granting DMA access to portions of their private data need to
3045  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
3046  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3047  *	slave (true) controller
3048  * Context: can sleep
3049  *
3050  * This call is used only by SPI controller drivers, which are the
3051  * only ones directly touching chip registers.  It's how they allocate
3052  * an spi_controller structure, prior to calling spi_register_controller().
3053  *
3054  * This must be called from context that can sleep.
3055  *
3056  * The caller is responsible for assigning the bus number and initializing the
3057  * controller's methods before calling spi_register_controller(); and (after
3058  * errors adding the device) calling spi_controller_put() to prevent a memory
3059  * leak.
3060  *
3061  * Return: the SPI controller structure on success, else NULL.
3062  */
3063 struct spi_controller *__spi_alloc_controller(struct device *dev,
3064 					      unsigned int size, bool slave)
3065 {
3066 	struct spi_controller	*ctlr;
3067 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3068 
3069 	if (!dev)
3070 		return NULL;
3071 
3072 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3073 	if (!ctlr)
3074 		return NULL;
3075 
3076 	device_initialize(&ctlr->dev);
3077 	INIT_LIST_HEAD(&ctlr->queue);
3078 	spin_lock_init(&ctlr->queue_lock);
3079 	spin_lock_init(&ctlr->bus_lock_spinlock);
3080 	mutex_init(&ctlr->bus_lock_mutex);
3081 	mutex_init(&ctlr->io_mutex);
3082 	mutex_init(&ctlr->add_lock);
3083 	ctlr->bus_num = -1;
3084 	ctlr->num_chipselect = 1;
3085 	ctlr->slave = slave;
3086 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3087 		ctlr->dev.class = &spi_slave_class;
3088 	else
3089 		ctlr->dev.class = &spi_master_class;
3090 	ctlr->dev.parent = dev;
3091 	pm_suspend_ignore_children(&ctlr->dev, true);
3092 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3093 
3094 	return ctlr;
3095 }
3096 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3097 
3098 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3099 {
3100 	spi_controller_put(*(struct spi_controller **)ctlr);
3101 }
3102 
3103 /**
3104  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3105  * @dev: physical device of SPI controller
3106  * @size: how much zeroed driver-private data to allocate
3107  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3108  * Context: can sleep
3109  *
3110  * Allocate an SPI controller and automatically release a reference on it
3111  * when @dev is unbound from its driver.  Drivers are thus relieved from
3112  * having to call spi_controller_put().
3113  *
3114  * The arguments to this function are identical to __spi_alloc_controller().
3115  *
3116  * Return: the SPI controller structure on success, else NULL.
3117  */
3118 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3119 						   unsigned int size,
3120 						   bool slave)
3121 {
3122 	struct spi_controller **ptr, *ctlr;
3123 
3124 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3125 			   GFP_KERNEL);
3126 	if (!ptr)
3127 		return NULL;
3128 
3129 	ctlr = __spi_alloc_controller(dev, size, slave);
3130 	if (ctlr) {
3131 		ctlr->devm_allocated = true;
3132 		*ptr = ctlr;
3133 		devres_add(dev, ptr);
3134 	} else {
3135 		devres_free(ptr);
3136 	}
3137 
3138 	return ctlr;
3139 }
3140 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3141 
3142 /**
3143  * spi_get_gpio_descs() - grab chip select GPIOs for the master
3144  * @ctlr: The SPI master to grab GPIO descriptors for
3145  */
3146 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3147 {
3148 	int nb, i;
3149 	struct gpio_desc **cs;
3150 	struct device *dev = &ctlr->dev;
3151 	unsigned long native_cs_mask = 0;
3152 	unsigned int num_cs_gpios = 0;
3153 
3154 	nb = gpiod_count(dev, "cs");
3155 	if (nb < 0) {
3156 		/* No GPIOs at all is fine, else return the error */
3157 		if (nb == -ENOENT)
3158 			return 0;
3159 		return nb;
3160 	}
3161 
3162 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3163 
3164 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3165 			  GFP_KERNEL);
3166 	if (!cs)
3167 		return -ENOMEM;
3168 	ctlr->cs_gpiods = cs;
3169 
3170 	for (i = 0; i < nb; i++) {
3171 		/*
3172 		 * Most chipselects are active low, the inverted
3173 		 * semantics are handled by special quirks in gpiolib,
3174 		 * so initializing them GPIOD_OUT_LOW here means
3175 		 * "unasserted", in most cases this will drive the physical
3176 		 * line high.
3177 		 */
3178 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3179 						      GPIOD_OUT_LOW);
3180 		if (IS_ERR(cs[i]))
3181 			return PTR_ERR(cs[i]);
3182 
3183 		if (cs[i]) {
3184 			/*
3185 			 * If we find a CS GPIO, name it after the device and
3186 			 * chip select line.
3187 			 */
3188 			char *gpioname;
3189 
3190 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3191 						  dev_name(dev), i);
3192 			if (!gpioname)
3193 				return -ENOMEM;
3194 			gpiod_set_consumer_name(cs[i], gpioname);
3195 			num_cs_gpios++;
3196 			continue;
3197 		}
3198 
3199 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3200 			dev_err(dev, "Invalid native chip select %d\n", i);
3201 			return -EINVAL;
3202 		}
3203 		native_cs_mask |= BIT(i);
3204 	}
3205 
3206 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3207 
3208 	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3209 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3210 		dev_err(dev, "No unused native chip select available\n");
3211 		return -EINVAL;
3212 	}
3213 
3214 	return 0;
3215 }
3216 
3217 static int spi_controller_check_ops(struct spi_controller *ctlr)
3218 {
3219 	/*
3220 	 * The controller may implement only the high-level SPI-memory like
3221 	 * operations if it does not support regular SPI transfers, and this is
3222 	 * valid use case.
3223 	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3224 	 * one of the ->transfer_xxx() method be implemented.
3225 	 */
3226 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3227 		if (!ctlr->transfer && !ctlr->transfer_one &&
3228 		   !ctlr->transfer_one_message) {
3229 			return -EINVAL;
3230 		}
3231 	}
3232 
3233 	return 0;
3234 }
3235 
3236 /* Allocate dynamic bus number using Linux idr */
3237 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3238 {
3239 	int id;
3240 
3241 	mutex_lock(&board_lock);
3242 	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3243 	mutex_unlock(&board_lock);
3244 	if (WARN(id < 0, "couldn't get idr"))
3245 		return id == -ENOSPC ? -EBUSY : id;
3246 	ctlr->bus_num = id;
3247 	return 0;
3248 }
3249 
3250 /**
3251  * spi_register_controller - register SPI master or slave controller
3252  * @ctlr: initialized master, originally from spi_alloc_master() or
3253  *	spi_alloc_slave()
3254  * Context: can sleep
3255  *
3256  * SPI controllers connect to their drivers using some non-SPI bus,
3257  * such as the platform bus.  The final stage of probe() in that code
3258  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3259  *
3260  * SPI controllers use board specific (often SOC specific) bus numbers,
3261  * and board-specific addressing for SPI devices combines those numbers
3262  * with chip select numbers.  Since SPI does not directly support dynamic
3263  * device identification, boards need configuration tables telling which
3264  * chip is at which address.
3265  *
3266  * This must be called from context that can sleep.  It returns zero on
3267  * success, else a negative error code (dropping the controller's refcount).
3268  * After a successful return, the caller is responsible for calling
3269  * spi_unregister_controller().
3270  *
3271  * Return: zero on success, else a negative error code.
3272  */
3273 int spi_register_controller(struct spi_controller *ctlr)
3274 {
3275 	struct device		*dev = ctlr->dev.parent;
3276 	struct boardinfo	*bi;
3277 	int			first_dynamic;
3278 	int			status;
3279 	int			idx;
3280 
3281 	if (!dev)
3282 		return -ENODEV;
3283 
3284 	/*
3285 	 * Make sure all necessary hooks are implemented before registering
3286 	 * the SPI controller.
3287 	 */
3288 	status = spi_controller_check_ops(ctlr);
3289 	if (status)
3290 		return status;
3291 
3292 	if (ctlr->bus_num < 0)
3293 		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3294 	if (ctlr->bus_num >= 0) {
3295 		/* Devices with a fixed bus num must check-in with the num */
3296 		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3297 		if (status)
3298 			return status;
3299 	}
3300 	if (ctlr->bus_num < 0) {
3301 		first_dynamic = of_alias_get_highest_id("spi");
3302 		if (first_dynamic < 0)
3303 			first_dynamic = 0;
3304 		else
3305 			first_dynamic++;
3306 
3307 		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3308 		if (status)
3309 			return status;
3310 	}
3311 	ctlr->bus_lock_flag = 0;
3312 	init_completion(&ctlr->xfer_completion);
3313 	init_completion(&ctlr->cur_msg_completion);
3314 	if (!ctlr->max_dma_len)
3315 		ctlr->max_dma_len = INT_MAX;
3316 
3317 	/*
3318 	 * Register the device, then userspace will see it.
3319 	 * Registration fails if the bus ID is in use.
3320 	 */
3321 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3322 
3323 	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3324 		status = spi_get_gpio_descs(ctlr);
3325 		if (status)
3326 			goto free_bus_id;
3327 		/*
3328 		 * A controller using GPIO descriptors always
3329 		 * supports SPI_CS_HIGH if need be.
3330 		 */
3331 		ctlr->mode_bits |= SPI_CS_HIGH;
3332 	}
3333 
3334 	/*
3335 	 * Even if it's just one always-selected device, there must
3336 	 * be at least one chipselect.
3337 	 */
3338 	if (!ctlr->num_chipselect) {
3339 		status = -EINVAL;
3340 		goto free_bus_id;
3341 	}
3342 
3343 	/* Setting last_cs to SPI_INVALID_CS means no chip selected */
3344 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3345 		ctlr->last_cs[idx] = SPI_INVALID_CS;
3346 
3347 	status = device_add(&ctlr->dev);
3348 	if (status < 0)
3349 		goto free_bus_id;
3350 	dev_dbg(dev, "registered %s %s\n",
3351 			spi_controller_is_slave(ctlr) ? "slave" : "master",
3352 			dev_name(&ctlr->dev));
3353 
3354 	/*
3355 	 * If we're using a queued driver, start the queue. Note that we don't
3356 	 * need the queueing logic if the driver is only supporting high-level
3357 	 * memory operations.
3358 	 */
3359 	if (ctlr->transfer) {
3360 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3361 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3362 		status = spi_controller_initialize_queue(ctlr);
3363 		if (status) {
3364 			device_del(&ctlr->dev);
3365 			goto free_bus_id;
3366 		}
3367 	}
3368 	/* Add statistics */
3369 	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3370 	if (!ctlr->pcpu_statistics) {
3371 		dev_err(dev, "Error allocating per-cpu statistics\n");
3372 		status = -ENOMEM;
3373 		goto destroy_queue;
3374 	}
3375 
3376 	mutex_lock(&board_lock);
3377 	list_add_tail(&ctlr->list, &spi_controller_list);
3378 	list_for_each_entry(bi, &board_list, list)
3379 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3380 	mutex_unlock(&board_lock);
3381 
3382 	/* Register devices from the device tree and ACPI */
3383 	of_register_spi_devices(ctlr);
3384 	acpi_register_spi_devices(ctlr);
3385 	return status;
3386 
3387 destroy_queue:
3388 	spi_destroy_queue(ctlr);
3389 free_bus_id:
3390 	mutex_lock(&board_lock);
3391 	idr_remove(&spi_master_idr, ctlr->bus_num);
3392 	mutex_unlock(&board_lock);
3393 	return status;
3394 }
3395 EXPORT_SYMBOL_GPL(spi_register_controller);
3396 
3397 static void devm_spi_unregister(struct device *dev, void *res)
3398 {
3399 	spi_unregister_controller(*(struct spi_controller **)res);
3400 }
3401 
3402 /**
3403  * devm_spi_register_controller - register managed SPI master or slave
3404  *	controller
3405  * @dev:    device managing SPI controller
3406  * @ctlr: initialized controller, originally from spi_alloc_master() or
3407  *	spi_alloc_slave()
3408  * Context: can sleep
3409  *
3410  * Register a SPI device as with spi_register_controller() which will
3411  * automatically be unregistered and freed.
3412  *
3413  * Return: zero on success, else a negative error code.
3414  */
3415 int devm_spi_register_controller(struct device *dev,
3416 				 struct spi_controller *ctlr)
3417 {
3418 	struct spi_controller **ptr;
3419 	int ret;
3420 
3421 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3422 	if (!ptr)
3423 		return -ENOMEM;
3424 
3425 	ret = spi_register_controller(ctlr);
3426 	if (!ret) {
3427 		*ptr = ctlr;
3428 		devres_add(dev, ptr);
3429 	} else {
3430 		devres_free(ptr);
3431 	}
3432 
3433 	return ret;
3434 }
3435 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3436 
3437 static int __unregister(struct device *dev, void *null)
3438 {
3439 	spi_unregister_device(to_spi_device(dev));
3440 	return 0;
3441 }
3442 
3443 /**
3444  * spi_unregister_controller - unregister SPI master or slave controller
3445  * @ctlr: the controller being unregistered
3446  * Context: can sleep
3447  *
3448  * This call is used only by SPI controller drivers, which are the
3449  * only ones directly touching chip registers.
3450  *
3451  * This must be called from context that can sleep.
3452  *
3453  * Note that this function also drops a reference to the controller.
3454  */
3455 void spi_unregister_controller(struct spi_controller *ctlr)
3456 {
3457 	struct spi_controller *found;
3458 	int id = ctlr->bus_num;
3459 
3460 	/* Prevent addition of new devices, unregister existing ones */
3461 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3462 		mutex_lock(&ctlr->add_lock);
3463 
3464 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3465 
3466 	/* First make sure that this controller was ever added */
3467 	mutex_lock(&board_lock);
3468 	found = idr_find(&spi_master_idr, id);
3469 	mutex_unlock(&board_lock);
3470 	if (ctlr->queued) {
3471 		if (spi_destroy_queue(ctlr))
3472 			dev_err(&ctlr->dev, "queue remove failed\n");
3473 	}
3474 	mutex_lock(&board_lock);
3475 	list_del(&ctlr->list);
3476 	mutex_unlock(&board_lock);
3477 
3478 	device_del(&ctlr->dev);
3479 
3480 	/* Free bus id */
3481 	mutex_lock(&board_lock);
3482 	if (found == ctlr)
3483 		idr_remove(&spi_master_idr, id);
3484 	mutex_unlock(&board_lock);
3485 
3486 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3487 		mutex_unlock(&ctlr->add_lock);
3488 
3489 	/*
3490 	 * Release the last reference on the controller if its driver
3491 	 * has not yet been converted to devm_spi_alloc_master/slave().
3492 	 */
3493 	if (!ctlr->devm_allocated)
3494 		put_device(&ctlr->dev);
3495 }
3496 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3497 
3498 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3499 {
3500 	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3501 }
3502 
3503 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3504 {
3505 	mutex_lock(&ctlr->bus_lock_mutex);
3506 	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3507 	mutex_unlock(&ctlr->bus_lock_mutex);
3508 }
3509 
3510 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3511 {
3512 	mutex_lock(&ctlr->bus_lock_mutex);
3513 	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3514 	mutex_unlock(&ctlr->bus_lock_mutex);
3515 }
3516 
3517 int spi_controller_suspend(struct spi_controller *ctlr)
3518 {
3519 	int ret = 0;
3520 
3521 	/* Basically no-ops for non-queued controllers */
3522 	if (ctlr->queued) {
3523 		ret = spi_stop_queue(ctlr);
3524 		if (ret)
3525 			dev_err(&ctlr->dev, "queue stop failed\n");
3526 	}
3527 
3528 	__spi_mark_suspended(ctlr);
3529 	return ret;
3530 }
3531 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3532 
3533 int spi_controller_resume(struct spi_controller *ctlr)
3534 {
3535 	int ret = 0;
3536 
3537 	__spi_mark_resumed(ctlr);
3538 
3539 	if (ctlr->queued) {
3540 		ret = spi_start_queue(ctlr);
3541 		if (ret)
3542 			dev_err(&ctlr->dev, "queue restart failed\n");
3543 	}
3544 	return ret;
3545 }
3546 EXPORT_SYMBOL_GPL(spi_controller_resume);
3547 
3548 /*-------------------------------------------------------------------------*/
3549 
3550 /* Core methods for spi_message alterations */
3551 
3552 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3553 					    struct spi_message *msg,
3554 					    void *res)
3555 {
3556 	struct spi_replaced_transfers *rxfer = res;
3557 	size_t i;
3558 
3559 	/* Call extra callback if requested */
3560 	if (rxfer->release)
3561 		rxfer->release(ctlr, msg, res);
3562 
3563 	/* Insert replaced transfers back into the message */
3564 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3565 
3566 	/* Remove the formerly inserted entries */
3567 	for (i = 0; i < rxfer->inserted; i++)
3568 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3569 }
3570 
3571 /**
3572  * spi_replace_transfers - replace transfers with several transfers
3573  *                         and register change with spi_message.resources
3574  * @msg:           the spi_message we work upon
3575  * @xfer_first:    the first spi_transfer we want to replace
3576  * @remove:        number of transfers to remove
3577  * @insert:        the number of transfers we want to insert instead
3578  * @release:       extra release code necessary in some circumstances
3579  * @extradatasize: extra data to allocate (with alignment guarantees
3580  *                 of struct @spi_transfer)
3581  * @gfp:           gfp flags
3582  *
3583  * Returns: pointer to @spi_replaced_transfers,
3584  *          PTR_ERR(...) in case of errors.
3585  */
3586 static struct spi_replaced_transfers *spi_replace_transfers(
3587 	struct spi_message *msg,
3588 	struct spi_transfer *xfer_first,
3589 	size_t remove,
3590 	size_t insert,
3591 	spi_replaced_release_t release,
3592 	size_t extradatasize,
3593 	gfp_t gfp)
3594 {
3595 	struct spi_replaced_transfers *rxfer;
3596 	struct spi_transfer *xfer;
3597 	size_t i;
3598 
3599 	/* Allocate the structure using spi_res */
3600 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3601 			      struct_size(rxfer, inserted_transfers, insert)
3602 			      + extradatasize,
3603 			      gfp);
3604 	if (!rxfer)
3605 		return ERR_PTR(-ENOMEM);
3606 
3607 	/* The release code to invoke before running the generic release */
3608 	rxfer->release = release;
3609 
3610 	/* Assign extradata */
3611 	if (extradatasize)
3612 		rxfer->extradata =
3613 			&rxfer->inserted_transfers[insert];
3614 
3615 	/* Init the replaced_transfers list */
3616 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3617 
3618 	/*
3619 	 * Assign the list_entry after which we should reinsert
3620 	 * the @replaced_transfers - it may be spi_message.messages!
3621 	 */
3622 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3623 
3624 	/* Remove the requested number of transfers */
3625 	for (i = 0; i < remove; i++) {
3626 		/*
3627 		 * If the entry after replaced_after it is msg->transfers
3628 		 * then we have been requested to remove more transfers
3629 		 * than are in the list.
3630 		 */
3631 		if (rxfer->replaced_after->next == &msg->transfers) {
3632 			dev_err(&msg->spi->dev,
3633 				"requested to remove more spi_transfers than are available\n");
3634 			/* Insert replaced transfers back into the message */
3635 			list_splice(&rxfer->replaced_transfers,
3636 				    rxfer->replaced_after);
3637 
3638 			/* Free the spi_replace_transfer structure... */
3639 			spi_res_free(rxfer);
3640 
3641 			/* ...and return with an error */
3642 			return ERR_PTR(-EINVAL);
3643 		}
3644 
3645 		/*
3646 		 * Remove the entry after replaced_after from list of
3647 		 * transfers and add it to list of replaced_transfers.
3648 		 */
3649 		list_move_tail(rxfer->replaced_after->next,
3650 			       &rxfer->replaced_transfers);
3651 	}
3652 
3653 	/*
3654 	 * Create copy of the given xfer with identical settings
3655 	 * based on the first transfer to get removed.
3656 	 */
3657 	for (i = 0; i < insert; i++) {
3658 		/* We need to run in reverse order */
3659 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3660 
3661 		/* Copy all spi_transfer data */
3662 		memcpy(xfer, xfer_first, sizeof(*xfer));
3663 
3664 		/* Add to list */
3665 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3666 
3667 		/* Clear cs_change and delay for all but the last */
3668 		if (i) {
3669 			xfer->cs_change = false;
3670 			xfer->delay.value = 0;
3671 		}
3672 	}
3673 
3674 	/* Set up inserted... */
3675 	rxfer->inserted = insert;
3676 
3677 	/* ...and register it with spi_res/spi_message */
3678 	spi_res_add(msg, rxfer);
3679 
3680 	return rxfer;
3681 }
3682 
3683 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3684 					struct spi_message *msg,
3685 					struct spi_transfer **xferp,
3686 					size_t maxsize)
3687 {
3688 	struct spi_transfer *xfer = *xferp, *xfers;
3689 	struct spi_replaced_transfers *srt;
3690 	size_t offset;
3691 	size_t count, i;
3692 
3693 	/* Calculate how many we have to replace */
3694 	count = DIV_ROUND_UP(xfer->len, maxsize);
3695 
3696 	/* Create replacement */
3697 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3698 	if (IS_ERR(srt))
3699 		return PTR_ERR(srt);
3700 	xfers = srt->inserted_transfers;
3701 
3702 	/*
3703 	 * Now handle each of those newly inserted spi_transfers.
3704 	 * Note that the replacements spi_transfers all are preset
3705 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3706 	 * are all identical (as well as most others)
3707 	 * so we just have to fix up len and the pointers.
3708 	 *
3709 	 * This also includes support for the depreciated
3710 	 * spi_message.is_dma_mapped interface.
3711 	 */
3712 
3713 	/*
3714 	 * The first transfer just needs the length modified, so we
3715 	 * run it outside the loop.
3716 	 */
3717 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3718 
3719 	/* All the others need rx_buf/tx_buf also set */
3720 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3721 		/* Update rx_buf, tx_buf and DMA */
3722 		if (xfers[i].rx_buf)
3723 			xfers[i].rx_buf += offset;
3724 		if (xfers[i].rx_dma)
3725 			xfers[i].rx_dma += offset;
3726 		if (xfers[i].tx_buf)
3727 			xfers[i].tx_buf += offset;
3728 		if (xfers[i].tx_dma)
3729 			xfers[i].tx_dma += offset;
3730 
3731 		/* Update length */
3732 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3733 	}
3734 
3735 	/*
3736 	 * We set up xferp to the last entry we have inserted,
3737 	 * so that we skip those already split transfers.
3738 	 */
3739 	*xferp = &xfers[count - 1];
3740 
3741 	/* Increment statistics counters */
3742 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3743 				       transfers_split_maxsize);
3744 	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3745 				       transfers_split_maxsize);
3746 
3747 	return 0;
3748 }
3749 
3750 /**
3751  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3752  *                               when an individual transfer exceeds a
3753  *                               certain size
3754  * @ctlr:    the @spi_controller for this transfer
3755  * @msg:   the @spi_message to transform
3756  * @maxsize:  the maximum when to apply this
3757  *
3758  * This function allocates resources that are automatically freed during the
3759  * spi message unoptimize phase so this function should only be called from
3760  * optimize_message callbacks.
3761  *
3762  * Return: status of transformation
3763  */
3764 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3765 				struct spi_message *msg,
3766 				size_t maxsize)
3767 {
3768 	struct spi_transfer *xfer;
3769 	int ret;
3770 
3771 	/*
3772 	 * Iterate over the transfer_list,
3773 	 * but note that xfer is advanced to the last transfer inserted
3774 	 * to avoid checking sizes again unnecessarily (also xfer does
3775 	 * potentially belong to a different list by the time the
3776 	 * replacement has happened).
3777 	 */
3778 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3779 		if (xfer->len > maxsize) {
3780 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3781 							   maxsize);
3782 			if (ret)
3783 				return ret;
3784 		}
3785 	}
3786 
3787 	return 0;
3788 }
3789 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3790 
3791 
3792 /**
3793  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3794  *                                when an individual transfer exceeds a
3795  *                                certain number of SPI words
3796  * @ctlr:     the @spi_controller for this transfer
3797  * @msg:      the @spi_message to transform
3798  * @maxwords: the number of words to limit each transfer to
3799  *
3800  * This function allocates resources that are automatically freed during the
3801  * spi message unoptimize phase so this function should only be called from
3802  * optimize_message callbacks.
3803  *
3804  * Return: status of transformation
3805  */
3806 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3807 				 struct spi_message *msg,
3808 				 size_t maxwords)
3809 {
3810 	struct spi_transfer *xfer;
3811 
3812 	/*
3813 	 * Iterate over the transfer_list,
3814 	 * but note that xfer is advanced to the last transfer inserted
3815 	 * to avoid checking sizes again unnecessarily (also xfer does
3816 	 * potentially belong to a different list by the time the
3817 	 * replacement has happened).
3818 	 */
3819 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3820 		size_t maxsize;
3821 		int ret;
3822 
3823 		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3824 		if (xfer->len > maxsize) {
3825 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3826 							   maxsize);
3827 			if (ret)
3828 				return ret;
3829 		}
3830 	}
3831 
3832 	return 0;
3833 }
3834 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3835 
3836 /*-------------------------------------------------------------------------*/
3837 
3838 /*
3839  * Core methods for SPI controller protocol drivers. Some of the
3840  * other core methods are currently defined as inline functions.
3841  */
3842 
3843 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3844 					u8 bits_per_word)
3845 {
3846 	if (ctlr->bits_per_word_mask) {
3847 		/* Only 32 bits fit in the mask */
3848 		if (bits_per_word > 32)
3849 			return -EINVAL;
3850 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3851 			return -EINVAL;
3852 	}
3853 
3854 	return 0;
3855 }
3856 
3857 /**
3858  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3859  * @spi: the device that requires specific CS timing configuration
3860  *
3861  * Return: zero on success, else a negative error code.
3862  */
3863 static int spi_set_cs_timing(struct spi_device *spi)
3864 {
3865 	struct device *parent = spi->controller->dev.parent;
3866 	int status = 0;
3867 
3868 	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3869 		if (spi->controller->auto_runtime_pm) {
3870 			status = pm_runtime_get_sync(parent);
3871 			if (status < 0) {
3872 				pm_runtime_put_noidle(parent);
3873 				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3874 					status);
3875 				return status;
3876 			}
3877 
3878 			status = spi->controller->set_cs_timing(spi);
3879 			pm_runtime_mark_last_busy(parent);
3880 			pm_runtime_put_autosuspend(parent);
3881 		} else {
3882 			status = spi->controller->set_cs_timing(spi);
3883 		}
3884 	}
3885 	return status;
3886 }
3887 
3888 /**
3889  * spi_setup - setup SPI mode and clock rate
3890  * @spi: the device whose settings are being modified
3891  * Context: can sleep, and no requests are queued to the device
3892  *
3893  * SPI protocol drivers may need to update the transfer mode if the
3894  * device doesn't work with its default.  They may likewise need
3895  * to update clock rates or word sizes from initial values.  This function
3896  * changes those settings, and must be called from a context that can sleep.
3897  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3898  * effect the next time the device is selected and data is transferred to
3899  * or from it.  When this function returns, the SPI device is deselected.
3900  *
3901  * Note that this call will fail if the protocol driver specifies an option
3902  * that the underlying controller or its driver does not support.  For
3903  * example, not all hardware supports wire transfers using nine bit words,
3904  * LSB-first wire encoding, or active-high chipselects.
3905  *
3906  * Return: zero on success, else a negative error code.
3907  */
3908 int spi_setup(struct spi_device *spi)
3909 {
3910 	unsigned	bad_bits, ugly_bits;
3911 	int		status = 0;
3912 
3913 	/*
3914 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3915 	 * are set at the same time.
3916 	 */
3917 	if ((hweight_long(spi->mode &
3918 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3919 	    (hweight_long(spi->mode &
3920 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3921 		dev_err(&spi->dev,
3922 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3923 		return -EINVAL;
3924 	}
3925 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3926 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3927 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3928 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3929 		return -EINVAL;
3930 	/*
3931 	 * Help drivers fail *cleanly* when they need options
3932 	 * that aren't supported with their current controller.
3933 	 * SPI_CS_WORD has a fallback software implementation,
3934 	 * so it is ignored here.
3935 	 */
3936 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3937 				 SPI_NO_TX | SPI_NO_RX);
3938 	ugly_bits = bad_bits &
3939 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3940 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3941 	if (ugly_bits) {
3942 		dev_warn(&spi->dev,
3943 			 "setup: ignoring unsupported mode bits %x\n",
3944 			 ugly_bits);
3945 		spi->mode &= ~ugly_bits;
3946 		bad_bits &= ~ugly_bits;
3947 	}
3948 	if (bad_bits) {
3949 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3950 			bad_bits);
3951 		return -EINVAL;
3952 	}
3953 
3954 	if (!spi->bits_per_word) {
3955 		spi->bits_per_word = 8;
3956 	} else {
3957 		/*
3958 		 * Some controllers may not support the default 8 bits-per-word
3959 		 * so only perform the check when this is explicitly provided.
3960 		 */
3961 		status = __spi_validate_bits_per_word(spi->controller,
3962 						      spi->bits_per_word);
3963 		if (status)
3964 			return status;
3965 	}
3966 
3967 	if (spi->controller->max_speed_hz &&
3968 	    (!spi->max_speed_hz ||
3969 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3970 		spi->max_speed_hz = spi->controller->max_speed_hz;
3971 
3972 	mutex_lock(&spi->controller->io_mutex);
3973 
3974 	if (spi->controller->setup) {
3975 		status = spi->controller->setup(spi);
3976 		if (status) {
3977 			mutex_unlock(&spi->controller->io_mutex);
3978 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3979 				status);
3980 			return status;
3981 		}
3982 	}
3983 
3984 	status = spi_set_cs_timing(spi);
3985 	if (status) {
3986 		mutex_unlock(&spi->controller->io_mutex);
3987 		return status;
3988 	}
3989 
3990 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3991 		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3992 		if (status < 0) {
3993 			mutex_unlock(&spi->controller->io_mutex);
3994 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3995 				status);
3996 			return status;
3997 		}
3998 
3999 		/*
4000 		 * We do not want to return positive value from pm_runtime_get,
4001 		 * there are many instances of devices calling spi_setup() and
4002 		 * checking for a non-zero return value instead of a negative
4003 		 * return value.
4004 		 */
4005 		status = 0;
4006 
4007 		spi_set_cs(spi, false, true);
4008 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
4009 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
4010 	} else {
4011 		spi_set_cs(spi, false, true);
4012 	}
4013 
4014 	mutex_unlock(&spi->controller->io_mutex);
4015 
4016 	if (spi->rt && !spi->controller->rt) {
4017 		spi->controller->rt = true;
4018 		spi_set_thread_rt(spi->controller);
4019 	}
4020 
4021 	trace_spi_setup(spi, status);
4022 
4023 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4024 			spi->mode & SPI_MODE_X_MASK,
4025 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4026 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4027 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
4028 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
4029 			spi->bits_per_word, spi->max_speed_hz,
4030 			status);
4031 
4032 	return status;
4033 }
4034 EXPORT_SYMBOL_GPL(spi_setup);
4035 
4036 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4037 				       struct spi_device *spi)
4038 {
4039 	int delay1, delay2;
4040 
4041 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4042 	if (delay1 < 0)
4043 		return delay1;
4044 
4045 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4046 	if (delay2 < 0)
4047 		return delay2;
4048 
4049 	if (delay1 < delay2)
4050 		memcpy(&xfer->word_delay, &spi->word_delay,
4051 		       sizeof(xfer->word_delay));
4052 
4053 	return 0;
4054 }
4055 
4056 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4057 {
4058 	struct spi_controller *ctlr = spi->controller;
4059 	struct spi_transfer *xfer;
4060 	int w_size;
4061 
4062 	if (list_empty(&message->transfers))
4063 		return -EINVAL;
4064 
4065 	message->spi = spi;
4066 
4067 	/*
4068 	 * Half-duplex links include original MicroWire, and ones with
4069 	 * only one data pin like SPI_3WIRE (switches direction) or where
4070 	 * either MOSI or MISO is missing.  They can also be caused by
4071 	 * software limitations.
4072 	 */
4073 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4074 	    (spi->mode & SPI_3WIRE)) {
4075 		unsigned flags = ctlr->flags;
4076 
4077 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4078 			if (xfer->rx_buf && xfer->tx_buf)
4079 				return -EINVAL;
4080 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4081 				return -EINVAL;
4082 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4083 				return -EINVAL;
4084 		}
4085 	}
4086 
4087 	/*
4088 	 * Set transfer bits_per_word and max speed as spi device default if
4089 	 * it is not set for this transfer.
4090 	 * Set transfer tx_nbits and rx_nbits as single transfer default
4091 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4092 	 * Ensure transfer word_delay is at least as long as that required by
4093 	 * device itself.
4094 	 */
4095 	message->frame_length = 0;
4096 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
4097 		xfer->effective_speed_hz = 0;
4098 		message->frame_length += xfer->len;
4099 		if (!xfer->bits_per_word)
4100 			xfer->bits_per_word = spi->bits_per_word;
4101 
4102 		if (!xfer->speed_hz)
4103 			xfer->speed_hz = spi->max_speed_hz;
4104 
4105 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4106 			xfer->speed_hz = ctlr->max_speed_hz;
4107 
4108 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4109 			return -EINVAL;
4110 
4111 		/*
4112 		 * SPI transfer length should be multiple of SPI word size
4113 		 * where SPI word size should be power-of-two multiple.
4114 		 */
4115 		if (xfer->bits_per_word <= 8)
4116 			w_size = 1;
4117 		else if (xfer->bits_per_word <= 16)
4118 			w_size = 2;
4119 		else
4120 			w_size = 4;
4121 
4122 		/* No partial transfers accepted */
4123 		if (xfer->len % w_size)
4124 			return -EINVAL;
4125 
4126 		if (xfer->speed_hz && ctlr->min_speed_hz &&
4127 		    xfer->speed_hz < ctlr->min_speed_hz)
4128 			return -EINVAL;
4129 
4130 		if (xfer->tx_buf && !xfer->tx_nbits)
4131 			xfer->tx_nbits = SPI_NBITS_SINGLE;
4132 		if (xfer->rx_buf && !xfer->rx_nbits)
4133 			xfer->rx_nbits = SPI_NBITS_SINGLE;
4134 		/*
4135 		 * Check transfer tx/rx_nbits:
4136 		 * 1. check the value matches one of single, dual and quad
4137 		 * 2. check tx/rx_nbits match the mode in spi_device
4138 		 */
4139 		if (xfer->tx_buf) {
4140 			if (spi->mode & SPI_NO_TX)
4141 				return -EINVAL;
4142 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4143 				xfer->tx_nbits != SPI_NBITS_DUAL &&
4144 				xfer->tx_nbits != SPI_NBITS_QUAD)
4145 				return -EINVAL;
4146 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4147 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4148 				return -EINVAL;
4149 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4150 				!(spi->mode & SPI_TX_QUAD))
4151 				return -EINVAL;
4152 		}
4153 		/* Check transfer rx_nbits */
4154 		if (xfer->rx_buf) {
4155 			if (spi->mode & SPI_NO_RX)
4156 				return -EINVAL;
4157 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4158 				xfer->rx_nbits != SPI_NBITS_DUAL &&
4159 				xfer->rx_nbits != SPI_NBITS_QUAD)
4160 				return -EINVAL;
4161 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4162 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4163 				return -EINVAL;
4164 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4165 				!(spi->mode & SPI_RX_QUAD))
4166 				return -EINVAL;
4167 		}
4168 
4169 		if (_spi_xfer_word_delay_update(xfer, spi))
4170 			return -EINVAL;
4171 	}
4172 
4173 	message->status = -EINPROGRESS;
4174 
4175 	return 0;
4176 }
4177 
4178 /*
4179  * spi_split_transfers - generic handling of transfer splitting
4180  * @msg: the message to split
4181  *
4182  * Under certain conditions, a SPI controller may not support arbitrary
4183  * transfer sizes or other features required by a peripheral. This function
4184  * will split the transfers in the message into smaller transfers that are
4185  * supported by the controller.
4186  *
4187  * Controllers with special requirements not covered here can also split
4188  * transfers in the optimize_message() callback.
4189  *
4190  * Context: can sleep
4191  * Return: zero on success, else a negative error code
4192  */
4193 static int spi_split_transfers(struct spi_message *msg)
4194 {
4195 	struct spi_controller *ctlr = msg->spi->controller;
4196 	struct spi_transfer *xfer;
4197 	int ret;
4198 
4199 	/*
4200 	 * If an SPI controller does not support toggling the CS line on each
4201 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4202 	 * for the CS line, we can emulate the CS-per-word hardware function by
4203 	 * splitting transfers into one-word transfers and ensuring that
4204 	 * cs_change is set for each transfer.
4205 	 */
4206 	if ((msg->spi->mode & SPI_CS_WORD) &&
4207 	    (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4208 		ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4209 		if (ret)
4210 			return ret;
4211 
4212 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4213 			/* Don't change cs_change on the last entry in the list */
4214 			if (list_is_last(&xfer->transfer_list, &msg->transfers))
4215 				break;
4216 
4217 			xfer->cs_change = 1;
4218 		}
4219 	} else {
4220 		ret = spi_split_transfers_maxsize(ctlr, msg,
4221 						  spi_max_transfer_size(msg->spi));
4222 		if (ret)
4223 			return ret;
4224 	}
4225 
4226 	return 0;
4227 }
4228 
4229 /*
4230  * __spi_optimize_message - shared implementation for spi_optimize_message()
4231  *                          and spi_maybe_optimize_message()
4232  * @spi: the device that will be used for the message
4233  * @msg: the message to optimize
4234  *
4235  * Peripheral drivers will call spi_optimize_message() and the spi core will
4236  * call spi_maybe_optimize_message() instead of calling this directly.
4237  *
4238  * It is not valid to call this on a message that has already been optimized.
4239  *
4240  * Return: zero on success, else a negative error code
4241  */
4242 static int __spi_optimize_message(struct spi_device *spi,
4243 				  struct spi_message *msg)
4244 {
4245 	struct spi_controller *ctlr = spi->controller;
4246 	int ret;
4247 
4248 	ret = __spi_validate(spi, msg);
4249 	if (ret)
4250 		return ret;
4251 
4252 	ret = spi_split_transfers(msg);
4253 	if (ret)
4254 		return ret;
4255 
4256 	if (ctlr->optimize_message) {
4257 		ret = ctlr->optimize_message(msg);
4258 		if (ret) {
4259 			spi_res_release(ctlr, msg);
4260 			return ret;
4261 		}
4262 	}
4263 
4264 	msg->optimized = true;
4265 
4266 	return 0;
4267 }
4268 
4269 /*
4270  * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4271  * @spi: the device that will be used for the message
4272  * @msg: the message to optimize
4273  * Return: zero on success, else a negative error code
4274  */
4275 static int spi_maybe_optimize_message(struct spi_device *spi,
4276 				      struct spi_message *msg)
4277 {
4278 	if (msg->pre_optimized)
4279 		return 0;
4280 
4281 	return __spi_optimize_message(spi, msg);
4282 }
4283 
4284 /**
4285  * spi_optimize_message - do any one-time validation and setup for a SPI message
4286  * @spi: the device that will be used for the message
4287  * @msg: the message to optimize
4288  *
4289  * Peripheral drivers that reuse the same message repeatedly may call this to
4290  * perform as much message prep as possible once, rather than repeating it each
4291  * time a message transfer is performed to improve throughput and reduce CPU
4292  * usage.
4293  *
4294  * Once a message has been optimized, it cannot be modified with the exception
4295  * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4296  * only the data in the memory it points to).
4297  *
4298  * Calls to this function must be balanced with calls to spi_unoptimize_message()
4299  * to avoid leaking resources.
4300  *
4301  * Context: can sleep
4302  * Return: zero on success, else a negative error code
4303  */
4304 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4305 {
4306 	int ret;
4307 
4308 	ret = __spi_optimize_message(spi, msg);
4309 	if (ret)
4310 		return ret;
4311 
4312 	/*
4313 	 * This flag indicates that the peripheral driver called spi_optimize_message()
4314 	 * and therefore we shouldn't unoptimize message automatically when finalizing
4315 	 * the message but rather wait until spi_unoptimize_message() is called
4316 	 * by the peripheral driver.
4317 	 */
4318 	msg->pre_optimized = true;
4319 
4320 	return 0;
4321 }
4322 EXPORT_SYMBOL_GPL(spi_optimize_message);
4323 
4324 /**
4325  * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4326  * @msg: the message to unoptimize
4327  *
4328  * Calls to this function must be balanced with calls to spi_optimize_message().
4329  *
4330  * Context: can sleep
4331  */
4332 void spi_unoptimize_message(struct spi_message *msg)
4333 {
4334 	__spi_unoptimize_message(msg);
4335 	msg->pre_optimized = false;
4336 }
4337 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4338 
4339 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4340 {
4341 	struct spi_controller *ctlr = spi->controller;
4342 	struct spi_transfer *xfer;
4343 
4344 	/*
4345 	 * Some controllers do not support doing regular SPI transfers. Return
4346 	 * ENOTSUPP when this is the case.
4347 	 */
4348 	if (!ctlr->transfer)
4349 		return -ENOTSUPP;
4350 
4351 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4352 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4353 
4354 	trace_spi_message_submit(message);
4355 
4356 	if (!ctlr->ptp_sts_supported) {
4357 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4358 			xfer->ptp_sts_word_pre = 0;
4359 			ptp_read_system_prets(xfer->ptp_sts);
4360 		}
4361 	}
4362 
4363 	return ctlr->transfer(spi, message);
4364 }
4365 
4366 /**
4367  * spi_async - asynchronous SPI transfer
4368  * @spi: device with which data will be exchanged
4369  * @message: describes the data transfers, including completion callback
4370  * Context: any (IRQs may be blocked, etc)
4371  *
4372  * This call may be used in_irq and other contexts which can't sleep,
4373  * as well as from task contexts which can sleep.
4374  *
4375  * The completion callback is invoked in a context which can't sleep.
4376  * Before that invocation, the value of message->status is undefined.
4377  * When the callback is issued, message->status holds either zero (to
4378  * indicate complete success) or a negative error code.  After that
4379  * callback returns, the driver which issued the transfer request may
4380  * deallocate the associated memory; it's no longer in use by any SPI
4381  * core or controller driver code.
4382  *
4383  * Note that although all messages to a spi_device are handled in
4384  * FIFO order, messages may go to different devices in other orders.
4385  * Some device might be higher priority, or have various "hard" access
4386  * time requirements, for example.
4387  *
4388  * On detection of any fault during the transfer, processing of
4389  * the entire message is aborted, and the device is deselected.
4390  * Until returning from the associated message completion callback,
4391  * no other spi_message queued to that device will be processed.
4392  * (This rule applies equally to all the synchronous transfer calls,
4393  * which are wrappers around this core asynchronous primitive.)
4394  *
4395  * Return: zero on success, else a negative error code.
4396  */
4397 int spi_async(struct spi_device *spi, struct spi_message *message)
4398 {
4399 	struct spi_controller *ctlr = spi->controller;
4400 	int ret;
4401 	unsigned long flags;
4402 
4403 	ret = spi_maybe_optimize_message(spi, message);
4404 	if (ret)
4405 		return ret;
4406 
4407 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4408 
4409 	if (ctlr->bus_lock_flag)
4410 		ret = -EBUSY;
4411 	else
4412 		ret = __spi_async(spi, message);
4413 
4414 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4415 
4416 	spi_maybe_unoptimize_message(message);
4417 
4418 	return ret;
4419 }
4420 EXPORT_SYMBOL_GPL(spi_async);
4421 
4422 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4423 {
4424 	bool was_busy;
4425 	int ret;
4426 
4427 	mutex_lock(&ctlr->io_mutex);
4428 
4429 	was_busy = ctlr->busy;
4430 
4431 	ctlr->cur_msg = msg;
4432 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4433 	if (ret)
4434 		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4435 	ctlr->cur_msg = NULL;
4436 	ctlr->fallback = false;
4437 
4438 	if (!was_busy) {
4439 		kfree(ctlr->dummy_rx);
4440 		ctlr->dummy_rx = NULL;
4441 		kfree(ctlr->dummy_tx);
4442 		ctlr->dummy_tx = NULL;
4443 		if (ctlr->unprepare_transfer_hardware &&
4444 		    ctlr->unprepare_transfer_hardware(ctlr))
4445 			dev_err(&ctlr->dev,
4446 				"failed to unprepare transfer hardware\n");
4447 		spi_idle_runtime_pm(ctlr);
4448 	}
4449 
4450 	mutex_unlock(&ctlr->io_mutex);
4451 }
4452 
4453 /*-------------------------------------------------------------------------*/
4454 
4455 /*
4456  * Utility methods for SPI protocol drivers, layered on
4457  * top of the core.  Some other utility methods are defined as
4458  * inline functions.
4459  */
4460 
4461 static void spi_complete(void *arg)
4462 {
4463 	complete(arg);
4464 }
4465 
4466 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4467 {
4468 	DECLARE_COMPLETION_ONSTACK(done);
4469 	unsigned long flags;
4470 	int status;
4471 	struct spi_controller *ctlr = spi->controller;
4472 
4473 	if (__spi_check_suspended(ctlr)) {
4474 		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4475 		return -ESHUTDOWN;
4476 	}
4477 
4478 	status = spi_maybe_optimize_message(spi, message);
4479 	if (status)
4480 		return status;
4481 
4482 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4483 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4484 
4485 	/*
4486 	 * Checking queue_empty here only guarantees async/sync message
4487 	 * ordering when coming from the same context. It does not need to
4488 	 * guard against reentrancy from a different context. The io_mutex
4489 	 * will catch those cases.
4490 	 */
4491 	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4492 		message->actual_length = 0;
4493 		message->status = -EINPROGRESS;
4494 
4495 		trace_spi_message_submit(message);
4496 
4497 		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4498 		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4499 
4500 		__spi_transfer_message_noqueue(ctlr, message);
4501 
4502 		return message->status;
4503 	}
4504 
4505 	/*
4506 	 * There are messages in the async queue that could have originated
4507 	 * from the same context, so we need to preserve ordering.
4508 	 * Therefor we send the message to the async queue and wait until they
4509 	 * are completed.
4510 	 */
4511 	message->complete = spi_complete;
4512 	message->context = &done;
4513 
4514 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4515 	status = __spi_async(spi, message);
4516 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4517 
4518 	if (status == 0) {
4519 		wait_for_completion(&done);
4520 		status = message->status;
4521 	}
4522 	message->context = NULL;
4523 
4524 	return status;
4525 }
4526 
4527 /**
4528  * spi_sync - blocking/synchronous SPI data transfers
4529  * @spi: device with which data will be exchanged
4530  * @message: describes the data transfers
4531  * Context: can sleep
4532  *
4533  * This call may only be used from a context that may sleep.  The sleep
4534  * is non-interruptible, and has no timeout.  Low-overhead controller
4535  * drivers may DMA directly into and out of the message buffers.
4536  *
4537  * Note that the SPI device's chip select is active during the message,
4538  * and then is normally disabled between messages.  Drivers for some
4539  * frequently-used devices may want to minimize costs of selecting a chip,
4540  * by leaving it selected in anticipation that the next message will go
4541  * to the same chip.  (That may increase power usage.)
4542  *
4543  * Also, the caller is guaranteeing that the memory associated with the
4544  * message will not be freed before this call returns.
4545  *
4546  * Return: zero on success, else a negative error code.
4547  */
4548 int spi_sync(struct spi_device *spi, struct spi_message *message)
4549 {
4550 	int ret;
4551 
4552 	mutex_lock(&spi->controller->bus_lock_mutex);
4553 	ret = __spi_sync(spi, message);
4554 	mutex_unlock(&spi->controller->bus_lock_mutex);
4555 
4556 	return ret;
4557 }
4558 EXPORT_SYMBOL_GPL(spi_sync);
4559 
4560 /**
4561  * spi_sync_locked - version of spi_sync with exclusive bus usage
4562  * @spi: device with which data will be exchanged
4563  * @message: describes the data transfers
4564  * Context: can sleep
4565  *
4566  * This call may only be used from a context that may sleep.  The sleep
4567  * is non-interruptible, and has no timeout.  Low-overhead controller
4568  * drivers may DMA directly into and out of the message buffers.
4569  *
4570  * This call should be used by drivers that require exclusive access to the
4571  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4572  * be released by a spi_bus_unlock call when the exclusive access is over.
4573  *
4574  * Return: zero on success, else a negative error code.
4575  */
4576 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4577 {
4578 	return __spi_sync(spi, message);
4579 }
4580 EXPORT_SYMBOL_GPL(spi_sync_locked);
4581 
4582 /**
4583  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4584  * @ctlr: SPI bus master that should be locked for exclusive bus access
4585  * Context: can sleep
4586  *
4587  * This call may only be used from a context that may sleep.  The sleep
4588  * is non-interruptible, and has no timeout.
4589  *
4590  * This call should be used by drivers that require exclusive access to the
4591  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4592  * exclusive access is over. Data transfer must be done by spi_sync_locked
4593  * and spi_async_locked calls when the SPI bus lock is held.
4594  *
4595  * Return: always zero.
4596  */
4597 int spi_bus_lock(struct spi_controller *ctlr)
4598 {
4599 	unsigned long flags;
4600 
4601 	mutex_lock(&ctlr->bus_lock_mutex);
4602 
4603 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4604 	ctlr->bus_lock_flag = 1;
4605 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4606 
4607 	/* Mutex remains locked until spi_bus_unlock() is called */
4608 
4609 	return 0;
4610 }
4611 EXPORT_SYMBOL_GPL(spi_bus_lock);
4612 
4613 /**
4614  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4615  * @ctlr: SPI bus master that was locked for exclusive bus access
4616  * Context: can sleep
4617  *
4618  * This call may only be used from a context that may sleep.  The sleep
4619  * is non-interruptible, and has no timeout.
4620  *
4621  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4622  * call.
4623  *
4624  * Return: always zero.
4625  */
4626 int spi_bus_unlock(struct spi_controller *ctlr)
4627 {
4628 	ctlr->bus_lock_flag = 0;
4629 
4630 	mutex_unlock(&ctlr->bus_lock_mutex);
4631 
4632 	return 0;
4633 }
4634 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4635 
4636 /* Portable code must never pass more than 32 bytes */
4637 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4638 
4639 static u8	*buf;
4640 
4641 /**
4642  * spi_write_then_read - SPI synchronous write followed by read
4643  * @spi: device with which data will be exchanged
4644  * @txbuf: data to be written (need not be DMA-safe)
4645  * @n_tx: size of txbuf, in bytes
4646  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4647  * @n_rx: size of rxbuf, in bytes
4648  * Context: can sleep
4649  *
4650  * This performs a half duplex MicroWire style transaction with the
4651  * device, sending txbuf and then reading rxbuf.  The return value
4652  * is zero for success, else a negative errno status code.
4653  * This call may only be used from a context that may sleep.
4654  *
4655  * Parameters to this routine are always copied using a small buffer.
4656  * Performance-sensitive or bulk transfer code should instead use
4657  * spi_{async,sync}() calls with DMA-safe buffers.
4658  *
4659  * Return: zero on success, else a negative error code.
4660  */
4661 int spi_write_then_read(struct spi_device *spi,
4662 		const void *txbuf, unsigned n_tx,
4663 		void *rxbuf, unsigned n_rx)
4664 {
4665 	static DEFINE_MUTEX(lock);
4666 
4667 	int			status;
4668 	struct spi_message	message;
4669 	struct spi_transfer	x[2];
4670 	u8			*local_buf;
4671 
4672 	/*
4673 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4674 	 * copying here, (as a pure convenience thing), but we can
4675 	 * keep heap costs out of the hot path unless someone else is
4676 	 * using the pre-allocated buffer or the transfer is too large.
4677 	 */
4678 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4679 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4680 				    GFP_KERNEL | GFP_DMA);
4681 		if (!local_buf)
4682 			return -ENOMEM;
4683 	} else {
4684 		local_buf = buf;
4685 	}
4686 
4687 	spi_message_init(&message);
4688 	memset(x, 0, sizeof(x));
4689 	if (n_tx) {
4690 		x[0].len = n_tx;
4691 		spi_message_add_tail(&x[0], &message);
4692 	}
4693 	if (n_rx) {
4694 		x[1].len = n_rx;
4695 		spi_message_add_tail(&x[1], &message);
4696 	}
4697 
4698 	memcpy(local_buf, txbuf, n_tx);
4699 	x[0].tx_buf = local_buf;
4700 	x[1].rx_buf = local_buf + n_tx;
4701 
4702 	/* Do the I/O */
4703 	status = spi_sync(spi, &message);
4704 	if (status == 0)
4705 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4706 
4707 	if (x[0].tx_buf == buf)
4708 		mutex_unlock(&lock);
4709 	else
4710 		kfree(local_buf);
4711 
4712 	return status;
4713 }
4714 EXPORT_SYMBOL_GPL(spi_write_then_read);
4715 
4716 /*-------------------------------------------------------------------------*/
4717 
4718 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4719 /* Must call put_device() when done with returned spi_device device */
4720 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4721 {
4722 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4723 
4724 	return dev ? to_spi_device(dev) : NULL;
4725 }
4726 
4727 /* The spi controllers are not using spi_bus, so we find it with another way */
4728 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4729 {
4730 	struct device *dev;
4731 
4732 	dev = class_find_device_by_of_node(&spi_master_class, node);
4733 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4734 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4735 	if (!dev)
4736 		return NULL;
4737 
4738 	/* Reference got in class_find_device */
4739 	return container_of(dev, struct spi_controller, dev);
4740 }
4741 
4742 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4743 			 void *arg)
4744 {
4745 	struct of_reconfig_data *rd = arg;
4746 	struct spi_controller *ctlr;
4747 	struct spi_device *spi;
4748 
4749 	switch (of_reconfig_get_state_change(action, arg)) {
4750 	case OF_RECONFIG_CHANGE_ADD:
4751 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4752 		if (ctlr == NULL)
4753 			return NOTIFY_OK;	/* Not for us */
4754 
4755 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4756 			put_device(&ctlr->dev);
4757 			return NOTIFY_OK;
4758 		}
4759 
4760 		/*
4761 		 * Clear the flag before adding the device so that fw_devlink
4762 		 * doesn't skip adding consumers to this device.
4763 		 */
4764 		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4765 		spi = of_register_spi_device(ctlr, rd->dn);
4766 		put_device(&ctlr->dev);
4767 
4768 		if (IS_ERR(spi)) {
4769 			pr_err("%s: failed to create for '%pOF'\n",
4770 					__func__, rd->dn);
4771 			of_node_clear_flag(rd->dn, OF_POPULATED);
4772 			return notifier_from_errno(PTR_ERR(spi));
4773 		}
4774 		break;
4775 
4776 	case OF_RECONFIG_CHANGE_REMOVE:
4777 		/* Already depopulated? */
4778 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4779 			return NOTIFY_OK;
4780 
4781 		/* Find our device by node */
4782 		spi = of_find_spi_device_by_node(rd->dn);
4783 		if (spi == NULL)
4784 			return NOTIFY_OK;	/* No? not meant for us */
4785 
4786 		/* Unregister takes one ref away */
4787 		spi_unregister_device(spi);
4788 
4789 		/* And put the reference of the find */
4790 		put_device(&spi->dev);
4791 		break;
4792 	}
4793 
4794 	return NOTIFY_OK;
4795 }
4796 
4797 static struct notifier_block spi_of_notifier = {
4798 	.notifier_call = of_spi_notify,
4799 };
4800 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4801 extern struct notifier_block spi_of_notifier;
4802 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4803 
4804 #if IS_ENABLED(CONFIG_ACPI)
4805 static int spi_acpi_controller_match(struct device *dev, const void *data)
4806 {
4807 	return ACPI_COMPANION(dev->parent) == data;
4808 }
4809 
4810 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4811 {
4812 	struct device *dev;
4813 
4814 	dev = class_find_device(&spi_master_class, NULL, adev,
4815 				spi_acpi_controller_match);
4816 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4817 		dev = class_find_device(&spi_slave_class, NULL, adev,
4818 					spi_acpi_controller_match);
4819 	if (!dev)
4820 		return NULL;
4821 
4822 	return container_of(dev, struct spi_controller, dev);
4823 }
4824 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4825 
4826 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4827 {
4828 	struct device *dev;
4829 
4830 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4831 	return to_spi_device(dev);
4832 }
4833 
4834 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4835 			   void *arg)
4836 {
4837 	struct acpi_device *adev = arg;
4838 	struct spi_controller *ctlr;
4839 	struct spi_device *spi;
4840 
4841 	switch (value) {
4842 	case ACPI_RECONFIG_DEVICE_ADD:
4843 		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4844 		if (!ctlr)
4845 			break;
4846 
4847 		acpi_register_spi_device(ctlr, adev);
4848 		put_device(&ctlr->dev);
4849 		break;
4850 	case ACPI_RECONFIG_DEVICE_REMOVE:
4851 		if (!acpi_device_enumerated(adev))
4852 			break;
4853 
4854 		spi = acpi_spi_find_device_by_adev(adev);
4855 		if (!spi)
4856 			break;
4857 
4858 		spi_unregister_device(spi);
4859 		put_device(&spi->dev);
4860 		break;
4861 	}
4862 
4863 	return NOTIFY_OK;
4864 }
4865 
4866 static struct notifier_block spi_acpi_notifier = {
4867 	.notifier_call = acpi_spi_notify,
4868 };
4869 #else
4870 extern struct notifier_block spi_acpi_notifier;
4871 #endif
4872 
4873 static int __init spi_init(void)
4874 {
4875 	int	status;
4876 
4877 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4878 	if (!buf) {
4879 		status = -ENOMEM;
4880 		goto err0;
4881 	}
4882 
4883 	status = bus_register(&spi_bus_type);
4884 	if (status < 0)
4885 		goto err1;
4886 
4887 	status = class_register(&spi_master_class);
4888 	if (status < 0)
4889 		goto err2;
4890 
4891 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4892 		status = class_register(&spi_slave_class);
4893 		if (status < 0)
4894 			goto err3;
4895 	}
4896 
4897 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4898 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4899 	if (IS_ENABLED(CONFIG_ACPI))
4900 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4901 
4902 	return 0;
4903 
4904 err3:
4905 	class_unregister(&spi_master_class);
4906 err2:
4907 	bus_unregister(&spi_bus_type);
4908 err1:
4909 	kfree(buf);
4910 	buf = NULL;
4911 err0:
4912 	return status;
4913 }
4914 
4915 /*
4916  * A board_info is normally registered in arch_initcall(),
4917  * but even essential drivers wait till later.
4918  *
4919  * REVISIT only boardinfo really needs static linking. The rest (device and
4920  * driver registration) _could_ be dynamically linked (modular) ... Costs
4921  * include needing to have boardinfo data structures be much more public.
4922  */
4923 postcore_initcall(spi_init);
4924