1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/spi.h> 35 #include <linux/spi/spi-mem.h> 36 #include <uapi/linux/sched/types.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 121 char *buf, size_t offset) 122 { 123 u64 val = 0; 124 int i; 125 126 for_each_possible_cpu(i) { 127 const struct spi_statistics *pcpu_stats; 128 u64_stats_t *field; 129 unsigned int start; 130 u64 inc; 131 132 pcpu_stats = per_cpu_ptr(stat, i); 133 field = (void *)pcpu_stats + offset; 134 do { 135 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 136 inc = u64_stats_read(field); 137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 138 val += inc; 139 } 140 return sysfs_emit(buf, "%llu\n", val); 141 } 142 143 #define SPI_STATISTICS_ATTRS(field, file) \ 144 static ssize_t spi_controller_##field##_show(struct device *dev, \ 145 struct device_attribute *attr, \ 146 char *buf) \ 147 { \ 148 struct spi_controller *ctlr = container_of(dev, \ 149 struct spi_controller, dev); \ 150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 151 } \ 152 static struct device_attribute dev_attr_spi_controller_##field = { \ 153 .attr = { .name = file, .mode = 0444 }, \ 154 .show = spi_controller_##field##_show, \ 155 }; \ 156 static ssize_t spi_device_##field##_show(struct device *dev, \ 157 struct device_attribute *attr, \ 158 char *buf) \ 159 { \ 160 struct spi_device *spi = to_spi_device(dev); \ 161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 162 } \ 163 static struct device_attribute dev_attr_spi_device_##field = { \ 164 .attr = { .name = file, .mode = 0444 }, \ 165 .show = spi_device_##field##_show, \ 166 } 167 168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 170 char *buf) \ 171 { \ 172 return spi_emit_pcpu_stats(stat, buf, \ 173 offsetof(struct spi_statistics, field)); \ 174 } \ 175 SPI_STATISTICS_ATTRS(name, file) 176 177 #define SPI_STATISTICS_SHOW(field) \ 178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 179 field) 180 181 SPI_STATISTICS_SHOW(messages); 182 SPI_STATISTICS_SHOW(transfers); 183 SPI_STATISTICS_SHOW(errors); 184 SPI_STATISTICS_SHOW(timedout); 185 186 SPI_STATISTICS_SHOW(spi_sync); 187 SPI_STATISTICS_SHOW(spi_sync_immediate); 188 SPI_STATISTICS_SHOW(spi_async); 189 190 SPI_STATISTICS_SHOW(bytes); 191 SPI_STATISTICS_SHOW(bytes_rx); 192 SPI_STATISTICS_SHOW(bytes_tx); 193 194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 196 "transfer_bytes_histo_" number, \ 197 transfer_bytes_histo[index]) 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 215 216 SPI_STATISTICS_SHOW(transfers_split_maxsize); 217 218 static struct attribute *spi_dev_attrs[] = { 219 &dev_attr_modalias.attr, 220 &dev_attr_driver_override.attr, 221 NULL, 222 }; 223 224 static const struct attribute_group spi_dev_group = { 225 .attrs = spi_dev_attrs, 226 }; 227 228 static struct attribute *spi_device_statistics_attrs[] = { 229 &dev_attr_spi_device_messages.attr, 230 &dev_attr_spi_device_transfers.attr, 231 &dev_attr_spi_device_errors.attr, 232 &dev_attr_spi_device_timedout.attr, 233 &dev_attr_spi_device_spi_sync.attr, 234 &dev_attr_spi_device_spi_sync_immediate.attr, 235 &dev_attr_spi_device_spi_async.attr, 236 &dev_attr_spi_device_bytes.attr, 237 &dev_attr_spi_device_bytes_rx.attr, 238 &dev_attr_spi_device_bytes_tx.attr, 239 &dev_attr_spi_device_transfer_bytes_histo0.attr, 240 &dev_attr_spi_device_transfer_bytes_histo1.attr, 241 &dev_attr_spi_device_transfer_bytes_histo2.attr, 242 &dev_attr_spi_device_transfer_bytes_histo3.attr, 243 &dev_attr_spi_device_transfer_bytes_histo4.attr, 244 &dev_attr_spi_device_transfer_bytes_histo5.attr, 245 &dev_attr_spi_device_transfer_bytes_histo6.attr, 246 &dev_attr_spi_device_transfer_bytes_histo7.attr, 247 &dev_attr_spi_device_transfer_bytes_histo8.attr, 248 &dev_attr_spi_device_transfer_bytes_histo9.attr, 249 &dev_attr_spi_device_transfer_bytes_histo10.attr, 250 &dev_attr_spi_device_transfer_bytes_histo11.attr, 251 &dev_attr_spi_device_transfer_bytes_histo12.attr, 252 &dev_attr_spi_device_transfer_bytes_histo13.attr, 253 &dev_attr_spi_device_transfer_bytes_histo14.attr, 254 &dev_attr_spi_device_transfer_bytes_histo15.attr, 255 &dev_attr_spi_device_transfer_bytes_histo16.attr, 256 &dev_attr_spi_device_transfers_split_maxsize.attr, 257 NULL, 258 }; 259 260 static const struct attribute_group spi_device_statistics_group = { 261 .name = "statistics", 262 .attrs = spi_device_statistics_attrs, 263 }; 264 265 static const struct attribute_group *spi_dev_groups[] = { 266 &spi_dev_group, 267 &spi_device_statistics_group, 268 NULL, 269 }; 270 271 static struct attribute *spi_controller_statistics_attrs[] = { 272 &dev_attr_spi_controller_messages.attr, 273 &dev_attr_spi_controller_transfers.attr, 274 &dev_attr_spi_controller_errors.attr, 275 &dev_attr_spi_controller_timedout.attr, 276 &dev_attr_spi_controller_spi_sync.attr, 277 &dev_attr_spi_controller_spi_sync_immediate.attr, 278 &dev_attr_spi_controller_spi_async.attr, 279 &dev_attr_spi_controller_bytes.attr, 280 &dev_attr_spi_controller_bytes_rx.attr, 281 &dev_attr_spi_controller_bytes_tx.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 299 &dev_attr_spi_controller_transfers_split_maxsize.attr, 300 NULL, 301 }; 302 303 static const struct attribute_group spi_controller_statistics_group = { 304 .name = "statistics", 305 .attrs = spi_controller_statistics_attrs, 306 }; 307 308 static const struct attribute_group *spi_master_groups[] = { 309 &spi_controller_statistics_group, 310 NULL, 311 }; 312 313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 314 struct spi_transfer *xfer, 315 struct spi_controller *ctlr) 316 { 317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 318 struct spi_statistics *stats; 319 320 if (l2len < 0) 321 l2len = 0; 322 323 get_cpu(); 324 stats = this_cpu_ptr(pcpu_stats); 325 u64_stats_update_begin(&stats->syncp); 326 327 u64_stats_inc(&stats->transfers); 328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 329 330 u64_stats_add(&stats->bytes, xfer->len); 331 if ((xfer->tx_buf) && 332 (xfer->tx_buf != ctlr->dummy_tx)) 333 u64_stats_add(&stats->bytes_tx, xfer->len); 334 if ((xfer->rx_buf) && 335 (xfer->rx_buf != ctlr->dummy_rx)) 336 u64_stats_add(&stats->bytes_rx, xfer->len); 337 338 u64_stats_update_end(&stats->syncp); 339 put_cpu(); 340 } 341 342 /* 343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 344 * and the sysfs version makes coldplug work too. 345 */ 346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 347 { 348 while (id->name[0]) { 349 if (!strcmp(name, id->name)) 350 return id; 351 id++; 352 } 353 return NULL; 354 } 355 356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 357 { 358 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 359 360 return spi_match_id(sdrv->id_table, sdev->modalias); 361 } 362 EXPORT_SYMBOL_GPL(spi_get_device_id); 363 364 const void *spi_get_device_match_data(const struct spi_device *sdev) 365 { 366 const void *match; 367 368 match = device_get_match_data(&sdev->dev); 369 if (match) 370 return match; 371 372 return (const void *)spi_get_device_id(sdev)->driver_data; 373 } 374 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 375 376 static int spi_match_device(struct device *dev, struct device_driver *drv) 377 { 378 const struct spi_device *spi = to_spi_device(dev); 379 const struct spi_driver *sdrv = to_spi_driver(drv); 380 381 /* Check override first, and if set, only use the named driver */ 382 if (spi->driver_override) 383 return strcmp(spi->driver_override, drv->name) == 0; 384 385 /* Attempt an OF style match */ 386 if (of_driver_match_device(dev, drv)) 387 return 1; 388 389 /* Then try ACPI */ 390 if (acpi_driver_match_device(dev, drv)) 391 return 1; 392 393 if (sdrv->id_table) 394 return !!spi_match_id(sdrv->id_table, spi->modalias); 395 396 return strcmp(spi->modalias, drv->name) == 0; 397 } 398 399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 400 { 401 const struct spi_device *spi = to_spi_device(dev); 402 int rc; 403 404 rc = acpi_device_uevent_modalias(dev, env); 405 if (rc != -ENODEV) 406 return rc; 407 408 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 409 } 410 411 static int spi_probe(struct device *dev) 412 { 413 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 414 struct spi_device *spi = to_spi_device(dev); 415 int ret; 416 417 ret = of_clk_set_defaults(dev->of_node, false); 418 if (ret) 419 return ret; 420 421 if (dev->of_node) { 422 spi->irq = of_irq_get(dev->of_node, 0); 423 if (spi->irq == -EPROBE_DEFER) 424 return -EPROBE_DEFER; 425 if (spi->irq < 0) 426 spi->irq = 0; 427 } 428 429 ret = dev_pm_domain_attach(dev, true); 430 if (ret) 431 return ret; 432 433 if (sdrv->probe) { 434 ret = sdrv->probe(spi); 435 if (ret) 436 dev_pm_domain_detach(dev, true); 437 } 438 439 return ret; 440 } 441 442 static void spi_remove(struct device *dev) 443 { 444 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 445 446 if (sdrv->remove) 447 sdrv->remove(to_spi_device(dev)); 448 449 dev_pm_domain_detach(dev, true); 450 } 451 452 static void spi_shutdown(struct device *dev) 453 { 454 if (dev->driver) { 455 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 456 457 if (sdrv->shutdown) 458 sdrv->shutdown(to_spi_device(dev)); 459 } 460 } 461 462 const struct bus_type spi_bus_type = { 463 .name = "spi", 464 .dev_groups = spi_dev_groups, 465 .match = spi_match_device, 466 .uevent = spi_uevent, 467 .probe = spi_probe, 468 .remove = spi_remove, 469 .shutdown = spi_shutdown, 470 }; 471 EXPORT_SYMBOL_GPL(spi_bus_type); 472 473 /** 474 * __spi_register_driver - register a SPI driver 475 * @owner: owner module of the driver to register 476 * @sdrv: the driver to register 477 * Context: can sleep 478 * 479 * Return: zero on success, else a negative error code. 480 */ 481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 482 { 483 sdrv->driver.owner = owner; 484 sdrv->driver.bus = &spi_bus_type; 485 486 /* 487 * For Really Good Reasons we use spi: modaliases not of: 488 * modaliases for DT so module autoloading won't work if we 489 * don't have a spi_device_id as well as a compatible string. 490 */ 491 if (sdrv->driver.of_match_table) { 492 const struct of_device_id *of_id; 493 494 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 495 of_id++) { 496 const char *of_name; 497 498 /* Strip off any vendor prefix */ 499 of_name = strnchr(of_id->compatible, 500 sizeof(of_id->compatible), ','); 501 if (of_name) 502 of_name++; 503 else 504 of_name = of_id->compatible; 505 506 if (sdrv->id_table) { 507 const struct spi_device_id *spi_id; 508 509 spi_id = spi_match_id(sdrv->id_table, of_name); 510 if (spi_id) 511 continue; 512 } else { 513 if (strcmp(sdrv->driver.name, of_name) == 0) 514 continue; 515 } 516 517 pr_warn("SPI driver %s has no spi_device_id for %s\n", 518 sdrv->driver.name, of_id->compatible); 519 } 520 } 521 522 return driver_register(&sdrv->driver); 523 } 524 EXPORT_SYMBOL_GPL(__spi_register_driver); 525 526 /*-------------------------------------------------------------------------*/ 527 528 /* 529 * SPI devices should normally not be created by SPI device drivers; that 530 * would make them board-specific. Similarly with SPI controller drivers. 531 * Device registration normally goes into like arch/.../mach.../board-YYY.c 532 * with other readonly (flashable) information about mainboard devices. 533 */ 534 535 struct boardinfo { 536 struct list_head list; 537 struct spi_board_info board_info; 538 }; 539 540 static LIST_HEAD(board_list); 541 static LIST_HEAD(spi_controller_list); 542 543 /* 544 * Used to protect add/del operation for board_info list and 545 * spi_controller list, and their matching process also used 546 * to protect object of type struct idr. 547 */ 548 static DEFINE_MUTEX(board_lock); 549 550 /** 551 * spi_alloc_device - Allocate a new SPI device 552 * @ctlr: Controller to which device is connected 553 * Context: can sleep 554 * 555 * Allows a driver to allocate and initialize a spi_device without 556 * registering it immediately. This allows a driver to directly 557 * fill the spi_device with device parameters before calling 558 * spi_add_device() on it. 559 * 560 * Caller is responsible to call spi_add_device() on the returned 561 * spi_device structure to add it to the SPI controller. If the caller 562 * needs to discard the spi_device without adding it, then it should 563 * call spi_dev_put() on it. 564 * 565 * Return: a pointer to the new device, or NULL. 566 */ 567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 568 { 569 struct spi_device *spi; 570 571 if (!spi_controller_get(ctlr)) 572 return NULL; 573 574 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 575 if (!spi) { 576 spi_controller_put(ctlr); 577 return NULL; 578 } 579 580 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 581 if (!spi->pcpu_statistics) { 582 kfree(spi); 583 spi_controller_put(ctlr); 584 return NULL; 585 } 586 587 spi->controller = ctlr; 588 spi->dev.parent = &ctlr->dev; 589 spi->dev.bus = &spi_bus_type; 590 spi->dev.release = spidev_release; 591 spi->mode = ctlr->buswidth_override_bits; 592 593 device_initialize(&spi->dev); 594 return spi; 595 } 596 EXPORT_SYMBOL_GPL(spi_alloc_device); 597 598 static void spi_dev_set_name(struct spi_device *spi) 599 { 600 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 601 602 if (adev) { 603 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 604 return; 605 } 606 607 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 608 spi_get_chipselect(spi, 0)); 609 } 610 611 /* 612 * Zero(0) is a valid physical CS value and can be located at any 613 * logical CS in the spi->chip_select[]. If all the physical CS 614 * are initialized to 0 then It would be difficult to differentiate 615 * between a valid physical CS 0 & an unused logical CS whose physical 616 * CS can be 0. As a solution to this issue initialize all the CS to -1. 617 * Now all the unused logical CS will have -1 physical CS value & can be 618 * ignored while performing physical CS validity checks. 619 */ 620 #define SPI_INVALID_CS ((s8)-1) 621 622 static inline bool is_valid_cs(s8 chip_select) 623 { 624 return chip_select != SPI_INVALID_CS; 625 } 626 627 static inline int spi_dev_check_cs(struct device *dev, 628 struct spi_device *spi, u8 idx, 629 struct spi_device *new_spi, u8 new_idx) 630 { 631 u8 cs, cs_new; 632 u8 idx_new; 633 634 cs = spi_get_chipselect(spi, idx); 635 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) { 636 cs_new = spi_get_chipselect(new_spi, idx_new); 637 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) { 638 dev_err(dev, "chipselect %u already in use\n", cs_new); 639 return -EBUSY; 640 } 641 } 642 return 0; 643 } 644 645 static int spi_dev_check(struct device *dev, void *data) 646 { 647 struct spi_device *spi = to_spi_device(dev); 648 struct spi_device *new_spi = data; 649 int status, idx; 650 651 if (spi->controller == new_spi->controller) { 652 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 653 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0); 654 if (status) 655 return status; 656 } 657 } 658 return 0; 659 } 660 661 static void spi_cleanup(struct spi_device *spi) 662 { 663 if (spi->controller->cleanup) 664 spi->controller->cleanup(spi); 665 } 666 667 static int __spi_add_device(struct spi_device *spi) 668 { 669 struct spi_controller *ctlr = spi->controller; 670 struct device *dev = ctlr->dev.parent; 671 int status, idx; 672 u8 cs; 673 674 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 675 /* Chipselects are numbered 0..max; validate. */ 676 cs = spi_get_chipselect(spi, idx); 677 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) { 678 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx), 679 ctlr->num_chipselect); 680 return -EINVAL; 681 } 682 } 683 684 /* 685 * Make sure that multiple logical CS doesn't map to the same physical CS. 686 * For example, spi->chip_select[0] != spi->chip_select[1] and so on. 687 */ 688 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 689 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1); 690 if (status) 691 return status; 692 } 693 694 /* Set the bus ID string */ 695 spi_dev_set_name(spi); 696 697 /* 698 * We need to make sure there's no other device with this 699 * chipselect **BEFORE** we call setup(), else we'll trash 700 * its configuration. 701 */ 702 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 703 if (status) 704 return status; 705 706 /* Controller may unregister concurrently */ 707 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 708 !device_is_registered(&ctlr->dev)) { 709 return -ENODEV; 710 } 711 712 if (ctlr->cs_gpiods) { 713 u8 cs; 714 715 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 716 cs = spi_get_chipselect(spi, idx); 717 if (is_valid_cs(cs)) 718 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]); 719 } 720 } 721 722 /* 723 * Drivers may modify this initial i/o setup, but will 724 * normally rely on the device being setup. Devices 725 * using SPI_CS_HIGH can't coexist well otherwise... 726 */ 727 status = spi_setup(spi); 728 if (status < 0) { 729 dev_err(dev, "can't setup %s, status %d\n", 730 dev_name(&spi->dev), status); 731 return status; 732 } 733 734 /* Device may be bound to an active driver when this returns */ 735 status = device_add(&spi->dev); 736 if (status < 0) { 737 dev_err(dev, "can't add %s, status %d\n", 738 dev_name(&spi->dev), status); 739 spi_cleanup(spi); 740 } else { 741 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 742 } 743 744 return status; 745 } 746 747 /** 748 * spi_add_device - Add spi_device allocated with spi_alloc_device 749 * @spi: spi_device to register 750 * 751 * Companion function to spi_alloc_device. Devices allocated with 752 * spi_alloc_device can be added onto the SPI bus with this function. 753 * 754 * Return: 0 on success; negative errno on failure 755 */ 756 int spi_add_device(struct spi_device *spi) 757 { 758 struct spi_controller *ctlr = spi->controller; 759 int status; 760 761 /* Set the bus ID string */ 762 spi_dev_set_name(spi); 763 764 mutex_lock(&ctlr->add_lock); 765 status = __spi_add_device(spi); 766 mutex_unlock(&ctlr->add_lock); 767 return status; 768 } 769 EXPORT_SYMBOL_GPL(spi_add_device); 770 771 static void spi_set_all_cs_unused(struct spi_device *spi) 772 { 773 u8 idx; 774 775 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 776 spi_set_chipselect(spi, idx, SPI_INVALID_CS); 777 } 778 779 /** 780 * spi_new_device - instantiate one new SPI device 781 * @ctlr: Controller to which device is connected 782 * @chip: Describes the SPI device 783 * Context: can sleep 784 * 785 * On typical mainboards, this is purely internal; and it's not needed 786 * after board init creates the hard-wired devices. Some development 787 * platforms may not be able to use spi_register_board_info though, and 788 * this is exported so that for example a USB or parport based adapter 789 * driver could add devices (which it would learn about out-of-band). 790 * 791 * Return: the new device, or NULL. 792 */ 793 struct spi_device *spi_new_device(struct spi_controller *ctlr, 794 struct spi_board_info *chip) 795 { 796 struct spi_device *proxy; 797 int status; 798 799 /* 800 * NOTE: caller did any chip->bus_num checks necessary. 801 * 802 * Also, unless we change the return value convention to use 803 * error-or-pointer (not NULL-or-pointer), troubleshootability 804 * suggests syslogged diagnostics are best here (ugh). 805 */ 806 807 proxy = spi_alloc_device(ctlr); 808 if (!proxy) 809 return NULL; 810 811 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 812 813 /* Use provided chip-select for proxy device */ 814 spi_set_all_cs_unused(proxy); 815 spi_set_chipselect(proxy, 0, chip->chip_select); 816 817 proxy->max_speed_hz = chip->max_speed_hz; 818 proxy->mode = chip->mode; 819 proxy->irq = chip->irq; 820 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 821 proxy->dev.platform_data = (void *) chip->platform_data; 822 proxy->controller_data = chip->controller_data; 823 proxy->controller_state = NULL; 824 /* 825 * spi->chip_select[i] gives the corresponding physical CS for logical CS i 826 * logical CS number is represented by setting the ith bit in spi->cs_index_mask 827 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and 828 * spi->chip_select[0] will give the physical CS. 829 * By default spi->chip_select[0] will hold the physical CS number so, set 830 * spi->cs_index_mask as 0x01. 831 */ 832 proxy->cs_index_mask = 0x01; 833 834 if (chip->swnode) { 835 status = device_add_software_node(&proxy->dev, chip->swnode); 836 if (status) { 837 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 838 chip->modalias, status); 839 goto err_dev_put; 840 } 841 } 842 843 status = spi_add_device(proxy); 844 if (status < 0) 845 goto err_dev_put; 846 847 return proxy; 848 849 err_dev_put: 850 device_remove_software_node(&proxy->dev); 851 spi_dev_put(proxy); 852 return NULL; 853 } 854 EXPORT_SYMBOL_GPL(spi_new_device); 855 856 /** 857 * spi_unregister_device - unregister a single SPI device 858 * @spi: spi_device to unregister 859 * 860 * Start making the passed SPI device vanish. Normally this would be handled 861 * by spi_unregister_controller(). 862 */ 863 void spi_unregister_device(struct spi_device *spi) 864 { 865 if (!spi) 866 return; 867 868 if (spi->dev.of_node) { 869 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 870 of_node_put(spi->dev.of_node); 871 } 872 if (ACPI_COMPANION(&spi->dev)) 873 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 874 device_remove_software_node(&spi->dev); 875 device_del(&spi->dev); 876 spi_cleanup(spi); 877 put_device(&spi->dev); 878 } 879 EXPORT_SYMBOL_GPL(spi_unregister_device); 880 881 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 882 struct spi_board_info *bi) 883 { 884 struct spi_device *dev; 885 886 if (ctlr->bus_num != bi->bus_num) 887 return; 888 889 dev = spi_new_device(ctlr, bi); 890 if (!dev) 891 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 892 bi->modalias); 893 } 894 895 /** 896 * spi_register_board_info - register SPI devices for a given board 897 * @info: array of chip descriptors 898 * @n: how many descriptors are provided 899 * Context: can sleep 900 * 901 * Board-specific early init code calls this (probably during arch_initcall) 902 * with segments of the SPI device table. Any device nodes are created later, 903 * after the relevant parent SPI controller (bus_num) is defined. We keep 904 * this table of devices forever, so that reloading a controller driver will 905 * not make Linux forget about these hard-wired devices. 906 * 907 * Other code can also call this, e.g. a particular add-on board might provide 908 * SPI devices through its expansion connector, so code initializing that board 909 * would naturally declare its SPI devices. 910 * 911 * The board info passed can safely be __initdata ... but be careful of 912 * any embedded pointers (platform_data, etc), they're copied as-is. 913 * 914 * Return: zero on success, else a negative error code. 915 */ 916 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 917 { 918 struct boardinfo *bi; 919 int i; 920 921 if (!n) 922 return 0; 923 924 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 925 if (!bi) 926 return -ENOMEM; 927 928 for (i = 0; i < n; i++, bi++, info++) { 929 struct spi_controller *ctlr; 930 931 memcpy(&bi->board_info, info, sizeof(*info)); 932 933 mutex_lock(&board_lock); 934 list_add_tail(&bi->list, &board_list); 935 list_for_each_entry(ctlr, &spi_controller_list, list) 936 spi_match_controller_to_boardinfo(ctlr, 937 &bi->board_info); 938 mutex_unlock(&board_lock); 939 } 940 941 return 0; 942 } 943 944 /*-------------------------------------------------------------------------*/ 945 946 /* Core methods for SPI resource management */ 947 948 /** 949 * spi_res_alloc - allocate a spi resource that is life-cycle managed 950 * during the processing of a spi_message while using 951 * spi_transfer_one 952 * @spi: the SPI device for which we allocate memory 953 * @release: the release code to execute for this resource 954 * @size: size to alloc and return 955 * @gfp: GFP allocation flags 956 * 957 * Return: the pointer to the allocated data 958 * 959 * This may get enhanced in the future to allocate from a memory pool 960 * of the @spi_device or @spi_controller to avoid repeated allocations. 961 */ 962 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 963 size_t size, gfp_t gfp) 964 { 965 struct spi_res *sres; 966 967 sres = kzalloc(sizeof(*sres) + size, gfp); 968 if (!sres) 969 return NULL; 970 971 INIT_LIST_HEAD(&sres->entry); 972 sres->release = release; 973 974 return sres->data; 975 } 976 977 /** 978 * spi_res_free - free an SPI resource 979 * @res: pointer to the custom data of a resource 980 */ 981 static void spi_res_free(void *res) 982 { 983 struct spi_res *sres = container_of(res, struct spi_res, data); 984 985 if (!res) 986 return; 987 988 WARN_ON(!list_empty(&sres->entry)); 989 kfree(sres); 990 } 991 992 /** 993 * spi_res_add - add a spi_res to the spi_message 994 * @message: the SPI message 995 * @res: the spi_resource 996 */ 997 static void spi_res_add(struct spi_message *message, void *res) 998 { 999 struct spi_res *sres = container_of(res, struct spi_res, data); 1000 1001 WARN_ON(!list_empty(&sres->entry)); 1002 list_add_tail(&sres->entry, &message->resources); 1003 } 1004 1005 /** 1006 * spi_res_release - release all SPI resources for this message 1007 * @ctlr: the @spi_controller 1008 * @message: the @spi_message 1009 */ 1010 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 1011 { 1012 struct spi_res *res, *tmp; 1013 1014 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 1015 if (res->release) 1016 res->release(ctlr, message, res->data); 1017 1018 list_del(&res->entry); 1019 1020 kfree(res); 1021 } 1022 } 1023 1024 /*-------------------------------------------------------------------------*/ 1025 static inline bool spi_is_last_cs(struct spi_device *spi) 1026 { 1027 u8 idx; 1028 bool last = false; 1029 1030 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 1031 if (spi->cs_index_mask & BIT(idx)) { 1032 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx)) 1033 last = true; 1034 } 1035 } 1036 return last; 1037 } 1038 1039 1040 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 1041 { 1042 bool activate = enable; 1043 u8 idx; 1044 1045 /* 1046 * Avoid calling into the driver (or doing delays) if the chip select 1047 * isn't actually changing from the last time this was called. 1048 */ 1049 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1050 spi_is_last_cs(spi)) || 1051 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1052 !spi_is_last_cs(spi))) && 1053 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 1054 return; 1055 1056 trace_spi_set_cs(spi, activate); 1057 1058 spi->controller->last_cs_index_mask = spi->cs_index_mask; 1059 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 1060 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS; 1061 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 1062 1063 if (spi->mode & SPI_CS_HIGH) 1064 enable = !enable; 1065 1066 /* 1067 * Handle chip select delays for GPIO based CS or controllers without 1068 * programmable chip select timing. 1069 */ 1070 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate) 1071 spi_delay_exec(&spi->cs_hold, NULL); 1072 1073 if (spi_is_csgpiod(spi)) { 1074 if (!(spi->mode & SPI_NO_CS)) { 1075 /* 1076 * Historically ACPI has no means of the GPIO polarity and 1077 * thus the SPISerialBus() resource defines it on the per-chip 1078 * basis. In order to avoid a chain of negations, the GPIO 1079 * polarity is considered being Active High. Even for the cases 1080 * when _DSD() is involved (in the updated versions of ACPI) 1081 * the GPIO CS polarity must be defined Active High to avoid 1082 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 1083 * into account. 1084 */ 1085 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 1086 if ((spi->cs_index_mask & BIT(idx)) && spi_get_csgpiod(spi, idx)) { 1087 if (has_acpi_companion(&spi->dev)) 1088 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), 1089 !enable); 1090 else 1091 /* Polarity handled by GPIO library */ 1092 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), 1093 activate); 1094 1095 if (activate) 1096 spi_delay_exec(&spi->cs_setup, NULL); 1097 else 1098 spi_delay_exec(&spi->cs_inactive, NULL); 1099 } 1100 } 1101 } 1102 /* Some SPI masters need both GPIO CS & slave_select */ 1103 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 1104 spi->controller->set_cs) 1105 spi->controller->set_cs(spi, !enable); 1106 } else if (spi->controller->set_cs) { 1107 spi->controller->set_cs(spi, !enable); 1108 } 1109 1110 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) { 1111 if (activate) 1112 spi_delay_exec(&spi->cs_setup, NULL); 1113 else 1114 spi_delay_exec(&spi->cs_inactive, NULL); 1115 } 1116 } 1117 1118 #ifdef CONFIG_HAS_DMA 1119 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1120 struct sg_table *sgt, void *buf, size_t len, 1121 enum dma_data_direction dir, unsigned long attrs) 1122 { 1123 const bool vmalloced_buf = is_vmalloc_addr(buf); 1124 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1125 #ifdef CONFIG_HIGHMEM 1126 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1127 (unsigned long)buf < (PKMAP_BASE + 1128 (LAST_PKMAP * PAGE_SIZE))); 1129 #else 1130 const bool kmap_buf = false; 1131 #endif 1132 int desc_len; 1133 int sgs; 1134 struct page *vm_page; 1135 struct scatterlist *sg; 1136 void *sg_buf; 1137 size_t min; 1138 int i, ret; 1139 1140 if (vmalloced_buf || kmap_buf) { 1141 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1142 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1143 } else if (virt_addr_valid(buf)) { 1144 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1145 sgs = DIV_ROUND_UP(len, desc_len); 1146 } else { 1147 return -EINVAL; 1148 } 1149 1150 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1151 if (ret != 0) 1152 return ret; 1153 1154 sg = &sgt->sgl[0]; 1155 for (i = 0; i < sgs; i++) { 1156 1157 if (vmalloced_buf || kmap_buf) { 1158 /* 1159 * Next scatterlist entry size is the minimum between 1160 * the desc_len and the remaining buffer length that 1161 * fits in a page. 1162 */ 1163 min = min_t(size_t, desc_len, 1164 min_t(size_t, len, 1165 PAGE_SIZE - offset_in_page(buf))); 1166 if (vmalloced_buf) 1167 vm_page = vmalloc_to_page(buf); 1168 else 1169 vm_page = kmap_to_page(buf); 1170 if (!vm_page) { 1171 sg_free_table(sgt); 1172 return -ENOMEM; 1173 } 1174 sg_set_page(sg, vm_page, 1175 min, offset_in_page(buf)); 1176 } else { 1177 min = min_t(size_t, len, desc_len); 1178 sg_buf = buf; 1179 sg_set_buf(sg, sg_buf, min); 1180 } 1181 1182 buf += min; 1183 len -= min; 1184 sg = sg_next(sg); 1185 } 1186 1187 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1188 if (ret < 0) { 1189 sg_free_table(sgt); 1190 return ret; 1191 } 1192 1193 return 0; 1194 } 1195 1196 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1197 struct sg_table *sgt, void *buf, size_t len, 1198 enum dma_data_direction dir) 1199 { 1200 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1201 } 1202 1203 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1204 struct device *dev, struct sg_table *sgt, 1205 enum dma_data_direction dir, 1206 unsigned long attrs) 1207 { 1208 if (sgt->orig_nents) { 1209 dma_unmap_sgtable(dev, sgt, dir, attrs); 1210 sg_free_table(sgt); 1211 sgt->orig_nents = 0; 1212 sgt->nents = 0; 1213 } 1214 } 1215 1216 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1217 struct sg_table *sgt, enum dma_data_direction dir) 1218 { 1219 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1220 } 1221 1222 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1223 { 1224 struct device *tx_dev, *rx_dev; 1225 struct spi_transfer *xfer; 1226 int ret; 1227 1228 if (!ctlr->can_dma) 1229 return 0; 1230 1231 if (ctlr->dma_tx) 1232 tx_dev = ctlr->dma_tx->device->dev; 1233 else if (ctlr->dma_map_dev) 1234 tx_dev = ctlr->dma_map_dev; 1235 else 1236 tx_dev = ctlr->dev.parent; 1237 1238 if (ctlr->dma_rx) 1239 rx_dev = ctlr->dma_rx->device->dev; 1240 else if (ctlr->dma_map_dev) 1241 rx_dev = ctlr->dma_map_dev; 1242 else 1243 rx_dev = ctlr->dev.parent; 1244 1245 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1246 /* The sync is done before each transfer. */ 1247 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1248 1249 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1250 continue; 1251 1252 if (xfer->tx_buf != NULL) { 1253 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1254 (void *)xfer->tx_buf, 1255 xfer->len, DMA_TO_DEVICE, 1256 attrs); 1257 if (ret != 0) 1258 return ret; 1259 } 1260 1261 if (xfer->rx_buf != NULL) { 1262 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1263 xfer->rx_buf, xfer->len, 1264 DMA_FROM_DEVICE, attrs); 1265 if (ret != 0) { 1266 spi_unmap_buf_attrs(ctlr, tx_dev, 1267 &xfer->tx_sg, DMA_TO_DEVICE, 1268 attrs); 1269 1270 return ret; 1271 } 1272 } 1273 } 1274 1275 ctlr->cur_rx_dma_dev = rx_dev; 1276 ctlr->cur_tx_dma_dev = tx_dev; 1277 ctlr->cur_msg_mapped = true; 1278 1279 return 0; 1280 } 1281 1282 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1283 { 1284 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1285 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1286 struct spi_transfer *xfer; 1287 1288 if (!ctlr->cur_msg_mapped || !ctlr->can_dma) 1289 return 0; 1290 1291 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1292 /* The sync has already been done after each transfer. */ 1293 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1294 1295 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1296 continue; 1297 1298 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1299 DMA_FROM_DEVICE, attrs); 1300 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1301 DMA_TO_DEVICE, attrs); 1302 } 1303 1304 ctlr->cur_msg_mapped = false; 1305 1306 return 0; 1307 } 1308 1309 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1310 struct spi_transfer *xfer) 1311 { 1312 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1313 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1314 1315 if (!ctlr->cur_msg_mapped) 1316 return; 1317 1318 if (xfer->tx_sg.orig_nents) 1319 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1320 if (xfer->rx_sg.orig_nents) 1321 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1322 } 1323 1324 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1325 struct spi_transfer *xfer) 1326 { 1327 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1328 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1329 1330 if (!ctlr->cur_msg_mapped) 1331 return; 1332 1333 if (xfer->rx_sg.orig_nents) 1334 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1335 if (xfer->tx_sg.orig_nents) 1336 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1337 } 1338 #else /* !CONFIG_HAS_DMA */ 1339 static inline int __spi_map_msg(struct spi_controller *ctlr, 1340 struct spi_message *msg) 1341 { 1342 return 0; 1343 } 1344 1345 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1346 struct spi_message *msg) 1347 { 1348 return 0; 1349 } 1350 1351 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1352 struct spi_transfer *xfer) 1353 { 1354 } 1355 1356 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1357 struct spi_transfer *xfer) 1358 { 1359 } 1360 #endif /* !CONFIG_HAS_DMA */ 1361 1362 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1363 struct spi_message *msg) 1364 { 1365 struct spi_transfer *xfer; 1366 1367 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1368 /* 1369 * Restore the original value of tx_buf or rx_buf if they are 1370 * NULL. 1371 */ 1372 if (xfer->tx_buf == ctlr->dummy_tx) 1373 xfer->tx_buf = NULL; 1374 if (xfer->rx_buf == ctlr->dummy_rx) 1375 xfer->rx_buf = NULL; 1376 } 1377 1378 return __spi_unmap_msg(ctlr, msg); 1379 } 1380 1381 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1382 { 1383 struct spi_transfer *xfer; 1384 void *tmp; 1385 unsigned int max_tx, max_rx; 1386 1387 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1388 && !(msg->spi->mode & SPI_3WIRE)) { 1389 max_tx = 0; 1390 max_rx = 0; 1391 1392 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1393 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1394 !xfer->tx_buf) 1395 max_tx = max(xfer->len, max_tx); 1396 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1397 !xfer->rx_buf) 1398 max_rx = max(xfer->len, max_rx); 1399 } 1400 1401 if (max_tx) { 1402 tmp = krealloc(ctlr->dummy_tx, max_tx, 1403 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1404 if (!tmp) 1405 return -ENOMEM; 1406 ctlr->dummy_tx = tmp; 1407 } 1408 1409 if (max_rx) { 1410 tmp = krealloc(ctlr->dummy_rx, max_rx, 1411 GFP_KERNEL | GFP_DMA); 1412 if (!tmp) 1413 return -ENOMEM; 1414 ctlr->dummy_rx = tmp; 1415 } 1416 1417 if (max_tx || max_rx) { 1418 list_for_each_entry(xfer, &msg->transfers, 1419 transfer_list) { 1420 if (!xfer->len) 1421 continue; 1422 if (!xfer->tx_buf) 1423 xfer->tx_buf = ctlr->dummy_tx; 1424 if (!xfer->rx_buf) 1425 xfer->rx_buf = ctlr->dummy_rx; 1426 } 1427 } 1428 } 1429 1430 return __spi_map_msg(ctlr, msg); 1431 } 1432 1433 static int spi_transfer_wait(struct spi_controller *ctlr, 1434 struct spi_message *msg, 1435 struct spi_transfer *xfer) 1436 { 1437 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1438 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1439 u32 speed_hz = xfer->speed_hz; 1440 unsigned long long ms; 1441 1442 if (spi_controller_is_slave(ctlr)) { 1443 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1444 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1445 return -EINTR; 1446 } 1447 } else { 1448 if (!speed_hz) 1449 speed_hz = 100000; 1450 1451 /* 1452 * For each byte we wait for 8 cycles of the SPI clock. 1453 * Since speed is defined in Hz and we want milliseconds, 1454 * use respective multiplier, but before the division, 1455 * otherwise we may get 0 for short transfers. 1456 */ 1457 ms = 8LL * MSEC_PER_SEC * xfer->len; 1458 do_div(ms, speed_hz); 1459 1460 /* 1461 * Increase it twice and add 200 ms tolerance, use 1462 * predefined maximum in case of overflow. 1463 */ 1464 ms += ms + 200; 1465 if (ms > UINT_MAX) 1466 ms = UINT_MAX; 1467 1468 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1469 msecs_to_jiffies(ms)); 1470 1471 if (ms == 0) { 1472 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1473 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1474 dev_err(&msg->spi->dev, 1475 "SPI transfer timed out\n"); 1476 return -ETIMEDOUT; 1477 } 1478 1479 if (xfer->error & SPI_TRANS_FAIL_IO) 1480 return -EIO; 1481 } 1482 1483 return 0; 1484 } 1485 1486 static void _spi_transfer_delay_ns(u32 ns) 1487 { 1488 if (!ns) 1489 return; 1490 if (ns <= NSEC_PER_USEC) { 1491 ndelay(ns); 1492 } else { 1493 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1494 1495 if (us <= 10) 1496 udelay(us); 1497 else 1498 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1499 } 1500 } 1501 1502 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1503 { 1504 u32 delay = _delay->value; 1505 u32 unit = _delay->unit; 1506 u32 hz; 1507 1508 if (!delay) 1509 return 0; 1510 1511 switch (unit) { 1512 case SPI_DELAY_UNIT_USECS: 1513 delay *= NSEC_PER_USEC; 1514 break; 1515 case SPI_DELAY_UNIT_NSECS: 1516 /* Nothing to do here */ 1517 break; 1518 case SPI_DELAY_UNIT_SCK: 1519 /* Clock cycles need to be obtained from spi_transfer */ 1520 if (!xfer) 1521 return -EINVAL; 1522 /* 1523 * If there is unknown effective speed, approximate it 1524 * by underestimating with half of the requested Hz. 1525 */ 1526 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1527 if (!hz) 1528 return -EINVAL; 1529 1530 /* Convert delay to nanoseconds */ 1531 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1532 break; 1533 default: 1534 return -EINVAL; 1535 } 1536 1537 return delay; 1538 } 1539 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1540 1541 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1542 { 1543 int delay; 1544 1545 might_sleep(); 1546 1547 if (!_delay) 1548 return -EINVAL; 1549 1550 delay = spi_delay_to_ns(_delay, xfer); 1551 if (delay < 0) 1552 return delay; 1553 1554 _spi_transfer_delay_ns(delay); 1555 1556 return 0; 1557 } 1558 EXPORT_SYMBOL_GPL(spi_delay_exec); 1559 1560 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1561 struct spi_transfer *xfer) 1562 { 1563 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1564 u32 delay = xfer->cs_change_delay.value; 1565 u32 unit = xfer->cs_change_delay.unit; 1566 int ret; 1567 1568 /* Return early on "fast" mode - for everything but USECS */ 1569 if (!delay) { 1570 if (unit == SPI_DELAY_UNIT_USECS) 1571 _spi_transfer_delay_ns(default_delay_ns); 1572 return; 1573 } 1574 1575 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1576 if (ret) { 1577 dev_err_once(&msg->spi->dev, 1578 "Use of unsupported delay unit %i, using default of %luus\n", 1579 unit, default_delay_ns / NSEC_PER_USEC); 1580 _spi_transfer_delay_ns(default_delay_ns); 1581 } 1582 } 1583 1584 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1585 struct spi_transfer *xfer) 1586 { 1587 _spi_transfer_cs_change_delay(msg, xfer); 1588 } 1589 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1590 1591 /* 1592 * spi_transfer_one_message - Default implementation of transfer_one_message() 1593 * 1594 * This is a standard implementation of transfer_one_message() for 1595 * drivers which implement a transfer_one() operation. It provides 1596 * standard handling of delays and chip select management. 1597 */ 1598 static int spi_transfer_one_message(struct spi_controller *ctlr, 1599 struct spi_message *msg) 1600 { 1601 struct spi_transfer *xfer; 1602 bool keep_cs = false; 1603 int ret = 0; 1604 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1605 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1606 1607 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1608 spi_set_cs(msg->spi, !xfer->cs_off, false); 1609 1610 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1611 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1612 1613 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1614 trace_spi_transfer_start(msg, xfer); 1615 1616 spi_statistics_add_transfer_stats(statm, xfer, ctlr); 1617 spi_statistics_add_transfer_stats(stats, xfer, ctlr); 1618 1619 if (!ctlr->ptp_sts_supported) { 1620 xfer->ptp_sts_word_pre = 0; 1621 ptp_read_system_prets(xfer->ptp_sts); 1622 } 1623 1624 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1625 reinit_completion(&ctlr->xfer_completion); 1626 1627 fallback_pio: 1628 spi_dma_sync_for_device(ctlr, xfer); 1629 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1630 if (ret < 0) { 1631 spi_dma_sync_for_cpu(ctlr, xfer); 1632 1633 if (ctlr->cur_msg_mapped && 1634 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1635 __spi_unmap_msg(ctlr, msg); 1636 ctlr->fallback = true; 1637 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1638 goto fallback_pio; 1639 } 1640 1641 SPI_STATISTICS_INCREMENT_FIELD(statm, 1642 errors); 1643 SPI_STATISTICS_INCREMENT_FIELD(stats, 1644 errors); 1645 dev_err(&msg->spi->dev, 1646 "SPI transfer failed: %d\n", ret); 1647 goto out; 1648 } 1649 1650 if (ret > 0) { 1651 ret = spi_transfer_wait(ctlr, msg, xfer); 1652 if (ret < 0) 1653 msg->status = ret; 1654 } 1655 1656 spi_dma_sync_for_cpu(ctlr, xfer); 1657 } else { 1658 if (xfer->len) 1659 dev_err(&msg->spi->dev, 1660 "Bufferless transfer has length %u\n", 1661 xfer->len); 1662 } 1663 1664 if (!ctlr->ptp_sts_supported) { 1665 ptp_read_system_postts(xfer->ptp_sts); 1666 xfer->ptp_sts_word_post = xfer->len; 1667 } 1668 1669 trace_spi_transfer_stop(msg, xfer); 1670 1671 if (msg->status != -EINPROGRESS) 1672 goto out; 1673 1674 spi_transfer_delay_exec(xfer); 1675 1676 if (xfer->cs_change) { 1677 if (list_is_last(&xfer->transfer_list, 1678 &msg->transfers)) { 1679 keep_cs = true; 1680 } else { 1681 if (!xfer->cs_off) 1682 spi_set_cs(msg->spi, false, false); 1683 _spi_transfer_cs_change_delay(msg, xfer); 1684 if (!list_next_entry(xfer, transfer_list)->cs_off) 1685 spi_set_cs(msg->spi, true, false); 1686 } 1687 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1688 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1689 spi_set_cs(msg->spi, xfer->cs_off, false); 1690 } 1691 1692 msg->actual_length += xfer->len; 1693 } 1694 1695 out: 1696 if (ret != 0 || !keep_cs) 1697 spi_set_cs(msg->spi, false, false); 1698 1699 if (msg->status == -EINPROGRESS) 1700 msg->status = ret; 1701 1702 if (msg->status && ctlr->handle_err) 1703 ctlr->handle_err(ctlr, msg); 1704 1705 spi_finalize_current_message(ctlr); 1706 1707 return ret; 1708 } 1709 1710 /** 1711 * spi_finalize_current_transfer - report completion of a transfer 1712 * @ctlr: the controller reporting completion 1713 * 1714 * Called by SPI drivers using the core transfer_one_message() 1715 * implementation to notify it that the current interrupt driven 1716 * transfer has finished and the next one may be scheduled. 1717 */ 1718 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1719 { 1720 complete(&ctlr->xfer_completion); 1721 } 1722 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1723 1724 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1725 { 1726 if (ctlr->auto_runtime_pm) { 1727 pm_runtime_mark_last_busy(ctlr->dev.parent); 1728 pm_runtime_put_autosuspend(ctlr->dev.parent); 1729 } 1730 } 1731 1732 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1733 struct spi_message *msg, bool was_busy) 1734 { 1735 struct spi_transfer *xfer; 1736 int ret; 1737 1738 if (!was_busy && ctlr->auto_runtime_pm) { 1739 ret = pm_runtime_get_sync(ctlr->dev.parent); 1740 if (ret < 0) { 1741 pm_runtime_put_noidle(ctlr->dev.parent); 1742 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1743 ret); 1744 1745 msg->status = ret; 1746 spi_finalize_current_message(ctlr); 1747 1748 return ret; 1749 } 1750 } 1751 1752 if (!was_busy) 1753 trace_spi_controller_busy(ctlr); 1754 1755 if (!was_busy && ctlr->prepare_transfer_hardware) { 1756 ret = ctlr->prepare_transfer_hardware(ctlr); 1757 if (ret) { 1758 dev_err(&ctlr->dev, 1759 "failed to prepare transfer hardware: %d\n", 1760 ret); 1761 1762 if (ctlr->auto_runtime_pm) 1763 pm_runtime_put(ctlr->dev.parent); 1764 1765 msg->status = ret; 1766 spi_finalize_current_message(ctlr); 1767 1768 return ret; 1769 } 1770 } 1771 1772 trace_spi_message_start(msg); 1773 1774 if (ctlr->prepare_message) { 1775 ret = ctlr->prepare_message(ctlr, msg); 1776 if (ret) { 1777 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1778 ret); 1779 msg->status = ret; 1780 spi_finalize_current_message(ctlr); 1781 return ret; 1782 } 1783 msg->prepared = true; 1784 } 1785 1786 ret = spi_map_msg(ctlr, msg); 1787 if (ret) { 1788 msg->status = ret; 1789 spi_finalize_current_message(ctlr); 1790 return ret; 1791 } 1792 1793 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1794 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1795 xfer->ptp_sts_word_pre = 0; 1796 ptp_read_system_prets(xfer->ptp_sts); 1797 } 1798 } 1799 1800 /* 1801 * Drivers implementation of transfer_one_message() must arrange for 1802 * spi_finalize_current_message() to get called. Most drivers will do 1803 * this in the calling context, but some don't. For those cases, a 1804 * completion is used to guarantee that this function does not return 1805 * until spi_finalize_current_message() is done accessing 1806 * ctlr->cur_msg. 1807 * Use of the following two flags enable to opportunistically skip the 1808 * use of the completion since its use involves expensive spin locks. 1809 * In case of a race with the context that calls 1810 * spi_finalize_current_message() the completion will always be used, 1811 * due to strict ordering of these flags using barriers. 1812 */ 1813 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1814 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1815 reinit_completion(&ctlr->cur_msg_completion); 1816 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1817 1818 ret = ctlr->transfer_one_message(ctlr, msg); 1819 if (ret) { 1820 dev_err(&ctlr->dev, 1821 "failed to transfer one message from queue\n"); 1822 return ret; 1823 } 1824 1825 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1826 smp_mb(); /* See spi_finalize_current_message()... */ 1827 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1828 wait_for_completion(&ctlr->cur_msg_completion); 1829 1830 return 0; 1831 } 1832 1833 /** 1834 * __spi_pump_messages - function which processes SPI message queue 1835 * @ctlr: controller to process queue for 1836 * @in_kthread: true if we are in the context of the message pump thread 1837 * 1838 * This function checks if there is any SPI message in the queue that 1839 * needs processing and if so call out to the driver to initialize hardware 1840 * and transfer each message. 1841 * 1842 * Note that it is called both from the kthread itself and also from 1843 * inside spi_sync(); the queue extraction handling at the top of the 1844 * function should deal with this safely. 1845 */ 1846 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1847 { 1848 struct spi_message *msg; 1849 bool was_busy = false; 1850 unsigned long flags; 1851 int ret; 1852 1853 /* Take the I/O mutex */ 1854 mutex_lock(&ctlr->io_mutex); 1855 1856 /* Lock queue */ 1857 spin_lock_irqsave(&ctlr->queue_lock, flags); 1858 1859 /* Make sure we are not already running a message */ 1860 if (ctlr->cur_msg) 1861 goto out_unlock; 1862 1863 /* Check if the queue is idle */ 1864 if (list_empty(&ctlr->queue) || !ctlr->running) { 1865 if (!ctlr->busy) 1866 goto out_unlock; 1867 1868 /* Defer any non-atomic teardown to the thread */ 1869 if (!in_kthread) { 1870 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1871 !ctlr->unprepare_transfer_hardware) { 1872 spi_idle_runtime_pm(ctlr); 1873 ctlr->busy = false; 1874 ctlr->queue_empty = true; 1875 trace_spi_controller_idle(ctlr); 1876 } else { 1877 kthread_queue_work(ctlr->kworker, 1878 &ctlr->pump_messages); 1879 } 1880 goto out_unlock; 1881 } 1882 1883 ctlr->busy = false; 1884 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1885 1886 kfree(ctlr->dummy_rx); 1887 ctlr->dummy_rx = NULL; 1888 kfree(ctlr->dummy_tx); 1889 ctlr->dummy_tx = NULL; 1890 if (ctlr->unprepare_transfer_hardware && 1891 ctlr->unprepare_transfer_hardware(ctlr)) 1892 dev_err(&ctlr->dev, 1893 "failed to unprepare transfer hardware\n"); 1894 spi_idle_runtime_pm(ctlr); 1895 trace_spi_controller_idle(ctlr); 1896 1897 spin_lock_irqsave(&ctlr->queue_lock, flags); 1898 ctlr->queue_empty = true; 1899 goto out_unlock; 1900 } 1901 1902 /* Extract head of queue */ 1903 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1904 ctlr->cur_msg = msg; 1905 1906 list_del_init(&msg->queue); 1907 if (ctlr->busy) 1908 was_busy = true; 1909 else 1910 ctlr->busy = true; 1911 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1912 1913 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1914 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1915 1916 ctlr->cur_msg = NULL; 1917 ctlr->fallback = false; 1918 1919 mutex_unlock(&ctlr->io_mutex); 1920 1921 /* Prod the scheduler in case transfer_one() was busy waiting */ 1922 if (!ret) 1923 cond_resched(); 1924 return; 1925 1926 out_unlock: 1927 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1928 mutex_unlock(&ctlr->io_mutex); 1929 } 1930 1931 /** 1932 * spi_pump_messages - kthread work function which processes spi message queue 1933 * @work: pointer to kthread work struct contained in the controller struct 1934 */ 1935 static void spi_pump_messages(struct kthread_work *work) 1936 { 1937 struct spi_controller *ctlr = 1938 container_of(work, struct spi_controller, pump_messages); 1939 1940 __spi_pump_messages(ctlr, true); 1941 } 1942 1943 /** 1944 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1945 * @ctlr: Pointer to the spi_controller structure of the driver 1946 * @xfer: Pointer to the transfer being timestamped 1947 * @progress: How many words (not bytes) have been transferred so far 1948 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1949 * transfer, for less jitter in time measurement. Only compatible 1950 * with PIO drivers. If true, must follow up with 1951 * spi_take_timestamp_post or otherwise system will crash. 1952 * WARNING: for fully predictable results, the CPU frequency must 1953 * also be under control (governor). 1954 * 1955 * This is a helper for drivers to collect the beginning of the TX timestamp 1956 * for the requested byte from the SPI transfer. The frequency with which this 1957 * function must be called (once per word, once for the whole transfer, once 1958 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1959 * greater than or equal to the requested byte at the time of the call. The 1960 * timestamp is only taken once, at the first such call. It is assumed that 1961 * the driver advances its @tx buffer pointer monotonically. 1962 */ 1963 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1964 struct spi_transfer *xfer, 1965 size_t progress, bool irqs_off) 1966 { 1967 if (!xfer->ptp_sts) 1968 return; 1969 1970 if (xfer->timestamped) 1971 return; 1972 1973 if (progress > xfer->ptp_sts_word_pre) 1974 return; 1975 1976 /* Capture the resolution of the timestamp */ 1977 xfer->ptp_sts_word_pre = progress; 1978 1979 if (irqs_off) { 1980 local_irq_save(ctlr->irq_flags); 1981 preempt_disable(); 1982 } 1983 1984 ptp_read_system_prets(xfer->ptp_sts); 1985 } 1986 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1987 1988 /** 1989 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1990 * @ctlr: Pointer to the spi_controller structure of the driver 1991 * @xfer: Pointer to the transfer being timestamped 1992 * @progress: How many words (not bytes) have been transferred so far 1993 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1994 * 1995 * This is a helper for drivers to collect the end of the TX timestamp for 1996 * the requested byte from the SPI transfer. Can be called with an arbitrary 1997 * frequency: only the first call where @tx exceeds or is equal to the 1998 * requested word will be timestamped. 1999 */ 2000 void spi_take_timestamp_post(struct spi_controller *ctlr, 2001 struct spi_transfer *xfer, 2002 size_t progress, bool irqs_off) 2003 { 2004 if (!xfer->ptp_sts) 2005 return; 2006 2007 if (xfer->timestamped) 2008 return; 2009 2010 if (progress < xfer->ptp_sts_word_post) 2011 return; 2012 2013 ptp_read_system_postts(xfer->ptp_sts); 2014 2015 if (irqs_off) { 2016 local_irq_restore(ctlr->irq_flags); 2017 preempt_enable(); 2018 } 2019 2020 /* Capture the resolution of the timestamp */ 2021 xfer->ptp_sts_word_post = progress; 2022 2023 xfer->timestamped = 1; 2024 } 2025 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 2026 2027 /** 2028 * spi_set_thread_rt - set the controller to pump at realtime priority 2029 * @ctlr: controller to boost priority of 2030 * 2031 * This can be called because the controller requested realtime priority 2032 * (by setting the ->rt value before calling spi_register_controller()) or 2033 * because a device on the bus said that its transfers needed realtime 2034 * priority. 2035 * 2036 * NOTE: at the moment if any device on a bus says it needs realtime then 2037 * the thread will be at realtime priority for all transfers on that 2038 * controller. If this eventually becomes a problem we may see if we can 2039 * find a way to boost the priority only temporarily during relevant 2040 * transfers. 2041 */ 2042 static void spi_set_thread_rt(struct spi_controller *ctlr) 2043 { 2044 dev_info(&ctlr->dev, 2045 "will run message pump with realtime priority\n"); 2046 sched_set_fifo(ctlr->kworker->task); 2047 } 2048 2049 static int spi_init_queue(struct spi_controller *ctlr) 2050 { 2051 ctlr->running = false; 2052 ctlr->busy = false; 2053 ctlr->queue_empty = true; 2054 2055 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 2056 if (IS_ERR(ctlr->kworker)) { 2057 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 2058 return PTR_ERR(ctlr->kworker); 2059 } 2060 2061 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 2062 2063 /* 2064 * Controller config will indicate if this controller should run the 2065 * message pump with high (realtime) priority to reduce the transfer 2066 * latency on the bus by minimising the delay between a transfer 2067 * request and the scheduling of the message pump thread. Without this 2068 * setting the message pump thread will remain at default priority. 2069 */ 2070 if (ctlr->rt) 2071 spi_set_thread_rt(ctlr); 2072 2073 return 0; 2074 } 2075 2076 /** 2077 * spi_get_next_queued_message() - called by driver to check for queued 2078 * messages 2079 * @ctlr: the controller to check for queued messages 2080 * 2081 * If there are more messages in the queue, the next message is returned from 2082 * this call. 2083 * 2084 * Return: the next message in the queue, else NULL if the queue is empty. 2085 */ 2086 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 2087 { 2088 struct spi_message *next; 2089 unsigned long flags; 2090 2091 /* Get a pointer to the next message, if any */ 2092 spin_lock_irqsave(&ctlr->queue_lock, flags); 2093 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2094 queue); 2095 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2096 2097 return next; 2098 } 2099 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2100 2101 /* 2102 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message() 2103 * and spi_maybe_unoptimize_message() 2104 * @msg: the message to unoptimize 2105 * 2106 * Peripheral drivers should use spi_unoptimize_message() and callers inside 2107 * core should use spi_maybe_unoptimize_message() rather than calling this 2108 * function directly. 2109 * 2110 * It is not valid to call this on a message that is not currently optimized. 2111 */ 2112 static void __spi_unoptimize_message(struct spi_message *msg) 2113 { 2114 struct spi_controller *ctlr = msg->spi->controller; 2115 2116 if (ctlr->unoptimize_message) 2117 ctlr->unoptimize_message(msg); 2118 2119 spi_res_release(ctlr, msg); 2120 2121 msg->optimized = false; 2122 msg->opt_state = NULL; 2123 } 2124 2125 /* 2126 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral 2127 * @msg: the message to unoptimize 2128 * 2129 * This function is used to unoptimize a message if and only if it was 2130 * optimized by the core (via spi_maybe_optimize_message()). 2131 */ 2132 static void spi_maybe_unoptimize_message(struct spi_message *msg) 2133 { 2134 if (!msg->pre_optimized && msg->optimized) 2135 __spi_unoptimize_message(msg); 2136 } 2137 2138 /** 2139 * spi_finalize_current_message() - the current message is complete 2140 * @ctlr: the controller to return the message to 2141 * 2142 * Called by the driver to notify the core that the message in the front of the 2143 * queue is complete and can be removed from the queue. 2144 */ 2145 void spi_finalize_current_message(struct spi_controller *ctlr) 2146 { 2147 struct spi_transfer *xfer; 2148 struct spi_message *mesg; 2149 int ret; 2150 2151 mesg = ctlr->cur_msg; 2152 2153 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2154 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2155 ptp_read_system_postts(xfer->ptp_sts); 2156 xfer->ptp_sts_word_post = xfer->len; 2157 } 2158 } 2159 2160 if (unlikely(ctlr->ptp_sts_supported)) 2161 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2162 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2163 2164 spi_unmap_msg(ctlr, mesg); 2165 2166 if (mesg->prepared && ctlr->unprepare_message) { 2167 ret = ctlr->unprepare_message(ctlr, mesg); 2168 if (ret) { 2169 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2170 ret); 2171 } 2172 } 2173 2174 mesg->prepared = false; 2175 2176 spi_maybe_unoptimize_message(mesg); 2177 2178 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2179 smp_mb(); /* See __spi_pump_transfer_message()... */ 2180 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2181 complete(&ctlr->cur_msg_completion); 2182 2183 trace_spi_message_done(mesg); 2184 2185 mesg->state = NULL; 2186 if (mesg->complete) 2187 mesg->complete(mesg->context); 2188 } 2189 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2190 2191 static int spi_start_queue(struct spi_controller *ctlr) 2192 { 2193 unsigned long flags; 2194 2195 spin_lock_irqsave(&ctlr->queue_lock, flags); 2196 2197 if (ctlr->running || ctlr->busy) { 2198 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2199 return -EBUSY; 2200 } 2201 2202 ctlr->running = true; 2203 ctlr->cur_msg = NULL; 2204 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2205 2206 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2207 2208 return 0; 2209 } 2210 2211 static int spi_stop_queue(struct spi_controller *ctlr) 2212 { 2213 unsigned long flags; 2214 unsigned limit = 500; 2215 int ret = 0; 2216 2217 spin_lock_irqsave(&ctlr->queue_lock, flags); 2218 2219 /* 2220 * This is a bit lame, but is optimized for the common execution path. 2221 * A wait_queue on the ctlr->busy could be used, but then the common 2222 * execution path (pump_messages) would be required to call wake_up or 2223 * friends on every SPI message. Do this instead. 2224 */ 2225 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) { 2226 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2227 usleep_range(10000, 11000); 2228 spin_lock_irqsave(&ctlr->queue_lock, flags); 2229 } 2230 2231 if (!list_empty(&ctlr->queue) || ctlr->busy) 2232 ret = -EBUSY; 2233 else 2234 ctlr->running = false; 2235 2236 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2237 2238 return ret; 2239 } 2240 2241 static int spi_destroy_queue(struct spi_controller *ctlr) 2242 { 2243 int ret; 2244 2245 ret = spi_stop_queue(ctlr); 2246 2247 /* 2248 * kthread_flush_worker will block until all work is done. 2249 * If the reason that stop_queue timed out is that the work will never 2250 * finish, then it does no good to call flush/stop thread, so 2251 * return anyway. 2252 */ 2253 if (ret) { 2254 dev_err(&ctlr->dev, "problem destroying queue\n"); 2255 return ret; 2256 } 2257 2258 kthread_destroy_worker(ctlr->kworker); 2259 2260 return 0; 2261 } 2262 2263 static int __spi_queued_transfer(struct spi_device *spi, 2264 struct spi_message *msg, 2265 bool need_pump) 2266 { 2267 struct spi_controller *ctlr = spi->controller; 2268 unsigned long flags; 2269 2270 spin_lock_irqsave(&ctlr->queue_lock, flags); 2271 2272 if (!ctlr->running) { 2273 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2274 return -ESHUTDOWN; 2275 } 2276 msg->actual_length = 0; 2277 msg->status = -EINPROGRESS; 2278 2279 list_add_tail(&msg->queue, &ctlr->queue); 2280 ctlr->queue_empty = false; 2281 if (!ctlr->busy && need_pump) 2282 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2283 2284 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2285 return 0; 2286 } 2287 2288 /** 2289 * spi_queued_transfer - transfer function for queued transfers 2290 * @spi: SPI device which is requesting transfer 2291 * @msg: SPI message which is to handled is queued to driver queue 2292 * 2293 * Return: zero on success, else a negative error code. 2294 */ 2295 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2296 { 2297 return __spi_queued_transfer(spi, msg, true); 2298 } 2299 2300 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2301 { 2302 int ret; 2303 2304 ctlr->transfer = spi_queued_transfer; 2305 if (!ctlr->transfer_one_message) 2306 ctlr->transfer_one_message = spi_transfer_one_message; 2307 2308 /* Initialize and start queue */ 2309 ret = spi_init_queue(ctlr); 2310 if (ret) { 2311 dev_err(&ctlr->dev, "problem initializing queue\n"); 2312 goto err_init_queue; 2313 } 2314 ctlr->queued = true; 2315 ret = spi_start_queue(ctlr); 2316 if (ret) { 2317 dev_err(&ctlr->dev, "problem starting queue\n"); 2318 goto err_start_queue; 2319 } 2320 2321 return 0; 2322 2323 err_start_queue: 2324 spi_destroy_queue(ctlr); 2325 err_init_queue: 2326 return ret; 2327 } 2328 2329 /** 2330 * spi_flush_queue - Send all pending messages in the queue from the callers' 2331 * context 2332 * @ctlr: controller to process queue for 2333 * 2334 * This should be used when one wants to ensure all pending messages have been 2335 * sent before doing something. Is used by the spi-mem code to make sure SPI 2336 * memory operations do not preempt regular SPI transfers that have been queued 2337 * before the spi-mem operation. 2338 */ 2339 void spi_flush_queue(struct spi_controller *ctlr) 2340 { 2341 if (ctlr->transfer == spi_queued_transfer) 2342 __spi_pump_messages(ctlr, false); 2343 } 2344 2345 /*-------------------------------------------------------------------------*/ 2346 2347 #if defined(CONFIG_OF) 2348 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2349 struct spi_delay *delay, const char *prop) 2350 { 2351 u32 value; 2352 2353 if (!of_property_read_u32(nc, prop, &value)) { 2354 if (value > U16_MAX) { 2355 delay->value = DIV_ROUND_UP(value, 1000); 2356 delay->unit = SPI_DELAY_UNIT_USECS; 2357 } else { 2358 delay->value = value; 2359 delay->unit = SPI_DELAY_UNIT_NSECS; 2360 } 2361 } 2362 } 2363 2364 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2365 struct device_node *nc) 2366 { 2367 u32 value, cs[SPI_CS_CNT_MAX]; 2368 int rc, idx; 2369 2370 /* Mode (clock phase/polarity/etc.) */ 2371 if (of_property_read_bool(nc, "spi-cpha")) 2372 spi->mode |= SPI_CPHA; 2373 if (of_property_read_bool(nc, "spi-cpol")) 2374 spi->mode |= SPI_CPOL; 2375 if (of_property_read_bool(nc, "spi-3wire")) 2376 spi->mode |= SPI_3WIRE; 2377 if (of_property_read_bool(nc, "spi-lsb-first")) 2378 spi->mode |= SPI_LSB_FIRST; 2379 if (of_property_read_bool(nc, "spi-cs-high")) 2380 spi->mode |= SPI_CS_HIGH; 2381 2382 /* Device DUAL/QUAD mode */ 2383 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2384 switch (value) { 2385 case 0: 2386 spi->mode |= SPI_NO_TX; 2387 break; 2388 case 1: 2389 break; 2390 case 2: 2391 spi->mode |= SPI_TX_DUAL; 2392 break; 2393 case 4: 2394 spi->mode |= SPI_TX_QUAD; 2395 break; 2396 case 8: 2397 spi->mode |= SPI_TX_OCTAL; 2398 break; 2399 default: 2400 dev_warn(&ctlr->dev, 2401 "spi-tx-bus-width %d not supported\n", 2402 value); 2403 break; 2404 } 2405 } 2406 2407 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2408 switch (value) { 2409 case 0: 2410 spi->mode |= SPI_NO_RX; 2411 break; 2412 case 1: 2413 break; 2414 case 2: 2415 spi->mode |= SPI_RX_DUAL; 2416 break; 2417 case 4: 2418 spi->mode |= SPI_RX_QUAD; 2419 break; 2420 case 8: 2421 spi->mode |= SPI_RX_OCTAL; 2422 break; 2423 default: 2424 dev_warn(&ctlr->dev, 2425 "spi-rx-bus-width %d not supported\n", 2426 value); 2427 break; 2428 } 2429 } 2430 2431 if (spi_controller_is_slave(ctlr)) { 2432 if (!of_node_name_eq(nc, "slave")) { 2433 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2434 nc); 2435 return -EINVAL; 2436 } 2437 return 0; 2438 } 2439 2440 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) { 2441 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n"); 2442 return -EINVAL; 2443 } 2444 2445 spi_set_all_cs_unused(spi); 2446 2447 /* Device address */ 2448 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1, 2449 SPI_CS_CNT_MAX); 2450 if (rc < 0) { 2451 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2452 nc, rc); 2453 return rc; 2454 } 2455 if (rc > ctlr->num_chipselect) { 2456 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n", 2457 nc, rc); 2458 return rc; 2459 } 2460 if ((of_property_read_bool(nc, "parallel-memories")) && 2461 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) { 2462 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n"); 2463 return -EINVAL; 2464 } 2465 for (idx = 0; idx < rc; idx++) 2466 spi_set_chipselect(spi, idx, cs[idx]); 2467 2468 /* 2469 * By default spi->chip_select[0] will hold the physical CS number, 2470 * so set bit 0 in spi->cs_index_mask. 2471 */ 2472 spi->cs_index_mask = BIT(0); 2473 2474 /* Device speed */ 2475 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2476 spi->max_speed_hz = value; 2477 2478 /* Device CS delays */ 2479 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2480 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2481 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2482 2483 return 0; 2484 } 2485 2486 static struct spi_device * 2487 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2488 { 2489 struct spi_device *spi; 2490 int rc; 2491 2492 /* Alloc an spi_device */ 2493 spi = spi_alloc_device(ctlr); 2494 if (!spi) { 2495 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2496 rc = -ENOMEM; 2497 goto err_out; 2498 } 2499 2500 /* Select device driver */ 2501 rc = of_alias_from_compatible(nc, spi->modalias, 2502 sizeof(spi->modalias)); 2503 if (rc < 0) { 2504 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2505 goto err_out; 2506 } 2507 2508 rc = of_spi_parse_dt(ctlr, spi, nc); 2509 if (rc) 2510 goto err_out; 2511 2512 /* Store a pointer to the node in the device structure */ 2513 of_node_get(nc); 2514 2515 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2516 2517 /* Register the new device */ 2518 rc = spi_add_device(spi); 2519 if (rc) { 2520 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2521 goto err_of_node_put; 2522 } 2523 2524 return spi; 2525 2526 err_of_node_put: 2527 of_node_put(nc); 2528 err_out: 2529 spi_dev_put(spi); 2530 return ERR_PTR(rc); 2531 } 2532 2533 /** 2534 * of_register_spi_devices() - Register child devices onto the SPI bus 2535 * @ctlr: Pointer to spi_controller device 2536 * 2537 * Registers an spi_device for each child node of controller node which 2538 * represents a valid SPI slave. 2539 */ 2540 static void of_register_spi_devices(struct spi_controller *ctlr) 2541 { 2542 struct spi_device *spi; 2543 struct device_node *nc; 2544 2545 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2546 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2547 continue; 2548 spi = of_register_spi_device(ctlr, nc); 2549 if (IS_ERR(spi)) { 2550 dev_warn(&ctlr->dev, 2551 "Failed to create SPI device for %pOF\n", nc); 2552 of_node_clear_flag(nc, OF_POPULATED); 2553 } 2554 } 2555 } 2556 #else 2557 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2558 #endif 2559 2560 /** 2561 * spi_new_ancillary_device() - Register ancillary SPI device 2562 * @spi: Pointer to the main SPI device registering the ancillary device 2563 * @chip_select: Chip Select of the ancillary device 2564 * 2565 * Register an ancillary SPI device; for example some chips have a chip-select 2566 * for normal device usage and another one for setup/firmware upload. 2567 * 2568 * This may only be called from main SPI device's probe routine. 2569 * 2570 * Return: 0 on success; negative errno on failure 2571 */ 2572 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2573 u8 chip_select) 2574 { 2575 struct spi_controller *ctlr = spi->controller; 2576 struct spi_device *ancillary; 2577 int rc = 0; 2578 2579 /* Alloc an spi_device */ 2580 ancillary = spi_alloc_device(ctlr); 2581 if (!ancillary) { 2582 rc = -ENOMEM; 2583 goto err_out; 2584 } 2585 2586 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2587 2588 /* Use provided chip-select for ancillary device */ 2589 spi_set_all_cs_unused(ancillary); 2590 spi_set_chipselect(ancillary, 0, chip_select); 2591 2592 /* Take over SPI mode/speed from SPI main device */ 2593 ancillary->max_speed_hz = spi->max_speed_hz; 2594 ancillary->mode = spi->mode; 2595 /* 2596 * By default spi->chip_select[0] will hold the physical CS number, 2597 * so set bit 0 in spi->cs_index_mask. 2598 */ 2599 ancillary->cs_index_mask = BIT(0); 2600 2601 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2602 2603 /* Register the new device */ 2604 rc = __spi_add_device(ancillary); 2605 if (rc) { 2606 dev_err(&spi->dev, "failed to register ancillary device\n"); 2607 goto err_out; 2608 } 2609 2610 return ancillary; 2611 2612 err_out: 2613 spi_dev_put(ancillary); 2614 return ERR_PTR(rc); 2615 } 2616 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2617 2618 #ifdef CONFIG_ACPI 2619 struct acpi_spi_lookup { 2620 struct spi_controller *ctlr; 2621 u32 max_speed_hz; 2622 u32 mode; 2623 int irq; 2624 u8 bits_per_word; 2625 u8 chip_select; 2626 int n; 2627 int index; 2628 }; 2629 2630 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2631 { 2632 struct acpi_resource_spi_serialbus *sb; 2633 int *count = data; 2634 2635 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2636 return 1; 2637 2638 sb = &ares->data.spi_serial_bus; 2639 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2640 return 1; 2641 2642 *count = *count + 1; 2643 2644 return 1; 2645 } 2646 2647 /** 2648 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2649 * @adev: ACPI device 2650 * 2651 * Return: the number of SpiSerialBus resources in the ACPI-device's 2652 * resource-list; or a negative error code. 2653 */ 2654 int acpi_spi_count_resources(struct acpi_device *adev) 2655 { 2656 LIST_HEAD(r); 2657 int count = 0; 2658 int ret; 2659 2660 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2661 if (ret < 0) 2662 return ret; 2663 2664 acpi_dev_free_resource_list(&r); 2665 2666 return count; 2667 } 2668 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2669 2670 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2671 struct acpi_spi_lookup *lookup) 2672 { 2673 const union acpi_object *obj; 2674 2675 if (!x86_apple_machine) 2676 return; 2677 2678 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2679 && obj->buffer.length >= 4) 2680 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2681 2682 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2683 && obj->buffer.length == 8) 2684 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2685 2686 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2687 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2688 lookup->mode |= SPI_LSB_FIRST; 2689 2690 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2691 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2692 lookup->mode |= SPI_CPOL; 2693 2694 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2695 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2696 lookup->mode |= SPI_CPHA; 2697 } 2698 2699 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2700 { 2701 struct acpi_spi_lookup *lookup = data; 2702 struct spi_controller *ctlr = lookup->ctlr; 2703 2704 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2705 struct acpi_resource_spi_serialbus *sb; 2706 acpi_handle parent_handle; 2707 acpi_status status; 2708 2709 sb = &ares->data.spi_serial_bus; 2710 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2711 2712 if (lookup->index != -1 && lookup->n++ != lookup->index) 2713 return 1; 2714 2715 status = acpi_get_handle(NULL, 2716 sb->resource_source.string_ptr, 2717 &parent_handle); 2718 2719 if (ACPI_FAILURE(status)) 2720 return -ENODEV; 2721 2722 if (ctlr) { 2723 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle) 2724 return -ENODEV; 2725 } else { 2726 struct acpi_device *adev; 2727 2728 adev = acpi_fetch_acpi_dev(parent_handle); 2729 if (!adev) 2730 return -ENODEV; 2731 2732 ctlr = acpi_spi_find_controller_by_adev(adev); 2733 if (!ctlr) 2734 return -EPROBE_DEFER; 2735 2736 lookup->ctlr = ctlr; 2737 } 2738 2739 /* 2740 * ACPI DeviceSelection numbering is handled by the 2741 * host controller driver in Windows and can vary 2742 * from driver to driver. In Linux we always expect 2743 * 0 .. max - 1 so we need to ask the driver to 2744 * translate between the two schemes. 2745 */ 2746 if (ctlr->fw_translate_cs) { 2747 int cs = ctlr->fw_translate_cs(ctlr, 2748 sb->device_selection); 2749 if (cs < 0) 2750 return cs; 2751 lookup->chip_select = cs; 2752 } else { 2753 lookup->chip_select = sb->device_selection; 2754 } 2755 2756 lookup->max_speed_hz = sb->connection_speed; 2757 lookup->bits_per_word = sb->data_bit_length; 2758 2759 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2760 lookup->mode |= SPI_CPHA; 2761 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2762 lookup->mode |= SPI_CPOL; 2763 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2764 lookup->mode |= SPI_CS_HIGH; 2765 } 2766 } else if (lookup->irq < 0) { 2767 struct resource r; 2768 2769 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2770 lookup->irq = r.start; 2771 } 2772 2773 /* Always tell the ACPI core to skip this resource */ 2774 return 1; 2775 } 2776 2777 /** 2778 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2779 * @ctlr: controller to which the spi device belongs 2780 * @adev: ACPI Device for the spi device 2781 * @index: Index of the spi resource inside the ACPI Node 2782 * 2783 * This should be used to allocate a new SPI device from and ACPI Device node. 2784 * The caller is responsible for calling spi_add_device to register the SPI device. 2785 * 2786 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2787 * using the resource. 2788 * If index is set to -1, index is not used. 2789 * Note: If index is -1, ctlr must be set. 2790 * 2791 * Return: a pointer to the new device, or ERR_PTR on error. 2792 */ 2793 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2794 struct acpi_device *adev, 2795 int index) 2796 { 2797 acpi_handle parent_handle = NULL; 2798 struct list_head resource_list; 2799 struct acpi_spi_lookup lookup = {}; 2800 struct spi_device *spi; 2801 int ret; 2802 2803 if (!ctlr && index == -1) 2804 return ERR_PTR(-EINVAL); 2805 2806 lookup.ctlr = ctlr; 2807 lookup.irq = -1; 2808 lookup.index = index; 2809 lookup.n = 0; 2810 2811 INIT_LIST_HEAD(&resource_list); 2812 ret = acpi_dev_get_resources(adev, &resource_list, 2813 acpi_spi_add_resource, &lookup); 2814 acpi_dev_free_resource_list(&resource_list); 2815 2816 if (ret < 0) 2817 /* Found SPI in _CRS but it points to another controller */ 2818 return ERR_PTR(ret); 2819 2820 if (!lookup.max_speed_hz && 2821 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2822 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) { 2823 /* Apple does not use _CRS but nested devices for SPI slaves */ 2824 acpi_spi_parse_apple_properties(adev, &lookup); 2825 } 2826 2827 if (!lookup.max_speed_hz) 2828 return ERR_PTR(-ENODEV); 2829 2830 spi = spi_alloc_device(lookup.ctlr); 2831 if (!spi) { 2832 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2833 dev_name(&adev->dev)); 2834 return ERR_PTR(-ENOMEM); 2835 } 2836 2837 spi_set_all_cs_unused(spi); 2838 spi_set_chipselect(spi, 0, lookup.chip_select); 2839 2840 ACPI_COMPANION_SET(&spi->dev, adev); 2841 spi->max_speed_hz = lookup.max_speed_hz; 2842 spi->mode |= lookup.mode; 2843 spi->irq = lookup.irq; 2844 spi->bits_per_word = lookup.bits_per_word; 2845 /* 2846 * By default spi->chip_select[0] will hold the physical CS number, 2847 * so set bit 0 in spi->cs_index_mask. 2848 */ 2849 spi->cs_index_mask = BIT(0); 2850 2851 return spi; 2852 } 2853 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2854 2855 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2856 struct acpi_device *adev) 2857 { 2858 struct spi_device *spi; 2859 2860 if (acpi_bus_get_status(adev) || !adev->status.present || 2861 acpi_device_enumerated(adev)) 2862 return AE_OK; 2863 2864 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2865 if (IS_ERR(spi)) { 2866 if (PTR_ERR(spi) == -ENOMEM) 2867 return AE_NO_MEMORY; 2868 else 2869 return AE_OK; 2870 } 2871 2872 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2873 sizeof(spi->modalias)); 2874 2875 if (spi->irq < 0) 2876 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2877 2878 acpi_device_set_enumerated(adev); 2879 2880 adev->power.flags.ignore_parent = true; 2881 if (spi_add_device(spi)) { 2882 adev->power.flags.ignore_parent = false; 2883 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2884 dev_name(&adev->dev)); 2885 spi_dev_put(spi); 2886 } 2887 2888 return AE_OK; 2889 } 2890 2891 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2892 void *data, void **return_value) 2893 { 2894 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2895 struct spi_controller *ctlr = data; 2896 2897 if (!adev) 2898 return AE_OK; 2899 2900 return acpi_register_spi_device(ctlr, adev); 2901 } 2902 2903 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2904 2905 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2906 { 2907 acpi_status status; 2908 acpi_handle handle; 2909 2910 handle = ACPI_HANDLE(ctlr->dev.parent); 2911 if (!handle) 2912 return; 2913 2914 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2915 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2916 acpi_spi_add_device, NULL, ctlr, NULL); 2917 if (ACPI_FAILURE(status)) 2918 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2919 } 2920 #else 2921 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2922 #endif /* CONFIG_ACPI */ 2923 2924 static void spi_controller_release(struct device *dev) 2925 { 2926 struct spi_controller *ctlr; 2927 2928 ctlr = container_of(dev, struct spi_controller, dev); 2929 kfree(ctlr); 2930 } 2931 2932 static struct class spi_master_class = { 2933 .name = "spi_master", 2934 .dev_release = spi_controller_release, 2935 .dev_groups = spi_master_groups, 2936 }; 2937 2938 #ifdef CONFIG_SPI_SLAVE 2939 /** 2940 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2941 * controller 2942 * @spi: device used for the current transfer 2943 */ 2944 int spi_slave_abort(struct spi_device *spi) 2945 { 2946 struct spi_controller *ctlr = spi->controller; 2947 2948 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2949 return ctlr->slave_abort(ctlr); 2950 2951 return -ENOTSUPP; 2952 } 2953 EXPORT_SYMBOL_GPL(spi_slave_abort); 2954 2955 int spi_target_abort(struct spi_device *spi) 2956 { 2957 struct spi_controller *ctlr = spi->controller; 2958 2959 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2960 return ctlr->target_abort(ctlr); 2961 2962 return -ENOTSUPP; 2963 } 2964 EXPORT_SYMBOL_GPL(spi_target_abort); 2965 2966 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2967 char *buf) 2968 { 2969 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2970 dev); 2971 struct device *child; 2972 2973 child = device_find_any_child(&ctlr->dev); 2974 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2975 } 2976 2977 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2978 const char *buf, size_t count) 2979 { 2980 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2981 dev); 2982 struct spi_device *spi; 2983 struct device *child; 2984 char name[32]; 2985 int rc; 2986 2987 rc = sscanf(buf, "%31s", name); 2988 if (rc != 1 || !name[0]) 2989 return -EINVAL; 2990 2991 child = device_find_any_child(&ctlr->dev); 2992 if (child) { 2993 /* Remove registered slave */ 2994 device_unregister(child); 2995 put_device(child); 2996 } 2997 2998 if (strcmp(name, "(null)")) { 2999 /* Register new slave */ 3000 spi = spi_alloc_device(ctlr); 3001 if (!spi) 3002 return -ENOMEM; 3003 3004 strscpy(spi->modalias, name, sizeof(spi->modalias)); 3005 3006 rc = spi_add_device(spi); 3007 if (rc) { 3008 spi_dev_put(spi); 3009 return rc; 3010 } 3011 } 3012 3013 return count; 3014 } 3015 3016 static DEVICE_ATTR_RW(slave); 3017 3018 static struct attribute *spi_slave_attrs[] = { 3019 &dev_attr_slave.attr, 3020 NULL, 3021 }; 3022 3023 static const struct attribute_group spi_slave_group = { 3024 .attrs = spi_slave_attrs, 3025 }; 3026 3027 static const struct attribute_group *spi_slave_groups[] = { 3028 &spi_controller_statistics_group, 3029 &spi_slave_group, 3030 NULL, 3031 }; 3032 3033 static struct class spi_slave_class = { 3034 .name = "spi_slave", 3035 .dev_release = spi_controller_release, 3036 .dev_groups = spi_slave_groups, 3037 }; 3038 #else 3039 extern struct class spi_slave_class; /* dummy */ 3040 #endif 3041 3042 /** 3043 * __spi_alloc_controller - allocate an SPI master or slave controller 3044 * @dev: the controller, possibly using the platform_bus 3045 * @size: how much zeroed driver-private data to allocate; the pointer to this 3046 * memory is in the driver_data field of the returned device, accessible 3047 * with spi_controller_get_devdata(); the memory is cacheline aligned; 3048 * drivers granting DMA access to portions of their private data need to 3049 * round up @size using ALIGN(size, dma_get_cache_alignment()). 3050 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 3051 * slave (true) controller 3052 * Context: can sleep 3053 * 3054 * This call is used only by SPI controller drivers, which are the 3055 * only ones directly touching chip registers. It's how they allocate 3056 * an spi_controller structure, prior to calling spi_register_controller(). 3057 * 3058 * This must be called from context that can sleep. 3059 * 3060 * The caller is responsible for assigning the bus number and initializing the 3061 * controller's methods before calling spi_register_controller(); and (after 3062 * errors adding the device) calling spi_controller_put() to prevent a memory 3063 * leak. 3064 * 3065 * Return: the SPI controller structure on success, else NULL. 3066 */ 3067 struct spi_controller *__spi_alloc_controller(struct device *dev, 3068 unsigned int size, bool slave) 3069 { 3070 struct spi_controller *ctlr; 3071 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 3072 3073 if (!dev) 3074 return NULL; 3075 3076 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 3077 if (!ctlr) 3078 return NULL; 3079 3080 device_initialize(&ctlr->dev); 3081 INIT_LIST_HEAD(&ctlr->queue); 3082 spin_lock_init(&ctlr->queue_lock); 3083 spin_lock_init(&ctlr->bus_lock_spinlock); 3084 mutex_init(&ctlr->bus_lock_mutex); 3085 mutex_init(&ctlr->io_mutex); 3086 mutex_init(&ctlr->add_lock); 3087 ctlr->bus_num = -1; 3088 ctlr->num_chipselect = 1; 3089 ctlr->slave = slave; 3090 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 3091 ctlr->dev.class = &spi_slave_class; 3092 else 3093 ctlr->dev.class = &spi_master_class; 3094 ctlr->dev.parent = dev; 3095 pm_suspend_ignore_children(&ctlr->dev, true); 3096 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 3097 3098 return ctlr; 3099 } 3100 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 3101 3102 static void devm_spi_release_controller(struct device *dev, void *ctlr) 3103 { 3104 spi_controller_put(*(struct spi_controller **)ctlr); 3105 } 3106 3107 /** 3108 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 3109 * @dev: physical device of SPI controller 3110 * @size: how much zeroed driver-private data to allocate 3111 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 3112 * Context: can sleep 3113 * 3114 * Allocate an SPI controller and automatically release a reference on it 3115 * when @dev is unbound from its driver. Drivers are thus relieved from 3116 * having to call spi_controller_put(). 3117 * 3118 * The arguments to this function are identical to __spi_alloc_controller(). 3119 * 3120 * Return: the SPI controller structure on success, else NULL. 3121 */ 3122 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 3123 unsigned int size, 3124 bool slave) 3125 { 3126 struct spi_controller **ptr, *ctlr; 3127 3128 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 3129 GFP_KERNEL); 3130 if (!ptr) 3131 return NULL; 3132 3133 ctlr = __spi_alloc_controller(dev, size, slave); 3134 if (ctlr) { 3135 ctlr->devm_allocated = true; 3136 *ptr = ctlr; 3137 devres_add(dev, ptr); 3138 } else { 3139 devres_free(ptr); 3140 } 3141 3142 return ctlr; 3143 } 3144 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 3145 3146 /** 3147 * spi_get_gpio_descs() - grab chip select GPIOs for the master 3148 * @ctlr: The SPI master to grab GPIO descriptors for 3149 */ 3150 static int spi_get_gpio_descs(struct spi_controller *ctlr) 3151 { 3152 int nb, i; 3153 struct gpio_desc **cs; 3154 struct device *dev = &ctlr->dev; 3155 unsigned long native_cs_mask = 0; 3156 unsigned int num_cs_gpios = 0; 3157 3158 nb = gpiod_count(dev, "cs"); 3159 if (nb < 0) { 3160 /* No GPIOs at all is fine, else return the error */ 3161 if (nb == -ENOENT) 3162 return 0; 3163 return nb; 3164 } 3165 3166 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3167 3168 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3169 GFP_KERNEL); 3170 if (!cs) 3171 return -ENOMEM; 3172 ctlr->cs_gpiods = cs; 3173 3174 for (i = 0; i < nb; i++) { 3175 /* 3176 * Most chipselects are active low, the inverted 3177 * semantics are handled by special quirks in gpiolib, 3178 * so initializing them GPIOD_OUT_LOW here means 3179 * "unasserted", in most cases this will drive the physical 3180 * line high. 3181 */ 3182 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3183 GPIOD_OUT_LOW); 3184 if (IS_ERR(cs[i])) 3185 return PTR_ERR(cs[i]); 3186 3187 if (cs[i]) { 3188 /* 3189 * If we find a CS GPIO, name it after the device and 3190 * chip select line. 3191 */ 3192 char *gpioname; 3193 3194 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3195 dev_name(dev), i); 3196 if (!gpioname) 3197 return -ENOMEM; 3198 gpiod_set_consumer_name(cs[i], gpioname); 3199 num_cs_gpios++; 3200 continue; 3201 } 3202 3203 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3204 dev_err(dev, "Invalid native chip select %d\n", i); 3205 return -EINVAL; 3206 } 3207 native_cs_mask |= BIT(i); 3208 } 3209 3210 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3211 3212 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3213 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3214 dev_err(dev, "No unused native chip select available\n"); 3215 return -EINVAL; 3216 } 3217 3218 return 0; 3219 } 3220 3221 static int spi_controller_check_ops(struct spi_controller *ctlr) 3222 { 3223 /* 3224 * The controller may implement only the high-level SPI-memory like 3225 * operations if it does not support regular SPI transfers, and this is 3226 * valid use case. 3227 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3228 * one of the ->transfer_xxx() method be implemented. 3229 */ 3230 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3231 if (!ctlr->transfer && !ctlr->transfer_one && 3232 !ctlr->transfer_one_message) { 3233 return -EINVAL; 3234 } 3235 } 3236 3237 return 0; 3238 } 3239 3240 /* Allocate dynamic bus number using Linux idr */ 3241 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3242 { 3243 int id; 3244 3245 mutex_lock(&board_lock); 3246 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL); 3247 mutex_unlock(&board_lock); 3248 if (WARN(id < 0, "couldn't get idr")) 3249 return id == -ENOSPC ? -EBUSY : id; 3250 ctlr->bus_num = id; 3251 return 0; 3252 } 3253 3254 /** 3255 * spi_register_controller - register SPI master or slave controller 3256 * @ctlr: initialized master, originally from spi_alloc_master() or 3257 * spi_alloc_slave() 3258 * Context: can sleep 3259 * 3260 * SPI controllers connect to their drivers using some non-SPI bus, 3261 * such as the platform bus. The final stage of probe() in that code 3262 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3263 * 3264 * SPI controllers use board specific (often SOC specific) bus numbers, 3265 * and board-specific addressing for SPI devices combines those numbers 3266 * with chip select numbers. Since SPI does not directly support dynamic 3267 * device identification, boards need configuration tables telling which 3268 * chip is at which address. 3269 * 3270 * This must be called from context that can sleep. It returns zero on 3271 * success, else a negative error code (dropping the controller's refcount). 3272 * After a successful return, the caller is responsible for calling 3273 * spi_unregister_controller(). 3274 * 3275 * Return: zero on success, else a negative error code. 3276 */ 3277 int spi_register_controller(struct spi_controller *ctlr) 3278 { 3279 struct device *dev = ctlr->dev.parent; 3280 struct boardinfo *bi; 3281 int first_dynamic; 3282 int status; 3283 int idx; 3284 3285 if (!dev) 3286 return -ENODEV; 3287 3288 /* 3289 * Make sure all necessary hooks are implemented before registering 3290 * the SPI controller. 3291 */ 3292 status = spi_controller_check_ops(ctlr); 3293 if (status) 3294 return status; 3295 3296 if (ctlr->bus_num < 0) 3297 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3298 if (ctlr->bus_num >= 0) { 3299 /* Devices with a fixed bus num must check-in with the num */ 3300 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3301 if (status) 3302 return status; 3303 } 3304 if (ctlr->bus_num < 0) { 3305 first_dynamic = of_alias_get_highest_id("spi"); 3306 if (first_dynamic < 0) 3307 first_dynamic = 0; 3308 else 3309 first_dynamic++; 3310 3311 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3312 if (status) 3313 return status; 3314 } 3315 ctlr->bus_lock_flag = 0; 3316 init_completion(&ctlr->xfer_completion); 3317 init_completion(&ctlr->cur_msg_completion); 3318 if (!ctlr->max_dma_len) 3319 ctlr->max_dma_len = INT_MAX; 3320 3321 /* 3322 * Register the device, then userspace will see it. 3323 * Registration fails if the bus ID is in use. 3324 */ 3325 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3326 3327 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3328 status = spi_get_gpio_descs(ctlr); 3329 if (status) 3330 goto free_bus_id; 3331 /* 3332 * A controller using GPIO descriptors always 3333 * supports SPI_CS_HIGH if need be. 3334 */ 3335 ctlr->mode_bits |= SPI_CS_HIGH; 3336 } 3337 3338 /* 3339 * Even if it's just one always-selected device, there must 3340 * be at least one chipselect. 3341 */ 3342 if (!ctlr->num_chipselect) { 3343 status = -EINVAL; 3344 goto free_bus_id; 3345 } 3346 3347 /* Setting last_cs to SPI_INVALID_CS means no chip selected */ 3348 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 3349 ctlr->last_cs[idx] = SPI_INVALID_CS; 3350 3351 status = device_add(&ctlr->dev); 3352 if (status < 0) 3353 goto free_bus_id; 3354 dev_dbg(dev, "registered %s %s\n", 3355 spi_controller_is_slave(ctlr) ? "slave" : "master", 3356 dev_name(&ctlr->dev)); 3357 3358 /* 3359 * If we're using a queued driver, start the queue. Note that we don't 3360 * need the queueing logic if the driver is only supporting high-level 3361 * memory operations. 3362 */ 3363 if (ctlr->transfer) { 3364 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3365 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3366 status = spi_controller_initialize_queue(ctlr); 3367 if (status) { 3368 device_del(&ctlr->dev); 3369 goto free_bus_id; 3370 } 3371 } 3372 /* Add statistics */ 3373 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3374 if (!ctlr->pcpu_statistics) { 3375 dev_err(dev, "Error allocating per-cpu statistics\n"); 3376 status = -ENOMEM; 3377 goto destroy_queue; 3378 } 3379 3380 mutex_lock(&board_lock); 3381 list_add_tail(&ctlr->list, &spi_controller_list); 3382 list_for_each_entry(bi, &board_list, list) 3383 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3384 mutex_unlock(&board_lock); 3385 3386 /* Register devices from the device tree and ACPI */ 3387 of_register_spi_devices(ctlr); 3388 acpi_register_spi_devices(ctlr); 3389 return status; 3390 3391 destroy_queue: 3392 spi_destroy_queue(ctlr); 3393 free_bus_id: 3394 mutex_lock(&board_lock); 3395 idr_remove(&spi_master_idr, ctlr->bus_num); 3396 mutex_unlock(&board_lock); 3397 return status; 3398 } 3399 EXPORT_SYMBOL_GPL(spi_register_controller); 3400 3401 static void devm_spi_unregister(struct device *dev, void *res) 3402 { 3403 spi_unregister_controller(*(struct spi_controller **)res); 3404 } 3405 3406 /** 3407 * devm_spi_register_controller - register managed SPI master or slave 3408 * controller 3409 * @dev: device managing SPI controller 3410 * @ctlr: initialized controller, originally from spi_alloc_master() or 3411 * spi_alloc_slave() 3412 * Context: can sleep 3413 * 3414 * Register a SPI device as with spi_register_controller() which will 3415 * automatically be unregistered and freed. 3416 * 3417 * Return: zero on success, else a negative error code. 3418 */ 3419 int devm_spi_register_controller(struct device *dev, 3420 struct spi_controller *ctlr) 3421 { 3422 struct spi_controller **ptr; 3423 int ret; 3424 3425 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3426 if (!ptr) 3427 return -ENOMEM; 3428 3429 ret = spi_register_controller(ctlr); 3430 if (!ret) { 3431 *ptr = ctlr; 3432 devres_add(dev, ptr); 3433 } else { 3434 devres_free(ptr); 3435 } 3436 3437 return ret; 3438 } 3439 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3440 3441 static int __unregister(struct device *dev, void *null) 3442 { 3443 spi_unregister_device(to_spi_device(dev)); 3444 return 0; 3445 } 3446 3447 /** 3448 * spi_unregister_controller - unregister SPI master or slave controller 3449 * @ctlr: the controller being unregistered 3450 * Context: can sleep 3451 * 3452 * This call is used only by SPI controller drivers, which are the 3453 * only ones directly touching chip registers. 3454 * 3455 * This must be called from context that can sleep. 3456 * 3457 * Note that this function also drops a reference to the controller. 3458 */ 3459 void spi_unregister_controller(struct spi_controller *ctlr) 3460 { 3461 struct spi_controller *found; 3462 int id = ctlr->bus_num; 3463 3464 /* Prevent addition of new devices, unregister existing ones */ 3465 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3466 mutex_lock(&ctlr->add_lock); 3467 3468 device_for_each_child(&ctlr->dev, NULL, __unregister); 3469 3470 /* First make sure that this controller was ever added */ 3471 mutex_lock(&board_lock); 3472 found = idr_find(&spi_master_idr, id); 3473 mutex_unlock(&board_lock); 3474 if (ctlr->queued) { 3475 if (spi_destroy_queue(ctlr)) 3476 dev_err(&ctlr->dev, "queue remove failed\n"); 3477 } 3478 mutex_lock(&board_lock); 3479 list_del(&ctlr->list); 3480 mutex_unlock(&board_lock); 3481 3482 device_del(&ctlr->dev); 3483 3484 /* Free bus id */ 3485 mutex_lock(&board_lock); 3486 if (found == ctlr) 3487 idr_remove(&spi_master_idr, id); 3488 mutex_unlock(&board_lock); 3489 3490 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3491 mutex_unlock(&ctlr->add_lock); 3492 3493 /* 3494 * Release the last reference on the controller if its driver 3495 * has not yet been converted to devm_spi_alloc_master/slave(). 3496 */ 3497 if (!ctlr->devm_allocated) 3498 put_device(&ctlr->dev); 3499 } 3500 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3501 3502 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3503 { 3504 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3505 } 3506 3507 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3508 { 3509 mutex_lock(&ctlr->bus_lock_mutex); 3510 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3511 mutex_unlock(&ctlr->bus_lock_mutex); 3512 } 3513 3514 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3515 { 3516 mutex_lock(&ctlr->bus_lock_mutex); 3517 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3518 mutex_unlock(&ctlr->bus_lock_mutex); 3519 } 3520 3521 int spi_controller_suspend(struct spi_controller *ctlr) 3522 { 3523 int ret = 0; 3524 3525 /* Basically no-ops for non-queued controllers */ 3526 if (ctlr->queued) { 3527 ret = spi_stop_queue(ctlr); 3528 if (ret) 3529 dev_err(&ctlr->dev, "queue stop failed\n"); 3530 } 3531 3532 __spi_mark_suspended(ctlr); 3533 return ret; 3534 } 3535 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3536 3537 int spi_controller_resume(struct spi_controller *ctlr) 3538 { 3539 int ret = 0; 3540 3541 __spi_mark_resumed(ctlr); 3542 3543 if (ctlr->queued) { 3544 ret = spi_start_queue(ctlr); 3545 if (ret) 3546 dev_err(&ctlr->dev, "queue restart failed\n"); 3547 } 3548 return ret; 3549 } 3550 EXPORT_SYMBOL_GPL(spi_controller_resume); 3551 3552 /*-------------------------------------------------------------------------*/ 3553 3554 /* Core methods for spi_message alterations */ 3555 3556 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3557 struct spi_message *msg, 3558 void *res) 3559 { 3560 struct spi_replaced_transfers *rxfer = res; 3561 size_t i; 3562 3563 /* Call extra callback if requested */ 3564 if (rxfer->release) 3565 rxfer->release(ctlr, msg, res); 3566 3567 /* Insert replaced transfers back into the message */ 3568 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3569 3570 /* Remove the formerly inserted entries */ 3571 for (i = 0; i < rxfer->inserted; i++) 3572 list_del(&rxfer->inserted_transfers[i].transfer_list); 3573 } 3574 3575 /** 3576 * spi_replace_transfers - replace transfers with several transfers 3577 * and register change with spi_message.resources 3578 * @msg: the spi_message we work upon 3579 * @xfer_first: the first spi_transfer we want to replace 3580 * @remove: number of transfers to remove 3581 * @insert: the number of transfers we want to insert instead 3582 * @release: extra release code necessary in some circumstances 3583 * @extradatasize: extra data to allocate (with alignment guarantees 3584 * of struct @spi_transfer) 3585 * @gfp: gfp flags 3586 * 3587 * Returns: pointer to @spi_replaced_transfers, 3588 * PTR_ERR(...) in case of errors. 3589 */ 3590 static struct spi_replaced_transfers *spi_replace_transfers( 3591 struct spi_message *msg, 3592 struct spi_transfer *xfer_first, 3593 size_t remove, 3594 size_t insert, 3595 spi_replaced_release_t release, 3596 size_t extradatasize, 3597 gfp_t gfp) 3598 { 3599 struct spi_replaced_transfers *rxfer; 3600 struct spi_transfer *xfer; 3601 size_t i; 3602 3603 /* Allocate the structure using spi_res */ 3604 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3605 struct_size(rxfer, inserted_transfers, insert) 3606 + extradatasize, 3607 gfp); 3608 if (!rxfer) 3609 return ERR_PTR(-ENOMEM); 3610 3611 /* The release code to invoke before running the generic release */ 3612 rxfer->release = release; 3613 3614 /* Assign extradata */ 3615 if (extradatasize) 3616 rxfer->extradata = 3617 &rxfer->inserted_transfers[insert]; 3618 3619 /* Init the replaced_transfers list */ 3620 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3621 3622 /* 3623 * Assign the list_entry after which we should reinsert 3624 * the @replaced_transfers - it may be spi_message.messages! 3625 */ 3626 rxfer->replaced_after = xfer_first->transfer_list.prev; 3627 3628 /* Remove the requested number of transfers */ 3629 for (i = 0; i < remove; i++) { 3630 /* 3631 * If the entry after replaced_after it is msg->transfers 3632 * then we have been requested to remove more transfers 3633 * than are in the list. 3634 */ 3635 if (rxfer->replaced_after->next == &msg->transfers) { 3636 dev_err(&msg->spi->dev, 3637 "requested to remove more spi_transfers than are available\n"); 3638 /* Insert replaced transfers back into the message */ 3639 list_splice(&rxfer->replaced_transfers, 3640 rxfer->replaced_after); 3641 3642 /* Free the spi_replace_transfer structure... */ 3643 spi_res_free(rxfer); 3644 3645 /* ...and return with an error */ 3646 return ERR_PTR(-EINVAL); 3647 } 3648 3649 /* 3650 * Remove the entry after replaced_after from list of 3651 * transfers and add it to list of replaced_transfers. 3652 */ 3653 list_move_tail(rxfer->replaced_after->next, 3654 &rxfer->replaced_transfers); 3655 } 3656 3657 /* 3658 * Create copy of the given xfer with identical settings 3659 * based on the first transfer to get removed. 3660 */ 3661 for (i = 0; i < insert; i++) { 3662 /* We need to run in reverse order */ 3663 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3664 3665 /* Copy all spi_transfer data */ 3666 memcpy(xfer, xfer_first, sizeof(*xfer)); 3667 3668 /* Add to list */ 3669 list_add(&xfer->transfer_list, rxfer->replaced_after); 3670 3671 /* Clear cs_change and delay for all but the last */ 3672 if (i) { 3673 xfer->cs_change = false; 3674 xfer->delay.value = 0; 3675 } 3676 } 3677 3678 /* Set up inserted... */ 3679 rxfer->inserted = insert; 3680 3681 /* ...and register it with spi_res/spi_message */ 3682 spi_res_add(msg, rxfer); 3683 3684 return rxfer; 3685 } 3686 3687 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3688 struct spi_message *msg, 3689 struct spi_transfer **xferp, 3690 size_t maxsize) 3691 { 3692 struct spi_transfer *xfer = *xferp, *xfers; 3693 struct spi_replaced_transfers *srt; 3694 size_t offset; 3695 size_t count, i; 3696 3697 /* Calculate how many we have to replace */ 3698 count = DIV_ROUND_UP(xfer->len, maxsize); 3699 3700 /* Create replacement */ 3701 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL); 3702 if (IS_ERR(srt)) 3703 return PTR_ERR(srt); 3704 xfers = srt->inserted_transfers; 3705 3706 /* 3707 * Now handle each of those newly inserted spi_transfers. 3708 * Note that the replacements spi_transfers all are preset 3709 * to the same values as *xferp, so tx_buf, rx_buf and len 3710 * are all identical (as well as most others) 3711 * so we just have to fix up len and the pointers. 3712 * 3713 * This also includes support for the depreciated 3714 * spi_message.is_dma_mapped interface. 3715 */ 3716 3717 /* 3718 * The first transfer just needs the length modified, so we 3719 * run it outside the loop. 3720 */ 3721 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3722 3723 /* All the others need rx_buf/tx_buf also set */ 3724 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3725 /* Update rx_buf, tx_buf and DMA */ 3726 if (xfers[i].rx_buf) 3727 xfers[i].rx_buf += offset; 3728 if (xfers[i].rx_dma) 3729 xfers[i].rx_dma += offset; 3730 if (xfers[i].tx_buf) 3731 xfers[i].tx_buf += offset; 3732 if (xfers[i].tx_dma) 3733 xfers[i].tx_dma += offset; 3734 3735 /* Update length */ 3736 xfers[i].len = min(maxsize, xfers[i].len - offset); 3737 } 3738 3739 /* 3740 * We set up xferp to the last entry we have inserted, 3741 * so that we skip those already split transfers. 3742 */ 3743 *xferp = &xfers[count - 1]; 3744 3745 /* Increment statistics counters */ 3746 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3747 transfers_split_maxsize); 3748 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3749 transfers_split_maxsize); 3750 3751 return 0; 3752 } 3753 3754 /** 3755 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3756 * when an individual transfer exceeds a 3757 * certain size 3758 * @ctlr: the @spi_controller for this transfer 3759 * @msg: the @spi_message to transform 3760 * @maxsize: the maximum when to apply this 3761 * 3762 * This function allocates resources that are automatically freed during the 3763 * spi message unoptimize phase so this function should only be called from 3764 * optimize_message callbacks. 3765 * 3766 * Return: status of transformation 3767 */ 3768 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3769 struct spi_message *msg, 3770 size_t maxsize) 3771 { 3772 struct spi_transfer *xfer; 3773 int ret; 3774 3775 /* 3776 * Iterate over the transfer_list, 3777 * but note that xfer is advanced to the last transfer inserted 3778 * to avoid checking sizes again unnecessarily (also xfer does 3779 * potentially belong to a different list by the time the 3780 * replacement has happened). 3781 */ 3782 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3783 if (xfer->len > maxsize) { 3784 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3785 maxsize); 3786 if (ret) 3787 return ret; 3788 } 3789 } 3790 3791 return 0; 3792 } 3793 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3794 3795 3796 /** 3797 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3798 * when an individual transfer exceeds a 3799 * certain number of SPI words 3800 * @ctlr: the @spi_controller for this transfer 3801 * @msg: the @spi_message to transform 3802 * @maxwords: the number of words to limit each transfer to 3803 * 3804 * This function allocates resources that are automatically freed during the 3805 * spi message unoptimize phase so this function should only be called from 3806 * optimize_message callbacks. 3807 * 3808 * Return: status of transformation 3809 */ 3810 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3811 struct spi_message *msg, 3812 size_t maxwords) 3813 { 3814 struct spi_transfer *xfer; 3815 3816 /* 3817 * Iterate over the transfer_list, 3818 * but note that xfer is advanced to the last transfer inserted 3819 * to avoid checking sizes again unnecessarily (also xfer does 3820 * potentially belong to a different list by the time the 3821 * replacement has happened). 3822 */ 3823 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3824 size_t maxsize; 3825 int ret; 3826 3827 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); 3828 if (xfer->len > maxsize) { 3829 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3830 maxsize); 3831 if (ret) 3832 return ret; 3833 } 3834 } 3835 3836 return 0; 3837 } 3838 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3839 3840 /*-------------------------------------------------------------------------*/ 3841 3842 /* 3843 * Core methods for SPI controller protocol drivers. Some of the 3844 * other core methods are currently defined as inline functions. 3845 */ 3846 3847 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3848 u8 bits_per_word) 3849 { 3850 if (ctlr->bits_per_word_mask) { 3851 /* Only 32 bits fit in the mask */ 3852 if (bits_per_word > 32) 3853 return -EINVAL; 3854 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3855 return -EINVAL; 3856 } 3857 3858 return 0; 3859 } 3860 3861 /** 3862 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3863 * @spi: the device that requires specific CS timing configuration 3864 * 3865 * Return: zero on success, else a negative error code. 3866 */ 3867 static int spi_set_cs_timing(struct spi_device *spi) 3868 { 3869 struct device *parent = spi->controller->dev.parent; 3870 int status = 0; 3871 3872 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3873 if (spi->controller->auto_runtime_pm) { 3874 status = pm_runtime_get_sync(parent); 3875 if (status < 0) { 3876 pm_runtime_put_noidle(parent); 3877 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3878 status); 3879 return status; 3880 } 3881 3882 status = spi->controller->set_cs_timing(spi); 3883 pm_runtime_mark_last_busy(parent); 3884 pm_runtime_put_autosuspend(parent); 3885 } else { 3886 status = spi->controller->set_cs_timing(spi); 3887 } 3888 } 3889 return status; 3890 } 3891 3892 /** 3893 * spi_setup - setup SPI mode and clock rate 3894 * @spi: the device whose settings are being modified 3895 * Context: can sleep, and no requests are queued to the device 3896 * 3897 * SPI protocol drivers may need to update the transfer mode if the 3898 * device doesn't work with its default. They may likewise need 3899 * to update clock rates or word sizes from initial values. This function 3900 * changes those settings, and must be called from a context that can sleep. 3901 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3902 * effect the next time the device is selected and data is transferred to 3903 * or from it. When this function returns, the SPI device is deselected. 3904 * 3905 * Note that this call will fail if the protocol driver specifies an option 3906 * that the underlying controller or its driver does not support. For 3907 * example, not all hardware supports wire transfers using nine bit words, 3908 * LSB-first wire encoding, or active-high chipselects. 3909 * 3910 * Return: zero on success, else a negative error code. 3911 */ 3912 int spi_setup(struct spi_device *spi) 3913 { 3914 unsigned bad_bits, ugly_bits; 3915 int status = 0; 3916 3917 /* 3918 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3919 * are set at the same time. 3920 */ 3921 if ((hweight_long(spi->mode & 3922 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3923 (hweight_long(spi->mode & 3924 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3925 dev_err(&spi->dev, 3926 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3927 return -EINVAL; 3928 } 3929 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3930 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3931 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3932 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3933 return -EINVAL; 3934 /* 3935 * Help drivers fail *cleanly* when they need options 3936 * that aren't supported with their current controller. 3937 * SPI_CS_WORD has a fallback software implementation, 3938 * so it is ignored here. 3939 */ 3940 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3941 SPI_NO_TX | SPI_NO_RX); 3942 ugly_bits = bad_bits & 3943 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3944 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3945 if (ugly_bits) { 3946 dev_warn(&spi->dev, 3947 "setup: ignoring unsupported mode bits %x\n", 3948 ugly_bits); 3949 spi->mode &= ~ugly_bits; 3950 bad_bits &= ~ugly_bits; 3951 } 3952 if (bad_bits) { 3953 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3954 bad_bits); 3955 return -EINVAL; 3956 } 3957 3958 if (!spi->bits_per_word) { 3959 spi->bits_per_word = 8; 3960 } else { 3961 /* 3962 * Some controllers may not support the default 8 bits-per-word 3963 * so only perform the check when this is explicitly provided. 3964 */ 3965 status = __spi_validate_bits_per_word(spi->controller, 3966 spi->bits_per_word); 3967 if (status) 3968 return status; 3969 } 3970 3971 if (spi->controller->max_speed_hz && 3972 (!spi->max_speed_hz || 3973 spi->max_speed_hz > spi->controller->max_speed_hz)) 3974 spi->max_speed_hz = spi->controller->max_speed_hz; 3975 3976 mutex_lock(&spi->controller->io_mutex); 3977 3978 if (spi->controller->setup) { 3979 status = spi->controller->setup(spi); 3980 if (status) { 3981 mutex_unlock(&spi->controller->io_mutex); 3982 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3983 status); 3984 return status; 3985 } 3986 } 3987 3988 status = spi_set_cs_timing(spi); 3989 if (status) { 3990 mutex_unlock(&spi->controller->io_mutex); 3991 return status; 3992 } 3993 3994 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3995 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3996 if (status < 0) { 3997 mutex_unlock(&spi->controller->io_mutex); 3998 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3999 status); 4000 return status; 4001 } 4002 4003 /* 4004 * We do not want to return positive value from pm_runtime_get, 4005 * there are many instances of devices calling spi_setup() and 4006 * checking for a non-zero return value instead of a negative 4007 * return value. 4008 */ 4009 status = 0; 4010 4011 spi_set_cs(spi, false, true); 4012 pm_runtime_mark_last_busy(spi->controller->dev.parent); 4013 pm_runtime_put_autosuspend(spi->controller->dev.parent); 4014 } else { 4015 spi_set_cs(spi, false, true); 4016 } 4017 4018 mutex_unlock(&spi->controller->io_mutex); 4019 4020 if (spi->rt && !spi->controller->rt) { 4021 spi->controller->rt = true; 4022 spi_set_thread_rt(spi->controller); 4023 } 4024 4025 trace_spi_setup(spi, status); 4026 4027 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 4028 spi->mode & SPI_MODE_X_MASK, 4029 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 4030 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 4031 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 4032 (spi->mode & SPI_LOOP) ? "loopback, " : "", 4033 spi->bits_per_word, spi->max_speed_hz, 4034 status); 4035 4036 return status; 4037 } 4038 EXPORT_SYMBOL_GPL(spi_setup); 4039 4040 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 4041 struct spi_device *spi) 4042 { 4043 int delay1, delay2; 4044 4045 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 4046 if (delay1 < 0) 4047 return delay1; 4048 4049 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 4050 if (delay2 < 0) 4051 return delay2; 4052 4053 if (delay1 < delay2) 4054 memcpy(&xfer->word_delay, &spi->word_delay, 4055 sizeof(xfer->word_delay)); 4056 4057 return 0; 4058 } 4059 4060 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 4061 { 4062 struct spi_controller *ctlr = spi->controller; 4063 struct spi_transfer *xfer; 4064 int w_size; 4065 4066 if (list_empty(&message->transfers)) 4067 return -EINVAL; 4068 4069 message->spi = spi; 4070 4071 /* 4072 * Half-duplex links include original MicroWire, and ones with 4073 * only one data pin like SPI_3WIRE (switches direction) or where 4074 * either MOSI or MISO is missing. They can also be caused by 4075 * software limitations. 4076 */ 4077 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 4078 (spi->mode & SPI_3WIRE)) { 4079 unsigned flags = ctlr->flags; 4080 4081 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4082 if (xfer->rx_buf && xfer->tx_buf) 4083 return -EINVAL; 4084 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 4085 return -EINVAL; 4086 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 4087 return -EINVAL; 4088 } 4089 } 4090 4091 /* 4092 * Set transfer bits_per_word and max speed as spi device default if 4093 * it is not set for this transfer. 4094 * Set transfer tx_nbits and rx_nbits as single transfer default 4095 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 4096 * Ensure transfer word_delay is at least as long as that required by 4097 * device itself. 4098 */ 4099 message->frame_length = 0; 4100 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4101 xfer->effective_speed_hz = 0; 4102 message->frame_length += xfer->len; 4103 if (!xfer->bits_per_word) 4104 xfer->bits_per_word = spi->bits_per_word; 4105 4106 if (!xfer->speed_hz) 4107 xfer->speed_hz = spi->max_speed_hz; 4108 4109 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 4110 xfer->speed_hz = ctlr->max_speed_hz; 4111 4112 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 4113 return -EINVAL; 4114 4115 /* 4116 * SPI transfer length should be multiple of SPI word size 4117 * where SPI word size should be power-of-two multiple. 4118 */ 4119 if (xfer->bits_per_word <= 8) 4120 w_size = 1; 4121 else if (xfer->bits_per_word <= 16) 4122 w_size = 2; 4123 else 4124 w_size = 4; 4125 4126 /* No partial transfers accepted */ 4127 if (xfer->len % w_size) 4128 return -EINVAL; 4129 4130 if (xfer->speed_hz && ctlr->min_speed_hz && 4131 xfer->speed_hz < ctlr->min_speed_hz) 4132 return -EINVAL; 4133 4134 if (xfer->tx_buf && !xfer->tx_nbits) 4135 xfer->tx_nbits = SPI_NBITS_SINGLE; 4136 if (xfer->rx_buf && !xfer->rx_nbits) 4137 xfer->rx_nbits = SPI_NBITS_SINGLE; 4138 /* 4139 * Check transfer tx/rx_nbits: 4140 * 1. check the value matches one of single, dual and quad 4141 * 2. check tx/rx_nbits match the mode in spi_device 4142 */ 4143 if (xfer->tx_buf) { 4144 if (spi->mode & SPI_NO_TX) 4145 return -EINVAL; 4146 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4147 xfer->tx_nbits != SPI_NBITS_DUAL && 4148 xfer->tx_nbits != SPI_NBITS_QUAD) 4149 return -EINVAL; 4150 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4151 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 4152 return -EINVAL; 4153 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4154 !(spi->mode & SPI_TX_QUAD)) 4155 return -EINVAL; 4156 } 4157 /* Check transfer rx_nbits */ 4158 if (xfer->rx_buf) { 4159 if (spi->mode & SPI_NO_RX) 4160 return -EINVAL; 4161 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4162 xfer->rx_nbits != SPI_NBITS_DUAL && 4163 xfer->rx_nbits != SPI_NBITS_QUAD) 4164 return -EINVAL; 4165 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4166 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 4167 return -EINVAL; 4168 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4169 !(spi->mode & SPI_RX_QUAD)) 4170 return -EINVAL; 4171 } 4172 4173 if (_spi_xfer_word_delay_update(xfer, spi)) 4174 return -EINVAL; 4175 } 4176 4177 message->status = -EINPROGRESS; 4178 4179 return 0; 4180 } 4181 4182 /* 4183 * spi_split_transfers - generic handling of transfer splitting 4184 * @msg: the message to split 4185 * 4186 * Under certain conditions, a SPI controller may not support arbitrary 4187 * transfer sizes or other features required by a peripheral. This function 4188 * will split the transfers in the message into smaller transfers that are 4189 * supported by the controller. 4190 * 4191 * Controllers with special requirements not covered here can also split 4192 * transfers in the optimize_message() callback. 4193 * 4194 * Context: can sleep 4195 * Return: zero on success, else a negative error code 4196 */ 4197 static int spi_split_transfers(struct spi_message *msg) 4198 { 4199 struct spi_controller *ctlr = msg->spi->controller; 4200 struct spi_transfer *xfer; 4201 int ret; 4202 4203 /* 4204 * If an SPI controller does not support toggling the CS line on each 4205 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 4206 * for the CS line, we can emulate the CS-per-word hardware function by 4207 * splitting transfers into one-word transfers and ensuring that 4208 * cs_change is set for each transfer. 4209 */ 4210 if ((msg->spi->mode & SPI_CS_WORD) && 4211 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) { 4212 ret = spi_split_transfers_maxwords(ctlr, msg, 1); 4213 if (ret) 4214 return ret; 4215 4216 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 4217 /* Don't change cs_change on the last entry in the list */ 4218 if (list_is_last(&xfer->transfer_list, &msg->transfers)) 4219 break; 4220 4221 xfer->cs_change = 1; 4222 } 4223 } else { 4224 ret = spi_split_transfers_maxsize(ctlr, msg, 4225 spi_max_transfer_size(msg->spi)); 4226 if (ret) 4227 return ret; 4228 } 4229 4230 return 0; 4231 } 4232 4233 /* 4234 * __spi_optimize_message - shared implementation for spi_optimize_message() 4235 * and spi_maybe_optimize_message() 4236 * @spi: the device that will be used for the message 4237 * @msg: the message to optimize 4238 * 4239 * Peripheral drivers will call spi_optimize_message() and the spi core will 4240 * call spi_maybe_optimize_message() instead of calling this directly. 4241 * 4242 * It is not valid to call this on a message that has already been optimized. 4243 * 4244 * Return: zero on success, else a negative error code 4245 */ 4246 static int __spi_optimize_message(struct spi_device *spi, 4247 struct spi_message *msg) 4248 { 4249 struct spi_controller *ctlr = spi->controller; 4250 int ret; 4251 4252 ret = __spi_validate(spi, msg); 4253 if (ret) 4254 return ret; 4255 4256 ret = spi_split_transfers(msg); 4257 if (ret) 4258 return ret; 4259 4260 if (ctlr->optimize_message) { 4261 ret = ctlr->optimize_message(msg); 4262 if (ret) { 4263 spi_res_release(ctlr, msg); 4264 return ret; 4265 } 4266 } 4267 4268 msg->optimized = true; 4269 4270 return 0; 4271 } 4272 4273 /* 4274 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized 4275 * @spi: the device that will be used for the message 4276 * @msg: the message to optimize 4277 * Return: zero on success, else a negative error code 4278 */ 4279 static int spi_maybe_optimize_message(struct spi_device *spi, 4280 struct spi_message *msg) 4281 { 4282 if (msg->pre_optimized) 4283 return 0; 4284 4285 return __spi_optimize_message(spi, msg); 4286 } 4287 4288 /** 4289 * spi_optimize_message - do any one-time validation and setup for a SPI message 4290 * @spi: the device that will be used for the message 4291 * @msg: the message to optimize 4292 * 4293 * Peripheral drivers that reuse the same message repeatedly may call this to 4294 * perform as much message prep as possible once, rather than repeating it each 4295 * time a message transfer is performed to improve throughput and reduce CPU 4296 * usage. 4297 * 4298 * Once a message has been optimized, it cannot be modified with the exception 4299 * of updating the contents of any xfer->tx_buf (the pointer can't be changed, 4300 * only the data in the memory it points to). 4301 * 4302 * Calls to this function must be balanced with calls to spi_unoptimize_message() 4303 * to avoid leaking resources. 4304 * 4305 * Context: can sleep 4306 * Return: zero on success, else a negative error code 4307 */ 4308 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg) 4309 { 4310 int ret; 4311 4312 ret = __spi_optimize_message(spi, msg); 4313 if (ret) 4314 return ret; 4315 4316 /* 4317 * This flag indicates that the peripheral driver called spi_optimize_message() 4318 * and therefore we shouldn't unoptimize message automatically when finalizing 4319 * the message but rather wait until spi_unoptimize_message() is called 4320 * by the peripheral driver. 4321 */ 4322 msg->pre_optimized = true; 4323 4324 return 0; 4325 } 4326 EXPORT_SYMBOL_GPL(spi_optimize_message); 4327 4328 /** 4329 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message() 4330 * @msg: the message to unoptimize 4331 * 4332 * Calls to this function must be balanced with calls to spi_optimize_message(). 4333 * 4334 * Context: can sleep 4335 */ 4336 void spi_unoptimize_message(struct spi_message *msg) 4337 { 4338 __spi_unoptimize_message(msg); 4339 msg->pre_optimized = false; 4340 } 4341 EXPORT_SYMBOL_GPL(spi_unoptimize_message); 4342 4343 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4344 { 4345 struct spi_controller *ctlr = spi->controller; 4346 struct spi_transfer *xfer; 4347 4348 /* 4349 * Some controllers do not support doing regular SPI transfers. Return 4350 * ENOTSUPP when this is the case. 4351 */ 4352 if (!ctlr->transfer) 4353 return -ENOTSUPP; 4354 4355 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4356 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4357 4358 trace_spi_message_submit(message); 4359 4360 if (!ctlr->ptp_sts_supported) { 4361 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4362 xfer->ptp_sts_word_pre = 0; 4363 ptp_read_system_prets(xfer->ptp_sts); 4364 } 4365 } 4366 4367 return ctlr->transfer(spi, message); 4368 } 4369 4370 /** 4371 * spi_async - asynchronous SPI transfer 4372 * @spi: device with which data will be exchanged 4373 * @message: describes the data transfers, including completion callback 4374 * Context: any (IRQs may be blocked, etc) 4375 * 4376 * This call may be used in_irq and other contexts which can't sleep, 4377 * as well as from task contexts which can sleep. 4378 * 4379 * The completion callback is invoked in a context which can't sleep. 4380 * Before that invocation, the value of message->status is undefined. 4381 * When the callback is issued, message->status holds either zero (to 4382 * indicate complete success) or a negative error code. After that 4383 * callback returns, the driver which issued the transfer request may 4384 * deallocate the associated memory; it's no longer in use by any SPI 4385 * core or controller driver code. 4386 * 4387 * Note that although all messages to a spi_device are handled in 4388 * FIFO order, messages may go to different devices in other orders. 4389 * Some device might be higher priority, or have various "hard" access 4390 * time requirements, for example. 4391 * 4392 * On detection of any fault during the transfer, processing of 4393 * the entire message is aborted, and the device is deselected. 4394 * Until returning from the associated message completion callback, 4395 * no other spi_message queued to that device will be processed. 4396 * (This rule applies equally to all the synchronous transfer calls, 4397 * which are wrappers around this core asynchronous primitive.) 4398 * 4399 * Return: zero on success, else a negative error code. 4400 */ 4401 int spi_async(struct spi_device *spi, struct spi_message *message) 4402 { 4403 struct spi_controller *ctlr = spi->controller; 4404 int ret; 4405 unsigned long flags; 4406 4407 ret = spi_maybe_optimize_message(spi, message); 4408 if (ret) 4409 return ret; 4410 4411 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4412 4413 if (ctlr->bus_lock_flag) 4414 ret = -EBUSY; 4415 else 4416 ret = __spi_async(spi, message); 4417 4418 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4419 4420 spi_maybe_unoptimize_message(message); 4421 4422 return ret; 4423 } 4424 EXPORT_SYMBOL_GPL(spi_async); 4425 4426 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4427 { 4428 bool was_busy; 4429 int ret; 4430 4431 mutex_lock(&ctlr->io_mutex); 4432 4433 was_busy = ctlr->busy; 4434 4435 ctlr->cur_msg = msg; 4436 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4437 if (ret) 4438 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4439 ctlr->cur_msg = NULL; 4440 ctlr->fallback = false; 4441 4442 if (!was_busy) { 4443 kfree(ctlr->dummy_rx); 4444 ctlr->dummy_rx = NULL; 4445 kfree(ctlr->dummy_tx); 4446 ctlr->dummy_tx = NULL; 4447 if (ctlr->unprepare_transfer_hardware && 4448 ctlr->unprepare_transfer_hardware(ctlr)) 4449 dev_err(&ctlr->dev, 4450 "failed to unprepare transfer hardware\n"); 4451 spi_idle_runtime_pm(ctlr); 4452 } 4453 4454 mutex_unlock(&ctlr->io_mutex); 4455 } 4456 4457 /*-------------------------------------------------------------------------*/ 4458 4459 /* 4460 * Utility methods for SPI protocol drivers, layered on 4461 * top of the core. Some other utility methods are defined as 4462 * inline functions. 4463 */ 4464 4465 static void spi_complete(void *arg) 4466 { 4467 complete(arg); 4468 } 4469 4470 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4471 { 4472 DECLARE_COMPLETION_ONSTACK(done); 4473 unsigned long flags; 4474 int status; 4475 struct spi_controller *ctlr = spi->controller; 4476 4477 if (__spi_check_suspended(ctlr)) { 4478 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4479 return -ESHUTDOWN; 4480 } 4481 4482 status = spi_maybe_optimize_message(spi, message); 4483 if (status) 4484 return status; 4485 4486 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4487 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4488 4489 /* 4490 * Checking queue_empty here only guarantees async/sync message 4491 * ordering when coming from the same context. It does not need to 4492 * guard against reentrancy from a different context. The io_mutex 4493 * will catch those cases. 4494 */ 4495 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4496 message->actual_length = 0; 4497 message->status = -EINPROGRESS; 4498 4499 trace_spi_message_submit(message); 4500 4501 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4502 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4503 4504 __spi_transfer_message_noqueue(ctlr, message); 4505 4506 return message->status; 4507 } 4508 4509 /* 4510 * There are messages in the async queue that could have originated 4511 * from the same context, so we need to preserve ordering. 4512 * Therefor we send the message to the async queue and wait until they 4513 * are completed. 4514 */ 4515 message->complete = spi_complete; 4516 message->context = &done; 4517 4518 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4519 status = __spi_async(spi, message); 4520 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4521 4522 if (status == 0) { 4523 wait_for_completion(&done); 4524 status = message->status; 4525 } 4526 message->context = NULL; 4527 4528 return status; 4529 } 4530 4531 /** 4532 * spi_sync - blocking/synchronous SPI data transfers 4533 * @spi: device with which data will be exchanged 4534 * @message: describes the data transfers 4535 * Context: can sleep 4536 * 4537 * This call may only be used from a context that may sleep. The sleep 4538 * is non-interruptible, and has no timeout. Low-overhead controller 4539 * drivers may DMA directly into and out of the message buffers. 4540 * 4541 * Note that the SPI device's chip select is active during the message, 4542 * and then is normally disabled between messages. Drivers for some 4543 * frequently-used devices may want to minimize costs of selecting a chip, 4544 * by leaving it selected in anticipation that the next message will go 4545 * to the same chip. (That may increase power usage.) 4546 * 4547 * Also, the caller is guaranteeing that the memory associated with the 4548 * message will not be freed before this call returns. 4549 * 4550 * Return: zero on success, else a negative error code. 4551 */ 4552 int spi_sync(struct spi_device *spi, struct spi_message *message) 4553 { 4554 int ret; 4555 4556 mutex_lock(&spi->controller->bus_lock_mutex); 4557 ret = __spi_sync(spi, message); 4558 mutex_unlock(&spi->controller->bus_lock_mutex); 4559 4560 return ret; 4561 } 4562 EXPORT_SYMBOL_GPL(spi_sync); 4563 4564 /** 4565 * spi_sync_locked - version of spi_sync with exclusive bus usage 4566 * @spi: device with which data will be exchanged 4567 * @message: describes the data transfers 4568 * Context: can sleep 4569 * 4570 * This call may only be used from a context that may sleep. The sleep 4571 * is non-interruptible, and has no timeout. Low-overhead controller 4572 * drivers may DMA directly into and out of the message buffers. 4573 * 4574 * This call should be used by drivers that require exclusive access to the 4575 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4576 * be released by a spi_bus_unlock call when the exclusive access is over. 4577 * 4578 * Return: zero on success, else a negative error code. 4579 */ 4580 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4581 { 4582 return __spi_sync(spi, message); 4583 } 4584 EXPORT_SYMBOL_GPL(spi_sync_locked); 4585 4586 /** 4587 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4588 * @ctlr: SPI bus master that should be locked for exclusive bus access 4589 * Context: can sleep 4590 * 4591 * This call may only be used from a context that may sleep. The sleep 4592 * is non-interruptible, and has no timeout. 4593 * 4594 * This call should be used by drivers that require exclusive access to the 4595 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4596 * exclusive access is over. Data transfer must be done by spi_sync_locked 4597 * and spi_async_locked calls when the SPI bus lock is held. 4598 * 4599 * Return: always zero. 4600 */ 4601 int spi_bus_lock(struct spi_controller *ctlr) 4602 { 4603 unsigned long flags; 4604 4605 mutex_lock(&ctlr->bus_lock_mutex); 4606 4607 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4608 ctlr->bus_lock_flag = 1; 4609 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4610 4611 /* Mutex remains locked until spi_bus_unlock() is called */ 4612 4613 return 0; 4614 } 4615 EXPORT_SYMBOL_GPL(spi_bus_lock); 4616 4617 /** 4618 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4619 * @ctlr: SPI bus master that was locked for exclusive bus access 4620 * Context: can sleep 4621 * 4622 * This call may only be used from a context that may sleep. The sleep 4623 * is non-interruptible, and has no timeout. 4624 * 4625 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4626 * call. 4627 * 4628 * Return: always zero. 4629 */ 4630 int spi_bus_unlock(struct spi_controller *ctlr) 4631 { 4632 ctlr->bus_lock_flag = 0; 4633 4634 mutex_unlock(&ctlr->bus_lock_mutex); 4635 4636 return 0; 4637 } 4638 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4639 4640 /* Portable code must never pass more than 32 bytes */ 4641 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4642 4643 static u8 *buf; 4644 4645 /** 4646 * spi_write_then_read - SPI synchronous write followed by read 4647 * @spi: device with which data will be exchanged 4648 * @txbuf: data to be written (need not be DMA-safe) 4649 * @n_tx: size of txbuf, in bytes 4650 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4651 * @n_rx: size of rxbuf, in bytes 4652 * Context: can sleep 4653 * 4654 * This performs a half duplex MicroWire style transaction with the 4655 * device, sending txbuf and then reading rxbuf. The return value 4656 * is zero for success, else a negative errno status code. 4657 * This call may only be used from a context that may sleep. 4658 * 4659 * Parameters to this routine are always copied using a small buffer. 4660 * Performance-sensitive or bulk transfer code should instead use 4661 * spi_{async,sync}() calls with DMA-safe buffers. 4662 * 4663 * Return: zero on success, else a negative error code. 4664 */ 4665 int spi_write_then_read(struct spi_device *spi, 4666 const void *txbuf, unsigned n_tx, 4667 void *rxbuf, unsigned n_rx) 4668 { 4669 static DEFINE_MUTEX(lock); 4670 4671 int status; 4672 struct spi_message message; 4673 struct spi_transfer x[2]; 4674 u8 *local_buf; 4675 4676 /* 4677 * Use preallocated DMA-safe buffer if we can. We can't avoid 4678 * copying here, (as a pure convenience thing), but we can 4679 * keep heap costs out of the hot path unless someone else is 4680 * using the pre-allocated buffer or the transfer is too large. 4681 */ 4682 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4683 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4684 GFP_KERNEL | GFP_DMA); 4685 if (!local_buf) 4686 return -ENOMEM; 4687 } else { 4688 local_buf = buf; 4689 } 4690 4691 spi_message_init(&message); 4692 memset(x, 0, sizeof(x)); 4693 if (n_tx) { 4694 x[0].len = n_tx; 4695 spi_message_add_tail(&x[0], &message); 4696 } 4697 if (n_rx) { 4698 x[1].len = n_rx; 4699 spi_message_add_tail(&x[1], &message); 4700 } 4701 4702 memcpy(local_buf, txbuf, n_tx); 4703 x[0].tx_buf = local_buf; 4704 x[1].rx_buf = local_buf + n_tx; 4705 4706 /* Do the I/O */ 4707 status = spi_sync(spi, &message); 4708 if (status == 0) 4709 memcpy(rxbuf, x[1].rx_buf, n_rx); 4710 4711 if (x[0].tx_buf == buf) 4712 mutex_unlock(&lock); 4713 else 4714 kfree(local_buf); 4715 4716 return status; 4717 } 4718 EXPORT_SYMBOL_GPL(spi_write_then_read); 4719 4720 /*-------------------------------------------------------------------------*/ 4721 4722 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4723 /* Must call put_device() when done with returned spi_device device */ 4724 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4725 { 4726 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4727 4728 return dev ? to_spi_device(dev) : NULL; 4729 } 4730 4731 /* The spi controllers are not using spi_bus, so we find it with another way */ 4732 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4733 { 4734 struct device *dev; 4735 4736 dev = class_find_device_by_of_node(&spi_master_class, node); 4737 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4738 dev = class_find_device_by_of_node(&spi_slave_class, node); 4739 if (!dev) 4740 return NULL; 4741 4742 /* Reference got in class_find_device */ 4743 return container_of(dev, struct spi_controller, dev); 4744 } 4745 4746 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4747 void *arg) 4748 { 4749 struct of_reconfig_data *rd = arg; 4750 struct spi_controller *ctlr; 4751 struct spi_device *spi; 4752 4753 switch (of_reconfig_get_state_change(action, arg)) { 4754 case OF_RECONFIG_CHANGE_ADD: 4755 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4756 if (ctlr == NULL) 4757 return NOTIFY_OK; /* Not for us */ 4758 4759 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4760 put_device(&ctlr->dev); 4761 return NOTIFY_OK; 4762 } 4763 4764 /* 4765 * Clear the flag before adding the device so that fw_devlink 4766 * doesn't skip adding consumers to this device. 4767 */ 4768 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4769 spi = of_register_spi_device(ctlr, rd->dn); 4770 put_device(&ctlr->dev); 4771 4772 if (IS_ERR(spi)) { 4773 pr_err("%s: failed to create for '%pOF'\n", 4774 __func__, rd->dn); 4775 of_node_clear_flag(rd->dn, OF_POPULATED); 4776 return notifier_from_errno(PTR_ERR(spi)); 4777 } 4778 break; 4779 4780 case OF_RECONFIG_CHANGE_REMOVE: 4781 /* Already depopulated? */ 4782 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4783 return NOTIFY_OK; 4784 4785 /* Find our device by node */ 4786 spi = of_find_spi_device_by_node(rd->dn); 4787 if (spi == NULL) 4788 return NOTIFY_OK; /* No? not meant for us */ 4789 4790 /* Unregister takes one ref away */ 4791 spi_unregister_device(spi); 4792 4793 /* And put the reference of the find */ 4794 put_device(&spi->dev); 4795 break; 4796 } 4797 4798 return NOTIFY_OK; 4799 } 4800 4801 static struct notifier_block spi_of_notifier = { 4802 .notifier_call = of_spi_notify, 4803 }; 4804 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4805 extern struct notifier_block spi_of_notifier; 4806 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4807 4808 #if IS_ENABLED(CONFIG_ACPI) 4809 static int spi_acpi_controller_match(struct device *dev, const void *data) 4810 { 4811 return ACPI_COMPANION(dev->parent) == data; 4812 } 4813 4814 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4815 { 4816 struct device *dev; 4817 4818 dev = class_find_device(&spi_master_class, NULL, adev, 4819 spi_acpi_controller_match); 4820 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4821 dev = class_find_device(&spi_slave_class, NULL, adev, 4822 spi_acpi_controller_match); 4823 if (!dev) 4824 return NULL; 4825 4826 return container_of(dev, struct spi_controller, dev); 4827 } 4828 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); 4829 4830 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4831 { 4832 struct device *dev; 4833 4834 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4835 return to_spi_device(dev); 4836 } 4837 4838 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4839 void *arg) 4840 { 4841 struct acpi_device *adev = arg; 4842 struct spi_controller *ctlr; 4843 struct spi_device *spi; 4844 4845 switch (value) { 4846 case ACPI_RECONFIG_DEVICE_ADD: 4847 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4848 if (!ctlr) 4849 break; 4850 4851 acpi_register_spi_device(ctlr, adev); 4852 put_device(&ctlr->dev); 4853 break; 4854 case ACPI_RECONFIG_DEVICE_REMOVE: 4855 if (!acpi_device_enumerated(adev)) 4856 break; 4857 4858 spi = acpi_spi_find_device_by_adev(adev); 4859 if (!spi) 4860 break; 4861 4862 spi_unregister_device(spi); 4863 put_device(&spi->dev); 4864 break; 4865 } 4866 4867 return NOTIFY_OK; 4868 } 4869 4870 static struct notifier_block spi_acpi_notifier = { 4871 .notifier_call = acpi_spi_notify, 4872 }; 4873 #else 4874 extern struct notifier_block spi_acpi_notifier; 4875 #endif 4876 4877 static int __init spi_init(void) 4878 { 4879 int status; 4880 4881 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4882 if (!buf) { 4883 status = -ENOMEM; 4884 goto err0; 4885 } 4886 4887 status = bus_register(&spi_bus_type); 4888 if (status < 0) 4889 goto err1; 4890 4891 status = class_register(&spi_master_class); 4892 if (status < 0) 4893 goto err2; 4894 4895 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4896 status = class_register(&spi_slave_class); 4897 if (status < 0) 4898 goto err3; 4899 } 4900 4901 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4902 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4903 if (IS_ENABLED(CONFIG_ACPI)) 4904 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4905 4906 return 0; 4907 4908 err3: 4909 class_unregister(&spi_master_class); 4910 err2: 4911 bus_unregister(&spi_bus_type); 4912 err1: 4913 kfree(buf); 4914 buf = NULL; 4915 err0: 4916 return status; 4917 } 4918 4919 /* 4920 * A board_info is normally registered in arch_initcall(), 4921 * but even essential drivers wait till later. 4922 * 4923 * REVISIT only boardinfo really needs static linking. The rest (device and 4924 * driver registration) _could_ be dynamically linked (modular) ... Costs 4925 * include needing to have boardinfo data structures be much more public. 4926 */ 4927 postcore_initcall(spi_init); 4928