1 /* 2 * SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * Copyright (C) 2008 Secret Lab Technologies Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/kmod.h> 20 #include <linux/device.h> 21 #include <linux/init.h> 22 #include <linux/cache.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/dmaengine.h> 25 #include <linux/mutex.h> 26 #include <linux/of_device.h> 27 #include <linux/of_irq.h> 28 #include <linux/clk/clk-conf.h> 29 #include <linux/slab.h> 30 #include <linux/mod_devicetable.h> 31 #include <linux/spi/spi.h> 32 #include <linux/of_gpio.h> 33 #include <linux/pm_runtime.h> 34 #include <linux/pm_domain.h> 35 #include <linux/export.h> 36 #include <linux/sched/rt.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/ioport.h> 40 #include <linux/acpi.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/spi.h> 44 45 static void spidev_release(struct device *dev) 46 { 47 struct spi_device *spi = to_spi_device(dev); 48 49 /* spi masters may cleanup for released devices */ 50 if (spi->master->cleanup) 51 spi->master->cleanup(spi); 52 53 spi_master_put(spi->master); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static struct attribute *spi_dev_attrs[] = { 72 &dev_attr_modalias.attr, 73 NULL, 74 }; 75 ATTRIBUTE_GROUPS(spi_dev); 76 77 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 78 * and the sysfs version makes coldplug work too. 79 */ 80 81 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 82 const struct spi_device *sdev) 83 { 84 while (id->name[0]) { 85 if (!strcmp(sdev->modalias, id->name)) 86 return id; 87 id++; 88 } 89 return NULL; 90 } 91 92 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 93 { 94 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 95 96 return spi_match_id(sdrv->id_table, sdev); 97 } 98 EXPORT_SYMBOL_GPL(spi_get_device_id); 99 100 static int spi_match_device(struct device *dev, struct device_driver *drv) 101 { 102 const struct spi_device *spi = to_spi_device(dev); 103 const struct spi_driver *sdrv = to_spi_driver(drv); 104 105 /* Attempt an OF style match */ 106 if (of_driver_match_device(dev, drv)) 107 return 1; 108 109 /* Then try ACPI */ 110 if (acpi_driver_match_device(dev, drv)) 111 return 1; 112 113 if (sdrv->id_table) 114 return !!spi_match_id(sdrv->id_table, spi); 115 116 return strcmp(spi->modalias, drv->name) == 0; 117 } 118 119 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 120 { 121 const struct spi_device *spi = to_spi_device(dev); 122 int rc; 123 124 rc = acpi_device_uevent_modalias(dev, env); 125 if (rc != -ENODEV) 126 return rc; 127 128 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 129 return 0; 130 } 131 132 #ifdef CONFIG_PM_SLEEP 133 static int spi_legacy_suspend(struct device *dev, pm_message_t message) 134 { 135 int value = 0; 136 struct spi_driver *drv = to_spi_driver(dev->driver); 137 138 /* suspend will stop irqs and dma; no more i/o */ 139 if (drv) { 140 if (drv->suspend) 141 value = drv->suspend(to_spi_device(dev), message); 142 else 143 dev_dbg(dev, "... can't suspend\n"); 144 } 145 return value; 146 } 147 148 static int spi_legacy_resume(struct device *dev) 149 { 150 int value = 0; 151 struct spi_driver *drv = to_spi_driver(dev->driver); 152 153 /* resume may restart the i/o queue */ 154 if (drv) { 155 if (drv->resume) 156 value = drv->resume(to_spi_device(dev)); 157 else 158 dev_dbg(dev, "... can't resume\n"); 159 } 160 return value; 161 } 162 163 static int spi_pm_suspend(struct device *dev) 164 { 165 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 166 167 if (pm) 168 return pm_generic_suspend(dev); 169 else 170 return spi_legacy_suspend(dev, PMSG_SUSPEND); 171 } 172 173 static int spi_pm_resume(struct device *dev) 174 { 175 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 176 177 if (pm) 178 return pm_generic_resume(dev); 179 else 180 return spi_legacy_resume(dev); 181 } 182 183 static int spi_pm_freeze(struct device *dev) 184 { 185 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 186 187 if (pm) 188 return pm_generic_freeze(dev); 189 else 190 return spi_legacy_suspend(dev, PMSG_FREEZE); 191 } 192 193 static int spi_pm_thaw(struct device *dev) 194 { 195 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 196 197 if (pm) 198 return pm_generic_thaw(dev); 199 else 200 return spi_legacy_resume(dev); 201 } 202 203 static int spi_pm_poweroff(struct device *dev) 204 { 205 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 206 207 if (pm) 208 return pm_generic_poweroff(dev); 209 else 210 return spi_legacy_suspend(dev, PMSG_HIBERNATE); 211 } 212 213 static int spi_pm_restore(struct device *dev) 214 { 215 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 216 217 if (pm) 218 return pm_generic_restore(dev); 219 else 220 return spi_legacy_resume(dev); 221 } 222 #else 223 #define spi_pm_suspend NULL 224 #define spi_pm_resume NULL 225 #define spi_pm_freeze NULL 226 #define spi_pm_thaw NULL 227 #define spi_pm_poweroff NULL 228 #define spi_pm_restore NULL 229 #endif 230 231 static const struct dev_pm_ops spi_pm = { 232 .suspend = spi_pm_suspend, 233 .resume = spi_pm_resume, 234 .freeze = spi_pm_freeze, 235 .thaw = spi_pm_thaw, 236 .poweroff = spi_pm_poweroff, 237 .restore = spi_pm_restore, 238 SET_RUNTIME_PM_OPS( 239 pm_generic_runtime_suspend, 240 pm_generic_runtime_resume, 241 NULL 242 ) 243 }; 244 245 struct bus_type spi_bus_type = { 246 .name = "spi", 247 .dev_groups = spi_dev_groups, 248 .match = spi_match_device, 249 .uevent = spi_uevent, 250 .pm = &spi_pm, 251 }; 252 EXPORT_SYMBOL_GPL(spi_bus_type); 253 254 255 static int spi_drv_probe(struct device *dev) 256 { 257 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 258 int ret; 259 260 ret = of_clk_set_defaults(dev->of_node, false); 261 if (ret) 262 return ret; 263 264 ret = dev_pm_domain_attach(dev, true); 265 if (ret != -EPROBE_DEFER) { 266 ret = sdrv->probe(to_spi_device(dev)); 267 if (ret) 268 dev_pm_domain_detach(dev, true); 269 } 270 271 return ret; 272 } 273 274 static int spi_drv_remove(struct device *dev) 275 { 276 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 277 int ret; 278 279 ret = sdrv->remove(to_spi_device(dev)); 280 dev_pm_domain_detach(dev, true); 281 282 return ret; 283 } 284 285 static void spi_drv_shutdown(struct device *dev) 286 { 287 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 288 289 sdrv->shutdown(to_spi_device(dev)); 290 } 291 292 /** 293 * spi_register_driver - register a SPI driver 294 * @sdrv: the driver to register 295 * Context: can sleep 296 */ 297 int spi_register_driver(struct spi_driver *sdrv) 298 { 299 sdrv->driver.bus = &spi_bus_type; 300 if (sdrv->probe) 301 sdrv->driver.probe = spi_drv_probe; 302 if (sdrv->remove) 303 sdrv->driver.remove = spi_drv_remove; 304 if (sdrv->shutdown) 305 sdrv->driver.shutdown = spi_drv_shutdown; 306 return driver_register(&sdrv->driver); 307 } 308 EXPORT_SYMBOL_GPL(spi_register_driver); 309 310 /*-------------------------------------------------------------------------*/ 311 312 /* SPI devices should normally not be created by SPI device drivers; that 313 * would make them board-specific. Similarly with SPI master drivers. 314 * Device registration normally goes into like arch/.../mach.../board-YYY.c 315 * with other readonly (flashable) information about mainboard devices. 316 */ 317 318 struct boardinfo { 319 struct list_head list; 320 struct spi_board_info board_info; 321 }; 322 323 static LIST_HEAD(board_list); 324 static LIST_HEAD(spi_master_list); 325 326 /* 327 * Used to protect add/del opertion for board_info list and 328 * spi_master list, and their matching process 329 */ 330 static DEFINE_MUTEX(board_lock); 331 332 /** 333 * spi_alloc_device - Allocate a new SPI device 334 * @master: Controller to which device is connected 335 * Context: can sleep 336 * 337 * Allows a driver to allocate and initialize a spi_device without 338 * registering it immediately. This allows a driver to directly 339 * fill the spi_device with device parameters before calling 340 * spi_add_device() on it. 341 * 342 * Caller is responsible to call spi_add_device() on the returned 343 * spi_device structure to add it to the SPI master. If the caller 344 * needs to discard the spi_device without adding it, then it should 345 * call spi_dev_put() on it. 346 * 347 * Returns a pointer to the new device, or NULL. 348 */ 349 struct spi_device *spi_alloc_device(struct spi_master *master) 350 { 351 struct spi_device *spi; 352 353 if (!spi_master_get(master)) 354 return NULL; 355 356 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 357 if (!spi) { 358 spi_master_put(master); 359 return NULL; 360 } 361 362 spi->master = master; 363 spi->dev.parent = &master->dev; 364 spi->dev.bus = &spi_bus_type; 365 spi->dev.release = spidev_release; 366 spi->cs_gpio = -ENOENT; 367 device_initialize(&spi->dev); 368 return spi; 369 } 370 EXPORT_SYMBOL_GPL(spi_alloc_device); 371 372 static void spi_dev_set_name(struct spi_device *spi) 373 { 374 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 375 376 if (adev) { 377 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 378 return; 379 } 380 381 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 382 spi->chip_select); 383 } 384 385 static int spi_dev_check(struct device *dev, void *data) 386 { 387 struct spi_device *spi = to_spi_device(dev); 388 struct spi_device *new_spi = data; 389 390 if (spi->master == new_spi->master && 391 spi->chip_select == new_spi->chip_select) 392 return -EBUSY; 393 return 0; 394 } 395 396 /** 397 * spi_add_device - Add spi_device allocated with spi_alloc_device 398 * @spi: spi_device to register 399 * 400 * Companion function to spi_alloc_device. Devices allocated with 401 * spi_alloc_device can be added onto the spi bus with this function. 402 * 403 * Returns 0 on success; negative errno on failure 404 */ 405 int spi_add_device(struct spi_device *spi) 406 { 407 static DEFINE_MUTEX(spi_add_lock); 408 struct spi_master *master = spi->master; 409 struct device *dev = master->dev.parent; 410 int status; 411 412 /* Chipselects are numbered 0..max; validate. */ 413 if (spi->chip_select >= master->num_chipselect) { 414 dev_err(dev, "cs%d >= max %d\n", 415 spi->chip_select, 416 master->num_chipselect); 417 return -EINVAL; 418 } 419 420 /* Set the bus ID string */ 421 spi_dev_set_name(spi); 422 423 /* We need to make sure there's no other device with this 424 * chipselect **BEFORE** we call setup(), else we'll trash 425 * its configuration. Lock against concurrent add() calls. 426 */ 427 mutex_lock(&spi_add_lock); 428 429 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 430 if (status) { 431 dev_err(dev, "chipselect %d already in use\n", 432 spi->chip_select); 433 goto done; 434 } 435 436 if (master->cs_gpios) 437 spi->cs_gpio = master->cs_gpios[spi->chip_select]; 438 439 /* Drivers may modify this initial i/o setup, but will 440 * normally rely on the device being setup. Devices 441 * using SPI_CS_HIGH can't coexist well otherwise... 442 */ 443 status = spi_setup(spi); 444 if (status < 0) { 445 dev_err(dev, "can't setup %s, status %d\n", 446 dev_name(&spi->dev), status); 447 goto done; 448 } 449 450 /* Device may be bound to an active driver when this returns */ 451 status = device_add(&spi->dev); 452 if (status < 0) 453 dev_err(dev, "can't add %s, status %d\n", 454 dev_name(&spi->dev), status); 455 else 456 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 457 458 done: 459 mutex_unlock(&spi_add_lock); 460 return status; 461 } 462 EXPORT_SYMBOL_GPL(spi_add_device); 463 464 /** 465 * spi_new_device - instantiate one new SPI device 466 * @master: Controller to which device is connected 467 * @chip: Describes the SPI device 468 * Context: can sleep 469 * 470 * On typical mainboards, this is purely internal; and it's not needed 471 * after board init creates the hard-wired devices. Some development 472 * platforms may not be able to use spi_register_board_info though, and 473 * this is exported so that for example a USB or parport based adapter 474 * driver could add devices (which it would learn about out-of-band). 475 * 476 * Returns the new device, or NULL. 477 */ 478 struct spi_device *spi_new_device(struct spi_master *master, 479 struct spi_board_info *chip) 480 { 481 struct spi_device *proxy; 482 int status; 483 484 /* NOTE: caller did any chip->bus_num checks necessary. 485 * 486 * Also, unless we change the return value convention to use 487 * error-or-pointer (not NULL-or-pointer), troubleshootability 488 * suggests syslogged diagnostics are best here (ugh). 489 */ 490 491 proxy = spi_alloc_device(master); 492 if (!proxy) 493 return NULL; 494 495 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 496 497 proxy->chip_select = chip->chip_select; 498 proxy->max_speed_hz = chip->max_speed_hz; 499 proxy->mode = chip->mode; 500 proxy->irq = chip->irq; 501 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 502 proxy->dev.platform_data = (void *) chip->platform_data; 503 proxy->controller_data = chip->controller_data; 504 proxy->controller_state = NULL; 505 506 status = spi_add_device(proxy); 507 if (status < 0) { 508 spi_dev_put(proxy); 509 return NULL; 510 } 511 512 return proxy; 513 } 514 EXPORT_SYMBOL_GPL(spi_new_device); 515 516 static void spi_match_master_to_boardinfo(struct spi_master *master, 517 struct spi_board_info *bi) 518 { 519 struct spi_device *dev; 520 521 if (master->bus_num != bi->bus_num) 522 return; 523 524 dev = spi_new_device(master, bi); 525 if (!dev) 526 dev_err(master->dev.parent, "can't create new device for %s\n", 527 bi->modalias); 528 } 529 530 /** 531 * spi_register_board_info - register SPI devices for a given board 532 * @info: array of chip descriptors 533 * @n: how many descriptors are provided 534 * Context: can sleep 535 * 536 * Board-specific early init code calls this (probably during arch_initcall) 537 * with segments of the SPI device table. Any device nodes are created later, 538 * after the relevant parent SPI controller (bus_num) is defined. We keep 539 * this table of devices forever, so that reloading a controller driver will 540 * not make Linux forget about these hard-wired devices. 541 * 542 * Other code can also call this, e.g. a particular add-on board might provide 543 * SPI devices through its expansion connector, so code initializing that board 544 * would naturally declare its SPI devices. 545 * 546 * The board info passed can safely be __initdata ... but be careful of 547 * any embedded pointers (platform_data, etc), they're copied as-is. 548 */ 549 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 550 { 551 struct boardinfo *bi; 552 int i; 553 554 if (!n) 555 return -EINVAL; 556 557 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL); 558 if (!bi) 559 return -ENOMEM; 560 561 for (i = 0; i < n; i++, bi++, info++) { 562 struct spi_master *master; 563 564 memcpy(&bi->board_info, info, sizeof(*info)); 565 mutex_lock(&board_lock); 566 list_add_tail(&bi->list, &board_list); 567 list_for_each_entry(master, &spi_master_list, list) 568 spi_match_master_to_boardinfo(master, &bi->board_info); 569 mutex_unlock(&board_lock); 570 } 571 572 return 0; 573 } 574 575 /*-------------------------------------------------------------------------*/ 576 577 static void spi_set_cs(struct spi_device *spi, bool enable) 578 { 579 if (spi->mode & SPI_CS_HIGH) 580 enable = !enable; 581 582 if (spi->cs_gpio >= 0) 583 gpio_set_value(spi->cs_gpio, !enable); 584 else if (spi->master->set_cs) 585 spi->master->set_cs(spi, !enable); 586 } 587 588 #ifdef CONFIG_HAS_DMA 589 static int spi_map_buf(struct spi_master *master, struct device *dev, 590 struct sg_table *sgt, void *buf, size_t len, 591 enum dma_data_direction dir) 592 { 593 const bool vmalloced_buf = is_vmalloc_addr(buf); 594 const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len; 595 const int sgs = DIV_ROUND_UP(len, desc_len); 596 struct page *vm_page; 597 void *sg_buf; 598 size_t min; 599 int i, ret; 600 601 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 602 if (ret != 0) 603 return ret; 604 605 for (i = 0; i < sgs; i++) { 606 min = min_t(size_t, len, desc_len); 607 608 if (vmalloced_buf) { 609 vm_page = vmalloc_to_page(buf); 610 if (!vm_page) { 611 sg_free_table(sgt); 612 return -ENOMEM; 613 } 614 sg_set_page(&sgt->sgl[i], vm_page, 615 min, offset_in_page(buf)); 616 } else { 617 sg_buf = buf; 618 sg_set_buf(&sgt->sgl[i], sg_buf, min); 619 } 620 621 622 buf += min; 623 len -= min; 624 } 625 626 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir); 627 if (!ret) 628 ret = -ENOMEM; 629 if (ret < 0) { 630 sg_free_table(sgt); 631 return ret; 632 } 633 634 sgt->nents = ret; 635 636 return 0; 637 } 638 639 static void spi_unmap_buf(struct spi_master *master, struct device *dev, 640 struct sg_table *sgt, enum dma_data_direction dir) 641 { 642 if (sgt->orig_nents) { 643 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir); 644 sg_free_table(sgt); 645 } 646 } 647 648 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg) 649 { 650 struct device *tx_dev, *rx_dev; 651 struct spi_transfer *xfer; 652 int ret; 653 654 if (!master->can_dma) 655 return 0; 656 657 tx_dev = master->dma_tx->device->dev; 658 rx_dev = master->dma_rx->device->dev; 659 660 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 661 if (!master->can_dma(master, msg->spi, xfer)) 662 continue; 663 664 if (xfer->tx_buf != NULL) { 665 ret = spi_map_buf(master, tx_dev, &xfer->tx_sg, 666 (void *)xfer->tx_buf, xfer->len, 667 DMA_TO_DEVICE); 668 if (ret != 0) 669 return ret; 670 } 671 672 if (xfer->rx_buf != NULL) { 673 ret = spi_map_buf(master, rx_dev, &xfer->rx_sg, 674 xfer->rx_buf, xfer->len, 675 DMA_FROM_DEVICE); 676 if (ret != 0) { 677 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, 678 DMA_TO_DEVICE); 679 return ret; 680 } 681 } 682 } 683 684 master->cur_msg_mapped = true; 685 686 return 0; 687 } 688 689 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg) 690 { 691 struct spi_transfer *xfer; 692 struct device *tx_dev, *rx_dev; 693 694 if (!master->cur_msg_mapped || !master->can_dma) 695 return 0; 696 697 tx_dev = master->dma_tx->device->dev; 698 rx_dev = master->dma_rx->device->dev; 699 700 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 701 if (!master->can_dma(master, msg->spi, xfer)) 702 continue; 703 704 spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 705 spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 706 } 707 708 return 0; 709 } 710 #else /* !CONFIG_HAS_DMA */ 711 static inline int __spi_map_msg(struct spi_master *master, 712 struct spi_message *msg) 713 { 714 return 0; 715 } 716 717 static inline int spi_unmap_msg(struct spi_master *master, 718 struct spi_message *msg) 719 { 720 return 0; 721 } 722 #endif /* !CONFIG_HAS_DMA */ 723 724 static int spi_map_msg(struct spi_master *master, struct spi_message *msg) 725 { 726 struct spi_transfer *xfer; 727 void *tmp; 728 unsigned int max_tx, max_rx; 729 730 if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) { 731 max_tx = 0; 732 max_rx = 0; 733 734 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 735 if ((master->flags & SPI_MASTER_MUST_TX) && 736 !xfer->tx_buf) 737 max_tx = max(xfer->len, max_tx); 738 if ((master->flags & SPI_MASTER_MUST_RX) && 739 !xfer->rx_buf) 740 max_rx = max(xfer->len, max_rx); 741 } 742 743 if (max_tx) { 744 tmp = krealloc(master->dummy_tx, max_tx, 745 GFP_KERNEL | GFP_DMA); 746 if (!tmp) 747 return -ENOMEM; 748 master->dummy_tx = tmp; 749 memset(tmp, 0, max_tx); 750 } 751 752 if (max_rx) { 753 tmp = krealloc(master->dummy_rx, max_rx, 754 GFP_KERNEL | GFP_DMA); 755 if (!tmp) 756 return -ENOMEM; 757 master->dummy_rx = tmp; 758 } 759 760 if (max_tx || max_rx) { 761 list_for_each_entry(xfer, &msg->transfers, 762 transfer_list) { 763 if (!xfer->tx_buf) 764 xfer->tx_buf = master->dummy_tx; 765 if (!xfer->rx_buf) 766 xfer->rx_buf = master->dummy_rx; 767 } 768 } 769 } 770 771 return __spi_map_msg(master, msg); 772 } 773 774 /* 775 * spi_transfer_one_message - Default implementation of transfer_one_message() 776 * 777 * This is a standard implementation of transfer_one_message() for 778 * drivers which impelment a transfer_one() operation. It provides 779 * standard handling of delays and chip select management. 780 */ 781 static int spi_transfer_one_message(struct spi_master *master, 782 struct spi_message *msg) 783 { 784 struct spi_transfer *xfer; 785 bool keep_cs = false; 786 int ret = 0; 787 unsigned long ms = 1; 788 789 spi_set_cs(msg->spi, true); 790 791 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 792 trace_spi_transfer_start(msg, xfer); 793 794 if (xfer->tx_buf || xfer->rx_buf) { 795 reinit_completion(&master->xfer_completion); 796 797 ret = master->transfer_one(master, msg->spi, xfer); 798 if (ret < 0) { 799 dev_err(&msg->spi->dev, 800 "SPI transfer failed: %d\n", ret); 801 goto out; 802 } 803 804 if (ret > 0) { 805 ret = 0; 806 ms = xfer->len * 8 * 1000 / xfer->speed_hz; 807 ms += ms + 100; /* some tolerance */ 808 809 ms = wait_for_completion_timeout(&master->xfer_completion, 810 msecs_to_jiffies(ms)); 811 } 812 813 if (ms == 0) { 814 dev_err(&msg->spi->dev, 815 "SPI transfer timed out\n"); 816 msg->status = -ETIMEDOUT; 817 } 818 } else { 819 if (xfer->len) 820 dev_err(&msg->spi->dev, 821 "Bufferless transfer has length %u\n", 822 xfer->len); 823 } 824 825 trace_spi_transfer_stop(msg, xfer); 826 827 if (msg->status != -EINPROGRESS) 828 goto out; 829 830 if (xfer->delay_usecs) 831 udelay(xfer->delay_usecs); 832 833 if (xfer->cs_change) { 834 if (list_is_last(&xfer->transfer_list, 835 &msg->transfers)) { 836 keep_cs = true; 837 } else { 838 spi_set_cs(msg->spi, false); 839 udelay(10); 840 spi_set_cs(msg->spi, true); 841 } 842 } 843 844 msg->actual_length += xfer->len; 845 } 846 847 out: 848 if (ret != 0 || !keep_cs) 849 spi_set_cs(msg->spi, false); 850 851 if (msg->status == -EINPROGRESS) 852 msg->status = ret; 853 854 spi_finalize_current_message(master); 855 856 return ret; 857 } 858 859 /** 860 * spi_finalize_current_transfer - report completion of a transfer 861 * @master: the master reporting completion 862 * 863 * Called by SPI drivers using the core transfer_one_message() 864 * implementation to notify it that the current interrupt driven 865 * transfer has finished and the next one may be scheduled. 866 */ 867 void spi_finalize_current_transfer(struct spi_master *master) 868 { 869 complete(&master->xfer_completion); 870 } 871 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 872 873 /** 874 * __spi_pump_messages - function which processes spi message queue 875 * @master: master to process queue for 876 * @in_kthread: true if we are in the context of the message pump thread 877 * 878 * This function checks if there is any spi message in the queue that 879 * needs processing and if so call out to the driver to initialize hardware 880 * and transfer each message. 881 * 882 * Note that it is called both from the kthread itself and also from 883 * inside spi_sync(); the queue extraction handling at the top of the 884 * function should deal with this safely. 885 */ 886 static void __spi_pump_messages(struct spi_master *master, bool in_kthread) 887 { 888 unsigned long flags; 889 bool was_busy = false; 890 int ret; 891 892 /* Lock queue */ 893 spin_lock_irqsave(&master->queue_lock, flags); 894 895 /* Make sure we are not already running a message */ 896 if (master->cur_msg) { 897 spin_unlock_irqrestore(&master->queue_lock, flags); 898 return; 899 } 900 901 /* If another context is idling the device then defer */ 902 if (master->idling) { 903 queue_kthread_work(&master->kworker, &master->pump_messages); 904 spin_unlock_irqrestore(&master->queue_lock, flags); 905 return; 906 } 907 908 /* Check if the queue is idle */ 909 if (list_empty(&master->queue) || !master->running) { 910 if (!master->busy) { 911 spin_unlock_irqrestore(&master->queue_lock, flags); 912 return; 913 } 914 915 /* Only do teardown in the thread */ 916 if (!in_kthread) { 917 queue_kthread_work(&master->kworker, 918 &master->pump_messages); 919 spin_unlock_irqrestore(&master->queue_lock, flags); 920 return; 921 } 922 923 master->busy = false; 924 master->idling = true; 925 spin_unlock_irqrestore(&master->queue_lock, flags); 926 927 kfree(master->dummy_rx); 928 master->dummy_rx = NULL; 929 kfree(master->dummy_tx); 930 master->dummy_tx = NULL; 931 if (master->unprepare_transfer_hardware && 932 master->unprepare_transfer_hardware(master)) 933 dev_err(&master->dev, 934 "failed to unprepare transfer hardware\n"); 935 if (master->auto_runtime_pm) { 936 pm_runtime_mark_last_busy(master->dev.parent); 937 pm_runtime_put_autosuspend(master->dev.parent); 938 } 939 trace_spi_master_idle(master); 940 941 spin_lock_irqsave(&master->queue_lock, flags); 942 master->idling = false; 943 spin_unlock_irqrestore(&master->queue_lock, flags); 944 return; 945 } 946 947 /* Extract head of queue */ 948 master->cur_msg = 949 list_first_entry(&master->queue, struct spi_message, queue); 950 951 list_del_init(&master->cur_msg->queue); 952 if (master->busy) 953 was_busy = true; 954 else 955 master->busy = true; 956 spin_unlock_irqrestore(&master->queue_lock, flags); 957 958 if (!was_busy && master->auto_runtime_pm) { 959 ret = pm_runtime_get_sync(master->dev.parent); 960 if (ret < 0) { 961 dev_err(&master->dev, "Failed to power device: %d\n", 962 ret); 963 return; 964 } 965 } 966 967 if (!was_busy) 968 trace_spi_master_busy(master); 969 970 if (!was_busy && master->prepare_transfer_hardware) { 971 ret = master->prepare_transfer_hardware(master); 972 if (ret) { 973 dev_err(&master->dev, 974 "failed to prepare transfer hardware\n"); 975 976 if (master->auto_runtime_pm) 977 pm_runtime_put(master->dev.parent); 978 return; 979 } 980 } 981 982 trace_spi_message_start(master->cur_msg); 983 984 if (master->prepare_message) { 985 ret = master->prepare_message(master, master->cur_msg); 986 if (ret) { 987 dev_err(&master->dev, 988 "failed to prepare message: %d\n", ret); 989 master->cur_msg->status = ret; 990 spi_finalize_current_message(master); 991 return; 992 } 993 master->cur_msg_prepared = true; 994 } 995 996 ret = spi_map_msg(master, master->cur_msg); 997 if (ret) { 998 master->cur_msg->status = ret; 999 spi_finalize_current_message(master); 1000 return; 1001 } 1002 1003 ret = master->transfer_one_message(master, master->cur_msg); 1004 if (ret) { 1005 dev_err(&master->dev, 1006 "failed to transfer one message from queue\n"); 1007 return; 1008 } 1009 } 1010 1011 /** 1012 * spi_pump_messages - kthread work function which processes spi message queue 1013 * @work: pointer to kthread work struct contained in the master struct 1014 */ 1015 static void spi_pump_messages(struct kthread_work *work) 1016 { 1017 struct spi_master *master = 1018 container_of(work, struct spi_master, pump_messages); 1019 1020 __spi_pump_messages(master, true); 1021 } 1022 1023 static int spi_init_queue(struct spi_master *master) 1024 { 1025 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 1026 1027 master->running = false; 1028 master->busy = false; 1029 1030 init_kthread_worker(&master->kworker); 1031 master->kworker_task = kthread_run(kthread_worker_fn, 1032 &master->kworker, "%s", 1033 dev_name(&master->dev)); 1034 if (IS_ERR(master->kworker_task)) { 1035 dev_err(&master->dev, "failed to create message pump task\n"); 1036 return PTR_ERR(master->kworker_task); 1037 } 1038 init_kthread_work(&master->pump_messages, spi_pump_messages); 1039 1040 /* 1041 * Master config will indicate if this controller should run the 1042 * message pump with high (realtime) priority to reduce the transfer 1043 * latency on the bus by minimising the delay between a transfer 1044 * request and the scheduling of the message pump thread. Without this 1045 * setting the message pump thread will remain at default priority. 1046 */ 1047 if (master->rt) { 1048 dev_info(&master->dev, 1049 "will run message pump with realtime priority\n"); 1050 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m); 1051 } 1052 1053 return 0; 1054 } 1055 1056 /** 1057 * spi_get_next_queued_message() - called by driver to check for queued 1058 * messages 1059 * @master: the master to check for queued messages 1060 * 1061 * If there are more messages in the queue, the next message is returned from 1062 * this call. 1063 */ 1064 struct spi_message *spi_get_next_queued_message(struct spi_master *master) 1065 { 1066 struct spi_message *next; 1067 unsigned long flags; 1068 1069 /* get a pointer to the next message, if any */ 1070 spin_lock_irqsave(&master->queue_lock, flags); 1071 next = list_first_entry_or_null(&master->queue, struct spi_message, 1072 queue); 1073 spin_unlock_irqrestore(&master->queue_lock, flags); 1074 1075 return next; 1076 } 1077 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 1078 1079 /** 1080 * spi_finalize_current_message() - the current message is complete 1081 * @master: the master to return the message to 1082 * 1083 * Called by the driver to notify the core that the message in the front of the 1084 * queue is complete and can be removed from the queue. 1085 */ 1086 void spi_finalize_current_message(struct spi_master *master) 1087 { 1088 struct spi_message *mesg; 1089 unsigned long flags; 1090 int ret; 1091 1092 spin_lock_irqsave(&master->queue_lock, flags); 1093 mesg = master->cur_msg; 1094 master->cur_msg = NULL; 1095 1096 queue_kthread_work(&master->kworker, &master->pump_messages); 1097 spin_unlock_irqrestore(&master->queue_lock, flags); 1098 1099 spi_unmap_msg(master, mesg); 1100 1101 if (master->cur_msg_prepared && master->unprepare_message) { 1102 ret = master->unprepare_message(master, mesg); 1103 if (ret) { 1104 dev_err(&master->dev, 1105 "failed to unprepare message: %d\n", ret); 1106 } 1107 } 1108 1109 trace_spi_message_done(mesg); 1110 1111 master->cur_msg_prepared = false; 1112 1113 mesg->state = NULL; 1114 if (mesg->complete) 1115 mesg->complete(mesg->context); 1116 } 1117 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 1118 1119 static int spi_start_queue(struct spi_master *master) 1120 { 1121 unsigned long flags; 1122 1123 spin_lock_irqsave(&master->queue_lock, flags); 1124 1125 if (master->running || master->busy) { 1126 spin_unlock_irqrestore(&master->queue_lock, flags); 1127 return -EBUSY; 1128 } 1129 1130 master->running = true; 1131 master->cur_msg = NULL; 1132 spin_unlock_irqrestore(&master->queue_lock, flags); 1133 1134 queue_kthread_work(&master->kworker, &master->pump_messages); 1135 1136 return 0; 1137 } 1138 1139 static int spi_stop_queue(struct spi_master *master) 1140 { 1141 unsigned long flags; 1142 unsigned limit = 500; 1143 int ret = 0; 1144 1145 spin_lock_irqsave(&master->queue_lock, flags); 1146 1147 /* 1148 * This is a bit lame, but is optimized for the common execution path. 1149 * A wait_queue on the master->busy could be used, but then the common 1150 * execution path (pump_messages) would be required to call wake_up or 1151 * friends on every SPI message. Do this instead. 1152 */ 1153 while ((!list_empty(&master->queue) || master->busy) && limit--) { 1154 spin_unlock_irqrestore(&master->queue_lock, flags); 1155 usleep_range(10000, 11000); 1156 spin_lock_irqsave(&master->queue_lock, flags); 1157 } 1158 1159 if (!list_empty(&master->queue) || master->busy) 1160 ret = -EBUSY; 1161 else 1162 master->running = false; 1163 1164 spin_unlock_irqrestore(&master->queue_lock, flags); 1165 1166 if (ret) { 1167 dev_warn(&master->dev, 1168 "could not stop message queue\n"); 1169 return ret; 1170 } 1171 return ret; 1172 } 1173 1174 static int spi_destroy_queue(struct spi_master *master) 1175 { 1176 int ret; 1177 1178 ret = spi_stop_queue(master); 1179 1180 /* 1181 * flush_kthread_worker will block until all work is done. 1182 * If the reason that stop_queue timed out is that the work will never 1183 * finish, then it does no good to call flush/stop thread, so 1184 * return anyway. 1185 */ 1186 if (ret) { 1187 dev_err(&master->dev, "problem destroying queue\n"); 1188 return ret; 1189 } 1190 1191 flush_kthread_worker(&master->kworker); 1192 kthread_stop(master->kworker_task); 1193 1194 return 0; 1195 } 1196 1197 static int __spi_queued_transfer(struct spi_device *spi, 1198 struct spi_message *msg, 1199 bool need_pump) 1200 { 1201 struct spi_master *master = spi->master; 1202 unsigned long flags; 1203 1204 spin_lock_irqsave(&master->queue_lock, flags); 1205 1206 if (!master->running) { 1207 spin_unlock_irqrestore(&master->queue_lock, flags); 1208 return -ESHUTDOWN; 1209 } 1210 msg->actual_length = 0; 1211 msg->status = -EINPROGRESS; 1212 1213 list_add_tail(&msg->queue, &master->queue); 1214 if (!master->busy && need_pump) 1215 queue_kthread_work(&master->kworker, &master->pump_messages); 1216 1217 spin_unlock_irqrestore(&master->queue_lock, flags); 1218 return 0; 1219 } 1220 1221 /** 1222 * spi_queued_transfer - transfer function for queued transfers 1223 * @spi: spi device which is requesting transfer 1224 * @msg: spi message which is to handled is queued to driver queue 1225 */ 1226 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 1227 { 1228 return __spi_queued_transfer(spi, msg, true); 1229 } 1230 1231 static int spi_master_initialize_queue(struct spi_master *master) 1232 { 1233 int ret; 1234 1235 master->transfer = spi_queued_transfer; 1236 if (!master->transfer_one_message) 1237 master->transfer_one_message = spi_transfer_one_message; 1238 1239 /* Initialize and start queue */ 1240 ret = spi_init_queue(master); 1241 if (ret) { 1242 dev_err(&master->dev, "problem initializing queue\n"); 1243 goto err_init_queue; 1244 } 1245 master->queued = true; 1246 ret = spi_start_queue(master); 1247 if (ret) { 1248 dev_err(&master->dev, "problem starting queue\n"); 1249 goto err_start_queue; 1250 } 1251 1252 return 0; 1253 1254 err_start_queue: 1255 spi_destroy_queue(master); 1256 err_init_queue: 1257 return ret; 1258 } 1259 1260 /*-------------------------------------------------------------------------*/ 1261 1262 #if defined(CONFIG_OF) 1263 static struct spi_device * 1264 of_register_spi_device(struct spi_master *master, struct device_node *nc) 1265 { 1266 struct spi_device *spi; 1267 int rc; 1268 u32 value; 1269 1270 /* Alloc an spi_device */ 1271 spi = spi_alloc_device(master); 1272 if (!spi) { 1273 dev_err(&master->dev, "spi_device alloc error for %s\n", 1274 nc->full_name); 1275 rc = -ENOMEM; 1276 goto err_out; 1277 } 1278 1279 /* Select device driver */ 1280 rc = of_modalias_node(nc, spi->modalias, 1281 sizeof(spi->modalias)); 1282 if (rc < 0) { 1283 dev_err(&master->dev, "cannot find modalias for %s\n", 1284 nc->full_name); 1285 goto err_out; 1286 } 1287 1288 /* Device address */ 1289 rc = of_property_read_u32(nc, "reg", &value); 1290 if (rc) { 1291 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n", 1292 nc->full_name, rc); 1293 goto err_out; 1294 } 1295 spi->chip_select = value; 1296 1297 /* Mode (clock phase/polarity/etc.) */ 1298 if (of_find_property(nc, "spi-cpha", NULL)) 1299 spi->mode |= SPI_CPHA; 1300 if (of_find_property(nc, "spi-cpol", NULL)) 1301 spi->mode |= SPI_CPOL; 1302 if (of_find_property(nc, "spi-cs-high", NULL)) 1303 spi->mode |= SPI_CS_HIGH; 1304 if (of_find_property(nc, "spi-3wire", NULL)) 1305 spi->mode |= SPI_3WIRE; 1306 if (of_find_property(nc, "spi-lsb-first", NULL)) 1307 spi->mode |= SPI_LSB_FIRST; 1308 1309 /* Device DUAL/QUAD mode */ 1310 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1311 switch (value) { 1312 case 1: 1313 break; 1314 case 2: 1315 spi->mode |= SPI_TX_DUAL; 1316 break; 1317 case 4: 1318 spi->mode |= SPI_TX_QUAD; 1319 break; 1320 default: 1321 dev_warn(&master->dev, 1322 "spi-tx-bus-width %d not supported\n", 1323 value); 1324 break; 1325 } 1326 } 1327 1328 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1329 switch (value) { 1330 case 1: 1331 break; 1332 case 2: 1333 spi->mode |= SPI_RX_DUAL; 1334 break; 1335 case 4: 1336 spi->mode |= SPI_RX_QUAD; 1337 break; 1338 default: 1339 dev_warn(&master->dev, 1340 "spi-rx-bus-width %d not supported\n", 1341 value); 1342 break; 1343 } 1344 } 1345 1346 /* Device speed */ 1347 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1348 if (rc) { 1349 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n", 1350 nc->full_name, rc); 1351 goto err_out; 1352 } 1353 spi->max_speed_hz = value; 1354 1355 /* IRQ */ 1356 spi->irq = irq_of_parse_and_map(nc, 0); 1357 1358 /* Store a pointer to the node in the device structure */ 1359 of_node_get(nc); 1360 spi->dev.of_node = nc; 1361 1362 /* Register the new device */ 1363 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias); 1364 rc = spi_add_device(spi); 1365 if (rc) { 1366 dev_err(&master->dev, "spi_device register error %s\n", 1367 nc->full_name); 1368 goto err_out; 1369 } 1370 1371 return spi; 1372 1373 err_out: 1374 spi_dev_put(spi); 1375 return ERR_PTR(rc); 1376 } 1377 1378 /** 1379 * of_register_spi_devices() - Register child devices onto the SPI bus 1380 * @master: Pointer to spi_master device 1381 * 1382 * Registers an spi_device for each child node of master node which has a 'reg' 1383 * property. 1384 */ 1385 static void of_register_spi_devices(struct spi_master *master) 1386 { 1387 struct spi_device *spi; 1388 struct device_node *nc; 1389 1390 if (!master->dev.of_node) 1391 return; 1392 1393 for_each_available_child_of_node(master->dev.of_node, nc) { 1394 spi = of_register_spi_device(master, nc); 1395 if (IS_ERR(spi)) 1396 dev_warn(&master->dev, "Failed to create SPI device for %s\n", 1397 nc->full_name); 1398 } 1399 } 1400 #else 1401 static void of_register_spi_devices(struct spi_master *master) { } 1402 #endif 1403 1404 #ifdef CONFIG_ACPI 1405 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 1406 { 1407 struct spi_device *spi = data; 1408 1409 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 1410 struct acpi_resource_spi_serialbus *sb; 1411 1412 sb = &ares->data.spi_serial_bus; 1413 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 1414 spi->chip_select = sb->device_selection; 1415 spi->max_speed_hz = sb->connection_speed; 1416 1417 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 1418 spi->mode |= SPI_CPHA; 1419 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 1420 spi->mode |= SPI_CPOL; 1421 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 1422 spi->mode |= SPI_CS_HIGH; 1423 } 1424 } else if (spi->irq < 0) { 1425 struct resource r; 1426 1427 if (acpi_dev_resource_interrupt(ares, 0, &r)) 1428 spi->irq = r.start; 1429 } 1430 1431 /* Always tell the ACPI core to skip this resource */ 1432 return 1; 1433 } 1434 1435 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 1436 void *data, void **return_value) 1437 { 1438 struct spi_master *master = data; 1439 struct list_head resource_list; 1440 struct acpi_device *adev; 1441 struct spi_device *spi; 1442 int ret; 1443 1444 if (acpi_bus_get_device(handle, &adev)) 1445 return AE_OK; 1446 if (acpi_bus_get_status(adev) || !adev->status.present) 1447 return AE_OK; 1448 1449 spi = spi_alloc_device(master); 1450 if (!spi) { 1451 dev_err(&master->dev, "failed to allocate SPI device for %s\n", 1452 dev_name(&adev->dev)); 1453 return AE_NO_MEMORY; 1454 } 1455 1456 ACPI_COMPANION_SET(&spi->dev, adev); 1457 spi->irq = -1; 1458 1459 INIT_LIST_HEAD(&resource_list); 1460 ret = acpi_dev_get_resources(adev, &resource_list, 1461 acpi_spi_add_resource, spi); 1462 acpi_dev_free_resource_list(&resource_list); 1463 1464 if (ret < 0 || !spi->max_speed_hz) { 1465 spi_dev_put(spi); 1466 return AE_OK; 1467 } 1468 1469 adev->power.flags.ignore_parent = true; 1470 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias)); 1471 if (spi_add_device(spi)) { 1472 adev->power.flags.ignore_parent = false; 1473 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n", 1474 dev_name(&adev->dev)); 1475 spi_dev_put(spi); 1476 } 1477 1478 return AE_OK; 1479 } 1480 1481 static void acpi_register_spi_devices(struct spi_master *master) 1482 { 1483 acpi_status status; 1484 acpi_handle handle; 1485 1486 handle = ACPI_HANDLE(master->dev.parent); 1487 if (!handle) 1488 return; 1489 1490 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 1491 acpi_spi_add_device, NULL, 1492 master, NULL); 1493 if (ACPI_FAILURE(status)) 1494 dev_warn(&master->dev, "failed to enumerate SPI slaves\n"); 1495 } 1496 #else 1497 static inline void acpi_register_spi_devices(struct spi_master *master) {} 1498 #endif /* CONFIG_ACPI */ 1499 1500 static void spi_master_release(struct device *dev) 1501 { 1502 struct spi_master *master; 1503 1504 master = container_of(dev, struct spi_master, dev); 1505 kfree(master); 1506 } 1507 1508 static struct class spi_master_class = { 1509 .name = "spi_master", 1510 .owner = THIS_MODULE, 1511 .dev_release = spi_master_release, 1512 }; 1513 1514 1515 1516 /** 1517 * spi_alloc_master - allocate SPI master controller 1518 * @dev: the controller, possibly using the platform_bus 1519 * @size: how much zeroed driver-private data to allocate; the pointer to this 1520 * memory is in the driver_data field of the returned device, 1521 * accessible with spi_master_get_devdata(). 1522 * Context: can sleep 1523 * 1524 * This call is used only by SPI master controller drivers, which are the 1525 * only ones directly touching chip registers. It's how they allocate 1526 * an spi_master structure, prior to calling spi_register_master(). 1527 * 1528 * This must be called from context that can sleep. It returns the SPI 1529 * master structure on success, else NULL. 1530 * 1531 * The caller is responsible for assigning the bus number and initializing 1532 * the master's methods before calling spi_register_master(); and (after errors 1533 * adding the device) calling spi_master_put() and kfree() to prevent a memory 1534 * leak. 1535 */ 1536 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 1537 { 1538 struct spi_master *master; 1539 1540 if (!dev) 1541 return NULL; 1542 1543 master = kzalloc(size + sizeof(*master), GFP_KERNEL); 1544 if (!master) 1545 return NULL; 1546 1547 device_initialize(&master->dev); 1548 master->bus_num = -1; 1549 master->num_chipselect = 1; 1550 master->dev.class = &spi_master_class; 1551 master->dev.parent = get_device(dev); 1552 spi_master_set_devdata(master, &master[1]); 1553 1554 return master; 1555 } 1556 EXPORT_SYMBOL_GPL(spi_alloc_master); 1557 1558 #ifdef CONFIG_OF 1559 static int of_spi_register_master(struct spi_master *master) 1560 { 1561 int nb, i, *cs; 1562 struct device_node *np = master->dev.of_node; 1563 1564 if (!np) 1565 return 0; 1566 1567 nb = of_gpio_named_count(np, "cs-gpios"); 1568 master->num_chipselect = max_t(int, nb, master->num_chipselect); 1569 1570 /* Return error only for an incorrectly formed cs-gpios property */ 1571 if (nb == 0 || nb == -ENOENT) 1572 return 0; 1573 else if (nb < 0) 1574 return nb; 1575 1576 cs = devm_kzalloc(&master->dev, 1577 sizeof(int) * master->num_chipselect, 1578 GFP_KERNEL); 1579 master->cs_gpios = cs; 1580 1581 if (!master->cs_gpios) 1582 return -ENOMEM; 1583 1584 for (i = 0; i < master->num_chipselect; i++) 1585 cs[i] = -ENOENT; 1586 1587 for (i = 0; i < nb; i++) 1588 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 1589 1590 return 0; 1591 } 1592 #else 1593 static int of_spi_register_master(struct spi_master *master) 1594 { 1595 return 0; 1596 } 1597 #endif 1598 1599 /** 1600 * spi_register_master - register SPI master controller 1601 * @master: initialized master, originally from spi_alloc_master() 1602 * Context: can sleep 1603 * 1604 * SPI master controllers connect to their drivers using some non-SPI bus, 1605 * such as the platform bus. The final stage of probe() in that code 1606 * includes calling spi_register_master() to hook up to this SPI bus glue. 1607 * 1608 * SPI controllers use board specific (often SOC specific) bus numbers, 1609 * and board-specific addressing for SPI devices combines those numbers 1610 * with chip select numbers. Since SPI does not directly support dynamic 1611 * device identification, boards need configuration tables telling which 1612 * chip is at which address. 1613 * 1614 * This must be called from context that can sleep. It returns zero on 1615 * success, else a negative error code (dropping the master's refcount). 1616 * After a successful return, the caller is responsible for calling 1617 * spi_unregister_master(). 1618 */ 1619 int spi_register_master(struct spi_master *master) 1620 { 1621 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 1622 struct device *dev = master->dev.parent; 1623 struct boardinfo *bi; 1624 int status = -ENODEV; 1625 int dynamic = 0; 1626 1627 if (!dev) 1628 return -ENODEV; 1629 1630 status = of_spi_register_master(master); 1631 if (status) 1632 return status; 1633 1634 /* even if it's just one always-selected device, there must 1635 * be at least one chipselect 1636 */ 1637 if (master->num_chipselect == 0) 1638 return -EINVAL; 1639 1640 if ((master->bus_num < 0) && master->dev.of_node) 1641 master->bus_num = of_alias_get_id(master->dev.of_node, "spi"); 1642 1643 /* convention: dynamically assigned bus IDs count down from the max */ 1644 if (master->bus_num < 0) { 1645 /* FIXME switch to an IDR based scheme, something like 1646 * I2C now uses, so we can't run out of "dynamic" IDs 1647 */ 1648 master->bus_num = atomic_dec_return(&dyn_bus_id); 1649 dynamic = 1; 1650 } 1651 1652 INIT_LIST_HEAD(&master->queue); 1653 spin_lock_init(&master->queue_lock); 1654 spin_lock_init(&master->bus_lock_spinlock); 1655 mutex_init(&master->bus_lock_mutex); 1656 master->bus_lock_flag = 0; 1657 init_completion(&master->xfer_completion); 1658 if (!master->max_dma_len) 1659 master->max_dma_len = INT_MAX; 1660 1661 /* register the device, then userspace will see it. 1662 * registration fails if the bus ID is in use. 1663 */ 1664 dev_set_name(&master->dev, "spi%u", master->bus_num); 1665 status = device_add(&master->dev); 1666 if (status < 0) 1667 goto done; 1668 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 1669 dynamic ? " (dynamic)" : ""); 1670 1671 /* If we're using a queued driver, start the queue */ 1672 if (master->transfer) 1673 dev_info(dev, "master is unqueued, this is deprecated\n"); 1674 else { 1675 status = spi_master_initialize_queue(master); 1676 if (status) { 1677 device_del(&master->dev); 1678 goto done; 1679 } 1680 } 1681 1682 mutex_lock(&board_lock); 1683 list_add_tail(&master->list, &spi_master_list); 1684 list_for_each_entry(bi, &board_list, list) 1685 spi_match_master_to_boardinfo(master, &bi->board_info); 1686 mutex_unlock(&board_lock); 1687 1688 /* Register devices from the device tree and ACPI */ 1689 of_register_spi_devices(master); 1690 acpi_register_spi_devices(master); 1691 done: 1692 return status; 1693 } 1694 EXPORT_SYMBOL_GPL(spi_register_master); 1695 1696 static void devm_spi_unregister(struct device *dev, void *res) 1697 { 1698 spi_unregister_master(*(struct spi_master **)res); 1699 } 1700 1701 /** 1702 * dev_spi_register_master - register managed SPI master controller 1703 * @dev: device managing SPI master 1704 * @master: initialized master, originally from spi_alloc_master() 1705 * Context: can sleep 1706 * 1707 * Register a SPI device as with spi_register_master() which will 1708 * automatically be unregister 1709 */ 1710 int devm_spi_register_master(struct device *dev, struct spi_master *master) 1711 { 1712 struct spi_master **ptr; 1713 int ret; 1714 1715 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 1716 if (!ptr) 1717 return -ENOMEM; 1718 1719 ret = spi_register_master(master); 1720 if (!ret) { 1721 *ptr = master; 1722 devres_add(dev, ptr); 1723 } else { 1724 devres_free(ptr); 1725 } 1726 1727 return ret; 1728 } 1729 EXPORT_SYMBOL_GPL(devm_spi_register_master); 1730 1731 static int __unregister(struct device *dev, void *null) 1732 { 1733 spi_unregister_device(to_spi_device(dev)); 1734 return 0; 1735 } 1736 1737 /** 1738 * spi_unregister_master - unregister SPI master controller 1739 * @master: the master being unregistered 1740 * Context: can sleep 1741 * 1742 * This call is used only by SPI master controller drivers, which are the 1743 * only ones directly touching chip registers. 1744 * 1745 * This must be called from context that can sleep. 1746 */ 1747 void spi_unregister_master(struct spi_master *master) 1748 { 1749 int dummy; 1750 1751 if (master->queued) { 1752 if (spi_destroy_queue(master)) 1753 dev_err(&master->dev, "queue remove failed\n"); 1754 } 1755 1756 mutex_lock(&board_lock); 1757 list_del(&master->list); 1758 mutex_unlock(&board_lock); 1759 1760 dummy = device_for_each_child(&master->dev, NULL, __unregister); 1761 device_unregister(&master->dev); 1762 } 1763 EXPORT_SYMBOL_GPL(spi_unregister_master); 1764 1765 int spi_master_suspend(struct spi_master *master) 1766 { 1767 int ret; 1768 1769 /* Basically no-ops for non-queued masters */ 1770 if (!master->queued) 1771 return 0; 1772 1773 ret = spi_stop_queue(master); 1774 if (ret) 1775 dev_err(&master->dev, "queue stop failed\n"); 1776 1777 return ret; 1778 } 1779 EXPORT_SYMBOL_GPL(spi_master_suspend); 1780 1781 int spi_master_resume(struct spi_master *master) 1782 { 1783 int ret; 1784 1785 if (!master->queued) 1786 return 0; 1787 1788 ret = spi_start_queue(master); 1789 if (ret) 1790 dev_err(&master->dev, "queue restart failed\n"); 1791 1792 return ret; 1793 } 1794 EXPORT_SYMBOL_GPL(spi_master_resume); 1795 1796 static int __spi_master_match(struct device *dev, const void *data) 1797 { 1798 struct spi_master *m; 1799 const u16 *bus_num = data; 1800 1801 m = container_of(dev, struct spi_master, dev); 1802 return m->bus_num == *bus_num; 1803 } 1804 1805 /** 1806 * spi_busnum_to_master - look up master associated with bus_num 1807 * @bus_num: the master's bus number 1808 * Context: can sleep 1809 * 1810 * This call may be used with devices that are registered after 1811 * arch init time. It returns a refcounted pointer to the relevant 1812 * spi_master (which the caller must release), or NULL if there is 1813 * no such master registered. 1814 */ 1815 struct spi_master *spi_busnum_to_master(u16 bus_num) 1816 { 1817 struct device *dev; 1818 struct spi_master *master = NULL; 1819 1820 dev = class_find_device(&spi_master_class, NULL, &bus_num, 1821 __spi_master_match); 1822 if (dev) 1823 master = container_of(dev, struct spi_master, dev); 1824 /* reference got in class_find_device */ 1825 return master; 1826 } 1827 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 1828 1829 1830 /*-------------------------------------------------------------------------*/ 1831 1832 /* Core methods for SPI master protocol drivers. Some of the 1833 * other core methods are currently defined as inline functions. 1834 */ 1835 1836 /** 1837 * spi_setup - setup SPI mode and clock rate 1838 * @spi: the device whose settings are being modified 1839 * Context: can sleep, and no requests are queued to the device 1840 * 1841 * SPI protocol drivers may need to update the transfer mode if the 1842 * device doesn't work with its default. They may likewise need 1843 * to update clock rates or word sizes from initial values. This function 1844 * changes those settings, and must be called from a context that can sleep. 1845 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 1846 * effect the next time the device is selected and data is transferred to 1847 * or from it. When this function returns, the spi device is deselected. 1848 * 1849 * Note that this call will fail if the protocol driver specifies an option 1850 * that the underlying controller or its driver does not support. For 1851 * example, not all hardware supports wire transfers using nine bit words, 1852 * LSB-first wire encoding, or active-high chipselects. 1853 */ 1854 int spi_setup(struct spi_device *spi) 1855 { 1856 unsigned bad_bits, ugly_bits; 1857 int status = 0; 1858 1859 /* check mode to prevent that DUAL and QUAD set at the same time 1860 */ 1861 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 1862 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 1863 dev_err(&spi->dev, 1864 "setup: can not select dual and quad at the same time\n"); 1865 return -EINVAL; 1866 } 1867 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 1868 */ 1869 if ((spi->mode & SPI_3WIRE) && (spi->mode & 1870 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD))) 1871 return -EINVAL; 1872 /* help drivers fail *cleanly* when they need options 1873 * that aren't supported with their current master 1874 */ 1875 bad_bits = spi->mode & ~spi->master->mode_bits; 1876 ugly_bits = bad_bits & 1877 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD); 1878 if (ugly_bits) { 1879 dev_warn(&spi->dev, 1880 "setup: ignoring unsupported mode bits %x\n", 1881 ugly_bits); 1882 spi->mode &= ~ugly_bits; 1883 bad_bits &= ~ugly_bits; 1884 } 1885 if (bad_bits) { 1886 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 1887 bad_bits); 1888 return -EINVAL; 1889 } 1890 1891 if (!spi->bits_per_word) 1892 spi->bits_per_word = 8; 1893 1894 if (!spi->max_speed_hz) 1895 spi->max_speed_hz = spi->master->max_speed_hz; 1896 1897 if (spi->master->setup) 1898 status = spi->master->setup(spi); 1899 1900 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 1901 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 1902 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 1903 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 1904 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 1905 (spi->mode & SPI_LOOP) ? "loopback, " : "", 1906 spi->bits_per_word, spi->max_speed_hz, 1907 status); 1908 1909 return status; 1910 } 1911 EXPORT_SYMBOL_GPL(spi_setup); 1912 1913 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 1914 { 1915 struct spi_master *master = spi->master; 1916 struct spi_transfer *xfer; 1917 int w_size; 1918 1919 if (list_empty(&message->transfers)) 1920 return -EINVAL; 1921 1922 /* Half-duplex links include original MicroWire, and ones with 1923 * only one data pin like SPI_3WIRE (switches direction) or where 1924 * either MOSI or MISO is missing. They can also be caused by 1925 * software limitations. 1926 */ 1927 if ((master->flags & SPI_MASTER_HALF_DUPLEX) 1928 || (spi->mode & SPI_3WIRE)) { 1929 unsigned flags = master->flags; 1930 1931 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1932 if (xfer->rx_buf && xfer->tx_buf) 1933 return -EINVAL; 1934 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) 1935 return -EINVAL; 1936 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) 1937 return -EINVAL; 1938 } 1939 } 1940 1941 /** 1942 * Set transfer bits_per_word and max speed as spi device default if 1943 * it is not set for this transfer. 1944 * Set transfer tx_nbits and rx_nbits as single transfer default 1945 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 1946 */ 1947 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1948 message->frame_length += xfer->len; 1949 if (!xfer->bits_per_word) 1950 xfer->bits_per_word = spi->bits_per_word; 1951 1952 if (!xfer->speed_hz) 1953 xfer->speed_hz = spi->max_speed_hz; 1954 1955 if (master->max_speed_hz && 1956 xfer->speed_hz > master->max_speed_hz) 1957 xfer->speed_hz = master->max_speed_hz; 1958 1959 if (master->bits_per_word_mask) { 1960 /* Only 32 bits fit in the mask */ 1961 if (xfer->bits_per_word > 32) 1962 return -EINVAL; 1963 if (!(master->bits_per_word_mask & 1964 BIT(xfer->bits_per_word - 1))) 1965 return -EINVAL; 1966 } 1967 1968 /* 1969 * SPI transfer length should be multiple of SPI word size 1970 * where SPI word size should be power-of-two multiple 1971 */ 1972 if (xfer->bits_per_word <= 8) 1973 w_size = 1; 1974 else if (xfer->bits_per_word <= 16) 1975 w_size = 2; 1976 else 1977 w_size = 4; 1978 1979 /* No partial transfers accepted */ 1980 if (xfer->len % w_size) 1981 return -EINVAL; 1982 1983 if (xfer->speed_hz && master->min_speed_hz && 1984 xfer->speed_hz < master->min_speed_hz) 1985 return -EINVAL; 1986 1987 if (xfer->tx_buf && !xfer->tx_nbits) 1988 xfer->tx_nbits = SPI_NBITS_SINGLE; 1989 if (xfer->rx_buf && !xfer->rx_nbits) 1990 xfer->rx_nbits = SPI_NBITS_SINGLE; 1991 /* check transfer tx/rx_nbits: 1992 * 1. check the value matches one of single, dual and quad 1993 * 2. check tx/rx_nbits match the mode in spi_device 1994 */ 1995 if (xfer->tx_buf) { 1996 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 1997 xfer->tx_nbits != SPI_NBITS_DUAL && 1998 xfer->tx_nbits != SPI_NBITS_QUAD) 1999 return -EINVAL; 2000 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 2001 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 2002 return -EINVAL; 2003 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 2004 !(spi->mode & SPI_TX_QUAD)) 2005 return -EINVAL; 2006 } 2007 /* check transfer rx_nbits */ 2008 if (xfer->rx_buf) { 2009 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 2010 xfer->rx_nbits != SPI_NBITS_DUAL && 2011 xfer->rx_nbits != SPI_NBITS_QUAD) 2012 return -EINVAL; 2013 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 2014 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 2015 return -EINVAL; 2016 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 2017 !(spi->mode & SPI_RX_QUAD)) 2018 return -EINVAL; 2019 } 2020 } 2021 2022 message->status = -EINPROGRESS; 2023 2024 return 0; 2025 } 2026 2027 static int __spi_async(struct spi_device *spi, struct spi_message *message) 2028 { 2029 struct spi_master *master = spi->master; 2030 2031 message->spi = spi; 2032 2033 trace_spi_message_submit(message); 2034 2035 return master->transfer(spi, message); 2036 } 2037 2038 /** 2039 * spi_async - asynchronous SPI transfer 2040 * @spi: device with which data will be exchanged 2041 * @message: describes the data transfers, including completion callback 2042 * Context: any (irqs may be blocked, etc) 2043 * 2044 * This call may be used in_irq and other contexts which can't sleep, 2045 * as well as from task contexts which can sleep. 2046 * 2047 * The completion callback is invoked in a context which can't sleep. 2048 * Before that invocation, the value of message->status is undefined. 2049 * When the callback is issued, message->status holds either zero (to 2050 * indicate complete success) or a negative error code. After that 2051 * callback returns, the driver which issued the transfer request may 2052 * deallocate the associated memory; it's no longer in use by any SPI 2053 * core or controller driver code. 2054 * 2055 * Note that although all messages to a spi_device are handled in 2056 * FIFO order, messages may go to different devices in other orders. 2057 * Some device might be higher priority, or have various "hard" access 2058 * time requirements, for example. 2059 * 2060 * On detection of any fault during the transfer, processing of 2061 * the entire message is aborted, and the device is deselected. 2062 * Until returning from the associated message completion callback, 2063 * no other spi_message queued to that device will be processed. 2064 * (This rule applies equally to all the synchronous transfer calls, 2065 * which are wrappers around this core asynchronous primitive.) 2066 */ 2067 int spi_async(struct spi_device *spi, struct spi_message *message) 2068 { 2069 struct spi_master *master = spi->master; 2070 int ret; 2071 unsigned long flags; 2072 2073 ret = __spi_validate(spi, message); 2074 if (ret != 0) 2075 return ret; 2076 2077 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2078 2079 if (master->bus_lock_flag) 2080 ret = -EBUSY; 2081 else 2082 ret = __spi_async(spi, message); 2083 2084 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2085 2086 return ret; 2087 } 2088 EXPORT_SYMBOL_GPL(spi_async); 2089 2090 /** 2091 * spi_async_locked - version of spi_async with exclusive bus usage 2092 * @spi: device with which data will be exchanged 2093 * @message: describes the data transfers, including completion callback 2094 * Context: any (irqs may be blocked, etc) 2095 * 2096 * This call may be used in_irq and other contexts which can't sleep, 2097 * as well as from task contexts which can sleep. 2098 * 2099 * The completion callback is invoked in a context which can't sleep. 2100 * Before that invocation, the value of message->status is undefined. 2101 * When the callback is issued, message->status holds either zero (to 2102 * indicate complete success) or a negative error code. After that 2103 * callback returns, the driver which issued the transfer request may 2104 * deallocate the associated memory; it's no longer in use by any SPI 2105 * core or controller driver code. 2106 * 2107 * Note that although all messages to a spi_device are handled in 2108 * FIFO order, messages may go to different devices in other orders. 2109 * Some device might be higher priority, or have various "hard" access 2110 * time requirements, for example. 2111 * 2112 * On detection of any fault during the transfer, processing of 2113 * the entire message is aborted, and the device is deselected. 2114 * Until returning from the associated message completion callback, 2115 * no other spi_message queued to that device will be processed. 2116 * (This rule applies equally to all the synchronous transfer calls, 2117 * which are wrappers around this core asynchronous primitive.) 2118 */ 2119 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 2120 { 2121 struct spi_master *master = spi->master; 2122 int ret; 2123 unsigned long flags; 2124 2125 ret = __spi_validate(spi, message); 2126 if (ret != 0) 2127 return ret; 2128 2129 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2130 2131 ret = __spi_async(spi, message); 2132 2133 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2134 2135 return ret; 2136 2137 } 2138 EXPORT_SYMBOL_GPL(spi_async_locked); 2139 2140 2141 /*-------------------------------------------------------------------------*/ 2142 2143 /* Utility methods for SPI master protocol drivers, layered on 2144 * top of the core. Some other utility methods are defined as 2145 * inline functions. 2146 */ 2147 2148 static void spi_complete(void *arg) 2149 { 2150 complete(arg); 2151 } 2152 2153 static int __spi_sync(struct spi_device *spi, struct spi_message *message, 2154 int bus_locked) 2155 { 2156 DECLARE_COMPLETION_ONSTACK(done); 2157 int status; 2158 struct spi_master *master = spi->master; 2159 unsigned long flags; 2160 2161 status = __spi_validate(spi, message); 2162 if (status != 0) 2163 return status; 2164 2165 message->complete = spi_complete; 2166 message->context = &done; 2167 message->spi = spi; 2168 2169 if (!bus_locked) 2170 mutex_lock(&master->bus_lock_mutex); 2171 2172 /* If we're not using the legacy transfer method then we will 2173 * try to transfer in the calling context so special case. 2174 * This code would be less tricky if we could remove the 2175 * support for driver implemented message queues. 2176 */ 2177 if (master->transfer == spi_queued_transfer) { 2178 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2179 2180 trace_spi_message_submit(message); 2181 2182 status = __spi_queued_transfer(spi, message, false); 2183 2184 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2185 } else { 2186 status = spi_async_locked(spi, message); 2187 } 2188 2189 if (!bus_locked) 2190 mutex_unlock(&master->bus_lock_mutex); 2191 2192 if (status == 0) { 2193 /* Push out the messages in the calling context if we 2194 * can. 2195 */ 2196 if (master->transfer == spi_queued_transfer) 2197 __spi_pump_messages(master, false); 2198 2199 wait_for_completion(&done); 2200 status = message->status; 2201 } 2202 message->context = NULL; 2203 return status; 2204 } 2205 2206 /** 2207 * spi_sync - blocking/synchronous SPI data transfers 2208 * @spi: device with which data will be exchanged 2209 * @message: describes the data transfers 2210 * Context: can sleep 2211 * 2212 * This call may only be used from a context that may sleep. The sleep 2213 * is non-interruptible, and has no timeout. Low-overhead controller 2214 * drivers may DMA directly into and out of the message buffers. 2215 * 2216 * Note that the SPI device's chip select is active during the message, 2217 * and then is normally disabled between messages. Drivers for some 2218 * frequently-used devices may want to minimize costs of selecting a chip, 2219 * by leaving it selected in anticipation that the next message will go 2220 * to the same chip. (That may increase power usage.) 2221 * 2222 * Also, the caller is guaranteeing that the memory associated with the 2223 * message will not be freed before this call returns. 2224 * 2225 * It returns zero on success, else a negative error code. 2226 */ 2227 int spi_sync(struct spi_device *spi, struct spi_message *message) 2228 { 2229 return __spi_sync(spi, message, 0); 2230 } 2231 EXPORT_SYMBOL_GPL(spi_sync); 2232 2233 /** 2234 * spi_sync_locked - version of spi_sync with exclusive bus usage 2235 * @spi: device with which data will be exchanged 2236 * @message: describes the data transfers 2237 * Context: can sleep 2238 * 2239 * This call may only be used from a context that may sleep. The sleep 2240 * is non-interruptible, and has no timeout. Low-overhead controller 2241 * drivers may DMA directly into and out of the message buffers. 2242 * 2243 * This call should be used by drivers that require exclusive access to the 2244 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 2245 * be released by a spi_bus_unlock call when the exclusive access is over. 2246 * 2247 * It returns zero on success, else a negative error code. 2248 */ 2249 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 2250 { 2251 return __spi_sync(spi, message, 1); 2252 } 2253 EXPORT_SYMBOL_GPL(spi_sync_locked); 2254 2255 /** 2256 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 2257 * @master: SPI bus master that should be locked for exclusive bus access 2258 * Context: can sleep 2259 * 2260 * This call may only be used from a context that may sleep. The sleep 2261 * is non-interruptible, and has no timeout. 2262 * 2263 * This call should be used by drivers that require exclusive access to the 2264 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 2265 * exclusive access is over. Data transfer must be done by spi_sync_locked 2266 * and spi_async_locked calls when the SPI bus lock is held. 2267 * 2268 * It returns zero on success, else a negative error code. 2269 */ 2270 int spi_bus_lock(struct spi_master *master) 2271 { 2272 unsigned long flags; 2273 2274 mutex_lock(&master->bus_lock_mutex); 2275 2276 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 2277 master->bus_lock_flag = 1; 2278 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 2279 2280 /* mutex remains locked until spi_bus_unlock is called */ 2281 2282 return 0; 2283 } 2284 EXPORT_SYMBOL_GPL(spi_bus_lock); 2285 2286 /** 2287 * spi_bus_unlock - release the lock for exclusive SPI bus usage 2288 * @master: SPI bus master that was locked for exclusive bus access 2289 * Context: can sleep 2290 * 2291 * This call may only be used from a context that may sleep. The sleep 2292 * is non-interruptible, and has no timeout. 2293 * 2294 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 2295 * call. 2296 * 2297 * It returns zero on success, else a negative error code. 2298 */ 2299 int spi_bus_unlock(struct spi_master *master) 2300 { 2301 master->bus_lock_flag = 0; 2302 2303 mutex_unlock(&master->bus_lock_mutex); 2304 2305 return 0; 2306 } 2307 EXPORT_SYMBOL_GPL(spi_bus_unlock); 2308 2309 /* portable code must never pass more than 32 bytes */ 2310 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 2311 2312 static u8 *buf; 2313 2314 /** 2315 * spi_write_then_read - SPI synchronous write followed by read 2316 * @spi: device with which data will be exchanged 2317 * @txbuf: data to be written (need not be dma-safe) 2318 * @n_tx: size of txbuf, in bytes 2319 * @rxbuf: buffer into which data will be read (need not be dma-safe) 2320 * @n_rx: size of rxbuf, in bytes 2321 * Context: can sleep 2322 * 2323 * This performs a half duplex MicroWire style transaction with the 2324 * device, sending txbuf and then reading rxbuf. The return value 2325 * is zero for success, else a negative errno status code. 2326 * This call may only be used from a context that may sleep. 2327 * 2328 * Parameters to this routine are always copied using a small buffer; 2329 * portable code should never use this for more than 32 bytes. 2330 * Performance-sensitive or bulk transfer code should instead use 2331 * spi_{async,sync}() calls with dma-safe buffers. 2332 */ 2333 int spi_write_then_read(struct spi_device *spi, 2334 const void *txbuf, unsigned n_tx, 2335 void *rxbuf, unsigned n_rx) 2336 { 2337 static DEFINE_MUTEX(lock); 2338 2339 int status; 2340 struct spi_message message; 2341 struct spi_transfer x[2]; 2342 u8 *local_buf; 2343 2344 /* Use preallocated DMA-safe buffer if we can. We can't avoid 2345 * copying here, (as a pure convenience thing), but we can 2346 * keep heap costs out of the hot path unless someone else is 2347 * using the pre-allocated buffer or the transfer is too large. 2348 */ 2349 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 2350 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 2351 GFP_KERNEL | GFP_DMA); 2352 if (!local_buf) 2353 return -ENOMEM; 2354 } else { 2355 local_buf = buf; 2356 } 2357 2358 spi_message_init(&message); 2359 memset(x, 0, sizeof(x)); 2360 if (n_tx) { 2361 x[0].len = n_tx; 2362 spi_message_add_tail(&x[0], &message); 2363 } 2364 if (n_rx) { 2365 x[1].len = n_rx; 2366 spi_message_add_tail(&x[1], &message); 2367 } 2368 2369 memcpy(local_buf, txbuf, n_tx); 2370 x[0].tx_buf = local_buf; 2371 x[1].rx_buf = local_buf + n_tx; 2372 2373 /* do the i/o */ 2374 status = spi_sync(spi, &message); 2375 if (status == 0) 2376 memcpy(rxbuf, x[1].rx_buf, n_rx); 2377 2378 if (x[0].tx_buf == buf) 2379 mutex_unlock(&lock); 2380 else 2381 kfree(local_buf); 2382 2383 return status; 2384 } 2385 EXPORT_SYMBOL_GPL(spi_write_then_read); 2386 2387 /*-------------------------------------------------------------------------*/ 2388 2389 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 2390 static int __spi_of_device_match(struct device *dev, void *data) 2391 { 2392 return dev->of_node == data; 2393 } 2394 2395 /* must call put_device() when done with returned spi_device device */ 2396 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 2397 { 2398 struct device *dev = bus_find_device(&spi_bus_type, NULL, node, 2399 __spi_of_device_match); 2400 return dev ? to_spi_device(dev) : NULL; 2401 } 2402 2403 static int __spi_of_master_match(struct device *dev, const void *data) 2404 { 2405 return dev->of_node == data; 2406 } 2407 2408 /* the spi masters are not using spi_bus, so we find it with another way */ 2409 static struct spi_master *of_find_spi_master_by_node(struct device_node *node) 2410 { 2411 struct device *dev; 2412 2413 dev = class_find_device(&spi_master_class, NULL, node, 2414 __spi_of_master_match); 2415 if (!dev) 2416 return NULL; 2417 2418 /* reference got in class_find_device */ 2419 return container_of(dev, struct spi_master, dev); 2420 } 2421 2422 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 2423 void *arg) 2424 { 2425 struct of_reconfig_data *rd = arg; 2426 struct spi_master *master; 2427 struct spi_device *spi; 2428 2429 switch (of_reconfig_get_state_change(action, arg)) { 2430 case OF_RECONFIG_CHANGE_ADD: 2431 master = of_find_spi_master_by_node(rd->dn->parent); 2432 if (master == NULL) 2433 return NOTIFY_OK; /* not for us */ 2434 2435 spi = of_register_spi_device(master, rd->dn); 2436 put_device(&master->dev); 2437 2438 if (IS_ERR(spi)) { 2439 pr_err("%s: failed to create for '%s'\n", 2440 __func__, rd->dn->full_name); 2441 return notifier_from_errno(PTR_ERR(spi)); 2442 } 2443 break; 2444 2445 case OF_RECONFIG_CHANGE_REMOVE: 2446 /* find our device by node */ 2447 spi = of_find_spi_device_by_node(rd->dn); 2448 if (spi == NULL) 2449 return NOTIFY_OK; /* no? not meant for us */ 2450 2451 /* unregister takes one ref away */ 2452 spi_unregister_device(spi); 2453 2454 /* and put the reference of the find */ 2455 put_device(&spi->dev); 2456 break; 2457 } 2458 2459 return NOTIFY_OK; 2460 } 2461 2462 static struct notifier_block spi_of_notifier = { 2463 .notifier_call = of_spi_notify, 2464 }; 2465 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 2466 extern struct notifier_block spi_of_notifier; 2467 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 2468 2469 static int __init spi_init(void) 2470 { 2471 int status; 2472 2473 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 2474 if (!buf) { 2475 status = -ENOMEM; 2476 goto err0; 2477 } 2478 2479 status = bus_register(&spi_bus_type); 2480 if (status < 0) 2481 goto err1; 2482 2483 status = class_register(&spi_master_class); 2484 if (status < 0) 2485 goto err2; 2486 2487 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 2488 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 2489 2490 return 0; 2491 2492 err2: 2493 bus_unregister(&spi_bus_type); 2494 err1: 2495 kfree(buf); 2496 buf = NULL; 2497 err0: 2498 return status; 2499 } 2500 2501 /* board_info is normally registered in arch_initcall(), 2502 * but even essential drivers wait till later 2503 * 2504 * REVISIT only boardinfo really needs static linking. the rest (device and 2505 * driver registration) _could_ be dynamically linked (modular) ... costs 2506 * include needing to have boardinfo data structures be much more public. 2507 */ 2508 postcore_initcall(spi_init); 2509 2510