xref: /linux/drivers/spi/spi.c (revision d8327c784b51b57dac2c26cfad87dce0d68dfd98)
1 /*
2  * spi.c - SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/autoconf.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/cache.h>
26 #include <linux/spi/spi.h>
27 
28 
29 /* SPI bustype and spi_master class are registered after board init code
30  * provides the SPI device tables, ensuring that both are present by the
31  * time controller driver registration causes spi_devices to "enumerate".
32  */
33 static void spidev_release(struct device *dev)
34 {
35 	const struct spi_device	*spi = to_spi_device(dev);
36 
37 	/* spi masters may cleanup for released devices */
38 	if (spi->master->cleanup)
39 		spi->master->cleanup(spi);
40 
41 	spi_master_put(spi->master);
42 	kfree(dev);
43 }
44 
45 static ssize_t
46 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
47 {
48 	const struct spi_device	*spi = to_spi_device(dev);
49 
50 	return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
51 }
52 
53 static struct device_attribute spi_dev_attrs[] = {
54 	__ATTR_RO(modalias),
55 	__ATTR_NULL,
56 };
57 
58 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
59  * and the sysfs version makes coldplug work too.
60  */
61 
62 static int spi_match_device(struct device *dev, struct device_driver *drv)
63 {
64 	const struct spi_device	*spi = to_spi_device(dev);
65 
66 	return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
67 }
68 
69 static int spi_uevent(struct device *dev, char **envp, int num_envp,
70 		char *buffer, int buffer_size)
71 {
72 	const struct spi_device		*spi = to_spi_device(dev);
73 
74 	envp[0] = buffer;
75 	snprintf(buffer, buffer_size, "MODALIAS=%s", spi->modalias);
76 	envp[1] = NULL;
77 	return 0;
78 }
79 
80 #ifdef	CONFIG_PM
81 
82 /*
83  * NOTE:  the suspend() method for an spi_master controller driver
84  * should verify that all its child devices are marked as suspended;
85  * suspend requests delivered through sysfs power/state files don't
86  * enforce such constraints.
87  */
88 static int spi_suspend(struct device *dev, pm_message_t message)
89 {
90 	int			value;
91 	struct spi_driver	*drv = to_spi_driver(dev->driver);
92 
93 	if (!drv || !drv->suspend)
94 		return 0;
95 
96 	/* suspend will stop irqs and dma; no more i/o */
97 	value = drv->suspend(to_spi_device(dev), message);
98 	if (value == 0)
99 		dev->power.power_state = message;
100 	return value;
101 }
102 
103 static int spi_resume(struct device *dev)
104 {
105 	int			value;
106 	struct spi_driver	*drv = to_spi_driver(dev->driver);
107 
108 	if (!drv || !drv->resume)
109 		return 0;
110 
111 	/* resume may restart the i/o queue */
112 	value = drv->resume(to_spi_device(dev));
113 	if (value == 0)
114 		dev->power.power_state = PMSG_ON;
115 	return value;
116 }
117 
118 #else
119 #define spi_suspend	NULL
120 #define spi_resume	NULL
121 #endif
122 
123 struct bus_type spi_bus_type = {
124 	.name		= "spi",
125 	.dev_attrs	= spi_dev_attrs,
126 	.match		= spi_match_device,
127 	.uevent		= spi_uevent,
128 	.suspend	= spi_suspend,
129 	.resume		= spi_resume,
130 };
131 EXPORT_SYMBOL_GPL(spi_bus_type);
132 
133 
134 static int spi_drv_probe(struct device *dev)
135 {
136 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
137 
138 	return sdrv->probe(to_spi_device(dev));
139 }
140 
141 static int spi_drv_remove(struct device *dev)
142 {
143 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
144 
145 	return sdrv->remove(to_spi_device(dev));
146 }
147 
148 static void spi_drv_shutdown(struct device *dev)
149 {
150 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
151 
152 	sdrv->shutdown(to_spi_device(dev));
153 }
154 
155 int spi_register_driver(struct spi_driver *sdrv)
156 {
157 	sdrv->driver.bus = &spi_bus_type;
158 	if (sdrv->probe)
159 		sdrv->driver.probe = spi_drv_probe;
160 	if (sdrv->remove)
161 		sdrv->driver.remove = spi_drv_remove;
162 	if (sdrv->shutdown)
163 		sdrv->driver.shutdown = spi_drv_shutdown;
164 	return driver_register(&sdrv->driver);
165 }
166 EXPORT_SYMBOL_GPL(spi_register_driver);
167 
168 /*-------------------------------------------------------------------------*/
169 
170 /* SPI devices should normally not be created by SPI device drivers; that
171  * would make them board-specific.  Similarly with SPI master drivers.
172  * Device registration normally goes into like arch/.../mach.../board-YYY.c
173  * with other readonly (flashable) information about mainboard devices.
174  */
175 
176 struct boardinfo {
177 	struct list_head	list;
178 	unsigned		n_board_info;
179 	struct spi_board_info	board_info[0];
180 };
181 
182 static LIST_HEAD(board_list);
183 static DECLARE_MUTEX(board_lock);
184 
185 
186 /* On typical mainboards, this is purely internal; and it's not needed
187  * after board init creates the hard-wired devices.  Some development
188  * platforms may not be able to use spi_register_board_info though, and
189  * this is exported so that for example a USB or parport based adapter
190  * driver could add devices (which it would learn about out-of-band).
191  */
192 struct spi_device *__init_or_module
193 spi_new_device(struct spi_master *master, struct spi_board_info *chip)
194 {
195 	struct spi_device	*proxy;
196 	struct device		*dev = master->cdev.dev;
197 	int			status;
198 
199 	/* NOTE:  caller did any chip->bus_num checks necessary */
200 
201 	if (!spi_master_get(master))
202 		return NULL;
203 
204 	proxy = kzalloc(sizeof *proxy, GFP_KERNEL);
205 	if (!proxy) {
206 		dev_err(dev, "can't alloc dev for cs%d\n",
207 			chip->chip_select);
208 		goto fail;
209 	}
210 	proxy->master = master;
211 	proxy->chip_select = chip->chip_select;
212 	proxy->max_speed_hz = chip->max_speed_hz;
213 	proxy->irq = chip->irq;
214 	proxy->modalias = chip->modalias;
215 
216 	snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id,
217 			"%s.%u", master->cdev.class_id,
218 			chip->chip_select);
219 	proxy->dev.parent = dev;
220 	proxy->dev.bus = &spi_bus_type;
221 	proxy->dev.platform_data = (void *) chip->platform_data;
222 	proxy->controller_data = chip->controller_data;
223 	proxy->controller_state = NULL;
224 	proxy->dev.release = spidev_release;
225 
226 	/* drivers may modify this default i/o setup */
227 	status = master->setup(proxy);
228 	if (status < 0) {
229 		dev_dbg(dev, "can't %s %s, status %d\n",
230 				"setup", proxy->dev.bus_id, status);
231 		goto fail;
232 	}
233 
234 	/* driver core catches callers that misbehave by defining
235 	 * devices that already exist.
236 	 */
237 	status = device_register(&proxy->dev);
238 	if (status < 0) {
239 		dev_dbg(dev, "can't %s %s, status %d\n",
240 				"add", proxy->dev.bus_id, status);
241 		goto fail;
242 	}
243 	dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id);
244 	return proxy;
245 
246 fail:
247 	spi_master_put(master);
248 	kfree(proxy);
249 	return NULL;
250 }
251 EXPORT_SYMBOL_GPL(spi_new_device);
252 
253 /*
254  * Board-specific early init code calls this (probably during arch_initcall)
255  * with segments of the SPI device table.  Any device nodes are created later,
256  * after the relevant parent SPI controller (bus_num) is defined.  We keep
257  * this table of devices forever, so that reloading a controller driver will
258  * not make Linux forget about these hard-wired devices.
259  *
260  * Other code can also call this, e.g. a particular add-on board might provide
261  * SPI devices through its expansion connector, so code initializing that board
262  * would naturally declare its SPI devices.
263  *
264  * The board info passed can safely be __initdata ... but be careful of
265  * any embedded pointers (platform_data, etc), they're copied as-is.
266  */
267 int __init
268 spi_register_board_info(struct spi_board_info const *info, unsigned n)
269 {
270 	struct boardinfo	*bi;
271 
272 	bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
273 	if (!bi)
274 		return -ENOMEM;
275 	bi->n_board_info = n;
276 	memcpy(bi->board_info, info, n * sizeof *info);
277 
278 	down(&board_lock);
279 	list_add_tail(&bi->list, &board_list);
280 	up(&board_lock);
281 	return 0;
282 }
283 EXPORT_SYMBOL_GPL(spi_register_board_info);
284 
285 /* FIXME someone should add support for a __setup("spi", ...) that
286  * creates board info from kernel command lines
287  */
288 
289 static void __init_or_module
290 scan_boardinfo(struct spi_master *master)
291 {
292 	struct boardinfo	*bi;
293 	struct device		*dev = master->cdev.dev;
294 
295 	down(&board_lock);
296 	list_for_each_entry(bi, &board_list, list) {
297 		struct spi_board_info	*chip = bi->board_info;
298 		unsigned		n;
299 
300 		for (n = bi->n_board_info; n > 0; n--, chip++) {
301 			if (chip->bus_num != master->bus_num)
302 				continue;
303 			/* some controllers only have one chip, so they
304 			 * might not use chipselects.  otherwise, the
305 			 * chipselects are numbered 0..max.
306 			 */
307 			if (chip->chip_select >= master->num_chipselect
308 					&& master->num_chipselect) {
309 				dev_dbg(dev, "cs%d > max %d\n",
310 					chip->chip_select,
311 					master->num_chipselect);
312 				continue;
313 			}
314 			(void) spi_new_device(master, chip);
315 		}
316 	}
317 	up(&board_lock);
318 }
319 
320 /*-------------------------------------------------------------------------*/
321 
322 static void spi_master_release(struct class_device *cdev)
323 {
324 	struct spi_master *master;
325 
326 	master = container_of(cdev, struct spi_master, cdev);
327 	kfree(master);
328 }
329 
330 static struct class spi_master_class = {
331 	.name		= "spi_master",
332 	.owner		= THIS_MODULE,
333 	.release	= spi_master_release,
334 };
335 
336 
337 /**
338  * spi_alloc_master - allocate SPI master controller
339  * @dev: the controller, possibly using the platform_bus
340  * @size: how much driver-private data to preallocate; the pointer to this
341  * 	memory is in the class_data field of the returned class_device,
342  *	accessible with spi_master_get_devdata().
343  *
344  * This call is used only by SPI master controller drivers, which are the
345  * only ones directly touching chip registers.  It's how they allocate
346  * an spi_master structure, prior to calling spi_add_master().
347  *
348  * This must be called from context that can sleep.  It returns the SPI
349  * master structure on success, else NULL.
350  *
351  * The caller is responsible for assigning the bus number and initializing
352  * the master's methods before calling spi_add_master(); and (after errors
353  * adding the device) calling spi_master_put() to prevent a memory leak.
354  */
355 struct spi_master * __init_or_module
356 spi_alloc_master(struct device *dev, unsigned size)
357 {
358 	struct spi_master	*master;
359 
360 	if (!dev)
361 		return NULL;
362 
363 	master = kzalloc(size + sizeof *master, SLAB_KERNEL);
364 	if (!master)
365 		return NULL;
366 
367 	class_device_initialize(&master->cdev);
368 	master->cdev.class = &spi_master_class;
369 	master->cdev.dev = get_device(dev);
370 	spi_master_set_devdata(master, &master[1]);
371 
372 	return master;
373 }
374 EXPORT_SYMBOL_GPL(spi_alloc_master);
375 
376 /**
377  * spi_register_master - register SPI master controller
378  * @master: initialized master, originally from spi_alloc_master()
379  *
380  * SPI master controllers connect to their drivers using some non-SPI bus,
381  * such as the platform bus.  The final stage of probe() in that code
382  * includes calling spi_register_master() to hook up to this SPI bus glue.
383  *
384  * SPI controllers use board specific (often SOC specific) bus numbers,
385  * and board-specific addressing for SPI devices combines those numbers
386  * with chip select numbers.  Since SPI does not directly support dynamic
387  * device identification, boards need configuration tables telling which
388  * chip is at which address.
389  *
390  * This must be called from context that can sleep.  It returns zero on
391  * success, else a negative error code (dropping the master's refcount).
392  * After a successful return, the caller is responsible for calling
393  * spi_unregister_master().
394  */
395 int __init_or_module
396 spi_register_master(struct spi_master *master)
397 {
398 	static atomic_t		dyn_bus_id = ATOMIC_INIT(0);
399 	struct device		*dev = master->cdev.dev;
400 	int			status = -ENODEV;
401 	int			dynamic = 0;
402 
403 	if (!dev)
404 		return -ENODEV;
405 
406 	/* convention:  dynamically assigned bus IDs count down from the max */
407 	if (master->bus_num == 0) {
408 		master->bus_num = atomic_dec_return(&dyn_bus_id);
409 		dynamic = 1;
410 	}
411 
412 	/* register the device, then userspace will see it.
413 	 * registration fails if the bus ID is in use.
414 	 */
415 	snprintf(master->cdev.class_id, sizeof master->cdev.class_id,
416 		"spi%u", master->bus_num);
417 	status = class_device_add(&master->cdev);
418 	if (status < 0)
419 		goto done;
420 	dev_dbg(dev, "registered master %s%s\n", master->cdev.class_id,
421 			dynamic ? " (dynamic)" : "");
422 
423 	/* populate children from any spi device tables */
424 	scan_boardinfo(master);
425 	status = 0;
426 done:
427 	return status;
428 }
429 EXPORT_SYMBOL_GPL(spi_register_master);
430 
431 
432 static int __unregister(struct device *dev, void *unused)
433 {
434 	/* note: before about 2.6.14-rc1 this would corrupt memory: */
435 	spi_unregister_device(to_spi_device(dev));
436 	return 0;
437 }
438 
439 /**
440  * spi_unregister_master - unregister SPI master controller
441  * @master: the master being unregistered
442  *
443  * This call is used only by SPI master controller drivers, which are the
444  * only ones directly touching chip registers.
445  *
446  * This must be called from context that can sleep.
447  */
448 void spi_unregister_master(struct spi_master *master)
449 {
450 	(void) device_for_each_child(master->cdev.dev, NULL, __unregister);
451 	class_device_unregister(&master->cdev);
452 }
453 EXPORT_SYMBOL_GPL(spi_unregister_master);
454 
455 /**
456  * spi_busnum_to_master - look up master associated with bus_num
457  * @bus_num: the master's bus number
458  *
459  * This call may be used with devices that are registered after
460  * arch init time.  It returns a refcounted pointer to the relevant
461  * spi_master (which the caller must release), or NULL if there is
462  * no such master registered.
463  */
464 struct spi_master *spi_busnum_to_master(u16 bus_num)
465 {
466 	if (bus_num) {
467 		char			name[8];
468 		struct kobject		*bus;
469 
470 		snprintf(name, sizeof name, "spi%u", bus_num);
471 		bus = kset_find_obj(&spi_master_class.subsys.kset, name);
472 		if (bus)
473 			return container_of(bus, struct spi_master, cdev.kobj);
474 	}
475 	return NULL;
476 }
477 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
478 
479 
480 /*-------------------------------------------------------------------------*/
481 
482 static void spi_complete(void *arg)
483 {
484 	complete(arg);
485 }
486 
487 /**
488  * spi_sync - blocking/synchronous SPI data transfers
489  * @spi: device with which data will be exchanged
490  * @message: describes the data transfers
491  *
492  * This call may only be used from a context that may sleep.  The sleep
493  * is non-interruptible, and has no timeout.  Low-overhead controller
494  * drivers may DMA directly into and out of the message buffers.
495  *
496  * Note that the SPI device's chip select is active during the message,
497  * and then is normally disabled between messages.  Drivers for some
498  * frequently-used devices may want to minimize costs of selecting a chip,
499  * by leaving it selected in anticipation that the next message will go
500  * to the same chip.  (That may increase power usage.)
501  *
502  * Also, the caller is guaranteeing that the memory associated with the
503  * message will not be freed before this call returns.
504  *
505  * The return value is a negative error code if the message could not be
506  * submitted, else zero.  When the value is zero, then message->status is
507  * also defined:  it's the completion code for the transfer, either zero
508  * or a negative error code from the controller driver.
509  */
510 int spi_sync(struct spi_device *spi, struct spi_message *message)
511 {
512 	DECLARE_COMPLETION(done);
513 	int status;
514 
515 	message->complete = spi_complete;
516 	message->context = &done;
517 	status = spi_async(spi, message);
518 	if (status == 0)
519 		wait_for_completion(&done);
520 	message->context = NULL;
521 	return status;
522 }
523 EXPORT_SYMBOL_GPL(spi_sync);
524 
525 #define	SPI_BUFSIZ	(SMP_CACHE_BYTES)
526 
527 static u8	*buf;
528 
529 /**
530  * spi_write_then_read - SPI synchronous write followed by read
531  * @spi: device with which data will be exchanged
532  * @txbuf: data to be written (need not be dma-safe)
533  * @n_tx: size of txbuf, in bytes
534  * @rxbuf: buffer into which data will be read
535  * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
536  *
537  * This performs a half duplex MicroWire style transaction with the
538  * device, sending txbuf and then reading rxbuf.  The return value
539  * is zero for success, else a negative errno status code.
540  * This call may only be used from a context that may sleep.
541  *
542  * Parameters to this routine are always copied using a small buffer;
543  * performance-sensitive or bulk transfer code should instead use
544  * spi_{async,sync}() calls with dma-safe buffers.
545  */
546 int spi_write_then_read(struct spi_device *spi,
547 		const u8 *txbuf, unsigned n_tx,
548 		u8 *rxbuf, unsigned n_rx)
549 {
550 	static DECLARE_MUTEX(lock);
551 
552 	int			status;
553 	struct spi_message	message;
554 	struct spi_transfer	x[2];
555 	u8			*local_buf;
556 
557 	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
558 	 * (as a pure convenience thing), but we can keep heap costs
559 	 * out of the hot path ...
560 	 */
561 	if ((n_tx + n_rx) > SPI_BUFSIZ)
562 		return -EINVAL;
563 
564 	spi_message_init(&message);
565 	memset(x, 0, sizeof x);
566 	if (n_tx) {
567 		x[0].len = n_tx;
568 		spi_message_add_tail(&x[0], &message);
569 	}
570 	if (n_rx) {
571 		x[1].len = n_rx;
572 		spi_message_add_tail(&x[1], &message);
573 	}
574 
575 	/* ... unless someone else is using the pre-allocated buffer */
576 	if (down_trylock(&lock)) {
577 		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
578 		if (!local_buf)
579 			return -ENOMEM;
580 	} else
581 		local_buf = buf;
582 
583 	memcpy(local_buf, txbuf, n_tx);
584 	x[0].tx_buf = local_buf;
585 	x[1].rx_buf = local_buf + n_tx;
586 
587 	/* do the i/o */
588 	status = spi_sync(spi, &message);
589 	if (status == 0) {
590 		memcpy(rxbuf, x[1].rx_buf, n_rx);
591 		status = message.status;
592 	}
593 
594 	if (x[0].tx_buf == buf)
595 		up(&lock);
596 	else
597 		kfree(local_buf);
598 
599 	return status;
600 }
601 EXPORT_SYMBOL_GPL(spi_write_then_read);
602 
603 /*-------------------------------------------------------------------------*/
604 
605 static int __init spi_init(void)
606 {
607 	int	status;
608 
609 	buf = kmalloc(SPI_BUFSIZ, SLAB_KERNEL);
610 	if (!buf) {
611 		status = -ENOMEM;
612 		goto err0;
613 	}
614 
615 	status = bus_register(&spi_bus_type);
616 	if (status < 0)
617 		goto err1;
618 
619 	status = class_register(&spi_master_class);
620 	if (status < 0)
621 		goto err2;
622 	return 0;
623 
624 err2:
625 	bus_unregister(&spi_bus_type);
626 err1:
627 	kfree(buf);
628 	buf = NULL;
629 err0:
630 	return status;
631 }
632 
633 /* board_info is normally registered in arch_initcall(),
634  * but even essential drivers wait till later
635  *
636  * REVISIT only boardinfo really needs static linking. the rest (device and
637  * driver registration) _could_ be dynamically linked (modular) ... costs
638  * include needing to have boardinfo data structures be much more public.
639  */
640 subsys_initcall(spi_init);
641 
642