1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/spi.h> 35 #include <linux/spi/spi-mem.h> 36 #include <uapi/linux/sched/types.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/spi.h> 40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 42 43 #include "internals.h" 44 45 static DEFINE_IDR(spi_master_idr); 46 47 static void spidev_release(struct device *dev) 48 { 49 struct spi_device *spi = to_spi_device(dev); 50 51 spi_controller_put(spi->controller); 52 kfree(spi->driver_override); 53 free_percpu(spi->pcpu_statistics); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 int len; 62 63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 64 if (len != -ENODEV) 65 return len; 66 67 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 68 } 69 static DEVICE_ATTR_RO(modalias); 70 71 static ssize_t driver_override_store(struct device *dev, 72 struct device_attribute *a, 73 const char *buf, size_t count) 74 { 75 struct spi_device *spi = to_spi_device(dev); 76 int ret; 77 78 ret = driver_set_override(dev, &spi->driver_override, buf, count); 79 if (ret) 80 return ret; 81 82 return count; 83 } 84 85 static ssize_t driver_override_show(struct device *dev, 86 struct device_attribute *a, char *buf) 87 { 88 const struct spi_device *spi = to_spi_device(dev); 89 ssize_t len; 90 91 device_lock(dev); 92 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 93 device_unlock(dev); 94 return len; 95 } 96 static DEVICE_ATTR_RW(driver_override); 97 98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 99 { 100 struct spi_statistics __percpu *pcpu_stats; 101 102 if (dev) 103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 104 else 105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 106 107 if (pcpu_stats) { 108 int cpu; 109 110 for_each_possible_cpu(cpu) { 111 struct spi_statistics *stat; 112 113 stat = per_cpu_ptr(pcpu_stats, cpu); 114 u64_stats_init(&stat->syncp); 115 } 116 } 117 return pcpu_stats; 118 } 119 120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 121 char *buf, size_t offset) 122 { 123 u64 val = 0; 124 int i; 125 126 for_each_possible_cpu(i) { 127 const struct spi_statistics *pcpu_stats; 128 u64_stats_t *field; 129 unsigned int start; 130 u64 inc; 131 132 pcpu_stats = per_cpu_ptr(stat, i); 133 field = (void *)pcpu_stats + offset; 134 do { 135 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 136 inc = u64_stats_read(field); 137 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 138 val += inc; 139 } 140 return sysfs_emit(buf, "%llu\n", val); 141 } 142 143 #define SPI_STATISTICS_ATTRS(field, file) \ 144 static ssize_t spi_controller_##field##_show(struct device *dev, \ 145 struct device_attribute *attr, \ 146 char *buf) \ 147 { \ 148 struct spi_controller *ctlr = container_of(dev, \ 149 struct spi_controller, dev); \ 150 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 151 } \ 152 static struct device_attribute dev_attr_spi_controller_##field = { \ 153 .attr = { .name = file, .mode = 0444 }, \ 154 .show = spi_controller_##field##_show, \ 155 }; \ 156 static ssize_t spi_device_##field##_show(struct device *dev, \ 157 struct device_attribute *attr, \ 158 char *buf) \ 159 { \ 160 struct spi_device *spi = to_spi_device(dev); \ 161 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 162 } \ 163 static struct device_attribute dev_attr_spi_device_##field = { \ 164 .attr = { .name = file, .mode = 0444 }, \ 165 .show = spi_device_##field##_show, \ 166 } 167 168 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 170 char *buf) \ 171 { \ 172 return spi_emit_pcpu_stats(stat, buf, \ 173 offsetof(struct spi_statistics, field)); \ 174 } \ 175 SPI_STATISTICS_ATTRS(name, file) 176 177 #define SPI_STATISTICS_SHOW(field) \ 178 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 179 field) 180 181 SPI_STATISTICS_SHOW(messages); 182 SPI_STATISTICS_SHOW(transfers); 183 SPI_STATISTICS_SHOW(errors); 184 SPI_STATISTICS_SHOW(timedout); 185 186 SPI_STATISTICS_SHOW(spi_sync); 187 SPI_STATISTICS_SHOW(spi_sync_immediate); 188 SPI_STATISTICS_SHOW(spi_async); 189 190 SPI_STATISTICS_SHOW(bytes); 191 SPI_STATISTICS_SHOW(bytes_rx); 192 SPI_STATISTICS_SHOW(bytes_tx); 193 194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 195 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 196 "transfer_bytes_histo_" number, \ 197 transfer_bytes_histo[index]) 198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 215 216 SPI_STATISTICS_SHOW(transfers_split_maxsize); 217 218 static struct attribute *spi_dev_attrs[] = { 219 &dev_attr_modalias.attr, 220 &dev_attr_driver_override.attr, 221 NULL, 222 }; 223 224 static const struct attribute_group spi_dev_group = { 225 .attrs = spi_dev_attrs, 226 }; 227 228 static struct attribute *spi_device_statistics_attrs[] = { 229 &dev_attr_spi_device_messages.attr, 230 &dev_attr_spi_device_transfers.attr, 231 &dev_attr_spi_device_errors.attr, 232 &dev_attr_spi_device_timedout.attr, 233 &dev_attr_spi_device_spi_sync.attr, 234 &dev_attr_spi_device_spi_sync_immediate.attr, 235 &dev_attr_spi_device_spi_async.attr, 236 &dev_attr_spi_device_bytes.attr, 237 &dev_attr_spi_device_bytes_rx.attr, 238 &dev_attr_spi_device_bytes_tx.attr, 239 &dev_attr_spi_device_transfer_bytes_histo0.attr, 240 &dev_attr_spi_device_transfer_bytes_histo1.attr, 241 &dev_attr_spi_device_transfer_bytes_histo2.attr, 242 &dev_attr_spi_device_transfer_bytes_histo3.attr, 243 &dev_attr_spi_device_transfer_bytes_histo4.attr, 244 &dev_attr_spi_device_transfer_bytes_histo5.attr, 245 &dev_attr_spi_device_transfer_bytes_histo6.attr, 246 &dev_attr_spi_device_transfer_bytes_histo7.attr, 247 &dev_attr_spi_device_transfer_bytes_histo8.attr, 248 &dev_attr_spi_device_transfer_bytes_histo9.attr, 249 &dev_attr_spi_device_transfer_bytes_histo10.attr, 250 &dev_attr_spi_device_transfer_bytes_histo11.attr, 251 &dev_attr_spi_device_transfer_bytes_histo12.attr, 252 &dev_attr_spi_device_transfer_bytes_histo13.attr, 253 &dev_attr_spi_device_transfer_bytes_histo14.attr, 254 &dev_attr_spi_device_transfer_bytes_histo15.attr, 255 &dev_attr_spi_device_transfer_bytes_histo16.attr, 256 &dev_attr_spi_device_transfers_split_maxsize.attr, 257 NULL, 258 }; 259 260 static const struct attribute_group spi_device_statistics_group = { 261 .name = "statistics", 262 .attrs = spi_device_statistics_attrs, 263 }; 264 265 static const struct attribute_group *spi_dev_groups[] = { 266 &spi_dev_group, 267 &spi_device_statistics_group, 268 NULL, 269 }; 270 271 static struct attribute *spi_controller_statistics_attrs[] = { 272 &dev_attr_spi_controller_messages.attr, 273 &dev_attr_spi_controller_transfers.attr, 274 &dev_attr_spi_controller_errors.attr, 275 &dev_attr_spi_controller_timedout.attr, 276 &dev_attr_spi_controller_spi_sync.attr, 277 &dev_attr_spi_controller_spi_sync_immediate.attr, 278 &dev_attr_spi_controller_spi_async.attr, 279 &dev_attr_spi_controller_bytes.attr, 280 &dev_attr_spi_controller_bytes_rx.attr, 281 &dev_attr_spi_controller_bytes_tx.attr, 282 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 299 &dev_attr_spi_controller_transfers_split_maxsize.attr, 300 NULL, 301 }; 302 303 static const struct attribute_group spi_controller_statistics_group = { 304 .name = "statistics", 305 .attrs = spi_controller_statistics_attrs, 306 }; 307 308 static const struct attribute_group *spi_master_groups[] = { 309 &spi_controller_statistics_group, 310 NULL, 311 }; 312 313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 314 struct spi_transfer *xfer, 315 struct spi_message *msg) 316 { 317 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 318 struct spi_statistics *stats; 319 320 if (l2len < 0) 321 l2len = 0; 322 323 get_cpu(); 324 stats = this_cpu_ptr(pcpu_stats); 325 u64_stats_update_begin(&stats->syncp); 326 327 u64_stats_inc(&stats->transfers); 328 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 329 330 u64_stats_add(&stats->bytes, xfer->len); 331 if (spi_valid_txbuf(msg, xfer)) 332 u64_stats_add(&stats->bytes_tx, xfer->len); 333 if (spi_valid_rxbuf(msg, xfer)) 334 u64_stats_add(&stats->bytes_rx, xfer->len); 335 336 u64_stats_update_end(&stats->syncp); 337 put_cpu(); 338 } 339 340 /* 341 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 342 * and the sysfs version makes coldplug work too. 343 */ 344 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 345 { 346 while (id->name[0]) { 347 if (!strcmp(name, id->name)) 348 return id; 349 id++; 350 } 351 return NULL; 352 } 353 354 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 355 { 356 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 357 358 return spi_match_id(sdrv->id_table, sdev->modalias); 359 } 360 EXPORT_SYMBOL_GPL(spi_get_device_id); 361 362 const void *spi_get_device_match_data(const struct spi_device *sdev) 363 { 364 const void *match; 365 366 match = device_get_match_data(&sdev->dev); 367 if (match) 368 return match; 369 370 return (const void *)spi_get_device_id(sdev)->driver_data; 371 } 372 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 373 374 static int spi_match_device(struct device *dev, const struct device_driver *drv) 375 { 376 const struct spi_device *spi = to_spi_device(dev); 377 const struct spi_driver *sdrv = to_spi_driver(drv); 378 379 /* Check override first, and if set, only use the named driver */ 380 if (spi->driver_override) 381 return strcmp(spi->driver_override, drv->name) == 0; 382 383 /* Attempt an OF style match */ 384 if (of_driver_match_device(dev, drv)) 385 return 1; 386 387 /* Then try ACPI */ 388 if (acpi_driver_match_device(dev, drv)) 389 return 1; 390 391 if (sdrv->id_table) 392 return !!spi_match_id(sdrv->id_table, spi->modalias); 393 394 return strcmp(spi->modalias, drv->name) == 0; 395 } 396 397 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 398 { 399 const struct spi_device *spi = to_spi_device(dev); 400 int rc; 401 402 rc = acpi_device_uevent_modalias(dev, env); 403 if (rc != -ENODEV) 404 return rc; 405 406 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 407 } 408 409 static int spi_probe(struct device *dev) 410 { 411 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 412 struct spi_device *spi = to_spi_device(dev); 413 int ret; 414 415 ret = of_clk_set_defaults(dev->of_node, false); 416 if (ret) 417 return ret; 418 419 if (dev->of_node) { 420 spi->irq = of_irq_get(dev->of_node, 0); 421 if (spi->irq == -EPROBE_DEFER) 422 return -EPROBE_DEFER; 423 if (spi->irq < 0) 424 spi->irq = 0; 425 } 426 427 ret = dev_pm_domain_attach(dev, true); 428 if (ret) 429 return ret; 430 431 if (sdrv->probe) { 432 ret = sdrv->probe(spi); 433 if (ret) 434 dev_pm_domain_detach(dev, true); 435 } 436 437 return ret; 438 } 439 440 static void spi_remove(struct device *dev) 441 { 442 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 443 444 if (sdrv->remove) 445 sdrv->remove(to_spi_device(dev)); 446 447 dev_pm_domain_detach(dev, true); 448 } 449 450 static void spi_shutdown(struct device *dev) 451 { 452 if (dev->driver) { 453 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 454 455 if (sdrv->shutdown) 456 sdrv->shutdown(to_spi_device(dev)); 457 } 458 } 459 460 const struct bus_type spi_bus_type = { 461 .name = "spi", 462 .dev_groups = spi_dev_groups, 463 .match = spi_match_device, 464 .uevent = spi_uevent, 465 .probe = spi_probe, 466 .remove = spi_remove, 467 .shutdown = spi_shutdown, 468 }; 469 EXPORT_SYMBOL_GPL(spi_bus_type); 470 471 /** 472 * __spi_register_driver - register a SPI driver 473 * @owner: owner module of the driver to register 474 * @sdrv: the driver to register 475 * Context: can sleep 476 * 477 * Return: zero on success, else a negative error code. 478 */ 479 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 480 { 481 sdrv->driver.owner = owner; 482 sdrv->driver.bus = &spi_bus_type; 483 484 /* 485 * For Really Good Reasons we use spi: modaliases not of: 486 * modaliases for DT so module autoloading won't work if we 487 * don't have a spi_device_id as well as a compatible string. 488 */ 489 if (sdrv->driver.of_match_table) { 490 const struct of_device_id *of_id; 491 492 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 493 of_id++) { 494 const char *of_name; 495 496 /* Strip off any vendor prefix */ 497 of_name = strnchr(of_id->compatible, 498 sizeof(of_id->compatible), ','); 499 if (of_name) 500 of_name++; 501 else 502 of_name = of_id->compatible; 503 504 if (sdrv->id_table) { 505 const struct spi_device_id *spi_id; 506 507 spi_id = spi_match_id(sdrv->id_table, of_name); 508 if (spi_id) 509 continue; 510 } else { 511 if (strcmp(sdrv->driver.name, of_name) == 0) 512 continue; 513 } 514 515 pr_warn("SPI driver %s has no spi_device_id for %s\n", 516 sdrv->driver.name, of_id->compatible); 517 } 518 } 519 520 return driver_register(&sdrv->driver); 521 } 522 EXPORT_SYMBOL_GPL(__spi_register_driver); 523 524 /*-------------------------------------------------------------------------*/ 525 526 /* 527 * SPI devices should normally not be created by SPI device drivers; that 528 * would make them board-specific. Similarly with SPI controller drivers. 529 * Device registration normally goes into like arch/.../mach.../board-YYY.c 530 * with other readonly (flashable) information about mainboard devices. 531 */ 532 533 struct boardinfo { 534 struct list_head list; 535 struct spi_board_info board_info; 536 }; 537 538 static LIST_HEAD(board_list); 539 static LIST_HEAD(spi_controller_list); 540 541 /* 542 * Used to protect add/del operation for board_info list and 543 * spi_controller list, and their matching process also used 544 * to protect object of type struct idr. 545 */ 546 static DEFINE_MUTEX(board_lock); 547 548 /** 549 * spi_alloc_device - Allocate a new SPI device 550 * @ctlr: Controller to which device is connected 551 * Context: can sleep 552 * 553 * Allows a driver to allocate and initialize a spi_device without 554 * registering it immediately. This allows a driver to directly 555 * fill the spi_device with device parameters before calling 556 * spi_add_device() on it. 557 * 558 * Caller is responsible to call spi_add_device() on the returned 559 * spi_device structure to add it to the SPI controller. If the caller 560 * needs to discard the spi_device without adding it, then it should 561 * call spi_dev_put() on it. 562 * 563 * Return: a pointer to the new device, or NULL. 564 */ 565 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 566 { 567 struct spi_device *spi; 568 569 if (!spi_controller_get(ctlr)) 570 return NULL; 571 572 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 573 if (!spi) { 574 spi_controller_put(ctlr); 575 return NULL; 576 } 577 578 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 579 if (!spi->pcpu_statistics) { 580 kfree(spi); 581 spi_controller_put(ctlr); 582 return NULL; 583 } 584 585 spi->controller = ctlr; 586 spi->dev.parent = &ctlr->dev; 587 spi->dev.bus = &spi_bus_type; 588 spi->dev.release = spidev_release; 589 spi->mode = ctlr->buswidth_override_bits; 590 591 device_initialize(&spi->dev); 592 return spi; 593 } 594 EXPORT_SYMBOL_GPL(spi_alloc_device); 595 596 static void spi_dev_set_name(struct spi_device *spi) 597 { 598 struct device *dev = &spi->dev; 599 struct fwnode_handle *fwnode = dev_fwnode(dev); 600 601 if (is_acpi_device_node(fwnode)) { 602 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode))); 603 return; 604 } 605 606 if (is_software_node(fwnode)) { 607 dev_set_name(dev, "spi-%pfwP", fwnode); 608 return; 609 } 610 611 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 612 spi_get_chipselect(spi, 0)); 613 } 614 615 /* 616 * Zero(0) is a valid physical CS value and can be located at any 617 * logical CS in the spi->chip_select[]. If all the physical CS 618 * are initialized to 0 then It would be difficult to differentiate 619 * between a valid physical CS 0 & an unused logical CS whose physical 620 * CS can be 0. As a solution to this issue initialize all the CS to -1. 621 * Now all the unused logical CS will have -1 physical CS value & can be 622 * ignored while performing physical CS validity checks. 623 */ 624 #define SPI_INVALID_CS ((s8)-1) 625 626 static inline bool is_valid_cs(s8 chip_select) 627 { 628 return chip_select != SPI_INVALID_CS; 629 } 630 631 static inline int spi_dev_check_cs(struct device *dev, 632 struct spi_device *spi, u8 idx, 633 struct spi_device *new_spi, u8 new_idx) 634 { 635 u8 cs, cs_new; 636 u8 idx_new; 637 638 cs = spi_get_chipselect(spi, idx); 639 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) { 640 cs_new = spi_get_chipselect(new_spi, idx_new); 641 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) { 642 dev_err(dev, "chipselect %u already in use\n", cs_new); 643 return -EBUSY; 644 } 645 } 646 return 0; 647 } 648 649 static int spi_dev_check(struct device *dev, void *data) 650 { 651 struct spi_device *spi = to_spi_device(dev); 652 struct spi_device *new_spi = data; 653 int status, idx; 654 655 if (spi->controller == new_spi->controller) { 656 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 657 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0); 658 if (status) 659 return status; 660 } 661 } 662 return 0; 663 } 664 665 static void spi_cleanup(struct spi_device *spi) 666 { 667 if (spi->controller->cleanup) 668 spi->controller->cleanup(spi); 669 } 670 671 static int __spi_add_device(struct spi_device *spi) 672 { 673 struct spi_controller *ctlr = spi->controller; 674 struct device *dev = ctlr->dev.parent; 675 int status, idx; 676 u8 cs; 677 678 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 679 /* Chipselects are numbered 0..max; validate. */ 680 cs = spi_get_chipselect(spi, idx); 681 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) { 682 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx), 683 ctlr->num_chipselect); 684 return -EINVAL; 685 } 686 } 687 688 /* 689 * Make sure that multiple logical CS doesn't map to the same physical CS. 690 * For example, spi->chip_select[0] != spi->chip_select[1] and so on. 691 */ 692 if (!spi_controller_is_target(ctlr)) { 693 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 694 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1); 695 if (status) 696 return status; 697 } 698 } 699 700 /* Set the bus ID string */ 701 spi_dev_set_name(spi); 702 703 /* 704 * We need to make sure there's no other device with this 705 * chipselect **BEFORE** we call setup(), else we'll trash 706 * its configuration. 707 */ 708 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 709 if (status) 710 return status; 711 712 /* Controller may unregister concurrently */ 713 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 714 !device_is_registered(&ctlr->dev)) { 715 return -ENODEV; 716 } 717 718 if (ctlr->cs_gpiods) { 719 u8 cs; 720 721 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) { 722 cs = spi_get_chipselect(spi, idx); 723 if (is_valid_cs(cs)) 724 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]); 725 } 726 } 727 728 /* 729 * Drivers may modify this initial i/o setup, but will 730 * normally rely on the device being setup. Devices 731 * using SPI_CS_HIGH can't coexist well otherwise... 732 */ 733 status = spi_setup(spi); 734 if (status < 0) { 735 dev_err(dev, "can't setup %s, status %d\n", 736 dev_name(&spi->dev), status); 737 return status; 738 } 739 740 /* Device may be bound to an active driver when this returns */ 741 status = device_add(&spi->dev); 742 if (status < 0) { 743 dev_err(dev, "can't add %s, status %d\n", 744 dev_name(&spi->dev), status); 745 spi_cleanup(spi); 746 } else { 747 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 748 } 749 750 return status; 751 } 752 753 /** 754 * spi_add_device - Add spi_device allocated with spi_alloc_device 755 * @spi: spi_device to register 756 * 757 * Companion function to spi_alloc_device. Devices allocated with 758 * spi_alloc_device can be added onto the SPI bus with this function. 759 * 760 * Return: 0 on success; negative errno on failure 761 */ 762 int spi_add_device(struct spi_device *spi) 763 { 764 struct spi_controller *ctlr = spi->controller; 765 int status; 766 767 /* Set the bus ID string */ 768 spi_dev_set_name(spi); 769 770 mutex_lock(&ctlr->add_lock); 771 status = __spi_add_device(spi); 772 mutex_unlock(&ctlr->add_lock); 773 return status; 774 } 775 EXPORT_SYMBOL_GPL(spi_add_device); 776 777 static void spi_set_all_cs_unused(struct spi_device *spi) 778 { 779 u8 idx; 780 781 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 782 spi_set_chipselect(spi, idx, SPI_INVALID_CS); 783 } 784 785 /** 786 * spi_new_device - instantiate one new SPI device 787 * @ctlr: Controller to which device is connected 788 * @chip: Describes the SPI device 789 * Context: can sleep 790 * 791 * On typical mainboards, this is purely internal; and it's not needed 792 * after board init creates the hard-wired devices. Some development 793 * platforms may not be able to use spi_register_board_info though, and 794 * this is exported so that for example a USB or parport based adapter 795 * driver could add devices (which it would learn about out-of-band). 796 * 797 * Return: the new device, or NULL. 798 */ 799 struct spi_device *spi_new_device(struct spi_controller *ctlr, 800 struct spi_board_info *chip) 801 { 802 struct spi_device *proxy; 803 int status; 804 805 /* 806 * NOTE: caller did any chip->bus_num checks necessary. 807 * 808 * Also, unless we change the return value convention to use 809 * error-or-pointer (not NULL-or-pointer), troubleshootability 810 * suggests syslogged diagnostics are best here (ugh). 811 */ 812 813 proxy = spi_alloc_device(ctlr); 814 if (!proxy) 815 return NULL; 816 817 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 818 819 /* Use provided chip-select for proxy device */ 820 spi_set_all_cs_unused(proxy); 821 spi_set_chipselect(proxy, 0, chip->chip_select); 822 823 proxy->max_speed_hz = chip->max_speed_hz; 824 proxy->mode = chip->mode; 825 proxy->irq = chip->irq; 826 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 827 proxy->dev.platform_data = (void *) chip->platform_data; 828 proxy->controller_data = chip->controller_data; 829 proxy->controller_state = NULL; 830 /* 831 * By default spi->chip_select[0] will hold the physical CS number, 832 * so set bit 0 in spi->cs_index_mask. 833 */ 834 proxy->cs_index_mask = BIT(0); 835 836 if (chip->swnode) { 837 status = device_add_software_node(&proxy->dev, chip->swnode); 838 if (status) { 839 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 840 chip->modalias, status); 841 goto err_dev_put; 842 } 843 } 844 845 status = spi_add_device(proxy); 846 if (status < 0) 847 goto err_dev_put; 848 849 return proxy; 850 851 err_dev_put: 852 device_remove_software_node(&proxy->dev); 853 spi_dev_put(proxy); 854 return NULL; 855 } 856 EXPORT_SYMBOL_GPL(spi_new_device); 857 858 /** 859 * spi_unregister_device - unregister a single SPI device 860 * @spi: spi_device to unregister 861 * 862 * Start making the passed SPI device vanish. Normally this would be handled 863 * by spi_unregister_controller(). 864 */ 865 void spi_unregister_device(struct spi_device *spi) 866 { 867 if (!spi) 868 return; 869 870 if (spi->dev.of_node) { 871 of_node_clear_flag(spi->dev.of_node, OF_POPULATED); 872 of_node_put(spi->dev.of_node); 873 } 874 if (ACPI_COMPANION(&spi->dev)) 875 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev)); 876 device_remove_software_node(&spi->dev); 877 device_del(&spi->dev); 878 spi_cleanup(spi); 879 put_device(&spi->dev); 880 } 881 EXPORT_SYMBOL_GPL(spi_unregister_device); 882 883 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 884 struct spi_board_info *bi) 885 { 886 struct spi_device *dev; 887 888 if (ctlr->bus_num != bi->bus_num) 889 return; 890 891 dev = spi_new_device(ctlr, bi); 892 if (!dev) 893 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 894 bi->modalias); 895 } 896 897 /** 898 * spi_register_board_info - register SPI devices for a given board 899 * @info: array of chip descriptors 900 * @n: how many descriptors are provided 901 * Context: can sleep 902 * 903 * Board-specific early init code calls this (probably during arch_initcall) 904 * with segments of the SPI device table. Any device nodes are created later, 905 * after the relevant parent SPI controller (bus_num) is defined. We keep 906 * this table of devices forever, so that reloading a controller driver will 907 * not make Linux forget about these hard-wired devices. 908 * 909 * Other code can also call this, e.g. a particular add-on board might provide 910 * SPI devices through its expansion connector, so code initializing that board 911 * would naturally declare its SPI devices. 912 * 913 * The board info passed can safely be __initdata ... but be careful of 914 * any embedded pointers (platform_data, etc), they're copied as-is. 915 * 916 * Return: zero on success, else a negative error code. 917 */ 918 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 919 { 920 struct boardinfo *bi; 921 int i; 922 923 if (!n) 924 return 0; 925 926 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 927 if (!bi) 928 return -ENOMEM; 929 930 for (i = 0; i < n; i++, bi++, info++) { 931 struct spi_controller *ctlr; 932 933 memcpy(&bi->board_info, info, sizeof(*info)); 934 935 mutex_lock(&board_lock); 936 list_add_tail(&bi->list, &board_list); 937 list_for_each_entry(ctlr, &spi_controller_list, list) 938 spi_match_controller_to_boardinfo(ctlr, 939 &bi->board_info); 940 mutex_unlock(&board_lock); 941 } 942 943 return 0; 944 } 945 946 /*-------------------------------------------------------------------------*/ 947 948 /* Core methods for SPI resource management */ 949 950 /** 951 * spi_res_alloc - allocate a spi resource that is life-cycle managed 952 * during the processing of a spi_message while using 953 * spi_transfer_one 954 * @spi: the SPI device for which we allocate memory 955 * @release: the release code to execute for this resource 956 * @size: size to alloc and return 957 * @gfp: GFP allocation flags 958 * 959 * Return: the pointer to the allocated data 960 * 961 * This may get enhanced in the future to allocate from a memory pool 962 * of the @spi_device or @spi_controller to avoid repeated allocations. 963 */ 964 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 965 size_t size, gfp_t gfp) 966 { 967 struct spi_res *sres; 968 969 sres = kzalloc(sizeof(*sres) + size, gfp); 970 if (!sres) 971 return NULL; 972 973 INIT_LIST_HEAD(&sres->entry); 974 sres->release = release; 975 976 return sres->data; 977 } 978 979 /** 980 * spi_res_free - free an SPI resource 981 * @res: pointer to the custom data of a resource 982 */ 983 static void spi_res_free(void *res) 984 { 985 struct spi_res *sres = container_of(res, struct spi_res, data); 986 987 if (!res) 988 return; 989 990 WARN_ON(!list_empty(&sres->entry)); 991 kfree(sres); 992 } 993 994 /** 995 * spi_res_add - add a spi_res to the spi_message 996 * @message: the SPI message 997 * @res: the spi_resource 998 */ 999 static void spi_res_add(struct spi_message *message, void *res) 1000 { 1001 struct spi_res *sres = container_of(res, struct spi_res, data); 1002 1003 WARN_ON(!list_empty(&sres->entry)); 1004 list_add_tail(&sres->entry, &message->resources); 1005 } 1006 1007 /** 1008 * spi_res_release - release all SPI resources for this message 1009 * @ctlr: the @spi_controller 1010 * @message: the @spi_message 1011 */ 1012 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 1013 { 1014 struct spi_res *res, *tmp; 1015 1016 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 1017 if (res->release) 1018 res->release(ctlr, message, res->data); 1019 1020 list_del(&res->entry); 1021 1022 kfree(res); 1023 } 1024 } 1025 1026 /*-------------------------------------------------------------------------*/ 1027 #define spi_for_each_valid_cs(spi, idx) \ 1028 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) \ 1029 if (!(spi->cs_index_mask & BIT(idx))) {} else 1030 1031 static inline bool spi_is_last_cs(struct spi_device *spi) 1032 { 1033 u8 idx; 1034 bool last = false; 1035 1036 spi_for_each_valid_cs(spi, idx) { 1037 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx)) 1038 last = true; 1039 } 1040 return last; 1041 } 1042 1043 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate) 1044 { 1045 /* 1046 * Historically ACPI has no means of the GPIO polarity and 1047 * thus the SPISerialBus() resource defines it on the per-chip 1048 * basis. In order to avoid a chain of negations, the GPIO 1049 * polarity is considered being Active High. Even for the cases 1050 * when _DSD() is involved (in the updated versions of ACPI) 1051 * the GPIO CS polarity must be defined Active High to avoid 1052 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 1053 * into account. 1054 */ 1055 if (has_acpi_companion(&spi->dev)) 1056 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable); 1057 else 1058 /* Polarity handled by GPIO library */ 1059 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate); 1060 1061 if (activate) 1062 spi_delay_exec(&spi->cs_setup, NULL); 1063 else 1064 spi_delay_exec(&spi->cs_inactive, NULL); 1065 } 1066 1067 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 1068 { 1069 bool activate = enable; 1070 u8 idx; 1071 1072 /* 1073 * Avoid calling into the driver (or doing delays) if the chip select 1074 * isn't actually changing from the last time this was called. 1075 */ 1076 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1077 spi_is_last_cs(spi)) || 1078 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask && 1079 !spi_is_last_cs(spi))) && 1080 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 1081 return; 1082 1083 trace_spi_set_cs(spi, activate); 1084 1085 spi->controller->last_cs_index_mask = spi->cs_index_mask; 1086 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 1087 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS; 1088 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 1089 1090 if (spi->mode & SPI_CS_HIGH) 1091 enable = !enable; 1092 1093 /* 1094 * Handle chip select delays for GPIO based CS or controllers without 1095 * programmable chip select timing. 1096 */ 1097 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate) 1098 spi_delay_exec(&spi->cs_hold, NULL); 1099 1100 if (spi_is_csgpiod(spi)) { 1101 if (!(spi->mode & SPI_NO_CS)) { 1102 spi_for_each_valid_cs(spi, idx) { 1103 if (spi_get_csgpiod(spi, idx)) 1104 spi_toggle_csgpiod(spi, idx, enable, activate); 1105 } 1106 } 1107 /* Some SPI masters need both GPIO CS & slave_select */ 1108 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 1109 spi->controller->set_cs) 1110 spi->controller->set_cs(spi, !enable); 1111 } else if (spi->controller->set_cs) { 1112 spi->controller->set_cs(spi, !enable); 1113 } 1114 1115 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) { 1116 if (activate) 1117 spi_delay_exec(&spi->cs_setup, NULL); 1118 else 1119 spi_delay_exec(&spi->cs_inactive, NULL); 1120 } 1121 } 1122 1123 #ifdef CONFIG_HAS_DMA 1124 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1125 struct sg_table *sgt, void *buf, size_t len, 1126 enum dma_data_direction dir, unsigned long attrs) 1127 { 1128 const bool vmalloced_buf = is_vmalloc_addr(buf); 1129 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1130 #ifdef CONFIG_HIGHMEM 1131 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1132 (unsigned long)buf < (PKMAP_BASE + 1133 (LAST_PKMAP * PAGE_SIZE))); 1134 #else 1135 const bool kmap_buf = false; 1136 #endif 1137 int desc_len; 1138 int sgs; 1139 struct page *vm_page; 1140 struct scatterlist *sg; 1141 void *sg_buf; 1142 size_t min; 1143 int i, ret; 1144 1145 if (vmalloced_buf || kmap_buf) { 1146 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1147 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1148 } else if (virt_addr_valid(buf)) { 1149 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1150 sgs = DIV_ROUND_UP(len, desc_len); 1151 } else { 1152 return -EINVAL; 1153 } 1154 1155 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1156 if (ret != 0) 1157 return ret; 1158 1159 sg = &sgt->sgl[0]; 1160 for (i = 0; i < sgs; i++) { 1161 1162 if (vmalloced_buf || kmap_buf) { 1163 /* 1164 * Next scatterlist entry size is the minimum between 1165 * the desc_len and the remaining buffer length that 1166 * fits in a page. 1167 */ 1168 min = min_t(size_t, desc_len, 1169 min_t(size_t, len, 1170 PAGE_SIZE - offset_in_page(buf))); 1171 if (vmalloced_buf) 1172 vm_page = vmalloc_to_page(buf); 1173 else 1174 vm_page = kmap_to_page(buf); 1175 if (!vm_page) { 1176 sg_free_table(sgt); 1177 return -ENOMEM; 1178 } 1179 sg_set_page(sg, vm_page, 1180 min, offset_in_page(buf)); 1181 } else { 1182 min = min_t(size_t, len, desc_len); 1183 sg_buf = buf; 1184 sg_set_buf(sg, sg_buf, min); 1185 } 1186 1187 buf += min; 1188 len -= min; 1189 sg = sg_next(sg); 1190 } 1191 1192 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1193 if (ret < 0) { 1194 sg_free_table(sgt); 1195 return ret; 1196 } 1197 1198 return 0; 1199 } 1200 1201 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1202 struct sg_table *sgt, void *buf, size_t len, 1203 enum dma_data_direction dir) 1204 { 1205 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1206 } 1207 1208 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1209 struct device *dev, struct sg_table *sgt, 1210 enum dma_data_direction dir, 1211 unsigned long attrs) 1212 { 1213 dma_unmap_sgtable(dev, sgt, dir, attrs); 1214 sg_free_table(sgt); 1215 sgt->orig_nents = 0; 1216 sgt->nents = 0; 1217 } 1218 1219 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1220 struct sg_table *sgt, enum dma_data_direction dir) 1221 { 1222 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1223 } 1224 1225 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1226 { 1227 struct device *tx_dev, *rx_dev; 1228 struct spi_transfer *xfer; 1229 int ret; 1230 1231 if (!ctlr->can_dma) 1232 return 0; 1233 1234 if (ctlr->dma_tx) 1235 tx_dev = ctlr->dma_tx->device->dev; 1236 else if (ctlr->dma_map_dev) 1237 tx_dev = ctlr->dma_map_dev; 1238 else 1239 tx_dev = ctlr->dev.parent; 1240 1241 if (ctlr->dma_rx) 1242 rx_dev = ctlr->dma_rx->device->dev; 1243 else if (ctlr->dma_map_dev) 1244 rx_dev = ctlr->dma_map_dev; 1245 else 1246 rx_dev = ctlr->dev.parent; 1247 1248 ret = -ENOMSG; 1249 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1250 /* The sync is done before each transfer. */ 1251 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1252 1253 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1254 continue; 1255 1256 if (xfer->tx_buf != NULL) { 1257 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1258 (void *)xfer->tx_buf, 1259 xfer->len, DMA_TO_DEVICE, 1260 attrs); 1261 if (ret != 0) 1262 return ret; 1263 1264 xfer->tx_sg_mapped = true; 1265 } 1266 1267 if (xfer->rx_buf != NULL) { 1268 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1269 xfer->rx_buf, xfer->len, 1270 DMA_FROM_DEVICE, attrs); 1271 if (ret != 0) { 1272 spi_unmap_buf_attrs(ctlr, tx_dev, 1273 &xfer->tx_sg, DMA_TO_DEVICE, 1274 attrs); 1275 1276 return ret; 1277 } 1278 1279 xfer->rx_sg_mapped = true; 1280 } 1281 } 1282 /* No transfer has been mapped, bail out with success */ 1283 if (ret) 1284 return 0; 1285 1286 ctlr->cur_rx_dma_dev = rx_dev; 1287 ctlr->cur_tx_dma_dev = tx_dev; 1288 1289 return 0; 1290 } 1291 1292 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1293 { 1294 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1295 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1296 struct spi_transfer *xfer; 1297 1298 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1299 /* The sync has already been done after each transfer. */ 1300 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1301 1302 if (xfer->rx_sg_mapped) 1303 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1304 DMA_FROM_DEVICE, attrs); 1305 xfer->rx_sg_mapped = false; 1306 1307 if (xfer->tx_sg_mapped) 1308 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1309 DMA_TO_DEVICE, attrs); 1310 xfer->tx_sg_mapped = false; 1311 } 1312 1313 return 0; 1314 } 1315 1316 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1317 struct spi_transfer *xfer) 1318 { 1319 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1320 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1321 1322 if (xfer->tx_sg_mapped) 1323 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1324 if (xfer->rx_sg_mapped) 1325 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1326 } 1327 1328 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1329 struct spi_transfer *xfer) 1330 { 1331 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1332 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1333 1334 if (xfer->rx_sg_mapped) 1335 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1336 if (xfer->tx_sg_mapped) 1337 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1338 } 1339 #else /* !CONFIG_HAS_DMA */ 1340 static inline int __spi_map_msg(struct spi_controller *ctlr, 1341 struct spi_message *msg) 1342 { 1343 return 0; 1344 } 1345 1346 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1347 struct spi_message *msg) 1348 { 1349 return 0; 1350 } 1351 1352 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1353 struct spi_transfer *xfer) 1354 { 1355 } 1356 1357 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1358 struct spi_transfer *xfer) 1359 { 1360 } 1361 #endif /* !CONFIG_HAS_DMA */ 1362 1363 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1364 struct spi_message *msg) 1365 { 1366 struct spi_transfer *xfer; 1367 1368 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1369 /* 1370 * Restore the original value of tx_buf or rx_buf if they are 1371 * NULL. 1372 */ 1373 if (xfer->tx_buf == ctlr->dummy_tx) 1374 xfer->tx_buf = NULL; 1375 if (xfer->rx_buf == ctlr->dummy_rx) 1376 xfer->rx_buf = NULL; 1377 } 1378 1379 return __spi_unmap_msg(ctlr, msg); 1380 } 1381 1382 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1383 { 1384 struct spi_transfer *xfer; 1385 void *tmp; 1386 unsigned int max_tx, max_rx; 1387 1388 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1389 && !(msg->spi->mode & SPI_3WIRE)) { 1390 max_tx = 0; 1391 max_rx = 0; 1392 1393 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1394 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1395 !xfer->tx_buf) 1396 max_tx = max(xfer->len, max_tx); 1397 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1398 !xfer->rx_buf) 1399 max_rx = max(xfer->len, max_rx); 1400 } 1401 1402 if (max_tx) { 1403 tmp = krealloc(ctlr->dummy_tx, max_tx, 1404 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1405 if (!tmp) 1406 return -ENOMEM; 1407 ctlr->dummy_tx = tmp; 1408 } 1409 1410 if (max_rx) { 1411 tmp = krealloc(ctlr->dummy_rx, max_rx, 1412 GFP_KERNEL | GFP_DMA); 1413 if (!tmp) 1414 return -ENOMEM; 1415 ctlr->dummy_rx = tmp; 1416 } 1417 1418 if (max_tx || max_rx) { 1419 list_for_each_entry(xfer, &msg->transfers, 1420 transfer_list) { 1421 if (!xfer->len) 1422 continue; 1423 if (!xfer->tx_buf) 1424 xfer->tx_buf = ctlr->dummy_tx; 1425 if (!xfer->rx_buf) 1426 xfer->rx_buf = ctlr->dummy_rx; 1427 } 1428 } 1429 } 1430 1431 return __spi_map_msg(ctlr, msg); 1432 } 1433 1434 static int spi_transfer_wait(struct spi_controller *ctlr, 1435 struct spi_message *msg, 1436 struct spi_transfer *xfer) 1437 { 1438 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1439 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1440 u32 speed_hz = xfer->speed_hz; 1441 unsigned long long ms; 1442 1443 if (spi_controller_is_slave(ctlr)) { 1444 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1445 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1446 return -EINTR; 1447 } 1448 } else { 1449 if (!speed_hz) 1450 speed_hz = 100000; 1451 1452 /* 1453 * For each byte we wait for 8 cycles of the SPI clock. 1454 * Since speed is defined in Hz and we want milliseconds, 1455 * use respective multiplier, but before the division, 1456 * otherwise we may get 0 for short transfers. 1457 */ 1458 ms = 8LL * MSEC_PER_SEC * xfer->len; 1459 do_div(ms, speed_hz); 1460 1461 /* 1462 * Increase it twice and add 200 ms tolerance, use 1463 * predefined maximum in case of overflow. 1464 */ 1465 ms += ms + 200; 1466 if (ms > UINT_MAX) 1467 ms = UINT_MAX; 1468 1469 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1470 msecs_to_jiffies(ms)); 1471 1472 if (ms == 0) { 1473 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1474 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1475 dev_err(&msg->spi->dev, 1476 "SPI transfer timed out\n"); 1477 return -ETIMEDOUT; 1478 } 1479 1480 if (xfer->error & SPI_TRANS_FAIL_IO) 1481 return -EIO; 1482 } 1483 1484 return 0; 1485 } 1486 1487 static void _spi_transfer_delay_ns(u32 ns) 1488 { 1489 if (!ns) 1490 return; 1491 if (ns <= NSEC_PER_USEC) { 1492 ndelay(ns); 1493 } else { 1494 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1495 1496 if (us <= 10) 1497 udelay(us); 1498 else 1499 usleep_range(us, us + DIV_ROUND_UP(us, 10)); 1500 } 1501 } 1502 1503 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1504 { 1505 u32 delay = _delay->value; 1506 u32 unit = _delay->unit; 1507 u32 hz; 1508 1509 if (!delay) 1510 return 0; 1511 1512 switch (unit) { 1513 case SPI_DELAY_UNIT_USECS: 1514 delay *= NSEC_PER_USEC; 1515 break; 1516 case SPI_DELAY_UNIT_NSECS: 1517 /* Nothing to do here */ 1518 break; 1519 case SPI_DELAY_UNIT_SCK: 1520 /* Clock cycles need to be obtained from spi_transfer */ 1521 if (!xfer) 1522 return -EINVAL; 1523 /* 1524 * If there is unknown effective speed, approximate it 1525 * by underestimating with half of the requested Hz. 1526 */ 1527 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1528 if (!hz) 1529 return -EINVAL; 1530 1531 /* Convert delay to nanoseconds */ 1532 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1533 break; 1534 default: 1535 return -EINVAL; 1536 } 1537 1538 return delay; 1539 } 1540 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1541 1542 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1543 { 1544 int delay; 1545 1546 might_sleep(); 1547 1548 if (!_delay) 1549 return -EINVAL; 1550 1551 delay = spi_delay_to_ns(_delay, xfer); 1552 if (delay < 0) 1553 return delay; 1554 1555 _spi_transfer_delay_ns(delay); 1556 1557 return 0; 1558 } 1559 EXPORT_SYMBOL_GPL(spi_delay_exec); 1560 1561 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1562 struct spi_transfer *xfer) 1563 { 1564 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1565 u32 delay = xfer->cs_change_delay.value; 1566 u32 unit = xfer->cs_change_delay.unit; 1567 int ret; 1568 1569 /* Return early on "fast" mode - for everything but USECS */ 1570 if (!delay) { 1571 if (unit == SPI_DELAY_UNIT_USECS) 1572 _spi_transfer_delay_ns(default_delay_ns); 1573 return; 1574 } 1575 1576 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1577 if (ret) { 1578 dev_err_once(&msg->spi->dev, 1579 "Use of unsupported delay unit %i, using default of %luus\n", 1580 unit, default_delay_ns / NSEC_PER_USEC); 1581 _spi_transfer_delay_ns(default_delay_ns); 1582 } 1583 } 1584 1585 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1586 struct spi_transfer *xfer) 1587 { 1588 _spi_transfer_cs_change_delay(msg, xfer); 1589 } 1590 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1591 1592 /* 1593 * spi_transfer_one_message - Default implementation of transfer_one_message() 1594 * 1595 * This is a standard implementation of transfer_one_message() for 1596 * drivers which implement a transfer_one() operation. It provides 1597 * standard handling of delays and chip select management. 1598 */ 1599 static int spi_transfer_one_message(struct spi_controller *ctlr, 1600 struct spi_message *msg) 1601 { 1602 struct spi_transfer *xfer; 1603 bool keep_cs = false; 1604 int ret = 0; 1605 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1606 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1607 1608 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1609 spi_set_cs(msg->spi, !xfer->cs_off, false); 1610 1611 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1612 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1613 1614 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1615 trace_spi_transfer_start(msg, xfer); 1616 1617 spi_statistics_add_transfer_stats(statm, xfer, msg); 1618 spi_statistics_add_transfer_stats(stats, xfer, msg); 1619 1620 if (!ctlr->ptp_sts_supported) { 1621 xfer->ptp_sts_word_pre = 0; 1622 ptp_read_system_prets(xfer->ptp_sts); 1623 } 1624 1625 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1626 reinit_completion(&ctlr->xfer_completion); 1627 1628 fallback_pio: 1629 spi_dma_sync_for_device(ctlr, xfer); 1630 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1631 if (ret < 0) { 1632 spi_dma_sync_for_cpu(ctlr, xfer); 1633 1634 if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) && 1635 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1636 __spi_unmap_msg(ctlr, msg); 1637 ctlr->fallback = true; 1638 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1639 goto fallback_pio; 1640 } 1641 1642 SPI_STATISTICS_INCREMENT_FIELD(statm, 1643 errors); 1644 SPI_STATISTICS_INCREMENT_FIELD(stats, 1645 errors); 1646 dev_err(&msg->spi->dev, 1647 "SPI transfer failed: %d\n", ret); 1648 goto out; 1649 } 1650 1651 if (ret > 0) { 1652 ret = spi_transfer_wait(ctlr, msg, xfer); 1653 if (ret < 0) 1654 msg->status = ret; 1655 } 1656 1657 spi_dma_sync_for_cpu(ctlr, xfer); 1658 } else { 1659 if (xfer->len) 1660 dev_err(&msg->spi->dev, 1661 "Bufferless transfer has length %u\n", 1662 xfer->len); 1663 } 1664 1665 if (!ctlr->ptp_sts_supported) { 1666 ptp_read_system_postts(xfer->ptp_sts); 1667 xfer->ptp_sts_word_post = xfer->len; 1668 } 1669 1670 trace_spi_transfer_stop(msg, xfer); 1671 1672 if (msg->status != -EINPROGRESS) 1673 goto out; 1674 1675 spi_transfer_delay_exec(xfer); 1676 1677 if (xfer->cs_change) { 1678 if (list_is_last(&xfer->transfer_list, 1679 &msg->transfers)) { 1680 keep_cs = true; 1681 } else { 1682 if (!xfer->cs_off) 1683 spi_set_cs(msg->spi, false, false); 1684 _spi_transfer_cs_change_delay(msg, xfer); 1685 if (!list_next_entry(xfer, transfer_list)->cs_off) 1686 spi_set_cs(msg->spi, true, false); 1687 } 1688 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1689 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1690 spi_set_cs(msg->spi, xfer->cs_off, false); 1691 } 1692 1693 msg->actual_length += xfer->len; 1694 } 1695 1696 out: 1697 if (ret != 0 || !keep_cs) 1698 spi_set_cs(msg->spi, false, false); 1699 1700 if (msg->status == -EINPROGRESS) 1701 msg->status = ret; 1702 1703 if (msg->status && ctlr->handle_err) 1704 ctlr->handle_err(ctlr, msg); 1705 1706 spi_finalize_current_message(ctlr); 1707 1708 return ret; 1709 } 1710 1711 /** 1712 * spi_finalize_current_transfer - report completion of a transfer 1713 * @ctlr: the controller reporting completion 1714 * 1715 * Called by SPI drivers using the core transfer_one_message() 1716 * implementation to notify it that the current interrupt driven 1717 * transfer has finished and the next one may be scheduled. 1718 */ 1719 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1720 { 1721 complete(&ctlr->xfer_completion); 1722 } 1723 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1724 1725 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1726 { 1727 if (ctlr->auto_runtime_pm) { 1728 pm_runtime_mark_last_busy(ctlr->dev.parent); 1729 pm_runtime_put_autosuspend(ctlr->dev.parent); 1730 } 1731 } 1732 1733 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1734 struct spi_message *msg, bool was_busy) 1735 { 1736 struct spi_transfer *xfer; 1737 int ret; 1738 1739 if (!was_busy && ctlr->auto_runtime_pm) { 1740 ret = pm_runtime_get_sync(ctlr->dev.parent); 1741 if (ret < 0) { 1742 pm_runtime_put_noidle(ctlr->dev.parent); 1743 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1744 ret); 1745 1746 msg->status = ret; 1747 spi_finalize_current_message(ctlr); 1748 1749 return ret; 1750 } 1751 } 1752 1753 if (!was_busy) 1754 trace_spi_controller_busy(ctlr); 1755 1756 if (!was_busy && ctlr->prepare_transfer_hardware) { 1757 ret = ctlr->prepare_transfer_hardware(ctlr); 1758 if (ret) { 1759 dev_err(&ctlr->dev, 1760 "failed to prepare transfer hardware: %d\n", 1761 ret); 1762 1763 if (ctlr->auto_runtime_pm) 1764 pm_runtime_put(ctlr->dev.parent); 1765 1766 msg->status = ret; 1767 spi_finalize_current_message(ctlr); 1768 1769 return ret; 1770 } 1771 } 1772 1773 trace_spi_message_start(msg); 1774 1775 if (ctlr->prepare_message) { 1776 ret = ctlr->prepare_message(ctlr, msg); 1777 if (ret) { 1778 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1779 ret); 1780 msg->status = ret; 1781 spi_finalize_current_message(ctlr); 1782 return ret; 1783 } 1784 msg->prepared = true; 1785 } 1786 1787 ret = spi_map_msg(ctlr, msg); 1788 if (ret) { 1789 msg->status = ret; 1790 spi_finalize_current_message(ctlr); 1791 return ret; 1792 } 1793 1794 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1795 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1796 xfer->ptp_sts_word_pre = 0; 1797 ptp_read_system_prets(xfer->ptp_sts); 1798 } 1799 } 1800 1801 /* 1802 * Drivers implementation of transfer_one_message() must arrange for 1803 * spi_finalize_current_message() to get called. Most drivers will do 1804 * this in the calling context, but some don't. For those cases, a 1805 * completion is used to guarantee that this function does not return 1806 * until spi_finalize_current_message() is done accessing 1807 * ctlr->cur_msg. 1808 * Use of the following two flags enable to opportunistically skip the 1809 * use of the completion since its use involves expensive spin locks. 1810 * In case of a race with the context that calls 1811 * spi_finalize_current_message() the completion will always be used, 1812 * due to strict ordering of these flags using barriers. 1813 */ 1814 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1815 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1816 reinit_completion(&ctlr->cur_msg_completion); 1817 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1818 1819 ret = ctlr->transfer_one_message(ctlr, msg); 1820 if (ret) { 1821 dev_err(&ctlr->dev, 1822 "failed to transfer one message from queue\n"); 1823 return ret; 1824 } 1825 1826 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1827 smp_mb(); /* See spi_finalize_current_message()... */ 1828 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1829 wait_for_completion(&ctlr->cur_msg_completion); 1830 1831 return 0; 1832 } 1833 1834 /** 1835 * __spi_pump_messages - function which processes SPI message queue 1836 * @ctlr: controller to process queue for 1837 * @in_kthread: true if we are in the context of the message pump thread 1838 * 1839 * This function checks if there is any SPI message in the queue that 1840 * needs processing and if so call out to the driver to initialize hardware 1841 * and transfer each message. 1842 * 1843 * Note that it is called both from the kthread itself and also from 1844 * inside spi_sync(); the queue extraction handling at the top of the 1845 * function should deal with this safely. 1846 */ 1847 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1848 { 1849 struct spi_message *msg; 1850 bool was_busy = false; 1851 unsigned long flags; 1852 int ret; 1853 1854 /* Take the I/O mutex */ 1855 mutex_lock(&ctlr->io_mutex); 1856 1857 /* Lock queue */ 1858 spin_lock_irqsave(&ctlr->queue_lock, flags); 1859 1860 /* Make sure we are not already running a message */ 1861 if (ctlr->cur_msg) 1862 goto out_unlock; 1863 1864 /* Check if the queue is idle */ 1865 if (list_empty(&ctlr->queue) || !ctlr->running) { 1866 if (!ctlr->busy) 1867 goto out_unlock; 1868 1869 /* Defer any non-atomic teardown to the thread */ 1870 if (!in_kthread) { 1871 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1872 !ctlr->unprepare_transfer_hardware) { 1873 spi_idle_runtime_pm(ctlr); 1874 ctlr->busy = false; 1875 ctlr->queue_empty = true; 1876 trace_spi_controller_idle(ctlr); 1877 } else { 1878 kthread_queue_work(ctlr->kworker, 1879 &ctlr->pump_messages); 1880 } 1881 goto out_unlock; 1882 } 1883 1884 ctlr->busy = false; 1885 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1886 1887 kfree(ctlr->dummy_rx); 1888 ctlr->dummy_rx = NULL; 1889 kfree(ctlr->dummy_tx); 1890 ctlr->dummy_tx = NULL; 1891 if (ctlr->unprepare_transfer_hardware && 1892 ctlr->unprepare_transfer_hardware(ctlr)) 1893 dev_err(&ctlr->dev, 1894 "failed to unprepare transfer hardware\n"); 1895 spi_idle_runtime_pm(ctlr); 1896 trace_spi_controller_idle(ctlr); 1897 1898 spin_lock_irqsave(&ctlr->queue_lock, flags); 1899 ctlr->queue_empty = true; 1900 goto out_unlock; 1901 } 1902 1903 /* Extract head of queue */ 1904 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1905 ctlr->cur_msg = msg; 1906 1907 list_del_init(&msg->queue); 1908 if (ctlr->busy) 1909 was_busy = true; 1910 else 1911 ctlr->busy = true; 1912 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1913 1914 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1915 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1916 1917 ctlr->cur_msg = NULL; 1918 ctlr->fallback = false; 1919 1920 mutex_unlock(&ctlr->io_mutex); 1921 1922 /* Prod the scheduler in case transfer_one() was busy waiting */ 1923 if (!ret) 1924 cond_resched(); 1925 return; 1926 1927 out_unlock: 1928 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1929 mutex_unlock(&ctlr->io_mutex); 1930 } 1931 1932 /** 1933 * spi_pump_messages - kthread work function which processes spi message queue 1934 * @work: pointer to kthread work struct contained in the controller struct 1935 */ 1936 static void spi_pump_messages(struct kthread_work *work) 1937 { 1938 struct spi_controller *ctlr = 1939 container_of(work, struct spi_controller, pump_messages); 1940 1941 __spi_pump_messages(ctlr, true); 1942 } 1943 1944 /** 1945 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1946 * @ctlr: Pointer to the spi_controller structure of the driver 1947 * @xfer: Pointer to the transfer being timestamped 1948 * @progress: How many words (not bytes) have been transferred so far 1949 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1950 * transfer, for less jitter in time measurement. Only compatible 1951 * with PIO drivers. If true, must follow up with 1952 * spi_take_timestamp_post or otherwise system will crash. 1953 * WARNING: for fully predictable results, the CPU frequency must 1954 * also be under control (governor). 1955 * 1956 * This is a helper for drivers to collect the beginning of the TX timestamp 1957 * for the requested byte from the SPI transfer. The frequency with which this 1958 * function must be called (once per word, once for the whole transfer, once 1959 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1960 * greater than or equal to the requested byte at the time of the call. The 1961 * timestamp is only taken once, at the first such call. It is assumed that 1962 * the driver advances its @tx buffer pointer monotonically. 1963 */ 1964 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1965 struct spi_transfer *xfer, 1966 size_t progress, bool irqs_off) 1967 { 1968 if (!xfer->ptp_sts) 1969 return; 1970 1971 if (xfer->timestamped) 1972 return; 1973 1974 if (progress > xfer->ptp_sts_word_pre) 1975 return; 1976 1977 /* Capture the resolution of the timestamp */ 1978 xfer->ptp_sts_word_pre = progress; 1979 1980 if (irqs_off) { 1981 local_irq_save(ctlr->irq_flags); 1982 preempt_disable(); 1983 } 1984 1985 ptp_read_system_prets(xfer->ptp_sts); 1986 } 1987 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1988 1989 /** 1990 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1991 * @ctlr: Pointer to the spi_controller structure of the driver 1992 * @xfer: Pointer to the transfer being timestamped 1993 * @progress: How many words (not bytes) have been transferred so far 1994 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1995 * 1996 * This is a helper for drivers to collect the end of the TX timestamp for 1997 * the requested byte from the SPI transfer. Can be called with an arbitrary 1998 * frequency: only the first call where @tx exceeds or is equal to the 1999 * requested word will be timestamped. 2000 */ 2001 void spi_take_timestamp_post(struct spi_controller *ctlr, 2002 struct spi_transfer *xfer, 2003 size_t progress, bool irqs_off) 2004 { 2005 if (!xfer->ptp_sts) 2006 return; 2007 2008 if (xfer->timestamped) 2009 return; 2010 2011 if (progress < xfer->ptp_sts_word_post) 2012 return; 2013 2014 ptp_read_system_postts(xfer->ptp_sts); 2015 2016 if (irqs_off) { 2017 local_irq_restore(ctlr->irq_flags); 2018 preempt_enable(); 2019 } 2020 2021 /* Capture the resolution of the timestamp */ 2022 xfer->ptp_sts_word_post = progress; 2023 2024 xfer->timestamped = 1; 2025 } 2026 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 2027 2028 /** 2029 * spi_set_thread_rt - set the controller to pump at realtime priority 2030 * @ctlr: controller to boost priority of 2031 * 2032 * This can be called because the controller requested realtime priority 2033 * (by setting the ->rt value before calling spi_register_controller()) or 2034 * because a device on the bus said that its transfers needed realtime 2035 * priority. 2036 * 2037 * NOTE: at the moment if any device on a bus says it needs realtime then 2038 * the thread will be at realtime priority for all transfers on that 2039 * controller. If this eventually becomes a problem we may see if we can 2040 * find a way to boost the priority only temporarily during relevant 2041 * transfers. 2042 */ 2043 static void spi_set_thread_rt(struct spi_controller *ctlr) 2044 { 2045 dev_info(&ctlr->dev, 2046 "will run message pump with realtime priority\n"); 2047 sched_set_fifo(ctlr->kworker->task); 2048 } 2049 2050 static int spi_init_queue(struct spi_controller *ctlr) 2051 { 2052 ctlr->running = false; 2053 ctlr->busy = false; 2054 ctlr->queue_empty = true; 2055 2056 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev)); 2057 if (IS_ERR(ctlr->kworker)) { 2058 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 2059 return PTR_ERR(ctlr->kworker); 2060 } 2061 2062 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 2063 2064 /* 2065 * Controller config will indicate if this controller should run the 2066 * message pump with high (realtime) priority to reduce the transfer 2067 * latency on the bus by minimising the delay between a transfer 2068 * request and the scheduling of the message pump thread. Without this 2069 * setting the message pump thread will remain at default priority. 2070 */ 2071 if (ctlr->rt) 2072 spi_set_thread_rt(ctlr); 2073 2074 return 0; 2075 } 2076 2077 /** 2078 * spi_get_next_queued_message() - called by driver to check for queued 2079 * messages 2080 * @ctlr: the controller to check for queued messages 2081 * 2082 * If there are more messages in the queue, the next message is returned from 2083 * this call. 2084 * 2085 * Return: the next message in the queue, else NULL if the queue is empty. 2086 */ 2087 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 2088 { 2089 struct spi_message *next; 2090 unsigned long flags; 2091 2092 /* Get a pointer to the next message, if any */ 2093 spin_lock_irqsave(&ctlr->queue_lock, flags); 2094 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2095 queue); 2096 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2097 2098 return next; 2099 } 2100 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2101 2102 /* 2103 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message() 2104 * and spi_maybe_unoptimize_message() 2105 * @msg: the message to unoptimize 2106 * 2107 * Peripheral drivers should use spi_unoptimize_message() and callers inside 2108 * core should use spi_maybe_unoptimize_message() rather than calling this 2109 * function directly. 2110 * 2111 * It is not valid to call this on a message that is not currently optimized. 2112 */ 2113 static void __spi_unoptimize_message(struct spi_message *msg) 2114 { 2115 struct spi_controller *ctlr = msg->spi->controller; 2116 2117 if (ctlr->unoptimize_message) 2118 ctlr->unoptimize_message(msg); 2119 2120 spi_res_release(ctlr, msg); 2121 2122 msg->optimized = false; 2123 msg->opt_state = NULL; 2124 } 2125 2126 /* 2127 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral 2128 * @msg: the message to unoptimize 2129 * 2130 * This function is used to unoptimize a message if and only if it was 2131 * optimized by the core (via spi_maybe_optimize_message()). 2132 */ 2133 static void spi_maybe_unoptimize_message(struct spi_message *msg) 2134 { 2135 if (!msg->pre_optimized && msg->optimized && 2136 !msg->spi->controller->defer_optimize_message) 2137 __spi_unoptimize_message(msg); 2138 } 2139 2140 /** 2141 * spi_finalize_current_message() - the current message is complete 2142 * @ctlr: the controller to return the message to 2143 * 2144 * Called by the driver to notify the core that the message in the front of the 2145 * queue is complete and can be removed from the queue. 2146 */ 2147 void spi_finalize_current_message(struct spi_controller *ctlr) 2148 { 2149 struct spi_transfer *xfer; 2150 struct spi_message *mesg; 2151 int ret; 2152 2153 mesg = ctlr->cur_msg; 2154 2155 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2156 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2157 ptp_read_system_postts(xfer->ptp_sts); 2158 xfer->ptp_sts_word_post = xfer->len; 2159 } 2160 } 2161 2162 if (unlikely(ctlr->ptp_sts_supported)) 2163 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2164 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2165 2166 spi_unmap_msg(ctlr, mesg); 2167 2168 if (mesg->prepared && ctlr->unprepare_message) { 2169 ret = ctlr->unprepare_message(ctlr, mesg); 2170 if (ret) { 2171 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2172 ret); 2173 } 2174 } 2175 2176 mesg->prepared = false; 2177 2178 spi_maybe_unoptimize_message(mesg); 2179 2180 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2181 smp_mb(); /* See __spi_pump_transfer_message()... */ 2182 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2183 complete(&ctlr->cur_msg_completion); 2184 2185 trace_spi_message_done(mesg); 2186 2187 mesg->state = NULL; 2188 if (mesg->complete) 2189 mesg->complete(mesg->context); 2190 } 2191 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2192 2193 static int spi_start_queue(struct spi_controller *ctlr) 2194 { 2195 unsigned long flags; 2196 2197 spin_lock_irqsave(&ctlr->queue_lock, flags); 2198 2199 if (ctlr->running || ctlr->busy) { 2200 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2201 return -EBUSY; 2202 } 2203 2204 ctlr->running = true; 2205 ctlr->cur_msg = NULL; 2206 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2207 2208 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2209 2210 return 0; 2211 } 2212 2213 static int spi_stop_queue(struct spi_controller *ctlr) 2214 { 2215 unsigned int limit = 500; 2216 unsigned long flags; 2217 2218 /* 2219 * This is a bit lame, but is optimized for the common execution path. 2220 * A wait_queue on the ctlr->busy could be used, but then the common 2221 * execution path (pump_messages) would be required to call wake_up or 2222 * friends on every SPI message. Do this instead. 2223 */ 2224 do { 2225 spin_lock_irqsave(&ctlr->queue_lock, flags); 2226 if (list_empty(&ctlr->queue) && !ctlr->busy) { 2227 ctlr->running = false; 2228 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2229 return 0; 2230 } 2231 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2232 usleep_range(10000, 11000); 2233 } while (--limit); 2234 2235 return -EBUSY; 2236 } 2237 2238 static int spi_destroy_queue(struct spi_controller *ctlr) 2239 { 2240 int ret; 2241 2242 ret = spi_stop_queue(ctlr); 2243 2244 /* 2245 * kthread_flush_worker will block until all work is done. 2246 * If the reason that stop_queue timed out is that the work will never 2247 * finish, then it does no good to call flush/stop thread, so 2248 * return anyway. 2249 */ 2250 if (ret) { 2251 dev_err(&ctlr->dev, "problem destroying queue\n"); 2252 return ret; 2253 } 2254 2255 kthread_destroy_worker(ctlr->kworker); 2256 2257 return 0; 2258 } 2259 2260 static int __spi_queued_transfer(struct spi_device *spi, 2261 struct spi_message *msg, 2262 bool need_pump) 2263 { 2264 struct spi_controller *ctlr = spi->controller; 2265 unsigned long flags; 2266 2267 spin_lock_irqsave(&ctlr->queue_lock, flags); 2268 2269 if (!ctlr->running) { 2270 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2271 return -ESHUTDOWN; 2272 } 2273 msg->actual_length = 0; 2274 msg->status = -EINPROGRESS; 2275 2276 list_add_tail(&msg->queue, &ctlr->queue); 2277 ctlr->queue_empty = false; 2278 if (!ctlr->busy && need_pump) 2279 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2280 2281 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2282 return 0; 2283 } 2284 2285 /** 2286 * spi_queued_transfer - transfer function for queued transfers 2287 * @spi: SPI device which is requesting transfer 2288 * @msg: SPI message which is to handled is queued to driver queue 2289 * 2290 * Return: zero on success, else a negative error code. 2291 */ 2292 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2293 { 2294 return __spi_queued_transfer(spi, msg, true); 2295 } 2296 2297 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2298 { 2299 int ret; 2300 2301 ctlr->transfer = spi_queued_transfer; 2302 if (!ctlr->transfer_one_message) 2303 ctlr->transfer_one_message = spi_transfer_one_message; 2304 2305 /* Initialize and start queue */ 2306 ret = spi_init_queue(ctlr); 2307 if (ret) { 2308 dev_err(&ctlr->dev, "problem initializing queue\n"); 2309 goto err_init_queue; 2310 } 2311 ctlr->queued = true; 2312 ret = spi_start_queue(ctlr); 2313 if (ret) { 2314 dev_err(&ctlr->dev, "problem starting queue\n"); 2315 goto err_start_queue; 2316 } 2317 2318 return 0; 2319 2320 err_start_queue: 2321 spi_destroy_queue(ctlr); 2322 err_init_queue: 2323 return ret; 2324 } 2325 2326 /** 2327 * spi_flush_queue - Send all pending messages in the queue from the callers' 2328 * context 2329 * @ctlr: controller to process queue for 2330 * 2331 * This should be used when one wants to ensure all pending messages have been 2332 * sent before doing something. Is used by the spi-mem code to make sure SPI 2333 * memory operations do not preempt regular SPI transfers that have been queued 2334 * before the spi-mem operation. 2335 */ 2336 void spi_flush_queue(struct spi_controller *ctlr) 2337 { 2338 if (ctlr->transfer == spi_queued_transfer) 2339 __spi_pump_messages(ctlr, false); 2340 } 2341 2342 /*-------------------------------------------------------------------------*/ 2343 2344 #if defined(CONFIG_OF) 2345 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2346 struct spi_delay *delay, const char *prop) 2347 { 2348 u32 value; 2349 2350 if (!of_property_read_u32(nc, prop, &value)) { 2351 if (value > U16_MAX) { 2352 delay->value = DIV_ROUND_UP(value, 1000); 2353 delay->unit = SPI_DELAY_UNIT_USECS; 2354 } else { 2355 delay->value = value; 2356 delay->unit = SPI_DELAY_UNIT_NSECS; 2357 } 2358 } 2359 } 2360 2361 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2362 struct device_node *nc) 2363 { 2364 u32 value, cs[SPI_CS_CNT_MAX]; 2365 int rc, idx; 2366 2367 /* Mode (clock phase/polarity/etc.) */ 2368 if (of_property_read_bool(nc, "spi-cpha")) 2369 spi->mode |= SPI_CPHA; 2370 if (of_property_read_bool(nc, "spi-cpol")) 2371 spi->mode |= SPI_CPOL; 2372 if (of_property_read_bool(nc, "spi-3wire")) 2373 spi->mode |= SPI_3WIRE; 2374 if (of_property_read_bool(nc, "spi-lsb-first")) 2375 spi->mode |= SPI_LSB_FIRST; 2376 if (of_property_read_bool(nc, "spi-cs-high")) 2377 spi->mode |= SPI_CS_HIGH; 2378 2379 /* Device DUAL/QUAD mode */ 2380 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 2381 switch (value) { 2382 case 0: 2383 spi->mode |= SPI_NO_TX; 2384 break; 2385 case 1: 2386 break; 2387 case 2: 2388 spi->mode |= SPI_TX_DUAL; 2389 break; 2390 case 4: 2391 spi->mode |= SPI_TX_QUAD; 2392 break; 2393 case 8: 2394 spi->mode |= SPI_TX_OCTAL; 2395 break; 2396 default: 2397 dev_warn(&ctlr->dev, 2398 "spi-tx-bus-width %d not supported\n", 2399 value); 2400 break; 2401 } 2402 } 2403 2404 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 2405 switch (value) { 2406 case 0: 2407 spi->mode |= SPI_NO_RX; 2408 break; 2409 case 1: 2410 break; 2411 case 2: 2412 spi->mode |= SPI_RX_DUAL; 2413 break; 2414 case 4: 2415 spi->mode |= SPI_RX_QUAD; 2416 break; 2417 case 8: 2418 spi->mode |= SPI_RX_OCTAL; 2419 break; 2420 default: 2421 dev_warn(&ctlr->dev, 2422 "spi-rx-bus-width %d not supported\n", 2423 value); 2424 break; 2425 } 2426 } 2427 2428 if (spi_controller_is_slave(ctlr)) { 2429 if (!of_node_name_eq(nc, "slave")) { 2430 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2431 nc); 2432 return -EINVAL; 2433 } 2434 return 0; 2435 } 2436 2437 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) { 2438 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n"); 2439 return -EINVAL; 2440 } 2441 2442 spi_set_all_cs_unused(spi); 2443 2444 /* Device address */ 2445 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1, 2446 SPI_CS_CNT_MAX); 2447 if (rc < 0) { 2448 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2449 nc, rc); 2450 return rc; 2451 } 2452 if (rc > ctlr->num_chipselect) { 2453 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n", 2454 nc, rc); 2455 return rc; 2456 } 2457 if ((of_property_read_bool(nc, "parallel-memories")) && 2458 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) { 2459 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n"); 2460 return -EINVAL; 2461 } 2462 for (idx = 0; idx < rc; idx++) 2463 spi_set_chipselect(spi, idx, cs[idx]); 2464 2465 /* 2466 * By default spi->chip_select[0] will hold the physical CS number, 2467 * so set bit 0 in spi->cs_index_mask. 2468 */ 2469 spi->cs_index_mask = BIT(0); 2470 2471 /* Device speed */ 2472 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2473 spi->max_speed_hz = value; 2474 2475 /* Device CS delays */ 2476 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2477 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2478 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2479 2480 return 0; 2481 } 2482 2483 static struct spi_device * 2484 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2485 { 2486 struct spi_device *spi; 2487 int rc; 2488 2489 /* Alloc an spi_device */ 2490 spi = spi_alloc_device(ctlr); 2491 if (!spi) { 2492 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2493 rc = -ENOMEM; 2494 goto err_out; 2495 } 2496 2497 /* Select device driver */ 2498 rc = of_alias_from_compatible(nc, spi->modalias, 2499 sizeof(spi->modalias)); 2500 if (rc < 0) { 2501 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2502 goto err_out; 2503 } 2504 2505 rc = of_spi_parse_dt(ctlr, spi, nc); 2506 if (rc) 2507 goto err_out; 2508 2509 /* Store a pointer to the node in the device structure */ 2510 of_node_get(nc); 2511 2512 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2513 2514 /* Register the new device */ 2515 rc = spi_add_device(spi); 2516 if (rc) { 2517 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2518 goto err_of_node_put; 2519 } 2520 2521 return spi; 2522 2523 err_of_node_put: 2524 of_node_put(nc); 2525 err_out: 2526 spi_dev_put(spi); 2527 return ERR_PTR(rc); 2528 } 2529 2530 /** 2531 * of_register_spi_devices() - Register child devices onto the SPI bus 2532 * @ctlr: Pointer to spi_controller device 2533 * 2534 * Registers an spi_device for each child node of controller node which 2535 * represents a valid SPI slave. 2536 */ 2537 static void of_register_spi_devices(struct spi_controller *ctlr) 2538 { 2539 struct spi_device *spi; 2540 struct device_node *nc; 2541 2542 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2543 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2544 continue; 2545 spi = of_register_spi_device(ctlr, nc); 2546 if (IS_ERR(spi)) { 2547 dev_warn(&ctlr->dev, 2548 "Failed to create SPI device for %pOF\n", nc); 2549 of_node_clear_flag(nc, OF_POPULATED); 2550 } 2551 } 2552 } 2553 #else 2554 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2555 #endif 2556 2557 /** 2558 * spi_new_ancillary_device() - Register ancillary SPI device 2559 * @spi: Pointer to the main SPI device registering the ancillary device 2560 * @chip_select: Chip Select of the ancillary device 2561 * 2562 * Register an ancillary SPI device; for example some chips have a chip-select 2563 * for normal device usage and another one for setup/firmware upload. 2564 * 2565 * This may only be called from main SPI device's probe routine. 2566 * 2567 * Return: 0 on success; negative errno on failure 2568 */ 2569 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2570 u8 chip_select) 2571 { 2572 struct spi_controller *ctlr = spi->controller; 2573 struct spi_device *ancillary; 2574 int rc; 2575 2576 /* Alloc an spi_device */ 2577 ancillary = spi_alloc_device(ctlr); 2578 if (!ancillary) { 2579 rc = -ENOMEM; 2580 goto err_out; 2581 } 2582 2583 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2584 2585 /* Use provided chip-select for ancillary device */ 2586 spi_set_all_cs_unused(ancillary); 2587 spi_set_chipselect(ancillary, 0, chip_select); 2588 2589 /* Take over SPI mode/speed from SPI main device */ 2590 ancillary->max_speed_hz = spi->max_speed_hz; 2591 ancillary->mode = spi->mode; 2592 /* 2593 * By default spi->chip_select[0] will hold the physical CS number, 2594 * so set bit 0 in spi->cs_index_mask. 2595 */ 2596 ancillary->cs_index_mask = BIT(0); 2597 2598 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2599 2600 /* Register the new device */ 2601 rc = __spi_add_device(ancillary); 2602 if (rc) { 2603 dev_err(&spi->dev, "failed to register ancillary device\n"); 2604 goto err_out; 2605 } 2606 2607 return ancillary; 2608 2609 err_out: 2610 spi_dev_put(ancillary); 2611 return ERR_PTR(rc); 2612 } 2613 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2614 2615 #ifdef CONFIG_ACPI 2616 struct acpi_spi_lookup { 2617 struct spi_controller *ctlr; 2618 u32 max_speed_hz; 2619 u32 mode; 2620 int irq; 2621 u8 bits_per_word; 2622 u8 chip_select; 2623 int n; 2624 int index; 2625 }; 2626 2627 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2628 { 2629 struct acpi_resource_spi_serialbus *sb; 2630 int *count = data; 2631 2632 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2633 return 1; 2634 2635 sb = &ares->data.spi_serial_bus; 2636 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2637 return 1; 2638 2639 *count = *count + 1; 2640 2641 return 1; 2642 } 2643 2644 /** 2645 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2646 * @adev: ACPI device 2647 * 2648 * Return: the number of SpiSerialBus resources in the ACPI-device's 2649 * resource-list; or a negative error code. 2650 */ 2651 int acpi_spi_count_resources(struct acpi_device *adev) 2652 { 2653 LIST_HEAD(r); 2654 int count = 0; 2655 int ret; 2656 2657 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2658 if (ret < 0) 2659 return ret; 2660 2661 acpi_dev_free_resource_list(&r); 2662 2663 return count; 2664 } 2665 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2666 2667 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2668 struct acpi_spi_lookup *lookup) 2669 { 2670 const union acpi_object *obj; 2671 2672 if (!x86_apple_machine) 2673 return; 2674 2675 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2676 && obj->buffer.length >= 4) 2677 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2678 2679 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2680 && obj->buffer.length == 8) 2681 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2682 2683 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2684 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2685 lookup->mode |= SPI_LSB_FIRST; 2686 2687 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2688 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2689 lookup->mode |= SPI_CPOL; 2690 2691 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2692 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2693 lookup->mode |= SPI_CPHA; 2694 } 2695 2696 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2697 { 2698 struct acpi_spi_lookup *lookup = data; 2699 struct spi_controller *ctlr = lookup->ctlr; 2700 2701 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2702 struct acpi_resource_spi_serialbus *sb; 2703 acpi_handle parent_handle; 2704 acpi_status status; 2705 2706 sb = &ares->data.spi_serial_bus; 2707 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2708 2709 if (lookup->index != -1 && lookup->n++ != lookup->index) 2710 return 1; 2711 2712 status = acpi_get_handle(NULL, 2713 sb->resource_source.string_ptr, 2714 &parent_handle); 2715 2716 if (ACPI_FAILURE(status)) 2717 return -ENODEV; 2718 2719 if (ctlr) { 2720 if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle)) 2721 return -ENODEV; 2722 } else { 2723 struct acpi_device *adev; 2724 2725 adev = acpi_fetch_acpi_dev(parent_handle); 2726 if (!adev) 2727 return -ENODEV; 2728 2729 ctlr = acpi_spi_find_controller_by_adev(adev); 2730 if (!ctlr) 2731 return -EPROBE_DEFER; 2732 2733 lookup->ctlr = ctlr; 2734 } 2735 2736 /* 2737 * ACPI DeviceSelection numbering is handled by the 2738 * host controller driver in Windows and can vary 2739 * from driver to driver. In Linux we always expect 2740 * 0 .. max - 1 so we need to ask the driver to 2741 * translate between the two schemes. 2742 */ 2743 if (ctlr->fw_translate_cs) { 2744 int cs = ctlr->fw_translate_cs(ctlr, 2745 sb->device_selection); 2746 if (cs < 0) 2747 return cs; 2748 lookup->chip_select = cs; 2749 } else { 2750 lookup->chip_select = sb->device_selection; 2751 } 2752 2753 lookup->max_speed_hz = sb->connection_speed; 2754 lookup->bits_per_word = sb->data_bit_length; 2755 2756 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2757 lookup->mode |= SPI_CPHA; 2758 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2759 lookup->mode |= SPI_CPOL; 2760 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2761 lookup->mode |= SPI_CS_HIGH; 2762 } 2763 } else if (lookup->irq < 0) { 2764 struct resource r; 2765 2766 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2767 lookup->irq = r.start; 2768 } 2769 2770 /* Always tell the ACPI core to skip this resource */ 2771 return 1; 2772 } 2773 2774 /** 2775 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2776 * @ctlr: controller to which the spi device belongs 2777 * @adev: ACPI Device for the spi device 2778 * @index: Index of the spi resource inside the ACPI Node 2779 * 2780 * This should be used to allocate a new SPI device from and ACPI Device node. 2781 * The caller is responsible for calling spi_add_device to register the SPI device. 2782 * 2783 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2784 * using the resource. 2785 * If index is set to -1, index is not used. 2786 * Note: If index is -1, ctlr must be set. 2787 * 2788 * Return: a pointer to the new device, or ERR_PTR on error. 2789 */ 2790 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2791 struct acpi_device *adev, 2792 int index) 2793 { 2794 acpi_handle parent_handle = NULL; 2795 struct list_head resource_list; 2796 struct acpi_spi_lookup lookup = {}; 2797 struct spi_device *spi; 2798 int ret; 2799 2800 if (!ctlr && index == -1) 2801 return ERR_PTR(-EINVAL); 2802 2803 lookup.ctlr = ctlr; 2804 lookup.irq = -1; 2805 lookup.index = index; 2806 lookup.n = 0; 2807 2808 INIT_LIST_HEAD(&resource_list); 2809 ret = acpi_dev_get_resources(adev, &resource_list, 2810 acpi_spi_add_resource, &lookup); 2811 acpi_dev_free_resource_list(&resource_list); 2812 2813 if (ret < 0) 2814 /* Found SPI in _CRS but it points to another controller */ 2815 return ERR_PTR(ret); 2816 2817 if (!lookup.max_speed_hz && 2818 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2819 device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) { 2820 /* Apple does not use _CRS but nested devices for SPI slaves */ 2821 acpi_spi_parse_apple_properties(adev, &lookup); 2822 } 2823 2824 if (!lookup.max_speed_hz) 2825 return ERR_PTR(-ENODEV); 2826 2827 spi = spi_alloc_device(lookup.ctlr); 2828 if (!spi) { 2829 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2830 dev_name(&adev->dev)); 2831 return ERR_PTR(-ENOMEM); 2832 } 2833 2834 spi_set_all_cs_unused(spi); 2835 spi_set_chipselect(spi, 0, lookup.chip_select); 2836 2837 ACPI_COMPANION_SET(&spi->dev, adev); 2838 spi->max_speed_hz = lookup.max_speed_hz; 2839 spi->mode |= lookup.mode; 2840 spi->irq = lookup.irq; 2841 spi->bits_per_word = lookup.bits_per_word; 2842 /* 2843 * By default spi->chip_select[0] will hold the physical CS number, 2844 * so set bit 0 in spi->cs_index_mask. 2845 */ 2846 spi->cs_index_mask = BIT(0); 2847 2848 return spi; 2849 } 2850 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2851 2852 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2853 struct acpi_device *adev) 2854 { 2855 struct spi_device *spi; 2856 2857 if (acpi_bus_get_status(adev) || !adev->status.present || 2858 acpi_device_enumerated(adev)) 2859 return AE_OK; 2860 2861 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2862 if (IS_ERR(spi)) { 2863 if (PTR_ERR(spi) == -ENOMEM) 2864 return AE_NO_MEMORY; 2865 else 2866 return AE_OK; 2867 } 2868 2869 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2870 sizeof(spi->modalias)); 2871 2872 if (spi->irq < 0) 2873 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 2874 2875 acpi_device_set_enumerated(adev); 2876 2877 adev->power.flags.ignore_parent = true; 2878 if (spi_add_device(spi)) { 2879 adev->power.flags.ignore_parent = false; 2880 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 2881 dev_name(&adev->dev)); 2882 spi_dev_put(spi); 2883 } 2884 2885 return AE_OK; 2886 } 2887 2888 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 2889 void *data, void **return_value) 2890 { 2891 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 2892 struct spi_controller *ctlr = data; 2893 2894 if (!adev) 2895 return AE_OK; 2896 2897 return acpi_register_spi_device(ctlr, adev); 2898 } 2899 2900 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 2901 2902 static void acpi_register_spi_devices(struct spi_controller *ctlr) 2903 { 2904 acpi_status status; 2905 acpi_handle handle; 2906 2907 handle = ACPI_HANDLE(ctlr->dev.parent); 2908 if (!handle) 2909 return; 2910 2911 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 2912 SPI_ACPI_ENUMERATE_MAX_DEPTH, 2913 acpi_spi_add_device, NULL, ctlr, NULL); 2914 if (ACPI_FAILURE(status)) 2915 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n"); 2916 } 2917 #else 2918 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 2919 #endif /* CONFIG_ACPI */ 2920 2921 static void spi_controller_release(struct device *dev) 2922 { 2923 struct spi_controller *ctlr; 2924 2925 ctlr = container_of(dev, struct spi_controller, dev); 2926 kfree(ctlr); 2927 } 2928 2929 static struct class spi_master_class = { 2930 .name = "spi_master", 2931 .dev_release = spi_controller_release, 2932 .dev_groups = spi_master_groups, 2933 }; 2934 2935 #ifdef CONFIG_SPI_SLAVE 2936 /** 2937 * spi_slave_abort - abort the ongoing transfer request on an SPI slave 2938 * controller 2939 * @spi: device used for the current transfer 2940 */ 2941 int spi_slave_abort(struct spi_device *spi) 2942 { 2943 struct spi_controller *ctlr = spi->controller; 2944 2945 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort) 2946 return ctlr->slave_abort(ctlr); 2947 2948 return -ENOTSUPP; 2949 } 2950 EXPORT_SYMBOL_GPL(spi_slave_abort); 2951 2952 int spi_target_abort(struct spi_device *spi) 2953 { 2954 struct spi_controller *ctlr = spi->controller; 2955 2956 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 2957 return ctlr->target_abort(ctlr); 2958 2959 return -ENOTSUPP; 2960 } 2961 EXPORT_SYMBOL_GPL(spi_target_abort); 2962 2963 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 2964 char *buf) 2965 { 2966 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2967 dev); 2968 struct device *child; 2969 2970 child = device_find_any_child(&ctlr->dev); 2971 return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 2972 } 2973 2974 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 2975 const char *buf, size_t count) 2976 { 2977 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 2978 dev); 2979 struct spi_device *spi; 2980 struct device *child; 2981 char name[32]; 2982 int rc; 2983 2984 rc = sscanf(buf, "%31s", name); 2985 if (rc != 1 || !name[0]) 2986 return -EINVAL; 2987 2988 child = device_find_any_child(&ctlr->dev); 2989 if (child) { 2990 /* Remove registered slave */ 2991 device_unregister(child); 2992 put_device(child); 2993 } 2994 2995 if (strcmp(name, "(null)")) { 2996 /* Register new slave */ 2997 spi = spi_alloc_device(ctlr); 2998 if (!spi) 2999 return -ENOMEM; 3000 3001 strscpy(spi->modalias, name, sizeof(spi->modalias)); 3002 3003 rc = spi_add_device(spi); 3004 if (rc) { 3005 spi_dev_put(spi); 3006 return rc; 3007 } 3008 } 3009 3010 return count; 3011 } 3012 3013 static DEVICE_ATTR_RW(slave); 3014 3015 static struct attribute *spi_slave_attrs[] = { 3016 &dev_attr_slave.attr, 3017 NULL, 3018 }; 3019 3020 static const struct attribute_group spi_slave_group = { 3021 .attrs = spi_slave_attrs, 3022 }; 3023 3024 static const struct attribute_group *spi_slave_groups[] = { 3025 &spi_controller_statistics_group, 3026 &spi_slave_group, 3027 NULL, 3028 }; 3029 3030 static struct class spi_slave_class = { 3031 .name = "spi_slave", 3032 .dev_release = spi_controller_release, 3033 .dev_groups = spi_slave_groups, 3034 }; 3035 #else 3036 extern struct class spi_slave_class; /* dummy */ 3037 #endif 3038 3039 /** 3040 * __spi_alloc_controller - allocate an SPI master or slave controller 3041 * @dev: the controller, possibly using the platform_bus 3042 * @size: how much zeroed driver-private data to allocate; the pointer to this 3043 * memory is in the driver_data field of the returned device, accessible 3044 * with spi_controller_get_devdata(); the memory is cacheline aligned; 3045 * drivers granting DMA access to portions of their private data need to 3046 * round up @size using ALIGN(size, dma_get_cache_alignment()). 3047 * @slave: flag indicating whether to allocate an SPI master (false) or SPI 3048 * slave (true) controller 3049 * Context: can sleep 3050 * 3051 * This call is used only by SPI controller drivers, which are the 3052 * only ones directly touching chip registers. It's how they allocate 3053 * an spi_controller structure, prior to calling spi_register_controller(). 3054 * 3055 * This must be called from context that can sleep. 3056 * 3057 * The caller is responsible for assigning the bus number and initializing the 3058 * controller's methods before calling spi_register_controller(); and (after 3059 * errors adding the device) calling spi_controller_put() to prevent a memory 3060 * leak. 3061 * 3062 * Return: the SPI controller structure on success, else NULL. 3063 */ 3064 struct spi_controller *__spi_alloc_controller(struct device *dev, 3065 unsigned int size, bool slave) 3066 { 3067 struct spi_controller *ctlr; 3068 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 3069 3070 if (!dev) 3071 return NULL; 3072 3073 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 3074 if (!ctlr) 3075 return NULL; 3076 3077 device_initialize(&ctlr->dev); 3078 INIT_LIST_HEAD(&ctlr->queue); 3079 spin_lock_init(&ctlr->queue_lock); 3080 spin_lock_init(&ctlr->bus_lock_spinlock); 3081 mutex_init(&ctlr->bus_lock_mutex); 3082 mutex_init(&ctlr->io_mutex); 3083 mutex_init(&ctlr->add_lock); 3084 ctlr->bus_num = -1; 3085 ctlr->num_chipselect = 1; 3086 ctlr->slave = slave; 3087 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave) 3088 ctlr->dev.class = &spi_slave_class; 3089 else 3090 ctlr->dev.class = &spi_master_class; 3091 ctlr->dev.parent = dev; 3092 pm_suspend_ignore_children(&ctlr->dev, true); 3093 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 3094 3095 return ctlr; 3096 } 3097 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 3098 3099 static void devm_spi_release_controller(struct device *dev, void *ctlr) 3100 { 3101 spi_controller_put(*(struct spi_controller **)ctlr); 3102 } 3103 3104 /** 3105 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 3106 * @dev: physical device of SPI controller 3107 * @size: how much zeroed driver-private data to allocate 3108 * @slave: whether to allocate an SPI master (false) or SPI slave (true) 3109 * Context: can sleep 3110 * 3111 * Allocate an SPI controller and automatically release a reference on it 3112 * when @dev is unbound from its driver. Drivers are thus relieved from 3113 * having to call spi_controller_put(). 3114 * 3115 * The arguments to this function are identical to __spi_alloc_controller(). 3116 * 3117 * Return: the SPI controller structure on success, else NULL. 3118 */ 3119 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 3120 unsigned int size, 3121 bool slave) 3122 { 3123 struct spi_controller **ptr, *ctlr; 3124 3125 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr), 3126 GFP_KERNEL); 3127 if (!ptr) 3128 return NULL; 3129 3130 ctlr = __spi_alloc_controller(dev, size, slave); 3131 if (ctlr) { 3132 ctlr->devm_allocated = true; 3133 *ptr = ctlr; 3134 devres_add(dev, ptr); 3135 } else { 3136 devres_free(ptr); 3137 } 3138 3139 return ctlr; 3140 } 3141 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 3142 3143 /** 3144 * spi_get_gpio_descs() - grab chip select GPIOs for the master 3145 * @ctlr: The SPI master to grab GPIO descriptors for 3146 */ 3147 static int spi_get_gpio_descs(struct spi_controller *ctlr) 3148 { 3149 int nb, i; 3150 struct gpio_desc **cs; 3151 struct device *dev = &ctlr->dev; 3152 unsigned long native_cs_mask = 0; 3153 unsigned int num_cs_gpios = 0; 3154 3155 nb = gpiod_count(dev, "cs"); 3156 if (nb < 0) { 3157 /* No GPIOs at all is fine, else return the error */ 3158 if (nb == -ENOENT) 3159 return 0; 3160 return nb; 3161 } 3162 3163 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3164 3165 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3166 GFP_KERNEL); 3167 if (!cs) 3168 return -ENOMEM; 3169 ctlr->cs_gpiods = cs; 3170 3171 for (i = 0; i < nb; i++) { 3172 /* 3173 * Most chipselects are active low, the inverted 3174 * semantics are handled by special quirks in gpiolib, 3175 * so initializing them GPIOD_OUT_LOW here means 3176 * "unasserted", in most cases this will drive the physical 3177 * line high. 3178 */ 3179 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3180 GPIOD_OUT_LOW); 3181 if (IS_ERR(cs[i])) 3182 return PTR_ERR(cs[i]); 3183 3184 if (cs[i]) { 3185 /* 3186 * If we find a CS GPIO, name it after the device and 3187 * chip select line. 3188 */ 3189 char *gpioname; 3190 3191 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3192 dev_name(dev), i); 3193 if (!gpioname) 3194 return -ENOMEM; 3195 gpiod_set_consumer_name(cs[i], gpioname); 3196 num_cs_gpios++; 3197 continue; 3198 } 3199 3200 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3201 dev_err(dev, "Invalid native chip select %d\n", i); 3202 return -EINVAL; 3203 } 3204 native_cs_mask |= BIT(i); 3205 } 3206 3207 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3208 3209 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3210 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3211 dev_err(dev, "No unused native chip select available\n"); 3212 return -EINVAL; 3213 } 3214 3215 return 0; 3216 } 3217 3218 static int spi_controller_check_ops(struct spi_controller *ctlr) 3219 { 3220 /* 3221 * The controller may implement only the high-level SPI-memory like 3222 * operations if it does not support regular SPI transfers, and this is 3223 * valid use case. 3224 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3225 * one of the ->transfer_xxx() method be implemented. 3226 */ 3227 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3228 if (!ctlr->transfer && !ctlr->transfer_one && 3229 !ctlr->transfer_one_message) { 3230 return -EINVAL; 3231 } 3232 } 3233 3234 return 0; 3235 } 3236 3237 /* Allocate dynamic bus number using Linux idr */ 3238 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3239 { 3240 int id; 3241 3242 mutex_lock(&board_lock); 3243 id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL); 3244 mutex_unlock(&board_lock); 3245 if (WARN(id < 0, "couldn't get idr")) 3246 return id == -ENOSPC ? -EBUSY : id; 3247 ctlr->bus_num = id; 3248 return 0; 3249 } 3250 3251 /** 3252 * spi_register_controller - register SPI master or slave controller 3253 * @ctlr: initialized master, originally from spi_alloc_master() or 3254 * spi_alloc_slave() 3255 * Context: can sleep 3256 * 3257 * SPI controllers connect to their drivers using some non-SPI bus, 3258 * such as the platform bus. The final stage of probe() in that code 3259 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3260 * 3261 * SPI controllers use board specific (often SOC specific) bus numbers, 3262 * and board-specific addressing for SPI devices combines those numbers 3263 * with chip select numbers. Since SPI does not directly support dynamic 3264 * device identification, boards need configuration tables telling which 3265 * chip is at which address. 3266 * 3267 * This must be called from context that can sleep. It returns zero on 3268 * success, else a negative error code (dropping the controller's refcount). 3269 * After a successful return, the caller is responsible for calling 3270 * spi_unregister_controller(). 3271 * 3272 * Return: zero on success, else a negative error code. 3273 */ 3274 int spi_register_controller(struct spi_controller *ctlr) 3275 { 3276 struct device *dev = ctlr->dev.parent; 3277 struct boardinfo *bi; 3278 int first_dynamic; 3279 int status; 3280 int idx; 3281 3282 if (!dev) 3283 return -ENODEV; 3284 3285 /* 3286 * Make sure all necessary hooks are implemented before registering 3287 * the SPI controller. 3288 */ 3289 status = spi_controller_check_ops(ctlr); 3290 if (status) 3291 return status; 3292 3293 if (ctlr->bus_num < 0) 3294 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3295 if (ctlr->bus_num >= 0) { 3296 /* Devices with a fixed bus num must check-in with the num */ 3297 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3298 if (status) 3299 return status; 3300 } 3301 if (ctlr->bus_num < 0) { 3302 first_dynamic = of_alias_get_highest_id("spi"); 3303 if (first_dynamic < 0) 3304 first_dynamic = 0; 3305 else 3306 first_dynamic++; 3307 3308 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3309 if (status) 3310 return status; 3311 } 3312 ctlr->bus_lock_flag = 0; 3313 init_completion(&ctlr->xfer_completion); 3314 init_completion(&ctlr->cur_msg_completion); 3315 if (!ctlr->max_dma_len) 3316 ctlr->max_dma_len = INT_MAX; 3317 3318 /* 3319 * Register the device, then userspace will see it. 3320 * Registration fails if the bus ID is in use. 3321 */ 3322 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3323 3324 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) { 3325 status = spi_get_gpio_descs(ctlr); 3326 if (status) 3327 goto free_bus_id; 3328 /* 3329 * A controller using GPIO descriptors always 3330 * supports SPI_CS_HIGH if need be. 3331 */ 3332 ctlr->mode_bits |= SPI_CS_HIGH; 3333 } 3334 3335 /* 3336 * Even if it's just one always-selected device, there must 3337 * be at least one chipselect. 3338 */ 3339 if (!ctlr->num_chipselect) { 3340 status = -EINVAL; 3341 goto free_bus_id; 3342 } 3343 3344 /* Setting last_cs to SPI_INVALID_CS means no chip selected */ 3345 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) 3346 ctlr->last_cs[idx] = SPI_INVALID_CS; 3347 3348 status = device_add(&ctlr->dev); 3349 if (status < 0) 3350 goto free_bus_id; 3351 dev_dbg(dev, "registered %s %s\n", 3352 spi_controller_is_slave(ctlr) ? "slave" : "master", 3353 dev_name(&ctlr->dev)); 3354 3355 /* 3356 * If we're using a queued driver, start the queue. Note that we don't 3357 * need the queueing logic if the driver is only supporting high-level 3358 * memory operations. 3359 */ 3360 if (ctlr->transfer) { 3361 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3362 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3363 status = spi_controller_initialize_queue(ctlr); 3364 if (status) { 3365 device_del(&ctlr->dev); 3366 goto free_bus_id; 3367 } 3368 } 3369 /* Add statistics */ 3370 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3371 if (!ctlr->pcpu_statistics) { 3372 dev_err(dev, "Error allocating per-cpu statistics\n"); 3373 status = -ENOMEM; 3374 goto destroy_queue; 3375 } 3376 3377 mutex_lock(&board_lock); 3378 list_add_tail(&ctlr->list, &spi_controller_list); 3379 list_for_each_entry(bi, &board_list, list) 3380 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3381 mutex_unlock(&board_lock); 3382 3383 /* Register devices from the device tree and ACPI */ 3384 of_register_spi_devices(ctlr); 3385 acpi_register_spi_devices(ctlr); 3386 return status; 3387 3388 destroy_queue: 3389 spi_destroy_queue(ctlr); 3390 free_bus_id: 3391 mutex_lock(&board_lock); 3392 idr_remove(&spi_master_idr, ctlr->bus_num); 3393 mutex_unlock(&board_lock); 3394 return status; 3395 } 3396 EXPORT_SYMBOL_GPL(spi_register_controller); 3397 3398 static void devm_spi_unregister(struct device *dev, void *res) 3399 { 3400 spi_unregister_controller(*(struct spi_controller **)res); 3401 } 3402 3403 /** 3404 * devm_spi_register_controller - register managed SPI master or slave 3405 * controller 3406 * @dev: device managing SPI controller 3407 * @ctlr: initialized controller, originally from spi_alloc_master() or 3408 * spi_alloc_slave() 3409 * Context: can sleep 3410 * 3411 * Register a SPI device as with spi_register_controller() which will 3412 * automatically be unregistered and freed. 3413 * 3414 * Return: zero on success, else a negative error code. 3415 */ 3416 int devm_spi_register_controller(struct device *dev, 3417 struct spi_controller *ctlr) 3418 { 3419 struct spi_controller **ptr; 3420 int ret; 3421 3422 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 3423 if (!ptr) 3424 return -ENOMEM; 3425 3426 ret = spi_register_controller(ctlr); 3427 if (!ret) { 3428 *ptr = ctlr; 3429 devres_add(dev, ptr); 3430 } else { 3431 devres_free(ptr); 3432 } 3433 3434 return ret; 3435 } 3436 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3437 3438 static int __unregister(struct device *dev, void *null) 3439 { 3440 spi_unregister_device(to_spi_device(dev)); 3441 return 0; 3442 } 3443 3444 /** 3445 * spi_unregister_controller - unregister SPI master or slave controller 3446 * @ctlr: the controller being unregistered 3447 * Context: can sleep 3448 * 3449 * This call is used only by SPI controller drivers, which are the 3450 * only ones directly touching chip registers. 3451 * 3452 * This must be called from context that can sleep. 3453 * 3454 * Note that this function also drops a reference to the controller. 3455 */ 3456 void spi_unregister_controller(struct spi_controller *ctlr) 3457 { 3458 struct spi_controller *found; 3459 int id = ctlr->bus_num; 3460 3461 /* Prevent addition of new devices, unregister existing ones */ 3462 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3463 mutex_lock(&ctlr->add_lock); 3464 3465 device_for_each_child(&ctlr->dev, NULL, __unregister); 3466 3467 /* First make sure that this controller was ever added */ 3468 mutex_lock(&board_lock); 3469 found = idr_find(&spi_master_idr, id); 3470 mutex_unlock(&board_lock); 3471 if (ctlr->queued) { 3472 if (spi_destroy_queue(ctlr)) 3473 dev_err(&ctlr->dev, "queue remove failed\n"); 3474 } 3475 mutex_lock(&board_lock); 3476 list_del(&ctlr->list); 3477 mutex_unlock(&board_lock); 3478 3479 device_del(&ctlr->dev); 3480 3481 /* Free bus id */ 3482 mutex_lock(&board_lock); 3483 if (found == ctlr) 3484 idr_remove(&spi_master_idr, id); 3485 mutex_unlock(&board_lock); 3486 3487 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3488 mutex_unlock(&ctlr->add_lock); 3489 3490 /* 3491 * Release the last reference on the controller if its driver 3492 * has not yet been converted to devm_spi_alloc_master/slave(). 3493 */ 3494 if (!ctlr->devm_allocated) 3495 put_device(&ctlr->dev); 3496 } 3497 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3498 3499 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3500 { 3501 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3502 } 3503 3504 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3505 { 3506 mutex_lock(&ctlr->bus_lock_mutex); 3507 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3508 mutex_unlock(&ctlr->bus_lock_mutex); 3509 } 3510 3511 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3512 { 3513 mutex_lock(&ctlr->bus_lock_mutex); 3514 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3515 mutex_unlock(&ctlr->bus_lock_mutex); 3516 } 3517 3518 int spi_controller_suspend(struct spi_controller *ctlr) 3519 { 3520 int ret = 0; 3521 3522 /* Basically no-ops for non-queued controllers */ 3523 if (ctlr->queued) { 3524 ret = spi_stop_queue(ctlr); 3525 if (ret) 3526 dev_err(&ctlr->dev, "queue stop failed\n"); 3527 } 3528 3529 __spi_mark_suspended(ctlr); 3530 return ret; 3531 } 3532 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3533 3534 int spi_controller_resume(struct spi_controller *ctlr) 3535 { 3536 int ret = 0; 3537 3538 __spi_mark_resumed(ctlr); 3539 3540 if (ctlr->queued) { 3541 ret = spi_start_queue(ctlr); 3542 if (ret) 3543 dev_err(&ctlr->dev, "queue restart failed\n"); 3544 } 3545 return ret; 3546 } 3547 EXPORT_SYMBOL_GPL(spi_controller_resume); 3548 3549 /*-------------------------------------------------------------------------*/ 3550 3551 /* Core methods for spi_message alterations */ 3552 3553 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3554 struct spi_message *msg, 3555 void *res) 3556 { 3557 struct spi_replaced_transfers *rxfer = res; 3558 size_t i; 3559 3560 /* Call extra callback if requested */ 3561 if (rxfer->release) 3562 rxfer->release(ctlr, msg, res); 3563 3564 /* Insert replaced transfers back into the message */ 3565 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3566 3567 /* Remove the formerly inserted entries */ 3568 for (i = 0; i < rxfer->inserted; i++) 3569 list_del(&rxfer->inserted_transfers[i].transfer_list); 3570 } 3571 3572 /** 3573 * spi_replace_transfers - replace transfers with several transfers 3574 * and register change with spi_message.resources 3575 * @msg: the spi_message we work upon 3576 * @xfer_first: the first spi_transfer we want to replace 3577 * @remove: number of transfers to remove 3578 * @insert: the number of transfers we want to insert instead 3579 * @release: extra release code necessary in some circumstances 3580 * @extradatasize: extra data to allocate (with alignment guarantees 3581 * of struct @spi_transfer) 3582 * @gfp: gfp flags 3583 * 3584 * Returns: pointer to @spi_replaced_transfers, 3585 * PTR_ERR(...) in case of errors. 3586 */ 3587 static struct spi_replaced_transfers *spi_replace_transfers( 3588 struct spi_message *msg, 3589 struct spi_transfer *xfer_first, 3590 size_t remove, 3591 size_t insert, 3592 spi_replaced_release_t release, 3593 size_t extradatasize, 3594 gfp_t gfp) 3595 { 3596 struct spi_replaced_transfers *rxfer; 3597 struct spi_transfer *xfer; 3598 size_t i; 3599 3600 /* Allocate the structure using spi_res */ 3601 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3602 struct_size(rxfer, inserted_transfers, insert) 3603 + extradatasize, 3604 gfp); 3605 if (!rxfer) 3606 return ERR_PTR(-ENOMEM); 3607 3608 /* The release code to invoke before running the generic release */ 3609 rxfer->release = release; 3610 3611 /* Assign extradata */ 3612 if (extradatasize) 3613 rxfer->extradata = 3614 &rxfer->inserted_transfers[insert]; 3615 3616 /* Init the replaced_transfers list */ 3617 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3618 3619 /* 3620 * Assign the list_entry after which we should reinsert 3621 * the @replaced_transfers - it may be spi_message.messages! 3622 */ 3623 rxfer->replaced_after = xfer_first->transfer_list.prev; 3624 3625 /* Remove the requested number of transfers */ 3626 for (i = 0; i < remove; i++) { 3627 /* 3628 * If the entry after replaced_after it is msg->transfers 3629 * then we have been requested to remove more transfers 3630 * than are in the list. 3631 */ 3632 if (rxfer->replaced_after->next == &msg->transfers) { 3633 dev_err(&msg->spi->dev, 3634 "requested to remove more spi_transfers than are available\n"); 3635 /* Insert replaced transfers back into the message */ 3636 list_splice(&rxfer->replaced_transfers, 3637 rxfer->replaced_after); 3638 3639 /* Free the spi_replace_transfer structure... */ 3640 spi_res_free(rxfer); 3641 3642 /* ...and return with an error */ 3643 return ERR_PTR(-EINVAL); 3644 } 3645 3646 /* 3647 * Remove the entry after replaced_after from list of 3648 * transfers and add it to list of replaced_transfers. 3649 */ 3650 list_move_tail(rxfer->replaced_after->next, 3651 &rxfer->replaced_transfers); 3652 } 3653 3654 /* 3655 * Create copy of the given xfer with identical settings 3656 * based on the first transfer to get removed. 3657 */ 3658 for (i = 0; i < insert; i++) { 3659 /* We need to run in reverse order */ 3660 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3661 3662 /* Copy all spi_transfer data */ 3663 memcpy(xfer, xfer_first, sizeof(*xfer)); 3664 3665 /* Add to list */ 3666 list_add(&xfer->transfer_list, rxfer->replaced_after); 3667 3668 /* Clear cs_change and delay for all but the last */ 3669 if (i) { 3670 xfer->cs_change = false; 3671 xfer->delay.value = 0; 3672 } 3673 } 3674 3675 /* Set up inserted... */ 3676 rxfer->inserted = insert; 3677 3678 /* ...and register it with spi_res/spi_message */ 3679 spi_res_add(msg, rxfer); 3680 3681 return rxfer; 3682 } 3683 3684 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3685 struct spi_message *msg, 3686 struct spi_transfer **xferp, 3687 size_t maxsize) 3688 { 3689 struct spi_transfer *xfer = *xferp, *xfers; 3690 struct spi_replaced_transfers *srt; 3691 size_t offset; 3692 size_t count, i; 3693 3694 /* Calculate how many we have to replace */ 3695 count = DIV_ROUND_UP(xfer->len, maxsize); 3696 3697 /* Create replacement */ 3698 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL); 3699 if (IS_ERR(srt)) 3700 return PTR_ERR(srt); 3701 xfers = srt->inserted_transfers; 3702 3703 /* 3704 * Now handle each of those newly inserted spi_transfers. 3705 * Note that the replacements spi_transfers all are preset 3706 * to the same values as *xferp, so tx_buf, rx_buf and len 3707 * are all identical (as well as most others) 3708 * so we just have to fix up len and the pointers. 3709 */ 3710 3711 /* 3712 * The first transfer just needs the length modified, so we 3713 * run it outside the loop. 3714 */ 3715 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3716 3717 /* All the others need rx_buf/tx_buf also set */ 3718 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3719 /* Update rx_buf, tx_buf and DMA */ 3720 if (xfers[i].rx_buf) 3721 xfers[i].rx_buf += offset; 3722 if (xfers[i].tx_buf) 3723 xfers[i].tx_buf += offset; 3724 3725 /* Update length */ 3726 xfers[i].len = min(maxsize, xfers[i].len - offset); 3727 } 3728 3729 /* 3730 * We set up xferp to the last entry we have inserted, 3731 * so that we skip those already split transfers. 3732 */ 3733 *xferp = &xfers[count - 1]; 3734 3735 /* Increment statistics counters */ 3736 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3737 transfers_split_maxsize); 3738 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3739 transfers_split_maxsize); 3740 3741 return 0; 3742 } 3743 3744 /** 3745 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3746 * when an individual transfer exceeds a 3747 * certain size 3748 * @ctlr: the @spi_controller for this transfer 3749 * @msg: the @spi_message to transform 3750 * @maxsize: the maximum when to apply this 3751 * 3752 * This function allocates resources that are automatically freed during the 3753 * spi message unoptimize phase so this function should only be called from 3754 * optimize_message callbacks. 3755 * 3756 * Return: status of transformation 3757 */ 3758 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3759 struct spi_message *msg, 3760 size_t maxsize) 3761 { 3762 struct spi_transfer *xfer; 3763 int ret; 3764 3765 /* 3766 * Iterate over the transfer_list, 3767 * but note that xfer is advanced to the last transfer inserted 3768 * to avoid checking sizes again unnecessarily (also xfer does 3769 * potentially belong to a different list by the time the 3770 * replacement has happened). 3771 */ 3772 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3773 if (xfer->len > maxsize) { 3774 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3775 maxsize); 3776 if (ret) 3777 return ret; 3778 } 3779 } 3780 3781 return 0; 3782 } 3783 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3784 3785 3786 /** 3787 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3788 * when an individual transfer exceeds a 3789 * certain number of SPI words 3790 * @ctlr: the @spi_controller for this transfer 3791 * @msg: the @spi_message to transform 3792 * @maxwords: the number of words to limit each transfer to 3793 * 3794 * This function allocates resources that are automatically freed during the 3795 * spi message unoptimize phase so this function should only be called from 3796 * optimize_message callbacks. 3797 * 3798 * Return: status of transformation 3799 */ 3800 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3801 struct spi_message *msg, 3802 size_t maxwords) 3803 { 3804 struct spi_transfer *xfer; 3805 3806 /* 3807 * Iterate over the transfer_list, 3808 * but note that xfer is advanced to the last transfer inserted 3809 * to avoid checking sizes again unnecessarily (also xfer does 3810 * potentially belong to a different list by the time the 3811 * replacement has happened). 3812 */ 3813 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3814 size_t maxsize; 3815 int ret; 3816 3817 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word)); 3818 if (xfer->len > maxsize) { 3819 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3820 maxsize); 3821 if (ret) 3822 return ret; 3823 } 3824 } 3825 3826 return 0; 3827 } 3828 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3829 3830 /*-------------------------------------------------------------------------*/ 3831 3832 /* 3833 * Core methods for SPI controller protocol drivers. Some of the 3834 * other core methods are currently defined as inline functions. 3835 */ 3836 3837 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3838 u8 bits_per_word) 3839 { 3840 if (ctlr->bits_per_word_mask) { 3841 /* Only 32 bits fit in the mask */ 3842 if (bits_per_word > 32) 3843 return -EINVAL; 3844 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3845 return -EINVAL; 3846 } 3847 3848 return 0; 3849 } 3850 3851 /** 3852 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3853 * @spi: the device that requires specific CS timing configuration 3854 * 3855 * Return: zero on success, else a negative error code. 3856 */ 3857 static int spi_set_cs_timing(struct spi_device *spi) 3858 { 3859 struct device *parent = spi->controller->dev.parent; 3860 int status = 0; 3861 3862 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3863 if (spi->controller->auto_runtime_pm) { 3864 status = pm_runtime_get_sync(parent); 3865 if (status < 0) { 3866 pm_runtime_put_noidle(parent); 3867 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3868 status); 3869 return status; 3870 } 3871 3872 status = spi->controller->set_cs_timing(spi); 3873 pm_runtime_mark_last_busy(parent); 3874 pm_runtime_put_autosuspend(parent); 3875 } else { 3876 status = spi->controller->set_cs_timing(spi); 3877 } 3878 } 3879 return status; 3880 } 3881 3882 /** 3883 * spi_setup - setup SPI mode and clock rate 3884 * @spi: the device whose settings are being modified 3885 * Context: can sleep, and no requests are queued to the device 3886 * 3887 * SPI protocol drivers may need to update the transfer mode if the 3888 * device doesn't work with its default. They may likewise need 3889 * to update clock rates or word sizes from initial values. This function 3890 * changes those settings, and must be called from a context that can sleep. 3891 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 3892 * effect the next time the device is selected and data is transferred to 3893 * or from it. When this function returns, the SPI device is deselected. 3894 * 3895 * Note that this call will fail if the protocol driver specifies an option 3896 * that the underlying controller or its driver does not support. For 3897 * example, not all hardware supports wire transfers using nine bit words, 3898 * LSB-first wire encoding, or active-high chipselects. 3899 * 3900 * Return: zero on success, else a negative error code. 3901 */ 3902 int spi_setup(struct spi_device *spi) 3903 { 3904 unsigned bad_bits, ugly_bits; 3905 int status; 3906 3907 /* 3908 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 3909 * are set at the same time. 3910 */ 3911 if ((hweight_long(spi->mode & 3912 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 3913 (hweight_long(spi->mode & 3914 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 3915 dev_err(&spi->dev, 3916 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 3917 return -EINVAL; 3918 } 3919 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 3920 if ((spi->mode & SPI_3WIRE) && (spi->mode & 3921 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3922 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 3923 return -EINVAL; 3924 /* 3925 * Help drivers fail *cleanly* when they need options 3926 * that aren't supported with their current controller. 3927 * SPI_CS_WORD has a fallback software implementation, 3928 * so it is ignored here. 3929 */ 3930 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 3931 SPI_NO_TX | SPI_NO_RX); 3932 ugly_bits = bad_bits & 3933 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 3934 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 3935 if (ugly_bits) { 3936 dev_warn(&spi->dev, 3937 "setup: ignoring unsupported mode bits %x\n", 3938 ugly_bits); 3939 spi->mode &= ~ugly_bits; 3940 bad_bits &= ~ugly_bits; 3941 } 3942 if (bad_bits) { 3943 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 3944 bad_bits); 3945 return -EINVAL; 3946 } 3947 3948 if (!spi->bits_per_word) { 3949 spi->bits_per_word = 8; 3950 } else { 3951 /* 3952 * Some controllers may not support the default 8 bits-per-word 3953 * so only perform the check when this is explicitly provided. 3954 */ 3955 status = __spi_validate_bits_per_word(spi->controller, 3956 spi->bits_per_word); 3957 if (status) 3958 return status; 3959 } 3960 3961 if (spi->controller->max_speed_hz && 3962 (!spi->max_speed_hz || 3963 spi->max_speed_hz > spi->controller->max_speed_hz)) 3964 spi->max_speed_hz = spi->controller->max_speed_hz; 3965 3966 mutex_lock(&spi->controller->io_mutex); 3967 3968 if (spi->controller->setup) { 3969 status = spi->controller->setup(spi); 3970 if (status) { 3971 mutex_unlock(&spi->controller->io_mutex); 3972 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 3973 status); 3974 return status; 3975 } 3976 } 3977 3978 status = spi_set_cs_timing(spi); 3979 if (status) { 3980 mutex_unlock(&spi->controller->io_mutex); 3981 return status; 3982 } 3983 3984 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 3985 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 3986 if (status < 0) { 3987 mutex_unlock(&spi->controller->io_mutex); 3988 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3989 status); 3990 return status; 3991 } 3992 3993 /* 3994 * We do not want to return positive value from pm_runtime_get, 3995 * there are many instances of devices calling spi_setup() and 3996 * checking for a non-zero return value instead of a negative 3997 * return value. 3998 */ 3999 status = 0; 4000 4001 spi_set_cs(spi, false, true); 4002 pm_runtime_mark_last_busy(spi->controller->dev.parent); 4003 pm_runtime_put_autosuspend(spi->controller->dev.parent); 4004 } else { 4005 spi_set_cs(spi, false, true); 4006 } 4007 4008 mutex_unlock(&spi->controller->io_mutex); 4009 4010 if (spi->rt && !spi->controller->rt) { 4011 spi->controller->rt = true; 4012 spi_set_thread_rt(spi->controller); 4013 } 4014 4015 trace_spi_setup(spi, status); 4016 4017 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 4018 spi->mode & SPI_MODE_X_MASK, 4019 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 4020 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 4021 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 4022 (spi->mode & SPI_LOOP) ? "loopback, " : "", 4023 spi->bits_per_word, spi->max_speed_hz, 4024 status); 4025 4026 return status; 4027 } 4028 EXPORT_SYMBOL_GPL(spi_setup); 4029 4030 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 4031 struct spi_device *spi) 4032 { 4033 int delay1, delay2; 4034 4035 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 4036 if (delay1 < 0) 4037 return delay1; 4038 4039 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 4040 if (delay2 < 0) 4041 return delay2; 4042 4043 if (delay1 < delay2) 4044 memcpy(&xfer->word_delay, &spi->word_delay, 4045 sizeof(xfer->word_delay)); 4046 4047 return 0; 4048 } 4049 4050 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 4051 { 4052 struct spi_controller *ctlr = spi->controller; 4053 struct spi_transfer *xfer; 4054 int w_size; 4055 4056 if (list_empty(&message->transfers)) 4057 return -EINVAL; 4058 4059 message->spi = spi; 4060 4061 /* 4062 * Half-duplex links include original MicroWire, and ones with 4063 * only one data pin like SPI_3WIRE (switches direction) or where 4064 * either MOSI or MISO is missing. They can also be caused by 4065 * software limitations. 4066 */ 4067 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 4068 (spi->mode & SPI_3WIRE)) { 4069 unsigned flags = ctlr->flags; 4070 4071 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4072 if (xfer->rx_buf && xfer->tx_buf) 4073 return -EINVAL; 4074 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 4075 return -EINVAL; 4076 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 4077 return -EINVAL; 4078 } 4079 } 4080 4081 /* 4082 * Set transfer bits_per_word and max speed as spi device default if 4083 * it is not set for this transfer. 4084 * Set transfer tx_nbits and rx_nbits as single transfer default 4085 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 4086 * Ensure transfer word_delay is at least as long as that required by 4087 * device itself. 4088 */ 4089 message->frame_length = 0; 4090 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4091 xfer->effective_speed_hz = 0; 4092 message->frame_length += xfer->len; 4093 if (!xfer->bits_per_word) 4094 xfer->bits_per_word = spi->bits_per_word; 4095 4096 if (!xfer->speed_hz) 4097 xfer->speed_hz = spi->max_speed_hz; 4098 4099 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 4100 xfer->speed_hz = ctlr->max_speed_hz; 4101 4102 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 4103 return -EINVAL; 4104 4105 /* 4106 * SPI transfer length should be multiple of SPI word size 4107 * where SPI word size should be power-of-two multiple. 4108 */ 4109 if (xfer->bits_per_word <= 8) 4110 w_size = 1; 4111 else if (xfer->bits_per_word <= 16) 4112 w_size = 2; 4113 else 4114 w_size = 4; 4115 4116 /* No partial transfers accepted */ 4117 if (xfer->len % w_size) 4118 return -EINVAL; 4119 4120 if (xfer->speed_hz && ctlr->min_speed_hz && 4121 xfer->speed_hz < ctlr->min_speed_hz) 4122 return -EINVAL; 4123 4124 if (xfer->tx_buf && !xfer->tx_nbits) 4125 xfer->tx_nbits = SPI_NBITS_SINGLE; 4126 if (xfer->rx_buf && !xfer->rx_nbits) 4127 xfer->rx_nbits = SPI_NBITS_SINGLE; 4128 /* 4129 * Check transfer tx/rx_nbits: 4130 * 1. check the value matches one of single, dual and quad 4131 * 2. check tx/rx_nbits match the mode in spi_device 4132 */ 4133 if (xfer->tx_buf) { 4134 if (spi->mode & SPI_NO_TX) 4135 return -EINVAL; 4136 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4137 xfer->tx_nbits != SPI_NBITS_DUAL && 4138 xfer->tx_nbits != SPI_NBITS_QUAD && 4139 xfer->tx_nbits != SPI_NBITS_OCTAL) 4140 return -EINVAL; 4141 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4142 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 4143 return -EINVAL; 4144 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4145 !(spi->mode & SPI_TX_QUAD)) 4146 return -EINVAL; 4147 } 4148 /* Check transfer rx_nbits */ 4149 if (xfer->rx_buf) { 4150 if (spi->mode & SPI_NO_RX) 4151 return -EINVAL; 4152 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4153 xfer->rx_nbits != SPI_NBITS_DUAL && 4154 xfer->rx_nbits != SPI_NBITS_QUAD && 4155 xfer->rx_nbits != SPI_NBITS_OCTAL) 4156 return -EINVAL; 4157 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4158 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 4159 return -EINVAL; 4160 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4161 !(spi->mode & SPI_RX_QUAD)) 4162 return -EINVAL; 4163 } 4164 4165 if (_spi_xfer_word_delay_update(xfer, spi)) 4166 return -EINVAL; 4167 } 4168 4169 message->status = -EINPROGRESS; 4170 4171 return 0; 4172 } 4173 4174 /* 4175 * spi_split_transfers - generic handling of transfer splitting 4176 * @msg: the message to split 4177 * 4178 * Under certain conditions, a SPI controller may not support arbitrary 4179 * transfer sizes or other features required by a peripheral. This function 4180 * will split the transfers in the message into smaller transfers that are 4181 * supported by the controller. 4182 * 4183 * Controllers with special requirements not covered here can also split 4184 * transfers in the optimize_message() callback. 4185 * 4186 * Context: can sleep 4187 * Return: zero on success, else a negative error code 4188 */ 4189 static int spi_split_transfers(struct spi_message *msg) 4190 { 4191 struct spi_controller *ctlr = msg->spi->controller; 4192 struct spi_transfer *xfer; 4193 int ret; 4194 4195 /* 4196 * If an SPI controller does not support toggling the CS line on each 4197 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 4198 * for the CS line, we can emulate the CS-per-word hardware function by 4199 * splitting transfers into one-word transfers and ensuring that 4200 * cs_change is set for each transfer. 4201 */ 4202 if ((msg->spi->mode & SPI_CS_WORD) && 4203 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) { 4204 ret = spi_split_transfers_maxwords(ctlr, msg, 1); 4205 if (ret) 4206 return ret; 4207 4208 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 4209 /* Don't change cs_change on the last entry in the list */ 4210 if (list_is_last(&xfer->transfer_list, &msg->transfers)) 4211 break; 4212 4213 xfer->cs_change = 1; 4214 } 4215 } else { 4216 ret = spi_split_transfers_maxsize(ctlr, msg, 4217 spi_max_transfer_size(msg->spi)); 4218 if (ret) 4219 return ret; 4220 } 4221 4222 return 0; 4223 } 4224 4225 /* 4226 * __spi_optimize_message - shared implementation for spi_optimize_message() 4227 * and spi_maybe_optimize_message() 4228 * @spi: the device that will be used for the message 4229 * @msg: the message to optimize 4230 * 4231 * Peripheral drivers will call spi_optimize_message() and the spi core will 4232 * call spi_maybe_optimize_message() instead of calling this directly. 4233 * 4234 * It is not valid to call this on a message that has already been optimized. 4235 * 4236 * Return: zero on success, else a negative error code 4237 */ 4238 static int __spi_optimize_message(struct spi_device *spi, 4239 struct spi_message *msg) 4240 { 4241 struct spi_controller *ctlr = spi->controller; 4242 int ret; 4243 4244 ret = __spi_validate(spi, msg); 4245 if (ret) 4246 return ret; 4247 4248 ret = spi_split_transfers(msg); 4249 if (ret) 4250 return ret; 4251 4252 if (ctlr->optimize_message) { 4253 ret = ctlr->optimize_message(msg); 4254 if (ret) { 4255 spi_res_release(ctlr, msg); 4256 return ret; 4257 } 4258 } 4259 4260 msg->optimized = true; 4261 4262 return 0; 4263 } 4264 4265 /* 4266 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized 4267 * @spi: the device that will be used for the message 4268 * @msg: the message to optimize 4269 * Return: zero on success, else a negative error code 4270 */ 4271 static int spi_maybe_optimize_message(struct spi_device *spi, 4272 struct spi_message *msg) 4273 { 4274 if (spi->controller->defer_optimize_message) { 4275 msg->spi = spi; 4276 return 0; 4277 } 4278 4279 if (msg->pre_optimized) 4280 return 0; 4281 4282 return __spi_optimize_message(spi, msg); 4283 } 4284 4285 /** 4286 * spi_optimize_message - do any one-time validation and setup for a SPI message 4287 * @spi: the device that will be used for the message 4288 * @msg: the message to optimize 4289 * 4290 * Peripheral drivers that reuse the same message repeatedly may call this to 4291 * perform as much message prep as possible once, rather than repeating it each 4292 * time a message transfer is performed to improve throughput and reduce CPU 4293 * usage. 4294 * 4295 * Once a message has been optimized, it cannot be modified with the exception 4296 * of updating the contents of any xfer->tx_buf (the pointer can't be changed, 4297 * only the data in the memory it points to). 4298 * 4299 * Calls to this function must be balanced with calls to spi_unoptimize_message() 4300 * to avoid leaking resources. 4301 * 4302 * Context: can sleep 4303 * Return: zero on success, else a negative error code 4304 */ 4305 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg) 4306 { 4307 int ret; 4308 4309 /* 4310 * Pre-optimization is not supported and optimization is deferred e.g. 4311 * when using spi-mux. 4312 */ 4313 if (spi->controller->defer_optimize_message) 4314 return 0; 4315 4316 ret = __spi_optimize_message(spi, msg); 4317 if (ret) 4318 return ret; 4319 4320 /* 4321 * This flag indicates that the peripheral driver called spi_optimize_message() 4322 * and therefore we shouldn't unoptimize message automatically when finalizing 4323 * the message but rather wait until spi_unoptimize_message() is called 4324 * by the peripheral driver. 4325 */ 4326 msg->pre_optimized = true; 4327 4328 return 0; 4329 } 4330 EXPORT_SYMBOL_GPL(spi_optimize_message); 4331 4332 /** 4333 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message() 4334 * @msg: the message to unoptimize 4335 * 4336 * Calls to this function must be balanced with calls to spi_optimize_message(). 4337 * 4338 * Context: can sleep 4339 */ 4340 void spi_unoptimize_message(struct spi_message *msg) 4341 { 4342 if (msg->spi->controller->defer_optimize_message) 4343 return; 4344 4345 __spi_unoptimize_message(msg); 4346 msg->pre_optimized = false; 4347 } 4348 EXPORT_SYMBOL_GPL(spi_unoptimize_message); 4349 4350 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4351 { 4352 struct spi_controller *ctlr = spi->controller; 4353 struct spi_transfer *xfer; 4354 4355 /* 4356 * Some controllers do not support doing regular SPI transfers. Return 4357 * ENOTSUPP when this is the case. 4358 */ 4359 if (!ctlr->transfer) 4360 return -ENOTSUPP; 4361 4362 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4363 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4364 4365 trace_spi_message_submit(message); 4366 4367 if (!ctlr->ptp_sts_supported) { 4368 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4369 xfer->ptp_sts_word_pre = 0; 4370 ptp_read_system_prets(xfer->ptp_sts); 4371 } 4372 } 4373 4374 return ctlr->transfer(spi, message); 4375 } 4376 4377 static void devm_spi_unoptimize_message(void *msg) 4378 { 4379 spi_unoptimize_message(msg); 4380 } 4381 4382 /** 4383 * devm_spi_optimize_message - managed version of spi_optimize_message() 4384 * @dev: the device that manages @msg (usually @spi->dev) 4385 * @spi: the device that will be used for the message 4386 * @msg: the message to optimize 4387 * Return: zero on success, else a negative error code 4388 * 4389 * spi_unoptimize_message() will automatically be called when the device is 4390 * removed. 4391 */ 4392 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi, 4393 struct spi_message *msg) 4394 { 4395 int ret; 4396 4397 ret = spi_optimize_message(spi, msg); 4398 if (ret) 4399 return ret; 4400 4401 return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg); 4402 } 4403 EXPORT_SYMBOL_GPL(devm_spi_optimize_message); 4404 4405 /** 4406 * spi_async - asynchronous SPI transfer 4407 * @spi: device with which data will be exchanged 4408 * @message: describes the data transfers, including completion callback 4409 * Context: any (IRQs may be blocked, etc) 4410 * 4411 * This call may be used in_irq and other contexts which can't sleep, 4412 * as well as from task contexts which can sleep. 4413 * 4414 * The completion callback is invoked in a context which can't sleep. 4415 * Before that invocation, the value of message->status is undefined. 4416 * When the callback is issued, message->status holds either zero (to 4417 * indicate complete success) or a negative error code. After that 4418 * callback returns, the driver which issued the transfer request may 4419 * deallocate the associated memory; it's no longer in use by any SPI 4420 * core or controller driver code. 4421 * 4422 * Note that although all messages to a spi_device are handled in 4423 * FIFO order, messages may go to different devices in other orders. 4424 * Some device might be higher priority, or have various "hard" access 4425 * time requirements, for example. 4426 * 4427 * On detection of any fault during the transfer, processing of 4428 * the entire message is aborted, and the device is deselected. 4429 * Until returning from the associated message completion callback, 4430 * no other spi_message queued to that device will be processed. 4431 * (This rule applies equally to all the synchronous transfer calls, 4432 * which are wrappers around this core asynchronous primitive.) 4433 * 4434 * Return: zero on success, else a negative error code. 4435 */ 4436 int spi_async(struct spi_device *spi, struct spi_message *message) 4437 { 4438 struct spi_controller *ctlr = spi->controller; 4439 int ret; 4440 unsigned long flags; 4441 4442 ret = spi_maybe_optimize_message(spi, message); 4443 if (ret) 4444 return ret; 4445 4446 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4447 4448 if (ctlr->bus_lock_flag) 4449 ret = -EBUSY; 4450 else 4451 ret = __spi_async(spi, message); 4452 4453 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4454 4455 return ret; 4456 } 4457 EXPORT_SYMBOL_GPL(spi_async); 4458 4459 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4460 { 4461 bool was_busy; 4462 int ret; 4463 4464 mutex_lock(&ctlr->io_mutex); 4465 4466 was_busy = ctlr->busy; 4467 4468 ctlr->cur_msg = msg; 4469 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4470 if (ret) 4471 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4472 ctlr->cur_msg = NULL; 4473 ctlr->fallback = false; 4474 4475 if (!was_busy) { 4476 kfree(ctlr->dummy_rx); 4477 ctlr->dummy_rx = NULL; 4478 kfree(ctlr->dummy_tx); 4479 ctlr->dummy_tx = NULL; 4480 if (ctlr->unprepare_transfer_hardware && 4481 ctlr->unprepare_transfer_hardware(ctlr)) 4482 dev_err(&ctlr->dev, 4483 "failed to unprepare transfer hardware\n"); 4484 spi_idle_runtime_pm(ctlr); 4485 } 4486 4487 mutex_unlock(&ctlr->io_mutex); 4488 } 4489 4490 /*-------------------------------------------------------------------------*/ 4491 4492 /* 4493 * Utility methods for SPI protocol drivers, layered on 4494 * top of the core. Some other utility methods are defined as 4495 * inline functions. 4496 */ 4497 4498 static void spi_complete(void *arg) 4499 { 4500 complete(arg); 4501 } 4502 4503 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4504 { 4505 DECLARE_COMPLETION_ONSTACK(done); 4506 unsigned long flags; 4507 int status; 4508 struct spi_controller *ctlr = spi->controller; 4509 4510 if (__spi_check_suspended(ctlr)) { 4511 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4512 return -ESHUTDOWN; 4513 } 4514 4515 status = spi_maybe_optimize_message(spi, message); 4516 if (status) 4517 return status; 4518 4519 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4520 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4521 4522 /* 4523 * Checking queue_empty here only guarantees async/sync message 4524 * ordering when coming from the same context. It does not need to 4525 * guard against reentrancy from a different context. The io_mutex 4526 * will catch those cases. 4527 */ 4528 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4529 message->actual_length = 0; 4530 message->status = -EINPROGRESS; 4531 4532 trace_spi_message_submit(message); 4533 4534 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4535 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4536 4537 __spi_transfer_message_noqueue(ctlr, message); 4538 4539 return message->status; 4540 } 4541 4542 /* 4543 * There are messages in the async queue that could have originated 4544 * from the same context, so we need to preserve ordering. 4545 * Therefor we send the message to the async queue and wait until they 4546 * are completed. 4547 */ 4548 message->complete = spi_complete; 4549 message->context = &done; 4550 4551 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4552 status = __spi_async(spi, message); 4553 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4554 4555 if (status == 0) { 4556 wait_for_completion(&done); 4557 status = message->status; 4558 } 4559 message->complete = NULL; 4560 message->context = NULL; 4561 4562 return status; 4563 } 4564 4565 /** 4566 * spi_sync - blocking/synchronous SPI data transfers 4567 * @spi: device with which data will be exchanged 4568 * @message: describes the data transfers 4569 * Context: can sleep 4570 * 4571 * This call may only be used from a context that may sleep. The sleep 4572 * is non-interruptible, and has no timeout. Low-overhead controller 4573 * drivers may DMA directly into and out of the message buffers. 4574 * 4575 * Note that the SPI device's chip select is active during the message, 4576 * and then is normally disabled between messages. Drivers for some 4577 * frequently-used devices may want to minimize costs of selecting a chip, 4578 * by leaving it selected in anticipation that the next message will go 4579 * to the same chip. (That may increase power usage.) 4580 * 4581 * Also, the caller is guaranteeing that the memory associated with the 4582 * message will not be freed before this call returns. 4583 * 4584 * Return: zero on success, else a negative error code. 4585 */ 4586 int spi_sync(struct spi_device *spi, struct spi_message *message) 4587 { 4588 int ret; 4589 4590 mutex_lock(&spi->controller->bus_lock_mutex); 4591 ret = __spi_sync(spi, message); 4592 mutex_unlock(&spi->controller->bus_lock_mutex); 4593 4594 return ret; 4595 } 4596 EXPORT_SYMBOL_GPL(spi_sync); 4597 4598 /** 4599 * spi_sync_locked - version of spi_sync with exclusive bus usage 4600 * @spi: device with which data will be exchanged 4601 * @message: describes the data transfers 4602 * Context: can sleep 4603 * 4604 * This call may only be used from a context that may sleep. The sleep 4605 * is non-interruptible, and has no timeout. Low-overhead controller 4606 * drivers may DMA directly into and out of the message buffers. 4607 * 4608 * This call should be used by drivers that require exclusive access to the 4609 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4610 * be released by a spi_bus_unlock call when the exclusive access is over. 4611 * 4612 * Return: zero on success, else a negative error code. 4613 */ 4614 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4615 { 4616 return __spi_sync(spi, message); 4617 } 4618 EXPORT_SYMBOL_GPL(spi_sync_locked); 4619 4620 /** 4621 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4622 * @ctlr: SPI bus master that should be locked for exclusive bus access 4623 * Context: can sleep 4624 * 4625 * This call may only be used from a context that may sleep. The sleep 4626 * is non-interruptible, and has no timeout. 4627 * 4628 * This call should be used by drivers that require exclusive access to the 4629 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4630 * exclusive access is over. Data transfer must be done by spi_sync_locked 4631 * and spi_async_locked calls when the SPI bus lock is held. 4632 * 4633 * Return: always zero. 4634 */ 4635 int spi_bus_lock(struct spi_controller *ctlr) 4636 { 4637 unsigned long flags; 4638 4639 mutex_lock(&ctlr->bus_lock_mutex); 4640 4641 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4642 ctlr->bus_lock_flag = 1; 4643 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4644 4645 /* Mutex remains locked until spi_bus_unlock() is called */ 4646 4647 return 0; 4648 } 4649 EXPORT_SYMBOL_GPL(spi_bus_lock); 4650 4651 /** 4652 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4653 * @ctlr: SPI bus master that was locked for exclusive bus access 4654 * Context: can sleep 4655 * 4656 * This call may only be used from a context that may sleep. The sleep 4657 * is non-interruptible, and has no timeout. 4658 * 4659 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4660 * call. 4661 * 4662 * Return: always zero. 4663 */ 4664 int spi_bus_unlock(struct spi_controller *ctlr) 4665 { 4666 ctlr->bus_lock_flag = 0; 4667 4668 mutex_unlock(&ctlr->bus_lock_mutex); 4669 4670 return 0; 4671 } 4672 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4673 4674 /* Portable code must never pass more than 32 bytes */ 4675 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4676 4677 static u8 *buf; 4678 4679 /** 4680 * spi_write_then_read - SPI synchronous write followed by read 4681 * @spi: device with which data will be exchanged 4682 * @txbuf: data to be written (need not be DMA-safe) 4683 * @n_tx: size of txbuf, in bytes 4684 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4685 * @n_rx: size of rxbuf, in bytes 4686 * Context: can sleep 4687 * 4688 * This performs a half duplex MicroWire style transaction with the 4689 * device, sending txbuf and then reading rxbuf. The return value 4690 * is zero for success, else a negative errno status code. 4691 * This call may only be used from a context that may sleep. 4692 * 4693 * Parameters to this routine are always copied using a small buffer. 4694 * Performance-sensitive or bulk transfer code should instead use 4695 * spi_{async,sync}() calls with DMA-safe buffers. 4696 * 4697 * Return: zero on success, else a negative error code. 4698 */ 4699 int spi_write_then_read(struct spi_device *spi, 4700 const void *txbuf, unsigned n_tx, 4701 void *rxbuf, unsigned n_rx) 4702 { 4703 static DEFINE_MUTEX(lock); 4704 4705 int status; 4706 struct spi_message message; 4707 struct spi_transfer x[2]; 4708 u8 *local_buf; 4709 4710 /* 4711 * Use preallocated DMA-safe buffer if we can. We can't avoid 4712 * copying here, (as a pure convenience thing), but we can 4713 * keep heap costs out of the hot path unless someone else is 4714 * using the pre-allocated buffer or the transfer is too large. 4715 */ 4716 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4717 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4718 GFP_KERNEL | GFP_DMA); 4719 if (!local_buf) 4720 return -ENOMEM; 4721 } else { 4722 local_buf = buf; 4723 } 4724 4725 spi_message_init(&message); 4726 memset(x, 0, sizeof(x)); 4727 if (n_tx) { 4728 x[0].len = n_tx; 4729 spi_message_add_tail(&x[0], &message); 4730 } 4731 if (n_rx) { 4732 x[1].len = n_rx; 4733 spi_message_add_tail(&x[1], &message); 4734 } 4735 4736 memcpy(local_buf, txbuf, n_tx); 4737 x[0].tx_buf = local_buf; 4738 x[1].rx_buf = local_buf + n_tx; 4739 4740 /* Do the I/O */ 4741 status = spi_sync(spi, &message); 4742 if (status == 0) 4743 memcpy(rxbuf, x[1].rx_buf, n_rx); 4744 4745 if (x[0].tx_buf == buf) 4746 mutex_unlock(&lock); 4747 else 4748 kfree(local_buf); 4749 4750 return status; 4751 } 4752 EXPORT_SYMBOL_GPL(spi_write_then_read); 4753 4754 /*-------------------------------------------------------------------------*/ 4755 4756 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4757 /* Must call put_device() when done with returned spi_device device */ 4758 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4759 { 4760 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4761 4762 return dev ? to_spi_device(dev) : NULL; 4763 } 4764 4765 /* The spi controllers are not using spi_bus, so we find it with another way */ 4766 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4767 { 4768 struct device *dev; 4769 4770 dev = class_find_device_by_of_node(&spi_master_class, node); 4771 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4772 dev = class_find_device_by_of_node(&spi_slave_class, node); 4773 if (!dev) 4774 return NULL; 4775 4776 /* Reference got in class_find_device */ 4777 return container_of(dev, struct spi_controller, dev); 4778 } 4779 4780 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4781 void *arg) 4782 { 4783 struct of_reconfig_data *rd = arg; 4784 struct spi_controller *ctlr; 4785 struct spi_device *spi; 4786 4787 switch (of_reconfig_get_state_change(action, arg)) { 4788 case OF_RECONFIG_CHANGE_ADD: 4789 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4790 if (ctlr == NULL) 4791 return NOTIFY_OK; /* Not for us */ 4792 4793 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4794 put_device(&ctlr->dev); 4795 return NOTIFY_OK; 4796 } 4797 4798 /* 4799 * Clear the flag before adding the device so that fw_devlink 4800 * doesn't skip adding consumers to this device. 4801 */ 4802 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4803 spi = of_register_spi_device(ctlr, rd->dn); 4804 put_device(&ctlr->dev); 4805 4806 if (IS_ERR(spi)) { 4807 pr_err("%s: failed to create for '%pOF'\n", 4808 __func__, rd->dn); 4809 of_node_clear_flag(rd->dn, OF_POPULATED); 4810 return notifier_from_errno(PTR_ERR(spi)); 4811 } 4812 break; 4813 4814 case OF_RECONFIG_CHANGE_REMOVE: 4815 /* Already depopulated? */ 4816 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4817 return NOTIFY_OK; 4818 4819 /* Find our device by node */ 4820 spi = of_find_spi_device_by_node(rd->dn); 4821 if (spi == NULL) 4822 return NOTIFY_OK; /* No? not meant for us */ 4823 4824 /* Unregister takes one ref away */ 4825 spi_unregister_device(spi); 4826 4827 /* And put the reference of the find */ 4828 put_device(&spi->dev); 4829 break; 4830 } 4831 4832 return NOTIFY_OK; 4833 } 4834 4835 static struct notifier_block spi_of_notifier = { 4836 .notifier_call = of_spi_notify, 4837 }; 4838 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4839 extern struct notifier_block spi_of_notifier; 4840 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4841 4842 #if IS_ENABLED(CONFIG_ACPI) 4843 static int spi_acpi_controller_match(struct device *dev, const void *data) 4844 { 4845 return ACPI_COMPANION(dev->parent) == data; 4846 } 4847 4848 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4849 { 4850 struct device *dev; 4851 4852 dev = class_find_device(&spi_master_class, NULL, adev, 4853 spi_acpi_controller_match); 4854 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4855 dev = class_find_device(&spi_slave_class, NULL, adev, 4856 spi_acpi_controller_match); 4857 if (!dev) 4858 return NULL; 4859 4860 return container_of(dev, struct spi_controller, dev); 4861 } 4862 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); 4863 4864 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 4865 { 4866 struct device *dev; 4867 4868 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 4869 return to_spi_device(dev); 4870 } 4871 4872 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 4873 void *arg) 4874 { 4875 struct acpi_device *adev = arg; 4876 struct spi_controller *ctlr; 4877 struct spi_device *spi; 4878 4879 switch (value) { 4880 case ACPI_RECONFIG_DEVICE_ADD: 4881 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 4882 if (!ctlr) 4883 break; 4884 4885 acpi_register_spi_device(ctlr, adev); 4886 put_device(&ctlr->dev); 4887 break; 4888 case ACPI_RECONFIG_DEVICE_REMOVE: 4889 if (!acpi_device_enumerated(adev)) 4890 break; 4891 4892 spi = acpi_spi_find_device_by_adev(adev); 4893 if (!spi) 4894 break; 4895 4896 spi_unregister_device(spi); 4897 put_device(&spi->dev); 4898 break; 4899 } 4900 4901 return NOTIFY_OK; 4902 } 4903 4904 static struct notifier_block spi_acpi_notifier = { 4905 .notifier_call = acpi_spi_notify, 4906 }; 4907 #else 4908 extern struct notifier_block spi_acpi_notifier; 4909 #endif 4910 4911 static int __init spi_init(void) 4912 { 4913 int status; 4914 4915 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 4916 if (!buf) { 4917 status = -ENOMEM; 4918 goto err0; 4919 } 4920 4921 status = bus_register(&spi_bus_type); 4922 if (status < 0) 4923 goto err1; 4924 4925 status = class_register(&spi_master_class); 4926 if (status < 0) 4927 goto err2; 4928 4929 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 4930 status = class_register(&spi_slave_class); 4931 if (status < 0) 4932 goto err3; 4933 } 4934 4935 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 4936 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 4937 if (IS_ENABLED(CONFIG_ACPI)) 4938 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 4939 4940 return 0; 4941 4942 err3: 4943 class_unregister(&spi_master_class); 4944 err2: 4945 bus_unregister(&spi_bus_type); 4946 err1: 4947 kfree(buf); 4948 buf = NULL; 4949 err0: 4950 return status; 4951 } 4952 4953 /* 4954 * A board_info is normally registered in arch_initcall(), 4955 * but even essential drivers wait till later. 4956 * 4957 * REVISIT only boardinfo really needs static linking. The rest (device and 4958 * driver registration) _could_ be dynamically linked (modular) ... Costs 4959 * include needing to have boardinfo data structures be much more public. 4960 */ 4961 postcore_initcall(spi_init); 4962