1 /* 2 * SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * Copyright (C) 2008 Secret Lab Technologies Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/kmod.h> 24 #include <linux/device.h> 25 #include <linux/init.h> 26 #include <linux/cache.h> 27 #include <linux/mutex.h> 28 #include <linux/of_device.h> 29 #include <linux/of_irq.h> 30 #include <linux/slab.h> 31 #include <linux/mod_devicetable.h> 32 #include <linux/spi/spi.h> 33 #include <linux/of_gpio.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/export.h> 36 #include <linux/sched/rt.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/ioport.h> 40 #include <linux/acpi.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/spi.h> 44 45 static void spidev_release(struct device *dev) 46 { 47 struct spi_device *spi = to_spi_device(dev); 48 49 /* spi masters may cleanup for released devices */ 50 if (spi->master->cleanup) 51 spi->master->cleanup(spi); 52 53 spi_master_put(spi->master); 54 kfree(spi); 55 } 56 57 static ssize_t 58 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 59 { 60 const struct spi_device *spi = to_spi_device(dev); 61 62 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 63 } 64 static DEVICE_ATTR_RO(modalias); 65 66 static struct attribute *spi_dev_attrs[] = { 67 &dev_attr_modalias.attr, 68 NULL, 69 }; 70 ATTRIBUTE_GROUPS(spi_dev); 71 72 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 73 * and the sysfs version makes coldplug work too. 74 */ 75 76 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 77 const struct spi_device *sdev) 78 { 79 while (id->name[0]) { 80 if (!strcmp(sdev->modalias, id->name)) 81 return id; 82 id++; 83 } 84 return NULL; 85 } 86 87 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 88 { 89 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 90 91 return spi_match_id(sdrv->id_table, sdev); 92 } 93 EXPORT_SYMBOL_GPL(spi_get_device_id); 94 95 static int spi_match_device(struct device *dev, struct device_driver *drv) 96 { 97 const struct spi_device *spi = to_spi_device(dev); 98 const struct spi_driver *sdrv = to_spi_driver(drv); 99 100 /* Attempt an OF style match */ 101 if (of_driver_match_device(dev, drv)) 102 return 1; 103 104 /* Then try ACPI */ 105 if (acpi_driver_match_device(dev, drv)) 106 return 1; 107 108 if (sdrv->id_table) 109 return !!spi_match_id(sdrv->id_table, spi); 110 111 return strcmp(spi->modalias, drv->name) == 0; 112 } 113 114 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 115 { 116 const struct spi_device *spi = to_spi_device(dev); 117 118 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 119 return 0; 120 } 121 122 #ifdef CONFIG_PM_SLEEP 123 static int spi_legacy_suspend(struct device *dev, pm_message_t message) 124 { 125 int value = 0; 126 struct spi_driver *drv = to_spi_driver(dev->driver); 127 128 /* suspend will stop irqs and dma; no more i/o */ 129 if (drv) { 130 if (drv->suspend) 131 value = drv->suspend(to_spi_device(dev), message); 132 else 133 dev_dbg(dev, "... can't suspend\n"); 134 } 135 return value; 136 } 137 138 static int spi_legacy_resume(struct device *dev) 139 { 140 int value = 0; 141 struct spi_driver *drv = to_spi_driver(dev->driver); 142 143 /* resume may restart the i/o queue */ 144 if (drv) { 145 if (drv->resume) 146 value = drv->resume(to_spi_device(dev)); 147 else 148 dev_dbg(dev, "... can't resume\n"); 149 } 150 return value; 151 } 152 153 static int spi_pm_suspend(struct device *dev) 154 { 155 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 156 157 if (pm) 158 return pm_generic_suspend(dev); 159 else 160 return spi_legacy_suspend(dev, PMSG_SUSPEND); 161 } 162 163 static int spi_pm_resume(struct device *dev) 164 { 165 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 166 167 if (pm) 168 return pm_generic_resume(dev); 169 else 170 return spi_legacy_resume(dev); 171 } 172 173 static int spi_pm_freeze(struct device *dev) 174 { 175 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 176 177 if (pm) 178 return pm_generic_freeze(dev); 179 else 180 return spi_legacy_suspend(dev, PMSG_FREEZE); 181 } 182 183 static int spi_pm_thaw(struct device *dev) 184 { 185 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 186 187 if (pm) 188 return pm_generic_thaw(dev); 189 else 190 return spi_legacy_resume(dev); 191 } 192 193 static int spi_pm_poweroff(struct device *dev) 194 { 195 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 196 197 if (pm) 198 return pm_generic_poweroff(dev); 199 else 200 return spi_legacy_suspend(dev, PMSG_HIBERNATE); 201 } 202 203 static int spi_pm_restore(struct device *dev) 204 { 205 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 206 207 if (pm) 208 return pm_generic_restore(dev); 209 else 210 return spi_legacy_resume(dev); 211 } 212 #else 213 #define spi_pm_suspend NULL 214 #define spi_pm_resume NULL 215 #define spi_pm_freeze NULL 216 #define spi_pm_thaw NULL 217 #define spi_pm_poweroff NULL 218 #define spi_pm_restore NULL 219 #endif 220 221 static const struct dev_pm_ops spi_pm = { 222 .suspend = spi_pm_suspend, 223 .resume = spi_pm_resume, 224 .freeze = spi_pm_freeze, 225 .thaw = spi_pm_thaw, 226 .poweroff = spi_pm_poweroff, 227 .restore = spi_pm_restore, 228 SET_RUNTIME_PM_OPS( 229 pm_generic_runtime_suspend, 230 pm_generic_runtime_resume, 231 NULL 232 ) 233 }; 234 235 struct bus_type spi_bus_type = { 236 .name = "spi", 237 .dev_groups = spi_dev_groups, 238 .match = spi_match_device, 239 .uevent = spi_uevent, 240 .pm = &spi_pm, 241 }; 242 EXPORT_SYMBOL_GPL(spi_bus_type); 243 244 245 static int spi_drv_probe(struct device *dev) 246 { 247 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 248 struct spi_device *spi = to_spi_device(dev); 249 int ret; 250 251 acpi_dev_pm_attach(&spi->dev, true); 252 ret = sdrv->probe(spi); 253 if (ret) 254 acpi_dev_pm_detach(&spi->dev, true); 255 256 return ret; 257 } 258 259 static int spi_drv_remove(struct device *dev) 260 { 261 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 262 struct spi_device *spi = to_spi_device(dev); 263 int ret; 264 265 ret = sdrv->remove(spi); 266 acpi_dev_pm_detach(&spi->dev, true); 267 268 return ret; 269 } 270 271 static void spi_drv_shutdown(struct device *dev) 272 { 273 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 274 275 sdrv->shutdown(to_spi_device(dev)); 276 } 277 278 /** 279 * spi_register_driver - register a SPI driver 280 * @sdrv: the driver to register 281 * Context: can sleep 282 */ 283 int spi_register_driver(struct spi_driver *sdrv) 284 { 285 sdrv->driver.bus = &spi_bus_type; 286 if (sdrv->probe) 287 sdrv->driver.probe = spi_drv_probe; 288 if (sdrv->remove) 289 sdrv->driver.remove = spi_drv_remove; 290 if (sdrv->shutdown) 291 sdrv->driver.shutdown = spi_drv_shutdown; 292 return driver_register(&sdrv->driver); 293 } 294 EXPORT_SYMBOL_GPL(spi_register_driver); 295 296 /*-------------------------------------------------------------------------*/ 297 298 /* SPI devices should normally not be created by SPI device drivers; that 299 * would make them board-specific. Similarly with SPI master drivers. 300 * Device registration normally goes into like arch/.../mach.../board-YYY.c 301 * with other readonly (flashable) information about mainboard devices. 302 */ 303 304 struct boardinfo { 305 struct list_head list; 306 struct spi_board_info board_info; 307 }; 308 309 static LIST_HEAD(board_list); 310 static LIST_HEAD(spi_master_list); 311 312 /* 313 * Used to protect add/del opertion for board_info list and 314 * spi_master list, and their matching process 315 */ 316 static DEFINE_MUTEX(board_lock); 317 318 /** 319 * spi_alloc_device - Allocate a new SPI device 320 * @master: Controller to which device is connected 321 * Context: can sleep 322 * 323 * Allows a driver to allocate and initialize a spi_device without 324 * registering it immediately. This allows a driver to directly 325 * fill the spi_device with device parameters before calling 326 * spi_add_device() on it. 327 * 328 * Caller is responsible to call spi_add_device() on the returned 329 * spi_device structure to add it to the SPI master. If the caller 330 * needs to discard the spi_device without adding it, then it should 331 * call spi_dev_put() on it. 332 * 333 * Returns a pointer to the new device, or NULL. 334 */ 335 struct spi_device *spi_alloc_device(struct spi_master *master) 336 { 337 struct spi_device *spi; 338 struct device *dev = master->dev.parent; 339 340 if (!spi_master_get(master)) 341 return NULL; 342 343 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 344 if (!spi) { 345 dev_err(dev, "cannot alloc spi_device\n"); 346 spi_master_put(master); 347 return NULL; 348 } 349 350 spi->master = master; 351 spi->dev.parent = &master->dev; 352 spi->dev.bus = &spi_bus_type; 353 spi->dev.release = spidev_release; 354 spi->cs_gpio = -ENOENT; 355 device_initialize(&spi->dev); 356 return spi; 357 } 358 EXPORT_SYMBOL_GPL(spi_alloc_device); 359 360 static void spi_dev_set_name(struct spi_device *spi) 361 { 362 struct acpi_device *adev = ACPI_COMPANION(&spi->dev); 363 364 if (adev) { 365 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev)); 366 return; 367 } 368 369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 370 spi->chip_select); 371 } 372 373 /** 374 * spi_add_device - Add spi_device allocated with spi_alloc_device 375 * @spi: spi_device to register 376 * 377 * Companion function to spi_alloc_device. Devices allocated with 378 * spi_alloc_device can be added onto the spi bus with this function. 379 * 380 * Returns 0 on success; negative errno on failure 381 */ 382 int spi_add_device(struct spi_device *spi) 383 { 384 static DEFINE_MUTEX(spi_add_lock); 385 struct spi_master *master = spi->master; 386 struct device *dev = master->dev.parent; 387 struct device *d; 388 int status; 389 390 /* Chipselects are numbered 0..max; validate. */ 391 if (spi->chip_select >= master->num_chipselect) { 392 dev_err(dev, "cs%d >= max %d\n", 393 spi->chip_select, 394 master->num_chipselect); 395 return -EINVAL; 396 } 397 398 /* Set the bus ID string */ 399 spi_dev_set_name(spi); 400 401 /* We need to make sure there's no other device with this 402 * chipselect **BEFORE** we call setup(), else we'll trash 403 * its configuration. Lock against concurrent add() calls. 404 */ 405 mutex_lock(&spi_add_lock); 406 407 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev)); 408 if (d != NULL) { 409 dev_err(dev, "chipselect %d already in use\n", 410 spi->chip_select); 411 put_device(d); 412 status = -EBUSY; 413 goto done; 414 } 415 416 if (master->cs_gpios) 417 spi->cs_gpio = master->cs_gpios[spi->chip_select]; 418 419 /* Drivers may modify this initial i/o setup, but will 420 * normally rely on the device being setup. Devices 421 * using SPI_CS_HIGH can't coexist well otherwise... 422 */ 423 status = spi_setup(spi); 424 if (status < 0) { 425 dev_err(dev, "can't setup %s, status %d\n", 426 dev_name(&spi->dev), status); 427 goto done; 428 } 429 430 /* Device may be bound to an active driver when this returns */ 431 status = device_add(&spi->dev); 432 if (status < 0) 433 dev_err(dev, "can't add %s, status %d\n", 434 dev_name(&spi->dev), status); 435 else 436 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 437 438 done: 439 mutex_unlock(&spi_add_lock); 440 return status; 441 } 442 EXPORT_SYMBOL_GPL(spi_add_device); 443 444 /** 445 * spi_new_device - instantiate one new SPI device 446 * @master: Controller to which device is connected 447 * @chip: Describes the SPI device 448 * Context: can sleep 449 * 450 * On typical mainboards, this is purely internal; and it's not needed 451 * after board init creates the hard-wired devices. Some development 452 * platforms may not be able to use spi_register_board_info though, and 453 * this is exported so that for example a USB or parport based adapter 454 * driver could add devices (which it would learn about out-of-band). 455 * 456 * Returns the new device, or NULL. 457 */ 458 struct spi_device *spi_new_device(struct spi_master *master, 459 struct spi_board_info *chip) 460 { 461 struct spi_device *proxy; 462 int status; 463 464 /* NOTE: caller did any chip->bus_num checks necessary. 465 * 466 * Also, unless we change the return value convention to use 467 * error-or-pointer (not NULL-or-pointer), troubleshootability 468 * suggests syslogged diagnostics are best here (ugh). 469 */ 470 471 proxy = spi_alloc_device(master); 472 if (!proxy) 473 return NULL; 474 475 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 476 477 proxy->chip_select = chip->chip_select; 478 proxy->max_speed_hz = chip->max_speed_hz; 479 proxy->mode = chip->mode; 480 proxy->irq = chip->irq; 481 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 482 proxy->dev.platform_data = (void *) chip->platform_data; 483 proxy->controller_data = chip->controller_data; 484 proxy->controller_state = NULL; 485 486 status = spi_add_device(proxy); 487 if (status < 0) { 488 spi_dev_put(proxy); 489 return NULL; 490 } 491 492 return proxy; 493 } 494 EXPORT_SYMBOL_GPL(spi_new_device); 495 496 static void spi_match_master_to_boardinfo(struct spi_master *master, 497 struct spi_board_info *bi) 498 { 499 struct spi_device *dev; 500 501 if (master->bus_num != bi->bus_num) 502 return; 503 504 dev = spi_new_device(master, bi); 505 if (!dev) 506 dev_err(master->dev.parent, "can't create new device for %s\n", 507 bi->modalias); 508 } 509 510 /** 511 * spi_register_board_info - register SPI devices for a given board 512 * @info: array of chip descriptors 513 * @n: how many descriptors are provided 514 * Context: can sleep 515 * 516 * Board-specific early init code calls this (probably during arch_initcall) 517 * with segments of the SPI device table. Any device nodes are created later, 518 * after the relevant parent SPI controller (bus_num) is defined. We keep 519 * this table of devices forever, so that reloading a controller driver will 520 * not make Linux forget about these hard-wired devices. 521 * 522 * Other code can also call this, e.g. a particular add-on board might provide 523 * SPI devices through its expansion connector, so code initializing that board 524 * would naturally declare its SPI devices. 525 * 526 * The board info passed can safely be __initdata ... but be careful of 527 * any embedded pointers (platform_data, etc), they're copied as-is. 528 */ 529 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 530 { 531 struct boardinfo *bi; 532 int i; 533 534 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL); 535 if (!bi) 536 return -ENOMEM; 537 538 for (i = 0; i < n; i++, bi++, info++) { 539 struct spi_master *master; 540 541 memcpy(&bi->board_info, info, sizeof(*info)); 542 mutex_lock(&board_lock); 543 list_add_tail(&bi->list, &board_list); 544 list_for_each_entry(master, &spi_master_list, list) 545 spi_match_master_to_boardinfo(master, &bi->board_info); 546 mutex_unlock(&board_lock); 547 } 548 549 return 0; 550 } 551 552 /*-------------------------------------------------------------------------*/ 553 554 static void spi_set_cs(struct spi_device *spi, bool enable) 555 { 556 if (spi->mode & SPI_CS_HIGH) 557 enable = !enable; 558 559 if (spi->cs_gpio >= 0) 560 gpio_set_value(spi->cs_gpio, !enable); 561 else if (spi->master->set_cs) 562 spi->master->set_cs(spi, !enable); 563 } 564 565 /* 566 * spi_transfer_one_message - Default implementation of transfer_one_message() 567 * 568 * This is a standard implementation of transfer_one_message() for 569 * drivers which impelment a transfer_one() operation. It provides 570 * standard handling of delays and chip select management. 571 */ 572 static int spi_transfer_one_message(struct spi_master *master, 573 struct spi_message *msg) 574 { 575 struct spi_transfer *xfer; 576 bool cur_cs = true; 577 bool keep_cs = false; 578 int ret = 0; 579 580 spi_set_cs(msg->spi, true); 581 582 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 583 trace_spi_transfer_start(msg, xfer); 584 585 reinit_completion(&master->xfer_completion); 586 587 ret = master->transfer_one(master, msg->spi, xfer); 588 if (ret < 0) { 589 dev_err(&msg->spi->dev, 590 "SPI transfer failed: %d\n", ret); 591 goto out; 592 } 593 594 if (ret > 0) 595 wait_for_completion(&master->xfer_completion); 596 597 trace_spi_transfer_stop(msg, xfer); 598 599 if (msg->status != -EINPROGRESS) 600 goto out; 601 602 if (xfer->delay_usecs) 603 udelay(xfer->delay_usecs); 604 605 if (xfer->cs_change) { 606 if (list_is_last(&xfer->transfer_list, 607 &msg->transfers)) { 608 keep_cs = true; 609 } else { 610 cur_cs = !cur_cs; 611 spi_set_cs(msg->spi, cur_cs); 612 } 613 } 614 615 msg->actual_length += xfer->len; 616 } 617 618 out: 619 if (ret != 0 || !keep_cs) 620 spi_set_cs(msg->spi, false); 621 622 if (msg->status == -EINPROGRESS) 623 msg->status = ret; 624 625 spi_finalize_current_message(master); 626 627 return ret; 628 } 629 630 /** 631 * spi_finalize_current_transfer - report completion of a transfer 632 * 633 * Called by SPI drivers using the core transfer_one_message() 634 * implementation to notify it that the current interrupt driven 635 * transfer has finised and the next one may be scheduled. 636 */ 637 void spi_finalize_current_transfer(struct spi_master *master) 638 { 639 complete(&master->xfer_completion); 640 } 641 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 642 643 /** 644 * spi_pump_messages - kthread work function which processes spi message queue 645 * @work: pointer to kthread work struct contained in the master struct 646 * 647 * This function checks if there is any spi message in the queue that 648 * needs processing and if so call out to the driver to initialize hardware 649 * and transfer each message. 650 * 651 */ 652 static void spi_pump_messages(struct kthread_work *work) 653 { 654 struct spi_master *master = 655 container_of(work, struct spi_master, pump_messages); 656 unsigned long flags; 657 bool was_busy = false; 658 int ret; 659 660 /* Lock queue and check for queue work */ 661 spin_lock_irqsave(&master->queue_lock, flags); 662 if (list_empty(&master->queue) || !master->running) { 663 if (!master->busy) { 664 spin_unlock_irqrestore(&master->queue_lock, flags); 665 return; 666 } 667 master->busy = false; 668 spin_unlock_irqrestore(&master->queue_lock, flags); 669 if (master->unprepare_transfer_hardware && 670 master->unprepare_transfer_hardware(master)) 671 dev_err(&master->dev, 672 "failed to unprepare transfer hardware\n"); 673 if (master->auto_runtime_pm) { 674 pm_runtime_mark_last_busy(master->dev.parent); 675 pm_runtime_put_autosuspend(master->dev.parent); 676 } 677 trace_spi_master_idle(master); 678 return; 679 } 680 681 /* Make sure we are not already running a message */ 682 if (master->cur_msg) { 683 spin_unlock_irqrestore(&master->queue_lock, flags); 684 return; 685 } 686 /* Extract head of queue */ 687 master->cur_msg = 688 list_entry(master->queue.next, struct spi_message, queue); 689 690 list_del_init(&master->cur_msg->queue); 691 if (master->busy) 692 was_busy = true; 693 else 694 master->busy = true; 695 spin_unlock_irqrestore(&master->queue_lock, flags); 696 697 if (!was_busy && master->auto_runtime_pm) { 698 ret = pm_runtime_get_sync(master->dev.parent); 699 if (ret < 0) { 700 dev_err(&master->dev, "Failed to power device: %d\n", 701 ret); 702 return; 703 } 704 } 705 706 if (!was_busy) 707 trace_spi_master_busy(master); 708 709 if (!was_busy && master->prepare_transfer_hardware) { 710 ret = master->prepare_transfer_hardware(master); 711 if (ret) { 712 dev_err(&master->dev, 713 "failed to prepare transfer hardware\n"); 714 715 if (master->auto_runtime_pm) 716 pm_runtime_put(master->dev.parent); 717 return; 718 } 719 } 720 721 trace_spi_message_start(master->cur_msg); 722 723 if (master->prepare_message) { 724 ret = master->prepare_message(master, master->cur_msg); 725 if (ret) { 726 dev_err(&master->dev, 727 "failed to prepare message: %d\n", ret); 728 master->cur_msg->status = ret; 729 spi_finalize_current_message(master); 730 return; 731 } 732 master->cur_msg_prepared = true; 733 } 734 735 ret = master->transfer_one_message(master, master->cur_msg); 736 if (ret) { 737 dev_err(&master->dev, 738 "failed to transfer one message from queue\n"); 739 return; 740 } 741 } 742 743 static int spi_init_queue(struct spi_master *master) 744 { 745 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 746 747 INIT_LIST_HEAD(&master->queue); 748 spin_lock_init(&master->queue_lock); 749 750 master->running = false; 751 master->busy = false; 752 753 init_kthread_worker(&master->kworker); 754 master->kworker_task = kthread_run(kthread_worker_fn, 755 &master->kworker, "%s", 756 dev_name(&master->dev)); 757 if (IS_ERR(master->kworker_task)) { 758 dev_err(&master->dev, "failed to create message pump task\n"); 759 return -ENOMEM; 760 } 761 init_kthread_work(&master->pump_messages, spi_pump_messages); 762 763 /* 764 * Master config will indicate if this controller should run the 765 * message pump with high (realtime) priority to reduce the transfer 766 * latency on the bus by minimising the delay between a transfer 767 * request and the scheduling of the message pump thread. Without this 768 * setting the message pump thread will remain at default priority. 769 */ 770 if (master->rt) { 771 dev_info(&master->dev, 772 "will run message pump with realtime priority\n"); 773 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m); 774 } 775 776 return 0; 777 } 778 779 /** 780 * spi_get_next_queued_message() - called by driver to check for queued 781 * messages 782 * @master: the master to check for queued messages 783 * 784 * If there are more messages in the queue, the next message is returned from 785 * this call. 786 */ 787 struct spi_message *spi_get_next_queued_message(struct spi_master *master) 788 { 789 struct spi_message *next; 790 unsigned long flags; 791 792 /* get a pointer to the next message, if any */ 793 spin_lock_irqsave(&master->queue_lock, flags); 794 if (list_empty(&master->queue)) 795 next = NULL; 796 else 797 next = list_entry(master->queue.next, 798 struct spi_message, queue); 799 spin_unlock_irqrestore(&master->queue_lock, flags); 800 801 return next; 802 } 803 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 804 805 /** 806 * spi_finalize_current_message() - the current message is complete 807 * @master: the master to return the message to 808 * 809 * Called by the driver to notify the core that the message in the front of the 810 * queue is complete and can be removed from the queue. 811 */ 812 void spi_finalize_current_message(struct spi_master *master) 813 { 814 struct spi_message *mesg; 815 unsigned long flags; 816 int ret; 817 818 spin_lock_irqsave(&master->queue_lock, flags); 819 mesg = master->cur_msg; 820 master->cur_msg = NULL; 821 822 queue_kthread_work(&master->kworker, &master->pump_messages); 823 spin_unlock_irqrestore(&master->queue_lock, flags); 824 825 if (master->cur_msg_prepared && master->unprepare_message) { 826 ret = master->unprepare_message(master, mesg); 827 if (ret) { 828 dev_err(&master->dev, 829 "failed to unprepare message: %d\n", ret); 830 } 831 } 832 master->cur_msg_prepared = false; 833 834 mesg->state = NULL; 835 if (mesg->complete) 836 mesg->complete(mesg->context); 837 838 trace_spi_message_done(mesg); 839 } 840 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 841 842 static int spi_start_queue(struct spi_master *master) 843 { 844 unsigned long flags; 845 846 spin_lock_irqsave(&master->queue_lock, flags); 847 848 if (master->running || master->busy) { 849 spin_unlock_irqrestore(&master->queue_lock, flags); 850 return -EBUSY; 851 } 852 853 master->running = true; 854 master->cur_msg = NULL; 855 spin_unlock_irqrestore(&master->queue_lock, flags); 856 857 queue_kthread_work(&master->kworker, &master->pump_messages); 858 859 return 0; 860 } 861 862 static int spi_stop_queue(struct spi_master *master) 863 { 864 unsigned long flags; 865 unsigned limit = 500; 866 int ret = 0; 867 868 spin_lock_irqsave(&master->queue_lock, flags); 869 870 /* 871 * This is a bit lame, but is optimized for the common execution path. 872 * A wait_queue on the master->busy could be used, but then the common 873 * execution path (pump_messages) would be required to call wake_up or 874 * friends on every SPI message. Do this instead. 875 */ 876 while ((!list_empty(&master->queue) || master->busy) && limit--) { 877 spin_unlock_irqrestore(&master->queue_lock, flags); 878 msleep(10); 879 spin_lock_irqsave(&master->queue_lock, flags); 880 } 881 882 if (!list_empty(&master->queue) || master->busy) 883 ret = -EBUSY; 884 else 885 master->running = false; 886 887 spin_unlock_irqrestore(&master->queue_lock, flags); 888 889 if (ret) { 890 dev_warn(&master->dev, 891 "could not stop message queue\n"); 892 return ret; 893 } 894 return ret; 895 } 896 897 static int spi_destroy_queue(struct spi_master *master) 898 { 899 int ret; 900 901 ret = spi_stop_queue(master); 902 903 /* 904 * flush_kthread_worker will block until all work is done. 905 * If the reason that stop_queue timed out is that the work will never 906 * finish, then it does no good to call flush/stop thread, so 907 * return anyway. 908 */ 909 if (ret) { 910 dev_err(&master->dev, "problem destroying queue\n"); 911 return ret; 912 } 913 914 flush_kthread_worker(&master->kworker); 915 kthread_stop(master->kworker_task); 916 917 return 0; 918 } 919 920 /** 921 * spi_queued_transfer - transfer function for queued transfers 922 * @spi: spi device which is requesting transfer 923 * @msg: spi message which is to handled is queued to driver queue 924 */ 925 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 926 { 927 struct spi_master *master = spi->master; 928 unsigned long flags; 929 930 spin_lock_irqsave(&master->queue_lock, flags); 931 932 if (!master->running) { 933 spin_unlock_irqrestore(&master->queue_lock, flags); 934 return -ESHUTDOWN; 935 } 936 msg->actual_length = 0; 937 msg->status = -EINPROGRESS; 938 939 list_add_tail(&msg->queue, &master->queue); 940 if (!master->busy) 941 queue_kthread_work(&master->kworker, &master->pump_messages); 942 943 spin_unlock_irqrestore(&master->queue_lock, flags); 944 return 0; 945 } 946 947 static int spi_master_initialize_queue(struct spi_master *master) 948 { 949 int ret; 950 951 master->queued = true; 952 master->transfer = spi_queued_transfer; 953 if (!master->transfer_one_message) 954 master->transfer_one_message = spi_transfer_one_message; 955 956 /* Initialize and start queue */ 957 ret = spi_init_queue(master); 958 if (ret) { 959 dev_err(&master->dev, "problem initializing queue\n"); 960 goto err_init_queue; 961 } 962 ret = spi_start_queue(master); 963 if (ret) { 964 dev_err(&master->dev, "problem starting queue\n"); 965 goto err_start_queue; 966 } 967 968 return 0; 969 970 err_start_queue: 971 err_init_queue: 972 spi_destroy_queue(master); 973 return ret; 974 } 975 976 /*-------------------------------------------------------------------------*/ 977 978 #if defined(CONFIG_OF) 979 /** 980 * of_register_spi_devices() - Register child devices onto the SPI bus 981 * @master: Pointer to spi_master device 982 * 983 * Registers an spi_device for each child node of master node which has a 'reg' 984 * property. 985 */ 986 static void of_register_spi_devices(struct spi_master *master) 987 { 988 struct spi_device *spi; 989 struct device_node *nc; 990 int rc; 991 u32 value; 992 993 if (!master->dev.of_node) 994 return; 995 996 for_each_available_child_of_node(master->dev.of_node, nc) { 997 /* Alloc an spi_device */ 998 spi = spi_alloc_device(master); 999 if (!spi) { 1000 dev_err(&master->dev, "spi_device alloc error for %s\n", 1001 nc->full_name); 1002 spi_dev_put(spi); 1003 continue; 1004 } 1005 1006 /* Select device driver */ 1007 if (of_modalias_node(nc, spi->modalias, 1008 sizeof(spi->modalias)) < 0) { 1009 dev_err(&master->dev, "cannot find modalias for %s\n", 1010 nc->full_name); 1011 spi_dev_put(spi); 1012 continue; 1013 } 1014 1015 /* Device address */ 1016 rc = of_property_read_u32(nc, "reg", &value); 1017 if (rc) { 1018 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n", 1019 nc->full_name, rc); 1020 spi_dev_put(spi); 1021 continue; 1022 } 1023 spi->chip_select = value; 1024 1025 /* Mode (clock phase/polarity/etc.) */ 1026 if (of_find_property(nc, "spi-cpha", NULL)) 1027 spi->mode |= SPI_CPHA; 1028 if (of_find_property(nc, "spi-cpol", NULL)) 1029 spi->mode |= SPI_CPOL; 1030 if (of_find_property(nc, "spi-cs-high", NULL)) 1031 spi->mode |= SPI_CS_HIGH; 1032 if (of_find_property(nc, "spi-3wire", NULL)) 1033 spi->mode |= SPI_3WIRE; 1034 1035 /* Device DUAL/QUAD mode */ 1036 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) { 1037 switch (value) { 1038 case 1: 1039 break; 1040 case 2: 1041 spi->mode |= SPI_TX_DUAL; 1042 break; 1043 case 4: 1044 spi->mode |= SPI_TX_QUAD; 1045 break; 1046 default: 1047 dev_err(&master->dev, 1048 "spi-tx-bus-width %d not supported\n", 1049 value); 1050 spi_dev_put(spi); 1051 continue; 1052 } 1053 } 1054 1055 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) { 1056 switch (value) { 1057 case 1: 1058 break; 1059 case 2: 1060 spi->mode |= SPI_RX_DUAL; 1061 break; 1062 case 4: 1063 spi->mode |= SPI_RX_QUAD; 1064 break; 1065 default: 1066 dev_err(&master->dev, 1067 "spi-rx-bus-width %d not supported\n", 1068 value); 1069 spi_dev_put(spi); 1070 continue; 1071 } 1072 } 1073 1074 /* Device speed */ 1075 rc = of_property_read_u32(nc, "spi-max-frequency", &value); 1076 if (rc) { 1077 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n", 1078 nc->full_name, rc); 1079 spi_dev_put(spi); 1080 continue; 1081 } 1082 spi->max_speed_hz = value; 1083 1084 /* IRQ */ 1085 spi->irq = irq_of_parse_and_map(nc, 0); 1086 1087 /* Store a pointer to the node in the device structure */ 1088 of_node_get(nc); 1089 spi->dev.of_node = nc; 1090 1091 /* Register the new device */ 1092 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias); 1093 rc = spi_add_device(spi); 1094 if (rc) { 1095 dev_err(&master->dev, "spi_device register error %s\n", 1096 nc->full_name); 1097 spi_dev_put(spi); 1098 } 1099 1100 } 1101 } 1102 #else 1103 static void of_register_spi_devices(struct spi_master *master) { } 1104 #endif 1105 1106 #ifdef CONFIG_ACPI 1107 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 1108 { 1109 struct spi_device *spi = data; 1110 1111 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 1112 struct acpi_resource_spi_serialbus *sb; 1113 1114 sb = &ares->data.spi_serial_bus; 1115 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 1116 spi->chip_select = sb->device_selection; 1117 spi->max_speed_hz = sb->connection_speed; 1118 1119 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 1120 spi->mode |= SPI_CPHA; 1121 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 1122 spi->mode |= SPI_CPOL; 1123 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 1124 spi->mode |= SPI_CS_HIGH; 1125 } 1126 } else if (spi->irq < 0) { 1127 struct resource r; 1128 1129 if (acpi_dev_resource_interrupt(ares, 0, &r)) 1130 spi->irq = r.start; 1131 } 1132 1133 /* Always tell the ACPI core to skip this resource */ 1134 return 1; 1135 } 1136 1137 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 1138 void *data, void **return_value) 1139 { 1140 struct spi_master *master = data; 1141 struct list_head resource_list; 1142 struct acpi_device *adev; 1143 struct spi_device *spi; 1144 int ret; 1145 1146 if (acpi_bus_get_device(handle, &adev)) 1147 return AE_OK; 1148 if (acpi_bus_get_status(adev) || !adev->status.present) 1149 return AE_OK; 1150 1151 spi = spi_alloc_device(master); 1152 if (!spi) { 1153 dev_err(&master->dev, "failed to allocate SPI device for %s\n", 1154 dev_name(&adev->dev)); 1155 return AE_NO_MEMORY; 1156 } 1157 1158 ACPI_COMPANION_SET(&spi->dev, adev); 1159 spi->irq = -1; 1160 1161 INIT_LIST_HEAD(&resource_list); 1162 ret = acpi_dev_get_resources(adev, &resource_list, 1163 acpi_spi_add_resource, spi); 1164 acpi_dev_free_resource_list(&resource_list); 1165 1166 if (ret < 0 || !spi->max_speed_hz) { 1167 spi_dev_put(spi); 1168 return AE_OK; 1169 } 1170 1171 adev->power.flags.ignore_parent = true; 1172 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias)); 1173 if (spi_add_device(spi)) { 1174 adev->power.flags.ignore_parent = false; 1175 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n", 1176 dev_name(&adev->dev)); 1177 spi_dev_put(spi); 1178 } 1179 1180 return AE_OK; 1181 } 1182 1183 static void acpi_register_spi_devices(struct spi_master *master) 1184 { 1185 acpi_status status; 1186 acpi_handle handle; 1187 1188 handle = ACPI_HANDLE(master->dev.parent); 1189 if (!handle) 1190 return; 1191 1192 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 1193 acpi_spi_add_device, NULL, 1194 master, NULL); 1195 if (ACPI_FAILURE(status)) 1196 dev_warn(&master->dev, "failed to enumerate SPI slaves\n"); 1197 } 1198 #else 1199 static inline void acpi_register_spi_devices(struct spi_master *master) {} 1200 #endif /* CONFIG_ACPI */ 1201 1202 static void spi_master_release(struct device *dev) 1203 { 1204 struct spi_master *master; 1205 1206 master = container_of(dev, struct spi_master, dev); 1207 kfree(master); 1208 } 1209 1210 static struct class spi_master_class = { 1211 .name = "spi_master", 1212 .owner = THIS_MODULE, 1213 .dev_release = spi_master_release, 1214 }; 1215 1216 1217 1218 /** 1219 * spi_alloc_master - allocate SPI master controller 1220 * @dev: the controller, possibly using the platform_bus 1221 * @size: how much zeroed driver-private data to allocate; the pointer to this 1222 * memory is in the driver_data field of the returned device, 1223 * accessible with spi_master_get_devdata(). 1224 * Context: can sleep 1225 * 1226 * This call is used only by SPI master controller drivers, which are the 1227 * only ones directly touching chip registers. It's how they allocate 1228 * an spi_master structure, prior to calling spi_register_master(). 1229 * 1230 * This must be called from context that can sleep. It returns the SPI 1231 * master structure on success, else NULL. 1232 * 1233 * The caller is responsible for assigning the bus number and initializing 1234 * the master's methods before calling spi_register_master(); and (after errors 1235 * adding the device) calling spi_master_put() and kfree() to prevent a memory 1236 * leak. 1237 */ 1238 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 1239 { 1240 struct spi_master *master; 1241 1242 if (!dev) 1243 return NULL; 1244 1245 master = kzalloc(size + sizeof(*master), GFP_KERNEL); 1246 if (!master) 1247 return NULL; 1248 1249 device_initialize(&master->dev); 1250 master->bus_num = -1; 1251 master->num_chipselect = 1; 1252 master->dev.class = &spi_master_class; 1253 master->dev.parent = get_device(dev); 1254 spi_master_set_devdata(master, &master[1]); 1255 1256 return master; 1257 } 1258 EXPORT_SYMBOL_GPL(spi_alloc_master); 1259 1260 #ifdef CONFIG_OF 1261 static int of_spi_register_master(struct spi_master *master) 1262 { 1263 int nb, i, *cs; 1264 struct device_node *np = master->dev.of_node; 1265 1266 if (!np) 1267 return 0; 1268 1269 nb = of_gpio_named_count(np, "cs-gpios"); 1270 master->num_chipselect = max_t(int, nb, master->num_chipselect); 1271 1272 /* Return error only for an incorrectly formed cs-gpios property */ 1273 if (nb == 0 || nb == -ENOENT) 1274 return 0; 1275 else if (nb < 0) 1276 return nb; 1277 1278 cs = devm_kzalloc(&master->dev, 1279 sizeof(int) * master->num_chipselect, 1280 GFP_KERNEL); 1281 master->cs_gpios = cs; 1282 1283 if (!master->cs_gpios) 1284 return -ENOMEM; 1285 1286 for (i = 0; i < master->num_chipselect; i++) 1287 cs[i] = -ENOENT; 1288 1289 for (i = 0; i < nb; i++) 1290 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 1291 1292 return 0; 1293 } 1294 #else 1295 static int of_spi_register_master(struct spi_master *master) 1296 { 1297 return 0; 1298 } 1299 #endif 1300 1301 /** 1302 * spi_register_master - register SPI master controller 1303 * @master: initialized master, originally from spi_alloc_master() 1304 * Context: can sleep 1305 * 1306 * SPI master controllers connect to their drivers using some non-SPI bus, 1307 * such as the platform bus. The final stage of probe() in that code 1308 * includes calling spi_register_master() to hook up to this SPI bus glue. 1309 * 1310 * SPI controllers use board specific (often SOC specific) bus numbers, 1311 * and board-specific addressing for SPI devices combines those numbers 1312 * with chip select numbers. Since SPI does not directly support dynamic 1313 * device identification, boards need configuration tables telling which 1314 * chip is at which address. 1315 * 1316 * This must be called from context that can sleep. It returns zero on 1317 * success, else a negative error code (dropping the master's refcount). 1318 * After a successful return, the caller is responsible for calling 1319 * spi_unregister_master(). 1320 */ 1321 int spi_register_master(struct spi_master *master) 1322 { 1323 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 1324 struct device *dev = master->dev.parent; 1325 struct boardinfo *bi; 1326 int status = -ENODEV; 1327 int dynamic = 0; 1328 1329 if (!dev) 1330 return -ENODEV; 1331 1332 status = of_spi_register_master(master); 1333 if (status) 1334 return status; 1335 1336 /* even if it's just one always-selected device, there must 1337 * be at least one chipselect 1338 */ 1339 if (master->num_chipselect == 0) 1340 return -EINVAL; 1341 1342 if ((master->bus_num < 0) && master->dev.of_node) 1343 master->bus_num = of_alias_get_id(master->dev.of_node, "spi"); 1344 1345 /* convention: dynamically assigned bus IDs count down from the max */ 1346 if (master->bus_num < 0) { 1347 /* FIXME switch to an IDR based scheme, something like 1348 * I2C now uses, so we can't run out of "dynamic" IDs 1349 */ 1350 master->bus_num = atomic_dec_return(&dyn_bus_id); 1351 dynamic = 1; 1352 } 1353 1354 spin_lock_init(&master->bus_lock_spinlock); 1355 mutex_init(&master->bus_lock_mutex); 1356 master->bus_lock_flag = 0; 1357 init_completion(&master->xfer_completion); 1358 1359 /* register the device, then userspace will see it. 1360 * registration fails if the bus ID is in use. 1361 */ 1362 dev_set_name(&master->dev, "spi%u", master->bus_num); 1363 status = device_add(&master->dev); 1364 if (status < 0) 1365 goto done; 1366 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 1367 dynamic ? " (dynamic)" : ""); 1368 1369 /* If we're using a queued driver, start the queue */ 1370 if (master->transfer) 1371 dev_info(dev, "master is unqueued, this is deprecated\n"); 1372 else { 1373 status = spi_master_initialize_queue(master); 1374 if (status) { 1375 device_del(&master->dev); 1376 goto done; 1377 } 1378 } 1379 1380 mutex_lock(&board_lock); 1381 list_add_tail(&master->list, &spi_master_list); 1382 list_for_each_entry(bi, &board_list, list) 1383 spi_match_master_to_boardinfo(master, &bi->board_info); 1384 mutex_unlock(&board_lock); 1385 1386 /* Register devices from the device tree and ACPI */ 1387 of_register_spi_devices(master); 1388 acpi_register_spi_devices(master); 1389 done: 1390 return status; 1391 } 1392 EXPORT_SYMBOL_GPL(spi_register_master); 1393 1394 static void devm_spi_unregister(struct device *dev, void *res) 1395 { 1396 spi_unregister_master(*(struct spi_master **)res); 1397 } 1398 1399 /** 1400 * dev_spi_register_master - register managed SPI master controller 1401 * @dev: device managing SPI master 1402 * @master: initialized master, originally from spi_alloc_master() 1403 * Context: can sleep 1404 * 1405 * Register a SPI device as with spi_register_master() which will 1406 * automatically be unregister 1407 */ 1408 int devm_spi_register_master(struct device *dev, struct spi_master *master) 1409 { 1410 struct spi_master **ptr; 1411 int ret; 1412 1413 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL); 1414 if (!ptr) 1415 return -ENOMEM; 1416 1417 ret = spi_register_master(master); 1418 if (!ret) { 1419 *ptr = master; 1420 devres_add(dev, ptr); 1421 } else { 1422 devres_free(ptr); 1423 } 1424 1425 return ret; 1426 } 1427 EXPORT_SYMBOL_GPL(devm_spi_register_master); 1428 1429 static int __unregister(struct device *dev, void *null) 1430 { 1431 spi_unregister_device(to_spi_device(dev)); 1432 return 0; 1433 } 1434 1435 /** 1436 * spi_unregister_master - unregister SPI master controller 1437 * @master: the master being unregistered 1438 * Context: can sleep 1439 * 1440 * This call is used only by SPI master controller drivers, which are the 1441 * only ones directly touching chip registers. 1442 * 1443 * This must be called from context that can sleep. 1444 */ 1445 void spi_unregister_master(struct spi_master *master) 1446 { 1447 int dummy; 1448 1449 if (master->queued) { 1450 if (spi_destroy_queue(master)) 1451 dev_err(&master->dev, "queue remove failed\n"); 1452 } 1453 1454 mutex_lock(&board_lock); 1455 list_del(&master->list); 1456 mutex_unlock(&board_lock); 1457 1458 dummy = device_for_each_child(&master->dev, NULL, __unregister); 1459 device_unregister(&master->dev); 1460 } 1461 EXPORT_SYMBOL_GPL(spi_unregister_master); 1462 1463 int spi_master_suspend(struct spi_master *master) 1464 { 1465 int ret; 1466 1467 /* Basically no-ops for non-queued masters */ 1468 if (!master->queued) 1469 return 0; 1470 1471 ret = spi_stop_queue(master); 1472 if (ret) 1473 dev_err(&master->dev, "queue stop failed\n"); 1474 1475 return ret; 1476 } 1477 EXPORT_SYMBOL_GPL(spi_master_suspend); 1478 1479 int spi_master_resume(struct spi_master *master) 1480 { 1481 int ret; 1482 1483 if (!master->queued) 1484 return 0; 1485 1486 ret = spi_start_queue(master); 1487 if (ret) 1488 dev_err(&master->dev, "queue restart failed\n"); 1489 1490 return ret; 1491 } 1492 EXPORT_SYMBOL_GPL(spi_master_resume); 1493 1494 static int __spi_master_match(struct device *dev, const void *data) 1495 { 1496 struct spi_master *m; 1497 const u16 *bus_num = data; 1498 1499 m = container_of(dev, struct spi_master, dev); 1500 return m->bus_num == *bus_num; 1501 } 1502 1503 /** 1504 * spi_busnum_to_master - look up master associated with bus_num 1505 * @bus_num: the master's bus number 1506 * Context: can sleep 1507 * 1508 * This call may be used with devices that are registered after 1509 * arch init time. It returns a refcounted pointer to the relevant 1510 * spi_master (which the caller must release), or NULL if there is 1511 * no such master registered. 1512 */ 1513 struct spi_master *spi_busnum_to_master(u16 bus_num) 1514 { 1515 struct device *dev; 1516 struct spi_master *master = NULL; 1517 1518 dev = class_find_device(&spi_master_class, NULL, &bus_num, 1519 __spi_master_match); 1520 if (dev) 1521 master = container_of(dev, struct spi_master, dev); 1522 /* reference got in class_find_device */ 1523 return master; 1524 } 1525 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 1526 1527 1528 /*-------------------------------------------------------------------------*/ 1529 1530 /* Core methods for SPI master protocol drivers. Some of the 1531 * other core methods are currently defined as inline functions. 1532 */ 1533 1534 /** 1535 * spi_setup - setup SPI mode and clock rate 1536 * @spi: the device whose settings are being modified 1537 * Context: can sleep, and no requests are queued to the device 1538 * 1539 * SPI protocol drivers may need to update the transfer mode if the 1540 * device doesn't work with its default. They may likewise need 1541 * to update clock rates or word sizes from initial values. This function 1542 * changes those settings, and must be called from a context that can sleep. 1543 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 1544 * effect the next time the device is selected and data is transferred to 1545 * or from it. When this function returns, the spi device is deselected. 1546 * 1547 * Note that this call will fail if the protocol driver specifies an option 1548 * that the underlying controller or its driver does not support. For 1549 * example, not all hardware supports wire transfers using nine bit words, 1550 * LSB-first wire encoding, or active-high chipselects. 1551 */ 1552 int spi_setup(struct spi_device *spi) 1553 { 1554 unsigned bad_bits; 1555 int status = 0; 1556 1557 /* check mode to prevent that DUAL and QUAD set at the same time 1558 */ 1559 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) || 1560 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) { 1561 dev_err(&spi->dev, 1562 "setup: can not select dual and quad at the same time\n"); 1563 return -EINVAL; 1564 } 1565 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden 1566 */ 1567 if ((spi->mode & SPI_3WIRE) && (spi->mode & 1568 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD))) 1569 return -EINVAL; 1570 /* help drivers fail *cleanly* when they need options 1571 * that aren't supported with their current master 1572 */ 1573 bad_bits = spi->mode & ~spi->master->mode_bits; 1574 if (bad_bits) { 1575 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 1576 bad_bits); 1577 return -EINVAL; 1578 } 1579 1580 if (!spi->bits_per_word) 1581 spi->bits_per_word = 8; 1582 1583 if (spi->master->setup) 1584 status = spi->master->setup(spi); 1585 1586 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 1587 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 1588 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 1589 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 1590 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 1591 (spi->mode & SPI_LOOP) ? "loopback, " : "", 1592 spi->bits_per_word, spi->max_speed_hz, 1593 status); 1594 1595 return status; 1596 } 1597 EXPORT_SYMBOL_GPL(spi_setup); 1598 1599 static int __spi_async(struct spi_device *spi, struct spi_message *message) 1600 { 1601 struct spi_master *master = spi->master; 1602 struct spi_transfer *xfer; 1603 1604 message->spi = spi; 1605 1606 trace_spi_message_submit(message); 1607 1608 if (list_empty(&message->transfers)) 1609 return -EINVAL; 1610 if (!message->complete) 1611 return -EINVAL; 1612 1613 /* Half-duplex links include original MicroWire, and ones with 1614 * only one data pin like SPI_3WIRE (switches direction) or where 1615 * either MOSI or MISO is missing. They can also be caused by 1616 * software limitations. 1617 */ 1618 if ((master->flags & SPI_MASTER_HALF_DUPLEX) 1619 || (spi->mode & SPI_3WIRE)) { 1620 unsigned flags = master->flags; 1621 1622 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1623 if (xfer->rx_buf && xfer->tx_buf) 1624 return -EINVAL; 1625 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) 1626 return -EINVAL; 1627 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) 1628 return -EINVAL; 1629 } 1630 } 1631 1632 /** 1633 * Set transfer bits_per_word and max speed as spi device default if 1634 * it is not set for this transfer. 1635 * Set transfer tx_nbits and rx_nbits as single transfer default 1636 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 1637 */ 1638 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1639 message->frame_length += xfer->len; 1640 if (!xfer->bits_per_word) 1641 xfer->bits_per_word = spi->bits_per_word; 1642 if (!xfer->speed_hz) { 1643 xfer->speed_hz = spi->max_speed_hz; 1644 if (master->max_speed_hz && 1645 xfer->speed_hz > master->max_speed_hz) 1646 xfer->speed_hz = master->max_speed_hz; 1647 } 1648 1649 if (master->bits_per_word_mask) { 1650 /* Only 32 bits fit in the mask */ 1651 if (xfer->bits_per_word > 32) 1652 return -EINVAL; 1653 if (!(master->bits_per_word_mask & 1654 BIT(xfer->bits_per_word - 1))) 1655 return -EINVAL; 1656 } 1657 1658 if (xfer->speed_hz && master->min_speed_hz && 1659 xfer->speed_hz < master->min_speed_hz) 1660 return -EINVAL; 1661 if (xfer->speed_hz && master->max_speed_hz && 1662 xfer->speed_hz > master->max_speed_hz) 1663 return -EINVAL; 1664 1665 if (xfer->tx_buf && !xfer->tx_nbits) 1666 xfer->tx_nbits = SPI_NBITS_SINGLE; 1667 if (xfer->rx_buf && !xfer->rx_nbits) 1668 xfer->rx_nbits = SPI_NBITS_SINGLE; 1669 /* check transfer tx/rx_nbits: 1670 * 1. keep the value is not out of single, dual and quad 1671 * 2. keep tx/rx_nbits is contained by mode in spi_device 1672 * 3. if SPI_3WIRE, tx/rx_nbits should be in single 1673 */ 1674 if (xfer->tx_buf) { 1675 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 1676 xfer->tx_nbits != SPI_NBITS_DUAL && 1677 xfer->tx_nbits != SPI_NBITS_QUAD) 1678 return -EINVAL; 1679 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 1680 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD))) 1681 return -EINVAL; 1682 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 1683 !(spi->mode & SPI_TX_QUAD)) 1684 return -EINVAL; 1685 if ((spi->mode & SPI_3WIRE) && 1686 (xfer->tx_nbits != SPI_NBITS_SINGLE)) 1687 return -EINVAL; 1688 } 1689 /* check transfer rx_nbits */ 1690 if (xfer->rx_buf) { 1691 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 1692 xfer->rx_nbits != SPI_NBITS_DUAL && 1693 xfer->rx_nbits != SPI_NBITS_QUAD) 1694 return -EINVAL; 1695 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 1696 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD))) 1697 return -EINVAL; 1698 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 1699 !(spi->mode & SPI_RX_QUAD)) 1700 return -EINVAL; 1701 if ((spi->mode & SPI_3WIRE) && 1702 (xfer->rx_nbits != SPI_NBITS_SINGLE)) 1703 return -EINVAL; 1704 } 1705 } 1706 1707 message->status = -EINPROGRESS; 1708 return master->transfer(spi, message); 1709 } 1710 1711 /** 1712 * spi_async - asynchronous SPI transfer 1713 * @spi: device with which data will be exchanged 1714 * @message: describes the data transfers, including completion callback 1715 * Context: any (irqs may be blocked, etc) 1716 * 1717 * This call may be used in_irq and other contexts which can't sleep, 1718 * as well as from task contexts which can sleep. 1719 * 1720 * The completion callback is invoked in a context which can't sleep. 1721 * Before that invocation, the value of message->status is undefined. 1722 * When the callback is issued, message->status holds either zero (to 1723 * indicate complete success) or a negative error code. After that 1724 * callback returns, the driver which issued the transfer request may 1725 * deallocate the associated memory; it's no longer in use by any SPI 1726 * core or controller driver code. 1727 * 1728 * Note that although all messages to a spi_device are handled in 1729 * FIFO order, messages may go to different devices in other orders. 1730 * Some device might be higher priority, or have various "hard" access 1731 * time requirements, for example. 1732 * 1733 * On detection of any fault during the transfer, processing of 1734 * the entire message is aborted, and the device is deselected. 1735 * Until returning from the associated message completion callback, 1736 * no other spi_message queued to that device will be processed. 1737 * (This rule applies equally to all the synchronous transfer calls, 1738 * which are wrappers around this core asynchronous primitive.) 1739 */ 1740 int spi_async(struct spi_device *spi, struct spi_message *message) 1741 { 1742 struct spi_master *master = spi->master; 1743 int ret; 1744 unsigned long flags; 1745 1746 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1747 1748 if (master->bus_lock_flag) 1749 ret = -EBUSY; 1750 else 1751 ret = __spi_async(spi, message); 1752 1753 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1754 1755 return ret; 1756 } 1757 EXPORT_SYMBOL_GPL(spi_async); 1758 1759 /** 1760 * spi_async_locked - version of spi_async with exclusive bus usage 1761 * @spi: device with which data will be exchanged 1762 * @message: describes the data transfers, including completion callback 1763 * Context: any (irqs may be blocked, etc) 1764 * 1765 * This call may be used in_irq and other contexts which can't sleep, 1766 * as well as from task contexts which can sleep. 1767 * 1768 * The completion callback is invoked in a context which can't sleep. 1769 * Before that invocation, the value of message->status is undefined. 1770 * When the callback is issued, message->status holds either zero (to 1771 * indicate complete success) or a negative error code. After that 1772 * callback returns, the driver which issued the transfer request may 1773 * deallocate the associated memory; it's no longer in use by any SPI 1774 * core or controller driver code. 1775 * 1776 * Note that although all messages to a spi_device are handled in 1777 * FIFO order, messages may go to different devices in other orders. 1778 * Some device might be higher priority, or have various "hard" access 1779 * time requirements, for example. 1780 * 1781 * On detection of any fault during the transfer, processing of 1782 * the entire message is aborted, and the device is deselected. 1783 * Until returning from the associated message completion callback, 1784 * no other spi_message queued to that device will be processed. 1785 * (This rule applies equally to all the synchronous transfer calls, 1786 * which are wrappers around this core asynchronous primitive.) 1787 */ 1788 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 1789 { 1790 struct spi_master *master = spi->master; 1791 int ret; 1792 unsigned long flags; 1793 1794 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1795 1796 ret = __spi_async(spi, message); 1797 1798 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1799 1800 return ret; 1801 1802 } 1803 EXPORT_SYMBOL_GPL(spi_async_locked); 1804 1805 1806 /*-------------------------------------------------------------------------*/ 1807 1808 /* Utility methods for SPI master protocol drivers, layered on 1809 * top of the core. Some other utility methods are defined as 1810 * inline functions. 1811 */ 1812 1813 static void spi_complete(void *arg) 1814 { 1815 complete(arg); 1816 } 1817 1818 static int __spi_sync(struct spi_device *spi, struct spi_message *message, 1819 int bus_locked) 1820 { 1821 DECLARE_COMPLETION_ONSTACK(done); 1822 int status; 1823 struct spi_master *master = spi->master; 1824 1825 message->complete = spi_complete; 1826 message->context = &done; 1827 1828 if (!bus_locked) 1829 mutex_lock(&master->bus_lock_mutex); 1830 1831 status = spi_async_locked(spi, message); 1832 1833 if (!bus_locked) 1834 mutex_unlock(&master->bus_lock_mutex); 1835 1836 if (status == 0) { 1837 wait_for_completion(&done); 1838 status = message->status; 1839 } 1840 message->context = NULL; 1841 return status; 1842 } 1843 1844 /** 1845 * spi_sync - blocking/synchronous SPI data transfers 1846 * @spi: device with which data will be exchanged 1847 * @message: describes the data transfers 1848 * Context: can sleep 1849 * 1850 * This call may only be used from a context that may sleep. The sleep 1851 * is non-interruptible, and has no timeout. Low-overhead controller 1852 * drivers may DMA directly into and out of the message buffers. 1853 * 1854 * Note that the SPI device's chip select is active during the message, 1855 * and then is normally disabled between messages. Drivers for some 1856 * frequently-used devices may want to minimize costs of selecting a chip, 1857 * by leaving it selected in anticipation that the next message will go 1858 * to the same chip. (That may increase power usage.) 1859 * 1860 * Also, the caller is guaranteeing that the memory associated with the 1861 * message will not be freed before this call returns. 1862 * 1863 * It returns zero on success, else a negative error code. 1864 */ 1865 int spi_sync(struct spi_device *spi, struct spi_message *message) 1866 { 1867 return __spi_sync(spi, message, 0); 1868 } 1869 EXPORT_SYMBOL_GPL(spi_sync); 1870 1871 /** 1872 * spi_sync_locked - version of spi_sync with exclusive bus usage 1873 * @spi: device with which data will be exchanged 1874 * @message: describes the data transfers 1875 * Context: can sleep 1876 * 1877 * This call may only be used from a context that may sleep. The sleep 1878 * is non-interruptible, and has no timeout. Low-overhead controller 1879 * drivers may DMA directly into and out of the message buffers. 1880 * 1881 * This call should be used by drivers that require exclusive access to the 1882 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 1883 * be released by a spi_bus_unlock call when the exclusive access is over. 1884 * 1885 * It returns zero on success, else a negative error code. 1886 */ 1887 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 1888 { 1889 return __spi_sync(spi, message, 1); 1890 } 1891 EXPORT_SYMBOL_GPL(spi_sync_locked); 1892 1893 /** 1894 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 1895 * @master: SPI bus master that should be locked for exclusive bus access 1896 * Context: can sleep 1897 * 1898 * This call may only be used from a context that may sleep. The sleep 1899 * is non-interruptible, and has no timeout. 1900 * 1901 * This call should be used by drivers that require exclusive access to the 1902 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 1903 * exclusive access is over. Data transfer must be done by spi_sync_locked 1904 * and spi_async_locked calls when the SPI bus lock is held. 1905 * 1906 * It returns zero on success, else a negative error code. 1907 */ 1908 int spi_bus_lock(struct spi_master *master) 1909 { 1910 unsigned long flags; 1911 1912 mutex_lock(&master->bus_lock_mutex); 1913 1914 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1915 master->bus_lock_flag = 1; 1916 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1917 1918 /* mutex remains locked until spi_bus_unlock is called */ 1919 1920 return 0; 1921 } 1922 EXPORT_SYMBOL_GPL(spi_bus_lock); 1923 1924 /** 1925 * spi_bus_unlock - release the lock for exclusive SPI bus usage 1926 * @master: SPI bus master that was locked for exclusive bus access 1927 * Context: can sleep 1928 * 1929 * This call may only be used from a context that may sleep. The sleep 1930 * is non-interruptible, and has no timeout. 1931 * 1932 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 1933 * call. 1934 * 1935 * It returns zero on success, else a negative error code. 1936 */ 1937 int spi_bus_unlock(struct spi_master *master) 1938 { 1939 master->bus_lock_flag = 0; 1940 1941 mutex_unlock(&master->bus_lock_mutex); 1942 1943 return 0; 1944 } 1945 EXPORT_SYMBOL_GPL(spi_bus_unlock); 1946 1947 /* portable code must never pass more than 32 bytes */ 1948 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 1949 1950 static u8 *buf; 1951 1952 /** 1953 * spi_write_then_read - SPI synchronous write followed by read 1954 * @spi: device with which data will be exchanged 1955 * @txbuf: data to be written (need not be dma-safe) 1956 * @n_tx: size of txbuf, in bytes 1957 * @rxbuf: buffer into which data will be read (need not be dma-safe) 1958 * @n_rx: size of rxbuf, in bytes 1959 * Context: can sleep 1960 * 1961 * This performs a half duplex MicroWire style transaction with the 1962 * device, sending txbuf and then reading rxbuf. The return value 1963 * is zero for success, else a negative errno status code. 1964 * This call may only be used from a context that may sleep. 1965 * 1966 * Parameters to this routine are always copied using a small buffer; 1967 * portable code should never use this for more than 32 bytes. 1968 * Performance-sensitive or bulk transfer code should instead use 1969 * spi_{async,sync}() calls with dma-safe buffers. 1970 */ 1971 int spi_write_then_read(struct spi_device *spi, 1972 const void *txbuf, unsigned n_tx, 1973 void *rxbuf, unsigned n_rx) 1974 { 1975 static DEFINE_MUTEX(lock); 1976 1977 int status; 1978 struct spi_message message; 1979 struct spi_transfer x[2]; 1980 u8 *local_buf; 1981 1982 /* Use preallocated DMA-safe buffer if we can. We can't avoid 1983 * copying here, (as a pure convenience thing), but we can 1984 * keep heap costs out of the hot path unless someone else is 1985 * using the pre-allocated buffer or the transfer is too large. 1986 */ 1987 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 1988 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 1989 GFP_KERNEL | GFP_DMA); 1990 if (!local_buf) 1991 return -ENOMEM; 1992 } else { 1993 local_buf = buf; 1994 } 1995 1996 spi_message_init(&message); 1997 memset(x, 0, sizeof(x)); 1998 if (n_tx) { 1999 x[0].len = n_tx; 2000 spi_message_add_tail(&x[0], &message); 2001 } 2002 if (n_rx) { 2003 x[1].len = n_rx; 2004 spi_message_add_tail(&x[1], &message); 2005 } 2006 2007 memcpy(local_buf, txbuf, n_tx); 2008 x[0].tx_buf = local_buf; 2009 x[1].rx_buf = local_buf + n_tx; 2010 2011 /* do the i/o */ 2012 status = spi_sync(spi, &message); 2013 if (status == 0) 2014 memcpy(rxbuf, x[1].rx_buf, n_rx); 2015 2016 if (x[0].tx_buf == buf) 2017 mutex_unlock(&lock); 2018 else 2019 kfree(local_buf); 2020 2021 return status; 2022 } 2023 EXPORT_SYMBOL_GPL(spi_write_then_read); 2024 2025 /*-------------------------------------------------------------------------*/ 2026 2027 static int __init spi_init(void) 2028 { 2029 int status; 2030 2031 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 2032 if (!buf) { 2033 status = -ENOMEM; 2034 goto err0; 2035 } 2036 2037 status = bus_register(&spi_bus_type); 2038 if (status < 0) 2039 goto err1; 2040 2041 status = class_register(&spi_master_class); 2042 if (status < 0) 2043 goto err2; 2044 return 0; 2045 2046 err2: 2047 bus_unregister(&spi_bus_type); 2048 err1: 2049 kfree(buf); 2050 buf = NULL; 2051 err0: 2052 return status; 2053 } 2054 2055 /* board_info is normally registered in arch_initcall(), 2056 * but even essential drivers wait till later 2057 * 2058 * REVISIT only boardinfo really needs static linking. the rest (device and 2059 * driver registration) _could_ be dynamically linked (modular) ... costs 2060 * include needing to have boardinfo data structures be much more public. 2061 */ 2062 postcore_initcall(spi_init); 2063 2064