1 /* 2 * SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * Copyright (C) 2008 Secret Lab Technologies Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/kmod.h> 24 #include <linux/device.h> 25 #include <linux/init.h> 26 #include <linux/cache.h> 27 #include <linux/mutex.h> 28 #include <linux/of_device.h> 29 #include <linux/of_irq.h> 30 #include <linux/slab.h> 31 #include <linux/mod_devicetable.h> 32 #include <linux/spi/spi.h> 33 #include <linux/of_gpio.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/export.h> 36 #include <linux/sched/rt.h> 37 #include <linux/delay.h> 38 #include <linux/kthread.h> 39 #include <linux/ioport.h> 40 #include <linux/acpi.h> 41 42 static void spidev_release(struct device *dev) 43 { 44 struct spi_device *spi = to_spi_device(dev); 45 46 /* spi masters may cleanup for released devices */ 47 if (spi->master->cleanup) 48 spi->master->cleanup(spi); 49 50 spi_master_put(spi->master); 51 kfree(spi); 52 } 53 54 static ssize_t 55 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 56 { 57 const struct spi_device *spi = to_spi_device(dev); 58 59 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 60 } 61 62 static struct device_attribute spi_dev_attrs[] = { 63 __ATTR_RO(modalias), 64 __ATTR_NULL, 65 }; 66 67 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 68 * and the sysfs version makes coldplug work too. 69 */ 70 71 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, 72 const struct spi_device *sdev) 73 { 74 while (id->name[0]) { 75 if (!strcmp(sdev->modalias, id->name)) 76 return id; 77 id++; 78 } 79 return NULL; 80 } 81 82 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 83 { 84 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 85 86 return spi_match_id(sdrv->id_table, sdev); 87 } 88 EXPORT_SYMBOL_GPL(spi_get_device_id); 89 90 static int spi_match_device(struct device *dev, struct device_driver *drv) 91 { 92 const struct spi_device *spi = to_spi_device(dev); 93 const struct spi_driver *sdrv = to_spi_driver(drv); 94 95 /* Attempt an OF style match */ 96 if (of_driver_match_device(dev, drv)) 97 return 1; 98 99 /* Then try ACPI */ 100 if (acpi_driver_match_device(dev, drv)) 101 return 1; 102 103 if (sdrv->id_table) 104 return !!spi_match_id(sdrv->id_table, spi); 105 106 return strcmp(spi->modalias, drv->name) == 0; 107 } 108 109 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 110 { 111 const struct spi_device *spi = to_spi_device(dev); 112 113 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 114 return 0; 115 } 116 117 #ifdef CONFIG_PM_SLEEP 118 static int spi_legacy_suspend(struct device *dev, pm_message_t message) 119 { 120 int value = 0; 121 struct spi_driver *drv = to_spi_driver(dev->driver); 122 123 /* suspend will stop irqs and dma; no more i/o */ 124 if (drv) { 125 if (drv->suspend) 126 value = drv->suspend(to_spi_device(dev), message); 127 else 128 dev_dbg(dev, "... can't suspend\n"); 129 } 130 return value; 131 } 132 133 static int spi_legacy_resume(struct device *dev) 134 { 135 int value = 0; 136 struct spi_driver *drv = to_spi_driver(dev->driver); 137 138 /* resume may restart the i/o queue */ 139 if (drv) { 140 if (drv->resume) 141 value = drv->resume(to_spi_device(dev)); 142 else 143 dev_dbg(dev, "... can't resume\n"); 144 } 145 return value; 146 } 147 148 static int spi_pm_suspend(struct device *dev) 149 { 150 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 151 152 if (pm) 153 return pm_generic_suspend(dev); 154 else 155 return spi_legacy_suspend(dev, PMSG_SUSPEND); 156 } 157 158 static int spi_pm_resume(struct device *dev) 159 { 160 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 161 162 if (pm) 163 return pm_generic_resume(dev); 164 else 165 return spi_legacy_resume(dev); 166 } 167 168 static int spi_pm_freeze(struct device *dev) 169 { 170 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 171 172 if (pm) 173 return pm_generic_freeze(dev); 174 else 175 return spi_legacy_suspend(dev, PMSG_FREEZE); 176 } 177 178 static int spi_pm_thaw(struct device *dev) 179 { 180 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 181 182 if (pm) 183 return pm_generic_thaw(dev); 184 else 185 return spi_legacy_resume(dev); 186 } 187 188 static int spi_pm_poweroff(struct device *dev) 189 { 190 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 191 192 if (pm) 193 return pm_generic_poweroff(dev); 194 else 195 return spi_legacy_suspend(dev, PMSG_HIBERNATE); 196 } 197 198 static int spi_pm_restore(struct device *dev) 199 { 200 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 201 202 if (pm) 203 return pm_generic_restore(dev); 204 else 205 return spi_legacy_resume(dev); 206 } 207 #else 208 #define spi_pm_suspend NULL 209 #define spi_pm_resume NULL 210 #define spi_pm_freeze NULL 211 #define spi_pm_thaw NULL 212 #define spi_pm_poweroff NULL 213 #define spi_pm_restore NULL 214 #endif 215 216 static const struct dev_pm_ops spi_pm = { 217 .suspend = spi_pm_suspend, 218 .resume = spi_pm_resume, 219 .freeze = spi_pm_freeze, 220 .thaw = spi_pm_thaw, 221 .poweroff = spi_pm_poweroff, 222 .restore = spi_pm_restore, 223 SET_RUNTIME_PM_OPS( 224 pm_generic_runtime_suspend, 225 pm_generic_runtime_resume, 226 NULL 227 ) 228 }; 229 230 struct bus_type spi_bus_type = { 231 .name = "spi", 232 .dev_attrs = spi_dev_attrs, 233 .match = spi_match_device, 234 .uevent = spi_uevent, 235 .pm = &spi_pm, 236 }; 237 EXPORT_SYMBOL_GPL(spi_bus_type); 238 239 240 static int spi_drv_probe(struct device *dev) 241 { 242 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 243 244 return sdrv->probe(to_spi_device(dev)); 245 } 246 247 static int spi_drv_remove(struct device *dev) 248 { 249 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 250 251 return sdrv->remove(to_spi_device(dev)); 252 } 253 254 static void spi_drv_shutdown(struct device *dev) 255 { 256 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 257 258 sdrv->shutdown(to_spi_device(dev)); 259 } 260 261 /** 262 * spi_register_driver - register a SPI driver 263 * @sdrv: the driver to register 264 * Context: can sleep 265 */ 266 int spi_register_driver(struct spi_driver *sdrv) 267 { 268 sdrv->driver.bus = &spi_bus_type; 269 if (sdrv->probe) 270 sdrv->driver.probe = spi_drv_probe; 271 if (sdrv->remove) 272 sdrv->driver.remove = spi_drv_remove; 273 if (sdrv->shutdown) 274 sdrv->driver.shutdown = spi_drv_shutdown; 275 return driver_register(&sdrv->driver); 276 } 277 EXPORT_SYMBOL_GPL(spi_register_driver); 278 279 /*-------------------------------------------------------------------------*/ 280 281 /* SPI devices should normally not be created by SPI device drivers; that 282 * would make them board-specific. Similarly with SPI master drivers. 283 * Device registration normally goes into like arch/.../mach.../board-YYY.c 284 * with other readonly (flashable) information about mainboard devices. 285 */ 286 287 struct boardinfo { 288 struct list_head list; 289 struct spi_board_info board_info; 290 }; 291 292 static LIST_HEAD(board_list); 293 static LIST_HEAD(spi_master_list); 294 295 /* 296 * Used to protect add/del opertion for board_info list and 297 * spi_master list, and their matching process 298 */ 299 static DEFINE_MUTEX(board_lock); 300 301 /** 302 * spi_alloc_device - Allocate a new SPI device 303 * @master: Controller to which device is connected 304 * Context: can sleep 305 * 306 * Allows a driver to allocate and initialize a spi_device without 307 * registering it immediately. This allows a driver to directly 308 * fill the spi_device with device parameters before calling 309 * spi_add_device() on it. 310 * 311 * Caller is responsible to call spi_add_device() on the returned 312 * spi_device structure to add it to the SPI master. If the caller 313 * needs to discard the spi_device without adding it, then it should 314 * call spi_dev_put() on it. 315 * 316 * Returns a pointer to the new device, or NULL. 317 */ 318 struct spi_device *spi_alloc_device(struct spi_master *master) 319 { 320 struct spi_device *spi; 321 struct device *dev = master->dev.parent; 322 323 if (!spi_master_get(master)) 324 return NULL; 325 326 spi = kzalloc(sizeof *spi, GFP_KERNEL); 327 if (!spi) { 328 dev_err(dev, "cannot alloc spi_device\n"); 329 spi_master_put(master); 330 return NULL; 331 } 332 333 spi->master = master; 334 spi->dev.parent = &master->dev; 335 spi->dev.bus = &spi_bus_type; 336 spi->dev.release = spidev_release; 337 spi->cs_gpio = -ENOENT; 338 device_initialize(&spi->dev); 339 return spi; 340 } 341 EXPORT_SYMBOL_GPL(spi_alloc_device); 342 343 /** 344 * spi_add_device - Add spi_device allocated with spi_alloc_device 345 * @spi: spi_device to register 346 * 347 * Companion function to spi_alloc_device. Devices allocated with 348 * spi_alloc_device can be added onto the spi bus with this function. 349 * 350 * Returns 0 on success; negative errno on failure 351 */ 352 int spi_add_device(struct spi_device *spi) 353 { 354 static DEFINE_MUTEX(spi_add_lock); 355 struct spi_master *master = spi->master; 356 struct device *dev = master->dev.parent; 357 struct device *d; 358 int status; 359 360 /* Chipselects are numbered 0..max; validate. */ 361 if (spi->chip_select >= master->num_chipselect) { 362 dev_err(dev, "cs%d >= max %d\n", 363 spi->chip_select, 364 master->num_chipselect); 365 return -EINVAL; 366 } 367 368 /* Set the bus ID string */ 369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev), 370 spi->chip_select); 371 372 373 /* We need to make sure there's no other device with this 374 * chipselect **BEFORE** we call setup(), else we'll trash 375 * its configuration. Lock against concurrent add() calls. 376 */ 377 mutex_lock(&spi_add_lock); 378 379 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev)); 380 if (d != NULL) { 381 dev_err(dev, "chipselect %d already in use\n", 382 spi->chip_select); 383 put_device(d); 384 status = -EBUSY; 385 goto done; 386 } 387 388 if (master->cs_gpios) 389 spi->cs_gpio = master->cs_gpios[spi->chip_select]; 390 391 /* Drivers may modify this initial i/o setup, but will 392 * normally rely on the device being setup. Devices 393 * using SPI_CS_HIGH can't coexist well otherwise... 394 */ 395 status = spi_setup(spi); 396 if (status < 0) { 397 dev_err(dev, "can't setup %s, status %d\n", 398 dev_name(&spi->dev), status); 399 goto done; 400 } 401 402 /* Device may be bound to an active driver when this returns */ 403 status = device_add(&spi->dev); 404 if (status < 0) 405 dev_err(dev, "can't add %s, status %d\n", 406 dev_name(&spi->dev), status); 407 else 408 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 409 410 done: 411 mutex_unlock(&spi_add_lock); 412 return status; 413 } 414 EXPORT_SYMBOL_GPL(spi_add_device); 415 416 /** 417 * spi_new_device - instantiate one new SPI device 418 * @master: Controller to which device is connected 419 * @chip: Describes the SPI device 420 * Context: can sleep 421 * 422 * On typical mainboards, this is purely internal; and it's not needed 423 * after board init creates the hard-wired devices. Some development 424 * platforms may not be able to use spi_register_board_info though, and 425 * this is exported so that for example a USB or parport based adapter 426 * driver could add devices (which it would learn about out-of-band). 427 * 428 * Returns the new device, or NULL. 429 */ 430 struct spi_device *spi_new_device(struct spi_master *master, 431 struct spi_board_info *chip) 432 { 433 struct spi_device *proxy; 434 int status; 435 436 /* NOTE: caller did any chip->bus_num checks necessary. 437 * 438 * Also, unless we change the return value convention to use 439 * error-or-pointer (not NULL-or-pointer), troubleshootability 440 * suggests syslogged diagnostics are best here (ugh). 441 */ 442 443 proxy = spi_alloc_device(master); 444 if (!proxy) 445 return NULL; 446 447 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 448 449 proxy->chip_select = chip->chip_select; 450 proxy->max_speed_hz = chip->max_speed_hz; 451 proxy->mode = chip->mode; 452 proxy->irq = chip->irq; 453 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 454 proxy->dev.platform_data = (void *) chip->platform_data; 455 proxy->controller_data = chip->controller_data; 456 proxy->controller_state = NULL; 457 458 status = spi_add_device(proxy); 459 if (status < 0) { 460 spi_dev_put(proxy); 461 return NULL; 462 } 463 464 return proxy; 465 } 466 EXPORT_SYMBOL_GPL(spi_new_device); 467 468 static void spi_match_master_to_boardinfo(struct spi_master *master, 469 struct spi_board_info *bi) 470 { 471 struct spi_device *dev; 472 473 if (master->bus_num != bi->bus_num) 474 return; 475 476 dev = spi_new_device(master, bi); 477 if (!dev) 478 dev_err(master->dev.parent, "can't create new device for %s\n", 479 bi->modalias); 480 } 481 482 /** 483 * spi_register_board_info - register SPI devices for a given board 484 * @info: array of chip descriptors 485 * @n: how many descriptors are provided 486 * Context: can sleep 487 * 488 * Board-specific early init code calls this (probably during arch_initcall) 489 * with segments of the SPI device table. Any device nodes are created later, 490 * after the relevant parent SPI controller (bus_num) is defined. We keep 491 * this table of devices forever, so that reloading a controller driver will 492 * not make Linux forget about these hard-wired devices. 493 * 494 * Other code can also call this, e.g. a particular add-on board might provide 495 * SPI devices through its expansion connector, so code initializing that board 496 * would naturally declare its SPI devices. 497 * 498 * The board info passed can safely be __initdata ... but be careful of 499 * any embedded pointers (platform_data, etc), they're copied as-is. 500 */ 501 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 502 { 503 struct boardinfo *bi; 504 int i; 505 506 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL); 507 if (!bi) 508 return -ENOMEM; 509 510 for (i = 0; i < n; i++, bi++, info++) { 511 struct spi_master *master; 512 513 memcpy(&bi->board_info, info, sizeof(*info)); 514 mutex_lock(&board_lock); 515 list_add_tail(&bi->list, &board_list); 516 list_for_each_entry(master, &spi_master_list, list) 517 spi_match_master_to_boardinfo(master, &bi->board_info); 518 mutex_unlock(&board_lock); 519 } 520 521 return 0; 522 } 523 524 /*-------------------------------------------------------------------------*/ 525 526 /** 527 * spi_pump_messages - kthread work function which processes spi message queue 528 * @work: pointer to kthread work struct contained in the master struct 529 * 530 * This function checks if there is any spi message in the queue that 531 * needs processing and if so call out to the driver to initialize hardware 532 * and transfer each message. 533 * 534 */ 535 static void spi_pump_messages(struct kthread_work *work) 536 { 537 struct spi_master *master = 538 container_of(work, struct spi_master, pump_messages); 539 unsigned long flags; 540 bool was_busy = false; 541 int ret; 542 543 /* Lock queue and check for queue work */ 544 spin_lock_irqsave(&master->queue_lock, flags); 545 if (list_empty(&master->queue) || !master->running) { 546 if (!master->busy) { 547 spin_unlock_irqrestore(&master->queue_lock, flags); 548 return; 549 } 550 master->busy = false; 551 spin_unlock_irqrestore(&master->queue_lock, flags); 552 if (master->unprepare_transfer_hardware && 553 master->unprepare_transfer_hardware(master)) 554 dev_err(&master->dev, 555 "failed to unprepare transfer hardware\n"); 556 return; 557 } 558 559 /* Make sure we are not already running a message */ 560 if (master->cur_msg) { 561 spin_unlock_irqrestore(&master->queue_lock, flags); 562 return; 563 } 564 /* Extract head of queue */ 565 master->cur_msg = 566 list_entry(master->queue.next, struct spi_message, queue); 567 568 list_del_init(&master->cur_msg->queue); 569 if (master->busy) 570 was_busy = true; 571 else 572 master->busy = true; 573 spin_unlock_irqrestore(&master->queue_lock, flags); 574 575 if (!was_busy && master->prepare_transfer_hardware) { 576 ret = master->prepare_transfer_hardware(master); 577 if (ret) { 578 dev_err(&master->dev, 579 "failed to prepare transfer hardware\n"); 580 return; 581 } 582 } 583 584 ret = master->transfer_one_message(master, master->cur_msg); 585 if (ret) { 586 dev_err(&master->dev, 587 "failed to transfer one message from queue\n"); 588 return; 589 } 590 } 591 592 static int spi_init_queue(struct spi_master *master) 593 { 594 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 595 596 INIT_LIST_HEAD(&master->queue); 597 spin_lock_init(&master->queue_lock); 598 599 master->running = false; 600 master->busy = false; 601 602 init_kthread_worker(&master->kworker); 603 master->kworker_task = kthread_run(kthread_worker_fn, 604 &master->kworker, "%s", 605 dev_name(&master->dev)); 606 if (IS_ERR(master->kworker_task)) { 607 dev_err(&master->dev, "failed to create message pump task\n"); 608 return -ENOMEM; 609 } 610 init_kthread_work(&master->pump_messages, spi_pump_messages); 611 612 /* 613 * Master config will indicate if this controller should run the 614 * message pump with high (realtime) priority to reduce the transfer 615 * latency on the bus by minimising the delay between a transfer 616 * request and the scheduling of the message pump thread. Without this 617 * setting the message pump thread will remain at default priority. 618 */ 619 if (master->rt) { 620 dev_info(&master->dev, 621 "will run message pump with realtime priority\n"); 622 sched_setscheduler(master->kworker_task, SCHED_FIFO, ¶m); 623 } 624 625 return 0; 626 } 627 628 /** 629 * spi_get_next_queued_message() - called by driver to check for queued 630 * messages 631 * @master: the master to check for queued messages 632 * 633 * If there are more messages in the queue, the next message is returned from 634 * this call. 635 */ 636 struct spi_message *spi_get_next_queued_message(struct spi_master *master) 637 { 638 struct spi_message *next; 639 unsigned long flags; 640 641 /* get a pointer to the next message, if any */ 642 spin_lock_irqsave(&master->queue_lock, flags); 643 if (list_empty(&master->queue)) 644 next = NULL; 645 else 646 next = list_entry(master->queue.next, 647 struct spi_message, queue); 648 spin_unlock_irqrestore(&master->queue_lock, flags); 649 650 return next; 651 } 652 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 653 654 /** 655 * spi_finalize_current_message() - the current message is complete 656 * @master: the master to return the message to 657 * 658 * Called by the driver to notify the core that the message in the front of the 659 * queue is complete and can be removed from the queue. 660 */ 661 void spi_finalize_current_message(struct spi_master *master) 662 { 663 struct spi_message *mesg; 664 unsigned long flags; 665 666 spin_lock_irqsave(&master->queue_lock, flags); 667 mesg = master->cur_msg; 668 master->cur_msg = NULL; 669 670 queue_kthread_work(&master->kworker, &master->pump_messages); 671 spin_unlock_irqrestore(&master->queue_lock, flags); 672 673 mesg->state = NULL; 674 if (mesg->complete) 675 mesg->complete(mesg->context); 676 } 677 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 678 679 static int spi_start_queue(struct spi_master *master) 680 { 681 unsigned long flags; 682 683 spin_lock_irqsave(&master->queue_lock, flags); 684 685 if (master->running || master->busy) { 686 spin_unlock_irqrestore(&master->queue_lock, flags); 687 return -EBUSY; 688 } 689 690 master->running = true; 691 master->cur_msg = NULL; 692 spin_unlock_irqrestore(&master->queue_lock, flags); 693 694 queue_kthread_work(&master->kworker, &master->pump_messages); 695 696 return 0; 697 } 698 699 static int spi_stop_queue(struct spi_master *master) 700 { 701 unsigned long flags; 702 unsigned limit = 500; 703 int ret = 0; 704 705 spin_lock_irqsave(&master->queue_lock, flags); 706 707 /* 708 * This is a bit lame, but is optimized for the common execution path. 709 * A wait_queue on the master->busy could be used, but then the common 710 * execution path (pump_messages) would be required to call wake_up or 711 * friends on every SPI message. Do this instead. 712 */ 713 while ((!list_empty(&master->queue) || master->busy) && limit--) { 714 spin_unlock_irqrestore(&master->queue_lock, flags); 715 msleep(10); 716 spin_lock_irqsave(&master->queue_lock, flags); 717 } 718 719 if (!list_empty(&master->queue) || master->busy) 720 ret = -EBUSY; 721 else 722 master->running = false; 723 724 spin_unlock_irqrestore(&master->queue_lock, flags); 725 726 if (ret) { 727 dev_warn(&master->dev, 728 "could not stop message queue\n"); 729 return ret; 730 } 731 return ret; 732 } 733 734 static int spi_destroy_queue(struct spi_master *master) 735 { 736 int ret; 737 738 ret = spi_stop_queue(master); 739 740 /* 741 * flush_kthread_worker will block until all work is done. 742 * If the reason that stop_queue timed out is that the work will never 743 * finish, then it does no good to call flush/stop thread, so 744 * return anyway. 745 */ 746 if (ret) { 747 dev_err(&master->dev, "problem destroying queue\n"); 748 return ret; 749 } 750 751 flush_kthread_worker(&master->kworker); 752 kthread_stop(master->kworker_task); 753 754 return 0; 755 } 756 757 /** 758 * spi_queued_transfer - transfer function for queued transfers 759 * @spi: spi device which is requesting transfer 760 * @msg: spi message which is to handled is queued to driver queue 761 */ 762 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 763 { 764 struct spi_master *master = spi->master; 765 unsigned long flags; 766 767 spin_lock_irqsave(&master->queue_lock, flags); 768 769 if (!master->running) { 770 spin_unlock_irqrestore(&master->queue_lock, flags); 771 return -ESHUTDOWN; 772 } 773 msg->actual_length = 0; 774 msg->status = -EINPROGRESS; 775 776 list_add_tail(&msg->queue, &master->queue); 777 if (master->running && !master->busy) 778 queue_kthread_work(&master->kworker, &master->pump_messages); 779 780 spin_unlock_irqrestore(&master->queue_lock, flags); 781 return 0; 782 } 783 784 static int spi_master_initialize_queue(struct spi_master *master) 785 { 786 int ret; 787 788 master->queued = true; 789 master->transfer = spi_queued_transfer; 790 791 /* Initialize and start queue */ 792 ret = spi_init_queue(master); 793 if (ret) { 794 dev_err(&master->dev, "problem initializing queue\n"); 795 goto err_init_queue; 796 } 797 ret = spi_start_queue(master); 798 if (ret) { 799 dev_err(&master->dev, "problem starting queue\n"); 800 goto err_start_queue; 801 } 802 803 return 0; 804 805 err_start_queue: 806 err_init_queue: 807 spi_destroy_queue(master); 808 return ret; 809 } 810 811 /*-------------------------------------------------------------------------*/ 812 813 #if defined(CONFIG_OF) 814 /** 815 * of_register_spi_devices() - Register child devices onto the SPI bus 816 * @master: Pointer to spi_master device 817 * 818 * Registers an spi_device for each child node of master node which has a 'reg' 819 * property. 820 */ 821 static void of_register_spi_devices(struct spi_master *master) 822 { 823 struct spi_device *spi; 824 struct device_node *nc; 825 const __be32 *prop; 826 char modalias[SPI_NAME_SIZE + 4]; 827 int rc; 828 int len; 829 830 if (!master->dev.of_node) 831 return; 832 833 for_each_available_child_of_node(master->dev.of_node, nc) { 834 /* Alloc an spi_device */ 835 spi = spi_alloc_device(master); 836 if (!spi) { 837 dev_err(&master->dev, "spi_device alloc error for %s\n", 838 nc->full_name); 839 spi_dev_put(spi); 840 continue; 841 } 842 843 /* Select device driver */ 844 if (of_modalias_node(nc, spi->modalias, 845 sizeof(spi->modalias)) < 0) { 846 dev_err(&master->dev, "cannot find modalias for %s\n", 847 nc->full_name); 848 spi_dev_put(spi); 849 continue; 850 } 851 852 /* Device address */ 853 prop = of_get_property(nc, "reg", &len); 854 if (!prop || len < sizeof(*prop)) { 855 dev_err(&master->dev, "%s has no 'reg' property\n", 856 nc->full_name); 857 spi_dev_put(spi); 858 continue; 859 } 860 spi->chip_select = be32_to_cpup(prop); 861 862 /* Mode (clock phase/polarity/etc.) */ 863 if (of_find_property(nc, "spi-cpha", NULL)) 864 spi->mode |= SPI_CPHA; 865 if (of_find_property(nc, "spi-cpol", NULL)) 866 spi->mode |= SPI_CPOL; 867 if (of_find_property(nc, "spi-cs-high", NULL)) 868 spi->mode |= SPI_CS_HIGH; 869 if (of_find_property(nc, "spi-3wire", NULL)) 870 spi->mode |= SPI_3WIRE; 871 872 /* Device speed */ 873 prop = of_get_property(nc, "spi-max-frequency", &len); 874 if (!prop || len < sizeof(*prop)) { 875 dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n", 876 nc->full_name); 877 spi_dev_put(spi); 878 continue; 879 } 880 spi->max_speed_hz = be32_to_cpup(prop); 881 882 /* IRQ */ 883 spi->irq = irq_of_parse_and_map(nc, 0); 884 885 /* Store a pointer to the node in the device structure */ 886 of_node_get(nc); 887 spi->dev.of_node = nc; 888 889 /* Register the new device */ 890 snprintf(modalias, sizeof(modalias), "%s%s", SPI_MODULE_PREFIX, 891 spi->modalias); 892 request_module(modalias); 893 rc = spi_add_device(spi); 894 if (rc) { 895 dev_err(&master->dev, "spi_device register error %s\n", 896 nc->full_name); 897 spi_dev_put(spi); 898 } 899 900 } 901 } 902 #else 903 static void of_register_spi_devices(struct spi_master *master) { } 904 #endif 905 906 #ifdef CONFIG_ACPI 907 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 908 { 909 struct spi_device *spi = data; 910 911 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 912 struct acpi_resource_spi_serialbus *sb; 913 914 sb = &ares->data.spi_serial_bus; 915 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 916 spi->chip_select = sb->device_selection; 917 spi->max_speed_hz = sb->connection_speed; 918 919 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 920 spi->mode |= SPI_CPHA; 921 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 922 spi->mode |= SPI_CPOL; 923 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 924 spi->mode |= SPI_CS_HIGH; 925 } 926 } else if (spi->irq < 0) { 927 struct resource r; 928 929 if (acpi_dev_resource_interrupt(ares, 0, &r)) 930 spi->irq = r.start; 931 } 932 933 /* Always tell the ACPI core to skip this resource */ 934 return 1; 935 } 936 937 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 938 void *data, void **return_value) 939 { 940 struct spi_master *master = data; 941 struct list_head resource_list; 942 struct acpi_device *adev; 943 struct spi_device *spi; 944 int ret; 945 946 if (acpi_bus_get_device(handle, &adev)) 947 return AE_OK; 948 if (acpi_bus_get_status(adev) || !adev->status.present) 949 return AE_OK; 950 951 spi = spi_alloc_device(master); 952 if (!spi) { 953 dev_err(&master->dev, "failed to allocate SPI device for %s\n", 954 dev_name(&adev->dev)); 955 return AE_NO_MEMORY; 956 } 957 958 ACPI_HANDLE_SET(&spi->dev, handle); 959 spi->irq = -1; 960 961 INIT_LIST_HEAD(&resource_list); 962 ret = acpi_dev_get_resources(adev, &resource_list, 963 acpi_spi_add_resource, spi); 964 acpi_dev_free_resource_list(&resource_list); 965 966 if (ret < 0 || !spi->max_speed_hz) { 967 spi_dev_put(spi); 968 return AE_OK; 969 } 970 971 strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias)); 972 if (spi_add_device(spi)) { 973 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n", 974 dev_name(&adev->dev)); 975 spi_dev_put(spi); 976 } 977 978 return AE_OK; 979 } 980 981 static void acpi_register_spi_devices(struct spi_master *master) 982 { 983 acpi_status status; 984 acpi_handle handle; 985 986 handle = ACPI_HANDLE(master->dev.parent); 987 if (!handle) 988 return; 989 990 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, 991 acpi_spi_add_device, NULL, 992 master, NULL); 993 if (ACPI_FAILURE(status)) 994 dev_warn(&master->dev, "failed to enumerate SPI slaves\n"); 995 } 996 #else 997 static inline void acpi_register_spi_devices(struct spi_master *master) {} 998 #endif /* CONFIG_ACPI */ 999 1000 static void spi_master_release(struct device *dev) 1001 { 1002 struct spi_master *master; 1003 1004 master = container_of(dev, struct spi_master, dev); 1005 kfree(master); 1006 } 1007 1008 static struct class spi_master_class = { 1009 .name = "spi_master", 1010 .owner = THIS_MODULE, 1011 .dev_release = spi_master_release, 1012 }; 1013 1014 1015 1016 /** 1017 * spi_alloc_master - allocate SPI master controller 1018 * @dev: the controller, possibly using the platform_bus 1019 * @size: how much zeroed driver-private data to allocate; the pointer to this 1020 * memory is in the driver_data field of the returned device, 1021 * accessible with spi_master_get_devdata(). 1022 * Context: can sleep 1023 * 1024 * This call is used only by SPI master controller drivers, which are the 1025 * only ones directly touching chip registers. It's how they allocate 1026 * an spi_master structure, prior to calling spi_register_master(). 1027 * 1028 * This must be called from context that can sleep. It returns the SPI 1029 * master structure on success, else NULL. 1030 * 1031 * The caller is responsible for assigning the bus number and initializing 1032 * the master's methods before calling spi_register_master(); and (after errors 1033 * adding the device) calling spi_master_put() and kfree() to prevent a memory 1034 * leak. 1035 */ 1036 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 1037 { 1038 struct spi_master *master; 1039 1040 if (!dev) 1041 return NULL; 1042 1043 master = kzalloc(size + sizeof *master, GFP_KERNEL); 1044 if (!master) 1045 return NULL; 1046 1047 device_initialize(&master->dev); 1048 master->bus_num = -1; 1049 master->num_chipselect = 1; 1050 master->dev.class = &spi_master_class; 1051 master->dev.parent = get_device(dev); 1052 spi_master_set_devdata(master, &master[1]); 1053 1054 return master; 1055 } 1056 EXPORT_SYMBOL_GPL(spi_alloc_master); 1057 1058 #ifdef CONFIG_OF 1059 static int of_spi_register_master(struct spi_master *master) 1060 { 1061 int nb, i, *cs; 1062 struct device_node *np = master->dev.of_node; 1063 1064 if (!np) 1065 return 0; 1066 1067 nb = of_gpio_named_count(np, "cs-gpios"); 1068 master->num_chipselect = max(nb, (int)master->num_chipselect); 1069 1070 /* Return error only for an incorrectly formed cs-gpios property */ 1071 if (nb == 0 || nb == -ENOENT) 1072 return 0; 1073 else if (nb < 0) 1074 return nb; 1075 1076 cs = devm_kzalloc(&master->dev, 1077 sizeof(int) * master->num_chipselect, 1078 GFP_KERNEL); 1079 master->cs_gpios = cs; 1080 1081 if (!master->cs_gpios) 1082 return -ENOMEM; 1083 1084 for (i = 0; i < master->num_chipselect; i++) 1085 cs[i] = -ENOENT; 1086 1087 for (i = 0; i < nb; i++) 1088 cs[i] = of_get_named_gpio(np, "cs-gpios", i); 1089 1090 return 0; 1091 } 1092 #else 1093 static int of_spi_register_master(struct spi_master *master) 1094 { 1095 return 0; 1096 } 1097 #endif 1098 1099 /** 1100 * spi_register_master - register SPI master controller 1101 * @master: initialized master, originally from spi_alloc_master() 1102 * Context: can sleep 1103 * 1104 * SPI master controllers connect to their drivers using some non-SPI bus, 1105 * such as the platform bus. The final stage of probe() in that code 1106 * includes calling spi_register_master() to hook up to this SPI bus glue. 1107 * 1108 * SPI controllers use board specific (often SOC specific) bus numbers, 1109 * and board-specific addressing for SPI devices combines those numbers 1110 * with chip select numbers. Since SPI does not directly support dynamic 1111 * device identification, boards need configuration tables telling which 1112 * chip is at which address. 1113 * 1114 * This must be called from context that can sleep. It returns zero on 1115 * success, else a negative error code (dropping the master's refcount). 1116 * After a successful return, the caller is responsible for calling 1117 * spi_unregister_master(). 1118 */ 1119 int spi_register_master(struct spi_master *master) 1120 { 1121 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 1122 struct device *dev = master->dev.parent; 1123 struct boardinfo *bi; 1124 int status = -ENODEV; 1125 int dynamic = 0; 1126 1127 if (!dev) 1128 return -ENODEV; 1129 1130 status = of_spi_register_master(master); 1131 if (status) 1132 return status; 1133 1134 /* even if it's just one always-selected device, there must 1135 * be at least one chipselect 1136 */ 1137 if (master->num_chipselect == 0) 1138 return -EINVAL; 1139 1140 if ((master->bus_num < 0) && master->dev.of_node) 1141 master->bus_num = of_alias_get_id(master->dev.of_node, "spi"); 1142 1143 /* convention: dynamically assigned bus IDs count down from the max */ 1144 if (master->bus_num < 0) { 1145 /* FIXME switch to an IDR based scheme, something like 1146 * I2C now uses, so we can't run out of "dynamic" IDs 1147 */ 1148 master->bus_num = atomic_dec_return(&dyn_bus_id); 1149 dynamic = 1; 1150 } 1151 1152 spin_lock_init(&master->bus_lock_spinlock); 1153 mutex_init(&master->bus_lock_mutex); 1154 master->bus_lock_flag = 0; 1155 1156 /* register the device, then userspace will see it. 1157 * registration fails if the bus ID is in use. 1158 */ 1159 dev_set_name(&master->dev, "spi%u", master->bus_num); 1160 status = device_add(&master->dev); 1161 if (status < 0) 1162 goto done; 1163 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev), 1164 dynamic ? " (dynamic)" : ""); 1165 1166 /* If we're using a queued driver, start the queue */ 1167 if (master->transfer) 1168 dev_info(dev, "master is unqueued, this is deprecated\n"); 1169 else { 1170 status = spi_master_initialize_queue(master); 1171 if (status) { 1172 device_unregister(&master->dev); 1173 goto done; 1174 } 1175 } 1176 1177 mutex_lock(&board_lock); 1178 list_add_tail(&master->list, &spi_master_list); 1179 list_for_each_entry(bi, &board_list, list) 1180 spi_match_master_to_boardinfo(master, &bi->board_info); 1181 mutex_unlock(&board_lock); 1182 1183 /* Register devices from the device tree and ACPI */ 1184 of_register_spi_devices(master); 1185 acpi_register_spi_devices(master); 1186 done: 1187 return status; 1188 } 1189 EXPORT_SYMBOL_GPL(spi_register_master); 1190 1191 static int __unregister(struct device *dev, void *null) 1192 { 1193 spi_unregister_device(to_spi_device(dev)); 1194 return 0; 1195 } 1196 1197 /** 1198 * spi_unregister_master - unregister SPI master controller 1199 * @master: the master being unregistered 1200 * Context: can sleep 1201 * 1202 * This call is used only by SPI master controller drivers, which are the 1203 * only ones directly touching chip registers. 1204 * 1205 * This must be called from context that can sleep. 1206 */ 1207 void spi_unregister_master(struct spi_master *master) 1208 { 1209 int dummy; 1210 1211 if (master->queued) { 1212 if (spi_destroy_queue(master)) 1213 dev_err(&master->dev, "queue remove failed\n"); 1214 } 1215 1216 mutex_lock(&board_lock); 1217 list_del(&master->list); 1218 mutex_unlock(&board_lock); 1219 1220 dummy = device_for_each_child(&master->dev, NULL, __unregister); 1221 device_unregister(&master->dev); 1222 } 1223 EXPORT_SYMBOL_GPL(spi_unregister_master); 1224 1225 int spi_master_suspend(struct spi_master *master) 1226 { 1227 int ret; 1228 1229 /* Basically no-ops for non-queued masters */ 1230 if (!master->queued) 1231 return 0; 1232 1233 ret = spi_stop_queue(master); 1234 if (ret) 1235 dev_err(&master->dev, "queue stop failed\n"); 1236 1237 return ret; 1238 } 1239 EXPORT_SYMBOL_GPL(spi_master_suspend); 1240 1241 int spi_master_resume(struct spi_master *master) 1242 { 1243 int ret; 1244 1245 if (!master->queued) 1246 return 0; 1247 1248 ret = spi_start_queue(master); 1249 if (ret) 1250 dev_err(&master->dev, "queue restart failed\n"); 1251 1252 return ret; 1253 } 1254 EXPORT_SYMBOL_GPL(spi_master_resume); 1255 1256 static int __spi_master_match(struct device *dev, const void *data) 1257 { 1258 struct spi_master *m; 1259 const u16 *bus_num = data; 1260 1261 m = container_of(dev, struct spi_master, dev); 1262 return m->bus_num == *bus_num; 1263 } 1264 1265 /** 1266 * spi_busnum_to_master - look up master associated with bus_num 1267 * @bus_num: the master's bus number 1268 * Context: can sleep 1269 * 1270 * This call may be used with devices that are registered after 1271 * arch init time. It returns a refcounted pointer to the relevant 1272 * spi_master (which the caller must release), or NULL if there is 1273 * no such master registered. 1274 */ 1275 struct spi_master *spi_busnum_to_master(u16 bus_num) 1276 { 1277 struct device *dev; 1278 struct spi_master *master = NULL; 1279 1280 dev = class_find_device(&spi_master_class, NULL, &bus_num, 1281 __spi_master_match); 1282 if (dev) 1283 master = container_of(dev, struct spi_master, dev); 1284 /* reference got in class_find_device */ 1285 return master; 1286 } 1287 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 1288 1289 1290 /*-------------------------------------------------------------------------*/ 1291 1292 /* Core methods for SPI master protocol drivers. Some of the 1293 * other core methods are currently defined as inline functions. 1294 */ 1295 1296 /** 1297 * spi_setup - setup SPI mode and clock rate 1298 * @spi: the device whose settings are being modified 1299 * Context: can sleep, and no requests are queued to the device 1300 * 1301 * SPI protocol drivers may need to update the transfer mode if the 1302 * device doesn't work with its default. They may likewise need 1303 * to update clock rates or word sizes from initial values. This function 1304 * changes those settings, and must be called from a context that can sleep. 1305 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 1306 * effect the next time the device is selected and data is transferred to 1307 * or from it. When this function returns, the spi device is deselected. 1308 * 1309 * Note that this call will fail if the protocol driver specifies an option 1310 * that the underlying controller or its driver does not support. For 1311 * example, not all hardware supports wire transfers using nine bit words, 1312 * LSB-first wire encoding, or active-high chipselects. 1313 */ 1314 int spi_setup(struct spi_device *spi) 1315 { 1316 unsigned bad_bits; 1317 int status = 0; 1318 1319 /* help drivers fail *cleanly* when they need options 1320 * that aren't supported with their current master 1321 */ 1322 bad_bits = spi->mode & ~spi->master->mode_bits; 1323 if (bad_bits) { 1324 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 1325 bad_bits); 1326 return -EINVAL; 1327 } 1328 1329 if (!spi->bits_per_word) 1330 spi->bits_per_word = 8; 1331 1332 if (spi->master->setup) 1333 status = spi->master->setup(spi); 1334 1335 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s" 1336 "%u bits/w, %u Hz max --> %d\n", 1337 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)), 1338 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 1339 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 1340 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 1341 (spi->mode & SPI_LOOP) ? "loopback, " : "", 1342 spi->bits_per_word, spi->max_speed_hz, 1343 status); 1344 1345 return status; 1346 } 1347 EXPORT_SYMBOL_GPL(spi_setup); 1348 1349 static int __spi_async(struct spi_device *spi, struct spi_message *message) 1350 { 1351 struct spi_master *master = spi->master; 1352 struct spi_transfer *xfer; 1353 1354 /* Half-duplex links include original MicroWire, and ones with 1355 * only one data pin like SPI_3WIRE (switches direction) or where 1356 * either MOSI or MISO is missing. They can also be caused by 1357 * software limitations. 1358 */ 1359 if ((master->flags & SPI_MASTER_HALF_DUPLEX) 1360 || (spi->mode & SPI_3WIRE)) { 1361 unsigned flags = master->flags; 1362 1363 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1364 if (xfer->rx_buf && xfer->tx_buf) 1365 return -EINVAL; 1366 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf) 1367 return -EINVAL; 1368 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf) 1369 return -EINVAL; 1370 } 1371 } 1372 1373 /** 1374 * Set transfer bits_per_word and max speed as spi device default if 1375 * it is not set for this transfer. 1376 */ 1377 list_for_each_entry(xfer, &message->transfers, transfer_list) { 1378 if (!xfer->bits_per_word) 1379 xfer->bits_per_word = spi->bits_per_word; 1380 if (!xfer->speed_hz) 1381 xfer->speed_hz = spi->max_speed_hz; 1382 if (master->bits_per_word_mask) { 1383 /* Only 32 bits fit in the mask */ 1384 if (xfer->bits_per_word > 32) 1385 return -EINVAL; 1386 if (!(master->bits_per_word_mask & 1387 BIT(xfer->bits_per_word - 1))) 1388 return -EINVAL; 1389 } 1390 } 1391 1392 message->spi = spi; 1393 message->status = -EINPROGRESS; 1394 return master->transfer(spi, message); 1395 } 1396 1397 /** 1398 * spi_async - asynchronous SPI transfer 1399 * @spi: device with which data will be exchanged 1400 * @message: describes the data transfers, including completion callback 1401 * Context: any (irqs may be blocked, etc) 1402 * 1403 * This call may be used in_irq and other contexts which can't sleep, 1404 * as well as from task contexts which can sleep. 1405 * 1406 * The completion callback is invoked in a context which can't sleep. 1407 * Before that invocation, the value of message->status is undefined. 1408 * When the callback is issued, message->status holds either zero (to 1409 * indicate complete success) or a negative error code. After that 1410 * callback returns, the driver which issued the transfer request may 1411 * deallocate the associated memory; it's no longer in use by any SPI 1412 * core or controller driver code. 1413 * 1414 * Note that although all messages to a spi_device are handled in 1415 * FIFO order, messages may go to different devices in other orders. 1416 * Some device might be higher priority, or have various "hard" access 1417 * time requirements, for example. 1418 * 1419 * On detection of any fault during the transfer, processing of 1420 * the entire message is aborted, and the device is deselected. 1421 * Until returning from the associated message completion callback, 1422 * no other spi_message queued to that device will be processed. 1423 * (This rule applies equally to all the synchronous transfer calls, 1424 * which are wrappers around this core asynchronous primitive.) 1425 */ 1426 int spi_async(struct spi_device *spi, struct spi_message *message) 1427 { 1428 struct spi_master *master = spi->master; 1429 int ret; 1430 unsigned long flags; 1431 1432 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1433 1434 if (master->bus_lock_flag) 1435 ret = -EBUSY; 1436 else 1437 ret = __spi_async(spi, message); 1438 1439 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1440 1441 return ret; 1442 } 1443 EXPORT_SYMBOL_GPL(spi_async); 1444 1445 /** 1446 * spi_async_locked - version of spi_async with exclusive bus usage 1447 * @spi: device with which data will be exchanged 1448 * @message: describes the data transfers, including completion callback 1449 * Context: any (irqs may be blocked, etc) 1450 * 1451 * This call may be used in_irq and other contexts which can't sleep, 1452 * as well as from task contexts which can sleep. 1453 * 1454 * The completion callback is invoked in a context which can't sleep. 1455 * Before that invocation, the value of message->status is undefined. 1456 * When the callback is issued, message->status holds either zero (to 1457 * indicate complete success) or a negative error code. After that 1458 * callback returns, the driver which issued the transfer request may 1459 * deallocate the associated memory; it's no longer in use by any SPI 1460 * core or controller driver code. 1461 * 1462 * Note that although all messages to a spi_device are handled in 1463 * FIFO order, messages may go to different devices in other orders. 1464 * Some device might be higher priority, or have various "hard" access 1465 * time requirements, for example. 1466 * 1467 * On detection of any fault during the transfer, processing of 1468 * the entire message is aborted, and the device is deselected. 1469 * Until returning from the associated message completion callback, 1470 * no other spi_message queued to that device will be processed. 1471 * (This rule applies equally to all the synchronous transfer calls, 1472 * which are wrappers around this core asynchronous primitive.) 1473 */ 1474 int spi_async_locked(struct spi_device *spi, struct spi_message *message) 1475 { 1476 struct spi_master *master = spi->master; 1477 int ret; 1478 unsigned long flags; 1479 1480 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1481 1482 ret = __spi_async(spi, message); 1483 1484 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1485 1486 return ret; 1487 1488 } 1489 EXPORT_SYMBOL_GPL(spi_async_locked); 1490 1491 1492 /*-------------------------------------------------------------------------*/ 1493 1494 /* Utility methods for SPI master protocol drivers, layered on 1495 * top of the core. Some other utility methods are defined as 1496 * inline functions. 1497 */ 1498 1499 static void spi_complete(void *arg) 1500 { 1501 complete(arg); 1502 } 1503 1504 static int __spi_sync(struct spi_device *spi, struct spi_message *message, 1505 int bus_locked) 1506 { 1507 DECLARE_COMPLETION_ONSTACK(done); 1508 int status; 1509 struct spi_master *master = spi->master; 1510 1511 message->complete = spi_complete; 1512 message->context = &done; 1513 1514 if (!bus_locked) 1515 mutex_lock(&master->bus_lock_mutex); 1516 1517 status = spi_async_locked(spi, message); 1518 1519 if (!bus_locked) 1520 mutex_unlock(&master->bus_lock_mutex); 1521 1522 if (status == 0) { 1523 wait_for_completion(&done); 1524 status = message->status; 1525 } 1526 message->context = NULL; 1527 return status; 1528 } 1529 1530 /** 1531 * spi_sync - blocking/synchronous SPI data transfers 1532 * @spi: device with which data will be exchanged 1533 * @message: describes the data transfers 1534 * Context: can sleep 1535 * 1536 * This call may only be used from a context that may sleep. The sleep 1537 * is non-interruptible, and has no timeout. Low-overhead controller 1538 * drivers may DMA directly into and out of the message buffers. 1539 * 1540 * Note that the SPI device's chip select is active during the message, 1541 * and then is normally disabled between messages. Drivers for some 1542 * frequently-used devices may want to minimize costs of selecting a chip, 1543 * by leaving it selected in anticipation that the next message will go 1544 * to the same chip. (That may increase power usage.) 1545 * 1546 * Also, the caller is guaranteeing that the memory associated with the 1547 * message will not be freed before this call returns. 1548 * 1549 * It returns zero on success, else a negative error code. 1550 */ 1551 int spi_sync(struct spi_device *spi, struct spi_message *message) 1552 { 1553 return __spi_sync(spi, message, 0); 1554 } 1555 EXPORT_SYMBOL_GPL(spi_sync); 1556 1557 /** 1558 * spi_sync_locked - version of spi_sync with exclusive bus usage 1559 * @spi: device with which data will be exchanged 1560 * @message: describes the data transfers 1561 * Context: can sleep 1562 * 1563 * This call may only be used from a context that may sleep. The sleep 1564 * is non-interruptible, and has no timeout. Low-overhead controller 1565 * drivers may DMA directly into and out of the message buffers. 1566 * 1567 * This call should be used by drivers that require exclusive access to the 1568 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 1569 * be released by a spi_bus_unlock call when the exclusive access is over. 1570 * 1571 * It returns zero on success, else a negative error code. 1572 */ 1573 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 1574 { 1575 return __spi_sync(spi, message, 1); 1576 } 1577 EXPORT_SYMBOL_GPL(spi_sync_locked); 1578 1579 /** 1580 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 1581 * @master: SPI bus master that should be locked for exclusive bus access 1582 * Context: can sleep 1583 * 1584 * This call may only be used from a context that may sleep. The sleep 1585 * is non-interruptible, and has no timeout. 1586 * 1587 * This call should be used by drivers that require exclusive access to the 1588 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 1589 * exclusive access is over. Data transfer must be done by spi_sync_locked 1590 * and spi_async_locked calls when the SPI bus lock is held. 1591 * 1592 * It returns zero on success, else a negative error code. 1593 */ 1594 int spi_bus_lock(struct spi_master *master) 1595 { 1596 unsigned long flags; 1597 1598 mutex_lock(&master->bus_lock_mutex); 1599 1600 spin_lock_irqsave(&master->bus_lock_spinlock, flags); 1601 master->bus_lock_flag = 1; 1602 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags); 1603 1604 /* mutex remains locked until spi_bus_unlock is called */ 1605 1606 return 0; 1607 } 1608 EXPORT_SYMBOL_GPL(spi_bus_lock); 1609 1610 /** 1611 * spi_bus_unlock - release the lock for exclusive SPI bus usage 1612 * @master: SPI bus master that was locked for exclusive bus access 1613 * Context: can sleep 1614 * 1615 * This call may only be used from a context that may sleep. The sleep 1616 * is non-interruptible, and has no timeout. 1617 * 1618 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 1619 * call. 1620 * 1621 * It returns zero on success, else a negative error code. 1622 */ 1623 int spi_bus_unlock(struct spi_master *master) 1624 { 1625 master->bus_lock_flag = 0; 1626 1627 mutex_unlock(&master->bus_lock_mutex); 1628 1629 return 0; 1630 } 1631 EXPORT_SYMBOL_GPL(spi_bus_unlock); 1632 1633 /* portable code must never pass more than 32 bytes */ 1634 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES) 1635 1636 static u8 *buf; 1637 1638 /** 1639 * spi_write_then_read - SPI synchronous write followed by read 1640 * @spi: device with which data will be exchanged 1641 * @txbuf: data to be written (need not be dma-safe) 1642 * @n_tx: size of txbuf, in bytes 1643 * @rxbuf: buffer into which data will be read (need not be dma-safe) 1644 * @n_rx: size of rxbuf, in bytes 1645 * Context: can sleep 1646 * 1647 * This performs a half duplex MicroWire style transaction with the 1648 * device, sending txbuf and then reading rxbuf. The return value 1649 * is zero for success, else a negative errno status code. 1650 * This call may only be used from a context that may sleep. 1651 * 1652 * Parameters to this routine are always copied using a small buffer; 1653 * portable code should never use this for more than 32 bytes. 1654 * Performance-sensitive or bulk transfer code should instead use 1655 * spi_{async,sync}() calls with dma-safe buffers. 1656 */ 1657 int spi_write_then_read(struct spi_device *spi, 1658 const void *txbuf, unsigned n_tx, 1659 void *rxbuf, unsigned n_rx) 1660 { 1661 static DEFINE_MUTEX(lock); 1662 1663 int status; 1664 struct spi_message message; 1665 struct spi_transfer x[2]; 1666 u8 *local_buf; 1667 1668 /* Use preallocated DMA-safe buffer if we can. We can't avoid 1669 * copying here, (as a pure convenience thing), but we can 1670 * keep heap costs out of the hot path unless someone else is 1671 * using the pre-allocated buffer or the transfer is too large. 1672 */ 1673 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 1674 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 1675 GFP_KERNEL | GFP_DMA); 1676 if (!local_buf) 1677 return -ENOMEM; 1678 } else { 1679 local_buf = buf; 1680 } 1681 1682 spi_message_init(&message); 1683 memset(x, 0, sizeof x); 1684 if (n_tx) { 1685 x[0].len = n_tx; 1686 spi_message_add_tail(&x[0], &message); 1687 } 1688 if (n_rx) { 1689 x[1].len = n_rx; 1690 spi_message_add_tail(&x[1], &message); 1691 } 1692 1693 memcpy(local_buf, txbuf, n_tx); 1694 x[0].tx_buf = local_buf; 1695 x[1].rx_buf = local_buf + n_tx; 1696 1697 /* do the i/o */ 1698 status = spi_sync(spi, &message); 1699 if (status == 0) 1700 memcpy(rxbuf, x[1].rx_buf, n_rx); 1701 1702 if (x[0].tx_buf == buf) 1703 mutex_unlock(&lock); 1704 else 1705 kfree(local_buf); 1706 1707 return status; 1708 } 1709 EXPORT_SYMBOL_GPL(spi_write_then_read); 1710 1711 /*-------------------------------------------------------------------------*/ 1712 1713 static int __init spi_init(void) 1714 { 1715 int status; 1716 1717 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 1718 if (!buf) { 1719 status = -ENOMEM; 1720 goto err0; 1721 } 1722 1723 status = bus_register(&spi_bus_type); 1724 if (status < 0) 1725 goto err1; 1726 1727 status = class_register(&spi_master_class); 1728 if (status < 0) 1729 goto err2; 1730 return 0; 1731 1732 err2: 1733 bus_unregister(&spi_bus_type); 1734 err1: 1735 kfree(buf); 1736 buf = NULL; 1737 err0: 1738 return status; 1739 } 1740 1741 /* board_info is normally registered in arch_initcall(), 1742 * but even essential drivers wait till later 1743 * 1744 * REVISIT only boardinfo really needs static linking. the rest (device and 1745 * driver registration) _could_ be dynamically linked (modular) ... costs 1746 * include needing to have boardinfo data structures be much more public. 1747 */ 1748 postcore_initcall(spi_init); 1749 1750