xref: /linux/drivers/spi/spi.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/spi.h>
43 
44 static void spidev_release(struct device *dev)
45 {
46 	struct spi_device	*spi = to_spi_device(dev);
47 
48 	/* spi masters may cleanup for released devices */
49 	if (spi->master->cleanup)
50 		spi->master->cleanup(spi);
51 
52 	spi_master_put(spi->master);
53 	kfree(spi);
54 }
55 
56 static ssize_t
57 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
58 {
59 	const struct spi_device	*spi = to_spi_device(dev);
60 	int len;
61 
62 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
63 	if (len != -ENODEV)
64 		return len;
65 
66 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
67 }
68 static DEVICE_ATTR_RO(modalias);
69 
70 #define SPI_STATISTICS_ATTRS(field, file)				\
71 static ssize_t spi_master_##field##_show(struct device *dev,		\
72 					 struct device_attribute *attr,	\
73 					 char *buf)			\
74 {									\
75 	struct spi_master *master = container_of(dev,			\
76 						 struct spi_master, dev); \
77 	return spi_statistics_##field##_show(&master->statistics, buf);	\
78 }									\
79 static struct device_attribute dev_attr_spi_master_##field = {		\
80 	.attr = { .name = file, .mode = S_IRUGO },			\
81 	.show = spi_master_##field##_show,				\
82 };									\
83 static ssize_t spi_device_##field##_show(struct device *dev,		\
84 					 struct device_attribute *attr,	\
85 					char *buf)			\
86 {									\
87 	struct spi_device *spi = to_spi_device(dev);			\
88 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
89 }									\
90 static struct device_attribute dev_attr_spi_device_##field = {		\
91 	.attr = { .name = file, .mode = S_IRUGO },			\
92 	.show = spi_device_##field##_show,				\
93 }
94 
95 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
96 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
97 					    char *buf)			\
98 {									\
99 	unsigned long flags;						\
100 	ssize_t len;							\
101 	spin_lock_irqsave(&stat->lock, flags);				\
102 	len = sprintf(buf, format_string, stat->field);			\
103 	spin_unlock_irqrestore(&stat->lock, flags);			\
104 	return len;							\
105 }									\
106 SPI_STATISTICS_ATTRS(name, file)
107 
108 #define SPI_STATISTICS_SHOW(field, format_string)			\
109 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
110 				 field, format_string)
111 
112 SPI_STATISTICS_SHOW(messages, "%lu");
113 SPI_STATISTICS_SHOW(transfers, "%lu");
114 SPI_STATISTICS_SHOW(errors, "%lu");
115 SPI_STATISTICS_SHOW(timedout, "%lu");
116 
117 SPI_STATISTICS_SHOW(spi_sync, "%lu");
118 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
119 SPI_STATISTICS_SHOW(spi_async, "%lu");
120 
121 SPI_STATISTICS_SHOW(bytes, "%llu");
122 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
123 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
124 
125 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
126 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
127 				 "transfer_bytes_histo_" number,	\
128 				 transfer_bytes_histo[index],  "%lu")
129 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
146 
147 static struct attribute *spi_dev_attrs[] = {
148 	&dev_attr_modalias.attr,
149 	NULL,
150 };
151 
152 static const struct attribute_group spi_dev_group = {
153 	.attrs  = spi_dev_attrs,
154 };
155 
156 static struct attribute *spi_device_statistics_attrs[] = {
157 	&dev_attr_spi_device_messages.attr,
158 	&dev_attr_spi_device_transfers.attr,
159 	&dev_attr_spi_device_errors.attr,
160 	&dev_attr_spi_device_timedout.attr,
161 	&dev_attr_spi_device_spi_sync.attr,
162 	&dev_attr_spi_device_spi_sync_immediate.attr,
163 	&dev_attr_spi_device_spi_async.attr,
164 	&dev_attr_spi_device_bytes.attr,
165 	&dev_attr_spi_device_bytes_rx.attr,
166 	&dev_attr_spi_device_bytes_tx.attr,
167 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
168 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
169 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
170 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
171 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
172 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
173 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
174 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
175 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
176 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
177 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
178 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
184 	NULL,
185 };
186 
187 static const struct attribute_group spi_device_statistics_group = {
188 	.name  = "statistics",
189 	.attrs  = spi_device_statistics_attrs,
190 };
191 
192 static const struct attribute_group *spi_dev_groups[] = {
193 	&spi_dev_group,
194 	&spi_device_statistics_group,
195 	NULL,
196 };
197 
198 static struct attribute *spi_master_statistics_attrs[] = {
199 	&dev_attr_spi_master_messages.attr,
200 	&dev_attr_spi_master_transfers.attr,
201 	&dev_attr_spi_master_errors.attr,
202 	&dev_attr_spi_master_timedout.attr,
203 	&dev_attr_spi_master_spi_sync.attr,
204 	&dev_attr_spi_master_spi_sync_immediate.attr,
205 	&dev_attr_spi_master_spi_async.attr,
206 	&dev_attr_spi_master_bytes.attr,
207 	&dev_attr_spi_master_bytes_rx.attr,
208 	&dev_attr_spi_master_bytes_tx.attr,
209 	&dev_attr_spi_master_transfer_bytes_histo0.attr,
210 	&dev_attr_spi_master_transfer_bytes_histo1.attr,
211 	&dev_attr_spi_master_transfer_bytes_histo2.attr,
212 	&dev_attr_spi_master_transfer_bytes_histo3.attr,
213 	&dev_attr_spi_master_transfer_bytes_histo4.attr,
214 	&dev_attr_spi_master_transfer_bytes_histo5.attr,
215 	&dev_attr_spi_master_transfer_bytes_histo6.attr,
216 	&dev_attr_spi_master_transfer_bytes_histo7.attr,
217 	&dev_attr_spi_master_transfer_bytes_histo8.attr,
218 	&dev_attr_spi_master_transfer_bytes_histo9.attr,
219 	&dev_attr_spi_master_transfer_bytes_histo10.attr,
220 	&dev_attr_spi_master_transfer_bytes_histo11.attr,
221 	&dev_attr_spi_master_transfer_bytes_histo12.attr,
222 	&dev_attr_spi_master_transfer_bytes_histo13.attr,
223 	&dev_attr_spi_master_transfer_bytes_histo14.attr,
224 	&dev_attr_spi_master_transfer_bytes_histo15.attr,
225 	&dev_attr_spi_master_transfer_bytes_histo16.attr,
226 	NULL,
227 };
228 
229 static const struct attribute_group spi_master_statistics_group = {
230 	.name  = "statistics",
231 	.attrs  = spi_master_statistics_attrs,
232 };
233 
234 static const struct attribute_group *spi_master_groups[] = {
235 	&spi_master_statistics_group,
236 	NULL,
237 };
238 
239 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
240 				       struct spi_transfer *xfer,
241 				       struct spi_master *master)
242 {
243 	unsigned long flags;
244 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
245 
246 	if (l2len < 0)
247 		l2len = 0;
248 
249 	spin_lock_irqsave(&stats->lock, flags);
250 
251 	stats->transfers++;
252 	stats->transfer_bytes_histo[l2len]++;
253 
254 	stats->bytes += xfer->len;
255 	if ((xfer->tx_buf) &&
256 	    (xfer->tx_buf != master->dummy_tx))
257 		stats->bytes_tx += xfer->len;
258 	if ((xfer->rx_buf) &&
259 	    (xfer->rx_buf != master->dummy_rx))
260 		stats->bytes_rx += xfer->len;
261 
262 	spin_unlock_irqrestore(&stats->lock, flags);
263 }
264 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
265 
266 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
267  * and the sysfs version makes coldplug work too.
268  */
269 
270 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
271 						const struct spi_device *sdev)
272 {
273 	while (id->name[0]) {
274 		if (!strcmp(sdev->modalias, id->name))
275 			return id;
276 		id++;
277 	}
278 	return NULL;
279 }
280 
281 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
282 {
283 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
284 
285 	return spi_match_id(sdrv->id_table, sdev);
286 }
287 EXPORT_SYMBOL_GPL(spi_get_device_id);
288 
289 static int spi_match_device(struct device *dev, struct device_driver *drv)
290 {
291 	const struct spi_device	*spi = to_spi_device(dev);
292 	const struct spi_driver	*sdrv = to_spi_driver(drv);
293 
294 	/* Attempt an OF style match */
295 	if (of_driver_match_device(dev, drv))
296 		return 1;
297 
298 	/* Then try ACPI */
299 	if (acpi_driver_match_device(dev, drv))
300 		return 1;
301 
302 	if (sdrv->id_table)
303 		return !!spi_match_id(sdrv->id_table, spi);
304 
305 	return strcmp(spi->modalias, drv->name) == 0;
306 }
307 
308 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
309 {
310 	const struct spi_device		*spi = to_spi_device(dev);
311 	int rc;
312 
313 	rc = acpi_device_uevent_modalias(dev, env);
314 	if (rc != -ENODEV)
315 		return rc;
316 
317 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
318 	return 0;
319 }
320 
321 struct bus_type spi_bus_type = {
322 	.name		= "spi",
323 	.dev_groups	= spi_dev_groups,
324 	.match		= spi_match_device,
325 	.uevent		= spi_uevent,
326 };
327 EXPORT_SYMBOL_GPL(spi_bus_type);
328 
329 
330 static int spi_drv_probe(struct device *dev)
331 {
332 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
333 	struct spi_device		*spi = to_spi_device(dev);
334 	int ret;
335 
336 	ret = of_clk_set_defaults(dev->of_node, false);
337 	if (ret)
338 		return ret;
339 
340 	if (dev->of_node) {
341 		spi->irq = of_irq_get(dev->of_node, 0);
342 		if (spi->irq == -EPROBE_DEFER)
343 			return -EPROBE_DEFER;
344 		if (spi->irq < 0)
345 			spi->irq = 0;
346 	}
347 
348 	ret = dev_pm_domain_attach(dev, true);
349 	if (ret != -EPROBE_DEFER) {
350 		ret = sdrv->probe(spi);
351 		if (ret)
352 			dev_pm_domain_detach(dev, true);
353 	}
354 
355 	return ret;
356 }
357 
358 static int spi_drv_remove(struct device *dev)
359 {
360 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
361 	int ret;
362 
363 	ret = sdrv->remove(to_spi_device(dev));
364 	dev_pm_domain_detach(dev, true);
365 
366 	return ret;
367 }
368 
369 static void spi_drv_shutdown(struct device *dev)
370 {
371 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
372 
373 	sdrv->shutdown(to_spi_device(dev));
374 }
375 
376 /**
377  * __spi_register_driver - register a SPI driver
378  * @owner: owner module of the driver to register
379  * @sdrv: the driver to register
380  * Context: can sleep
381  *
382  * Return: zero on success, else a negative error code.
383  */
384 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
385 {
386 	sdrv->driver.owner = owner;
387 	sdrv->driver.bus = &spi_bus_type;
388 	if (sdrv->probe)
389 		sdrv->driver.probe = spi_drv_probe;
390 	if (sdrv->remove)
391 		sdrv->driver.remove = spi_drv_remove;
392 	if (sdrv->shutdown)
393 		sdrv->driver.shutdown = spi_drv_shutdown;
394 	return driver_register(&sdrv->driver);
395 }
396 EXPORT_SYMBOL_GPL(__spi_register_driver);
397 
398 /*-------------------------------------------------------------------------*/
399 
400 /* SPI devices should normally not be created by SPI device drivers; that
401  * would make them board-specific.  Similarly with SPI master drivers.
402  * Device registration normally goes into like arch/.../mach.../board-YYY.c
403  * with other readonly (flashable) information about mainboard devices.
404  */
405 
406 struct boardinfo {
407 	struct list_head	list;
408 	struct spi_board_info	board_info;
409 };
410 
411 static LIST_HEAD(board_list);
412 static LIST_HEAD(spi_master_list);
413 
414 /*
415  * Used to protect add/del opertion for board_info list and
416  * spi_master list, and their matching process
417  */
418 static DEFINE_MUTEX(board_lock);
419 
420 /**
421  * spi_alloc_device - Allocate a new SPI device
422  * @master: Controller to which device is connected
423  * Context: can sleep
424  *
425  * Allows a driver to allocate and initialize a spi_device without
426  * registering it immediately.  This allows a driver to directly
427  * fill the spi_device with device parameters before calling
428  * spi_add_device() on it.
429  *
430  * Caller is responsible to call spi_add_device() on the returned
431  * spi_device structure to add it to the SPI master.  If the caller
432  * needs to discard the spi_device without adding it, then it should
433  * call spi_dev_put() on it.
434  *
435  * Return: a pointer to the new device, or NULL.
436  */
437 struct spi_device *spi_alloc_device(struct spi_master *master)
438 {
439 	struct spi_device	*spi;
440 
441 	if (!spi_master_get(master))
442 		return NULL;
443 
444 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
445 	if (!spi) {
446 		spi_master_put(master);
447 		return NULL;
448 	}
449 
450 	spi->master = master;
451 	spi->dev.parent = &master->dev;
452 	spi->dev.bus = &spi_bus_type;
453 	spi->dev.release = spidev_release;
454 	spi->cs_gpio = -ENOENT;
455 
456 	spin_lock_init(&spi->statistics.lock);
457 
458 	device_initialize(&spi->dev);
459 	return spi;
460 }
461 EXPORT_SYMBOL_GPL(spi_alloc_device);
462 
463 static void spi_dev_set_name(struct spi_device *spi)
464 {
465 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
466 
467 	if (adev) {
468 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
469 		return;
470 	}
471 
472 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
473 		     spi->chip_select);
474 }
475 
476 static int spi_dev_check(struct device *dev, void *data)
477 {
478 	struct spi_device *spi = to_spi_device(dev);
479 	struct spi_device *new_spi = data;
480 
481 	if (spi->master == new_spi->master &&
482 	    spi->chip_select == new_spi->chip_select)
483 		return -EBUSY;
484 	return 0;
485 }
486 
487 /**
488  * spi_add_device - Add spi_device allocated with spi_alloc_device
489  * @spi: spi_device to register
490  *
491  * Companion function to spi_alloc_device.  Devices allocated with
492  * spi_alloc_device can be added onto the spi bus with this function.
493  *
494  * Return: 0 on success; negative errno on failure
495  */
496 int spi_add_device(struct spi_device *spi)
497 {
498 	static DEFINE_MUTEX(spi_add_lock);
499 	struct spi_master *master = spi->master;
500 	struct device *dev = master->dev.parent;
501 	int status;
502 
503 	/* Chipselects are numbered 0..max; validate. */
504 	if (spi->chip_select >= master->num_chipselect) {
505 		dev_err(dev, "cs%d >= max %d\n",
506 			spi->chip_select,
507 			master->num_chipselect);
508 		return -EINVAL;
509 	}
510 
511 	/* Set the bus ID string */
512 	spi_dev_set_name(spi);
513 
514 	/* We need to make sure there's no other device with this
515 	 * chipselect **BEFORE** we call setup(), else we'll trash
516 	 * its configuration.  Lock against concurrent add() calls.
517 	 */
518 	mutex_lock(&spi_add_lock);
519 
520 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
521 	if (status) {
522 		dev_err(dev, "chipselect %d already in use\n",
523 				spi->chip_select);
524 		goto done;
525 	}
526 
527 	if (master->cs_gpios)
528 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
529 
530 	/* Drivers may modify this initial i/o setup, but will
531 	 * normally rely on the device being setup.  Devices
532 	 * using SPI_CS_HIGH can't coexist well otherwise...
533 	 */
534 	status = spi_setup(spi);
535 	if (status < 0) {
536 		dev_err(dev, "can't setup %s, status %d\n",
537 				dev_name(&spi->dev), status);
538 		goto done;
539 	}
540 
541 	/* Device may be bound to an active driver when this returns */
542 	status = device_add(&spi->dev);
543 	if (status < 0)
544 		dev_err(dev, "can't add %s, status %d\n",
545 				dev_name(&spi->dev), status);
546 	else
547 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
548 
549 done:
550 	mutex_unlock(&spi_add_lock);
551 	return status;
552 }
553 EXPORT_SYMBOL_GPL(spi_add_device);
554 
555 /**
556  * spi_new_device - instantiate one new SPI device
557  * @master: Controller to which device is connected
558  * @chip: Describes the SPI device
559  * Context: can sleep
560  *
561  * On typical mainboards, this is purely internal; and it's not needed
562  * after board init creates the hard-wired devices.  Some development
563  * platforms may not be able to use spi_register_board_info though, and
564  * this is exported so that for example a USB or parport based adapter
565  * driver could add devices (which it would learn about out-of-band).
566  *
567  * Return: the new device, or NULL.
568  */
569 struct spi_device *spi_new_device(struct spi_master *master,
570 				  struct spi_board_info *chip)
571 {
572 	struct spi_device	*proxy;
573 	int			status;
574 
575 	/* NOTE:  caller did any chip->bus_num checks necessary.
576 	 *
577 	 * Also, unless we change the return value convention to use
578 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
579 	 * suggests syslogged diagnostics are best here (ugh).
580 	 */
581 
582 	proxy = spi_alloc_device(master);
583 	if (!proxy)
584 		return NULL;
585 
586 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
587 
588 	proxy->chip_select = chip->chip_select;
589 	proxy->max_speed_hz = chip->max_speed_hz;
590 	proxy->mode = chip->mode;
591 	proxy->irq = chip->irq;
592 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
593 	proxy->dev.platform_data = (void *) chip->platform_data;
594 	proxy->controller_data = chip->controller_data;
595 	proxy->controller_state = NULL;
596 
597 	status = spi_add_device(proxy);
598 	if (status < 0) {
599 		spi_dev_put(proxy);
600 		return NULL;
601 	}
602 
603 	return proxy;
604 }
605 EXPORT_SYMBOL_GPL(spi_new_device);
606 
607 /**
608  * spi_unregister_device - unregister a single SPI device
609  * @spi: spi_device to unregister
610  *
611  * Start making the passed SPI device vanish. Normally this would be handled
612  * by spi_unregister_master().
613  */
614 void spi_unregister_device(struct spi_device *spi)
615 {
616 	if (!spi)
617 		return;
618 
619 	if (spi->dev.of_node)
620 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
621 	device_unregister(&spi->dev);
622 }
623 EXPORT_SYMBOL_GPL(spi_unregister_device);
624 
625 static void spi_match_master_to_boardinfo(struct spi_master *master,
626 				struct spi_board_info *bi)
627 {
628 	struct spi_device *dev;
629 
630 	if (master->bus_num != bi->bus_num)
631 		return;
632 
633 	dev = spi_new_device(master, bi);
634 	if (!dev)
635 		dev_err(master->dev.parent, "can't create new device for %s\n",
636 			bi->modalias);
637 }
638 
639 /**
640  * spi_register_board_info - register SPI devices for a given board
641  * @info: array of chip descriptors
642  * @n: how many descriptors are provided
643  * Context: can sleep
644  *
645  * Board-specific early init code calls this (probably during arch_initcall)
646  * with segments of the SPI device table.  Any device nodes are created later,
647  * after the relevant parent SPI controller (bus_num) is defined.  We keep
648  * this table of devices forever, so that reloading a controller driver will
649  * not make Linux forget about these hard-wired devices.
650  *
651  * Other code can also call this, e.g. a particular add-on board might provide
652  * SPI devices through its expansion connector, so code initializing that board
653  * would naturally declare its SPI devices.
654  *
655  * The board info passed can safely be __initdata ... but be careful of
656  * any embedded pointers (platform_data, etc), they're copied as-is.
657  *
658  * Return: zero on success, else a negative error code.
659  */
660 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
661 {
662 	struct boardinfo *bi;
663 	int i;
664 
665 	if (!n)
666 		return -EINVAL;
667 
668 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
669 	if (!bi)
670 		return -ENOMEM;
671 
672 	for (i = 0; i < n; i++, bi++, info++) {
673 		struct spi_master *master;
674 
675 		memcpy(&bi->board_info, info, sizeof(*info));
676 		mutex_lock(&board_lock);
677 		list_add_tail(&bi->list, &board_list);
678 		list_for_each_entry(master, &spi_master_list, list)
679 			spi_match_master_to_boardinfo(master, &bi->board_info);
680 		mutex_unlock(&board_lock);
681 	}
682 
683 	return 0;
684 }
685 
686 /*-------------------------------------------------------------------------*/
687 
688 static void spi_set_cs(struct spi_device *spi, bool enable)
689 {
690 	if (spi->mode & SPI_CS_HIGH)
691 		enable = !enable;
692 
693 	if (gpio_is_valid(spi->cs_gpio))
694 		gpio_set_value(spi->cs_gpio, !enable);
695 	else if (spi->master->set_cs)
696 		spi->master->set_cs(spi, !enable);
697 }
698 
699 #ifdef CONFIG_HAS_DMA
700 static int spi_map_buf(struct spi_master *master, struct device *dev,
701 		       struct sg_table *sgt, void *buf, size_t len,
702 		       enum dma_data_direction dir)
703 {
704 	const bool vmalloced_buf = is_vmalloc_addr(buf);
705 	int desc_len;
706 	int sgs;
707 	struct page *vm_page;
708 	void *sg_buf;
709 	size_t min;
710 	int i, ret;
711 
712 	if (vmalloced_buf) {
713 		desc_len = PAGE_SIZE;
714 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
715 	} else {
716 		desc_len = master->max_dma_len;
717 		sgs = DIV_ROUND_UP(len, desc_len);
718 	}
719 
720 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
721 	if (ret != 0)
722 		return ret;
723 
724 	for (i = 0; i < sgs; i++) {
725 
726 		if (vmalloced_buf) {
727 			min = min_t(size_t,
728 				    len, desc_len - offset_in_page(buf));
729 			vm_page = vmalloc_to_page(buf);
730 			if (!vm_page) {
731 				sg_free_table(sgt);
732 				return -ENOMEM;
733 			}
734 			sg_set_page(&sgt->sgl[i], vm_page,
735 				    min, offset_in_page(buf));
736 		} else {
737 			min = min_t(size_t, len, desc_len);
738 			sg_buf = buf;
739 			sg_set_buf(&sgt->sgl[i], sg_buf, min);
740 		}
741 
742 
743 		buf += min;
744 		len -= min;
745 	}
746 
747 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
748 	if (!ret)
749 		ret = -ENOMEM;
750 	if (ret < 0) {
751 		sg_free_table(sgt);
752 		return ret;
753 	}
754 
755 	sgt->nents = ret;
756 
757 	return 0;
758 }
759 
760 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
761 			  struct sg_table *sgt, enum dma_data_direction dir)
762 {
763 	if (sgt->orig_nents) {
764 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
765 		sg_free_table(sgt);
766 	}
767 }
768 
769 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
770 {
771 	struct device *tx_dev, *rx_dev;
772 	struct spi_transfer *xfer;
773 	int ret;
774 
775 	if (!master->can_dma)
776 		return 0;
777 
778 	if (master->dma_tx)
779 		tx_dev = master->dma_tx->device->dev;
780 	else
781 		tx_dev = &master->dev;
782 
783 	if (master->dma_rx)
784 		rx_dev = master->dma_rx->device->dev;
785 	else
786 		rx_dev = &master->dev;
787 
788 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
789 		if (!master->can_dma(master, msg->spi, xfer))
790 			continue;
791 
792 		if (xfer->tx_buf != NULL) {
793 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
794 					  (void *)xfer->tx_buf, xfer->len,
795 					  DMA_TO_DEVICE);
796 			if (ret != 0)
797 				return ret;
798 		}
799 
800 		if (xfer->rx_buf != NULL) {
801 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
802 					  xfer->rx_buf, xfer->len,
803 					  DMA_FROM_DEVICE);
804 			if (ret != 0) {
805 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
806 					      DMA_TO_DEVICE);
807 				return ret;
808 			}
809 		}
810 	}
811 
812 	master->cur_msg_mapped = true;
813 
814 	return 0;
815 }
816 
817 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
818 {
819 	struct spi_transfer *xfer;
820 	struct device *tx_dev, *rx_dev;
821 
822 	if (!master->cur_msg_mapped || !master->can_dma)
823 		return 0;
824 
825 	if (master->dma_tx)
826 		tx_dev = master->dma_tx->device->dev;
827 	else
828 		tx_dev = &master->dev;
829 
830 	if (master->dma_rx)
831 		rx_dev = master->dma_rx->device->dev;
832 	else
833 		rx_dev = &master->dev;
834 
835 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
836 		if (!master->can_dma(master, msg->spi, xfer))
837 			continue;
838 
839 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
840 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
841 	}
842 
843 	return 0;
844 }
845 #else /* !CONFIG_HAS_DMA */
846 static inline int __spi_map_msg(struct spi_master *master,
847 				struct spi_message *msg)
848 {
849 	return 0;
850 }
851 
852 static inline int __spi_unmap_msg(struct spi_master *master,
853 				  struct spi_message *msg)
854 {
855 	return 0;
856 }
857 #endif /* !CONFIG_HAS_DMA */
858 
859 static inline int spi_unmap_msg(struct spi_master *master,
860 				struct spi_message *msg)
861 {
862 	struct spi_transfer *xfer;
863 
864 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
865 		/*
866 		 * Restore the original value of tx_buf or rx_buf if they are
867 		 * NULL.
868 		 */
869 		if (xfer->tx_buf == master->dummy_tx)
870 			xfer->tx_buf = NULL;
871 		if (xfer->rx_buf == master->dummy_rx)
872 			xfer->rx_buf = NULL;
873 	}
874 
875 	return __spi_unmap_msg(master, msg);
876 }
877 
878 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
879 {
880 	struct spi_transfer *xfer;
881 	void *tmp;
882 	unsigned int max_tx, max_rx;
883 
884 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
885 		max_tx = 0;
886 		max_rx = 0;
887 
888 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
889 			if ((master->flags & SPI_MASTER_MUST_TX) &&
890 			    !xfer->tx_buf)
891 				max_tx = max(xfer->len, max_tx);
892 			if ((master->flags & SPI_MASTER_MUST_RX) &&
893 			    !xfer->rx_buf)
894 				max_rx = max(xfer->len, max_rx);
895 		}
896 
897 		if (max_tx) {
898 			tmp = krealloc(master->dummy_tx, max_tx,
899 				       GFP_KERNEL | GFP_DMA);
900 			if (!tmp)
901 				return -ENOMEM;
902 			master->dummy_tx = tmp;
903 			memset(tmp, 0, max_tx);
904 		}
905 
906 		if (max_rx) {
907 			tmp = krealloc(master->dummy_rx, max_rx,
908 				       GFP_KERNEL | GFP_DMA);
909 			if (!tmp)
910 				return -ENOMEM;
911 			master->dummy_rx = tmp;
912 		}
913 
914 		if (max_tx || max_rx) {
915 			list_for_each_entry(xfer, &msg->transfers,
916 					    transfer_list) {
917 				if (!xfer->tx_buf)
918 					xfer->tx_buf = master->dummy_tx;
919 				if (!xfer->rx_buf)
920 					xfer->rx_buf = master->dummy_rx;
921 			}
922 		}
923 	}
924 
925 	return __spi_map_msg(master, msg);
926 }
927 
928 /*
929  * spi_transfer_one_message - Default implementation of transfer_one_message()
930  *
931  * This is a standard implementation of transfer_one_message() for
932  * drivers which impelment a transfer_one() operation.  It provides
933  * standard handling of delays and chip select management.
934  */
935 static int spi_transfer_one_message(struct spi_master *master,
936 				    struct spi_message *msg)
937 {
938 	struct spi_transfer *xfer;
939 	bool keep_cs = false;
940 	int ret = 0;
941 	unsigned long ms = 1;
942 	struct spi_statistics *statm = &master->statistics;
943 	struct spi_statistics *stats = &msg->spi->statistics;
944 
945 	spi_set_cs(msg->spi, true);
946 
947 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
948 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
949 
950 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
951 		trace_spi_transfer_start(msg, xfer);
952 
953 		spi_statistics_add_transfer_stats(statm, xfer, master);
954 		spi_statistics_add_transfer_stats(stats, xfer, master);
955 
956 		if (xfer->tx_buf || xfer->rx_buf) {
957 			reinit_completion(&master->xfer_completion);
958 
959 			ret = master->transfer_one(master, msg->spi, xfer);
960 			if (ret < 0) {
961 				SPI_STATISTICS_INCREMENT_FIELD(statm,
962 							       errors);
963 				SPI_STATISTICS_INCREMENT_FIELD(stats,
964 							       errors);
965 				dev_err(&msg->spi->dev,
966 					"SPI transfer failed: %d\n", ret);
967 				goto out;
968 			}
969 
970 			if (ret > 0) {
971 				ret = 0;
972 				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
973 				ms += ms + 100; /* some tolerance */
974 
975 				ms = wait_for_completion_timeout(&master->xfer_completion,
976 								 msecs_to_jiffies(ms));
977 			}
978 
979 			if (ms == 0) {
980 				SPI_STATISTICS_INCREMENT_FIELD(statm,
981 							       timedout);
982 				SPI_STATISTICS_INCREMENT_FIELD(stats,
983 							       timedout);
984 				dev_err(&msg->spi->dev,
985 					"SPI transfer timed out\n");
986 				msg->status = -ETIMEDOUT;
987 			}
988 		} else {
989 			if (xfer->len)
990 				dev_err(&msg->spi->dev,
991 					"Bufferless transfer has length %u\n",
992 					xfer->len);
993 		}
994 
995 		trace_spi_transfer_stop(msg, xfer);
996 
997 		if (msg->status != -EINPROGRESS)
998 			goto out;
999 
1000 		if (xfer->delay_usecs)
1001 			udelay(xfer->delay_usecs);
1002 
1003 		if (xfer->cs_change) {
1004 			if (list_is_last(&xfer->transfer_list,
1005 					 &msg->transfers)) {
1006 				keep_cs = true;
1007 			} else {
1008 				spi_set_cs(msg->spi, false);
1009 				udelay(10);
1010 				spi_set_cs(msg->spi, true);
1011 			}
1012 		}
1013 
1014 		msg->actual_length += xfer->len;
1015 	}
1016 
1017 out:
1018 	if (ret != 0 || !keep_cs)
1019 		spi_set_cs(msg->spi, false);
1020 
1021 	if (msg->status == -EINPROGRESS)
1022 		msg->status = ret;
1023 
1024 	if (msg->status && master->handle_err)
1025 		master->handle_err(master, msg);
1026 
1027 	spi_finalize_current_message(master);
1028 
1029 	return ret;
1030 }
1031 
1032 /**
1033  * spi_finalize_current_transfer - report completion of a transfer
1034  * @master: the master reporting completion
1035  *
1036  * Called by SPI drivers using the core transfer_one_message()
1037  * implementation to notify it that the current interrupt driven
1038  * transfer has finished and the next one may be scheduled.
1039  */
1040 void spi_finalize_current_transfer(struct spi_master *master)
1041 {
1042 	complete(&master->xfer_completion);
1043 }
1044 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1045 
1046 /**
1047  * __spi_pump_messages - function which processes spi message queue
1048  * @master: master to process queue for
1049  * @in_kthread: true if we are in the context of the message pump thread
1050  *
1051  * This function checks if there is any spi message in the queue that
1052  * needs processing and if so call out to the driver to initialize hardware
1053  * and transfer each message.
1054  *
1055  * Note that it is called both from the kthread itself and also from
1056  * inside spi_sync(); the queue extraction handling at the top of the
1057  * function should deal with this safely.
1058  */
1059 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1060 {
1061 	unsigned long flags;
1062 	bool was_busy = false;
1063 	int ret;
1064 
1065 	/* Lock queue */
1066 	spin_lock_irqsave(&master->queue_lock, flags);
1067 
1068 	/* Make sure we are not already running a message */
1069 	if (master->cur_msg) {
1070 		spin_unlock_irqrestore(&master->queue_lock, flags);
1071 		return;
1072 	}
1073 
1074 	/* If another context is idling the device then defer */
1075 	if (master->idling) {
1076 		queue_kthread_work(&master->kworker, &master->pump_messages);
1077 		spin_unlock_irqrestore(&master->queue_lock, flags);
1078 		return;
1079 	}
1080 
1081 	/* Check if the queue is idle */
1082 	if (list_empty(&master->queue) || !master->running) {
1083 		if (!master->busy) {
1084 			spin_unlock_irqrestore(&master->queue_lock, flags);
1085 			return;
1086 		}
1087 
1088 		/* Only do teardown in the thread */
1089 		if (!in_kthread) {
1090 			queue_kthread_work(&master->kworker,
1091 					   &master->pump_messages);
1092 			spin_unlock_irqrestore(&master->queue_lock, flags);
1093 			return;
1094 		}
1095 
1096 		master->busy = false;
1097 		master->idling = true;
1098 		spin_unlock_irqrestore(&master->queue_lock, flags);
1099 
1100 		kfree(master->dummy_rx);
1101 		master->dummy_rx = NULL;
1102 		kfree(master->dummy_tx);
1103 		master->dummy_tx = NULL;
1104 		if (master->unprepare_transfer_hardware &&
1105 		    master->unprepare_transfer_hardware(master))
1106 			dev_err(&master->dev,
1107 				"failed to unprepare transfer hardware\n");
1108 		if (master->auto_runtime_pm) {
1109 			pm_runtime_mark_last_busy(master->dev.parent);
1110 			pm_runtime_put_autosuspend(master->dev.parent);
1111 		}
1112 		trace_spi_master_idle(master);
1113 
1114 		spin_lock_irqsave(&master->queue_lock, flags);
1115 		master->idling = false;
1116 		spin_unlock_irqrestore(&master->queue_lock, flags);
1117 		return;
1118 	}
1119 
1120 	/* Extract head of queue */
1121 	master->cur_msg =
1122 		list_first_entry(&master->queue, struct spi_message, queue);
1123 
1124 	list_del_init(&master->cur_msg->queue);
1125 	if (master->busy)
1126 		was_busy = true;
1127 	else
1128 		master->busy = true;
1129 	spin_unlock_irqrestore(&master->queue_lock, flags);
1130 
1131 	if (!was_busy && master->auto_runtime_pm) {
1132 		ret = pm_runtime_get_sync(master->dev.parent);
1133 		if (ret < 0) {
1134 			dev_err(&master->dev, "Failed to power device: %d\n",
1135 				ret);
1136 			return;
1137 		}
1138 	}
1139 
1140 	if (!was_busy)
1141 		trace_spi_master_busy(master);
1142 
1143 	if (!was_busy && master->prepare_transfer_hardware) {
1144 		ret = master->prepare_transfer_hardware(master);
1145 		if (ret) {
1146 			dev_err(&master->dev,
1147 				"failed to prepare transfer hardware\n");
1148 
1149 			if (master->auto_runtime_pm)
1150 				pm_runtime_put(master->dev.parent);
1151 			return;
1152 		}
1153 	}
1154 
1155 	trace_spi_message_start(master->cur_msg);
1156 
1157 	if (master->prepare_message) {
1158 		ret = master->prepare_message(master, master->cur_msg);
1159 		if (ret) {
1160 			dev_err(&master->dev,
1161 				"failed to prepare message: %d\n", ret);
1162 			master->cur_msg->status = ret;
1163 			spi_finalize_current_message(master);
1164 			return;
1165 		}
1166 		master->cur_msg_prepared = true;
1167 	}
1168 
1169 	ret = spi_map_msg(master, master->cur_msg);
1170 	if (ret) {
1171 		master->cur_msg->status = ret;
1172 		spi_finalize_current_message(master);
1173 		return;
1174 	}
1175 
1176 	ret = master->transfer_one_message(master, master->cur_msg);
1177 	if (ret) {
1178 		dev_err(&master->dev,
1179 			"failed to transfer one message from queue\n");
1180 		return;
1181 	}
1182 }
1183 
1184 /**
1185  * spi_pump_messages - kthread work function which processes spi message queue
1186  * @work: pointer to kthread work struct contained in the master struct
1187  */
1188 static void spi_pump_messages(struct kthread_work *work)
1189 {
1190 	struct spi_master *master =
1191 		container_of(work, struct spi_master, pump_messages);
1192 
1193 	__spi_pump_messages(master, true);
1194 }
1195 
1196 static int spi_init_queue(struct spi_master *master)
1197 {
1198 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1199 
1200 	master->running = false;
1201 	master->busy = false;
1202 
1203 	init_kthread_worker(&master->kworker);
1204 	master->kworker_task = kthread_run(kthread_worker_fn,
1205 					   &master->kworker, "%s",
1206 					   dev_name(&master->dev));
1207 	if (IS_ERR(master->kworker_task)) {
1208 		dev_err(&master->dev, "failed to create message pump task\n");
1209 		return PTR_ERR(master->kworker_task);
1210 	}
1211 	init_kthread_work(&master->pump_messages, spi_pump_messages);
1212 
1213 	/*
1214 	 * Master config will indicate if this controller should run the
1215 	 * message pump with high (realtime) priority to reduce the transfer
1216 	 * latency on the bus by minimising the delay between a transfer
1217 	 * request and the scheduling of the message pump thread. Without this
1218 	 * setting the message pump thread will remain at default priority.
1219 	 */
1220 	if (master->rt) {
1221 		dev_info(&master->dev,
1222 			"will run message pump with realtime priority\n");
1223 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1224 	}
1225 
1226 	return 0;
1227 }
1228 
1229 /**
1230  * spi_get_next_queued_message() - called by driver to check for queued
1231  * messages
1232  * @master: the master to check for queued messages
1233  *
1234  * If there are more messages in the queue, the next message is returned from
1235  * this call.
1236  *
1237  * Return: the next message in the queue, else NULL if the queue is empty.
1238  */
1239 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1240 {
1241 	struct spi_message *next;
1242 	unsigned long flags;
1243 
1244 	/* get a pointer to the next message, if any */
1245 	spin_lock_irqsave(&master->queue_lock, flags);
1246 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1247 					queue);
1248 	spin_unlock_irqrestore(&master->queue_lock, flags);
1249 
1250 	return next;
1251 }
1252 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1253 
1254 /**
1255  * spi_finalize_current_message() - the current message is complete
1256  * @master: the master to return the message to
1257  *
1258  * Called by the driver to notify the core that the message in the front of the
1259  * queue is complete and can be removed from the queue.
1260  */
1261 void spi_finalize_current_message(struct spi_master *master)
1262 {
1263 	struct spi_message *mesg;
1264 	unsigned long flags;
1265 	int ret;
1266 
1267 	spin_lock_irqsave(&master->queue_lock, flags);
1268 	mesg = master->cur_msg;
1269 	spin_unlock_irqrestore(&master->queue_lock, flags);
1270 
1271 	spi_unmap_msg(master, mesg);
1272 
1273 	if (master->cur_msg_prepared && master->unprepare_message) {
1274 		ret = master->unprepare_message(master, mesg);
1275 		if (ret) {
1276 			dev_err(&master->dev,
1277 				"failed to unprepare message: %d\n", ret);
1278 		}
1279 	}
1280 
1281 	spin_lock_irqsave(&master->queue_lock, flags);
1282 	master->cur_msg = NULL;
1283 	master->cur_msg_prepared = false;
1284 	queue_kthread_work(&master->kworker, &master->pump_messages);
1285 	spin_unlock_irqrestore(&master->queue_lock, flags);
1286 
1287 	trace_spi_message_done(mesg);
1288 
1289 	mesg->state = NULL;
1290 	if (mesg->complete)
1291 		mesg->complete(mesg->context);
1292 }
1293 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1294 
1295 static int spi_start_queue(struct spi_master *master)
1296 {
1297 	unsigned long flags;
1298 
1299 	spin_lock_irqsave(&master->queue_lock, flags);
1300 
1301 	if (master->running || master->busy) {
1302 		spin_unlock_irqrestore(&master->queue_lock, flags);
1303 		return -EBUSY;
1304 	}
1305 
1306 	master->running = true;
1307 	master->cur_msg = NULL;
1308 	spin_unlock_irqrestore(&master->queue_lock, flags);
1309 
1310 	queue_kthread_work(&master->kworker, &master->pump_messages);
1311 
1312 	return 0;
1313 }
1314 
1315 static int spi_stop_queue(struct spi_master *master)
1316 {
1317 	unsigned long flags;
1318 	unsigned limit = 500;
1319 	int ret = 0;
1320 
1321 	spin_lock_irqsave(&master->queue_lock, flags);
1322 
1323 	/*
1324 	 * This is a bit lame, but is optimized for the common execution path.
1325 	 * A wait_queue on the master->busy could be used, but then the common
1326 	 * execution path (pump_messages) would be required to call wake_up or
1327 	 * friends on every SPI message. Do this instead.
1328 	 */
1329 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1330 		spin_unlock_irqrestore(&master->queue_lock, flags);
1331 		usleep_range(10000, 11000);
1332 		spin_lock_irqsave(&master->queue_lock, flags);
1333 	}
1334 
1335 	if (!list_empty(&master->queue) || master->busy)
1336 		ret = -EBUSY;
1337 	else
1338 		master->running = false;
1339 
1340 	spin_unlock_irqrestore(&master->queue_lock, flags);
1341 
1342 	if (ret) {
1343 		dev_warn(&master->dev,
1344 			 "could not stop message queue\n");
1345 		return ret;
1346 	}
1347 	return ret;
1348 }
1349 
1350 static int spi_destroy_queue(struct spi_master *master)
1351 {
1352 	int ret;
1353 
1354 	ret = spi_stop_queue(master);
1355 
1356 	/*
1357 	 * flush_kthread_worker will block until all work is done.
1358 	 * If the reason that stop_queue timed out is that the work will never
1359 	 * finish, then it does no good to call flush/stop thread, so
1360 	 * return anyway.
1361 	 */
1362 	if (ret) {
1363 		dev_err(&master->dev, "problem destroying queue\n");
1364 		return ret;
1365 	}
1366 
1367 	flush_kthread_worker(&master->kworker);
1368 	kthread_stop(master->kworker_task);
1369 
1370 	return 0;
1371 }
1372 
1373 static int __spi_queued_transfer(struct spi_device *spi,
1374 				 struct spi_message *msg,
1375 				 bool need_pump)
1376 {
1377 	struct spi_master *master = spi->master;
1378 	unsigned long flags;
1379 
1380 	spin_lock_irqsave(&master->queue_lock, flags);
1381 
1382 	if (!master->running) {
1383 		spin_unlock_irqrestore(&master->queue_lock, flags);
1384 		return -ESHUTDOWN;
1385 	}
1386 	msg->actual_length = 0;
1387 	msg->status = -EINPROGRESS;
1388 
1389 	list_add_tail(&msg->queue, &master->queue);
1390 	if (!master->busy && need_pump)
1391 		queue_kthread_work(&master->kworker, &master->pump_messages);
1392 
1393 	spin_unlock_irqrestore(&master->queue_lock, flags);
1394 	return 0;
1395 }
1396 
1397 /**
1398  * spi_queued_transfer - transfer function for queued transfers
1399  * @spi: spi device which is requesting transfer
1400  * @msg: spi message which is to handled is queued to driver queue
1401  *
1402  * Return: zero on success, else a negative error code.
1403  */
1404 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1405 {
1406 	return __spi_queued_transfer(spi, msg, true);
1407 }
1408 
1409 static int spi_master_initialize_queue(struct spi_master *master)
1410 {
1411 	int ret;
1412 
1413 	master->transfer = spi_queued_transfer;
1414 	if (!master->transfer_one_message)
1415 		master->transfer_one_message = spi_transfer_one_message;
1416 
1417 	/* Initialize and start queue */
1418 	ret = spi_init_queue(master);
1419 	if (ret) {
1420 		dev_err(&master->dev, "problem initializing queue\n");
1421 		goto err_init_queue;
1422 	}
1423 	master->queued = true;
1424 	ret = spi_start_queue(master);
1425 	if (ret) {
1426 		dev_err(&master->dev, "problem starting queue\n");
1427 		goto err_start_queue;
1428 	}
1429 
1430 	return 0;
1431 
1432 err_start_queue:
1433 	spi_destroy_queue(master);
1434 err_init_queue:
1435 	return ret;
1436 }
1437 
1438 /*-------------------------------------------------------------------------*/
1439 
1440 #if defined(CONFIG_OF)
1441 static struct spi_device *
1442 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1443 {
1444 	struct spi_device *spi;
1445 	int rc;
1446 	u32 value;
1447 
1448 	/* Alloc an spi_device */
1449 	spi = spi_alloc_device(master);
1450 	if (!spi) {
1451 		dev_err(&master->dev, "spi_device alloc error for %s\n",
1452 			nc->full_name);
1453 		rc = -ENOMEM;
1454 		goto err_out;
1455 	}
1456 
1457 	/* Select device driver */
1458 	rc = of_modalias_node(nc, spi->modalias,
1459 				sizeof(spi->modalias));
1460 	if (rc < 0) {
1461 		dev_err(&master->dev, "cannot find modalias for %s\n",
1462 			nc->full_name);
1463 		goto err_out;
1464 	}
1465 
1466 	/* Device address */
1467 	rc = of_property_read_u32(nc, "reg", &value);
1468 	if (rc) {
1469 		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1470 			nc->full_name, rc);
1471 		goto err_out;
1472 	}
1473 	spi->chip_select = value;
1474 
1475 	/* Mode (clock phase/polarity/etc.) */
1476 	if (of_find_property(nc, "spi-cpha", NULL))
1477 		spi->mode |= SPI_CPHA;
1478 	if (of_find_property(nc, "spi-cpol", NULL))
1479 		spi->mode |= SPI_CPOL;
1480 	if (of_find_property(nc, "spi-cs-high", NULL))
1481 		spi->mode |= SPI_CS_HIGH;
1482 	if (of_find_property(nc, "spi-3wire", NULL))
1483 		spi->mode |= SPI_3WIRE;
1484 	if (of_find_property(nc, "spi-lsb-first", NULL))
1485 		spi->mode |= SPI_LSB_FIRST;
1486 
1487 	/* Device DUAL/QUAD mode */
1488 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1489 		switch (value) {
1490 		case 1:
1491 			break;
1492 		case 2:
1493 			spi->mode |= SPI_TX_DUAL;
1494 			break;
1495 		case 4:
1496 			spi->mode |= SPI_TX_QUAD;
1497 			break;
1498 		default:
1499 			dev_warn(&master->dev,
1500 				"spi-tx-bus-width %d not supported\n",
1501 				value);
1502 			break;
1503 		}
1504 	}
1505 
1506 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1507 		switch (value) {
1508 		case 1:
1509 			break;
1510 		case 2:
1511 			spi->mode |= SPI_RX_DUAL;
1512 			break;
1513 		case 4:
1514 			spi->mode |= SPI_RX_QUAD;
1515 			break;
1516 		default:
1517 			dev_warn(&master->dev,
1518 				"spi-rx-bus-width %d not supported\n",
1519 				value);
1520 			break;
1521 		}
1522 	}
1523 
1524 	/* Device speed */
1525 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1526 	if (rc) {
1527 		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1528 			nc->full_name, rc);
1529 		goto err_out;
1530 	}
1531 	spi->max_speed_hz = value;
1532 
1533 	/* Store a pointer to the node in the device structure */
1534 	of_node_get(nc);
1535 	spi->dev.of_node = nc;
1536 
1537 	/* Register the new device */
1538 	rc = spi_add_device(spi);
1539 	if (rc) {
1540 		dev_err(&master->dev, "spi_device register error %s\n",
1541 			nc->full_name);
1542 		goto err_out;
1543 	}
1544 
1545 	return spi;
1546 
1547 err_out:
1548 	spi_dev_put(spi);
1549 	return ERR_PTR(rc);
1550 }
1551 
1552 /**
1553  * of_register_spi_devices() - Register child devices onto the SPI bus
1554  * @master:	Pointer to spi_master device
1555  *
1556  * Registers an spi_device for each child node of master node which has a 'reg'
1557  * property.
1558  */
1559 static void of_register_spi_devices(struct spi_master *master)
1560 {
1561 	struct spi_device *spi;
1562 	struct device_node *nc;
1563 
1564 	if (!master->dev.of_node)
1565 		return;
1566 
1567 	for_each_available_child_of_node(master->dev.of_node, nc) {
1568 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1569 			continue;
1570 		spi = of_register_spi_device(master, nc);
1571 		if (IS_ERR(spi))
1572 			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1573 				nc->full_name);
1574 	}
1575 }
1576 #else
1577 static void of_register_spi_devices(struct spi_master *master) { }
1578 #endif
1579 
1580 #ifdef CONFIG_ACPI
1581 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1582 {
1583 	struct spi_device *spi = data;
1584 
1585 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1586 		struct acpi_resource_spi_serialbus *sb;
1587 
1588 		sb = &ares->data.spi_serial_bus;
1589 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1590 			spi->chip_select = sb->device_selection;
1591 			spi->max_speed_hz = sb->connection_speed;
1592 
1593 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1594 				spi->mode |= SPI_CPHA;
1595 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1596 				spi->mode |= SPI_CPOL;
1597 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1598 				spi->mode |= SPI_CS_HIGH;
1599 		}
1600 	} else if (spi->irq < 0) {
1601 		struct resource r;
1602 
1603 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1604 			spi->irq = r.start;
1605 	}
1606 
1607 	/* Always tell the ACPI core to skip this resource */
1608 	return 1;
1609 }
1610 
1611 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1612 				       void *data, void **return_value)
1613 {
1614 	struct spi_master *master = data;
1615 	struct list_head resource_list;
1616 	struct acpi_device *adev;
1617 	struct spi_device *spi;
1618 	int ret;
1619 
1620 	if (acpi_bus_get_device(handle, &adev))
1621 		return AE_OK;
1622 	if (acpi_bus_get_status(adev) || !adev->status.present)
1623 		return AE_OK;
1624 
1625 	spi = spi_alloc_device(master);
1626 	if (!spi) {
1627 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1628 			dev_name(&adev->dev));
1629 		return AE_NO_MEMORY;
1630 	}
1631 
1632 	ACPI_COMPANION_SET(&spi->dev, adev);
1633 	spi->irq = -1;
1634 
1635 	INIT_LIST_HEAD(&resource_list);
1636 	ret = acpi_dev_get_resources(adev, &resource_list,
1637 				     acpi_spi_add_resource, spi);
1638 	acpi_dev_free_resource_list(&resource_list);
1639 
1640 	if (ret < 0 || !spi->max_speed_hz) {
1641 		spi_dev_put(spi);
1642 		return AE_OK;
1643 	}
1644 
1645 	if (spi->irq < 0)
1646 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1647 
1648 	adev->power.flags.ignore_parent = true;
1649 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1650 	if (spi_add_device(spi)) {
1651 		adev->power.flags.ignore_parent = false;
1652 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1653 			dev_name(&adev->dev));
1654 		spi_dev_put(spi);
1655 	}
1656 
1657 	return AE_OK;
1658 }
1659 
1660 static void acpi_register_spi_devices(struct spi_master *master)
1661 {
1662 	acpi_status status;
1663 	acpi_handle handle;
1664 
1665 	handle = ACPI_HANDLE(master->dev.parent);
1666 	if (!handle)
1667 		return;
1668 
1669 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1670 				     acpi_spi_add_device, NULL,
1671 				     master, NULL);
1672 	if (ACPI_FAILURE(status))
1673 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1674 }
1675 #else
1676 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1677 #endif /* CONFIG_ACPI */
1678 
1679 static void spi_master_release(struct device *dev)
1680 {
1681 	struct spi_master *master;
1682 
1683 	master = container_of(dev, struct spi_master, dev);
1684 	kfree(master);
1685 }
1686 
1687 static struct class spi_master_class = {
1688 	.name		= "spi_master",
1689 	.owner		= THIS_MODULE,
1690 	.dev_release	= spi_master_release,
1691 	.dev_groups	= spi_master_groups,
1692 };
1693 
1694 
1695 /**
1696  * spi_alloc_master - allocate SPI master controller
1697  * @dev: the controller, possibly using the platform_bus
1698  * @size: how much zeroed driver-private data to allocate; the pointer to this
1699  *	memory is in the driver_data field of the returned device,
1700  *	accessible with spi_master_get_devdata().
1701  * Context: can sleep
1702  *
1703  * This call is used only by SPI master controller drivers, which are the
1704  * only ones directly touching chip registers.  It's how they allocate
1705  * an spi_master structure, prior to calling spi_register_master().
1706  *
1707  * This must be called from context that can sleep.
1708  *
1709  * The caller is responsible for assigning the bus number and initializing
1710  * the master's methods before calling spi_register_master(); and (after errors
1711  * adding the device) calling spi_master_put() to prevent a memory leak.
1712  *
1713  * Return: the SPI master structure on success, else NULL.
1714  */
1715 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1716 {
1717 	struct spi_master	*master;
1718 
1719 	if (!dev)
1720 		return NULL;
1721 
1722 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1723 	if (!master)
1724 		return NULL;
1725 
1726 	device_initialize(&master->dev);
1727 	master->bus_num = -1;
1728 	master->num_chipselect = 1;
1729 	master->dev.class = &spi_master_class;
1730 	master->dev.parent = dev;
1731 	spi_master_set_devdata(master, &master[1]);
1732 
1733 	return master;
1734 }
1735 EXPORT_SYMBOL_GPL(spi_alloc_master);
1736 
1737 #ifdef CONFIG_OF
1738 static int of_spi_register_master(struct spi_master *master)
1739 {
1740 	int nb, i, *cs;
1741 	struct device_node *np = master->dev.of_node;
1742 
1743 	if (!np)
1744 		return 0;
1745 
1746 	nb = of_gpio_named_count(np, "cs-gpios");
1747 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1748 
1749 	/* Return error only for an incorrectly formed cs-gpios property */
1750 	if (nb == 0 || nb == -ENOENT)
1751 		return 0;
1752 	else if (nb < 0)
1753 		return nb;
1754 
1755 	cs = devm_kzalloc(&master->dev,
1756 			  sizeof(int) * master->num_chipselect,
1757 			  GFP_KERNEL);
1758 	master->cs_gpios = cs;
1759 
1760 	if (!master->cs_gpios)
1761 		return -ENOMEM;
1762 
1763 	for (i = 0; i < master->num_chipselect; i++)
1764 		cs[i] = -ENOENT;
1765 
1766 	for (i = 0; i < nb; i++)
1767 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1768 
1769 	return 0;
1770 }
1771 #else
1772 static int of_spi_register_master(struct spi_master *master)
1773 {
1774 	return 0;
1775 }
1776 #endif
1777 
1778 /**
1779  * spi_register_master - register SPI master controller
1780  * @master: initialized master, originally from spi_alloc_master()
1781  * Context: can sleep
1782  *
1783  * SPI master controllers connect to their drivers using some non-SPI bus,
1784  * such as the platform bus.  The final stage of probe() in that code
1785  * includes calling spi_register_master() to hook up to this SPI bus glue.
1786  *
1787  * SPI controllers use board specific (often SOC specific) bus numbers,
1788  * and board-specific addressing for SPI devices combines those numbers
1789  * with chip select numbers.  Since SPI does not directly support dynamic
1790  * device identification, boards need configuration tables telling which
1791  * chip is at which address.
1792  *
1793  * This must be called from context that can sleep.  It returns zero on
1794  * success, else a negative error code (dropping the master's refcount).
1795  * After a successful return, the caller is responsible for calling
1796  * spi_unregister_master().
1797  *
1798  * Return: zero on success, else a negative error code.
1799  */
1800 int spi_register_master(struct spi_master *master)
1801 {
1802 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1803 	struct device		*dev = master->dev.parent;
1804 	struct boardinfo	*bi;
1805 	int			status = -ENODEV;
1806 	int			dynamic = 0;
1807 
1808 	if (!dev)
1809 		return -ENODEV;
1810 
1811 	status = of_spi_register_master(master);
1812 	if (status)
1813 		return status;
1814 
1815 	/* even if it's just one always-selected device, there must
1816 	 * be at least one chipselect
1817 	 */
1818 	if (master->num_chipselect == 0)
1819 		return -EINVAL;
1820 
1821 	if ((master->bus_num < 0) && master->dev.of_node)
1822 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1823 
1824 	/* convention:  dynamically assigned bus IDs count down from the max */
1825 	if (master->bus_num < 0) {
1826 		/* FIXME switch to an IDR based scheme, something like
1827 		 * I2C now uses, so we can't run out of "dynamic" IDs
1828 		 */
1829 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1830 		dynamic = 1;
1831 	}
1832 
1833 	INIT_LIST_HEAD(&master->queue);
1834 	spin_lock_init(&master->queue_lock);
1835 	spin_lock_init(&master->bus_lock_spinlock);
1836 	mutex_init(&master->bus_lock_mutex);
1837 	master->bus_lock_flag = 0;
1838 	init_completion(&master->xfer_completion);
1839 	if (!master->max_dma_len)
1840 		master->max_dma_len = INT_MAX;
1841 
1842 	/* register the device, then userspace will see it.
1843 	 * registration fails if the bus ID is in use.
1844 	 */
1845 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1846 	status = device_add(&master->dev);
1847 	if (status < 0)
1848 		goto done;
1849 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1850 			dynamic ? " (dynamic)" : "");
1851 
1852 	/* If we're using a queued driver, start the queue */
1853 	if (master->transfer)
1854 		dev_info(dev, "master is unqueued, this is deprecated\n");
1855 	else {
1856 		status = spi_master_initialize_queue(master);
1857 		if (status) {
1858 			device_del(&master->dev);
1859 			goto done;
1860 		}
1861 	}
1862 	/* add statistics */
1863 	spin_lock_init(&master->statistics.lock);
1864 
1865 	mutex_lock(&board_lock);
1866 	list_add_tail(&master->list, &spi_master_list);
1867 	list_for_each_entry(bi, &board_list, list)
1868 		spi_match_master_to_boardinfo(master, &bi->board_info);
1869 	mutex_unlock(&board_lock);
1870 
1871 	/* Register devices from the device tree and ACPI */
1872 	of_register_spi_devices(master);
1873 	acpi_register_spi_devices(master);
1874 done:
1875 	return status;
1876 }
1877 EXPORT_SYMBOL_GPL(spi_register_master);
1878 
1879 static void devm_spi_unregister(struct device *dev, void *res)
1880 {
1881 	spi_unregister_master(*(struct spi_master **)res);
1882 }
1883 
1884 /**
1885  * dev_spi_register_master - register managed SPI master controller
1886  * @dev:    device managing SPI master
1887  * @master: initialized master, originally from spi_alloc_master()
1888  * Context: can sleep
1889  *
1890  * Register a SPI device as with spi_register_master() which will
1891  * automatically be unregister
1892  *
1893  * Return: zero on success, else a negative error code.
1894  */
1895 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1896 {
1897 	struct spi_master **ptr;
1898 	int ret;
1899 
1900 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1901 	if (!ptr)
1902 		return -ENOMEM;
1903 
1904 	ret = spi_register_master(master);
1905 	if (!ret) {
1906 		*ptr = master;
1907 		devres_add(dev, ptr);
1908 	} else {
1909 		devres_free(ptr);
1910 	}
1911 
1912 	return ret;
1913 }
1914 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1915 
1916 static int __unregister(struct device *dev, void *null)
1917 {
1918 	spi_unregister_device(to_spi_device(dev));
1919 	return 0;
1920 }
1921 
1922 /**
1923  * spi_unregister_master - unregister SPI master controller
1924  * @master: the master being unregistered
1925  * Context: can sleep
1926  *
1927  * This call is used only by SPI master controller drivers, which are the
1928  * only ones directly touching chip registers.
1929  *
1930  * This must be called from context that can sleep.
1931  */
1932 void spi_unregister_master(struct spi_master *master)
1933 {
1934 	int dummy;
1935 
1936 	if (master->queued) {
1937 		if (spi_destroy_queue(master))
1938 			dev_err(&master->dev, "queue remove failed\n");
1939 	}
1940 
1941 	mutex_lock(&board_lock);
1942 	list_del(&master->list);
1943 	mutex_unlock(&board_lock);
1944 
1945 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1946 	device_unregister(&master->dev);
1947 }
1948 EXPORT_SYMBOL_GPL(spi_unregister_master);
1949 
1950 int spi_master_suspend(struct spi_master *master)
1951 {
1952 	int ret;
1953 
1954 	/* Basically no-ops for non-queued masters */
1955 	if (!master->queued)
1956 		return 0;
1957 
1958 	ret = spi_stop_queue(master);
1959 	if (ret)
1960 		dev_err(&master->dev, "queue stop failed\n");
1961 
1962 	return ret;
1963 }
1964 EXPORT_SYMBOL_GPL(spi_master_suspend);
1965 
1966 int spi_master_resume(struct spi_master *master)
1967 {
1968 	int ret;
1969 
1970 	if (!master->queued)
1971 		return 0;
1972 
1973 	ret = spi_start_queue(master);
1974 	if (ret)
1975 		dev_err(&master->dev, "queue restart failed\n");
1976 
1977 	return ret;
1978 }
1979 EXPORT_SYMBOL_GPL(spi_master_resume);
1980 
1981 static int __spi_master_match(struct device *dev, const void *data)
1982 {
1983 	struct spi_master *m;
1984 	const u16 *bus_num = data;
1985 
1986 	m = container_of(dev, struct spi_master, dev);
1987 	return m->bus_num == *bus_num;
1988 }
1989 
1990 /**
1991  * spi_busnum_to_master - look up master associated with bus_num
1992  * @bus_num: the master's bus number
1993  * Context: can sleep
1994  *
1995  * This call may be used with devices that are registered after
1996  * arch init time.  It returns a refcounted pointer to the relevant
1997  * spi_master (which the caller must release), or NULL if there is
1998  * no such master registered.
1999  *
2000  * Return: the SPI master structure on success, else NULL.
2001  */
2002 struct spi_master *spi_busnum_to_master(u16 bus_num)
2003 {
2004 	struct device		*dev;
2005 	struct spi_master	*master = NULL;
2006 
2007 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2008 				__spi_master_match);
2009 	if (dev)
2010 		master = container_of(dev, struct spi_master, dev);
2011 	/* reference got in class_find_device */
2012 	return master;
2013 }
2014 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2015 
2016 
2017 /*-------------------------------------------------------------------------*/
2018 
2019 /* Core methods for SPI master protocol drivers.  Some of the
2020  * other core methods are currently defined as inline functions.
2021  */
2022 
2023 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2024 {
2025 	if (master->bits_per_word_mask) {
2026 		/* Only 32 bits fit in the mask */
2027 		if (bits_per_word > 32)
2028 			return -EINVAL;
2029 		if (!(master->bits_per_word_mask &
2030 				SPI_BPW_MASK(bits_per_word)))
2031 			return -EINVAL;
2032 	}
2033 
2034 	return 0;
2035 }
2036 
2037 /**
2038  * spi_setup - setup SPI mode and clock rate
2039  * @spi: the device whose settings are being modified
2040  * Context: can sleep, and no requests are queued to the device
2041  *
2042  * SPI protocol drivers may need to update the transfer mode if the
2043  * device doesn't work with its default.  They may likewise need
2044  * to update clock rates or word sizes from initial values.  This function
2045  * changes those settings, and must be called from a context that can sleep.
2046  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2047  * effect the next time the device is selected and data is transferred to
2048  * or from it.  When this function returns, the spi device is deselected.
2049  *
2050  * Note that this call will fail if the protocol driver specifies an option
2051  * that the underlying controller or its driver does not support.  For
2052  * example, not all hardware supports wire transfers using nine bit words,
2053  * LSB-first wire encoding, or active-high chipselects.
2054  *
2055  * Return: zero on success, else a negative error code.
2056  */
2057 int spi_setup(struct spi_device *spi)
2058 {
2059 	unsigned	bad_bits, ugly_bits;
2060 	int		status;
2061 
2062 	/* check mode to prevent that DUAL and QUAD set at the same time
2063 	 */
2064 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2065 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2066 		dev_err(&spi->dev,
2067 		"setup: can not select dual and quad at the same time\n");
2068 		return -EINVAL;
2069 	}
2070 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2071 	 */
2072 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2073 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2074 		return -EINVAL;
2075 	/* help drivers fail *cleanly* when they need options
2076 	 * that aren't supported with their current master
2077 	 */
2078 	bad_bits = spi->mode & ~spi->master->mode_bits;
2079 	ugly_bits = bad_bits &
2080 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2081 	if (ugly_bits) {
2082 		dev_warn(&spi->dev,
2083 			 "setup: ignoring unsupported mode bits %x\n",
2084 			 ugly_bits);
2085 		spi->mode &= ~ugly_bits;
2086 		bad_bits &= ~ugly_bits;
2087 	}
2088 	if (bad_bits) {
2089 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2090 			bad_bits);
2091 		return -EINVAL;
2092 	}
2093 
2094 	if (!spi->bits_per_word)
2095 		spi->bits_per_word = 8;
2096 
2097 	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2098 	if (status)
2099 		return status;
2100 
2101 	if (!spi->max_speed_hz)
2102 		spi->max_speed_hz = spi->master->max_speed_hz;
2103 
2104 	if (spi->master->setup)
2105 		status = spi->master->setup(spi);
2106 
2107 	spi_set_cs(spi, false);
2108 
2109 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2110 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2111 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2112 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2113 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2114 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2115 			spi->bits_per_word, spi->max_speed_hz,
2116 			status);
2117 
2118 	return status;
2119 }
2120 EXPORT_SYMBOL_GPL(spi_setup);
2121 
2122 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2123 {
2124 	struct spi_master *master = spi->master;
2125 	struct spi_transfer *xfer;
2126 	int w_size;
2127 
2128 	if (list_empty(&message->transfers))
2129 		return -EINVAL;
2130 
2131 	/* Half-duplex links include original MicroWire, and ones with
2132 	 * only one data pin like SPI_3WIRE (switches direction) or where
2133 	 * either MOSI or MISO is missing.  They can also be caused by
2134 	 * software limitations.
2135 	 */
2136 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2137 			|| (spi->mode & SPI_3WIRE)) {
2138 		unsigned flags = master->flags;
2139 
2140 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2141 			if (xfer->rx_buf && xfer->tx_buf)
2142 				return -EINVAL;
2143 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2144 				return -EINVAL;
2145 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2146 				return -EINVAL;
2147 		}
2148 	}
2149 
2150 	/**
2151 	 * Set transfer bits_per_word and max speed as spi device default if
2152 	 * it is not set for this transfer.
2153 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2154 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2155 	 */
2156 	message->frame_length = 0;
2157 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2158 		message->frame_length += xfer->len;
2159 		if (!xfer->bits_per_word)
2160 			xfer->bits_per_word = spi->bits_per_word;
2161 
2162 		if (!xfer->speed_hz)
2163 			xfer->speed_hz = spi->max_speed_hz;
2164 		if (!xfer->speed_hz)
2165 			xfer->speed_hz = master->max_speed_hz;
2166 
2167 		if (master->max_speed_hz &&
2168 		    xfer->speed_hz > master->max_speed_hz)
2169 			xfer->speed_hz = master->max_speed_hz;
2170 
2171 		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2172 			return -EINVAL;
2173 
2174 		/*
2175 		 * SPI transfer length should be multiple of SPI word size
2176 		 * where SPI word size should be power-of-two multiple
2177 		 */
2178 		if (xfer->bits_per_word <= 8)
2179 			w_size = 1;
2180 		else if (xfer->bits_per_word <= 16)
2181 			w_size = 2;
2182 		else
2183 			w_size = 4;
2184 
2185 		/* No partial transfers accepted */
2186 		if (xfer->len % w_size)
2187 			return -EINVAL;
2188 
2189 		if (xfer->speed_hz && master->min_speed_hz &&
2190 		    xfer->speed_hz < master->min_speed_hz)
2191 			return -EINVAL;
2192 
2193 		if (xfer->tx_buf && !xfer->tx_nbits)
2194 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2195 		if (xfer->rx_buf && !xfer->rx_nbits)
2196 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2197 		/* check transfer tx/rx_nbits:
2198 		 * 1. check the value matches one of single, dual and quad
2199 		 * 2. check tx/rx_nbits match the mode in spi_device
2200 		 */
2201 		if (xfer->tx_buf) {
2202 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2203 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2204 				xfer->tx_nbits != SPI_NBITS_QUAD)
2205 				return -EINVAL;
2206 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2207 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2208 				return -EINVAL;
2209 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2210 				!(spi->mode & SPI_TX_QUAD))
2211 				return -EINVAL;
2212 		}
2213 		/* check transfer rx_nbits */
2214 		if (xfer->rx_buf) {
2215 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2216 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2217 				xfer->rx_nbits != SPI_NBITS_QUAD)
2218 				return -EINVAL;
2219 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2220 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2221 				return -EINVAL;
2222 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2223 				!(spi->mode & SPI_RX_QUAD))
2224 				return -EINVAL;
2225 		}
2226 	}
2227 
2228 	message->status = -EINPROGRESS;
2229 
2230 	return 0;
2231 }
2232 
2233 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2234 {
2235 	struct spi_master *master = spi->master;
2236 
2237 	message->spi = spi;
2238 
2239 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2240 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2241 
2242 	trace_spi_message_submit(message);
2243 
2244 	return master->transfer(spi, message);
2245 }
2246 
2247 /**
2248  * spi_async - asynchronous SPI transfer
2249  * @spi: device with which data will be exchanged
2250  * @message: describes the data transfers, including completion callback
2251  * Context: any (irqs may be blocked, etc)
2252  *
2253  * This call may be used in_irq and other contexts which can't sleep,
2254  * as well as from task contexts which can sleep.
2255  *
2256  * The completion callback is invoked in a context which can't sleep.
2257  * Before that invocation, the value of message->status is undefined.
2258  * When the callback is issued, message->status holds either zero (to
2259  * indicate complete success) or a negative error code.  After that
2260  * callback returns, the driver which issued the transfer request may
2261  * deallocate the associated memory; it's no longer in use by any SPI
2262  * core or controller driver code.
2263  *
2264  * Note that although all messages to a spi_device are handled in
2265  * FIFO order, messages may go to different devices in other orders.
2266  * Some device might be higher priority, or have various "hard" access
2267  * time requirements, for example.
2268  *
2269  * On detection of any fault during the transfer, processing of
2270  * the entire message is aborted, and the device is deselected.
2271  * Until returning from the associated message completion callback,
2272  * no other spi_message queued to that device will be processed.
2273  * (This rule applies equally to all the synchronous transfer calls,
2274  * which are wrappers around this core asynchronous primitive.)
2275  *
2276  * Return: zero on success, else a negative error code.
2277  */
2278 int spi_async(struct spi_device *spi, struct spi_message *message)
2279 {
2280 	struct spi_master *master = spi->master;
2281 	int ret;
2282 	unsigned long flags;
2283 
2284 	ret = __spi_validate(spi, message);
2285 	if (ret != 0)
2286 		return ret;
2287 
2288 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2289 
2290 	if (master->bus_lock_flag)
2291 		ret = -EBUSY;
2292 	else
2293 		ret = __spi_async(spi, message);
2294 
2295 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2296 
2297 	return ret;
2298 }
2299 EXPORT_SYMBOL_GPL(spi_async);
2300 
2301 /**
2302  * spi_async_locked - version of spi_async with exclusive bus usage
2303  * @spi: device with which data will be exchanged
2304  * @message: describes the data transfers, including completion callback
2305  * Context: any (irqs may be blocked, etc)
2306  *
2307  * This call may be used in_irq and other contexts which can't sleep,
2308  * as well as from task contexts which can sleep.
2309  *
2310  * The completion callback is invoked in a context which can't sleep.
2311  * Before that invocation, the value of message->status is undefined.
2312  * When the callback is issued, message->status holds either zero (to
2313  * indicate complete success) or a negative error code.  After that
2314  * callback returns, the driver which issued the transfer request may
2315  * deallocate the associated memory; it's no longer in use by any SPI
2316  * core or controller driver code.
2317  *
2318  * Note that although all messages to a spi_device are handled in
2319  * FIFO order, messages may go to different devices in other orders.
2320  * Some device might be higher priority, or have various "hard" access
2321  * time requirements, for example.
2322  *
2323  * On detection of any fault during the transfer, processing of
2324  * the entire message is aborted, and the device is deselected.
2325  * Until returning from the associated message completion callback,
2326  * no other spi_message queued to that device will be processed.
2327  * (This rule applies equally to all the synchronous transfer calls,
2328  * which are wrappers around this core asynchronous primitive.)
2329  *
2330  * Return: zero on success, else a negative error code.
2331  */
2332 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2333 {
2334 	struct spi_master *master = spi->master;
2335 	int ret;
2336 	unsigned long flags;
2337 
2338 	ret = __spi_validate(spi, message);
2339 	if (ret != 0)
2340 		return ret;
2341 
2342 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2343 
2344 	ret = __spi_async(spi, message);
2345 
2346 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2347 
2348 	return ret;
2349 
2350 }
2351 EXPORT_SYMBOL_GPL(spi_async_locked);
2352 
2353 
2354 /*-------------------------------------------------------------------------*/
2355 
2356 /* Utility methods for SPI master protocol drivers, layered on
2357  * top of the core.  Some other utility methods are defined as
2358  * inline functions.
2359  */
2360 
2361 static void spi_complete(void *arg)
2362 {
2363 	complete(arg);
2364 }
2365 
2366 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2367 		      int bus_locked)
2368 {
2369 	DECLARE_COMPLETION_ONSTACK(done);
2370 	int status;
2371 	struct spi_master *master = spi->master;
2372 	unsigned long flags;
2373 
2374 	status = __spi_validate(spi, message);
2375 	if (status != 0)
2376 		return status;
2377 
2378 	message->complete = spi_complete;
2379 	message->context = &done;
2380 	message->spi = spi;
2381 
2382 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2383 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2384 
2385 	if (!bus_locked)
2386 		mutex_lock(&master->bus_lock_mutex);
2387 
2388 	/* If we're not using the legacy transfer method then we will
2389 	 * try to transfer in the calling context so special case.
2390 	 * This code would be less tricky if we could remove the
2391 	 * support for driver implemented message queues.
2392 	 */
2393 	if (master->transfer == spi_queued_transfer) {
2394 		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2395 
2396 		trace_spi_message_submit(message);
2397 
2398 		status = __spi_queued_transfer(spi, message, false);
2399 
2400 		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2401 	} else {
2402 		status = spi_async_locked(spi, message);
2403 	}
2404 
2405 	if (!bus_locked)
2406 		mutex_unlock(&master->bus_lock_mutex);
2407 
2408 	if (status == 0) {
2409 		/* Push out the messages in the calling context if we
2410 		 * can.
2411 		 */
2412 		if (master->transfer == spi_queued_transfer) {
2413 			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2414 						       spi_sync_immediate);
2415 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2416 						       spi_sync_immediate);
2417 			__spi_pump_messages(master, false);
2418 		}
2419 
2420 		wait_for_completion(&done);
2421 		status = message->status;
2422 	}
2423 	message->context = NULL;
2424 	return status;
2425 }
2426 
2427 /**
2428  * spi_sync - blocking/synchronous SPI data transfers
2429  * @spi: device with which data will be exchanged
2430  * @message: describes the data transfers
2431  * Context: can sleep
2432  *
2433  * This call may only be used from a context that may sleep.  The sleep
2434  * is non-interruptible, and has no timeout.  Low-overhead controller
2435  * drivers may DMA directly into and out of the message buffers.
2436  *
2437  * Note that the SPI device's chip select is active during the message,
2438  * and then is normally disabled between messages.  Drivers for some
2439  * frequently-used devices may want to minimize costs of selecting a chip,
2440  * by leaving it selected in anticipation that the next message will go
2441  * to the same chip.  (That may increase power usage.)
2442  *
2443  * Also, the caller is guaranteeing that the memory associated with the
2444  * message will not be freed before this call returns.
2445  *
2446  * Return: zero on success, else a negative error code.
2447  */
2448 int spi_sync(struct spi_device *spi, struct spi_message *message)
2449 {
2450 	return __spi_sync(spi, message, 0);
2451 }
2452 EXPORT_SYMBOL_GPL(spi_sync);
2453 
2454 /**
2455  * spi_sync_locked - version of spi_sync with exclusive bus usage
2456  * @spi: device with which data will be exchanged
2457  * @message: describes the data transfers
2458  * Context: can sleep
2459  *
2460  * This call may only be used from a context that may sleep.  The sleep
2461  * is non-interruptible, and has no timeout.  Low-overhead controller
2462  * drivers may DMA directly into and out of the message buffers.
2463  *
2464  * This call should be used by drivers that require exclusive access to the
2465  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2466  * be released by a spi_bus_unlock call when the exclusive access is over.
2467  *
2468  * Return: zero on success, else a negative error code.
2469  */
2470 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2471 {
2472 	return __spi_sync(spi, message, 1);
2473 }
2474 EXPORT_SYMBOL_GPL(spi_sync_locked);
2475 
2476 /**
2477  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2478  * @master: SPI bus master that should be locked for exclusive bus access
2479  * Context: can sleep
2480  *
2481  * This call may only be used from a context that may sleep.  The sleep
2482  * is non-interruptible, and has no timeout.
2483  *
2484  * This call should be used by drivers that require exclusive access to the
2485  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2486  * exclusive access is over. Data transfer must be done by spi_sync_locked
2487  * and spi_async_locked calls when the SPI bus lock is held.
2488  *
2489  * Return: always zero.
2490  */
2491 int spi_bus_lock(struct spi_master *master)
2492 {
2493 	unsigned long flags;
2494 
2495 	mutex_lock(&master->bus_lock_mutex);
2496 
2497 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2498 	master->bus_lock_flag = 1;
2499 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2500 
2501 	/* mutex remains locked until spi_bus_unlock is called */
2502 
2503 	return 0;
2504 }
2505 EXPORT_SYMBOL_GPL(spi_bus_lock);
2506 
2507 /**
2508  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2509  * @master: SPI bus master that was locked for exclusive bus access
2510  * Context: can sleep
2511  *
2512  * This call may only be used from a context that may sleep.  The sleep
2513  * is non-interruptible, and has no timeout.
2514  *
2515  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2516  * call.
2517  *
2518  * Return: always zero.
2519  */
2520 int spi_bus_unlock(struct spi_master *master)
2521 {
2522 	master->bus_lock_flag = 0;
2523 
2524 	mutex_unlock(&master->bus_lock_mutex);
2525 
2526 	return 0;
2527 }
2528 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2529 
2530 /* portable code must never pass more than 32 bytes */
2531 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2532 
2533 static u8	*buf;
2534 
2535 /**
2536  * spi_write_then_read - SPI synchronous write followed by read
2537  * @spi: device with which data will be exchanged
2538  * @txbuf: data to be written (need not be dma-safe)
2539  * @n_tx: size of txbuf, in bytes
2540  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2541  * @n_rx: size of rxbuf, in bytes
2542  * Context: can sleep
2543  *
2544  * This performs a half duplex MicroWire style transaction with the
2545  * device, sending txbuf and then reading rxbuf.  The return value
2546  * is zero for success, else a negative errno status code.
2547  * This call may only be used from a context that may sleep.
2548  *
2549  * Parameters to this routine are always copied using a small buffer;
2550  * portable code should never use this for more than 32 bytes.
2551  * Performance-sensitive or bulk transfer code should instead use
2552  * spi_{async,sync}() calls with dma-safe buffers.
2553  *
2554  * Return: zero on success, else a negative error code.
2555  */
2556 int spi_write_then_read(struct spi_device *spi,
2557 		const void *txbuf, unsigned n_tx,
2558 		void *rxbuf, unsigned n_rx)
2559 {
2560 	static DEFINE_MUTEX(lock);
2561 
2562 	int			status;
2563 	struct spi_message	message;
2564 	struct spi_transfer	x[2];
2565 	u8			*local_buf;
2566 
2567 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2568 	 * copying here, (as a pure convenience thing), but we can
2569 	 * keep heap costs out of the hot path unless someone else is
2570 	 * using the pre-allocated buffer or the transfer is too large.
2571 	 */
2572 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2573 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2574 				    GFP_KERNEL | GFP_DMA);
2575 		if (!local_buf)
2576 			return -ENOMEM;
2577 	} else {
2578 		local_buf = buf;
2579 	}
2580 
2581 	spi_message_init(&message);
2582 	memset(x, 0, sizeof(x));
2583 	if (n_tx) {
2584 		x[0].len = n_tx;
2585 		spi_message_add_tail(&x[0], &message);
2586 	}
2587 	if (n_rx) {
2588 		x[1].len = n_rx;
2589 		spi_message_add_tail(&x[1], &message);
2590 	}
2591 
2592 	memcpy(local_buf, txbuf, n_tx);
2593 	x[0].tx_buf = local_buf;
2594 	x[1].rx_buf = local_buf + n_tx;
2595 
2596 	/* do the i/o */
2597 	status = spi_sync(spi, &message);
2598 	if (status == 0)
2599 		memcpy(rxbuf, x[1].rx_buf, n_rx);
2600 
2601 	if (x[0].tx_buf == buf)
2602 		mutex_unlock(&lock);
2603 	else
2604 		kfree(local_buf);
2605 
2606 	return status;
2607 }
2608 EXPORT_SYMBOL_GPL(spi_write_then_read);
2609 
2610 /*-------------------------------------------------------------------------*/
2611 
2612 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
2613 static int __spi_of_device_match(struct device *dev, void *data)
2614 {
2615 	return dev->of_node == data;
2616 }
2617 
2618 /* must call put_device() when done with returned spi_device device */
2619 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
2620 {
2621 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
2622 						__spi_of_device_match);
2623 	return dev ? to_spi_device(dev) : NULL;
2624 }
2625 
2626 static int __spi_of_master_match(struct device *dev, const void *data)
2627 {
2628 	return dev->of_node == data;
2629 }
2630 
2631 /* the spi masters are not using spi_bus, so we find it with another way */
2632 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
2633 {
2634 	struct device *dev;
2635 
2636 	dev = class_find_device(&spi_master_class, NULL, node,
2637 				__spi_of_master_match);
2638 	if (!dev)
2639 		return NULL;
2640 
2641 	/* reference got in class_find_device */
2642 	return container_of(dev, struct spi_master, dev);
2643 }
2644 
2645 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
2646 			 void *arg)
2647 {
2648 	struct of_reconfig_data *rd = arg;
2649 	struct spi_master *master;
2650 	struct spi_device *spi;
2651 
2652 	switch (of_reconfig_get_state_change(action, arg)) {
2653 	case OF_RECONFIG_CHANGE_ADD:
2654 		master = of_find_spi_master_by_node(rd->dn->parent);
2655 		if (master == NULL)
2656 			return NOTIFY_OK;	/* not for us */
2657 
2658 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
2659 			put_device(&master->dev);
2660 			return NOTIFY_OK;
2661 		}
2662 
2663 		spi = of_register_spi_device(master, rd->dn);
2664 		put_device(&master->dev);
2665 
2666 		if (IS_ERR(spi)) {
2667 			pr_err("%s: failed to create for '%s'\n",
2668 					__func__, rd->dn->full_name);
2669 			return notifier_from_errno(PTR_ERR(spi));
2670 		}
2671 		break;
2672 
2673 	case OF_RECONFIG_CHANGE_REMOVE:
2674 		/* already depopulated? */
2675 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
2676 			return NOTIFY_OK;
2677 
2678 		/* find our device by node */
2679 		spi = of_find_spi_device_by_node(rd->dn);
2680 		if (spi == NULL)
2681 			return NOTIFY_OK;	/* no? not meant for us */
2682 
2683 		/* unregister takes one ref away */
2684 		spi_unregister_device(spi);
2685 
2686 		/* and put the reference of the find */
2687 		put_device(&spi->dev);
2688 		break;
2689 	}
2690 
2691 	return NOTIFY_OK;
2692 }
2693 
2694 static struct notifier_block spi_of_notifier = {
2695 	.notifier_call = of_spi_notify,
2696 };
2697 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2698 extern struct notifier_block spi_of_notifier;
2699 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
2700 
2701 static int __init spi_init(void)
2702 {
2703 	int	status;
2704 
2705 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2706 	if (!buf) {
2707 		status = -ENOMEM;
2708 		goto err0;
2709 	}
2710 
2711 	status = bus_register(&spi_bus_type);
2712 	if (status < 0)
2713 		goto err1;
2714 
2715 	status = class_register(&spi_master_class);
2716 	if (status < 0)
2717 		goto err2;
2718 
2719 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
2720 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
2721 
2722 	return 0;
2723 
2724 err2:
2725 	bus_unregister(&spi_bus_type);
2726 err1:
2727 	kfree(buf);
2728 	buf = NULL;
2729 err0:
2730 	return status;
2731 }
2732 
2733 /* board_info is normally registered in arch_initcall(),
2734  * but even essential drivers wait till later
2735  *
2736  * REVISIT only boardinfo really needs static linking. the rest (device and
2737  * driver registration) _could_ be dynamically linked (modular) ... costs
2738  * include needing to have boardinfo data structures be much more public.
2739  */
2740 postcore_initcall(spi_init);
2741 
2742